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Abstract 

Fatal ventricular arrhythmias can occur in patients with Hypertrophic Cardiomyopathy, Brugada 

Syndrome and rarely in patients with normal cardiac investigations. Despite very different 

pathogeneses, we hypothesised that a common electrophysiological substrate precipitates these 

arrhythmias and could be used as a marker for risk stratification. 

In Chapter 3 of this thesis, we found that fewer than half the cardiac arrest survivors with Brugada 

Syndrome would have been offered prophylactic defibrillators based on current risk scoring, 

highlighting the need for better risk stratification. Our group previously used a commercially 

available 252-electrode vest which constructs ventricular electrograms onto a CT image of the heart 

to show exercise related differences in high-risk patients. In Chapter 4, we applied this method to 

Brugada patients, but could not reproduce prior results. Further investigation revealed periodic 

changes in activation patterns after exercise that could explain this discrepancy. An alternative 

matrix approach was developed to overcome this problem. Exercise induced conduction 

heterogeneity differentiated Brugada patients from unaffected controls, but not those surviving 

cardiac arrest. However, if considered alongside spontaneous type 1 ECG and syncope, inducible 

conduction heterogeneity markedly improved identification of Brugada cardiac arrest survivors. In 

Chapter 5 the method was shown to differentiate idiopathic ventricular fibrillation patients from 

those fully recovered from acute ischaemic cardiac arrest, implying a permanent electrophysiological 

abnormality. In Chapter 8, we showed prolonged mean local activation times and activation-

recovery intervals in hypertrophic cardiomyopathy cardiac arrest survivors compared to those 

without previous ventricular arrhythmia. These metrics were combined into both logistic regression 

and support vector machine models to strongly differentiate the groups. 

We concluded that electrophysiological changes could identify cardiac arrest survivors in various 

cardiac conditions, but a single factor common pathway was not established. Prospective studies are 

required to determine if using these parameters could enhance current risk stratification for sudden 

death. 
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Chapter 1: Introduction 

1.1 Lethal arrhythmia: Ancients to the modern era 

Where and when the ‘first’ documentation of arrhythmia was made appears to have as many 

different answers as there are historians writing about it. Estimates range from thousands to 

hundreds of years before the common era (BCE). Citations arising from Babylonian and Chinese texts 

from around 2600 BCE describe sudden death from a still heart and a fast pulse to ventilation rate 

ratio in illness (Karagueuzian 2004). Detailed descriptions of pulse taking were made across ancient 

China, India, Egypt and Greece between 600 and 400 BCE (Ghasemzadeh and Zafari 2011). Various 

features of pulse rate and character were noted to correspond to the wellbeing of patients. Pulse 

taking formed a large bulk of early medicine, but the origin of the pulsation at the heart was not 

definitively described until Harvey in the 16th century of the common era (CE). 

The involvement of electricity in sudden death was first noted by Benjamin Franklin’s (United States 

of America) observation of lightning strikes in the 1750s. Twenty years later, Peter Abildgaard 

(Denmark) noted that a shock could render a bird ‘lifeless’, before ‘reviving’ it with another shock – 

possibly the first ever defibrillation. Abildgaard even noted that his chicken recovered well enough 

to lay an egg (Karagueuzian 2004). 

Measuring bio-electricity was pioneered by Luigi Galvani (Italy) in 1791, using an unusual contraption 

on a skinned frog leg as a transducer – notably used by Rudolf Koelliker (Switzerland) as late as 1856 

to record the frog heart’s epicardial impulse (Fye 1999). Koelliker noted that the leg transducer 

twitched before cardiac systole – a sign that the mechanical activity was triggered by the electrical 

current. The first mechanical ‘galvanometer’ was produced by Hans Orsted (Denmark) in 1820, and 

the first intact human heart measurements were made by Augustus Waller (United Kingdom) in 

1887 at St Mary’s Hospital, London. Willem Einthoven (the Netherlands) refined this into a practical 

electrocardiogram (ECG) machine in 1895.  

Rapid advancements in both recording and understanding cardiac electricity through the 20th and 

early 21st centuries bring us to our level of knowledge today, but sudden cardiac death (SCD) 

remains a major challenge to the modern physician. SCD accounts for a fifth of deaths in the more 

economically developed world. The World Health Organisation defines SCD as unexpected death 

within one hour of symptom onset or within 24 hours of having been last seen well. No cause is 
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identified in up to a third of victims under the age of 35 (Paratz, Rowsell et al. 2020). The underlying 

heart rhythm is generally ventricular tachycardia or fibrillation (Zipes and Wellens 1998). 

1.2 Pro-arrhythmic conditions and sudden death 

Coronary artery disease is the leading cause of sudden cardiac death; alongside ischaemic 

cardiomyopathy this forms up to 50-75% of sudden deaths (Hayashi, Shimizu et al. 2015). Effective 

strategies are available for quantifying and reducing the risk of sudden death from coronary artery 

disease in current guidelines (Priori, Blomstrom-Lundqvist et al. 2015; Al-Khatib Sana, Stevenson 

William et al. 2018). Of the remaining 25-50% of sudden deaths, the inherited cardiomyopathy and 

arrhythmia syndromes dominate. 

Cardiomyopathies 

Hypertrophic cardiomyopathy (HCM) is the commonest inherited cardiac condition, affecting 1 in 

500 adults, and the commonest inherited structural syndrome (Maron, Gardin et al. 1995). HCM is 

caused by mutations in genes that encode components of the cardiac muscle, most commonly the 

sarcomeric myosin and troponin coding genes, and more rarely also genes responsible for the Z-disc 

boundaries between sarcomeres and calcium handling. Inheritance is autosomal dominant. 

(Marsiglia and Pereira 2014) The diagnostic criteria include ventricular hypertrophy greater than 

15mm in isolation or 13mm in conjunction with supporting features from family history, symptom 

evaluation, ECG abnormalities, laboratory testing and cardiac imaging (Authors/Task Force, Elliott et 

al. 2014). Secondary causes of ventricular hypertrophy must be ruled out. Sudden cardiac death is a 

feature, affecting between 1-2% of the known HCM population per year (O'Mahony, Elliott et al. 

2013). 

Channelopathies 

The commonest inherited arrhythmia syndrome without a protective drug treatment is Brugada 

syndrome, affecting 1 in 2000 adults (Vutthikraivit, Rattanawong et al. 2018). This condition features 

coved-ST elevation in the right precordial leads, autosomal dominant inheritance and an association 

with sudden cardiac death (Brugada and Brugada 1992). Brugada syndrome and the other 

channelopathies may be under-diagnosed in sudden cardiac death victims as there are no structural 

abnormalities detectable by currently used clinical and histopathological tests. Patients surviving 

sudden cardiac arrest can be tested for channelopathies using challenge testing (ajmaline 

provocation or exercise) alongside detailed electrophysiological assessment (signal averaged ECG, 



16 
 
 

 

high-precordial lead ECG, 12-lead 24 hour ECG recording) (Visser, van der Heijden Jeroen et al. 

2016). 

If all known cardiac conditions are ruled out, the cardiac arrest survivor is said to have suffered 

idiopathic ventricular fibrillation or tachycardia. Idiopathic ventricular fibrillation is diagnosed when 

a battery of commonly used clinical tests fail to demonstrate an underlying condition that may have 

provoked the arrhythmia (Viskin and Belhassen 1990). This group shrinks as new conditions are 

identified, implying that in the future some of these cases may be reclassified under a new diagnosis. 

The idiopathic VF group is therefore inherently heterogenous, and by the nature of the presentation, 

currently impossible to predict before a potentially lethal outcome. 

1.3 Modern management of the pro-arrhythmic patient 

Various medical or invasive treatments can be considered for many pro-arrhythmic conditions, but 

in HCM, Brugada syndrome and idiopathic VF none are considered to be curative (Priori, Blomstrom-

Lundqvist et al. 2015; Al-Khatib Sana, Stevenson William et al. 2018). The mainstay of risk 

management is the implantable cardioverter-defibrillator (ICD). First approved for implantation in 

1985, at the time of the most recent survey some 85,000 devices were implanted yearly in Europe 

alone (Raatikainen, Arnar et al. 2015). 

ICDs are effective at terminating ventricular arrhythmia and/or reducing mortality in multiple 

pathologies (Ozaydin, Moazzami et al. 2015; Shun-Shin, Zheng et al. 2017; Wang, Xie et al. 2017; 

Dereci, Yap et al. 2019). However, complications can occur at comparable rates to the frequency of 

potentially lethal arrhythmia (Wang, Xie et al. 2017; Dereci, Yap et al. 2019). Patients may suffer 

inappropriate shocks, device infection, erosion, chronic pain and other long-lasting causes of 

morbidity or mortality. For this reason, accurate risk stratification is needed to increase the number 

of high-risk patients undergoing ICD implantation and reduce the number of patients receiving ICDs 

they do not go on to use. 

1.3.1 Risk stratification in Hypertrophic Cardiomyopathy 

Implantation of ICDs in HCM cardiac arrest survivors is uncontroversial. Optimal risk stratification for 

primary prevention devices is a topic of intense debate.  

Single risk factors 

Over the years many associations with sudden death in HCM have been described and used to 

estimate risk in the primary prevention candidate. The first was family history, starting with an 
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addendum to the original 8-case series that defined HCM, describing the sudden death of a brother 

to one of the original cases (Teare 1958). An early cohort of 119 patients followed up at the 

Hammersmith Hospital (UK) published in 1973 established the association of family history with 

sudden death (Hardarson, Curiel et al. 1973).  

The early work of William McKenna and colleagues established several risk factors for sudden death: 

ventricular tachycardia (McKenna, England et al. 1981), diagnosis at a young age (McKenna, 

Deanfield et al. 1981), and obstructive features on echocardiography (Doi, McKenna et al. 1980). 

Larger cohorts with longer follow up went on to confirm and quantify the effects of these risk 

factors. 

Patients under 30 with non-sustained VT were found to be at four times the risk of sudden death, 

compared with HCM patients without NSVT, and this was found to be a binary relationship, with no 

effect of increasing duration or longer runs of arrhythmia (Monserrat, Elliott et al. 2003). Left 

ventricular wall thickness, syncope, abnormal blood pressure response, late Gadolinium 

enhancement, genetic features and left atrial size have all been associated with sudden death in the 

intervening years (Elliott, Poloniecki et al. 2000; Varnava, Elliott et al. 2001; O'Mahony, Jichi et al. 

2014; Weng, Yao et al. 2016). 

High risk genes have been described, notably Troponin T mutations in patients with milder 

hypertrophy (Watkins, McKenna et al. 1995). Whilst known, the variation in genotype-phenotype 

correlation between individuals, even in the same family means that these features are currently not 

recommended for risk stratification for sudden death (O'Mahony, Elliott et al. 2013). 

Despite the associations, the positive predictive value of most single risk factors is only 10-30% 

(Saumarez, Pytkowski et al. 2008; Sen-Chowdhry and McKenna 2008). The highest positive predictive 

value of a single risk factor is paced ventricular electrogram fractionation, at 38% (Saumarez, 

Pytkowski et al. 2008). This invasive electrophysiologic measure uses programmed ventricular 

stimulation to determine if aberrant conduction is present, manifesting as fractionated paced 

electrograms. However, the risks of an invasive procedure combined with the dynamic nature of the 

arrhythmia substrate (which may explain poor reproducibility of other electrophysiological studies) 

led to limited adoption of this method. 

In summary, single risk factors lack sensitivity and specificity to be used in isolation. Multiple 

variable, or multivariate strategies offer a potential solution. 
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Multiple variable strategies 

Two main approaches to multivariate risk stratification in HCM exist: the European Society of 

Cardiology (ESC) guidance, and the American College of Cardiology Foundation/American Heart 

Association guidance (ACCF/AHA) (American College of Cardiology Foundation/American Heart 

Association Task Force on, American Association for Thoracic et al. 2011; Authors/Task Force, Elliott 

et al. 2014). 

First published in 2003 and fully revised in 2011, the ACCF/AHA guidelines recommend offering a 

patient an ICD if they have a family history of sudden death in a first degree relative with 

hypertrophic cardiomyopathy, or under 50 years old without a diagnosis, left ventricular 

hypertrophy ≥30mm or recent unexplained syncope. If these features are absent, either non-

sustained ventricular tachycardia or an abnormal blood pressure response to exercise are 

considered. These are combined with ‘sudden death risk modifiers’ such as left ventricular outflow 

tract obstruction, late Gadolinium enhancement on cardiac magnetic resonance imaging (CMRI), left 

ventricular aneurysm or malignant genotypes to guide implantation. In 2020, an LV ejection fraction 

<50% was added as an indication for ICD therapy. 

Defined in 2014, the ESC guidelines recommend the use of a multivariate risk calculator to estimate 

the 5-year risk of sudden cardiac death. The patient’s age, maximum left ventricular wall thickness, 

left atrial size, left ventricular outflow tract gradient, family history of sudden death, non-sustained 

ventricular tachycardia and unexplained syncope are considered. This calculation is made on the 

basis of a retrospective study of 3675 patients, of which 198 suffered a potentially lethal arrhythmia 

in a 5.7 year average follow up. A Cox proportional hazards model was developed and validated 

internally by bootstrapping. An estimate of 6%/5-year risk was deemed sufficient to mandate ICD 

implantation, with an intermediate recommendation between 4-6%/5-year and a recommendation 

not to implant in those with 4%/5-year risk (O'Mahony, Jichi et al. 2014). 

Following the publication of these guidelines, a retrospective analysis of 1629 adult patients with 

Hypertrophic Cardiomyopathy was released, comparing the recommendations made by the ESC risk 

calculator against actual outcomes (Maron, Casey et al. 2015). Of the 35 patients suffering sudden 

cardiac arrest, only 4 (11%) were classified in the high-risk, ICD mandatory group, and more than half 

were misclassified as low risk, ICD not recommended. A similar proportion of the 46 patients who 

received an appropriate ICD therapy during the average follow up of 8.1 years were misclassified as 

low risk. The authors concluded that the ESC guidance was unreliable. 
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An independent comparison of the ACCF/AHA and the ESC strategies was performed in 288 patients 

with HCM, 14 of whom had survived potentially lethal arrhythmia (Leong, Chow et al. 2018). In the 

14 survivors, the ACCF/AHA would have recommended 43% to have defibrillators, compared to 7% 

using the ESC guidance. In contrast, from those not experiencing potentially lethal arrhythmia, the 

ESC correctly classified 82% of patients as low risk, compared to the 57% of patients using the 

ACCF/AHA score. 

A balance of risk clearly has to be struck – once a model has been constructed, a score can be 

weighted for greater sensitivity or specificity. In the original publication of the ESC score the authors 

calculated that in their dataset, following their own rule of mandatory implantation at 6%/5-year risk 

up to half of those experiencing potentially lethal arrhythmia may have been left without an ICD. 

This figure improved to 29% with the less stringent criterion of 4%/5-year risk (O'Mahony, Jichi et al. 

2014). 

1.3.2 Risk stratification in Brugada syndrome 

Single risk factors 

Risk stratification in Brugada syndrome is complicated by the transience of the Type 1 Brugada ECG 

pattern. The Type 1 ECG pattern can be elicited using sodium channel blockade by flecainide or 

ajmaline; the presence of either spontaneous or drug-induced Type 1 ECG is diagnostic by current 

guidelines (Priori, Wilde et al. 2013). Conversely, some argue that the Brugada ECG pattern alone in 

asymptomatic patients should not be considered the full syndrome, owing to the low rate of sudden 

cardiac arrest in this group (Honarbakhsh, Providencia et al. 2018). Another alternative view 

promotes associated symptoms – syncope or sleep apnea – or family history as instrumental to the 

diagnosis (Antzelevitch, Yan et al. 2016). Use of historic databases are complicated by variance in 

previous guidelines and the increase in family screening over time, meaning that the study groups 

used to define high arrhythmic risk may have significant differences with modern populations. 

Aside from the Type 1 ECG pattern, early repolarization, the aVR sign, S-wave in lead I and 

fragmented QRS have been proposed as risk markers for sudden death (Honarbakhsh, Providencia et 

al. 2018). An inferolateral early repolarization pattern and fractionated QRS was shown to 

independently confer risk with odds ratios 2.87 and 5.31 respectively in a multivariate analysis of 

246 consecutive Brugada patients in Japan (Tokioka, Kusano et al. 2014). Within the same study, 

syncope had an odds ratio of 28.57. S-waves with a duration of more than 40 milliseconds in lead I 

were assessed in 276 patients with a spontaneous Type 1 Brugada pattern and found to confer a 
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hazard ratio of 39.1 for sudden death in a 48 month follow up if present (Calo, Giustetto et al. 2016). 

The aVR sign was assessed in only 24 Brugada patients, 13 of whom were already symptomatic 

(Babai Bigi, Aslani et al. 2007). The small, heterogenous cohort sizes of the original papers, and 

inconsistent inclusion in larger studies contributed to these markers not being incorporated into 

current risk stratification. 

The largest registry of Brugada patients collated information from France, Italy, the Netherlands and 

Germany (FINGER), reporting 1029 individuals with Brugada syndrome (Probst, Veltmann et al. 

2010). Over a 2.6 year follow up, the investigators recorded 51 instances of potentially lethal 

arrhythmia – 44 of these resulted in ICD therapy, 7 in sudden death. The yearly cardiac event rates 

were 7% in those with previous aborted cardiac arrest, 2% in those with previous syncope and 0.5% 

in asymptomatic individuals. Presence of a spontaneous Type 1 ECG was also found to confer 

increased risk of potentially lethal arrhythmia. Also investigated but found to be insignificant 

predictors of risk were programmed ventricular stimulation, SCN5a mutation status, male gender 

and a family history of sudden death. Particular note should be given to the poor independent 

predictive value of genetic and family history when other risk factors are considered: underlining the 

poor genotype-phenotype correlation and dynamicity of arrhythmia. A spontaneous Type 1 ECG and 

unexplained (likely arrhythmic) syncope remain the key determinants of an ICD recommendation in 

the guidelines (Priori, Blomstrom-Lundqvist et al. 2015; Al-Khatib Sana, Stevenson William et al. 

2018). 

Programmed ventricular stimulation for the inducibility of ventricular arrhythmia has been studied 

several times with varying results (Probst, Veltmann et al. 2010; Priori, Gasparini et al. 2012; Calo, 

Giustetto et al. 2016; Sieira, Conte et al. 2017; Asada, Morita et al. 2020). There is no current 

consensus on the optimal protocol to use for stimulation, with options ranging from two stimulation 

sites, 2-3 extrastimuli and a minimum coupling interval of 180-200 milliseconds. Current guidelines 

make a IIb recommendation that programmed ventricular stimulation may be used to assist decision 

making, meaning it holds less weight than spontaneous Type 1 ECG and previous syncope. 

Multiple variable strategies 

Like for HCM, Brugada syndrome specialists have also sought to create a multivariate risk strategy 

from a database of 400 patients (Sieira, Conte et al. 2017). Univariate analysis found that previous 

aborted cardiac arrest, spontaneous type 1 ECG, early familial sudden death, inducible ventricular 

fibrillation or compromising tachycardia by programmed stimulation, previous syncope or evidence 

of a diseased sinus node were predictors of potentially lethal arrhythmia. Over an average 6.6 year 
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follow up, 34 patients had either cardiac arrest or appropriate therapy by a primary prevention ICD. 

The authors then performed a multivariate model of risk and weighted the risk factors into a score 

by rounding the regression coefficients. Internal validation was very promising, with a C-statistic of 

0.81. The investigators reported a sensitivity of 79.4% and a specificity of 72.2% for a threshold of 

two points at 5 years.  This score has yet to be externally validated. 

1.3.3 Risk stratification in idiopathic ventricular fibrillation 

Patients without an identifiable cause of documented ventricular fibrillation are generally assumed 

to be at risk of future lethal arrhythmia. A third of patients had a recurrence of ventricular 

arrhythmia during an average 5 year follow up in the latest meta-analysis (Ozaydin, Moazzami et al. 

2015). Due to the inherent normality of most clinic investigations and the high rate of recurrence, 

detailed risk stratification strategies have been eschewed in favour of widespread implantation 

(Priori, Blomstrom-Lundqvist et al. 2015; Al-Khatib Sana, Stevenson William et al. 2018). 11 studies 

from 1998 to 2012 failed on aggregate to predict ventricular arrhythmia recurrence using 

programmed ventricular stimulation (Ozaydin, Moazzami et al. 2015). 

1.4 Ventricular arrhythmogenesis 

The conditions examined so far are heterogenous – with lethal arrhythmia being the only common 

link. Ventricular fibrillation and tachycardia links these conditions as a final common pathway to 

sudden death, despite their heterogeny. Likewise, all the conditions mentioned demonstrate some 

unpredictability of the occurrence or recurrence of potentially lethal arrhythmia. A closer look at the 

arrhythmogenic processes leading to this final common pathway could provide opportunities to 

improve risk stratification in the inherited cardiac conditions. 

Arrhythmogenesis is thought of as an interaction between triggers, substrate and modulating factors 

(Coronel, Baartscheer et al. 2001). Figure 1.1 illustrates the link between these factors in the 

‘Triangle of Coumel’ (Coumel 1987). In this section these contributory components will be discussed 

in turn. 
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Figure 1.1: Coumel's triangle. Arrhythmogenesis can be thought of as an interaction between triggers, substrates and 

modulating factors. Understanding this may enhance our ability to predict arrhythmia. 

1.4.1 Triggers: the ventricular ectopic 

A ventricular ectopic is a premature depolarization generated within ventricular myocardial cells or 

conduction tissue distal to the bifurcation of the bundle of His. They are often seen as broad-

complex beats on the surface electrocardiogram (ECG): an example body surface recording from this 

study is shown in Figure 1.2. 

 

Figure 1.2: A body surface trace demonstrating two sinus beats followed by a ventricular ectopic. Image produced from the 

body surface signals from a patient in this study. 
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Pathophysiology 

There are 3 accepted mechanisms for the generation of ventricular ectopic depolarizations: 

1. Enhanced automaticity 

2. Triggered activity 

3. Re-entry 

Enhanced automaticity 

Many cardiac cells can depolarize without external influence – this is known as normal automaticity 

(Hoffman and Cranefield 1964). This occurs due to a ‘funny’ current, so named because it is 

activated by hyperpolarization than depolarization. It is a slow inward flux of potassium and sodium 

ions across the cardiac cell membrane during diastole (Brown, Difrancesco et al. 1979). Ions cross 

hyperpolarization activated, cyclic nucleotide dependent channels (HCN); these are sensitive to 

cyclic adenosine monophosphate (cAMP), in turn conferring sensitivity to beta adrenergic and 

muscarinic acetylcholine agents (Robinson and Siegelbaum 2003). Other currents have been noted 

to contribute to automaticity, most notably the sodium-calcium exchanger current (INCX) (Lakatta and 

DiFrancesco 2009), which is also modulated by catecholamines (Gao, Rasmussen et al. 2013). 

Upon crossing a threshold membrane voltage there is a rapid sodium influx through the voltage 

gated sodium channel Nav1.5, encoded by the SCN5a gene. This results in cell depolarization. The 

velocity of the action potential and therefore impulse propagation is related to this rapid sodium 

influx (MacLeod, Marston et al. 2015). Calcium enters through the L-type calcium channel and 

stimulates the ryanodine receptor, which facilitates excitation-contraction coupling (Eisner, Caldwell 

et al. 2017). 

Parasystole 

Cells of the sinoatrial node (SAN) have the highest rate of automaticity in the normal heart, leading 

to its dominance in determining heart rate (Baruscotti, Bucchi et al. 2005). Most subsidiary 

pacemakers will be depolarized at a higher rate by the dominant signal of the SAN. However, if these 

subsidiary pacemakers are shielded from a depolarization by an area of slow conduction, they may 

activate of their own accord. This produces parasystolic ectopy (Pick 1953). 

Depolarization induced automaticity 

Whilst cells with subsidiary pacemaker potential depolarize spontaneously in normal physiologic 

conditions, many myocardial cells can develop automaticity from changes in their immediate 
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environment. This occurs when membrane potentials are brought close to the threshold 

transmembrane voltage (Carmeliet 1984; Yu, Chang et al. 1993). This is called ‘depolarization 

induced automaticity’ and is modulated largely by the L-type voltage-gated Ca channel (Katzung 

1975; Ypey, van Meerwijk et al. 2013).   

These conditions can occur when extracellular potassium is higher than usual (including the high 

rates of cell death in myocardial ischaemia), reduction in the number or function of IK1 channels, or 

the electrotonic influence of neighbouring cells (Antzelevitch and Burashnikov 2011). 

Triggered activity 

Following depolarization of a cardiac myocyte, two types of ‘afterdepolarization’ can occur – the 

early afterdepolarization (EAD) and the delayed afterdepolarization (DAD). EADs occur during the 

main action potential plateau or during phase 3 repolarization, whereas DADs occur following full 

repolarization of the previous action potential (Wit and Rosen 1986). 

Like enhanced automaticity, afterdepolarizations are also modulated by beta-adrenergic agonists due 

to the influence of cAMP and protein kinase A on voltage-gated ion channels (Xie, Grandi et al. 2013). 

In contrast to depolarization induced automaticity, afterdepolarizations follow a cardiac action 

potential rather than stemming from a sub-threshold depolarizing influence in the cellular 

environment. 

Early afterdepolarizations 

Repolarization of the myocyte occurs in multiple phases. In the phase 1 notch, Ito, the transient 

outward K current rapidly and briefly activates, which quickly but partially repolarizes the cell – the 

action potential notch. In phase 2, further potassium outflow helps to repolarize the cell via Ikr (rapid) 

and Iks (slow). The balance of Ica and Ikr + Iks leads to a plateau. In phase 3 the potassium currents 

continue whilst calcium flux stops, and the cell repolarizes faster. This is partially slowed by INCX which 

produces a slow net inward sodium current to expel calcium. Full repolarization is achieved by Ik1 

(MacLeod, Marston et al. 2015). 

Any current which can overcome the net outward current produced by these potassium channels can 

cause an EAD. Both the L-type Ca channel and INCX are capable due to positive feedback in depolarized 

states (Weiss, Garfinkel et al. 2010). If ICa,L and INCX predominate over Ikr and Iks, repolarization is 

terminated and an EAD is produced at the cellular level. 
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EADs are important in congenital and acquired long QT syndromes (Shimizu, Ohe et al. 1991; Yan, Wu 

et al. 2001), heart failure (Li, Lau et al. 2002) and Torsade de pointes (Wu, Wu et al. 2002). 

Delayed afterdepolarizations 

Delayed afterdepolarizations occur after full repolarization (phase 4 of the action potential) (Fink, 

Noble et al. 2011). They are believed to be caused by calcium flux between the sarcoplasmic reticulum 

and cytoplasm (Marban, Robinson et al. 1986). 

DADs are important in ischaemia (Said, Becerra et al. 2008), heart failure (Verkerk, Veldkamp et al. 

2001), diabetic heart models (Nordin, Gilat et al. 1985), right ventricular outflow tract VT (Calvo, 

Jongbloed et al. 2013), and healthy tissues exposed to any one of sustained tachycardia (Stambler, 

Fenelon et al. 2003), hypokalaemia (Miura, Ishide et al. 1993), elevated sympathetic tone (Chen, 

Chiang et al. 1994) or digitalis toxicity (Xie, Cunningham et al. 1995). 

Several of these conditions are linked to intracellular calcium overload (Vassalle and Lin 2004; Garcia-

Dorado, Ruiz-Meana et al. 2012; Marks 2013). It is believed that calcium release from sarcoplasmic 

reticulum activates the INCX which then leads to depolarization of the cell membrane (Fink, Noble et 

al. 2011). This in turn leads to activation of Nav1.5 sodium channel once the threshold is passed. 

Re-entry – a disorder of impulse conduction 

Alterations in impulse conduction can lead to the action potential propagating in a closed loop. 

Border zones of heterogenous heart tissues are associated with generation of focal ectopic activity 

in several animal studies (Kaplinsky, Yahini et al. 1972; Boineau and Cox 1973; Arutunyan, Swift et al. 

2002). These forms of arrhythmia highlight potential overlap between trigger and substrate – 

sometimes only divided by scale. The limits of differentiating between true focal (arising from a 

single cell or contiguous mass of cells) and micro re-entry are defined by the resolution and 

dimensionality of mapping technology (Ideker, Rogers et al. 2009). 

Delayed propagation of the action potential from a sinus beat through varying levels of conduction 

block can lead to the initiation of a ventricular ectopic, especially in models of ischaemia (Pogwizd 

and Corr 1987). Intramural re-entry is important in this context, and epicardial or endocardial 

mapping alone can cause the misinterpretation of these ectopics as non-reentrant. Electrical 

remnants of the sinus beat delayed by slow conduction reach sections of myocardium which are 

once again ready to depolarize. The reactivation of this tissue generates a ventricular ectopic. An in-

silico study using high-fidelity patient derived data has also demonstrated micro re-entry as a 

probable mechanism for borderzone arrhythmogenesis (Oliveira, Alonso et al. 2018). 
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Reflection  

This is a special form of re-entry caused by a conduction block in a long fibre. The inward and 

outward path of propagation are shared. Whilst the area of conduction block may be unable to 

support an action potential, longitudinal current flow through it can be sufficient to depolarize the 

distal fibre, reversing the current flow. If the conduction delay is sufficiently long, the proximal fibre 

may become excitable again and depolarize under the influence of current flow through the region 

of block. This impulse is now ectopic. This can occur in acute ischaemia, chronic infarct and areas of 

localized extracellular hyperkalaemia (Janse and D'Alnoncourt 1987). 

From cellular depolarization to ventricular ectopic 

To become a ventricular ectopic at the tissue level, cellular premature depolarizations must 

propagate. Normally repolarizing cells in the immediate vicinity can oppose this through electrotonic 

effects via well coupled gap junctions. A critical mass has to be achieved – thought to be a group of 

nearly a million cardiomyocytes in simulations (Xie, Sato et al. 2010). Modelling simulation of poor gap 

junction coupling, fibrosis, reduced repolarization reserve and heart failure electrical remodeling 

conditions decreases this critical mass significantly, giving an indication as to why we see more 

ventricular ectopy in such conditions. 

Clinical relevance 

Ventricular ectopics are common in normal hearts. In the most thorough study to date 101 subjects 

with a normal physical examination, electrocardiogram (ECG), echocardiogram, maximal exercise 

tolerance test (ETT), left and right heart catheterization with coronary angiography underwent 24 

hour continuous ECG (Holter monitoring) (Kostis, McCrone et al. 1981). 39% of subjects had at least 

one ventricular ectopic in a 24 hour period, but only 4% had more than 100. 

Large cohort studies appear to suggest that ventricular ectopics may confer a higher risk of sudden 

cardiac death. The Multiple Risk Factor Intervention Trial (MRFIT) studied 15,637 apparently healthy 

white men aged 35-57 over 7.5 years (Abdalla, Prineas et al. 1987). During 2 minute ECG recording, 

4.4% of participants were found to have ventricular ectopics. An four-fold increase in risk was found 

for patients with ‘complex’ ventricular ectopy (polymorphic, bigeminous, repetitive or R-on-T) for 

sudden cardiac death. The Framingham Heart study recorded 1 hour continuous ECG in 6,033 men 

and women, finding complex ventricular ectopy in 12% of apparently healthy subjects. An two-fold 

increased risk for sudden death was also demonstrated in men over a maximum 6 year follow up 

(Bikkina, Larson et al. 1992). These large studies have been criticized for incomplete exclusion of 

structural heart disease – bringing into question their definition of ‘apparently healthy’ (Ng 2006). 
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MRFIT excluded only patients with a previous history of myocardial infarction or diabetes. 

Framingham employed a two-year follow up with patient history, physical examination and 12 lead 

ECG. 

Other studies of apparently healthy individuals provide a contrasting view that without other signs 

of cardiac disease, ventricular ectopics may be benign during rest or exercise. A study of 1,160 adult 

subjects undergoing maximal ETT found that 6.9% developed frequent or repetitive ectopic activity. 

During a follow up period of 5.6 years this did not confer additional risk for cardiac events including 

angina pectoris, non-fatal myocardial infarction, cardiac syncope or sudden cardiac death (Janette 

Busby, Shefrin et al. 1989). Ventricular ectopy at rest on routine ECG was further examined in 1,214 

volunteers aged 35-69 over 10 years – no predictive value of manifest ectopy was demonstrated 

(Fisher F and Tyroler Herman 1973). Ninety-eight older subjects aged 60-85 years who were 

examined with 24 hour continuous ECG similarly could not be stratified into high- and low- cardiac 

risk groups by manifest ectopy after 10 years of follow up (Fleg and Kennedy 1992).  

The role of ventricular ectopy in prognosticating those with overt cardiac disease is less 

controversial. In 533 patients surviving 10 days post myocardial infarction, the occurrence of more 

than 10 ventricular ectopics per hour was an independent risk factor for sudden death in a 24 month 

follow up (Mukharji, Rude et al. 1984). In 933 patients were studied with 6 hour continuous ECG 

following myocardial infarction, complex ventricular ectopy was found to have a greater association 

with sudden and non-sudden cardiac death in an average 36 month follow up (Moss, Davis et al. 

1979). Prior to the turn of the 21st century, the consensus view was that ventricular ectopy was most 

relevant to those with concurrent structural heart disease. 

Yet we know that in some patients with apparently normal hearts, ventricular ectopy may be the 

trigger for a fatal arrhythmia. A clear demonstration of this came in 2002, when ectopy was shown 

to be a treatable cause of ventricular fibrillation in the structurally normal heart (Haissaguerre, Shah 

et al. 2002). Figure 1.3 shows a trace from an implantable defibrillator in a patient from this study in 

which ventricular ectopy initiates rapid ventricular arrhythmia. 
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Figure 1.3: Endocardial recording from an implantable cardioverter defibrillator. The device was implanted for secondary 

prevention in this patient with a structurally normal heart, who took part in this study. Closely coupled ectopy recurs in a 

triplet pattern. Following the vertical dashed line, the ventricles begin to fibrillate. This arrhythmia was likely triggered by 

the closely coupled ectopics. 

Haïssaguerre et al. investigated 16 survivors of cardiac arrest in the context of apparently normal 

hearts. All had normal physical examination, electrocardiogram, exercise testing, coronary 

angiography and echocardiography. Coronary spasm was ruled out by ergonovine challenge or 

documentation of an isoelectric ST segment prior to ventricular fibrillation. Class IA and IC drug 

challenge excluded a long QT or Brugada syndrome. Six underwent endomyocardial biopsy – the 

results were unremarkable. Ventricular ectopics were seen to initiate ventricular arrhythmia in these 

patients and were targeted by mapping the earliest endocardial electrogram relative to onset of the 

ectopic QRS complex. Radiofrequency ablation of these sites resulted in a significant reduction in 

ectopic beats and no recurrence of ventricular fibrillation or syncope in a follow up of 32 months. 

Since this study, more patients have been successfully treated by these means, establishing it as an 

option for patients suffering recurrent ventricular arrhythmia (Haïssaguerre, Shoda et al. 2002; 

Knecht, Sacher et al. 2009) – although there has been no move towards viewing this as fully curative 

in the current consensus (Priori, Blomstrom-Lundqvist et al. 2015; Al-Khatib Sana, Stevenson William 

et al. 2018). 

1.4.2 The substrate for ventricular arrhythmia 

An arrhythmogenic substrate is a set of conditions that are conducive to arrhythmia induction. Well-

known examples include the dual atrioventricular (AV) node physiology believed to underlie AV 
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nodal re-entrant tachycardia, or accessory pathways in AV reentrant tachycardia. A substrate can be 

static, such as an established myocardial infarction scar; or dynamic, such as areas of ischemia 

during ST-elevation myocardial infarction, which can disappear with early revascularization. 

Perhaps the earliest and best characterized substrates are those of the ischaemic and infarcted 

heart. The circus movement of electrical activity during ventricular tachycardia (VT) had been 

demonstrated in 1913 (Mines 1913), but not until 1983 was the nature of the substrate detailed in 

humans: a mixture of viable myocardial cells and fibrotic tissue (Fenoglio, Pham et al. 1983). Further 

characterization noted ‘zigzag’ motion of electrical activity and poor electrical coupling of cells in 

such regions, leading to localized slow conduction – the preconditions for ventricular arrhythmia (de 

Bakker, van Capelle et al. 1993). Although ischaemic VT was subsequently mapped and targeted for 

ablation, haemodynamic instability meant this approach was not suitable for all patients (Proietti, 

Roux et al. 2016). Substrate mapping in sinus rhythm was first performed in the mid-1980s, finding 

fractionated, split and late electrograms in areas surrounding earliest activation during mapping in 

VT (Kienzle, Miller et al. 1984). Ischaemic cardiomyopathy was differentiable from non-ischaemic 

cardiomyopathy in humans by the detection of abnormal electrograms (Cassidy, Vassallo et al. 

1986), and histological scar was demonstrated in areas where low-voltage or prolonged 

electrograms were detected in porcine models, with late potentials detected in peri-scar areas 

(Wrobleski, Houghtaling et al. 2003). Based on these findings, substrate based ablation of VT circuits 

became a possibility, but despite two decades of development, recurrence rates at 1 year remain 

high (Josephson and Anter 2015). 

Ischaemic cardiomyopathy has histologically identifiable substrate, a property not shared with 

functional causes of ventricular arrhythmia, such as idiopathic ventricular fibrillation or Brugada 

syndrome. These functional syndrome substrates are less well characterized and rarely treated by 

ablation compared to ischaemic cardiomyopathy. 

The substrate for Brugada Syndrome 

The exact nature of the Brugada substrate is still debated, but there is consensus that the 

abnormality occurs in the right ventricular outflow tract (Pieroni, Notarstefano et al. 2018). Two 

main theories were postulated: from canine wedge preparations, the ‘repolarization hypothesis’; 

from human mapping and electrophysiological studies, the ‘depolarization hypothesis’. These 

theories compete, but may not be mutually exclusive (Wilde, Postema et al. 2010). The competing 

theories are described in Figure 1.4. 



30 
 
 

 

Conduction delay in humans can explain many features of Brugada syndrome. Loss of function 

mutations in SCN5a, a gene encoding the Nav1.5 sodium channel, contribute to a reduction in the 

fast sodium current required for depolarization. Sodium channel blockers unmask the pathognomic 

Type 1 Brugada ECG whilst causing concurrent conduction slowing in the atria and ventricles. 

Recorded late ventricular potentials coupled with biopsy and histopathological evidence of fibrosis, 

myocarditis or apoptosis suggest that the disease reflects disordered conduction through diseased 

myocardial tissue (Wilde, Postema et al. 2010). 

 

Figure 1.4: Competing theories of Brugada syndrome pathogenesis. (I) The repolarization hypothesis states that stronger 

outward potassium currents in the epicardium lead to both J wave elevation due to reduced depolarizing force (Panels IB 

and ID) and T wave inversion (Panels IC-E) by either prolonged epicardial action potential or Phase 2 re-entry. (II) The 

depolarization hypothesis states that delayed action potential in the right ventricular outflow (RVOT) relative to the right 

ventricle (RV) (IIA-B) leads to current flow from RV to RVOT during the J point. This flow towards the high RV ECG lead 

causes ST elevation (IIC-D). During whole heart repolarization, the delayed RVOT action potential causes current to flow 

toward the RV, leading to a negative T wave. Figure adapted from (Meregalli, Wilde et al. 2005) 

Proponents of the repolarization hypothesis contend that no animal or in vitro model compatible 

with the depolarization hypothesis has been produced to date. In contrast, canine wedge models 

can demonstrate the characteristic ST elevation, transmural dispersion of repolarization and 

subsequent Phase 2 reentrant extrasystoles which lead to ventricular tachycardia and fibrillation 

(Yan and Antzelevitch 1999). Monophasic action potential recordings from patients exhibiting a 

spontaneous type 1 Brugada ECG demonstrate epi- to endocardial differences in repolarization 

without evident conduction delay (Kurita, Shimizu et al. 2002). 
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Whilst the debate is unlikely to be settled soon, clinicians have already started investigating therapy 

directed at the right ventricular outflow tract (RVOT). Early case series indicated that in a subset of 

patients, premature complexes from the RVOT could be detected and targeted by radiofrequency 

ablation (Haïssaguerre, Extramiana et al. 2003). Patients not exhibiting clear triggers continued to 

pose a problem, however. The first attempt at substrate modification in sinus rhythm used 

radiofrequency ablation in the RVOT in 9 Brugada syndrome patients with recurrent and inducible 

ventricular fibrillation or tachycardia (Nademanee, Veerakul et al. 2011). Low voltage, prolonged 

electrograms with evidence of fractionation were found clustered in the anterior aspect of the RVOT 

epicardium. 7 patients were rendered non-inducible and the Brugada ECG was suppressed in 8; a 20-

month average follow up recorded no further recurrent ventricular arrhythmia. 

Further work introduced sodium channel blocker administration as a strategy for clarifying the 

substrate during mapping (Brugada, Pappone et al. 2015). Administration of flecainide was observed 

to increase the area of the epicardium exhibiting low voltage electrograms. Once again, the Type 1 

ECG could be suppressed by ablation, and recurrence of ventricular arrhythmia in the ablation group 

was low. By the time of writing, there are a few hundred cases of Brugada syndrome ablation in the 

literature, but similar to ischaemic ventricular arrhythmia, there is not sufficient evidence to 

consider the procedure fully curative in the guidelines, not least because outcomes following 

ablation may vary (Priori, Blomstrom-Lundqvist et al. 2015; Veerakul and Nademanee 2016; Al-

Khatib Sana, Stevenson William et al. 2018). 

The substrate for idiopathic ventricular fibrillation 

The idea of a single substrate for idiopathic ventricular fibrillation may be problematic. Prior to 1992 

Brugada syndrome fell under this diagnostic umbrella whilst it is very much a condition in its own 

now. As a grouping term for as-yet unidentified conditions, the idiopathic VF group is inherently 

heterogenous. Nonetheless, the previously mentioned work eliminating Purkinje ectopic triggers 

suggests that detailed electrophysiological analysis may play a role in future treatment 

(Haïssaguerre, Shoda et al. 2002). 

Haïssaguerre et al. followed up their initial work by examining the evidence for a mappable 

substrate during sinus rhythm in 24 idiopathic VF survivors (Haïssaguerre, Hocini et al. 2018). Non-

invasive body surface recordings were taken during the induction of ventricular fibrillation and 

epicardial fibrillatory electrograms reconstructed using a previously developed inverse solution 

(Rudy and Lindsay 2015). Phase mapping was used to identify ‘driver regions’ during fibrillation – 

areas thought to be critical to the maintenance of VF. Subsequent invasive mapping found co-
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location of abnormal electrograms with these regions in 76%, suggestive of myocardial structural 

alterations. In patients without regions of abnormal electrograms, the previously described Purkinje 

triggers were found. Ablation resulted in arrhythmia suppression for 15 of 18 patients in an average 

11 month follow up. 

 

Figure 1.5: (A) The 12 lead ECG of a patient with idiopathic ventricular fibrillation. (B) Non-invasive mapping of ventricular 

fibrillation (VF) ‘driver regions’ thought to be critical to VF maintenance – labelled in red. Invasive mapping of the areas in 

the dashed ovals demonstrated prolonged and fractionated electrograms thought to be the substrate for ventricular 

fibrillation in this patient. Adapted from (Haïssaguerre, Hocini et al. 2018) 

Reports of idiopathic VF ablation remain rare, but early experimentation describing the existence of 

triggering ectopics or regions of abnormal electrograms believed to represent structural abnormality 

share a similarity with the findings in Brugada syndrome mentioned in the previous section. This 

raises the question of whether diverse conditions may indeed share a common pathway to fatal 

ventricular arrhythmia. 

The substrate for Hypertrophic Cardiomyopathy 

Although a structural syndrome, the substrate of HCM has been sparsely mapped. From the first 

histopathological description by Donald Teare, myocyte disarray and fibrosis were noted and 
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associated with the palpitations and sudden deaths befalling his initial 8 study subjects (Teare 1958) 

(Figure 1.6-I). Programmed ventricular stimulation is not favoured for risk stratification of HCM, but 

a study of 179 patients with HCM showed that fractionation of the paced electrogram could predict 

potentially lethal arrhythmia over a 4 year follow up (Saumarez, Pytkowski et al. 2008) (Figure 1.6-II).  

 

Figure 1.6: (I) Main picture – the ventricular septum is selectively enlarged in this hypertrophic heart. Inset – tissue from the 

affected areas shows myocyte disarray, in contrast to the normal linear arrangement of cardiac muscle. (II) Principles of 

paced electrogram fractionation. Pacing and detection of electrical impulses from distant endocardial sites produces 

electrograms (A). In tissue with fibrotic disruption, electrical impulses are slow and tortuous (B). Electrograms can have 

their fractionation assessed and quantified (C-E). Adaptations from (Teare 1958) and (Saumarez, Pytkowski et al. 2008) 

Two explanted HCM hearts have been studied in the context of a wider cohort of Langendorff 

perfused hearts, in which activation delay and fractionation could be demonstrated in the HCM 

hearts. However, in contrast to the chronically infarcted hearts in the study, sustained ventricular 

tachycardia and zig-zag slow conduction could not be demonstrated, despite present fibrosis (Janse 

and De Bakker 2001). Catheter ablation for arrhythmia in HCM is only reported in patients with 

ventricular tachycardia secondary to left ventricular aneurysm. In this study of 15 patients, low 

voltage substrate areas could be seen in the apical aneurysm, and radiofrequency ablation 

effectively suppressed further arrhythmias (Igarashi, Nogami et al. 2018). It should be noted that 

apical aneurysms are uncommon in HCM, and these patients form a distinct subgroup from the rest 

of the at-risk HCM population. 
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1.5 Newer non-invasive techniques for the evaluation of electrophysiological 

substrate 

Potential arrhythmic substrates can be evaluated histopathologically, electrophysiologically or 

through cardiac imaging. Histopathology is of limited use in live patients, as removal of cardiac tissue 

can be dangerous and has a potentially high false negative rate (From, Maleszewski et al. 2011). Fully 

non-invasive methods have the advantage of being better tolerated by patients and generally safer. 

1.5.1 Conventional imaging 

Left ventricular ejection fraction, an imaging correlate of arrhythmic risk, is widely used in clinical 

practice and well recognized by the guidelines (Al-Khatib Sana, Stevenson William et al. 2018). 

Recent developments in myocardial imaging have made detection and evaluation of the arrhythmic 

substrate more feasible in recent years (Rijnierse, Allaart et al. 2016). In ischaemic cardiomyopathy, 

inducibility at programmed ventricular stimulation has been found to be linked to the size of resting 

perfusion defects found on single photon emission computer tomography (SPECT) (Gradel, Jain et al. 

1997). This metric is thought to correlate with established myocardial scar. SPECT has also been 

shown to be useful in predicting electrophysiologic scar defined by low-voltage areas during invasive 

mapping, and also the area in which the successful ablation occurred (1cm from the scar border) 

(Tian, Smith et al. 2012). 

In both ischaemic and non-ischaemic indications, cardiac magnetic resonance imaging (CMR) is 

increasingly important in the evaluation of myocardial scar and therefore potential arrhythmic 

substrates (Wu 2017). During imaging, areas of late gadolinium enhancement have good co-location 

with scar both globally in the myocardium and transmurally, and can be used to guide ablation of 

arrhythmic substrates clinically (Bisbal, Fernández-Armenta et al. 2014). Tissue characterization by 

T1 mapping has also been shown to be a predictor of ventricular arrhythmia in a wide range of 

pathologies (Chen, Sohal et al. 2015). 

CMR has been investigated for risk stratification in hypertrophic cardiomyopathy. A meta-analysis of 

2993 patients found late gadolinium enhancement was associated with sudden cardiac death, all-

cause mortality and cardiovascular mortality in an average 3 year follow up (Weng, Yao et al. 2016). 

For every 10% of the myocardial volume occupied by late gadolinium enhancement, the hazard ratio 

for sudden cardiac death was found to increase by 1.36. T1 mapping and extracellular volume 

quantification has also been studied in regard to diagnosis of hypertrophic cardiomyopathy, but at 

the time of writing has not been used in risk stratification (Swoboda, McDiarmid et al. 2016). Of the 
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investigated measures, only late gadolinium enhancement has been used clinically for risk 

stratification of sudden death in HCM, and then only as a supporting piece of evidence (American 

College of Cardiology Foundation/American Heart Association Task Force on, American Association 

for Thoracic et al. 2011). 

CMR has not been used for the evaluation of the substrate in the structurally normal heart 

arrhythmias – Brugada syndrome and idiopathic VF. 

1.5.2 Electrographic imaging 

Electrographic imaging (ECGi) has been previously mentioned in the context of idiopathic ventricular 

fibrillation (Haïssaguerre, Hocini et al. 2018). ECGi is a tool for reconstructing electrical potentials at 

the cardiac surface based on electrical signal recording at the body surface and geometric data 

derived from computerized tomography (CT) of the chest. Initial experiments were made by 

comparing recorded signals from the epicardia of perfused explanted canine hearts suspended in 

torso-shaped tanks with recordings made from the surface of these tanks. Live human validation was 

performed using direct intra-operative recordings during open heart surgery (Rudy and Lindsay 

2015). For a known geometry defined by the CT scan, these two sets of recordings can be related by 

a transfer coefficient matrix. Large result errors can be produced with small input errors, and for this 

reason ECGi is a heavily regularized process – constraining the possible outputs for a given range of 

inputs (Rudy and Messinger-Rapport 1988). Nonetheless, in comparisons between directly measured 

electrograms (EGM) and the ECGi simulations, the correlation coefficients were found to be more 

than 0.9 for 72% of all epicardial locations (Rudy and Lindsay 2015). 

As previously alluded to, ECGi has been used clinically to evaluate activation sequences during 

arrhythmia; work has also been performed to evaluate arrhythmic substrate during sinus rhythm. 

The epicardial substrate of Brugada syndrome has been quantified in 25 patients with the syndrome, 

and differentiated from 6 patients with right bundle branch block (RBBB) for comparison (Zhang, 

Sacher et al. 2015). 6 of the patients were also tested at higher heart rates from exercise or 

isoprenaline infusion (a sympathomimetic) to determine effects of rate on the electrophysiology. 

The investigators found delayed activation and activation recovery interval (ARI – a correlate of 

action potential duration) lengthening in the right ventricular outflow tract (RVOT) of Brugada 

syndrome patients but not of controls. Fractionated electrograms were also found in the RVOT of 

Brugada syndrome patients, not found in controls. During raised heart rate, activation times became 

comparatively later and ARIs comparatively longer in the RVOT of Brugada syndrome patients. The 
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authors concluded that ECGi might be used to differentiate Brugada syndrome from benign RBBB, 

but also noted the findings of delayed activation and steep repolarization gradients, which are 

known to be arrhythmogenic. 

ECGi has been used to evaluate the sinus rhythm substrates of arrhythmogenic right ventricular 

cardiomyopathy, long-QT syndrome and early repolarization syndrome (Vijayakumar, Silva et al. 

2014; Andrews, Srinivasan et al. 2017; Zhang, Hocini et al. 2017). 

In 2017 Leong et al. took the approach of studying sudden cardiac arrest survivors to determine if 

arrhythmic phenotypes could be defined by ECGi (Leong, Ng et al. 2018). 11 sudden cardiac arrest 

survivors with structurally normal hearts were studied: 4 with Brugada syndrome and 7 with all 

other cardiology investigations being normal i.e. idiopathic VF. These patients were compared with 

10 patients with Brugada syndrome but no history of life-threatening arrhythmia, and 10 control 

volunteers without an inherited cardiac condition and structurally normal hearts. All subjects 

underwent ECG imaging during a maximal effort treadmill test. Three electrograms were analysed 

immediately after peak exercise and at full recovery from each of 15 anatomical segments of the 

myocardium to provide values of activation/repolarization dispersion and change with exercise. 

Despite no significant changes in surface ECG markers such as corrected QT dispersion or T-peak to 

T-end dispersion, significant increases in corrected ARI dispersion could be detected in the sudden 

cardiac arrest survivors. These were not seen in the normal controls or Brugada patients without a 

previous history of sudden cardiac arrest. This was the first publication to indicate that the 

arrhythmic substrate leading to cardiac arrest might be detectable using ECG imaging, and also 

emphasized the importance of external stressors in unmasking this effect. 

Leong et al. went on to show that activation changes were also unmasked by exercise in sudden 

cardiac arrest survivors (Shun-Shin, Leong et al. 2019). Whilst change in dispersion was shown to be 

important in the previous example, using the same 31 patients it was shown that the sequence of 

activation could also be seen to change following a stressor. To this end, the group developed 

Ventricular Conduction Stability (V-CoS), a rapid and automated method of comparing changes in 

global activation between two cardiac cycles mapped with ECG imaging. V-CoS is the percentage 

concordance of activation times (to an accuracy of <10 milliseconds) across the heart between these 

two cardiac cycles. A score of 100% indicates perfect preservation of the activation sequence 

between the two cycles; progressively lower scores indicate more activation heterogeneity. The 

investigators found that exercise testing resulted in significantly lower V-CoS scores immediately 

following peak exercise in the sudden cardiac arrest survivors, and this effect diminished as patients 
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returned to full recovery. Tilt testing to stimulate high vagal tone failed to elicit a significant 

difference. Furthermore, they found their technique to be reproducible between operators for 10 

patients, and between tests in one patient who underwent repeat exercise testing. 

Critically, Leong et al. showed that surface ECG taken during exercise and recovery appeared 

identical, but the corresponding ECGi signals could be shown to be different using only a simple 

concordance measure like V-CoS. Furthermore, spatial distribution of electrophysiological features 

like delayed conduction or prolonged repolarization may not be appreciated by surface measures, 

even when hundreds of electrodes (without epicardial reconstruction) are considered (Bear, 

Huntjens et al. 2018). This may account for the poor risk stratification produced by routinely used 

surface measures only such as 12 lead or continuous ECG. 

ECGi has therefore shown potential in identifying arrhythmic substrates over and above 

conventional measures and could possibly be used to define a threshold level of risk for sudden 

cardiac arrest. Numbers of studies (and patients) are small, and no mention of ECGi is made in 

current risk stratification guidelines (Priori, Blomstrom-Lundqvist et al. 2015; Al-Khatib Sana, 

Stevenson William et al. 2018). 

1.6 Summary 

Despite the origins of potentially fatal arrhythmia in the interaction of electrophysiological triggers 

and myocardial substrates, direct measurements of these factors do not feature in clinical risk 

stratification for sudden cardiac arrest. Much about the preconditions for arrhythmia are already 

known on the cellular and tissue level, but modern risk stratification strategies are still frustrated by 

unacceptably high proportions of patients dying suddenly after being classified as ‘low-risk’. 

Some of the discoveries we have touched upon in this introduction give an idea as to why this is the 

case. For example, ventricular ectopics appear to be very dangerous to some patients with 

structurally normal hearts, but essentially benign to most of the population. Some patients who 

have had ventricular fibrillation in the past go on to have it again – but an even greater proportion 

do not. Patients with Brugada syndrome are thought to have a type 1 ECG because of significant 

electrical abnormalities in their right ventricular outflow tracts; yet patients spend almost all of their 

lives in normal sinus rhythm. Programmed ventricular stimulation has been shown to be useful in 

some, and not useful in others, but more worryingly, the results are not always reproducible (Priori, 

Gasparini et al. 2012). 
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Such findings reinforce the idea of the dynamic arrhythmic substrate. Invasive mapping is highly 

detailed but places the patient in a non-physiological environment. From the findings of adrenergic 

sensitivity in the ionic currents of the cardiomyocyte to the exercise induced changes demonstrated 

using ECG imaging during a treadmill test, it seems likely that non-invasive mapping of dynamic 

substrates will be useful in future risk stratification. Early experiments by Leong et al. have shown 

promising results differentiating sudden cardiac arrest survivors from controls. 

For a tool to be useful in risk stratification, it must pass several criteria: 

1. It should identify those at elevated risk of sudden death - sensitivity. 

2. It should also exclude those not at elevated risk of sudden death - specificity. 

3. It should be reproducible. 

4. It should have a low inherent cost to the patient, whether through discomfort or the risk of 

complications. 

With these concepts in mind, the aim of this thesis is to evaluate ECG imaging in the context of 

modern risk stratification, to further understand whether it is feasible to improve risk stratification 

in the inherited cardiac conditions. 

1.7 Hypotheses 

1.7.1 Main 

The electrophysiological substrate for life threatening arrhythmia is quantifiable by non-invasive ECG 

imaging. 

1.7.2 Sub-hypotheses 

1. State of the art risk stratification for Brugada syndrome adequately differentiates patients 

suffering life threatening arrhythmia (Chapter 3). 

2. V-CoS is a reproducible measure of exercise induced conduction abnormalities in structurally 

normal hearts, including in survivors of idiopathic VF (Chapter 4 and 5). 

3. Ischaemic cardiac arrest survivors with reversed substrate i.e. full revascularization and recovery 

of ventricular function have preserved ventricular conduction in response to exercise (Chapter 

5). 

4. Improvements in reproducibility of ECGi measures can be gained by automation of signal 

processing (Chapter 6). 
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5. Automated ECGi measurements can successfully differentiate patients with Brugada syndrome 

and Hypertrophic Cardiomyopathy from normal controls (Chapters 7 and 8). 

6. Automated ECGi measurements can successfully differentiate patients with HCM at both high 

and low risk of future arrhythmia (Chapter 8). 

1.8 Scope of the thesis 

Chapter 2 details the cohort who volunteered for this study, as well as the technologies and 

protocols used in this thesis. Recruitment criteria, CardioInsight ECGi and exercise testing are 

covered in this chapter. 

Chapter 3 is a collaboration between our centre and University Hospital of Wales: 192 consecutive 

Brugada syndrome patients with sufficient data for analysis were stratified for risk of sudden death 

by a the Sieira et al. (2017) state of the art algorithm. We found that prior to their sentinel event, the 

cardiac arrest survivors would have been largely classified in the low-risk group, underlining the 

need for improvements in risk stratification. 

Chapter 4 evaluates the reproducibility of our group’s Ventricular Conduction Stability score at the 

most granular level yet. The reproducibility of each step in the multi-stage methodology is assessed 

and shows that understanding natural beat-to-beat variability is key in assigning a representative 

score to a patient. Automated methods are suggested to improve consistency. 

Using the lessons in improving reproducibility, Chapter 5 considers patients with structurally normal 

hearts. Survivors of idiopathic ventricular fibrillation are compared to a range of controls. As well as 

truly normal hearts, we study patients who survived ischaemic VF but recovered full ventricular 

function after revascularization. The idiopathic VF survivors, who have not had a curative procedure, 

are shown to be distinct from the control groups. The beat-to-beat variability is shown to follow a 

pattern, which is distinct from artefact attributable to exercise induced noise in a simulation study. 

Chapter 6 investigates further methods for improving ECGi reproducibility at a more basic level than 

V-CoS – the original electrograms and the local activation or repolarization times derived from them. 

Signal averaging, machine learned feature detection and rule-based programming are used as a 

multi-pronged approach which we show improves reproducibility as more cardiac cycles are 

considered in the analysis. 

Using these novel methods, Chapters 7 and 8 take a detailed look into epicardial electrophysiology 

of patients with Brugada syndrome and HCM. They are shown to be distinct from controls, and in 
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the case of HCM the cardiac arrest survivors are differentiable from patients without a personal 

history of sustained ventricular arrhythmia. Chapter 8 concludes with an examination of ECGi 

measures as risk stratifiers in HCM and finds that considering multiple variables whether by 

regression or more modern machine learning methods can improve segregation of cardiac arrest 

survivors from those without a personal history of lethal arrhythmia. 
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Chapter 2: Methods 

2.1 Patient recruitment and selection 

2.1.1 Setting 

Recruitment was carried with the assistance of consultant cardiologists at multiple locations across 

the UK taking care of patients, some with inherited cardiac conditions (ICC). These patients were 

recruited directly from clinics or by screening from databases of patients by their care team or 

nominated representatives thereof. The organizations are: 

• Imperial College Healthcare NHS Trust 

• Barts Health NHS Trust 

• Oxford University Hospitals NHS Trust 

• West Hertfordshire NHS Trust 

• University Hospital of Wales 

• St George’s University Hospital 

• Cambridge University Hospitals NHS Trust 

• Basingstoke Hospital. 

2.1.2 Patient definitions 

Cardiac arrest survivors and other ventricular arrhythmia 

Throughout this thesis, patients of various underlying conditions will be classified into those who 

have never suffered a potentially life-threatening ventricular arrhythmia and those who have not. 

This is to provide the strongest possible differentiator between the highest and lowest risk patients 

in any given cohort. Cardiac arrest survivors from multiple conditions are considered the highest risk 

patients and are recommended unequivocally for secondary prevention implantable cardioverter 

defibrillators (ICD) (Priori, Blomstrom-Lundqvist et al. 2015; Al-Khatib Sana, Stevenson William et al. 

2018). 

The following are definitions of terms which will be used in the thesis: 

Sudden cardiac arrest survivor/cardiac arrest survivor 

This term is used in the thesis as a contraction of ‘Arrhythmic sudden cardiac arrest survivor’. The 

patient must have had a collapse with documented loss of cardiac output, regardless of underlying 

condition. Although cardiac arrests can have non-arrhythmic origin, only cardiac arrests with 
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ventricular fibrillation or tachycardia are considered in this thesis. Where a printed rhythm strip is 

not available, documentation of sustained ventricular arrhythmia in the context of haemodynamic 

collapse is accepted. In absence of this explicit declaration, the decision by an advanced life support 

qualified practitioner or automated external defibrillator to deliver an unsynchronized shock during 

cardiac arrest is accepted. Any cardiac arrest not fitting these criteria is excluded from the 

classification. 

Appropriate therapy survivor 

Patients with primary prevention ICDs may suffer sustained, haemodynamically compromising 

ventricular arrhythmia. Their ICD may deliver anti-tachycardia pacing or unsynchronized shock to 

terminate the offending rhythm. Patients are included only if the ICD trace demonstrates ventricular 

tachycardia above a threshold rate, or ventricular fibrillation prior to the delivery of therapy. The 

therapy must be considered ‘appropriate’ by an accredited cardiac physiologist or consultant 

cardiologist. ICD therapies not fitting these criteria are excluded from the classification. 

The programming thresholds can vary from patient to patient, adapted to avoid the preconditions 

for previously experienced ‘inappropriate’ therapies against more benign rhythms, but patients start 

off with settings recommended by a global consensus document published in 2015 (Wilkoff, 

Fauchier et al. 2016). The slowest tachycardias treated are >185 beats per minute in rate and 6-12 

seconds in duration, although settings up to >200 beats per minute should be considered especially 

in young patients or those with concomitant supraventricular tachycardia. 

Sudden cardiac death/arrest equivalent 

A combination of cardiac arrest and appropriate therapy survival is considered to be a sudden 

cardiac death, or sudden cardiac arrest equivalent. 

Potentially lethal arrhythmia 

The potentially lethal arrhythmias are defined to include ventricular fibrillation and ventricular 

tachycardia with haemodynamic compromise, or fitting criteria for device therapy. Explicitly 

excluded are rhythms that may result in inappropriate therapy, including but not restricted to 

(Wilkoff, Fauchier et al. 2016): 

• Sinus tachycardia 

• Atrial fibrillation/flutter/tachycardia 

• Re-entrant supraventricular tachycardia 

• Frequent premature ventricular complexes 
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• T wave oversensing. 

Brugada syndrome 

The Brugada syndrome is currently diagnosed by the 2013 HRS/EHRA/APHRS expert consensus 

statement on the diagnosis and management of patients with inherited arrhythmia conditions 

(Priori, Wilde et al. 2013). The guideline states: 

“1. BrS is diagnosed in patients with ST-segment elevation with type I morphology ≥2 mm in ≥1 lead 

among the right precordial leads V1, V2 positioned in the 2nd, 3rd, or 4th intercostal space occurring 

either spontaneously or after provocative drug test with intravenous administration of Class I 

antiarrhythmic drugs.  

2. BrS is diagnosed in patients with type 2 or type 3 ST-segment elevation in ≥1 lead among the right 

precordial leads V1, V2 positioned in the 2nd, 3rd, or 4th intercostal space when a provocative drug 

test with intravenous administration of Class I antiarrhythmic drugs induces a type I ECG 

morphology.” 

The Type 1 morphology is characterized by an elevated J-point and ST-segment in a coved shape, 

accompanied by T wave inversion. The spontaneous type 1 ECG is defined as this pattern seen at 

baseline – without aggravating factors such as fever or drugs (Priori, Wilde et al. 2013). The ability to 

detect this pattern at baseline is enhanced by the use of 10- or 12-lead 24- or 48-hour continuous 

ECG. 

The ajmaline challenge test 

At our centre, the drug challenge of choice for diagnosis of Brugada syndrome is the ajmaline 

challenge. Ajmaline is a class I antiarrhythmic agent – a sodium channel blocker, like flecainide and 

procainamide. Flecainide and procainamide are also used in Brugada syndrome diagnostic 

challenges in other centres. Ajmaline has been shown to be able to produce a Type 1 ECG in an 

equivalent (Probst, Gourraud et al. 2013) or greater number of patients than flecainide (Wolpert, 

Echternach et al. 2005) or procainamide (Cheung, Mellor et al. 2019). No significant difference was 

found in the number or severity of complications for each drug. No study to date has been able to 

conclude whether this disparity in diagnosis is due to over- or underdiagnosis by another drug as the 

sodium channel blocker test is the gold standard for diagnosis. 

Ajmaline has been shown to produce the Type 1 Brugada ECG pattern in up to 27% of patients with 

atrioventricular nodal re-entrant tachycardia (AVNRT) and even 5% of controls (Hasdemir, Payzin et 
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al. 2015). The authors of the paper concluded that there was a high coincidence of AVNRT and 

concealed Brugada syndrome, but even the 5% figure of controls is significantly higher than the 

widely accepted known prevalence of 1 in 2000 adults (Vutthikraivit, Rattanawong et al. 2018). 

Whether these patients, and those without other signs or symptoms of Brugada syndrome actually 

do have a concealed version of the disease is debated (Viskin, Rosso et al. 2015). Furthermore, 

ajmaline tests confer an immediate risk of sustained ventricular arrhythmia in 2% of patients, which 

can be refractory in 0.4% (Conte, Sieira et al. 2013). 

For this reason, the eligibility criteria at our centre for ajmaline challenge are restricted to (Varnava 

2018): 

• Patients surviving ventricular fibrillation (VF) 

• Patients experiencing unexplained collapse 

• A 1st degree adult relative of a patient with confirmed Brugada syndrome 

• 1st degree adult relatives of patients suffering unexplained cardiac arrest 

• Patients seen and discussed in ICC clinic in whom Brugada syndrome is suspected. 

To mitigate the risk of sustained ventricular arrhythmia, the following adult patients are excluded 

(Varnava 2018): 

• Those with myocardial infarction <3 months ago 

• Hypertrophic cardiomyopathy 

• Left ventricular hypertrophy >15mm 

• Bradycardia <50bpm 

• 2nd or 3rd degree AV block 

• Prolonged corrected QT 

• Pregnant 

• QRS prolongation >130ms. 

During the test, patients are intensively monitored for safety using continuous 15-lead ECG – the 

additional leads in the upper right precordium. 

The test is performed in the supine position. Anti-arrhythmic drugs (and lamotrigine, an anti-

epileptic with sodium channel blocking properties) are stopped 48 hours before the test and 

patients are requested not to eat or drink for 4 hours before the test. As well as the 15 lead ECG, 

adhesive defibrillation pads are placed in the antero-apical position on the patient’s chest. A cut-off 
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of 1.3x the duration of the baseline QRS is calculated and noted to be used as a termination criterion 

for the test. 1mg/kg of ajmaline (up to a maximum of 120mg) is infused intravenously over 5 

minutes, stopping either when a termination criterion is reached, or the target dose has been 

administered. During infusion, the QRS duration is evaluated at least every 30 seconds. After the 

infusion is stopped, the patient and ECG are continuously monitored for pro-arrhythmic adverse 

reactions until baseline parameters return. 

The termination criteria include (Varnava 2018): 

• Full target dose of ajmaline administered 

• Type 1 Brugada ECG elicited 

• Sinus arrest or 2nd/3rd degree atrioventricular block 

• Frequent or complex ventricular ectopy 

• Sustained ventricular arrhythmia 

• QRS duration prolongation of >130% 

• Cardiac arrest 

Diagnosis of patients from other centres was required to conform to these standards prior to 

inclusion into our study. 

Brugada relatives 

At Hammersmith Hospital, the first degree and sometimes second-degree relatives are screened for 

Brugada syndrome. This begins initially with a consultation at the ICC clinic. The minimum 

investigative dataset is a 12 lead ECG, high right precordial leads ECG and echocardiogram. As there 

is a risk of death associated with the diagnostic ajmaline challenge, the decision to undertake this is 

the result of a discussion between clinician and patient. Amongst the factors aiding this decision is 

whether it will have implications for the children of the patient, and whether the patient’s symptoms 

could potentially put them into a high-risk group if Brugada syndrome is diagnosed. Increasingly, 

patients can undergo 10- or 12-lead continuous ECG for 24 or 48 hours which increases the 

likelihood of a spontaneous type 1 pattern being seen, avoiding the ajmaline challenge. 

For the purposes of our study, we decided to only include relatives as control subjects who were 

asymptomatic, with normal ECG, echocardiogram and had a negative ajmaline test when the full 

target dose had been administered. Patients who had the test terminated early due to QRS 

prolongation or arrhythmia were excluded. In addition, patients were excluded if they had incidental 
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findings of frequent or complex ventricular ectopy, non-sustained ventricular tachycardia or 

significant co-morbidities such as advanced coronary artery disease. 

In short, these patients were the closest we felt we could get to ‘normal’ hearts, whilst retaining a 

benefit to the patient of undergoing our testing regime. We believed this gave optimal balance 

between the research goal of a normal control group and the clinical goal of only applying tests 

where patients could stand to benefit. 

Hypertrophic cardiomyopathy 

Hypertrophic cardiomyopathy (HCM) was diagnosed using the European Society of Cardiology 

guidelines (Authors/Task Force, Elliott et al. 2014). The definition is directly quoted as follows: 

“In an adult, HCM is defined by a wall thickness ≥15 mm in one or more LV myocardial segments—as 

measured by any imaging technique (echocardiography, cardiac magnetic resonance imaging (CMR) 

or computed tomography (CT))—that is not explained solely by loading conditions. 

Genetic and non-genetic disorders can present with lesser degrees of wall thickening (13–14 mm); in 

these cases, the diagnosis of HCM requires evaluation of other features including family history, non-

cardiac symptoms and signs, electrocardiogram (ECG) abnormalities, laboratory tests and multi-

modality cardiac imaging.” 

Diagnoses for our study were either made by echocardiography performed by an accredited 

sonographer or cardiac magnetic resonance imaging (MRI) reported by a consultant cardiologist or 

radiologist. Exclusion of conditions that could produce secondary hypertrophy was carried out by 

detailed assessment in the inherited cardiac conditions clinic. Patients were screened for signs of 

persistent and severe hypertension, aortic stenosis, features of Anderson-Fabry disease, 

amyloidosis, mitochondrial and glycogen storage disorders, Danon disease, LEOPARD/Noonan 

syndrome and Friedreich’s ataxia. In addition, alpha-galactosidase enzymatic testing could be 

performed to rule out Anderson-Fabry disease. 

Idiopathic ventricular fibrillation 

Patients surviving out of hospital ventricular fibrillation are brought to a cardiology centre, 

sometimes via the nearest Accident and Emergency resuscitation unit. In general these patients will 

have undergone monitoring in the ambulance prior to arrival at the recipient unit, and the first 

investigations they usually undergo are ECG and coronary angiography to rule out ischaemia, the 

commonest cause of cardiac arrest (Paratz, Rowsell et al. 2020). Blood tests at the time of cardiac 
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arrest also indicate whether there were electrolyte or thyroid imbalances, and a review of 

medications or a toxicological screen is carried out to determine if there were pharmacological 

triggers. 

Outside of the immediate resuscitation phase, patients undergo chest X-ray, continuous ECG, 

echocardiography, cardiac MRI, drug and exercise challenge testing. In some cases, 

electrophysiological studies or endomyocardial biopsies are performed. If no cause can be identified 

for cardiac arrest, the patient fits the criteria for idiopathic ventricular fibrillation. ICDs are implanted 

in almost all patients with a life expectancy of greater than one year. 

These individuals are cared for at the inherited cardiac conditions clinic as most of the tests are 

directed at diagnosing ICCs, to guide screening of relatives. Patients fitting these criteria were 

recruited from the clinic for testing. 

Ischaemic ventricular fibrillation 

Coronary artery disease is the commonest cause of sudden cardiac death (Paratz, Rowsell et al. 

2020), occurring due to the disruptive effect of ischaemia on normal electrophysiology. Presenting 

rhythms are often ventricular fibrillation or haemodynamically compromised ventricular tachycardia, 

which can be treated by effective cardiac compressions and unsynchronized DC shocks from an 

external defibrillator. To ensure the reduction of future arrhythmia the ischaemic trigger must be 

removed (Al-Khatib Sana, Stevenson William et al. 2018). Optimal treatment is the immediate 

revascularization of the affected coronary territories, usually by percutaneous coronary intervention, 

although thrombolysis and emergency coronary artery bypass grafting can also be used. 

According to current guidance, the risk of further arrhythmia is higher when there are remaining 

coronary lesions, or the left ventricular function is reduced (Al-Khatib Sana, Stevenson William et al. 

2018). Greater reductions in left ventricular function are linked to larger infarcts and increased 

myocardial scarring (Palazzuoli, Beltrami et al. 2015), scar being the substrate for ventricular 

arrhythmia (Coronel, Baartscheer et al. 2001). Currently, patients are deemed to have sufficient risk 

to justify implantation of an ICD when they have a left ventricular ejection fraction (LVEF) below 

<40%, although the exact figure is dependent on the source of the guidelines. 

The American Heart Association/American College of Cardiology/Heart Rhythm Society guidelines 

(Al-Khatib Sana, Stevenson William et al. 2018) state that primary prevention patients without 

symptoms require LVEF <30%, those with New York Heart Association (NYHA) symptom score II or III 

requiring <35%, and those with LVEF <40% requiring inducible ventricular tachyarrhythmia to qualify 
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for an ICD. Secondary prevention patients require LVEF <35% to qualify for an ICD unless they have 

inducible ventricular arrhythmia on programmed stimulation. The European Society of Cardiology 

guidelines from 2015 (Priori, Blomstrom-Lundqvist et al. 2015) recommend evaluation of LVEF 6-12 

weeks following infarction; if the patient has LVEF <35% and symptoms greater than NYHA symptom 

score I they should receive an ICD. If the ventricular arrhythmia has a reversible cause (ischaemia 

treatable by revascularization), there is no immediate mandate for ICD implantation. 

Based on the above guidelines, patients suffering ischaemic ventricular fibrillation who are 

successfully treated and found to have normal left ventricular function (including no regional wall 

motion abnormalities detectable on echocardiography) are not offered ICDs. These patients were 

recruited by screening the local IBM Cognos database of patients presenting in ventricular fibrillation 

to the cardiac catheter laboratory. Patients with reduced LV function or regional wall motion 

abnormalities were excluded, as well as those suffering ongoing symptoms, or reduced exercise 

tolerance. 

These patients were selected to provide a control group that had suffered previous ventricular 

arrhythmia but were no longer thought to be at elevated risk of sudden cardiac arrest. 

Benign ventricular ectopy 

Ventricular ectopy in the context of a structurally normal heart is thought to be benign in terms of 

mortality, but significant morbidity can be conferred in terms of symptoms and in a limited number 

of patients, a high ectopic beat burden may lead to cardiomyopathy (Ng 2006). In the absence of 

structural heart disease or previous documented tachyarrhythmia, neither the American nor 

European guidelines suggest ICD implantation for this condition (Priori, Blomstrom-Lundqvist et al. 

2015; Al-Khatib Sana, Stevenson William et al. 2018). 

Frequent ventricular ectopy can be targeted using traditional mapping using a digital cardiographer, 

as well as newer 3D mapping techniques (Pruszkowska-Skrzep, Kalarus et al. 2005). Invasive mapping 

techniques are widely used, but rely on the clinically relevant ectopic beat manifesting during the 

procedure. In cases where ectopic beats are rare or have triggers not easily replicated in the 

catheter lab, pre-procedural ECG imaging (ECGi) is a viable adjunct. In a study of 24 patients, all 

ventricular ectopics were correctly localized compared to intracardiac mapping, and ablation partly 

guided by ECGi led to medium term success reducing ectopy burden in 22 of 24 patients (Jamil-

Copley, Bokan et al. 2014). 



49 
 
 

 

For this reason, ECGi assisted ablation of ventricular ectopy is offered at our centre. Patients offered 

this procedure were screened for entry into our study as a control group. Exclusion criteria include: 

• Structural heart disease diagnosed either by echocardiography or cardiac MRI 

• Known channelopathy 

• Previous documented ventricular fibrillation or haemodynamically unstable ventricular 

tachycardia. 

 

 

2.2 Ethical approval 

This combined study was composed of the patient volunteers from two ethically approved research 

studies: “Predicting Risk Using Ecvue: Detection Of Activation Changes During Physiological Stress 

That Indicate A Critical Substrate For Ventricular Fibrillation” (PREDICT-VF: 14/LO/1318) and 

“Feasibility Of Improving Risk Stratification In Brugada Syndrome” (FIRST-BrS: 17/LO/1660). Both 

studies were approved on the local level by the Fulham Research Ethics Committee and on national 

level by the Health Research Authority, as well as receiving research and development approvals at 

local centres if database screening was required. 

2.3 Summary of volunteer journey 

Prior to the detail of the methods, an overview of the process undertaken by our patient volunteers 

is provided below and summarized in Figure 2.1. 

Following recommendation of a patient from clinic or a database, contact details for the patient 

were obtained by, or under direct supervision of a care team member already authorized to access 

this patient’s data. If this care team member was not already a study investigator, the patient was 

contacted directly by a study investigator to confirm their willingness to continue communications 

and receive further information about the study. If this was agreed, the patient volunteer was sent a 

patient information sheet for review. A Brugada syndrome specific patient information sheet is 

provided in Appendix A and a general conditions information sheet in Appendix B – there were 

further individualized documents for other medical conditions and healthy controls. 

Volunteers were allowed unlimited time to review the documentation before deciding if they would 

proceed with the study. Additionally, contact details were provided for the volunteers to call or 

email the study investigators at any time with questions and concerns about their testing. In cases 



50 
 
 

 

where a clinical decision was required, the referring clinician was involved in the discussion with 

patient and study team. 

The study visit consisted of a half-day at the Hammersmith Hospital. Volunteers were consented for 

the study procedures either on the day or prior to the study visit; this was documented in writing. An 

example consent form is provided in Appendix C.  

At this point volunteers were prepared and fitted with the electrocardiographic imaging (ECGi) 

equipment. Recordings were taken throughout a maximal Bruce protocol exercise test and then into 

10 minutes of supine recovery. Following full recovery, the volunteers underwent low dose 

computerized tomography (CT) of the chest. A 3D anatomical mesh was derived from the CT images 

and used in the reconstruction of electrograms using the ECGi workstation. Following the 

reconstruction, individual volunteer Ventricular Conduction Stability (V-CoS) scores were calculated 

from 10 consecutive peak exercise and 10 consecutive full recovery cardiac cycles to determine 

absolute scores and variability. 

 

Figure 2.1: Summary of the patient volunteer's journey in the study 
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2.4 Electrocardiographic imaging 

2.4.1 Selection of an ECGi system 

Electrocardiographic imaging is the 3D reconstruction of myocardial electrical properties from body 

surface electrical recordings and cross-sectional imaging. At the time of writing there are three 

systems available for mapping, two of which were available for our use at the conception of this 

project. 

The latest system uses a 12-lead ECG combined with an MRI derived volumetric mesh of the heart; it 

is termed Cardiac Isochrone Positioning System (CIPS-ECGi). The technique was first reported in 2013 

(van Dam, Tung et al. 2013) as a collaboration between University Medical Center Nijmegen (the 

Netherlands) and University of California Los Angeles (USA), and was CE marked in 2018. In contrast 

to the other two systems, CIPS-ECGi uses an ‘Equivalent Double Layer’ (EDL) model to perform 

visualization. At the forefront of the depolarizing wave, a dipole layer is present – the separation 

between positively and negatively charged elements. The nature of this source can be determined 

by the external signals it produces and allows determination of the point at which depolarization 

reaches both the endo- and epicardium (although intramural elements cannot be resolved) 

(Huiskamp and Van Oosterom 1988). The body geometry is constructed from cardiac MRI (van Dam, 

Oostendorp et al. 2009). This version is not used in clinical practice at present and was not available 

to us at the conception of the project. 

Various ECGi systems stemming from the original Rudy design exist, mostly used in research, with 

one for commercial applications. The research systems are widely spread over the world, but are not 

available as a stand-alone device to most end-users. CE marks are awarded to individual pieces of 

equipment in the system such as the BioSemi digital recording system (Amsterdam, the 

Netherlands), the electrode strips manually arranged on the patient torso, or the MRI scanner used 

at the point of care. Relatively few centres worldwide perform the inverse solution – which can be 

highly customized from project to project, but by the same token vary in methods between papers 

coming even from similar authors (Vijayakumar, Silva et al. 2014; Zhang, Sacher et al. 2015; 

Andrews, Srinivasan et al. 2017; Zhang, Hocini et al. 2017). These systems work based on the 

relationship between epicardial potentials and body surface potentials expressed through a linear 

system of equations (Ramanathan, Ghanem et al. 2004). Reversing the resultant transfer matrix with 

regularization allows the reconstruction of epicardial potentials from the known body surface 

potentials from the recorder. 
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The only commercially available ECGi system available at the beginning of this project was the 

CardioINSIGHT™ system (Minneapolis, USA). Acquired from start-up company ECVUE in 2015, the 

CardioINSIGHT™ system is part of the family of original Rudy design. This system is available for 

clinical use worldwide. A computer workstation unit is provided which performs the inverse solution 

with input from the end-user. Single-use vests of 252 electrodes are used to collect the body surface 

potentials used in the calculation. The geometry is derived from a low-dose CT scan of the chest (1.5 

milliSieverts) without contrast. Table 2.1 summarizes the currently available solutions.  

Table 2.1: Currently available ECG imaging solutions. 

 CIPS-ECGi CardioINSIGHT Research systems 

Model surfaces Endocardial 

Epicardial 

Epicardial Epicardial 

Imaging MRI CT MRI 

Body surface 

electrodes 

9 252 64-256 

Regulatory approval Yes (CE mark 2018) Yes (CE mark 2011) CE mark via 

constituent parts: 

BioSemi recording 

system, MRI machine 

 

The CardioINSIGHT™ system was selected because it was commercially available in a standard 

format to multiple users worldwide. We felt that using an existing clinically deployed product would 

give the most realistic assessment of the feasibility of ECGi to improve risk stratification in the ICC. 

2.4.2 Practical usage of the CardioINSIGHT ECGi system 

Version 

We primarily used the v3.1 CardioINSIGHT workstation to record and analyse our cases. If any 

studies were performed using the other versions delivered to our centre (v1.1 and v3.5), these were 

transferred to the v3.1 workstation before final analysis to improve standardization. 

Components of the system 

Figure 2.2 summarizes the components and connectivity of each component in the CardioINSIGHT 

system. Power is supplied via a transformer and transmitted to a desktop computer, monitor and 
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mapping amplifier. This workstation is housed on a portable trolley. The sensor arrays are connected 

to the mapping amplifier by custom serial buses and signal cables, before the data is relayed by 

ethernet cable to the computer workstation for processing and display. A mouse and keyboard are 

connected to the workstation for operator interfacing. 

 

Figure 2.2: Systems diagram of CardioINSIGHT™ components. Modified by the author of this thesis from a figure in the 

CardioINSIGHT™ manual with kind permission of Medtronic, USA. Original documentation lists extra components and 

mouse/keyboard connections via USB to the monitor, not present in our setup. 

Sensor array – applying the ‘vest’ 

Body surface potentials are recorded by a custom-made 252-electrode vest pre-impregnated with 

transducing gel and a mild skin adhesive (Figure 2.3). Each panel is connected to the mapping 

amplifier by a custom serial bus and signal cable. 
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Optimization of contact is essential for a good recording. Prior to application, the correct size must 

be selected according to a sizing chart provided with the workstation (Appendix D, which is kindly 

contributed by Medtronic, USA). Currently only sizes 2 and 3 are imported to the United Kingdom, a 

limitation for some of our smaller and larger volunteers. 

Volunteers underwent torso hair removal, and a mild cleaning soap was applied using paper towels 

before being thoroughly cleaned off with dry paper towels. The vest was applied in the standing 

rather than supine position to optimise consistent contact during the exercise test, contradictory to 

the recommendation in the official manual. Although the most relevant recordings are taking during 

supine recovery, the stability of the vest during the treadmill test was judged to be important due to 

the potential for large portions of the vest to become detached at higher running intensities. 

Frontal arrays were placed with the sternum as the horizontal reference and the left clavicle as the 

vertical reference. Electrodes 66 and 67 were aligned with the left clavicle, whilst the medial edges 

of the two frontal arrays met in the midline (Figure 2.3). The rear array was placed with the nape of 

the neck as the vertical reference and the spine as the horizontal reference. The midline of the rear 

array was taken to be the line of electrodes containing electrode 192. 

To improve vest stability, Transpore™ hypoallergenic medical tape (3M, Minnesota, USA) was used 

to secure sensor vest arrays to each other and also to the skin of the patient. 
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Figure 2.3: Marketing image of CardioINSIGHT™ sensor vest, reproduced by kind permission of Medtronic, USA. This image 

shows the front two arrays clearly. A back panel is also included in the package. The panels connect to the amplifier via four 

custom serial buses. 

Performing an ECGi recording 

Prior to recording, the workstation is powered on, including the mapping amplifier. A medical-grade 

filtered mains power socket was used for all recordings in this study. 

The sensor vest arrays are individually linked to the mapping amplifier by their individual bus 

connections and cables. In addition, a set of reference electrodes are needed, which are placed 5-

10cm either side of the midline on the volunteer’s abdomen below the vest. Ambu® BlueSensor R 

electrodes (Copenhagen, DK) were preferred, although in some cases Ambu® WhiteSensor 4xxx 

series electrodes were used dependent on stock in the hospital department. These are also 

connected to the mapping amplifier by a custom cable.  

Patient identifiers were inputted to the workstation which remained in a secure National Health 

Service (NHS) hospital throughout the study.  
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Figure 2.4: Image of ECG acquisition screen in CardioINSIGHT™. Panel A is the sensor array status, Panel B is the signal 

review screen, Panel C holds bookmarks and beats for evaluation and button D 'Start' controls the recording. 

Figure 2.4 demonstrates the recording screen used for signal acquisition. In panel A, contact is 

evaluated by the workstation based on CardioINSIGHT’s proprietary ‘Automatic Bad Channel 

Detection’ (ABCD) algorithm. Electrode colour denotes signal status as indicated by the key at the 

bottom of panel A. Optimization of vest placement by applying pressure or additional tape for 

improved adhesion is performed at this point. Inspection of the recorded signals can be performed 

in panel B, whilst bookmarks and heart beats can be marked in panel C. The recording is started and 

stopped by button D. 

Bookmarks are highly useful for marking areas for future processing in subsequent sections of this 

Methods chapter, such as the point of peak exertion, the minutes following this and any ectopic 

beats or arrhythmias that may occur. 

Performing the CT scan 

As per company recommendations, CardioINSIGHT CT scan protocols met the following 

requirements: 

• 250 milliamperage second 

• 120 peak kilovoltage (80kV minimum requirement) 

• 0.6 mm slice thickness (3mm minimum requirement) 
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• 1.5 recon increment (overlap) 

• 64 slice minimum 

All scans were undertaken on a Siemens SOMATOM Definition AS CT scanner. 

Volunteers underwent repeat identity confirmation and declaration of non-pregnancy as per 

radiology department protocols. Field of view was defined as from the lower mandible to the 

inferior edge of the vest, which was marked out by a metal paperclip to assist identification on initial 

scan. Volunteers were scanned in the supine position, with arms down by their sides, and slightly 

spaced from the torso to ensure that automatic segmentation of the arms did not remove 

electrodes from the vest. Ideal positioning is demonstrated by the photograph in Figure 2.5. An 

estimated 1.5 milliSieverts is received by each volunteer during this scan. No radiopaque contrast is 

required. 

 

Figure 2.5: Optimal body positioning of a volunteer for the computerized tomograph. Photograph taken by thesis author on 

request of the pictured volunteer, and kindly provided for use by that volunteer. 

Following the CT scan, approximately 300 images axial images are saved for use in segmentation. 

Constructing the 3D mesh 

Whilst the segmentation method and its variants have not been studied in depth, the following 

method is inspired by a combination of their experience and that of operators they have worked 
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with throughout Europe. Based on clinical experience with the system at our centre, our study 

method is a modification and standardization of those who used the system before us. 

CT scan images are transferred to the CardioINSIGHT workstation where they are processed by 

proprietary segmentation software (CISH). The result is an OpenGL compatible anatomic mesh of 

between 1000-3000 points for use with the inverse solution. Automatic segmentation is available 

but fails inconsistently between subjects in our anecdotal experience. For standardization reasons a 

predominantly manual segmentation approach was used for all volunteers in this study. 

Couch and torso segmentation was allowed to progress automatically as failure had not occurred to 

date in our anecdotal experience. At this point CISH suggests the position of the electrodes which 

are checked by the operator. Missing electrodes are added, and suggestions which do not 

correspond to a true electrode are removed. The numbering of the electrodes is checked over the 

surface of the vest (Figure 2.6). 

 

Figure 2.6: CISH segmentation of the electrodes. Panel A demonstrates the 3D reconstruction of the CT scan with 

annotations for electrodes, whilst Panel B demonstrates all the expected electrodes from a vest. 

For processing of ventricular maps, we required the shape of the ventricles, 2D positions of the 

tricuspid and mitral valves for electrogram exclusion, and a midline septum marker for which we 

used the left anterior descending coronary artery as a surrogate. Moving through the CT images 

from cranial to caudal, the branching of the pulmonary trunk is identified. Using a ‘volume-of-

interest’ marking tool, a 2D section of the pulmonary trunk is drawn at this level (Figure 2.7), before 

continuing caudally. Serial 2D sections are drawn on the axial images, down the right ventricular 

outflow tract and incorporating the left ventricular summit when it appears. From this point, the 
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ventricles are drawn together, down to the apex of the heart. Approximately ten 2D sections were 

drawn from pulmonary trunk to apex, although this number could vary depending on individual 

volunteer anatomy. Using a similar approach, the aorta and left ventricular outflow tract were 

designated in 2D sections from the level of the pulmonary trunk branching down to the merging 

area with the already drawn left ventricle. Due to the epicardial only nature of the system, the 

ventricular septum is not segmented separately. CISH automatically interpolates between the user 

defined 2D sections to build the ventricular mesh (Figure 2.8). 

 

Figure 2.7: Two-dimensional section of the pulmonary trunk selected by the user. A series of these two-dimensional sections 

through the heart are interpolated to form the final mesh. 
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Figure 2.8: Manual segmentation of the ventricles and great vessels. Panel A shows the mesh before manual trimming of 

hard edges and spikes. Panel B demonstrates axial CT images with red highlighted sections that have been manually 

incorporated into the mesh shown in Panel A. 

Hard steps and spikes can often form during the interpolation of the 2D sections. These are manually 

removed for two theoretical reasons: (I) sharp spikes and steps are not usually a feature of cardiac 

anatomy; (II) presence of hard edges and singularities may distort the distribution of activation and 

repolarization times across the cardiac surface (Figure 2.9). 

 

Figure 2.9: Panel A demonstrates steps and spikes in the mesh, indicated by the arrows. Panel B demonstrates the mesh 

once these have been manually removed. 

Following successful construction of the ventricular mesh, areas corresponding to the tricuspid and 

mitral valves are painted onto the annular surfaces by cross referencing the already created mesh 
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with the axial images (Figure 2.10). The great vessels are trimmed down to avoid erroneous 

assignment of electrograms to non-electrically active tissue, but with enough length left on to assist 

in localisation of electrograms when the final maps are reviewed. Finally, the left anterior 

descending artery is drawn by connecting points on the axial images starting at the ostium (cranial). 

If the LAD is not clearly seen in the more caudal slices, the approximate apex of the heart is used as 

the final reference point (Figure 2.11).  

 

 

Figure 2.10: Adding the valves onto the 3D mesh of the ventricles. Valve shapes are 'painted' onto the ventricular mesh in 

Panel A; the arrow denotes the current valve being painted, whilst the blue circle immediately to the right of the screen is a 

completed valve. The area painted in Panel A appears automatically as a blue selection in Panel B, where the position can 

be cross-referenced to the axial images, prompting the user to adjust the selection if necessary; the arrow denotes the 

current valve being painted, whereas the blue line to the top left of the arrow is a completed valve. 
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Figure 2.11: Addition of the left anterior descending coronary artery to the mesh. Points outside the mesh close to the path 

of the left anterior descending coronary artery are marked in axial slices with a cross (indicated by arrow). In Panel A, the 

results of the selection in Panel B can be seen in 3D space; the red line path is indicated by the arrow. 

The ventricular mesh is saved by CISH for use with the main CardioINSIGHT™ programme, which 

uses the geometric information in the inverse solution. 

Performing the inverse solution 

The steps in performing the inverse solution on CardioINSIGHT™ can be summarized as: 

1. Selecting the beat, or beats 

2. Deselection of noisy body surface signals and re-selection of clean body surface signals 

erroneously deselected by the automated ‘ABCD’ system (see ‘Performing an ECGi 

recording’) 

3. Initiating inverse solution. 

Steps 1 and 2 are user driven, with the aim of providing the largest amount of clean data to the 

inverse solution in step 3 to ensure accurate reconstructed electrograms. There are no current 

objective criteria for electrogram deselection, decisions being subjective to expert opinion and the 

individual operator. Two main points must be considered during selection: 

1. Electrogram parameters are measured in the first differential of the voltage-time graph, so 

signals with steep artefactual deflections must be excluded 

2. Heavy filtering in post-processing can change electrogram characteristics (Bear, Dogrusoz et 

al. 2018), so signals with large amplitude deviations of any frequency should be strongly 
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considered for exclusion. The density of electrograms produced and the negative effects of 

filtering on accuracy compared to ground truth is also the reason why noisy body surface 

signal deselection is preferred over heavy signal processing. 

Beat(s) selection is undertaken as close to the timepoint of interest as possible – for example peak 

exertion, full recovery, et cetera. If large amounts of artefact are present, subsequent beat(s) may be 

selected in place of the exact beat of interest. The allowable delay before selection depends on the 

nature of the beat of interest – for example the effects of exercise may be present minutes following 

peak exertion (Cole, Blackstone et al. 1999), but a single ectopic beat cannot be substituted by 

subsequent sinus beats. An example of body surface signals fitting the artefact descriptions above is 

demonstrated in Figure 2.12. 

 

Figure 2.12: Body surface signals removed from processing due to high levels of artefact. Panel A demonstrates high 

amplitude baseline shift, whilst Panel B demonstrates high frequency noise. 

Once the body surface signals suitable for use have been selected, the inverse solution is performed 

by the CardioINSIGHT™ workstation and saved onto the hard drive. 

Extracting reconstructed data for post-processing 

The required files can be extracted from the hard drive of the CardioINSIGHT™ workstation for 

further post-processing in our custom written software. The following files were saved under a file 

system recording the pseudonymized study number of the volunteer and the type of beat being 

saved: 

• Body surface signal file (.ECGDATA extensions) 

• Reconstructed epicardial potentials file (.POTENTIAL extensions) 

• Ventricular mesh (.HEART, .TORSO, .VALVE and .LANDMARK extensions) 
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These pseudonymized data were then transferred to a research computer for further processing. 

2.5 Exercise testing to supine rest 

Methods of physiological assessment during exercise have been known since the 1700s (Beltz, 

Gibson et al. 2016). Robert Bruce (Washington, USA) invented the most commonly used 

standardized protocol in 1963 (Bruce, Blackmon et al. 1963). To ensure standardization between 

subjects and tests we opted to use this Bruce protocol for all exercise tests. The steps are listed in 

Table 2.2 (Vilcant and Zeltser 2020). 

Table 2.2: Bruce protocol table, adapted from Vilcant et al. (2020) (Vilcant and Zeltser 2020) 

Stage Minutes Gradient (%) Pace (min/km) 

1 3 10 22:13 

2 3 12 15:00 

3 3 14 10:55 

4 3 16 8:49 

5 3 18 7:30 

6 3 20 6:44 

7 3 22 6:11 

 

Equivalent testing regimes exist for various types of exercise such as the running treadmill, bicycle 

and hand-crank ergometer (Mitropoulos, Gumber et al. 2017). To maximize physiological stress, we 

opted for upright treadmill testing as it is the modality shown to cause the greatest heart rate 

response (Abiodun, Balogun et al. 2015; Mitropoulos, Gumber et al. 2017). This was chosen over and 

above bike stress testing to elicit the strongest response. ECGi measurements are uniquely sensitive 

to movement in the torso and bike stress was felt to have insufficient benefits in ECG noise 

reduction to offset the reduction in maximal heart rate response as described in previous literature. 

During ECGi recording, volunteers undertook the Bruce protocol to maximal exertion. Exercise 

testing was supervised by at least one Advanced Life Support qualified professional (certification by 

the Resuscitation Council UK). 

Rate limiting cardiac medications were paused 48 hours prior to the test. Volunteers were 

encouraged to report symptoms if present at any point during the test as an indication for 

termination. Volunteers were allowed to exercise 1 minute after reaching target heart rate, or to 
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maximal exertion. Volunteers were required to reach at least 85% of predicted maximum heart rate 

using the formula 200 − 𝐴𝑔𝑒 to qualify for the study. 

The following termination criteria were used: 

• Onset of central chest pain, breathlessness out of keeping with the grade of exercise, pre-

syncope, or palpitations 

• Muscular fatigue/symptoms limiting continued exercise on treadmill 

• Repetitive ventricular ectopy (e.g. bigeminy, trigeminy) or ventricular rhythms lasting >5 

consecutive beats at any rate 

• Any evidence of ST elevation or depression 

• Volunteer preference. 

These criteria were deliberately stricter than for the general population guidelines (Gibbons 

Raymond, Balady Gary et al. 1997) because: 

• Our cohort could be considered higher risk than the general population for cardiac events 

• ECG monitoring could be compromised by the placement of the ECGi recording vest 

• Due to the operator monitoring the ECGi machine at the same time as the exercise machine, 

fewer blood pressure measurements could be made easily. To mitigate, patients underwent 

an individualized risk assessment by the responsible consultant prior to participation in the 

study. 

Immediately following test termination, the volunteer was guided back to a couch to lie supine for 

10 minutes. The majority of ECGi measurements were made in this period from peak exercise to full 

recovery. Baseline periods were defined as post exercise to reduce the chance that the vest 

electrodes had moved between comparison cardiac cycles, potentially causing differences in the 

ECGi reconstruction. The Ventricular Conduction Stability metric (further described in 2.6.1) is highly 

sensitive to small changes in cardiac conduction and therefore all measures to reduce inadvertent 

errors in electrogram reconstruction must be avoided. This comes at the expense of the post-

exercise recovery period not being a ‘true baseline’ period, although the pre-exercise period may 

also not be a true baseline measurement as the patient is in an unfamiliar environment and has the 

mental anticipation of the upcoming exercise test which may alter autonomic tone. 
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2.6 Calculation of Ventricular Conduction Stability related metrics 

Files pertaining to the cardiac cycles of interest were saved to a file system catalogued to a 

pseudonymized database, used by our custom software for retrieval of specific cardiac cycles from 

specific volunteers. 

2.6.1 Ventricular conduction stability (V-CoS) calculation 

First described in 2019 (Shun-Shin, Leong et al. 2019), V-CoS is briefly described as the percentage 

concordance in local activation times across the ventricles when two cardiac cycles are compared. 

The threshold for discordance is 10 milliseconds, and in general, the measurement is used to 

compare a reference cardiac cycle (for example at full recovery) with a test cardiac cycle (for 

example at maximum stress, or in this case peak exercise). Lower V-CoS scores indicate more 

discordance in activation patterns across the ventricles. The authors hypothesized that this inducible 

heterogeneity could form the basis for an arrhythmic substrate. 

V-CoS is currently written in Python 3.x and is delivered using a Qt for Python (PyQT5) graphical user 

interface (GUI). Electrograms from the test and reference beats are paired based on their known 

locations in the epicardial geometry files. As a further failsafe for correct matching, cross-correlation 

was employed to check the matching in morphology between paired electrograms. Smoothing is 

performed by a Savitzky-Golay filter (Savitzky and Golay 1964) prior to further calculation. Local 

activation time (LAT) was calculated for each electrogram by determining the steepest negative 

slope in the electrogram QRS complex, i.e. 𝑎𝑟𝑔𝑚𝑎𝑥(−
𝑑𝑉

𝑑𝑡
). 

The local activation times in each electrogram pair are subtracted. V-CoS is the percentage of these 

pair differences which is <10 milliseconds. 

To assist in visualisation, a fiducial point was formed around the median pair difference by 

subtracting this median time from all pairs across the epicardium. Differences shorter than the 

median (negative times) were encoded blue and differences longer than the median were encoded 

red with increasing intensity. The pair differences were then plotted in two dimensions using a 

McBryde-Thomas flat polar quartic projection (Snyder 1997) using the left anterior descending 

coronary artery as the prime meridian. Three-dimensional representations were generated by 

projecting the results onto the known geometry. Figure 2.13 is a reproduction of data from one of 

the original patients tested by the V-CoS software, demonstrating the comparison of two activation 

maps to form a V-CoS map. 
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Figure 2.13: Reproduction of figure from original V-CoS manuscript, kindly contributed by Dr Kevin Leong (Shun-Shin, Leong 

et al. 2019). Panel A demonstrates the comparison of two cardiac cycles from the full recovery phase of exercise testing. 

Activation maps visually appear similar, as do the surface ECG traces. Comparison of electrograms finds little significant 

difference which leads to a blank V-CoS map and V-CoS score close to 100%. Panel B demonstrates clear differences in 

activation maps with much more subtle changes in the surface ECG. Comparison of electrogram pairs here finds significant 

relative time delay which can be visualised on the V-CoS maps, corresponding to a V-CoS score of <90% in this case. 

2.6.2 Practical usage of the V-CoS software 

Figure 2.14 summarizes the steps needed to calculate a V-CoS score for a patient. Most of the steps 

enclosed in the ‘ECGi software’ box have been detailed in previous sections. In this section we will 

examine the steps required by the V-CoS software itself. 
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Figure 2.14: Process for calculating a V-CoS score for a patient. Stages in white square boxes are user-driven, whilst stages 

in oval grey boxes are either fully automated or not driven by subjective user actions. ECGi = ECG imaging; V-CoS = 

Ventricular conduction stability. 

Segmentation of the QRS complex 

Figure 2.15 demonstrates the region of interest which is defined by the user to enclose the whole 

QRS complex upon a graph of the body surface traces to provide a time reference. As the 

measurement being made is of the steepest negative slope in the electrogram QRS, the region is 

sized widely enough to include the likely locations of this point, but tightly enough to exclude sharp 

deflections in the baseline recording not relevant to the QRS complex. 
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Figure 2.15: V-CoS user interface, Qt for Python (PyQT5). A graph displaying all body surface electrograms is shown to the 

user, who moves the region of interest (indicated by arrow) until the QRS complex is contained within. This region of 

interest allows the software to only include steep negative deflections relevant to the QRS complex. 

Curation of epicardial electrograms 

Despite curation of the body surface electrograms in the ECGi software, some epicardial 

electrograms are still reconstructed with high frequency or high amplitude noise that can lead to 

misleading measurements of activation time (similar to Figure 2.12). For this reason, a second round 

of electrogram curation takes place within the V-CoS software. Figure 2.16 demonstrates the V-CoS 

user interface following QRS region of interest selection for both cardiac cycles in the comparison. 

The software suggests a confidence in the electrogram pair based on the similarity of the test 

electrogram to the reference electrogram, but ultimately the decision to include or exclude a pair is 

down to the user. 

Following these user decisions, the V-CoS score can be calculated automatically by the software. 
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Figure 2.16: V-CoS user interface for calculation of final results. Panel A demonstrates the 3D mesh of the ventricles with the 

V-CoS map projected onto it. Panel B contains the flattened mesh and results, as well as the ability for the user to select 

electrograms for inspection in Panel D and mark them as ‘Good’ for acceptable quality or ‘Bad’ for high amplitude or 

frequency noise using the buttons on the far left of Panel E. The yellow box in Panel B allows group selection of several 

electrogram pairs at once. ‘Bad’ electrogram locations are denoted in Panel B by a green ring around the location. Panel C 

is a histogram depicting spread of electrogram pair differences in local activation time. In Panel D the ‘test’ electrogram in 

red is at peak exercise, whereas the ‘reference’ electrogram in green is at 10 minutes of supine recovery. The electrograms 

are considered here to be of acceptable quality and have been accepted for analysis. 

2.6.3 Assessment of variability in Ventricular Conduction Stability 

In the original paper describing V-CoS, scores for a small number of cardiac cycle pairs were 

reproduced well (Shun-Shin, Leong et al. 2019). To determine the true variability of V-CoS scores, we 

assessed ten consecutive cardiac cycles from immediately after peak exertion and ten consecutive 

cycles from 10 minutes of supine recovery (referred to as ‘peak exercise’ and ‘full recovery’ for 

brevity). By pairing each beat, 100 V-CoS scores could be calculated per patient. 

This required setting the QRS region of interest for each cardiac cycle examined. Figure 2.17 

demonstrates the construction of a 10-by-10 beat V-CoS comparison matrix to visualize the results. 

The mean of all 100 scores can be taken as the summary result for each patient, which we opted to 

use as the primary measure of activation heterogeneity and arrhythmic substrate. 
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Figure 2.17: The V-CoS matrix method. 10 consecutive cardiac cycles from peak exercise and 10 consecutive cardiac cycles 

from full recovery are placed in a comparison matrix where each of the 100 tiles is a V-CoS score. The scores can be 

visualized numerically or by colour coding. The per-patient summary result is the mean of all 100 V-CoS scores in the matrix. 

2.7 Conclusion 

This methodology was used to recruit and test over 130 volunteers. It was designed to assess the 

feasibility of using the known techniques in ECG imaging for risk stratification. The results from this 

analysis are presented in chapters 4 and 5. During this work, further methods were developed to 

assess the data recorded from the volunteers. This is covered from Chapter 6 onwards. 
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Chapter 3: Evaluation of the Sieira 

multivariate risk model for sudden death 

in Brugada syndrome 

 

3.1 Introduction 

The challenge of risk stratification for sudden death in Brugada syndrome is heightened by the 

similar rates of either implantable device complications or appropriate therapies for potentially life-

threatening arrhythmia (Sacher, Probst et al. 2013; Conte, Sieira et al. 2015; Hernandez-Ojeda, 

Arbelo et al. 2017). Using medium term prospective data and retrospective analysis of registry data, 

multiple risk factors had been previously proposed, but more recent work casts doubt upon their 

effectiveness in stratifying primary prevention candidates (Raju, Papadakis et al. 2011; Leong, Ng et 

al. 2019). 

Multivariate risk scoring is being explored in multiple conditions to improve stratification of patient 

care (Delise, Allocca et al. 2011; O'Mahony, Jichi et al. 2014; Cadrin-Tourigny, Bosman et al. 2019). 

Most recently for Brugada syndrome, a 400-patient single-centre cohort was retrospectively 

examined by Sieira and colleagues to identify risk factors for sudden death (Sieira, Conte et al. 2017). 

Six risk factors were identified, and a multivariate model was constructed to predict sudden death or 

appropriate implantable cardioverter defibrillator (ICD) therapy. The authors also validated this 

score in a separate cohort of 150 patients, for which an impressive C-index of 0.81 was reported. 

If this validation were representative of worldwide performance, this would be a highly effective tool 

in risk stratifying sudden death in Brugada syndrome. Our objective was to perform the first 

independent evaluation of the Sieira model in two UK tertiary centres caring for Brugada syndrome 

patients. 

3.2 Methods 

Ethical approval was given by the Fulham Research Ethics Committee and the Heart Research 

Authority for the data collection under references 14/LO/1318 and 17/LO/1660. All processing 
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outside a National Health Service (NHS) setting or by persons not in the direct care team was 

performed using de-identified data. 

Patient recruitment 

Between 2004 and 2019, databases of consecutive patients diagnosed with Brugada syndrome at 

Imperial College Healthcare NHS Trust and University Hospital of Wales. Patients could only receive a 

Brugada syndrome diagnosis if a Type 1 ECG pattern was recorded either spontaneously or by drug 

challenge. At both centres, ajmaline was used as the challenge agent. The diagnostic criteria were 

particularly chosen to match that of the Sieira cohort in order to represent the score model in similar 

conditions (Sieira, Conte et al. 2017). Patients with more than 2 missing items of information needed 

to complete the score were excluded. From a total of 206 consecutive patients, 192 remained in the 

analysis with an average follow up of 5.1 ± 2.8 years. 

Collection of data 

Table 3.1: Points conferred by multiple risk factors in a score model for sudden death risk in Brugada syndrome. Designed by 

Sieira and colleagues (2017) (Sieira, Conte et al. 2017) 

Risk factor Score points conferred 

Spontaneous Type 1 ECG pattern 1 

Early familial sudden death 1 

Inducibility at electrophysiological study 2 

Syncope 2 

Sinus node dysfunction 3 

Sudden cardiac death 4 

 

The Sieira score is an additive score of multiple risk factors which are detailed, along with respective 

points in Table 3.1. 

In patients presenting with sudden cardiac arrest (SCA), history of syncope or early familiar sudden 

death were only considered if this occurred prior to the presenting event. Care was taken to recruit 

and score patients in the same fashion as in the Sieira model cohort. 

A spontaneous Type 1 ECG pattern was defined as coved ST elevation ≥2mm in ≥1 lead from V1-3, 

matching the Sieira cohort definition. Spontaneous type 1 ECG was defined as the Brugada pattern 

in absence of a sodium channel blocker. Concealed Brugada syndrome diagnoses were made using 
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up to 1mg/kg bodyweight of ajmaline, administered with continuous monitoring using 15-lead ECG 

(standard configuration with additional leads in the 2nd, 3rd and 4th intercostal spaces above and 

including V1-2). To be included, patients must have had evidence of a Type 1 Brugada ECG pattern 

either spontaneously or on drug challenge. Patients with only Type 2 and 3 Brugada ECG patterns 

were excluded. 

Early familial sudden death was defined as occurring in a first degree relative under the age of 35 

years. Electrophysiological studies (EPS) included programmed ventricular stimulation; the EPS was 

said to be positive if haemodynamically unstable, sustained ventricular arrhythmia was induced by 

up to 3 extrastimuli with a minimum coupling interval of 200 milliseconds at the right ventricular 

apex. Drivetrains were performed at 600 milliseconds, down to a minimum of 400 milliseconds if the 

baseline sinus rate was too high for capture. 

Syncope was considered likely arrhythmic if brief, traumatic, without prodrome or triggers. 

Vasovagal syncope was ruled out using detailed history taking or tilt-testing if appropriate. Sinus 

node dysfunction was defined when a patient had any one of: 

• Symptomatic sinus bradycardia 

• Sinus arrest 

• Paroxysmal supraventricular tachycardia alternating with periods of bradycardia or asystole 

• Failure to achieve 85% of age-predicted maximum heart rate on exercise (using the 220 – 

Age formula) 

• Sinus node recovery time ≥1500 milliseconds or corrected sinus node recovery time ≥550 

milliseconds. 

• Sinus node recovery time/sinus cycle length ratio ≥160% 

• Sinoatrial conduction time ≥125 milliseconds. 

Assessment of Sieira score uptake in the United Kingdom 

To determine the impact of the Sieira score publication in the United Kingdom (UK), a survey was 

carried out at the annual Heart Rhythm Congress (Birmingham, UK) 2018, organized by the 

Arrhythmia Alliance. A questionnaire (provided in Appendix E) was filled out by 13 electrophysiology 

specialists from 10 different UK centres caring for patients with Brugada syndrome. 
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Statistical analysis 

Data were analysed in R version 3.4.2 using a custom script. Graphs were created using the ggplot2 

library. Differences between the Imperial and University Hospital of Wales cohorts were tested by 

Welch’s two-sided T-test. Differences between our pooled cohort and the Sieira et al (2017) cohort 

were tested by one-sided T-test against mean values in the Sieira paper. Categorical variables for 

other risk markers were compared using the χ2 test. 

3.3 Results 

One hundred and twenty-four patients met full inclusion criteria from Imperial College Healthcare 

and 68 from University Hospital of Wales (UHW). These groups were significantly different in rates of 

spontaneous type 1 ECG (16.1 vs 5.9%, p = 0.02), but were similar in all other characteristics (Table 

3.2). Notably, rates of aborted SCD and Sieira model scores were not significantly different.  
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Table 3.2: Comparison of patient characteristics between patients seen at Imperial (n = 124) and University Hospital of 

Wales (UHW, n = 68). Abbreviations: Family history of sudden cardiac death, FH SCD; Electrophysiological study, EPS; 

Sudden cardiac death, SCD; Type 1 Brugada ECG, T1 ECG. *EPS percentage calculated as proportion of those undergoing 

test. **Appropriate ICD therapy calculated as proportion of sudden cardiac arrests terminated by an in-situ device. 

 
Imperial UHW p-value 

Age (years) 48.1 45.5 0.26 

Proportion male (%) 59.7 55.9 0.61 

FH SCD (%) 46.0 41.2 0.52 

FH SCD <35 yrs (%) 18.5 25.0 0.31 

Syncope (%) 31.5 35.3 0.59 

Sinus node dysfunction (%) 3.2 5.9 0.42 

EPS inducible (%)* 21.3 25.0 0.83 

Proband status (%) 60.5 48.5 0.11 

Previous aborted SCD (%) 9.7 14.7 0.32 

Appropriate ICD therapy (%)** 8.3 10.0 0.89 

ICD implantation (%) 35.5 35.3 0.98 

Spontaneous T1 ECG (%) 16.1 5.9 0.02 

Sieira score (points) 1.73 1.83 0.73 

 

Compared to the 550 patients reported in Sieira et al (2017), our cohort had similar calculated Sieira 

risk scores (1.56 vs 1.77, p = 0.12). Gender, rates of sinus node dysfunction and ICD implantation 

were also similar. Our cohort was significantly older, with more sudden death under the age of 35 in 

the family, more EPS inducibility, more probands, but fewer spontaneous type 1 Brugada patterns 

on ECG. Over follow-up patients had an average 5.26 ±3.93 ECGs inspected for spontaneous type 1 

pattern. More of our cohort were symptomatic – either with syncope or aborted SCD; 22 patients 

survived sudden cardiac arrest or received appropriate ICD therapy. A full comparison is made in 

Table 3.3.  
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Table 3.3: Comparison of patient characteristics between Sieira et al (2017) (n = 550) and this study (n = 192). 

Abbreviations: Family history of sudden cardiac death, FH SCD; Electrophysiological study, EPS; Sudden cardiac death, SCD; 

Type 1 Brugada ECG, T1 ECG. *EPS percentage calculated as proportion of those undergoing test. 

 Sieira et al (2017) 

(Sieira, Conte et al. 

2017) 

This study p-value 

Age (years) 42.4 47.1 <0.01 

Proportion male (%) 65.1 58.3 0.06 

FH SCD (%) 47.6 44.2 0.35 

FH SCD <35 yrs (%) 9.1 20.8 <0.01 

Syncope (%) 26.0 32.8 0.05 

Sinus node dysfunction (%) 2.2 4.1 0.17 

EPS inducible (%)* 19.6 21.6 0.65 

Proband status (%) 33.6 56.8 <0.01 

Previous aborted SCD (%) 5.5 11.4 0.01 

ICD implantation (%) 41.8 35.4 0.06 

Spontaneous T1 ECG (%) 28.5 12.5 <0.01 

Sieira score (points) 1.56 1.77 0.12 

 

Risk stratification of our cohort with the Sieira score resulted in large numbers of false positives and 

false negatives. The resultant sensitivity was 22.7% (95%CI = 7.82-45.4%), and specificity 57.7% 

(95%CI = 49.6-65.2%). This is displayed graphically in Figure 3.1. C-statistic was 0.58. 
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Figure 3.1: Sieira model scores for patients with and without personal history of sudden cardiac arrest (SCA). 

Table 3.4: Performance comparison of the Sieira score model in the training cohort and our validation cohort. 

Measure Sieira et al (2017) (Sieira, 

Conte et al. 2017) 

This study 

Sensitivity 79.4% 22.7% 

Specificity 72.2% 57.6% 

C-index 0.82 0.58 

 

Although the score model does not mandate that patients must have an invasive EPS, an EPS only 

cohort was assessed against the score (n = 88). This produced similar results: sensitivity was 25.0% 

(95%CI = 0.63-80.6%) and specificity 58.3% (95%CI = 47.0-69.0%) This is displayed graphically in 

Figure 3.2. C-statistic was 0.56. Positive predictive value was 6.5% and negative predictive value 

86.1%. Balanced accuracy was 40.2%. 
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Figure 3.2: Sieira model scores for patients with and without personal history of sudden cardiac arrest (SCA) who had 

undergone electrophysiological study (EPS). 

Characteristics of our sudden cardiac arrest and appropriate therapy survivors are displayed in Table 

3.5 (n = 22). 
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Table 3.5: Characteristics of sudden cardiac arrest (SCA) and appropriate therapy survivors from our cohort. Abbreviations: 

point, pt. *Sieira scores are reported from the time of cardiac arrest as described in Methods. 

Sex Age ECG type Family 

history 

EPS Syncope SND Endpoint Sieira 

score 

Male 62 Concealed No Not 

performed 

No No SCD 0 

Male 57 Concealed No Not 

performed 

No No SCD 0 

Male 57 Concealed No Not 

performed 

No No SCD 0 

Male 60 Concealed No Not 

performed 

No No SCD 0 

Male 30 Concealed No Not 

performed 

No No SCD 0 

Male 59 Concealed No Negative No No SCD 0 

 

Male 46 Concealed No Negative No No SCD 0 

 

Male 34 Concealed No Not 

performed 

No No SCD 0 

Male 27 Concealed No Not 

performed 

No No SCD 0 

Male 54 Concealed No Not 

performed 

No No SCD 0 

Male 53 Concealed No Not 

performed 

No No SCD 0 

Female 42 Concealed Yes 

(1 pt) 

Not 

performed 

No No SCD 1 

Male 53 Concealed Yes 

(1 pt) 

Not 

performed 

No No SCD 1 

Male 55 Concealed Yes 

(1 pt) 

Not 

performed 

No No SCD 1 
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Male 33 Spontaneous 

(1 pt) 

No Not 

performed 

No No SCD 1 

Female 45 Concealed Yes 

(1 pt) 

Not 

performed 

No No SCD 1 

Female 32 Concealed No Not 

performed 

Yes 

(2 pts) 

No SCD 2 

Male 39 Concealed No Not 

performed 

No Yes 

(3 pts) 

SCD 3 

Male 42 Concealed No Positive 

(2 pts) 

Yes 

(2 pts) 

No SCD 4 

Male 26 Spontaneous 

(1 pt) 

No Not 

performed 

Yes 

(2 pts) 

Yes 

(3 pts) 

SCD 6 

Male 31 Spontaneous 

(1 pt) 

No Negative No No Device 

therapy 

1 

Male 54 Concealed No Not 

performed 

Yes 

(2 pts) 

Yes 

(3 pts) 

Device 

therapy 

5 

 

There were four patients with appropriate defibrillator therapy, two with secondary prevention 

devices and two with primary prevention devices. In all patients the detected rhythm was ventricular 

fibrillation; between 3.6 and 7.5 seconds passed before administration of a successful shock. 

Furthermore, data was collected on a significant S wave in lead I (≥0.1mV and/or ≥40ms) (Calo, 

Giustetto et al. 2016) and signal averaged ECG late potentials (Ikeda, Sakurada et al. 2001). S-waves 

were assessed in 182 patients across both cohorts, but the sign was not significantly more present in 

the cardiac arrest and appropriate therapy group (p = 0.65). Signal averaged ECG was performed in 

78 of the Imperial College Healthcare cohort; presence of late potentials was not significantly higher 

in the sudden cardiac arrest and appropriate therapy group (p = 0.44). 

Finally, the results of the UK electrophysiology (EP) specialist survey were analysed. All specialists 

were aware of the Sieira score. 2 out of 13 (15%) interviewed were currently using it in practice. 

Estimated rates of invasive electrophysiological study were generally low, with most specialists 

offering this to 0-10% of their patients. This is summarised in Figure 3.3, with the actual rates of 
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electrophysiological study displayed for UHW, Imperial and Sieira et al (2017) – 10, 65 and 91% 

respectively. 

 

Figure 3.3: Proportion of patients undergoing electrophysiological study (EPS) under the care of 13 electrophysiology (EP) 

specialists in 10 UK centres according to survey estimate. Actual figures reported for University Hospital of Wales (UHW), 

Imperial and Sieira et al. 

3.4 Discussion 

The performance of the Sieira risk score was evaluated in 192 Brugada patients; we found the model 

to have poor sensitivity and specificity for sudden death events. Cardiac arrest survivors were 

considered with data around the time of their cardiac arrest to ascertain whether this score model 

would have adequately protected them before their event. Compared with the internal validation of 

the Sieira et al (2017) score model, our results are less optimistic about modern Brugada risk 

stratification. Our strategy of cumulative scoring would bias scores towards better sensitivity; 

despite this more than half of patients who survived a sudden cardiac arrest or appropriate ICD 

therapy would have been left unprotected by the recommendations of the Sieira score model. Our 

validation cohort sensitivity, specificity and C-index were lower than that reported for Sieira et al 

(2017) in both the full cohort and the selected cohort who had all undergone electrophysiological 

study.  
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Regarding patient selection, our cohort has some significant demographic differences with the Sieira 

cohort, including age, young familial sudden death and spontaneous type 1 ECG (Table 3.2). This is 

despite identical eligibility criteria. Different population risk profiles may explain some of the 

discrepancy in score performance over both cohorts. However, the average Sieira risk scores 

between cohorts were not significantly different. Sieira’s own training cohort and validation cohorts 

also had significant demographic differences without a degradation in score performance (Sieira, 

Conte et al. 2017). Regardless, for a score to be clinically useful in the wider world, applicability to a 

range of different Brugada populations would be a necessity. 

There are several possible barriers to performance. The Sieira score is highly dependent on the 

invasive electrophysiological study, with a total of 5 possible points arising from this investigation 

alone (2 for arrhythmia inducibility, 3 for discovery of sinus node dysfunction). During our survey of 

UK EP specialists, the use of EPS was mentioned multiple times as a barrier to usage. Our survey 

suggests that far fewer UK patients are exposed to invasive EP examinations and the associated 

risks. Whilst the Sieira score does not mandate that all investigations must be carried out – 9% of 

their patients did not have EPS – we also performed calculations in the subset of our patients who 

had invasive electrophysiological data. Sensitivity and specificity in this group remained low.  

Validation sample size can be a challenge in a rare condition where endpoints are also uncommon. 

One metric is measuring validation set size comparing it to the original training set. Our total 

validation set size is 42.6% the size of the Sieira training cohort, with our EPS group accounting for 

just under half of that figure. Amongst comparable published external evaluations of the 

Hypertrophic Cardiomyopathy (HCM) SCD-Risk calculator, the mean relative size of the validation set 

is 25.5%, making our study large relative to a training set also limited by disease prevalence (Wang, 

Zhang et al. 2019). Nonetheless, the absolute small size of our 88-strong EPS group should be taken 

into account for this evaluation; however, given the results of the UK EP specialist survey this can be 

considered the ‘real-world’ usage of the Sieira score. The centre at which the score was first 

developed would be considered an outlier by UK standards of offering invasive EP studies. EPS gains 

only a IIb recommendation in recent guidelines (Al-Khatib Sana, Stevenson William et al. 2018). The 

non-mandatory nature of the EPS in the Sieira score can be a strength – it may be used early in 

patients with clear high risk without exposing them to excess risk of an invasive procedure. However, 

it may also limit overall score performance in many centres in the UK and perhaps worldwide. 

Score design can be considered in the context of other current risk stratification models. As 

mentioned previously, this model is one of a handful of recent attempts to accurately delineate risk 
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using a multiple variable score. This is the first external validation of the Sieira score; the HCM-Risk 

calculator has been evaluated externally several times (Maron, Casey et al. 2015; Leong, Chow et al. 

2018; Wang, Zhang et al. 2019). In multiple studies the HCM-Risk score creates a significant number 

of false negatives – much like the Sieira score model. The Arrhythmogenic Right Ventricular 

Cardiomyopathy (ARVC) Risk score has also been evaluated once, with an underestimation of 

ventricular arrhythmia occurrence noted in certain disease subtypes (Cadrin-Tourigny, Bosman et al. 

2019; Casella, Gasperetti et al. 2020). 

For missing data, Sieira et al (2017) used only cases with near complete data, in contrast to the HCM-

Risk and ARVC-Risk scores which imputed missing values. The ‘near complete cases’ strategy has the 

advantage of only using real data in calculations, at the cost of reducing the number of cases in the 

training cohort and the risk of bias if data were missing in a non-random fashion (Jakobsen, Gluud et 

al. 2017). In addition, the tactic of rounding univariate regression coefficients used in the Sieira 

model results in a score that is simpler to calculate but lacks the robustness of multivariate analysis 

used in the HCM- and ARVC-Risk scores.  

Whilst the HCM-Risk score used both validation set approach and bootstrapping to check their 

model, Sieira et al (2017) used validation set approach only whilst ARVC-Risk used bootstrapping 

only. The bootstrapping technique used by the HCM and ARVC-Risk models only tests data from the 

original dataset but can demonstrate internal validity of the model (James 2013). The validation set 

approach is easily implemented but reduces the amount of data that can be used to train the model 

– potentially making it less powerful (James 2013). Sieira’s validation set consisted of pre-selected 

patients not used to develop the model – this method assesses whether the model can be 

generalised to new, plausibly related populations but does not describe reproducibility of model 

development (Steyerberg and Vergouwe 2014). In the case of the Sieira model, the significant 

differences between the training and validation cohorts are an advantage as their model performs 

well in non-identical groups. Validation set approaches (or more advanced cross-validation methods) 

and bootstrapping can be performed together to assist in developing accurate risk stratification 

(Steyerberg and Vergouwe 2014). 

All three scores examined a combined endpoint of sudden death and appropriate ICD therapy; the 

Sieira score model and ARVC-Risk score both have mostly ICD therapies as endpoints. Table 3.6 

compares the 3 studies in more detail.  
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Table 3.6: Selected comparison between scoring strategies in 3 risk stratification calculators 

 Sieira score model 

(Sieira, Conte et al. 

2017) 

HCM-Risk (O'Mahony, 

Jichi et al. 2014) 

ARVC-Risk (Cadrin-

Tourigny, Bosman et 

al. 2019) 

Cohort size (n) 400 3675 528 

Follow up (years) 6.6 5.7 4.8 

Event rate (%/yr) 1.4 1.0 5.6 

Missing data strategy Near-complete cases 78% complete data 

Other data imputed 

using Rubin’s rules 

73% complete data 

Other data imputed 

using Rubin’s rules 

Validation strategy ‘Validation set 

approach’ (n = 150) 

200 bootstrapped 

samples and 

‘validation set 

approach’ 

200 bootstrapped 

samples 

Outcome criteria Sudden cardiac death 

Appropriate ICD 

intervention. 

Sudden death <1hr of 

symptoms starting OR 

witnessed OR 

nocturnal without 

symptoms 

Appropriate ICD 

intervention. 

Sudden cardiac 

arrest/death 

Spontaneous 

sustained Ventricular 

tachycardia >30s 

>100bpm 

Ventricular fibrillation 

Appropriate ICD 

intervention. 

Actual outcomes 

recorded 

89% appropriate ICD 

therapy 

11% sudden 

death/aborted sudden 

death 

60% sudden death 

27% appropriate ICD 

therapy 

13% aborted sudden 

death 

70% appropriate ICD 

therapy 

24% ventricular 

tachycardia 

4% aborted sudden 

death 

2% sudden death 



86 
 
 

 

End user input 

strategy 

Summation following 

multiplication by 

rounded co-efficients 

Exponent formula 

using un-rounded co-

efficients 

Exponent formula 

using un-rounded co-

efficients 

End user output 

strategy 

Single score cutoff 

with recommendation 

5-year risk output with 

recommendation 

1-, 2- and 5-year risk 

outputs without 

recommendation 

 

The observation that most of the Sieira score model endpoints were appropriate ICD therapies (89%) 

rather than sudden deaths or VF arrests may go some way to explaining why there are slightly higher 

scores in our patients with ICD therapy versus sudden death survivors. Thus, the Sieira score model 

may predict ICD events better than sudden deaths.   

The statistical strategy behind the Sieira score model is largely robust, and it is not the only risk score 

to have underperformed at the external validation stage. Questions remain over why this might be; 

there are several potential explanations. 

Firstly, the Sieira score model cohort was drawn from a single centre experience, which may not be 

generalisable to other centres, let alone other countries and ethnicities. 

Secondly, high scoring variables were often based on few patients (sinus node disease: 3 points for 

2% of the cohort, sudden death: 4 points for 5%) meaning that small changes in training data could 

have caused large changes in final score point allocation. This draws on an inherent issue in risk 

stratification calculations when endpoints or risk markers are rare. Furthermore, the 50 paediatric 

cases in the study are overrepresented in sinus node disease, casting doubt over whether this can be 

generalised to adult populations. 

The Sieira cohort dates from 1992 to 2013, four years prior to the publication of the article. There 

are significant differences in spontaneous Type 1 ECG, syncope, proband status and EPS inducibility 

between the patient groups described from 1992-2005 and 2005-2013 (Sieira, Conte et al. 2017). 

Patient characteristics were notably different depending on how recently a patient was recruited, 

and our group (2004-2019) is even more recent. The UHW cohort is the most recent (83% diagnosed 

after 2010) and most of the patients have been diagnosed by family screening and drug provocation 

challenge, the likely reason behind the low prevalence of spontaneous type 1 ECG in this centre. The 

trend of cohorts to have fewer spontaneous type 1 ECGs can be seen over the last 20 years, with 

numbers dropping from 71.4% in 2003 (Brugada, Brugada et al. 2003), 55.5% in 2009 (Priori, 
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Gasparini et al. 2012), 45.4% in 2010 (Probst, Veltmann et al. 2010) steadily to the figures reported 

from both the Sieira and our cohorts (28.5 and 12.5% respectively) (Sieira, Conte et al. 2017). 

Variation in cohort characteristics may explain performance differences in risk scores and has 

implications for future patients evaluated in this way. 

Other features of the condition previously postulated as risk markers such as significant S waves and 

late potentials on signal averaged ECG were poorly associated with sudden death in this study. 

Fractionation of QRS has been previously been shown not to be a significant risk factor in our high 

risk Brugada cohort (Leong, Ng et al. 2019). In line with previous analyses, spontaneous Type 1 

patterns and syncope can be absent from many patients suffering sudden cardiac arrest (Raju, 

Papadakis et al. 2011; Leong, Ng et al. 2019). Our data reinforces the messages of these earlier 

studies. Underperformance of risk markers may be due to the changing characteristics of cohorts 

over time. 

3.4.1 Limitations 

Some considerations must be given to our study population. The cohort was drawn from two mainly 

White British populations in London and Cardiff. The extent to which our results could be 

generalised to other ethnicities and countries is debatable. To improve our analysis of sensitivity, we 

considered sudden death survivors at the point of their cardiac arrest evaluation. Whilst this allowed 

us to estimate which of our cardiac arrest survivors would have been offered an ICD, it is impossible 

to say whether this would have happened in a real-world scenario without a large prospective 

validation. We considered cardiac arrest patients who had not suffered syncope prior to their 

sentinel event to be asymptomatic. Our argument is that sustained arrhythmia needing CPR and 

aborted arrhythmia causing syncope with spontaneous resolution are different clinical presentations 

– in the latter scenario, the patients are ideally risk stratified whilst in the former, they die or are 

uncontroversially offered an ICD. However, an opposing argument is that the arrhythmic duration 

and mode of termination is irrelevant – in this case, our method may introduce bias against the 

Sieira method. 

3.5 Conclusion 

The Sieira score model was based on a large, single centre experience of Brugada syndrome. This 

score was limited by low sensitivity and specificity in our cohort. Inherent problems such as the low 

overall prevalence of sudden death in Brugada syndrome and certain risk markers such as sinus node 
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disease will likely limit any attempts at risk stratification using a similar strategic approach. Changing 

cohort characteristics over time add to the difficulty of building a predictive model.  

Patients and clinicians must be well counselled on the performance of modern risk stratification 

before deciding on ICD implantation. Risk stratification in Brugada syndrome continues to be a 

challenge. 
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Chapter 4: Reproducibility testing of 

ventricular conduction stability and 

assessment of the arrhythmic substrate in 

Brugada syndrome 

 

4.1 Reproducibility of Ventricular Conduction Stability 

4.1.1 Introduction 

Rate adaptation of activation is a property of the myocardium that may be deranged in the presence 

of abnormal cardiac tissue (Franz, Schaefer et al. 1983). Patients with cardiomyopathies and 

channelopathies have abnormal cardiac tissue, so their hearts lose normal rate adaptation. Change 

in conduction velocities and therefore local activation patterns are some of the detectable 

manifestations of this pathology in invasive or in-vitro studies (Nagase, Kusano et al. 2002; Leoni, 

Gavillet et al. 2010; Brugada, Pappone et al. 2015). In intact patients, this can be demonstrated using 

electrocardiographic imaging (ECGi) recordings during exercise treadmill testing (Zhang, Sacher et al. 

2015; Shun-Shin, Leong et al. 2019). 

Leong et al. developed Ventricular Conduction Stability (V-CoS) to quantify this derangement: the 

percentage concordance in local activation times for entire ventricular surfaces between a test and 

reference cardiac cycle. It is further discussed in Chapter 2: Methods. Briefly, scores close to 100% 

indicate a high degree of similarity between the two cardiac cycles. Scores lower than this indicate 

progressively more stress-induced heterogeneity between the cardiac cycles – a property than Leong 

et al. theorized might differentiate survivors of cardiac arrest from those previously unaffected by 

potentially lethal arrhythmia. 

This tool could be useful for diagnosing and risk stratifying patients with rate-related conduction 

derangements. However, if it is to succeed in the clinical environment, it must be highly reproducible 

in all stages of processing. 
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Encouraging reproducibility analyses were performed (Shun-Shin, Leong et al. 2019), demonstrating 

that in a sample of 10 patients, inter-operator variability in the V-CoS software was low (mean 

difference 0.62% V-CoS; Bland-Altman 95% limits -1.2 to 2.4). Repeat CT segmentation and repeat 

ECGi reconstructions were not analysed in the original paper. Furthermore, in two patients, 10 beat 

standard deviation of V-CoS was 1.6% V-CoS at peak exercise in a single cardiac arrest survivor, and 

1.0% V-CoS in a single control. One patient repeated the exercise test, demonstrating Bland-Altman 

95% limits of -1.8 to 0.4% V-CoS. Figure 4.1 is a reproduction of the original reproducibility testing 

results.

 

Figure 4.1: Original reproducibility studies into Ventricular Conduction Stability (V-CoS) reproduced with kind permission of 

Dr Kevin Leong (Shun-Shin, Leong et al. 2019). Inter-operator and inter-test variability were low in this study. Exercise test, 

ETT. 

Ventricular conduction stability calculation is a multi-stage process which must be consistent if it is 

to succeed as a clinical tool. Using patients from Leong et al.’s original group, we aimed to determine 

overall reproducibility and the sources of any potential variation. Our hypothesis was that V-CoS 

would be reproducible across all stages of calculation. 

4.1.2 Methods 

The V-CoS workflow is discussed in detail in Chapter 2. Figure 4.2 is a summary of chapter 2 to assist 

interpretation of these methods. In order to isolate the stages for reproducibility during V-CoS 

processing, the workflow was divided for testing.  
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CT scans were not repeated due to ethical concerns over radiation re-exposure. CardioINSIGHT vests 

were not re-applied due to prohibitive cost. Two operators took part: 

• Operator 1: Dr Kevin Leong (V-CoS creator) 

• Operator 2: Dr Ji-Jian Chow (thesis author) 

 

Figure 4.2: A summary of the ventricular conduction stability (V-CoS) workflow. Fully automated steps are marked by grey 

ovals; all other steps include some user decision making. Electrocardiographic imaging, ECGi; Computerized tomograph, CT; 

Three dimensional, 3D. 

Assessment of V-CoS software reproducibility 

In a repeat of the experiments carried out by Leong et al., Operator 2 was blinded to the identities, 

background condition and final V-CoS scores of the same 10 participants from the original paper 

(Shun-Shin, Leong et al. 2019). 3 beats were analysed per patient. 

CardioINSIGHT electrogram and geometry files were obtained from Operator 1’s data repository for 

analysis, identical to those used for the processing in the original paper. The repeated steps were 

segmentation of the QRS complex and curation of epicardial electrogram. The original software 

calculated the V-CoS from this information. 

This test was carried out once before Operator 2 received training in interpreting epicardial 

electrograms, and once following training. Training was carried out personally by Operator 1 

reviewing and providing feedback on electrogram selections made by Operator 2 and was provided 

on an ad-hoc basis over a period of 4 months. 
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Assessment of ECGi software reproducibility 

10 patients with Brugada syndrome and a variety of final V-CoS scores were chosen for repeat 

reconstruction of epicardial electrograms from recordings and 3D ventricular meshes previously 

recorded by Operator 1. 

In 7 of these patients, we were able to guarantee the same cardiac cycles were selected because 

these CardioINSIGHT archives contained cycle selection information. In 3 patients this information 

was unavailable, so best effort was made to match the cycle length and visual morphology based on 

both bookmarks in the CardioINSIGHT archive and previously extracted electrogram files from 

Operator 1’s data repository. 

In the 3 patients where same cardiac cycle selection was not assured, CardioINSIGHT reprocessing 

was performed personally by Operator 1 to provide control values. Following extraction of 

electrogram and location files, V-CoS scores were calculated using the custom software. 

Assessment of 3D mesh reproducibility 

4 patients attending for testing had CT scans segmented by Medtronic staff external to our study. 

Operator 2 performed repeat segmentations to produce alternative epicardial meshes. V-CoS scores 

were calculated using the methods above for both epicardial models over multiple beats per patient. 

Assessment of exercise test reproducibility 

17 patients volunteered for and successfully completed a second exercise test: 8 patients with 

hypertrophic cardiomyopathy, 3 Brugada VF survivors, 3 unaffected Brugada relatives, 2 patients 

surviving idiopathic VF and 1 patient surviving ischaemic VF.  

Exercise tests were conducted at least 40 minutes apart to ensure adequate recovery. The CT scan of 

the chest was undertaken in between tests. Large adjustments to the vest were not made, but re-

application of tape securing electrode position was permitted. 

The earliest consecutive 10 cardiac cycles without visually significant artefact or noise was selected 

following peak exercise. A second run of 10 consecutive cardiac cycles was selected following 10 

minutes of recovery. The first beat of both runs were compared using V-CoS to judge the 

reproducibility of a single beat between exercise tests. Secondly, to assess the ability of summary 

statistics to improve reproducibility, the minimum and mean of all 100 V-CoS scores was compared 

between exercise tests. 
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CT scans and 3D ventricular meshes were identical but cardiac cycle selection, ECGi and V-CoS 

processing were performed with identical technique by the same operator. To eliminate the 

opportunity for bias at the V-CoS stage, the automated electrogram deselection choices were left 

un-edited. 

Statistical analysis 

Bland-Altman analysis and Pearson’s correlation were used as measures of reproducibility. As the 

effect sizes from the original paper ranged from 3.1 to 5.0% V-CoS (Shun-Shin, Leong et al. 2019), a 

proposed a priori maximal acceptable difference of ±2% V-CoS is plotted on each of the graphs 

(Giavarina 2015). The number of patients falling in- and outside of this acceptability range is 

compared using Fisher’s exact test. Differences between methods are tested using the paired T-test 

in identical cardiac cycles and the unpaired T-test in non-identical cardiac cycles. 

4.1.3 Results 

Assessment of V-CoS software reproducibility 

Prior to training in electrogram interpretation, Pearson’s R between operators was 0.89 (p > 0.001), 

and the Bland-Altman 95% confidence intervals were between -2.74 and 3.41% V-CoS (Figure 4.3 

upper panel). Following training, Pearson’s R between operators was 0.96 (p > 0.001) with Bland-

Altman 95% confidence intervals between -2.06 and 1.54% V-CoS (Figure 4.3 lower panel). The 

improvement due to training was significant but small (p = 0.008, 95% confidence intervals 0.14 to 

0.91% V-CoS).  
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Figure 4.3: Correlation and Bland-Altman graphs for reproducibility of the Ventricular Conduction stability (V-CoS) software 

used by two operators for 30 cardiac cycles from 10 patients prior to (upper panel) and following (lower panel) electrogram 

interpretation training. 
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Assessment of ECGi software reproducibility 

When cardiac cycles were processed on CardioINSIGHT™ by two operators, Pearson’s R for V-CoS 

was 0.72 (p > 0.001). Bland-Altman 95% confidence intervals were -6.33 to 4.65% V-CoS (Figure 4.4). 

In 7 patients, the cardiac cycles chosen were identical. For this subgroup, Pearson’s R was 0.96 (p > 

0.001). Bland-Altman 95% confidence intervals were -1.58 to 1.72% V-CoS (Figure 4.5 upper panel). 

In the remaining 3 patients, the cardiac cycles originally processed by Leong et al. were uncertain – 

attempts were made to match using correlation of cycle length and morphology. In this subgroup. 

Pearson’s R was 0.43 (p = 0.23) and Bland-Altman 95% confidence intervals were -12.23 to 6.22% V-

CoS (Figure 4.5 lower panel). The difference in reproducibility was significant (p = 0.007 by unpaired 

T-Test). 

 

Figure 4.4: Correlation and Bland-Altman graphs for reproducibility of the ECGi software used by two separate operators, 

using the V-CoS score as the measurement endpoint. Ventricular conduction stability, V-CoS; Electrocardiographic imaging, 

ECGi. 
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Figure 4.5: (previous page) Inter-operator reproducibility analysis for two operators using the ECGi software to process 

identical and likely non-identical cardiac cycles, using V-CoS as the measurement endpoint. For cardiac cycles that were 

assuredly identical, inter-operator reproducibility was good (upper panel). For cardiac cycles which were likely to be non-

identical, but best matched for cycle length and morphology, inter-operator reproducibility was poor. Ventricular 

conduction stability, V-CoS; Electrocardiographic imaging, ECGi 

 

It was surmised that these beats were likely non-identical. To assess identical-beat reproducibility in 

this group, Operator 1 personally reprocessed these samples; the values were compared to the 

Operator 1’s historical measurements and Operator 2’s measurements. Comparing Operator 1’s 

current and historical measurements, intra-operator Pearson’s R was 0.14 (p = 0.71) and Bland-

Altman 95% confidence intervals were -12.99 to 9.16% V-CoS (Figure 4.6 upper panel). When 

compared to Operator 2, inter-operator Pearson’s R on now identical cardiac cycles was 0.92 (p > 

0.001) with Bland-Altman 95% confidence intervals of -3.73 to 2.32% V-CoS (Figure 4.6 lower panel). 

This was significantly better (p = 0.017, paired T-test). 
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Figure 4.6: (previous page) Correlation and Bland-Altman analysis of ECGi software reproducibility using V-CoS as the 

measurement endpoint.  Upper panel: intra-operator variability when cardiac cycles were unlikely to be identical, despite 

best matching of cycle length and morphology. Lower panel: inter-operator variability on the same patients where the 

cardiac cycles were assured to be identical. The improvement in reproducibility implies that this is primarily an issue with 

beat-to-beat variability rather than inter-operator or patient-specific variables. Ventricular conduction stability, V-CoS; 

Electrocardiographic imaging, ECGi. 

Assessment of 3D mesh reproducibility 

Upon repeat segmentation of the ventricles from computerized tomography by two different 

operators, reproducibility by Pearson’s R was 0.97 (p > 0.001). Bland-Altman 95% confidence 

intervals were -1.55 to 1.91% V-CoS (Figure 4.7).  

 

 

Figure 4.7: Correlation and Bland-Altman analysis of ventricular geometry segmentation reproducibility using V-CoS as the 

measurement endpoint (two operators).  Ventricular conduction stability, V-CoS; Three-dimensional, 3D. 
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Assessment of exercise test reproducibility 

All patients reached >85% of target heart rate in both exercise tests. At the time of sampling, heart 

rates did not differ significantly when exercise tests were compared (peak exercise: p = 0.85; 

recovery: p = 0.89 by paired T-test). 

For single V-CoS values taken at equivalent periods of two exercise tests, reproducibility by 

Pearson’s R was 0.60 (p = 0.011). Bland-Altman 95% confidence intervals were -8.02 to 8.19% V-CoS 

(Figure 4.8 top panel). 

Assessment of the mean and minimum of 100 scores formed by a 10-by-10 comparison matrix of 

consecutive rest and consecutive exercise beats was carried out to determine if summary statistics 

could improve this reproducibility. 

For the matrix mean, reproducibility by Pearson’s R was 0.81 (p > 0.001), with Bland-Altman 95% 

confidence intervals of -11.49 to 7.42% V-CoS (Figure 4.8 middle panel). For the matrix minimum, 

reproducibility by Pearson’s R was 0.63 (p = 0.007), with Bland-Altman 95% confidence intervals of -

17.78 to 12.71% V-CoS (Figure 4.8 bottom panel). The matrix mean was significantly better than the 

matrix minimum (mean absolute difference 2.15% V-CoS, p = 0.005 by paired T-test) but was not 

significantly better in this sample than the single-value V-CoS (mean absolute difference 0.25% V-

CoS, p = 0.85). Using the a priori acceptable tolerance rule of ±2% V-CoS, 12/17 of the matrix mean 

V-CoS values were acceptably reproducible compared to only 7/17 of the single-value V-CoS. This 

however did not reach statistical significance (p = 0.16 by Fisher’s exact test). 
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Figure 4.8: (previous page) Correlation and Bland-Altman reproducibility plots between measurements taken during 

separate exercise tests. Single-value comparisons (top panel) show a poor reproducibility which is marginally improved by 

the use of the mean from 100 calculated scores (middle panel), but not from the use of the minimum of these 100 scores 

(bottom panel). Ventricular conduction stability, V-CoS; Exercise tolerance test, ETT. 

4.1.4 Discussion 

In this study we have examined the reproducibility of the various steps in the calculation of a V-CoS 

score. Figure 4.9 provides a summary of the best Pearson correlation results of each stage. 

 

Figure 4.9: Summary of reproducibility findings for each stage of the Ventricular Conduction Stability (V-CoS) process. 

Figures in rounded boxes are Pearson’s R values. Whilst ventricular segmentation and the end calculation of a score was 

highly reproducible (R = 0.97, 0.96 respectively), significant beat-to-beat and test-to-test variability was discovered. 

Summary statistics like the mean of multiple calculations only led to a moderate increase in reproducibility. 

Electrocardiographic imaging, ECGi; Computerized tomograph, CT; Three-dimensional, 3D. 

Assessment of V-CoS software reproducibility 

Reproducibility in the V-CoS software itself was good. This is similar to the result that had been 

shown in the original manuscript (Shun-Shin, Leong et al. 2019). The V-CoS software has two main 

variables which the user may alter: (I) the window of interest denoting the QRS complex; (II) the 

electrograms which are deemed high in artefact or electrical noise to the extent that a measurement 

of true activation time may be compromised. Determination of the QRS duration (and hence the 

time boundaries of the complex) is a commonly performed task in clinical medicine; both operators 

examined were clinical cardiology trainees with between 6 to 8 years working experience following 
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medical school at the time of testing. It is likely that the selected QRS complexes would have been 

quite similar between operators, but the window of interest position is not stored by the 

CardioINSIGHT software so we do not have this information from Leong et al.’s original dataset to 

confirm. 

Determination of a noisy epicardial electrogram is a less commonly performed task across early-

stage cardiology trainees and may be less reproducible in those not experienced in interpretation. 

Evidence supporting this statement is the training effect seen following several months of expert 

feedback on selection – there was a significant (p = 0.008) improvement in reproducibility. It is 

possible that the ‘training effect’ is a biasing effect of having seen these traces before – despite re-

blinding it is certainly possible that the pattern recognition for noisy electrograms was simply 

repeated by rote learning rather than development of objective criteria in the mind of the operator. 

This is compounded by the lack of explicit guidelines as to the appearance of noise versus true 

electrogram features such as fractionation. The optimal test of reproducibility may be recruiting an 

operator with prior epicardial electrogram experience who had not seen the dataset before. 

Despite this, even pre-training the Pearson correlation was 0.89, with 26/30 beats falling into the a 

priori acceptable range of ±2% V-CoS. The automated designation of poorly cross-correlated signals 

as artefactual is likely to be a factor in the good reproducibility of this stage – as described in the 

original methodology (Shun-Shin, Leong et al. 2019). 

Assessment of segmentation and ECGi software reproducibility 

Segmentation reproducibility was also good: Pearson correlation was 0.97 with associated narrow 

Bland-Altman 95% confidence intervals falling within the a priori acceptable range of ±2% V-CoS. All 

segmentation techniques in the group had been taught by the same Europe-based team of trainers 

from the device company (Medtronic, Minneapolis USA), which may have contributed to the good 

reproducibility. It is unclear whether other research or clinical groups trained by Medtronic teams 

from other geographic areas would be reproducible with our data. This is not a problem for the 

purposes of this research study but may be a concern if the same guideline results are used 

worldwide for risk stratification of sudden death. 

Results from the ECGi software itself were more mixed, with reproducibility results ranging from 

Pearson’s R of 0.43 to 0.96. It should be noted that imperfect reproducibility in the V-CoS software 

stage would also have contributed to the R-values and Bland-Altman confidence intervals quoted in 

these results, although prior results in this experiment suggest that this effect should be minimal. 
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The context in which this reproducibility work was carried out provides some insight into the 

structure of the results. Prior data had suggested that 10-beat variability in V-CoS was minimal – 

certainly less than the a priori acceptable range of ±2% V-CoS (Shun-Shin, Leong et al. 2019). In 7 

patient files, exact beat labels had been stored in the ECGi archive, assuring identical cardiac cycle 

choice and resulting in tight reproducibility (R = 0.96). In the remaining 3 patients tested, this was 

not the case. Downstream files processed by the V-CoS software had been saved, allowing us to 

examine the morphology and approximate cycle lengths of the beats tested. Bookmarks in the ECGi 

archive indicated the approximate time period from which these beats had been extracted, but the 

exact beat analysed by Leong et al. could have feasibly been any one of up to 30 or 40 beats. If beat-

to-beat reproducibility was truly minimal, the selection of an exact beat would be unlikely to 

adversely affect performance. However, reproducibility was poor for these patients (R = 0.43). 

Whether this was due to operator error, patient characteristics or another factor was unclear. 

To examine the hypothesis that operator techniques were non-identical, Operator 1 reprocessed the 

data from these patients 2 years after he had made his original measurements. Intra-operator 

reproducibility was poor (R = 0.14).  This result was surprising, as for 7 other patients, tens of beats 

and for all previous reproducibility work, even inter-operator reproducibility far surpassed this value. 

To examine the hypothesis that beat choice was the key factor, Operator 1’s new calculations were 

compared with Operator 2’s, assuring that the same beats were selected on the ECGi software – 

resulting in good reproducibility (R = 0.92). 

Out of all the decisions made during the processing performed on the ECGi software itself, it 

appeared that selection of the ‘correct’ cardiac cycle was the key determinant of reproducibility. The 

concept of a ‘correct’ cardiac cycle is problematic – why should one beat in a short consecutive 

period of sinus rhythm be more representative of arrhythmogenic risk than the next one? 

Furthermore, how should the ‘correct’ beat be chosen? 

In order to understand the degree of variability and in the hope that summary statistics from several 

calculations could help to mitigate the beat selection problem, 10-by-10 comparison matrices of 

consecutive exercise and consecutive rest beats were analysed. This testing structure was used to 

examine the reproducibility of exercise tests. 

Assessment of exercise test reproducibility 

Single value results from different exercise tests were poorly reproducible (R = 0.60). Although this 

was at odds with the single patient presented by Leong et al., we had previously shown that nearly 



105 
 
 

 

neighbouring beats in the same exercise test could have poorly correlated V-CoS scores, so this 

finding was not surprising. Summary statistics of 100 scores from a matrix of 10 consecutive exercise 

and 10 consecutive rest beats were tried as a method of improving reproducibility. The minimum 

score of the matrix was also poorly reproducible (R = 0.60), but the mean score of the matrix 

provided a modest gain in reproducibility (R = 0.81).  

To judge which summary statistic is best, a consideration of the research aim is needed. Initiation of 

arrhythmia may only need a single event to trigger a potentially lethal event, such as an R-on-T 

unsynchronized shock or commotio cordis in an otherwise normal heart. If the aim of this research 

were to prove that arrhythmogenic substrates exist in our population, the matrix minimum could be 

the best measure. However, of the many millions of cardiac cycles experienced by patients with 

inherited cardiac conditions, very few result in any arrhythmia at all. To be clinically relevant for the 

question of defibrillator implantation, an idea of the cumulative risk over time is needed. For this 

reason, the matrix mean may be more useful, as it summarizes the level of activation heterogeneity 

where all cardiac cycles could be potentially arrhythmogenic. The better reproducibility in this small 

group also favours the use of the matrix mean. 

However, inter-test correlation of R = 0.81 is still far less reproducible than some of the later stages 

of processing. Closer analysis of the differences between the test indicates that on average, the 

results for the first test were lower by 2.18 ± 4.9% V-CoS (95% confidence intervals -4.7 to 0.33% V-

CoS), even though heart rates at the time of sampling were not significantly different (p = 0.85, 0.89 

for exercise and rest respectively). As the confidence interval of the mean difference crosses zero, 

this discrepancy is not significant. However, all four individuals outside the a priori maximal 

acceptable difference of ±2% V-CoS had a higher result on the second test. This group was 

comprised of 3 patients with hypertrophic cardiomyopathy and 1 with Brugada syndrome. The 

patient with Brugada syndrome and one of the patients with hypertrophic cardiomyopathy were 

cardiac arrest survivors.  

Even in this subset of patients, the heart rate at the sampling time was not significantly different (p = 

0.35, p = 0.96 for recovery and peak exercise respectively by paired T-test). It is possible that there is 

an attenuation of activation heterogeneity in patients who are effectively ‘warmed up’ by the first 

exercise test. Fatigue is another possible factor, but the time between tests would have been 

significantly longer than the work intervals of the tests themselves. However, the number of patients 

tested in this experiment is unlikely to be large enough to draw anything more than speculative 

conclusions on this topic. An informative comparison would be patients who were tested on multiple 
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days, with the ethical drawback of multiple exposures to ionizing radiation and the financial 

drawback of multiple vest usage. 

The moderate reproducibility of second exercise test is of clinical concern – if a patient obtains a 

particular risk score on a particular day, should this result be taken as representative? This 

phenomenon can be seen in other types of electrophysiological testing. In 1992 a cohort of 64 

patients with coronary artery disease underwent repeat invasive programmed ventricular 

stimulation on separate days to check efficacy of drug therapy. If sustained ventricular tachycardia 

were induced, the drugs were considered ineffective; if no induction, the drugs were considered 

effective. Drug efficacy was re-confirmed in only 77% of cases (Ferrick, Luce et al. 1992). In 1995, a 

cohort of 60 patients without coronary artery disease underwent the same protocol, resulting in re-

confirmation of drug efficacy in only 78% of cases (Ferrick, Maher et al. 1995). In the Brugada 

syndrome, 111 patients from the PRELUDE study underwent identical repeat programmed 

ventricular stimulation, resulting in reproducibility for only 34% of patients (Priori, Gasparini et al. 

2012). 

The interactions needed for arrhythmogenesis are clearly dynamic, and so the detectable levels of 

activation heterogeneity that we have hypothesised lead to arrhythmia may well be similarly 

changeable. Further testing would be required to identify methods of standardizing the intensity of 

the stress test needed to produce a V-CoS score. 

4.1.5 Conclusion 

Whilst sensitivity and specificity are the headline figures reported around clinical testing, 

reproducibility is also critically important for delivering information to clinicians and patients they 

can be confident in. Although certain stages of the ventricular conduction stability process are highly 

reproducible, there is also significant beat-to-beat variability as well as differences between repeat 

exercise tests. Summary statistics derived from large numbers of calculations may mitigate 

differences between neighbouring cardiac cycles, but like many other electrophysiological tests, V-

CoS has shown significant variability when repeat testing is performed. For ECGi measures to be 

feasibly used in sudden death risk stratification, further improvements will have to be made to 

ensure test score reliability as well as sensitivity and specificity. 
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4.2 Performance of Ventricular Conduction Stability in Brugada syndrome 

4.2.1 Introduction 

Epicardial conduction abnormalities are a known feature of Brugada syndrome (Nagase, Kusano et 

al. 2002; Rolf, Bruns et al. 2003) linked to future risk of lethal ventricular arrhythmia (Ikeda, Sakurada 

et al. 2001), which can be ablated to suppress the pathognomonic ECG and reduce arrhythmic 

events (Brugada, Pappone et al. 2015). In contrast to invasive techniques, these abnormalities can 

be demonstrated safely, comfortably and in the presence of realistic physiological stressors using 

non-invasive electrographic imaging (ECGi) (Zhang, Sacher et al. 2015). Exercise is a stressor known 

to induce detectable changes in Brugada electrophysiology (Amin Ahmad, de Groot Elisabeth et al. 

2009; Zhang, Sacher et al. 2015; Shun-Shin, Leong et al. 2019). 

Ventricular conduction stability (V-CoS) has been shown to differentiate a small mixed cohort of 

cardiac arrest survivors from controls without a personal history of potentially lethal arrhythmia 

(Shun-Shin, Leong et al. 2019). In the first part of this Chapter, the original V-CoS method suffered 

significant beat-to-beat variability, and summary statistics of multiple analyses were shown to 

improve consistency. Volunteers with no evidence of cardiac disease nor history of arrhythmia 

(benign or malignant) have not been tested by V-CoS, and ECGi’s diagnostic utility in concealed 

Brugada syndrome is unknown. 

We sought to test the hypothesis that normal subjects would show preserved activation sequences 

in response to exercise, and mean V-CoS could safely quantify rate-related conduction abnormalities 

useful in diagnosing concealed Brugada syndrome patients or identifying those patients with a high 

risk of future cardiac arrest. 

4.2.2 Methods 

Patient selection 

Fifty-two patients were selected from our cohort. 

1. 21 survivors of ventricular fibrillation or sustained ventricular tachycardia and 

haemodynamic compromise with Brugada syndrome (‘BrS VF’). 

2. 20 patients with Brugada syndrome without previous ventricular fibrillation or sustained 

ventricular tachycardia (‘BrS’) 

3. 11 asymptomatic relatives of patients with Brugada syndrome, proven not to have the same 

condition by a negative Ajmaline challenge reaching dose endpoint of 1mg/kg (up to 120mg 

total dose). 
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Patients with any of the following exclusion criteria were not selected: 

• Inability to provide consent 

• Inability to perform exercise test 

• Inability to cease anti-arrhythmic drugs prior to test 

• Pregnancy or inability to rule out by last menstrual period or highly effective contraceptive 

• Abnormal echocardiographic findings. 

Exercise ECGi testing and epicardial reconstruction 

Each volunteer underwent the following procedures as detailed in Chapter 2: 

• Drug cessation if necessary 

• Torso preparation and vest application 

• Maximal Bruce protocol exercise testing 

• Supine recovery for a minimum 10 minutes or to return of resting pulse rate 

• Low dose-CT scan of chest 

• Epicardial reconstruction of electrograms. 

When selecting body surface signals from immediate post-exercise and 10 minutes of recovery, care 

was made to ensure the same array of electrodes were used in cardiac cycles compared to each 

other. In effect, if any surface electrode recorded too much artefact to be analysed in either exercise 

or recovery, it was excluded from analysis altogether. 

Cardiac cycle selection 

In the original study, reproducibility of the same cardiac cycles was tested in 10 individuals with 

varying V-CoS scores, whilst reproducibility between different cardiac cycles was tested in only one. 

The V-CoS Matrix method described in Chapter 2 was used to allow us to understand the effect of 

selecting different cardiac cycles, and any patterns in this variation. 

Statistical analysis 

Summary patient V-CoS scores were the mean of all V-CoS scores in a matrix. The Wilcoxon-2 sample 

(also known as Mann-Whitney U test) was performed to compare any two groups. Comparisons 

between 3 groups were performed using the Kruskal-Wallis test. 

To understand the effect of V-CoS on risk stratification, a Receiver Operating Characteristic (ROC) 

curve was analysed to find an optimal threshold. Discriminant power was analysed in the cardiac 

arrest survivors against the current IIa recommendation for ICD implantation in patients with both 
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spontaneous Type 1 ECG and syncope (Priori, Blomstrom-Lundqvist et al. 2015). To understand the 

utility of V-CoS for diagnosis, a ROC curve was plotted to determine a threshold for classifying 

concealed Brugada syndrome patients against unaffected relatives. 

4.2.3 Results 

Patient characteristics 

All 52 patients successfully completed the testing protocol, reaching at least 85% of maximum 

predicted heart rate for age on the treadmill without complications.  

Heart rates at the sampling phases immediately post peak exercise and at full recovery were not 

significantly different between the groups (p = 0.39 at peak phase, p = 0.16 at recovery phase). 

Gender balance, age and proportions of both spontaneous Type 1 ECG and unheralded syncope 

were not significantly different between the groups (p = 0.61, 0.93, 0.21 and 0.41 respectively). 

These characteristics are summarized in Table 4.1. 

Table 4.1: Characteristics of volunteers undergoing electrocardiographic imaging exercise testing. Peak and recovery phase 

heart rates were those when signal was clean enough for measurement using the electrocardiographic imaging system. 

*Spontaneous type 1 ECG was defined as positive if the ECG pattern were seen during the exercise test or any ECG recording 

from clinic. Brugada syndrome, BrS; Brugada ventricular fibrillation or haemodynamically unstable sustained ventricular 

tachycardia survivor, BrS VF; Electrocardiogram, ECG. 

Parameter BrS VF  BrS BrS relative p-value 

Males (proportion) 85.7% 75.0% 72.7% 0.61 

Age (years, mean) 46.9 46.1 45.5 0.93 

Spontaneous type 1 ECG (proportion)* 23.8% 15.0% 0 0.21 

Syncope (proportion) 14.3% 15.0% 0 0.41 

Peak phase heart rate (bpm, mean) 145.4 144.1 135.3 0.39 

Recovery phase heart rate (bpm, mean) 91.5 91.8 96.1 0.16 

 

Mean V-CoS inter-group comparisons 

Unaffected Brugada relatives were significantly differentiated from both BrS VF and BrS groups (p = 

0.011 for both). Brugada VF survivors could not be significantly differentiated from patients without 

previous life-threatening arrhythmia (p = 0.53), even when patients with syncope or spontaneous 

Type 1 ECG were excluded from the latter group (p=0.61). Mean ±SD V-CoS were 96.1 ±4.8% in the 

BrS VF group, 97.7% ±1.6% in the BrS group and 98.9 ±0.8% in the BrS relative group (Figure 4.10). 
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Post-hoc power was calculated at 30.3% to detect the observed difference in V-CoS between BrS VF 

and BrS groups (Rosner and Glynn 2011). By Welch’s two-sample T-Test, the 95% confidence interval 

for a difference between the groups was between -0.8 and 3.8% V-CoS (p = 0.19). 

 

Figure 4.10: Comparison of mean ventricular conduction stability scores between Brugada syndrome patients with and 

without a personal history of ventricular fibrillation or compromising ventricular tachycardia, and asymptomatic relatives 

with negative Ajmaline test. Ventricular conduction stability, V-CoS; Brugada syndrome, BrS. 

To determine the effect of spontaneous Type 1 ECG patterns on V-CoS, a sub-analysis was 

performed with concealed Brugada patients and unaffected Brugada relatives (Figure 4.11). V-CoS 

scores were significantly lower in the concealed Brugada group (mean 97.3% vs 98.9%, p = 0.003). 
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Figure 4.11: Comparison of mean ventricular conduction stability scores between patients with concealed Brugada 

syndrome (i.e. diagnosed using sodium channel blocker challenge test) and asymptomatic relatives with negative Ajmaline 

challenge testing. Ventricular conduction stability, V-CoS; Brugada syndrome, BrS. 

V-CoS variability  

V-CoS matrices were graphically expressed with consecutive peak exercise beats in the horizontal 

axis and consecutive recovery beats in the vertical axis. Colour scaling was standardized across all 

patients; V-CoS scores were shaded yellow if 100%, with increasing red intensity to a lower bound of 

85%. All scores below 85% were shaded a constant red colour. 
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Figure 4.12: Six example V-CoS matrices: two from each condition group. All patients demonstrate some variability in V-CoS 

scores but this seems to be greater in patients with Brugada syndrome than asymptomatic relatives without Brugada 

syndrome. Ventricular conduction stability, V-CoS; Brugada syndrome, BrS; Ventricular fibrillation, VF; beats immediately 

post peak exercise (consecutive beat x), pkex(x); beats from full recovery (consecutive beat x), 10min(x). 

Figure 4.12 shows six examples. Brugada syndrome matrices from both groups are more intensely 

red than the unaffected relatives, in line with the lower mean V-CoS results in the previous section. 

All groups demonstrate variability, but the magnitude appears to differ between groups. Variability 

appears to follow a pattern, with certain beats interacting to produce lower V-CoS scores than 

others. 

Taking VF survivor fbrs_pd001 (Figure 4.12, bottom left) as a first example: peak exercise beat 5, 6, 

and 7 (‘pkex5’, ‘pkex6’, ‘pkex7’) appear to demonstrate the lowest overall V-CoS scores, particularly 

in their interaction with recovery beat 1 and 8 (‘10min1’, ‘10min8’). Similarly, unaffected relative 

fbrs_pe001 shows drops in V-CoS scores at a regular spacing, with the interactions between peak 3, 

8 and recovery 3, 7 producing the lowest results. 

The range of individual beat V-CoS comparisons was significantly larger in both groups of Brugada 

syndrome patients when compared to asymptomatic relatives without the condition. Mean ±SD V-
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CoS range was 8.2 ±5.7% for VF survivors (p = 0.001 against relatives), 5.9 ±3.4% for Brugada 

syndrome without arrhythmia (p = 0.006 against relatives) and 2.9 ±1.6% for relatives. V-CoS range 

was not significantly different in the two Brugada syndrome groups (p = 0.24). This is graphically 

expressed in Figure 4.13. 

The minimum of V-CoS can also be considered – significant differences were comparable: BrS VF and 

BrS could not be differentiated (90.6 ±7.3% vs 93.4 ±3.7%, p = 0.23) but BrS relatives could be 

differentiated from them both (96.8 ±1.6%, p = 0.0007, 0.003 respectively). 

 

Figure 4.13: Comparison of the range of individual ventricular conduction stability scores between patient groups. Each V-

CoS matrix is comprised of 100 individual beat pairings; the range quantifies the variability in these values which is 

significantly higher in patients with Brugada syndrome than without. Ventricular conduction stability, V-CoS; Brugada 

syndrome, BrS; Ventricular fibrillation, VF. 

Utility of V-CoS for risk stratification 

Performing receiver-operating characteristic analysis on this dataset results in an area under the 

curve of 0.56 (Figure 4.14). Despite the apparent lower p-value of differentiation by V-CoS Range (p 

= 0.24 vs 0.53), the area under the curve for this test is still only 0.61. Optimal threshold by Youden’s 

method (Youden 1950) was 96.7% V-CoS, which resulted in a specificity of 85.0% and sensitivity of 

42.8%. If the test performs clinically as observed in this small study, a low V-CoS score would imply a 
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high risk to the patient and encourage defibrillator implantation, but a high V-CoS score would not 

necessarily imply safety. 

 

Figure 4.14: Receiver operating characteristic curve for a history of potentially lethal arrhythmia in Brugada syndrome 

To understand the benefit of V-CoS as an additional risk factor to current guidelines, we considered 

which patients from our SCA cohort would have received an ICD recommendation with or without 

the V-CoS score (Table 4.2). If patients had either Type 1 ECG and syncope or a sub-threshold V-CoS 

score, a defibrillator was recommended. 

Compared with the current IIa recommendation for ICD implantation in those with both 

spontaneous Type 1 ECG and syncope, considering V-CoS as an additional risk factor would improve 

the rate of ICD recommendation from 2/21 to 11/21 (p = 0.034 by McNemar’s Test). 
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Table 4.2: Cardiac arrest survivors with Brugada syndrome, with V-CoS scores and risk factors. The current guideline 

recommendation for ICD is in the fourth column and the fifth column makes a recommendation based on a patient having 

either the two accepted risk factors, or a V-CoS score under the threshold defined by our receiver operating curve analysis. 

Ventricular conduction stability, V-CoS; Electrocardiogram, ECG. 

Patient V-CoS Type 1 ECG Syncope Guideline IIa 

recommendation 

Recommendation 

with V-CoS 

fbrs_jf001 77.2 Yes No No Yes 

brs_dmp 93.7 No No No Yes 

brs_sh 94 No No No Yes 

fbrs_pe002 94 No No No Yes 

brs_dpa 94.5 No No No Yes 

fbrs_pd001 94.7 No No No Yes 

brs_vd 95.3 No No No Yes 

brs_pg 96.5 No No No Yes 

fbrs_cw001 96.5 No No No Yes 

fbrs_jc002 97.4 No No No No 

brs_yb 97.6 Yes Yes Yes Yes 

fbrs_az001 97.8 No No No No 

brs_mdd 98.4 No No No No 

brs_jdw 98.5 No No No No 

fbrs_pb001 98.5 No No No No 

brs_sk 98.7 Yes Yes Yes Yes 

fbrs_cf001 98.9 Yes No No No 

fbrs_ab002 99.2 No Yes No No 

fbrs_rh001 99.3 Yes No No No 

fbrs_ag001 99.5 No No No No 

brs_mm 99.9 No No No No 

 

Utility of V-CoS for diagnosis 

V-CoS scores in concealed Brugada syndrome patients were compared with asymptomatic, 

unaffected Brugada relatives. Receiver operating characteristic analysis demonstrated an area under 

curve of 0.79, which is far superior to V-CoS’s performance in differentiating cardiac arrest survivors. 
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The curve is plotted in Figure 4.17. The optimum threshold by Youden’s method was 98.7% V-CoS, 

resulting in a specificity of 78.7% and a sensitivity of 72.7%.  

 

Figure 4.15: Receiver operating characteristic curve for a diagnosis of Brugada syndrome in patients with clinical suspicion 

of Brugada syndrome and normal baseline ECG. 

 

Comparisons of non-sustained ventricular tachycardia with and without Brugada syndrome 

One patient from our Brugada cohort experienced non-sustained ventricular tachycardia (NSVT) in 

the immediate post-exercise period of testing. For comparison, we draw upon a patient with benign 

right ventricular outflow tract tachycardia (RVOT-VT) attending for ECGi guided ablation who also 

experienced non-sustained ventricular tachycardia in the immediate post-exercise period of testing. 

This control patient was consented under the same ethics approval and contributes to the dataset of 

Chapter 4: Idiopathic ventricular fibrillation. 

Our patient with Brugada syndrome was a 65-year-old male with a normal resting ECG; Brugada 

syndrome was diagnosed following out-of-hospital cardiac arrest by elicitation of a type 1 ECG 

pattern by sodium channel blockade.  The RVOT-VT patient was a 49-year-old male with palpitations, 

but no syncope or features of haemodynamic compromise during his ventricular tachycardia. Both 

patients had normal echocardiography, normal resting ECG, and were free of competing medical 

conditions. Neither had taken cardiac medications for the 48 hours prior to the test. During non-
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sustained tachycardia, neither had syncope, presyncope, hypotension, signs of pulmonary oedema 

or chest pain.  

Sinus beats prior to NSVT were not suitable for mapping due to large amounts of movement 

artefact. Activation mapping during tachycardia indicated site of earliest epicardial breakout in the 

right ventricular outflow tract for both patients. Inspection of the early electrogram at this point 

revealed ST-segment elevation following a QR shaped electrogram in the Brugada syndrome patient, 

compared to no ST segment elevation following a QS shaped electrogram in the benign RVOT-VT 

patient. Following termination, this ST segment elevation was present during sinus rhythm in the 

Brugada patient, gradually reducing back to baseline by 5 minutes post exercise. A second exercise 

test reproducing matched sinus cycle lengths but no ventricular tachycardia in the Brugada patient 

failed to elicit ST segment elevation at any point in recovery. Figure 4.18 shows the relevant 

activation map and electrograms. 
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Figure 4.16: Non-sustained ventricular tachycardia (NSVT) originating from the right ventricular outflow tract (RVOT) was 

associated with coved ST segment elevation in a patient with Brugada syndrome, but not in a patient with benign RVOT-VT. 

ST elevation was also absent from matched rates in a prior exercise test performed by the Brugada syndrome patient where 

no NSVT was experienced. This figure is reproduced from a poster presentation by the thesis author, given to the Heart 

Rhythm Congress of 2019 (Birmingham, UK). 

 

4.2.4 Discussion 

A novel ECGi parameter proposed to be linked to risk of sudden death – ventricular conduction 

stability – was assessed in the largest population of Brugada syndrome patients to date and 

compared against unaffected relatives. Whilst Brugada syndrome patients could be differentiated 

from the unaffected relatives by V-CoS, those surviving potentially lethal arrhythmia could not be 

significantly discriminated from those without a personal history of such arrhythmia. Differentiation 

of affected patients from unaffected relatives was also possible for patients with concealed Brugada 

syndrome. A single instance of NSVT in a Brugada patient showed a possible association with ST 
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segment changes in the right ventricular outflow tract not seen in a control patient with NSVT, 

suggesting that in concealed Brugada syndrome, manifestation of ST segment elevation is a pre-

requisite for arrhythmogenesis. 

Rationale for exercise-induced V-CoS in Brugada syndrome 

The model of arrhythmogenesis defined by the interaction of trigger and substrate is covered in the 

introduction to this thesis. It stands to reason that the substrate for arrhythmia may be more easily 

defined in the presence of an appropriate trigger or stressor. As a concept this is already used in the 

catheter ablation of epicardial substrates in Brugada syndrome, where sodium channel blockade is 

used to fully elucidate the mapped targets (Brugada, Pappone et al. 2015; Pappone, Brugada et al. 

2017). 

Sodium channel blockade as a challenge test is not without risk – 1.8% of patients undergoing the 

test suffer potentially life threatening sustained ventricular arrhythmia, with 0.4% of patients 

proving refractory to the first attempt at external defibrillation (Conte, Sieira et al. 2013). 

Furthermore, the incidence of sustained ventricular arrhythmia in this cohort of 503 patients did not 

appear to predict future life-threatening cardiac events. This implies that inherently low-risk patients 

undergoing ajmaline testing may be at unnecessary risk if re-exposed for research purposes. Prior to 

the commencement of our study, one patient at our centre suffered intractable ventricular 

fibrillation and did not survive despite optimal post-challenge care including cardiopulmonary 

bypass. For this reason, we felt that exposure of our research patients to ajmaline testing without 

clinical indication posed an ethically unacceptable risk. 

Fever and restful states characterised by high vagal tone are the widely accepted precipitants of 

cardiac arrest in patients with Brugada syndrome (Mizusawa and Wilde 2012). The early post-

exercise recovery phase can cause increases in ST elevation in up to 57% of patients with Brugada 

syndrome (Masrur, Memon et al. 2015). In one analysis of 93 patients with Brugada syndrome, ST 

segment augmentation following exercise was a significant risk marker for future arrhythmia 

(Makimoto, Nakagawa et al. 2010). The transition from sympathetic to parasympathetic dominance 

appears to have a role in modifying the Brugada arrhythmic substrate. In the small sample tested for 

V-CoS feasibility by Leong and colleagues, exercise testing differentiated sudden death survivors 

where tilt testing failed to produce a result (Shun-Shin, Leong et al. 2019). It could be interpreted 

that the amount of stress generated by postural change is simply not as great compared to exercise, 

or that parasympathetic activation affects Brugada syndrome independently of epicardial activation 

changes.  
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The data presented here confirms that in a larger population, exercise induced change in activation 

patterns is quantifiable by V-CoS. The magnitude of change is greater in patients with Brugada 

syndrome than their unaffected relatives but does not differentiate sudden death survivors from 

Brugada patients without ventricular arrhythmia. 

Utility of V-CoS for risk stratification 

The ideal test of V-CoS’s utility in risk stratification of sudden death would be a large, prospective 

study with a long follow up. After 80 months of follow up, Sieira and colleagues found that 8.5% of 

their patients experienced a sudden death equivalent event (Sieira, Conte et al. 2017). Based on our 

V-CoS means of 96.1 ±4.8% and 97.7% ±1.6% for Brugada syndrome patients with and without lethal 

arrhythmia respectively, and an optimistic enrolment ratio of 1:10, more than 850 patients would be 

needed to achieve 80% power over 5 years or more. At current prices this would equate to a study 

cost exceeding £1.7 million for test consumables alone if the drop-out rate is zero. 

We can draw some limited conclusions from our strategy of examining the survivors of ventricular 

fibrillation or sustained ventricular tachycardia. Cardiac arrest survival confers a twenty-fold risk 

increase for future potentially lethal arrhythmia (Sieira, Conte et al. 2017), thus making it the next 

best testing option to long-term prospective follow up. In our study, V-CoS failed to significantly 

differentiate cardiac arrest survivors, although the sample size may have been too small to detect a 

difference. Exclusion of patients with spontaneous Type 1 ECG or syncope from the BrS group 

without a sudden cardiac arrest history did not change this result. 

A common question posed during the review of this data by colleagues was whether the study could 

be said to have a low post-hoc power. To assist this discussion, the calculation was performed for 

our results section, finding only 30.3% power. Post-hoc power became popular across multiple 

biological and social sciences in the late 1980s as a method of determining whether sample sizes 

were sufficiently large to reject the null hypothesis (Hodges and Schell 1988; Hoenig and Heisey 

2001). However, it has been shown that post-hoc power has a 1:1 relationship with p-values – that 

is, non-significant observed p-values always result in low observed power (Hoenig and Heisey 2001; 

Levine and Ensom 2001). 

The 95% confidence interval for a difference between the two groups does contain zero (-0.8 to 

3.8% V-CoS by Welch’s two-sample T-Test), indicating that we cannot rule out that there is no 

difference between the groups. 
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Even if there were a significant difference between the groups, a cut-off or range of values denoting 

high risk status is needed to achieve clinical utility in a single individual. Our ROC analysis 

demonstrates that discriminant ability is poor for V-CoS alone – the ROC AUC was 0.61, mainly let 

down by sensitivity – whilst at optimum threshold an 85% specificity could be achieved, the 

corresponding sensitivity was 42%.  

Given the promising specificity, V-CoS could be used as an adjunct to traditional risk stratification. A 

patient presenting with any of spontaneous Type 1 ECG, syncope or a low V-CoS score could in the 

future be considered for defibrillator implantation – but further study would be essential to 

determine the efficacy of this approach in a prospective manner prior to clinical use. 

Utility of V-CoS for diagnosis 

As mentioned previously, the diagnostic test for Brugada syndrome can be fatal, and lower risk 

alternatives are desirable. The 12-lead 24- or 48-hour continuous ECG has gained traction as a 

diagnostic tool but is used more as a ‘rule-in’ rather than a ‘rule-out’ test.  

Our study demonstrated that even with a normal resting ECG, there were significant differences in 

V-CoS between the unaffected Brugada relatives and (concealed) Brugada patients. ROC analysis 

suggested that greater than 70% sensitivity and specificity could be achieved in the diagnosis of 

Brugada syndrome in those with a normal resting ECG. The area under the curve (0.77) is similar to 

currently used risk stratification systems (O'Mahony, Jichi et al. 2014). If V-CoS were considered for a 

‘rule-in’ test like the 12-lead continuous ECG, the number of potentially life-threatening sodium 

channel blocker challenges could be reduced. 

During our testing, all patients completed the protocol without complication. Our data suggests that 

this test should be examined further for potential diagnostic use where concealed Brugada 

syndrome is suspected. 

Variability of V-CoS scores 

The introductory study of ventricular conduction stability described excellent reproducibility for 

identical cardiac cycles in 10 patients and good reproducibility for non-identical cardiac cycles in one 

patient (Shun-Shin, Leong et al. 2019). Our study took this further by assessing 10 consecutive 

exercise and 10 consecutive recovery beats against each other in a comparison matrix, generating 

100 individual V-CoS calculations. 
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Our results demonstrate that variability is large and could pose a significant problem to clinical 

utility. Our V-CoS cut-offs for sudden death risk and diagnosis have been in the range of 97-99%. The 

range of an individual patient can approach 20% V-CoS, with the mean across all groups being 6.24%. 

This means that final score could be highly contingent on beat selection. 

There does however appear to be a periodicity to the variability which could be exploited to improve 

reproducibility between beats. We have already done this by taking the mean V-CoS value, which 

across the group has been shown to produce a smaller range of V-CoS scores than the variability of 

some single patients. Further study would be needed to determine the optimal number of beats to 

sample, and the effect this would have on reproducibility.  

There are three main factors to balance the number of beats selected for processing. The first and 

most easily overcome would be processing time. Currently, on a modern high specification laptop 

(Intel™ Core i7-10510U central processing unit @ 2.3GHz with 16 gigabytes of random-access 

memory), a single patient’s matrix takes in the region of 20-30 minutes to process. This should 

increase by the square of the number of additional beats considered. The second is a consideration 

of when the sampling is taken from and how far into recovery the patient is at this point. 

Considering a very large number of beats would lead to increased bias toward the recovery phase as 

the patient returns to baseline following exercise. Future studies may go onto consider the change in 

V-CoS score and other ECGi metrics continuously over a period of several minutes or hours, with a 

range of stressors that may elicit different responses in different patients. The third factor increases 

in issue with the number of beats selected: screening signals for accuracy-compromising electrical 

noise becomes more difficult to perform consistently with larger volumes of data. 

Examination of non-sustained ventricular tachycardia in Brugada syndrome 

Ventricular arrhythmia in Brugada syndrome has not been panoramically mapped in this manner 

before. Our case report demonstrates that elements of the Brugada ECG pattern may be present in 

the peri-arrhythmic sinus rhythm beats, even in patients with a concealed resting ECG. 

Catheter ablation is already being performed for patients with Brugada syndrome, but although 

arrhythmia inducibility is assessed, the characteristics of the arrhythmia are only rarely considered 

when choosing ablation targets (Haïssaguerre, Extramiana et al. 2003; Pappone, Brugada et al. 

2017). 

Triggers are studied when there is a consistent mechanism of initiation (Haïssaguerre, Shoda et al. 

2002; Haïssaguerre, Extramiana et al. 2003; Hocini, Shah et al. 2015); this is not known to be true for 
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all Brugada patients. The utility of our finding reinforces prior experience of centres detecting raised 

Brugada ST segments in exercise states linking to adverse outcomes (Makimoto, Nakagawa et al. 

2010; Masrur, Memon et al. 2015). It raises the possibility that detection of Type 1 patterns on ECGi 

as well as surface ECG could contribute to our idea of risk for an individual Brugada patient. 

Limitations 

A major limitation of exercise ECGi and the NSVT case is that the pre-arrhythmia beats were too 

affected by noise for effective mapping by CardioINSIGHT™ ECGi. Characterization of exercise sinus 

beats or the initiation of tachycardia could give us valuable insights into the mechanism and 

potential management options for such events. Our small retrospective study makes drawing 

definitive conclusions about the utility of V-CoS for risk stratification and diagnosis difficult. We have 

used a summary method proven to be more reproducible (V-CoS Mean), but this may underpower a 

test with already small effect sizes compared to the minimum of the V-CoS matrix. 

 

4.2.5 Conclusion 

Ventricular conduction stability allows the assessment of conduction heterogeneity induced by 

exercise. It may have some utility in diagnosis of Brugada syndrome in those with normal resting 

ECG, the test protocol being potentially safer than the gold-standard sodium channel blocker 

challenge. Although V-CoS alone appears to have little ability to differentiate cardiac arrest survivors 

from Brugada patients without sustained ventricular arrhythmia, combined assessment with 

traditional risk markers correctly classifies more cardiac arrest survivors than current guidelines. 

Further study into V-CoS would be needed to ascertain prospective performance with or without 

traditional risk markers before use in a clinical environment. Additionally, the high variability of V-

CoS measurements from different-beat selection needs further quantification; if possible, 

refinements in technique would be desirable to improve reproducibility. Current V-CoS methods 

require high levels of user interaction which could make analysis of very large numbers of beats 

difficult. 

  



124 
 
 

 

Chapter 5: Idiopathic ventricular 

fibrillation and periodic activation 

changes precipitated by exercise 

 

5.1 Ventricular conduction stability and the arrhythmogenic substrate of idiopathic 

ventricular fibrillation 

5.1.1 Introduction 

Idiopathic ventricular fibrillation has, by definition, no known cause. Yet under all models of 

arrhythmogenesis, there must either be trigger or substrate to lead to this potentially lethal event. 

Following normal 12-lead electrocardiogram (ECG), continuous Holter ECG, echocardiogram, 

exercise testing, magnetic resonance imaging, angiography and drug challenge tests our current 

technology fails to appreciate trigger or substrate in most of these patients. 

Some presenting with idiopathic VF may go on to receive a recognized cardiac diagnosis as their 

phenotype develops during follow-up; there is also an association between the genetics of known 

inherited cardiac conditions and idiopathic VF survivors even when the clinical phenotype is absent. 

Despite this, some patients remain without a diagnosis. 

In a small subgroup, ECG monitoring in the period around cardiac arrest reveals repetitive premature 

ventricular beats which can be ablated, reducing the recurrence of arrhythmia (Haïssaguerre, Shoda 

et al. 2002). Direct contact epicardial mapping has revealed localized structural changes that may 

correspond to the arrhythmogenic substrate in another small study (Haïssaguerre, Hocini et al. 

2018). Identification and characterization of this pathology are key for a better understanding of the 

generation of lethal arrhythmia, but the interaction with physiological states such as rest and 

exercise also require examination to fully appreciate methods of reducing future risk. In the Brugada 

syndrome we understand that certain drugs and fever elevate risk, and in hypertrophic 

cardiomyopathy, the role of intense exercise is known. This information aids our guidance of 

patients beyond the cardiac catheter laboratory and into lifestyle management. 
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Poor characterization of the idiopathic ventricular fibrillation survivor also limits the extent to which 

relatives can be protected. In Brugada syndrome and hypertrophic cardiomyopathy, family screening 

is established in the guidelines (Priori, Blomstrom-Lundqvist et al. 2015). Screening 

recommendations do exist for the relatives of sudden death victims with normal hearts (Behr, 

Dalageorgou et al. 2008), but for the relatives of sudden death survivors there is no current 

consensus – the index patient usually undergoes clinical examination instead. If current clinical 

testing cannot identify the substrate condition for arrhythmia, it is unlikely that these same tests will 

yield success in the patient’s relatives. 

For these reasons, understanding the mechanism of idiopathic ventricular fibrillation or identifying 

new conditions from this heterogenous group would assist management of both patients and 

families. Electrocardiographic imaging (ECGi) has already shown some promise in mapping localized 

and re-entrant activity during idiopathic ventricular fibrillation, identifying exercise induced changes 

in 7 patients surviving idiopathic ventricular fibrillation and repolarization changes at rest in a further 

7 patients (Haïssaguerre, Hocini et al. 2018; Shun-Shin, Leong et al. 2019; Blom, Groeneveld et al. 

2020).  

A notable characteristic of ECGi studies of potentially lethal arrhythmia is that they all take place in 

survivors of previous cardiac arrest. This maximises the chance of identifying pathology in this rare 

group but poses the problem of retrospective observation: we cannot be sure that characteristics 

associated with past ventricular fibrillation should predict future sudden death. It is possible that 

ECGi changes seen in previous studies are a direct result, rather than predictive of future ventricular 

fibrillation (Haïssaguerre, Hocini et al. 2018; Shun-Shin, Leong et al. 2019).  

Patients surviving ischaemic ventricular fibrillation with full revascularization and return of normal 

left ventricular function may be the appropriate control group to determine whether ECGi detected 

substrate in sudden death survivors is likely to be cause or effect. Mortality in patients with 

preserved left ventricular ejection fraction (>50%) surviving myocardial infarction is 4% in the first 

year (Perelshtein Brezinov, Klempfner et al. 2017). Approximately half of these deaths are due to 

sustained ventricular tachycardia or ventricular fibrillation (Uretsky and Sheahan 1997), and the rate 

falls exponentially following infarction (Solomon, Zelenkofske et al. 2005). Unlike Brugada syndrome 

and hypertrophic cardiomyopathy, ventricular fibrillation in the context of acute myocardial 

infarction does not appear to predict future arrhythmic death after the initial dangerous first few 

months (Volpi, Cavalli et al. 1990). Modern guidelines do not recommend implantable cardioverter 

defibrillators (ICD) in fully revascularized ischaemic ventricular fibrillation survivors with left 
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ventricular ejection fraction >40% (Priori, Blomstrom-Lundqvist et al. 2015; Al-Khatib Sana, 

Stevenson William et al. 2018). 

To determine the risk-stratifying potential of ventricular conduction stability, it must be proven that 

abnormal results are linked with future risk of arrhythmia rather than previous ventricular 

fibrillation. We aimed to test the hypothesis that idiopathic ventricular fibrillation survivors (with a 

31% pooled risk for recurrence (Ozaydin, Moazzami et al. 2015)) would demonstrate lower 

ventricular conduction stability than fully recovered ischaemic ventricular fibrillation survivors or 

controls without previous lethal arrhythmia. Our sub-hypothesis was that this effect would be 

greater in idiopathic ventricular patients with multiple arrhythmic events.  

5.1.2 Methods 

Patient selection 

Thirty-eight patients were selected from our cohort. 

1. 17 survivors of idiopathic ventricular fibrillation or haemodynamically compromising 

ventricular tachycardia (‘idiopathic VF’) 

2. 10 survivors of ventricular fibrillation during ST-elevation myocardial infarction, with full 

revascularization, normal left ventricular function on echocardiography and return to full 

exercise capacity and asymptomatic status for >1 year (‘IHD VF’) 

3. 11 patients attending for clinically indicated ablation of benign ventricular ectopy. These 

patients had normal echocardiography and/or MRI, had no family history of cardiac 

electrical disease and no symptoms of cardiac ischaemia (‘VE’). 

Patients with any of the following exclusion criteria were not selected: 

• Inability to provide consent 

• Inability to perform exercise test 

• Inability to cease anti-arrhythmic drugs prior to test 

• Pregnancy or inability to rule out by last menstrual period or highly effective contraceptive 

• Abnormal echocardiographic findings. 

Exercise ECGi testing and epicardial reconstruction 

Each volunteer underwent the following procedures as detailed in Chapter 2: Methods: 

• Drug cessation if necessary 

• Torso preparation and vest application 
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• Maximal Bruce protocol exercise testing 

• Supine recovery for a minimum 10 minutes or to return of resting pulse rate 

• Low dose-CT scan of chest 

• Epicardial reconstruction of electrograms. 

When selecting body surface signals from immediate post-exercise and 10 minutes of recovery, care 

was made to ensure the same array of electrodes were used in cardiac cycles compared to each 

other. In effect, if any surface electrode recorded too much artefact to be analysed in either exercise 

or recovery, it was excluded from analysis altogether. 

Analysis of surface ECG markers 

To examine for body surface recording signs of conduction pathology, QRS durations were measured 

for the peak exercise and recovery datasets. The vest output rather than conventional 12-lead was 

used to avoid possible timing issues with the exercise machine output. The positional equivalent of 

12-lead ECG V2 was used (electrodes 71-76 on the CardioINSIGHT™ vest), with the first beat from 

the sample as the representative measurement.  

Cardiac cycle selection 

Peak exercise and 10 minutes of recovery were bookmarked at the time of testing. The first 10 

cardiac cycles considered sufficiently artefact-free for analysis were selected following each of these 

bookmarks. Effort was made to adhere to bookmark timing as closely as possible, and heart rates 

were recorded for each of the sampled segments to determine if differences between the test 

groups existed. 

Statistical analysis 

The Wilcoxon-2 sample (also known as Mann-Whitney U test) was performed to compare any two 

groups. Comparisons between 3 groups were performed using the Kruskal-Wallis test. 

Repeat statistical analysis was performed using the subgroup of idiopathic VF patients with a history 

of multiple arrhythmic events. 

5.1.3 Results 

Patient characteristics 

All 38 patients successfully completed the testing protocol, reaching at least 85% of maximum 

predicted heart rate for age on the treadmill without complications. High detail characterization is 

available in 5.1.6 Supplementary Material. Cohort characteristics are examined here. 
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Gender balance was not uniform between groups, with both VF groups having significantly more 

males than the benign VE group (means 82.4%, 90% and 46.2% respectively, p = 0.034 by Kruskal-

Wallis test). The idiopathic VF group were not significantly different from the IHD VF group (p=0.62) 

but VE patients were more often female than the other groups in pairwise comparisons (p = 0.043 vs 

idiopathic VF and p = 0.035 vs IHD VF). 

Age was also significantly different, lowest in the idiopathic VF group, highest in the IHD VF group 

with the VE patients in the middle (means 39.1, 58.3 and 42.5 years respectively, p = 0.002 by 

Kruskal-Wallis test). The idiopathic VF group were not significantly different from the benign VE 

group (p = 0.63) but IHD VF patients were older than the other groups in pairwise comparisons (p = 

0.025 vs benign VE and p = 0.0002 vs idiopathic VF). 

Peak phase heart rates were significantly different between the groups, with IHD VF patients 

showing the lowest sampled heart rates of the three groups (p = 0.025 by Kruskal-Wallis test). This 

pattern was repeated in the resting phase heart rates (p = 0.024) with IHD VF patients again showing 

the lowest sampled heart rates. 

Due to possibility of age difference confounding this result, sampled heart rates were compared to 

the patient predicted maximum heart rate by the 220 − 𝐴𝑔𝑒 formula. In both peak and recovery 

phase, there were no significant differences in percentage of predicted maximum heart rate (p = 

0.32 and 0.78 by Kruskal-Wallis test). Although the mean heart rates of idiopathic VF patients in the 

peak sampling phase appeared to be higher than either IHD VF or VE patients (means 83.5%, 73.3% 

and 75.1% respectively), this was not significant in pairwise tests (p = 0.11 vs IHD VF and p = 0.22 vs 

VE). 

QRS durations were not significantly different across the groups during either phase of data 

collection (p = 0.53 for exercise and p = 0.07 for recovery). The dataset is summarized in Table 5.1. 

Table 5.1: Characteristics of volunteers undergoing electrocardiographic imaging exercise testing. Peak and recovery phase 

heart rates were those when signal was clean enough for measurement using the electrocardiographic imaging system. 

Ventricular fibrillation, VF; Ischaemic heart disease, IHD; Ventricular ectopy, VE; beats per minute, bpm; milliseconds, ms. 

Parameter Idiopathic 

VF 

IHD VF VE  p-value 

Males (proportion) 82.4% 90% 46.2% 0.034 

Age (years, mean) 39.1 58.3 42.5 0.002 
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Peak phase heart rate (bpm, mean) 150.6 119.0 132.5 0.025 

Recovery phase heart rate (bpm, 

mean) 

93.4 81.5 92.2 0.024 

Peak phase % of predicted maximum 

heart rate (mean) 

83.5% 73.3% 75.1% 0.32 

Recovery phase % of predicted 

maximum heart rate (mean) 

51.7% 50.4% 52.2% 0.78 

Peak phase QRS duration (ms, mean) 95.1 92.6 91.2 0.53 

Recovery phase QRS duration (ms, 

mean) 

110.6 100 106.8 0.07 

 

Mean V-CoS inter-group comparisons 

Idiopathic VF survivors were significantly differentiated from both the IHD VF survivors and patients 

with benign ventricular ectopy (p = 0.023 and 0.0093 respectively). The IHD VF survivors could not 

be significantly differentiated from the benign VE group (p = 0.39). Mean ±SD V-CoS were 96.3 ±2.9% 

for idiopathic VF survivors, 98.1 ±1.0% for IHD VF and 98.5 ±1.2% for benign VE patients (Figure 5.1). 
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Figure 5.1: Comparison of mean ventricular conduction stability scores between survivors of idiopathic ventricular 

fibrillation, ischaemic ventricular fibrillation patients with full recovery of left ventricular function and full revascularization 

and patients attending for the ablation of benign ventricular ectopy. Ventricular conduction stability, V-CoS; Ventricular 

fibrillation, VF; Ischaemic heart disease, IHD, Ventricular ectopy, VE. 

To determine whether a larger effect size could be seen in idiopathic VF patients with multiple 

arrhythmic events, patients with more than one clinical episode for ventricular fibrillation or 

appropriate ICD therapy were analyzed against those with a single such episode, with the benign 

ventricular ectopy group as a control. 

Patients with multiple episodes of ventricular arrhythmia (n = 8) were significantly differentiated 

from the controls with benign ventricular ectopy (p = 0.005). In this sample size they could not be 

significantly differentiated from the single episode patients (n = 9), who in turn were not significantly 

differentiated from the benign ventricular ectopy controls (p = 0.17 and 0.11). Mean ±SD V-CoS 

scores were 94.9 ±3.7% for those with multiple episodes, 97.5 ±1.2% for those with single episodes 

and 98.5 ±1.2% for the VE group (Figure 5.2). 
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Figure 5.2: Comparison of mean ventricular conduction stability scores between survivors of idiopathic ventricular 

fibrillation experiencing either multiple or single episodes of ventricular arrhythmia, and the benign ventricular ectopy 

group as control. Ventricular conduction stability, V-CoS; Ventricular ectopy, VE. 

V-CoS variability 

V-CoS matrices were graphically expressed with consecutive peak exercise beats in the horizontal 

axis and consecutive recovery beats in the vertical axis. Colour scaling was standardized across all 

patients; V-CoS scores were shaded yellow if 100%, with increasing red intensity to a lower bound of 

85%. All scores below 85% were shaded a constant red colour. 
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Figure 5.3: Six example V-CoS matrices: two from each condition group. All patients demonstrate some variability in V-CoS 

scores but this seems to be greater in patients with idiopathic VF than recovered ischaemic VF or benign ventricular ectopy. 

Ventricular conduction stability, V-CoS; Ventricular fibrillation, VF; Ischaemic heart disease, IHD; Ventricular ectopy, VE; 

beats immediately post peak exercise (consecutive beat x), pkex(x); beats from full recovery (consecutive beat x), 10min(x). 

Figure 5.3 shows six examples. Idiopathic VF matrices are more intensely red than the IHD VF 

matrices, which are in turn more intensely red than the VE matrices, reflecting the differing means 

between the groups. All groups demonstrate variability, with the magnitude varying between 

groups. Variability follows a periodic pattern, with certain beats interacting to produce lower V-CoS 

scores than others.  

Idiopathic VF survivor vf_av (Figure 5.3, top left) has the lowest V-CoS scores from interaction 

between peak exercise beats 5, 6 and 10 (‘pkex5’, ‘pkex6’, ‘pkex10’) and recovery beats 1, 4 and 8 

(‘10min1’, ‘10min4’, ‘10min8’). IHD VF survivor fbrs_bm001 has strong interactions between peak 

exercise beats 3, 4, 9 and 10, and recovery beats 1, 2, 6, 7 and 10. VE ablation patient fbrs_st001 has 

repeating ‘islands’ of low V-CoS scores centred around the interaction between peak exercise beat 5 

and recovery beats 2 and 8. Even in the matrix of VE ablation patient fbrs_kt001, it is possible to see 

very subtle periodicity between absolute scores of 97-100% V-CoS. 
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The range of individual beat V-CoS comparisons was larger in the idiopathic VF survivors than the 

benign VE patients (p = 0.00047) but not against the IHD VF survivors (p = 0.29). The IHD VF ranges 

approached significance against the ventricular ectopy patients (p = 0.051). Mean ±SD V-CoS ranges 

were 8.1 ±3.5% for idiopathic VF survivors, 6.5 ±3.8% for IHD VF survivors and 3.7 ±2.3% for VE 

ablation patients (Figure 5.4). 

 

 

Figure 5.4: Comparison of the range of individual ventricular conduction stability scores between patient groups. Each V-

CoS matrix is comprised of 100 individual beat pairings; the range quantifies the variability in these values which is 

significantly higher in patients surviving ventricular fibrillation than controls. Ventricular conduction stability, V-CoS; 

Ventricular fibrillation, VF; Ischaemic heart disease, IHD; Ventricular ectopy, VE. 

5.1.4 Discussion 

In this chapter, ventricular conduction stability was assessed for the ability to differentiate patients 

surviving idiopathic ventricular fibrillation, ischaemic ventricular fibrillation and those attending for 

the ablation of benign ventricular ectopy. The idiopathic ventricular fibrillation group had overall 

lower mean V-CoS scores than the other groups. V-CoS variability between beats was again high, 

with the idiopathic VF group having significantly greater variability than the VE group, and the IHD 

VF patients approaching significance over the VE group. 
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Another arrhythmogenic substrate for idiopathic ventricular fibrillation 

Invasive mapping has previously demonstrated one potential substrate for idiopathic ventricular 

fibrillation, which was then used in targeting radiofrequency ablation directed at reducing 

arrhythmia episodes (Haïssaguerre, Hocini et al. 2018). Before us, Leong et al. demonstrated 

changes in the activation recovery intervals during treadmill testing seen on ECGi but not on the 

surface ECG (Leong, Ng et al. 2018). Most recently, Blom et al. demonstrated steep repolarization 

time gradients and flattened T waves in the idiopathic VF patients not seen in their single control 

patient (Blom, Groeneveld et al. 2020). We present another potential substrate: the largest 

demonstration to date of exercise-induced changes in whole-heart activation as quantified by the V-

CoS score. 

Different papers finding different electrical properties of the idiopathic VF myocardium is not 

necessarily conflicting data. The results within our own idiopathic VF group are widely spread, with 

some patients as high as 99% V-CoS and as low as 87%. This implies that the arrhythmogenic 

substrate within our group must vary widely between patients. This is an expected result, as the 

idiopathic VF group could contain multiple undiscovered conditions. In the future, patients with a 

low V-CoS might be studied in sufficient number to identify common geno- and phenotypes and 

discover a new condition. Some of these patients may go on to develop a recognized cardiac 

phenotype. Further work would be needed to achieve this. 

Single- versus multiple-event survivor V-CoS scores 

Additionally, patients with multiple events seem to form an even lower V-CoS score group than their 

single-event counterparts. The statistical relationship between multiple- and single-event cardiac 

arrest survivors does not reach significance, but the differentiation from the control group is more 

significant in multiple-event survivors. There are two possible conclusions from this information. If 

we assume that the sub-analysis was appropriately powered to detect a result, we should conclude 

that patients with only a single episode of idiopathic VF are not significantly different from controls. 

Ventricular fibrillation is inducible with aggressive programmed stimulation in normal hearts (Avitall, 

McKinnie et al. 1992). Outside of the cardiac catheter laboratory, harsh stimuli such as commotio 

cordis and electrocution can initiate ventricular fibrillation in the normal heart (Link 2012; 

Waldmann, Narayanan et al. 2018). For some survivors of idiopathic VF, it is possible that a rare and 

previously undetected external stimulus initiates VF, and they will remain arrhythmia free for as long 

as they do not encounter this trigger again. 
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However, the sub-analysis is small: a comparison of 8 multiple-event survivors and 9 single-event 

survivors. It is likely that the sample size is underpowered to detect the difference between single-

event survivors and both the control group and multiple-event survivors. If we assume that the 

sample is underpowered, it becomes possible that V-CoS score describes the extent rather than the 

binary presence of an arrhythmic substrate. If triggers occur to all randomly, we would expect a 

patient group with larger arrhythmic substrate to suffer a greater number of arrhythmias. The low 

mean V-CoS score in the multiple-event group appears to support this idea. 

The arrhythmic substrate of ischaemic VF survivors 

Ventricular fibrillation is a well-known sequela of myocardial infarction, but arrhythmia susceptibility 

in patients with acute myocardial infarction is not uniform. Familial sudden death has been shown to 

be a risk factor in two case-control studies of patients presenting with ST-elevation myocardial 

infarction (Dekker, Bezzina et al. 2006; Jabbari, Engstrøm et al. 2015). The GEnetic causes of 

Ventricular Arrhythmias in patients with first ST-elevation Myocardial Infarction (GEVAMI) study 

enrolled 219 cases of patients suffering STEMI complicated by VF and compared to 441 STEMI 

survivors without VF. First-degree familial sudden death conferred a higher risk of VF with STEMI 

(odds ratio 1.80, CI 1.27-2.56, p = 0.001). 

In the Arrhythmia Genetics in the Netherlands (AGNES) cohort, 330 cases of patients suffering STEMI 

complicated by VF were compared to 372 age, gender, and infarct size matched controls. Patients 

with previous MI, known congenital or structural heart disease, severe comorbidities, electrolyte 

disturbance, trauma, surgery, or coronary artery bypass grafting within 4 weeks were excluded. 

Despite familial prevalence of cardiovascular disease being similar in the relatives of case and control 

groups, the percentage of cases with at least one sudden death in first degree relatives was 

significantly higher than control (43.1% vs 25.1%). Genome-wide study of an extension of this cohort 

revealed an association at 21q21 with an odds-ratio of 1.78. This was co-located with the coxsackie-

adenovirus receptor gene (CXADR), also implicated in myocarditis and dilated cardiomyopathy 

(Bezzina, Pazoki et al. 2010). Another study found mutations in SCN5A with acute MI complicated by 

ventricular fibrillation, but only in a small proportion of cases (Boehringer, Bugert et al. 2014). In 

summary, whilst the association of familial sudden death with VF in STEMI is known, the mechanism 

is unclear. 

In the present study, we have employed our IHD-VF volunteers as a control group who have 

significantly greater mean V-CoS scores than idiopathic VF survivors. Clinically, this group are 
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considered at low risk of future arrhythmia, and the non-significant difference in mean V-CoS against 

patients with benign VE appears to support this notion. 

However, the range in V-CoS scores for an individual IHD-VF survivor is not distinguishable from the 

idiopathic VF patients, and approaches significance against the benign VE patients. As the sample 

sizes are small, we cannot rule out low study power, so it remains unclear whether these patients 

have an underlying electrical substrate which can support VF in conjunction with a trigger such as 

myocardial infarction. Although echocardiography did not demonstrate the gross abnormalities 

known to be a risk factor for sudden arrhythmic death, it is possible that the IHD-VF group have 

substrate abnormalities that would be detected on detailed MRI or histopathology studies.  

Variation in V-CoS scores 

Wide intra-patient variation was seen in all patient groups, greatest in the idiopathic VF group, then 

the IHD-VF and then benign VE group. This further supports the use of summary statistics to define 

the V-CoS value for an individual patient. Significance was only reached between the idiopathic and 

benign VE groups.  

The pattern of periodicity seen in this patient cohort is very similar to that seen in the Brugada 

cohort in the previous chapter. This, combined with the similar observation of lower mean scores in 

ventricular fibrillation survivors, has two potential explanations. 

First, that survivors of Brugada VF and idiopathic VF have a similar final common pathway toward 

death, and this is detectable by the V-CoS score. Ventricular fibrillation can initiate when there is 

spatially heterogenous delay in conduction; this heterogeny would mean that local activation times 

in different beats would follow different patterns, a change which V-CoS is designed to detect. 

Periodicity in altered conduction may also have follow-on effects on repolarization, which may be 

predictive of imminent arrhythmia (Oosterhoff, Tereshchenko et al. 2011). Since periodicity is seen 

in all groups, it may be a physiological phenomenon which is more marked in those further along the 

spectrum of arrhythmia vulnerability. 

Second, that the periodicity is a result of the experimental method. This is plausible because it is 

seen in almost all experimental subjects, regardless of pathology, although more marked in the VF 

survivors. Patterns in the V-CoS matrix appear to reach a nadir every 3-5 beats, giving a frequency at 

120-150 beats per minute of 0.3-1 Hz. Further study would be needed to elucidate any sources of 

noise in the experimental method that could produce this periodicity. 
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Limitations 

Like the limitations of Chapter 4, small group sizes mean that we cannot be confident that there is 

no difference between two groups where the confidence in the effect size is >0.05. Patients were 

primarily characterized by echocardiography to reflect current guidelines on arrhythmia risk 

stratification from both European and American societies. However, from a mechanistic viewpoint, 

full MRI characterization would have been preferable, and MRI derived metrics of tissue/scar 

characterization may correlate with our findings. This would be a good opportunity for future study.  

5.1.5 Conclusion 

Periodic loss of uniform conduction can be induced by exercise and detected by ventricular 

conduction stability. Less uniformity is seen in patients surviving idiopathic ventricular fibrillation, 

which may be a substrate for future potentially lethal arrhythmia. This is seen to a lesser extent in 

survivors of ischaemic ventricular fibrillation who have made a full recovery and patients attending 

for the ablation of benign ventricular ectopy. Less conduction heterogeneity in recovered ischaemic 

patients and those with benign ectopy tallies with the observation that future cardiac arrest is 

uncommon in these groups.  

Periodic patterns occur in all pathology groups, but it is currently unclear whether this is a true 

physiological phenomenon or a product of the experimental technique. Further study is required to 

determine the answer. 

5.1.6 Supplementary Material 

Ischaemic VF 

Count 10 

Age (years) 58.3 ±8.0 

Gender M:F 9:1 

VF during presentation 10/10 

Anginal symptoms in year prior to testing 0/10 

ECG at testing 3 normal sinus rhythm 

3 residual ST elevation (<1mm) 

1 anterior early repolarization 

3 residual T wave inversion 
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MRI Performed in 1, late Gadolinium enhancement 

of papillary muscle but no regional motion 

abnormality 

Normal LV function, no regional wall motion 

abnormalities on echocardiogram 

10/10 

Infarct location/revascularization 2 LAD 

2 Circumflex/OM 

2 RCA/PDA 

4 triple vessel disease 

Mean peak troponin I (ng/L) 15387 ±20919 

 

Brugada relatives 

Count 11 

Age (years) 45.5 ±11.0 

Gender M:F 8:3 

ECG at testing 8 normal sinus rhythm 

1 RSR’ in V1-2 

1 early repolarization in V1-2 

1 W pattern in V1 

Echocardiogram 10 normal 

1 bicuspid aortic valve, otherwise normal 

MRI Performed in 1, normal 

Coronary assessment 10 normal ETT 

1 normal ETT and DSE 

Negative Ajmaline challenge 11/11 

Family history 4 (aborted) sudden death 

4 spontaneous Type 1 ECG 

3 concealed Type 1 ECG 

 

Idiopathic VF survivors 

Count 14 
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Age (years) 36.9 ±7.5 

Gender M:F 11:3 

Presentation rhythm 14 VF 

Lifetime events 5 multiple events 

9 single event 

ICD implanted at time of test 14/14 

Normal echocardiography (including LV 

function) 

14/14 

Normal ETT/adrenaline challenge 14/14 

Normal coronary angiogram/CT CA 14/14 

MRI 10 normal 

1 mild LV volume increase in context of multiple 

ectopy 

1 subepicardial late Gadolinium enhancement 

1 too claustrophobic 

1 transient apical hypokinesia post arrest with 

full resolution on subsequent echo 

Monomorphic ectopy identified 5/14 

Ajmaline 14/14 negative 

ECG 5 normal sinus rhythm 

3 T wave abnormalities 

3 Early repolarization 

2 RBBB 

1 frequent ectopy 

Index arrhythmia context 3 walking 

2 intense exercise 

3 at rest but awake 

3 during sleep 

1 after alcohol 

1 practicing yoga 

1 not identified 

Genetics 5 gene negative 
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4 with VUS (AKAP9; KCNH2; TMEM43, MYBPC3) 

5 not submitted for testing 

 

Ventricular ectopy ablation 

Count 11 

Age (years) 44.5 ±14.3 

Gender M:F 6:5 

ECG (excluding ectopy) 9 normal sinus rhythm 

1 RBBB 

1 T wave inversion V1-4 

Echocardiogram 10 normal 

1 mitral valve prolapse, otherwise normal 

MRI 3 normal 

2 mild LV dysfunction in the context of ectopy 

without evidence of fibrosis 

6 not performed 

Ectopy location 8 RVOT 

1 LVOT 

1 Basal septal LV 

1 inferior LV 

Ectopy burden 17.2 ±10.2% 
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5.2 The effect of simulated bio-electrical noise on ventricular conduction stability 

5.2.1 Introduction 

In both chapter 4 and 5, remarkably similar periodic patterns were seen in the V-CoS matrices of all 

patients. The magnitude of the changes was greater, and the mean score lower in patients with 

idiopathic VF than their ischaemic VF and benign VE counterparts, as well as in Brugada syndrome 

patients over their unaffected relatives. 

It is possible that idiopathic VF and Brugada syndrome share a common arrhythmic substrate – both 

diagnosed in patients with structurally normal hearts and associated with potentially fatal 

ventricular arrhythmia. The periodic loss of uniform conduction is present to a lesser extent in our 

control patients. As V-CoS is the percentage concordance of local activation times over the 

myocardium, loss of uniform conduction implies that the electrogram QRS complex is altered. 

The alterations in QRS could be due to intrinsic conduction changes of the diseased myocardium, but 

it is also plausible that movement artefact from exercise is the cause of these QRS changes. Like 

many other cardiac signal processing packages, both CardioINSIGHT and the custom software used 

to calculate V-CoS employ filters to improve signal quality prior to calculations. These filters can, in 

themselves, cause inaccuracies of measurement (Buendía-Fuentes, Arnau-Vives et al. 2012; Bear, 

Dogrusoz et al. 2018). 

Relatively lower V-CoS scores in the matrices can be visually estimated to occur once every 3-5 

cardiac cycles. At heart rates between 120-150 beats per minute this corresponds to a period of 

between 1-3 seconds. Baseline wander has a frequency of 0.5-0.6Hz, making it a likely candidate for 

the cause of the periodicity. This baseline wander is also visually more extreme when the patients 

have recently completed peak exertion, due to increase in ventilatory depth and positional changes 

as a supine position is attained. 

Our aim was to perform a simulation study to help understand whether exercise-induced changes in 

measured activation times result from true QRS changes, or the interaction between noise and 

filters in our software. The hypothesis was that changes in V-CoS induced by exercise could not be 

replicated by periodic noise added to cardiac cycles. 
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5.2.2 Methods 

Patient selection 

All 38 patients from the cohort were used to provide data for offline simulation. All underwent Bruce 

protocol treadmill testing with ECGi recording as detailed in the methods 5.1.2. 

Initial measurements 

10 consecutive cardiac cycles immediately following peak exercise and 10 consecutive cardiac cycles 

following 10 minutes of recovery were collected for analysis. V-CoS matrices were calculated for the 

exercise vs recovery beats, producing 100 exercise-induced V-CoS scores. The recovery beats were 

then compared to themselves, producing 100 recovery-baseline V-CoS scores. 

Simulated measurements 

To closely replicate baseline wander, noise was extracted from the exercise traces using a low-pass 

finite impulse response filter, frequency 1Hz, order 600 and sampling rate 1kHz. ECGi datasets are 

formed of one electrogram 
𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝑇𝑖𝑚𝑒
 graph per reconstructed point in the epicardial mesh. For a 

numeric array of 𝑚 electrogram traces by 𝑛 samples, the filter resulted in an identically sized 

numeric array of 𝑚 noise traces by 𝑛 samples. 

One-dimensional linear interpolation was used to ensure noise trace arrays had identical length to 

the recovery trace. Then, each individual noise trace was added onto its counterpart recovery trace. 

A synthetic electrogram with the QRS properties of recovery but noise characteristics of exercise. 

These synthetic, patient specific, noise-augmented traces were then compared to the unmodified 

recovery traces to calculate a final, simulated noise V-CoS matrix.  

The process is summarized in Figure 5.5. 
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Figure 5.5: Summary of the noise simulation method. For a given patient, the exercise trace is lowpass filtered to produce 

extracted noise. Following interpolation, this is added to the recovery traces producing a synthetic electrogram with the 

QRS complex of recovery but the baseline noise characteristics of exercise. This augmented recovery trace is then used for 

comparison in the V-CoS software. 

 

Statistical analysis 

In summary, for each patient, three V-CoS matrices were constructed for statistical analysis: 

1. True exercise (versus recovery) matrix 

2. Noise-augmented synthetic (versus recovery) matrix 

3. Recovery (versus recovery) matrix as a control. 
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True exercise, true recovery and noise-augmented recovery V-CoS matrix values were compared 

using t-test. 

5.2.3 Results 

True exercise induced V-CoS scores were lower than both noise-augmented and true recovery V-CoS 

scores (p < 2.2 ×10-16 for both comparisons). Noise-augmented V-CoS scores were not significantly 

different from true recovery V-CoS scores (p = 0.47). Mean ±SD V-CoS scores were 97.4 ±3.0% V-CoS 

for true exercise, 99.9 ±0.19% V-CoS for noise-augmented synthetic and 99.9 ±0.18% V-CoS for true 

recovery.  

 

 

Figure 5.6: Comparison of the individual ventricular conduction stability values between true exercise scores – i.e. those 

used in patient differentiation in Chapter 5.1 – and those with the bio-electrical noise of exercise added onto the recovery 

QRS characteristics to form synthetic signals. V-CoS values from the recovery scores are provided for comparison. 

Ventricular conduction stability, V-CoS. 

V-CoS matrices were graphically expressed with consecutive peak exercise beats in the horizontal 

axis and consecutive recovery beats in the vertical axis. Colour scaling was standardized across all 

patients; V-CoS scores were shaded yellow if 100%, with increasing red intensity to a lower bound of 

85%. All scores below 85% were shaded a constant red colour. 
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For each patient, the appearance of three V-CoS matrices could be compared. One patient from 

each experimental group is displayed in Figure 5.7. 

 

Figure 5.7: Three V-CoS matrices for each of 3 patients: one survivor of idiopathic ventricular fibrillation, one ischaemic 

ventricular fibrillation survivor and one patient with benign ventricular ectopy. Each patient occupies a column; the first row 

demonstrates V-CoS scores when exercise and recovery beats are compared, the second when a synthetic combination of 

recovery beats and extracted bio-electrical noise are compared to non-augmented recovery beats and the third row 

comparing non-augmented recovery beats to each other. The exercise V-CoS matrices demonstrate lower scores with 

periodic loss of uniform conduction, absent in recovery matrices. The synthetic matrices cannot replicate the exercise 

scores, suggesting that periodic noise is unlikely to be the cause of periodic low V-CoS scores.  

In the idiopathic VF patient, the differences between the matrices are the starkest. The true exercise 

matrix (top left) demonstrates periodic drops in V-CoS score as shown in the results for section 5.1.3. 

The noise-augmented matrix (middle left) and the recovery matrix (bottom left) are near identical in 
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appearance, with some variation in V-CoS score but not to the same magnitude as the true exercise 

matrix. The difference between the noise-augmented matrix and the true exercise matrix is greatest 

in the idiopathic VF patient, followed by the IHD VF patient and then the benign VE patient. 

5.2.4 Discussion 

Idiopathic VF, Brugada syndrome, ischaemic heart disease and healthy controls all demonstrate 

periodic loss of uniform activation in the 0-1Hz range, although the magnitude is higher in 

ventricular fibrillation survivors. In this simulation experiment, we extracted bio-electric noise in the 

0-1Hz range and added it to V-CoS comparisons with little to no periodic loss of activation. These 

noise-augmented comparison matrices failed to replicate the V-CoS changes induced by exercise. 

Many biological phenomena are periodic, or oscillatory; the periods can vary significantly from 

milliseconds to days (Li and Yang 2018). Pathological processes have also been noted to have 

periodic patterns. Low frequency ventricular repolarization instability known as periodic 

repolarization dynamics (PRD) are seen following acute myocardial infarction and long-QT syndrome, 

and at lower magnitudes in healthy patients (Rizas, Hamm et al. 2016). Much like exercise induced V-

CoS, sympathetic stimulation during exercise or tilt testing enhances the magnitude of PRD, and the 

frequency range matches that of oscillatory patterns in muscle sympathetic nerves (Ang and Marina 

2020). Our study describes similarly oscillating activation pattern change as a potential risk marker 

for ventricular arrhythmia. 

Limitations 

This result would at first appear to confirm that bio-electric noise is not responsible for the exercise-

induced changes seen in the V-CoS matrices, but there are some experimental limitations which 

must be considered. Firstly, the extraction of noise was performed by a low-pass filter of frequency 

1Hz. Any higher frequency components that might influence V-CoS would not be included in the 

extracted noise. This was performed because the periodicity of uniform conduction loss suggested 

aberrations in this frequency range would be responsible, but we cannot rule out that intermittent 

higher frequency signals might produce the patterns seen in exercise induced V-CoS matrices. 

Secondly, the exercise-induced noise extraction was interpolated to match the length of the 

recovery electrogram traces. This would have led to an interpolation factor of approximately 1.4 to 

1.6. The resultant dominant frequencies of the extracted noise would have therefore also fallen by 

this amount. 
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However, we can say from this experiment that low-amplitude bio-electrical noise does not produce 

the low-amplitude loss of activation uniformity detected by V-CoS. The difference between the 

patterns seen in exercise-induced V-CoS matrices and their noise-augmented counterparts must be 

due to signal differences in the QRS complex range of frequencies and above. It is unlikely that 

supra-QRS frequency noise causes periodicity, because the 3-5 beat regular patterns seen in the 

results would not be expected. 

5.2.5 Conclusion 

Exercise-induced periodic loss of uniform activation occurs in patients with life-threatening cardiac 

conditions and healthy controls. This occurs in the 0-1Hz frequency range; exercise induced changes 

cannot be replicated by adding electrical noise in this frequency range to electrograms sampled 

during full recovery. The implication is that subtle QRS changes occur in exercise which are 

quantifiable by V-CoS and not a result of extra-cardiac noise sources. This supports the observation 

that patients surviving past ventricular fibrillation have the greater periodic losses of uniform 

activation than healthy controls, and that this might be a true physiological indication of 

arrhythmogenic substrate. 
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Chapter 6: Strategies for improving ECGi 

reproducibility 

6.1 A method for automating repolarization methods in electrocardiographic imaging 

6.1.1 Introduction 

Although ventricular conduction stability can differentiate cardiac arrest survivors from controls, 

more basic electrophysiological measurements like local activation and repolarization times may be 

useful in understanding the arrhythmogenic substrate. In the future this may lead to the 

development of viable risk stratifiers based on electrophysiological measurements. 

The ability of electrographic imaging to reconstruct epicardial signals during physiological activity 

leads to vulnerability to extrinsic noise sources such as movement artefacts and baseline wander. 

This may be more exaggerated than direct invasive recording from immobilized patients or ex-vivo 

preparations.  

Extensive use of pre-filtering has been shown to alter the results of the inverse solution, and as such 

may lead to inaccurate interpretations of epicardial electrophysiology (Bear, Dogrusoz et al. 2018). 

As body surface mapping uses large numbers of physical electrodes, common practice is to exclude 

poorly recorded traces after visual inspection by the operator (Issa, Miller et al. 2009). Areas with 

missing data can be interpolated from surrounding electrodes (Serinagaoglu Dogrusoz, Bear et al. 

2019). Reconstructed electrograms can also be excluded based on visual assessment of unwanted 

noise but reporting of this step varies in studies utilizing electrocardiographic imaging. Number of 

rejected electrograms is stated as 1% in a single paper (Cuculich, Zhang et al. 2011); this metric is not 

specified in other studies (Ghosh, Rhee et al. 2008; Zhang, Sacher et al. 2015; Andrews, Srinivasan et 

al. 2017; Zhang, Hocini et al. 2017; Haïssaguerre, Hocini et al. 2018). 

From the prior work performed in other groups, there can be three broad strategies to limit the 

effect of extrinsic noise on measurement accuracy. First, the patient could be totally immobilized. 

This would reduce the need for electrode deselection or pre-filtering but negates the advantage of 

being able to record patients performing physiological tasks like exercising and resting. Second, pre-

filtering could be used so all electrodes remain intact. This has the advantage of being reproducible 

as each signal undergoes the same mathematical transform but has already been shown to alter the 
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results away from ground truth in simulations. Third, in the subject of this chapter we will examine 

electrogram deselection. To date, no objective criteria or algorithm has been described to achieve 

this. User-determined deselection could allow for bias and poor reproducibility. 

We hypothesized that repolarization measurements following manual electrogram cleaning would 

be especially inconsistent due to their low amplitude and peak gradients, and that automated 

processing of multiple beats could improve reproducibility. 

6.1.2 Methods 

Patient population and source data 

15 patients underwent body surface mapping and non-invasive electrogram (EGM) reconstruction by 

the CardioINSIGHT™ inverse solution using a combination of 252-electrode sensor vest and low dose 

computerized tomography of the chest. 20 consecutive sinus beats were mapped with the patients 

in supine recovery. 

An ECG or EGM trace can be considered a graph of voltage (V) against time (t). CardioINSIGHT 

returns both the source body surface ECG and reconstructed epicardial EGMs in a 2-dimensional 

array of size 𝑚 × 𝑛 where 𝑚 is the number of recorded ECG/EGM traces and 𝑛 is the number of time 

samples. Value 𝑎𝑖,𝑗 is equivalent to the recorded voltage of reconstructed EGM 𝑖 at time 𝑗. Sampling 

for CardioINSIGHT is at 1kHz; number of recorded body surface ECG traces is between 0-252 and 

number of reconstructed epicardial EGMs is generally between 1000-2000. 

Signal pre-processing 

For a reconstructed EGM array containing multiple cardiac cycles, signal quality can be improved by 

both filtering and signal averaging. This solution utilizes Python packages NumPy and SciPy (Oliphant 

2007; Walt, Colbert et al. 2011). 

A high pass finite impulse response (FIR) filter can be utilized to remove baseline wander from the 

tracing, demonstrated in Figure 6.1. Because measurements were made immediately after exercise 

whilst volunteers were still breathing heavily, we utilized a higher filter frequency than filters 

considering resting ECG only (Kher 2019). 
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Code snippet 1: Baseline filtering 

The use of **kwargs in the function allows the filter to be vectorized over all EGM traces by the axis 

argument of ss.filtfilt. 

For an ECGi array ECGi_array of size 𝑚 × 𝑛: 

import numpy as np 

import scipy.signal as ss 

 

def FIR_filter(array, order = 600, sampling_rate = 1000, 

               frequency = 1, **kwargs): 

    b, a = [], [] 

 

    # Normalise the frequency 

    nfrequency = 2.*float(frequency)/float(sampling_rate) 

 

    # FIR filter construction 

    if order % 2 == 0: 

        order += 1 

    a = np.array([1]) 

    b = ss.firwin(numtaps=order, 

                  cutoff=nfrequency, 

                  pass_zero=False) 

 

    # Calculate the padding length 

    padlen = 3 * max(len(a), len(b)) 

 

    if padlen > array.shape[array.ndim-1]: 

        padlen = array.shape[array.ndim-1]-1 

  

    # Apply the filter 

    filtered = ss.filtfilt(b, a, array, **kwargs, padlen=padlen) 

 

    return filtered 

 

filtered_ECGi_array = FIR_filter(ECGi_array, axis = 1) 
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Figure 6.1: Use of a finite impulse response filter to remove the majority of baseline wander from a trace of electrograms. 

FIR = finite impulse response, EGM = electrogram. 

Higher frequency noise components have some crossover with the frequency domains of QRS 

complexes and T waves, meaning that application of aggressive filtering here could alter end results. 

An alternative strategy is to perform signal averaging. 

To perform signal averaging, several cardiac cycles must be identified. As ECGi recordings may have 

a variety of beat types (e.g. sinus rhythm, ventricular ectopic, ventricular tachycardia), it is important 

to find beat types representative of the target cardiac cycle for signal averaging. This can be 

performed by providing a template bounded by 2 time points template_start and 

template_end.  

Once the template has been defined, this can be used to create an autocorrelation value for points 

along the time axis of each EGM, shown in Figure 6.2. Peaks in this trace correspond to regions of 
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similarity between the trace and the template. These peaks can be identified, and in this case, the 

ten best matches are selected – the number selected can be customized to the number of beats the 

end user wishes to average from those available. These are stacked to form an array of shape 

𝑚 × 𝑛 × 𝑠 where 𝑚 is the number of EGMs, 𝑛 is the number of samples in time and 𝑠 is the number 

of segment matches that will eventually be signal averaged. 

The signal averaged EGM array can be found by taking the mean in the 𝑠 axis, leaving an array of 

shape 𝑚 × 𝑛. 
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Code snippet 2: Template autocorrelation  

# Create the template 

signal = filtered_ECGi_array 

template = filtered_ECGi_array[:, template_start:template_end] 

template_length = np.abs(template_start-template_end) 

 

# Determine autocorrelation 

autocorr_mtx = np.zeros((signal.shape[0],signal.shape[1]), 'float') 

 

for egm in range(template.shape[0]): 

autocorr = np.correlate(signal[egm], template[egm], 'same') 

normalised_autocorr = autocorr/np.max(autocorr) 

autocorr_mtx[egm, :] = normalised_autocorr 

 

mean_autocorr = np.mean(autocorr_mtx, axis = 0) 

 

# Detect peaks 

peaks, props = ss.find_peaks(mean_autocorr, height=(None, None)) 

heightarray = props['peak_heights'] 

tenth = np.sort(heightarray)[-11] 

topten = np.squeeze(np.argwhere(heightarray > tenth)) 

 

# Define start and end of each detected cardiac cycle 

starts = [] 

ends = [] 

 

for n in range(len(topten)): 

starts.append(peaks[topten][n] - template_length/2) 

ends.append(peaks[topten][n] + template_length/2) 

 

roicount = len(starts) 

egmcount = signal.shape[0] 

segmentstack = np.zeros((egmcount, template_length+1, roicount), 'float') 

 

# Stack segments with some padding 

for n, roi in enumerate(self.starts): 

roi_start = starts[n] 

roi_end = ends[n] 
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segment = signal[:, roi_start:roi_end] 

padding_length = segmentstack.shape[1]-segment.shape[1] 

segmentstack[:, :, n] = np.pad(segment, ((0,0), (0, 

padding_length)), 'edge') 

 

# Signal average 

signal_averaged_EGMs = np.mean(segmentstack, axis = 2) 

 

 

 

Figure 6.2: Use of template-derived autocorrelation to select similar beats for signal averaging. The lower panel is not an 

EGM – it is an autocorrelation trace. The appearance of pseudo P, QRS and T waves is because it is an autocorrelation trace 

of an EGM. EGM = electrogram. 



155 
 
 

 

 

Figure 6.3: Flowchart summarizing pre-processing of data prior to determination of activation and repolarization 

characteristics. (A) 1 of >1000 raw electrogram traces containing at least 10 sinus cardiac cycles. (B) Baseline wander filter 

applied and a satisfactory QRS-T complex [pink box] defined by the user as a template of >1000 QRS-Ts – one per 

electrogram trace. (C) The template is autocorrelated with EGM traces, resulting in >1000 autocorrelation traces. Higher 

values [y-axis] mean more similarity to the template. These are stylized traces; a real example can be seen in Figure 6.2. (D) 

>1000 autocorrelation traces are averaged to a mean timestrip to guide complex selection. (E) Top 10 peaks are marked in 

the mean autocorrelation timestrip [red circles] to represent the QRS-T complexes best matching the user template. The 

yellow arrow demonstrates that the ventricular ectopic has been rejected by the algorithm. (F) 10 QRS-T complexes per the 

>1000 original raw traces are extracted based on the peaks in the autocorrelation timestrip. (G) One signal averaged QRS-T 

complex is calculated for each of >1000 original raw traces for use in further analysis. 
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Marking activation and repolarization 

As beat morphology can vary significantly between different pathology types that may be evaluated 

by ECGi, user-defined bounds are recommended to segment the QRS complex and T wave. These 

values can be stored for future use to improve reproducibility and save time in re-analysis. Figure 6.3 

demonstrates activation and repolarization point marking within user-defined bounds. 

For the unipolar epicardial EGM, the steepest downward slope of the QRS complex is considered to 

be the best marker of local activation (Shenasa, Hindricks et al. 2019). Mathematically this can be 

defined as a maximum negative first differential of the voltage-time graph, or 𝑚𝑎𝑥 (−
𝑑𝑉

𝑑𝑡
) . A 1D 

array of activation times of size 𝑚 will be returned.  

 

Code snippet 3: Marking activation times 

For a QRS complex bounded by qrs_start and qrs_end: 

pot = signal_averaged_EGMs 

pot_diff = np.diff(-pot, axis=1) 

# Filters may be added at this point if required 

 

pot_diff[:,:qrs_start] = 0 

pot_diff[:, qrs_end:] = 0 

 

local_activation_times = np.argmax(pot_diff[:], axis=1) 

 

 

Repolarization time has a more varied definition. There are two main strategies, the Wyatt (Wyatt, 

Burgess et al. 1981) method and the Yue method (Yue, Betts et al. 2005). The Wyatt is more 

commonly used in ECGi papers to date (Andrews, Srinivasan et al. 2017; Zhang, Hocini et al. 2017; 

Leong, Ng et al. 2018). The Wyatt method can be defined as the steepest upward slope of the T 

wave, or 𝑚𝑎𝑥 (
𝑑𝑉

𝑑𝑡
).  

T waves are often lower amplitude than QRS complexes and therefore have an inherently lower 

signal to noise ratio. Fortunately, there are only 3 accepted morphologies of T wave (Yue, Betts et al. 

2005), unlike the multitude for QRS. Thus, the danger of removing small but significant deflections 

by aggressive filtering is reduced. To accurately find the repolarization time, we used a Savitzsky-
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Golay (Savitzky and Golay 1964) filter of order 3 and window length 51ms to remove high-frequency 

noise components. 1D array of repolarization times of size 𝑚 can be returned and following this, a 

1D array of activation recovery intervals (ARI) of size 𝑚 can be found by subtracting the activation 

time array from the repolarization time array. 

Code snippet 4: Marking repolarization times and defining activation-recovery interval 

For a T wave bounded by t_start and t_end, a 1D array of repolarization times of size 𝑚 can 

be returned: 

pot_diff = np.diff(ss.savgol_filter(pot, 51, 3, axis=1)) 

 

pot_diff[:,:t_start] = 0 

pot_diff[:,t_end:] = 0 

 

pot_repol = np.argmax(pot_diff[:,t_start:t_end], axis=1)+ t_start 

local_repolarization_times = pot_repol 

 

A 1D array of activation-recovery intervals of size 𝑚 can therefore be returned by subtracting the 

local repolarization time from the local activation time: 

local_ARIs = local_activation_times - local_repolarization_times 
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Figure 6.4: Marking of local activation and repolarization using the first differential of the electrogram. Local activation is 

defined as the greatest negative slope of the electrogram-QRS and local repolarization the greatest positive slope of the 

electrogram-T. EGM = electrogram. 
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Figure 6.5: Flowchart summarizing the process of marking activation and repolarization characteristics in the electrogram 

array 

Deselection of unsuitable electrograms 

A varying number of electrograms may be unsuitable for analysis due to noise or ambiguous 

morphology, or a combination of both. Due to the zero-order regularization used in CardioINSIGHT, 

amplitude is constrained, negatively affecting reconstruction of the T wave, which as previously 

mentioned has an inherently lower signal to noise ratio. For this reason, this section focuses on T 

waves which cannot be interpreted. 

Given the previously mentioned constraints on accepted T wave morphology (Yue, Betts et al. 2005), 

two main rules were set for T-wave rejection: 

1. T waves amplitude had to be a certain percentage of the QRS amplitude – we chose 3% as a 

very low amplitude wave may not be accurately assessed for gradient in the context of 

background noise. 

2. T waves could have no more than 2 deflections (biphasic accepted, triphasic and above 

rejected). 

These characteristics of T waves may be stored in two further 1D arrays of size 𝑚.  
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Initially, a further baseline wander correction is applied to enable the T wave amplitude to be more 

accurately calculated. To ensure position of the maximum gradient was unchanged we used a linear 

correction (Figure 6.6).  
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Code snippet 5: Applying constraints using the T wave identification and selection technique 

(TWIST) 

For a T wave bounded by t_start and t_end linear correction is achieved by: 

t_pots = pot[:,self.t_start:self.t_end] 

array_gradients = np.mean(np.diff(t_pots, axis=1), axis=1) 

array_gradients = array_gradients.reshape(array_gradients.shape[0],1) 

correction_mtx = np.zeros_like(t_pots) 

correction_mtx[:] = np.arange(t_pots.shape[1]) 

correction_mtx = correction_mtx*array_gradients 

corrected_t_pots = pot_array-correction_mtx 

 

With a QRS complex bounded by qrs_start and qrs_end, the ratio of T wave amplitude to 

QRS amplitude can be calculated: 

qrspot = pot[:,qrsstart:qrsend] 

qrsheights = np.ptp(qrspot, axis=1) 

theights = np.ptp(corrected_t_pots, axis=1) 

t_qrs_ratios = theights/qrsheights 

 

The number of deflections on a T wave can be determined by how many discrete peaks there are 

greater than a certain threshold prominence. In this example the threshold ratio is 10%: 

def countpeaks(tpot): 

theight = np.ptp(tpot) 

threshold = 0.1*theight 

peaks, _ = ss.find_peaks(tpot, prominence=threshold) 

negpeaks, _ = ss.find_peaks(-tpot, prominence=threshold) 

allpeaks = peaks.shape[0]+negpeaks.shape[0] 

return allpeaks 

 

t_peaks = np.apply_along_axis(countpeaks, 1, corrected_t_pots) 

 

Finally, a further 1D array can be used to store the indices of EGMs that fulfil suitability for 

analysis criteria: 

is_bad = np.bitwise_or(t_peaks>2, t_qrs_ratios<0.03) 

is_good = np.logical_not(is_bad) 

good = np.argwhere(is_good).ravel() 
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Slicing the arrays of activation of repolarisation times by this array allows the calculation of 

metrics from only suitable EGMs. In this example, the mean activation time is calculated: 

mean_AT = np.mean(local_activation_times[good]) 

 

 

 

 

Figure 6.6: Stages of T wave feature analysis. The T wave is user-defined and linearly corrected. The amplitude is compared 

to the QRS amplitude. The number of deflections is determined following application of Savitzsky-Golay filter. EGM = 

electrogram. 

With a QRS complex bounded by qrs_start and qrs_end, the ratio of T wave amplitude to QRS 

amplitude can be calculated. The number of deflections on a T wave can be determined by how 

many discrete peaks there are greater than a certain threshold prominence (Figure 6.7). In our 

algorithm the threshold ratio is 10%. A 1D array of suitable electrograms of size 𝑚 will be returned 
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and can be used to dictate which EGMs are used in summary statistic calculation. We have termed 

this the T wave identification and selection technique (TWIST). 

 

Figure 6.7: Biphasic and triphasic T wave detection, enabling exclusion of the triphasic T wave. The user can set an a priori 

exclusion threshold to ensure consistency in electrogram exclusion. 
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Figure 6.8: Flowchart summarizing the process of the T wave identification and selection technique (TWIST) 

Automatic segmentation of QRS and T waves 

In previous examples we have shown segmentation of the EGM complex to provide bounds for QRS 

and T wave used in later processing. An alternative method is to use machine learning to determine 

the wave boundaries. Inspired by a previously published convolutional neural network combined 

with conditional random fields (Jia, Zhao et al. 2019) we developed a purely 1D convolutional 

strategy to segment EGM like waves. The convolutional neural network (CNN) is composed of a 

degradation and reconstruction stage, linked by skip connections. It outputs a label for each sample 

(millisecond) of data, determining whether than sample is part of a P wave, QRS complex, T wave or 

isoelectric baseline. The architecture is shown in Figure 6.9. 
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Figure 6.9: Architecture of convolutional neural network with skip connections for electrogram or electrocardiogram 

segmentation. The convolutional block (highlighted in orange) repeats within the larger network and is explored further in 

the right side of the diagram, containing normalization, convolutional and rectified linear unit (ReLU) layers. 
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Code snippet 6: Training a convolutional neural network to recognize labelled surface ECG data 

segmentation 

For an ECG array data and labels labels of size 𝑚 × 𝑛: 

from keras import layers 

from keras.models import Model 

from keras_contrib.layers import InstanceNormalization 

import pickle 

 

def conv_block(tensorinput): 

    t1 = InstanceNormalization()(tensorinput) 

    t2 = layers.Conv1D(32, 7, strides=1, padding='same')(t1) 

    t3 = layers.ReLU()(t2) 

    t4 = InstanceNormalization()(t3) 

    t5 = layers.Conv1D(32, 7, strides=1, padding='same')(t4) 

    t6 = layers.ReLU()(t5) 

    return t6 

 

# Input 

inputs = layers.Input((input_len, 1)) 

 

# DEGRADE 

de1 = conv_block(inputs) 

de2 = layers.AveragePooling1D(pool_size=2)(de1) 

de3 = conv_block(de2) 

de4 = layers.AveragePooling1D(pool_size=2)(de3) 

de5 = conv_block(de4) 

de6 = layers.AveragePooling1D(pool_size=4)(de5) 

de7 = conv_block(de6) 

de8 = layers.AveragePooling1D(pool_size=4)(de7) 

 

# RECONSTRUCT 

re1 = layers.UpSampling1D(size=4)(de8) 

re2 = conv_block(layers.concatenate([re1, de7])) 

re3 = layers.UpSampling1D(size=4)(re2) 

re4 = conv_block(layers.concatenate([re3, de5])) 

re5 = layers.UpSampling1D(size=2)(re4) 

re6 = conv_block(layers.concatenate([re5, de3])) 

re7 = layers.UpSampling1D(size=2)(re6) 
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re8 = conv_block(layers.concatenate([re7, de1])) 

re9 = InstanceNormalization()(re8) 

outputs = re10 = layers.Conv1D(4, 3, strides=1, padding='same', 

activation='softmax')(re9) 

 

epochs = 10 

input_len = 2048 

# Pre-process data 

 

def normalise(data): 

    data -= data.mean(axis=0) 

    data /= data.std(axis=0) 

    return data 

 

def trace_padder(traceblock, target_len=input_len, pad_mode='constant', 

constant=None): 

    (_,startlen) = traceblock.shape 

    padlen = target_len-startlen 

    if pad_mode=='constant': 

        padblock = np.pad(traceblock, ((0,0), (0,padlen)), pad_mode, 

constant_values=constant) 

    else: 

        padblock = np.pad(traceblock, ((0, 0), (0, padlen)), 'edge') 

    return padblock[:,:,np.newaxis] 

 

 

data = np.nan_to_num(normalise(data)) 

datastack = trace_padder(data, pad_mode='edge') 

labelints = trace_padder(labels, pad_mode='constant', constant=0) 

 

data_train, data_test, labels_train, labels_test = 

train_test_split(datastack, labelints, test_size=0.2) 

 

model = Model(inputs=inputs, outputs=outputs) 

model.summary() 

model.compile(optimizer='adam', 

              loss='sparse_categorical_crossentropy', 

              metrics=['sparse_categorical_accuracy']) 
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history = model.fit(data_train, labels_train, epochs=epochs,     

batch_size=40, validation_data=(data_test,labels_test)) 

 

def save_model(model): 

    model_json = model.to_json() 

    with open(filename + '.json', 'w') as json_file: 

        json_file.write(model_json) 

    with open(filename + '.history', 'wb') as historyfile: 

        pickle.dump(history.history, historyfile) 

    model.save_weights(filename + '.h5') 

    print('Model saved to disk') 

 

 

 

 

Due to the lack of large volume labelled datasets of EGM data, we used ~22,000 labelled surface ECG 

beats from the Lobachevsky University ECG database (Kalyakulina, Yusipov et al. 2018), separate 

from the data used in this analysis. Following training, the un-altered CNN was used to make 

predictions about wave location and bounds for each EGM in the array. 

To deal with gaps in segmented waves (e.g. sections in the middle of a T wave inappropriately 

labelled as isoelectric baseline), a custom searching algorithm was developed to process the raw 

CNN predictions. The longest segment pertaining to a particular waveform (for example T wave) is 

sought and designated the primary location of the wave. Shorter segments are then sought; if they 

fall within an a priori defined threshold (200 milliseconds in this example), these are incorporated 

into the primary wave location. All other wave segments are rejected. This process is summarized by 

the flowchart Figure 6.10. 
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Figure 6.10: Flowchart summarizing the process of segmenting the entire EGM array using the neural network predictions. 

To deal with unintended gaps in waveform bounds, a search algorithm groups all segments of the same class within a 

defined window (200 milliseconds in this example). To deal with anomalous detections in a noisy electrogram, the whole-

array bounds are set at the 95th percentile of start and end points – encompassing all but the most extreme measurements. 
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Code snippet 7: Automated delineation of QRS complex and T wave using a pre-trained neural 

network 

 

For a saved Keras neural network composed of .history, .json and .h5 files and an ECGi 

array ecgi_dataset of size 𝑚 × 𝑛: 

 

MODEL = '<history filename>.history' 

class ECGi_segmenter: 

    def __init__(self, modelfile = None, ecgi_dataset = None): 

        self.model = None 

        self.history = None 

        self.results = None 

        self.allbounds = None 

        self.bounds95 = None 

        self.ecgi_dataset = ecgi_dataset 

        self.ecgidata = None 

        self.modelfile = modelfile 

        self.getfiles() 

 

    def run_segmentation(self): 

        self.ecgidata = self.trace_padder(self.ecgi_dataset) 

        self.results = self.predict_ecgi(self.ecgidata, self.model) 

        self.allbounds = self.find_all_boundaries(self.results) 

        self.bounds95 = 

self.define_egmstack_bounds(self.allbounds,percentile=90) 

 

    def getfiles(self): 

        custom_objects = {'InstanceNormalization':InstanceNormalization} 

 

        if not self.modelfile: 

            firstfp = askopenfilename(initialdir=os.getcwd()) 

        else: 

            firstfp = self.modelfile 

 

        if '.json' in firstfp: 

            jsonfp = firstfp 

            histfp = firstfp.replace('json', 'history') 
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            h5fp = firstfp.replace('json', 'h5') 

        elif '.history' in firstfp: 

            histfp = firstfp 

            jsonfp = firstfp.replace('history', 'json') 

            h5fp = firstfp.replace('history', 'h5') 

        else: 

            h5fp = firstfp 

            histfp = firstfp.replace('h5', 'history') 

            jsonfp = firstfp.replace('h5', 'json') 

 

 

        with open(jsonfp, 'r') as jsonfile: 

            modeljson = jsonfile.read() 

            self.model = model_from_json(modeljson, custom_objects) 

            jsonfile.close() 

 

        with open(histfp, 'rb') as histfile: 

            self.history = pickle.load(histfile) 

            histfile.close() 

 

        self.model.load_weights(h5fp) 

 

    def trace_padder(self, traceblock, target_len=2048): 

        ''' 

        CI arrays come as EGMs x length 

        We need them to be EGMs x length expected by model x features 

        Generally features are 1 (voltage) so we just add an axis 

        ''' 

        (_, startlen) = traceblock.shape 

        padlen = target_len - startlen 

        padblock = np.pad(traceblock, ((0, 0), (0, padlen)), 'edge') 

        return padblock[:, :, np.newaxis] 

 

    def plot_history(self): 

        fig,ax = plt.subplots(1) 

        for key,val in self.history.items(): 

            ax.plot(val, label=key) 

        ax.legend() 
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        ax.set_title('Training history for current model') 

        fig.show() 

 

    def predict_ecgi(self, ecgidata, model): 

        return model.predict(ecgidata, batch_size=40, verbose=1) 

 

    def find_1d_boundaries(self, prediction, wavethresh=200): 

        ''' 

        Will take either a samples*4 set of probabilities and convert it, 

or the samples*1 set of predicted labels 

        Wavethresh is the longest allowed wave for joining up non-

contiguous pieces of detected T wave etc 

        If two areas are further apart than the wavethresh then the 

largest found segment will be returned as the predicted boundaries 

        ''' 

 

        if prediction.shape[-1] == 4: 

            prediction = np.argmax(prediction, axis=-1) 

 

        valid_p = False 

        valid_qrs = False 

        valid_t = False 

 

        # Create an array of zeros where index 0 is P start through to 

index 5 is T end 

        boundsary = np.zeros(6) 

        plist = [] 

        qlist = [] 

        tlist = [] 

        segslist = [plist, qlist, tlist] 

 

        enumerated_segments, _ = sn.label(prediction) 

        segments = sn.find_objects(enumerated_segments) 

        segment_contents = np.zeros(len(segments)) 

        try: 

            segment_contents = 

np.array([int(stats.mode(prediction[x])[0]) for x in segments]) 

        except: 
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            for n, segment in enumerate(segments): 

                try: 

                    segment_contents[n] = 

int(stats.mode(prediction[segment])[0]) 

                except: 

                    segment_contents[n] = None 

 

        for n,content in enumerate(segment_contents): 

            if content == 1: 

                try: 

                    plist.append(segments[n][0]) 

                    valid_p = True 

                except: 

                    print('No P waves for this EGM') 

            elif content == 2: 

                try: 

                    qlist.append(segments[n][0]) 

                    valid_qrs = True 

                except: 

                    print('No QRS for this EGM') 

            elif content == 3: 

                try: 

                    tlist.append(segments[n][0]) 

                    valid_t = True 

                except: 

                    print('No T wave for this EGM') 

            else: 

                continue 

 

        for n, sublist in enumerate(segslist): 

            if len(sublist) == 1: 

                boundsary[2 * n] = sublist[0].start 

                boundsary[2 * n + 1] = sublist[0].stop 

            elif len(sublist) == 0: 

                boundsary[2 * n] = np.nan 

                boundsary[2 * n + 1] = np.nan 

                # print('No {} for this EGM'.format(sublist)) 

            else: 
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                print('Assessing multiple candidate segments') 

                starts = [x.start for x in sublist] 

                ends = [x.stop for x in sublist] 

                starts.sort() 

                ends.sort(reverse=True) 

                gaps = np.array(ends) - np.array(starts) 

                gaps[gaps < 0] = 0 

                gaps[gaps > wavethresh] = 0 

                if np.sum(gaps) != 0: 

                    joinedindex = np.argmax(gaps) 

                    boundsary[2 * n] = starts[joinedindex] 

                    boundsary[2 * n + 1] = ends[joinedindex] 

                else: 

                    ends.sort() 

                    intervals = np.array(ends) - np.array(starts) 

                    chosenindex = np.argmax(intervals) 

                    boundsary[2 * n] = starts[chosenindex] 

                    boundsary[2 * n + 1] = ends[chosenindex] 

 

        return boundsary, valid_p, valid_qrs, valid_t 

 

    def find_all_boundaries(self, prediction, wavethresh=200): 

        ''' 

        Will take a block of predictions and return an EGMs*6 array 

where: 

        index 0 is P start through to index 5 is T end 

        ''' 

        vpfalse = [] 

        vqfalse = [] 

        vtfalse = [] 

        boundsary = np.zeros((prediction.shape[0], 6)) 

        for n in range(prediction.shape[0]): 

            # print('Assessing EGM {}'.format(n)) 

            boundsary[n], vp, vq, vt = 

self.find_1d_boundaries(prediction[n], wavethresh=wavethresh) 

            if not vp: 

                vpfalse.append(n) 

            if not vq: 
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                vqfalse.append(n) 

            if not vt: 

                vtfalse.append(n) 

        print('Summary: Missing P = {}; Missing QRS = {}; Missing T = 

{}'.format(len(vpfalse), len(vqfalse), 

                                                                                 

len(vtfalse))) 

        print(vpfalse) 

        print(vqfalse) 

        print(vtfalse) 

        return boundsary 

 

    def define_egmstack_bounds(self, bounds_array, percentile=95): 

        ''' 

        Takes the full results of an EGM*6 bounds array and returns the 

required percentile of results (default 95) 

        Indices 0,2,4 are the starts, indices 1,3,5 are the ends 

        ''' 

        bounds95 = np.zeros(6) 

        offstart = (100 - percentile) / 2 

        offend = percentile + offstart 

        starts = [0, 2, 4] 

        ends = [1, 3, 5] 

        for s in starts: 

            bounds95[s] = int(np.nanpercentile(bounds_array[:, s], 

(offstart))) 

        for e in ends: 

            bounds95[e] = int(np.nanpercentile(bounds_array[:, e], 

(offend))) 

        return bounds95 

 

 

Validation  

To determine the performance of our automated system against current practice, reproducibility of 

the central 95% range of total repolarization time (TRT95) was examined.  
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Beat-to-beat reproducibility for successive cardiac cycles is also important to producing a meaningful 

result for a patient. To determine the improvement made by considering multiple beats, we 

quantified the reduction in mean absolute difference when 1, 2, 3 and up to 10 beats were 

considered. Two strategies were considered – signal averaging: the creation of a synthetic cardiac 

cycle from multiple beats in pre-processing; and result averaging: the post-calculation mean of 

results from several single beats. Figure 6.11 summarizes the manual and automatic workflows in 

full. 

 

Figure 6.11: Comparison of the initial manual analysis and the increasingly automated analysis using the algorithms 

described in the paper. Rectangular boxes are user driven; oval boxes are automated. ECGi = electrocardiographic imaging, 

EGM = electrocardiogram, TRT95 = total repolarization time (central 95 percent range). 

The mean absolute difference (MAD) was used to quantify reproducibility. Paired T-tests were used 

to test whether the automatic methods produced a smaller reproducibility error than manual 

methods. 

6.1.3 Results 

Neural network performance 

After training over 10 epochs with a 80:20 train:validate split using the ADAM optimizer, validation 

set accuracy exceeded 97%. Overfitting was not seen, with the validation set accuracy continuing to 

rise with the training set accuracy (Figure 6.12). 
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Figure 6.12: Accuracy and loss changes during training of the neural network. A high level (>96%) accuracy is reached for 

defining each millisecond of signal as baseline, P wave, QRS complex or T wave. Validation set results closely match the test 

group result, indicating that overfitting is unlikely. 

Figure 6.13 demonstrates four real EGM examples of the CNN output and aids in understanding the 

classification mechanism. For each millisecond of signal, the CNN calculates how likely it is to be a P 

wave, QRS complex, T wave or baseline millisecond. The highest probability waveform is labelled to 

this millisecond. 
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Figure 6.13: Raw results of the convolutional neural network (CNN) on four example electrograms (EGMs 1835, 646, 836 

and 1648). Each pair of graphs (CNN defined labels and CNN probabilities) pertain to the same EGM. In the top graph of 

every pair, the shading denotes the waveform boundaries. In the bottom graph of every pair, the line chart denotes the 

probability of each millisecond belonging to either P, QRS, T or baseline signal. The CNN assigns the highest probability 

waveform to each millisecond of the trace, producing the defined labels. 

Some examples of CNN misprediction are highlighted in Figure 6.14. In Panel A the P wave has been 

misclassified altogether as baseline. Between Panel A and Panel B, there is some discrepancy in the 

labelling of the ST segment as baseline or part of the T wave. In Panel B, part of the P wave is 

misclassified as baseline, but this segment is surrounded by appropriately classified P wave. In Panel 

C, the initial part of the P wave has been misclassified as QRS complex. 
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Figure 6.14: Examples of convolutional neural network (CNN) misprediction for electrograms (EGM). Panel A demonstrates 

misclassification of the whole P wave as baseline. Panel B demonstrates misclassification of only a segment of P wave as 

baseline, surrounded by correctly labelled signal. Panel C demonstrates misclassification of P wave start as QRS complex. 

Using the bounding strategy demonstrated by Figure 6.10 and Code Snippet 7, segmentation results 

were supplied to the user for human verification. Figure 6.15 demonstrates screenshots from this 

process.  

 

Figure 6.15: Screenshots from the Graphic User Interface (GUI) used for window selection verification following neural 

network segmentation. Each graph is an overlay of several hundred electrograms and the overall bounds calculated by the 

segmentation algorithm. Panels A and B demonstrate good segmentation – the waveform is fully contained within the 

boundaries without excessive baseline signal selection. C1 and C2 are from the same patient, C1 without signal averaging 

and C2 with signal averaging of 10 beats. Panel C1 demonstrates overclassification of the T wave whilst C2 demonstrates 

the correct waveform segmentation. 

Panels A and B demonstrate good segmentation – the waveform is fully contained within the 

boundaries without excessive baseline signal selection. C1 and C2 are from the same patient, C1 

without signal averaging and C2 with signal averaging of 10 beats. Panel C1 demonstrates a system 
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error, in this case incorrectly identifying part of the P wave as T wave. The user at this point can 

correct the selection. However, the signal averaged trace in C2 is much better segmented – 

strengthening the case for signal averaging prior to machine segmentation. 

To perform the various calculations in this experiment, each patient underwent 50 separate 

segmentations with varying amounts of signal averaging. In 3 out of 750 segmentations (0.4%), the 

wave boundaries were clearly mislabelled in a similar fashion to Figure 6.15, Panel C1.  

Result reproducibility for single beats 

The central 95% of total repolarization times for single identical beats were calculated twice over by 

both manual and automated methods. Figure 6.16 demonstrates the results. 

 

Figure 6.16: Reproducibility of same-beat repeated analysis by both manual and automatic analysis. The central 95% of 

total repolarization time (TRT95) is the assessed measure. Automatic analysis has better reproducibility than manual 

analysis. 

Manual identical beat analysis for a single cardiac cycle had a significantly worse MAD than 

automated analysis of the same beats (manual 7.0 vs automatic 0.1 milliseconds, p = 0.002). 

Successive single beat reproducibility was worse than for identical beats, despite automated 

selection of the time windows and EGMs suitable for analysis (successive 19.4 vs identical 0.1 

milliseconds, p = 0.0007).  
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Result reproducibility for multiple beats 

Signal averaging improved reproducibility significantly when combined with the automatic analysis, 

improving MAD from 19.4 milliseconds with a single beat to 12.8 milliseconds once 10 beats had 

been ensembled (p = 0.0002 for the trend). For an ensemble of 2 beats, the MAD worsened to 22.9 

milliseconds, and for an ensemble of 9 beats the MAD was better than the final result at 11.9 

milliseconds. 

Result averaging combined with automatic analysis performed even better, improving MAD from 

19.4 milliseconds with a single beat to 7.2 milliseconds once results from 10 beats had been 

averaged (p = 0.009 for the trend). Like signal averaging, result averaging showed some fluctuation 

in improvement, with the lowest MAD occurring with the 7th beat (5.9 milliseconds). 

Whilst result averaging produced lower absolute MAD for a given number of beats used (result 

averaging mean 9.99 vs signal averaging mean 15.9 milliseconds, p = 0.0002), the trend for 

improvement was stronger for signal averaging (R = -0.77 vs -0.92, p-values = 0.009 vs 0.0002). 

Figure 6.17 summarizes the result. 
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Figure 6.17: Reproducibility improves as more cardiac cycles are considered in analysis. Signal averaging produces a 

synthetic average electrogram from 10 consecutive beats prior to analysis. Result averaging performs analysis on 10 

consecutive beats, and then averages the result. 
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6.1.4 Discussion 

Operator selection of time-windows and clean electrograms for analysis can be critical in making 

clinical judgements when presented with a single dataset. This study explores how manual strategies 

can lead to poor reproducibility between successive and even identical cardiac cycles, as well as 

potential techniques for improving reproducibility in the research context. 

Human versus automated reproducibility 

Our initial reproducibility experiment demonstrated how evaluation of even an identical cardiac 

cycle can demonstrate significant intra-rater variability. Small amounts of variability were also seen 

in the automatic analysis, a likely consequence of the initial template QRS-T complex selection by 

the operator. There is an opportunity to automate this step, but with a mean absolute difference of 

0.13 milliseconds the benefit would be marginal. The system would then also be disadvantaged by 

not being able to select a particular type of beat for analysis – whilst arrhythmia classification can be 

achieved to 99.7% accuracy by deep learning (Ebrahimi, Loni et al. 2020), the operator would have to 

specific the class of cardiac cycle desired for analysis, at which point it is likely simpler to simply 

select manually. 

Performance of neural networks for electrogram segmentation 

In this chapter we present a simplified neural network segmenting electrograms similar to that used 

in recent ECG segmentation (Jia, Zhao et al. 2019). Compared to Jia’s neural network, we have 

removed the sequential conditional random fields element which adds extra processing time during 

both learning and prediction. Without this layer our network still achieved a high degree (>97%) of 

accuracy classifying each millisecond of the surface ECG dataset. 

Currently no labelled reconstructed cardiac electrogram datasets are available. We used our neural 

network trained on surface ECG to directly predict the waveform boundaries for epicardial signals. 

Due to the lack of available labels in a large dataset, the millisecond-accuracy for cardiac 

electrograms cannot be stated but visually segmentation was successful in most beats (>99%). 

Further improvements could be made using transfer learning – taking a pre-trained neural network 

on a similar dataset (surface ECG) and fine-tuning the response in a smaller but more specific 

labelled dataset. A future goal should be to expertly label epicardial electrograms for this purpose. 

Transfer learning is extensively used in machine vision, but currently only a single paper exists 
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describing pre-training a neural network on human ECG and transferring this learning to equine ECG 

(Van Steenkiste, van Loon et al. 2020). 

It remains unclear whether we can claim ‘good accuracy’ of segmenting epicardial electrograms 

using this method as only sinus beats have been considered from a small number of patients. To be 

confident that our system segments successfully in a wider range of situations further testing would 

be needed.  

For this reason, user-editable waveform boundaries remain available in our software. Whilst the 

user-edit may harm reproducibility, it may be essential for the true segmentation of the epicardial 

electrogram. 

Summary statistics for improving reproducibility 

In this experiment, both signal averaging and result averaging were effective methods of improving 

reproducibility in non-identical beat analyses. In both strategies, the greater the number of beats 

used, the smaller the difference between two consecutive runs of 10 cardiac cycles. Result averaging 

seemed to produce a slightly lower mean average difference in this experiment, but it is not clear 

that this is more than a chance finding as the magnitude of the difference is very small.  

There is a balance to be struck between dynamic changes in cardiac electrophysiology and 

reproducibility. A key advantage of ECG imaging is the ability to panoramically map a single cardiac 

cycle. In traditional roving-catheter mapping, several hundred cardiac cycles may be averaged into a 

single activation map. If cardiac electrophysiology has altered over this time, this would not be 

appreciated; worse, if the alteration were not periodic, or the period were greater than the mapping 

time, the sequence in which cardiac segments were mapped would change the interpretation. 

Whilst choosing to analyse longer runs of beats could improve reproducibility, it could also reduce 

precision for detecting the effects of short-term stressors. 

Although we can say how similar the results are for two consecutive runs of beats, we cannot tell 

what the relationship is to ground truth. To achieve the intact, innervated and physiologically active 

heart we purposefully did not perform invasive measurements. An epicardial electrode sock would 

be the ideal measurement of panoramic ground truth, but this would require a sternotomy and 

preclude the application of realistic physiological stressors. 
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6.1.5 Conclusion 

Human reproducibility for ECG imaging datasets can be markedly improved by the introduction of 

automation. However, the differences between neighbouring cardiac cycles can also significantly 

hamper reproducibility. Summary methods such as signal averaging or result averaging improve 

reproducibility, but the full extent and superiority of one strategy over the other has yet to be 

determined. Further study either by experimentation or simulation would be needed to form a 

definitive opinion. 
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6.2 Comparison of signal and result averaging against a simulated noise dataset 

6.2.1 Introduction 

In the previous section, a small number of real patients underwent two rounds of repeat analysis 

after which it was difficult to conclude whether a signal averaging or result averaging strategy was 

more appropriate for further work. 

Although real data has the advantage of demonstrating actual reproducibility between two different 

beats, the actual ground truth remains unknown. To understand the relationship between ground 

truth and measured values in the presence of noise, simulation studies can be useful. 

In our previous noise simulation experiment we utilized noise from a narrow band of frequencies 

and magnitudes. In this experiment we aimed to test the accuracy of signal averaging against result 

averaging when a wide variety of noise frequencies and amplitudes to determine which strategy 

would be more robust in different situations. Importantly, we aimed to be able to finely control the 

noise spectra in this experiment – which is not possible in real world experimentation. 

6.2.2 Methods 

To produce synthetic clean data, a set of 𝑚 electrograms containing 10 cardiac cycles (10𝑛 samples) 

was obtained from a patient at rest. This was signal averaged to a single synthetic cardiac cycle array 

of size 𝑚 × 𝑛 and then filtered using a Savitzky-Golay filter, window length 51 milliseconds and 

order 3. The ground truth local repolarization time for the trace was calculated as QRS start 

subtracted by the steepest upward slope location of the T wave, or 𝑚𝑎𝑥 (
𝑑𝑉

𝑑𝑡
). 

To produce synthetic noise for addition to this clean data, a visually noisy single electrogram 

containing 10 cardiac cycles was filtered using a Savitzky-Golay filter, window length 51 milliseconds 

and order 7. The resultant filtered trace was then subtracted from the original, leaving only the 

noise. This noise was then multiplied by 1 to 20 times in length (using 1-dimensional interpolation) 

and magnitude to produce 400 unique noise patterns with a range of frequencies and amplitudes. 

To ensure the noise patterns were not simply duplicated every time, a random segment of noise 

equivalent sample length to the clean data was chosen at random and added onto this clean data. 

The effect of small errors in autocorrelation were simulated by the random addition or subtraction 

of up to 10 milliseconds to the start of the trace. 

Local repolarization time was calculated for the synthetic noisy electrograms using the methods in 

section 6.1.2. Briefly, for each clean electrogram studied, ten synthetic noisy electrograms with 
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varying amounts of simulated autocorrelation error were created. In the result averaging strategy, 

local repolarization time was calculated for each of the ten and averaged to find the final value. In 

the signal averaging strategy, the mean of the ten synthetic noisy traces was calculated and the local 

repolarization time calculated for this. Figure 6.18 visually describes the method. 

 

Figure 6.18: Visual summary of methods in this simulation study. Top left: a clean electrogram (EGM) has repolarization 

time marked using the Wyatt method. Top right: a random segment of extracted noise is chosen by filtering from a real 

noisy electrogram trace. Bottom left: the extracted noise is added to the electrogram to form a synthetic EGM with 

controllable noise characteristics. Bottom right: a random timing offset is introduced to the electrogram to simulate errors 

in autocorrelation 

For each combination of noise amplitude and frequency spectrum this allowed comparison of the 

two methods by their deviation from ground truth. To determine the effects noise on the two 

methods in a larger group, each electrogram measurement was repeated 100 times. T-tests were 

performed to determine the significance of the difference between the methods.  

6.2.3 Results 

Simulation statistics 

Approximately 50 hours of computing was performed on a laptop computer (Intel™ Core i7-10510U 

central processing unit @ 2.3GHz with 16 gigabytes of random-access memory). 1158 electrograms 

were assessed for typical amplitudes and frequencies. 232 clean electrograms – 1 in 5 – underwent 

ground truth calculation, noise and autocorrelation error addition before result and signal averages 

were performed. In total, from 100 repeats using 400 different synthetic noise additions, ~9.2 million 

electrogram simulations were performed for this analysis. 
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Raw spectral characteristics 

For the mean clean electrogram, QRS frequency content extended up to 50Hz, peaking at 

approximately 20 Hz. T wave frequency content extended up to 20Hz, peaking at approximately 5Hz. 

Understanding this distribution is key because when the noise spectrum is identical to the waveform 

spectrum, filtering is impossible. Graphical expressions of the spectra are shown in Figure 6.18. 

 

Figure 6.19: Frequency spectra of QRS complex and T wave for the mean electrogram (EGM) in the clean dataset. 

QRS amplitudes peaked at 10mV with the bulk of values around 2-4mV. T wave amplitudes peaked 

at 3.8mV with the bulk of values under 1mV. Distribution of the amplitudes from the clean 

electrogram dataset are shown in Figure 6.19. 
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Figure 6.20: Distribution of amplitudes for QRS complex and T waves across the whole clean electrogram (EGM) array (n = 

1158). 

Extracted noise occupied a broad band of frequencies upwards of 25Hz, peaking at approximately 

70Hz. Peak amplitude of noise was 0.21mV. Therefore, to reach similar spectral characteristics to the 

T wave, the period would have to be extended by a factor of approximately 16 and the amplitude 

increased by approximately factor 20. The noise spectrum is displayed in Figure 6.20. 
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Figure 6.21: Frequency spectrum of extracted noise used in this simulation 

Synthetic noise characteristics 

Following interpolation and multiplication, 400 noise samples were created with different frequency 

spectra and amplitudes. These are shown in Figure 6.22. 

 

Figure 6.22: Four hundred noise signals with varying amplitudes and frequency. The asterisk (*) marks the original noise 

signal used to generate the other 399 synthetic signals. 
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These were then added to the electrograms, an example of which is demonstrated with the variant 

noise signals in Figure 6.23. Noise is easily visually detected when high frequency and high amplitude 

(Figure 6.23, bottom left). When noise is added that is closer to the spectra of a typical QRS complex 

or T wave, it is less obvious which components are part of the original clean electrogram.  

 

Figure 6.23: Four hundred noise signals with varying amplitudes and frequency added to an example clean electrogram. Top 

left – the original noise signal added to the clean electrogram (*). Bottom left: high frequency, high amplitude noise is easily 

identified as being abnormal – the electrogram is hardly identifiable. Bottom right: as the frequency aligns with the spectral 

peak of QRS complexes and T waves, it is progressively more difficult to determine whether signal components are noise or 

real parts of the clean electrogram. 

Simulation of signal and result averaging outcomes 

Mean difference from the ground truth over all 400 noise sets was 4.87 milliseconds for signal 

averaging and 5.22 milliseconds for result averaging (T-test p <0.00001). The distribution of method 

superiority is demonstrated in Figure 6.24. Signal averaging is superior in most amplitudes and 

frequencies, but result averaging has an advantage with noise around 1.5mV amplitude and lower 

dominant frequencies (>20Hz). 
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Figure 6.24: Distribution of signal vs result averaging superiority by noise frequency and amplitude characteristics. 

Millivolts, mV; Hertz, Hz. 

To understand the relationship between T wave morphology and error, the peak T wave gradient for 

each of the 232 electrograms studied was plotted against the mean error of all simulations for that 

electrogram. The results are shown in Figure 6.25. The range of errors with very low T wave 

gradients <0.01 millivolts/milliseconds can be ±100 milliseconds from ground truth. Excluding T wave 

gradients <0.01 or <0.02 millivolts/milliseconds would exclude 98 or 148 out of 232 electrograms (48 

or 63%) from analysis and reduce mean absolute error to 6.2 and 3.7 milliseconds respectively. 

The same analysis for only the original extracted noise source is shown in Figure 6.26. Error at lower 

gradients is reduced compared to the mean of all 400 noise sets. Excluding the 61 electrograms 

(26%) with peak T gradient <0.005 millivolts/millisecond would result in a mean absolute error of 

1.97 milliseconds. Increasing this threshold to 0.01 and 0.02 millivolts/milliseconds would give mean 

absolute errors of 1.95 and 1.59 milliseconds respectively. Below the 0.02 millivolts/milliseconds cut-

off, 50 of 148 (34%) of electrograms had mean absolute error ≤ 1.59 milliseconds. 
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Figure 6.25: The relationship between T wave peak gradient in 232 electrograms and error over all synthetic noise spectra 

and amplitudes. Top left – relationship between T wave gradient and error induced by noise alone. Top right – relationship 

between T wave gradient and error induced by autocorrelation inconsistency alone. Bottom left – distribution of T wave 

peak gradients. Bottom right – relationship between T wave gradient and error induced by a combination of noise and 

autocorrelation inconsistency. Electrogram, EGM.  

 

Figure 6.26: The relationship between T wave peak gradient in 232 electrograms and error over the original, extracted noise 

spectrum and amplitude. Top left – relationship between T wave gradient and error induced by noise alone. Top right – 

relationship between T wave gradient and error induced by autocorrelation inconsistency alone. Bottom left – distribution 

of T wave peak gradients. Bottom right – relationship between T wave gradient and error induced by a combination of noise 

and autocorrelation inconsistency. Electrogram, EGM. 
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6.2.4 Discussion 

In this experiment we examined the effect of synthetic noise on error in repolarization 

measurement. Compared with the real patient experimentation in the previous section, we have 

been able to both set a ‘ground truth’ and finely control the frequency and amplitude characteristics 

of the synthetic noise. 

Noise characteristics 

There are several ways we can measure the frequency and amplitude of noise affecting a given 

electrogram. Each method has assumptions and weaknesses. First, a filter could be applied until a 

‘clean-looking’ electrogram is formed. The value of the data removed by the filter could then be said 

to be noise. This is highly subjective as the ground truth of the clean electrogram is unknown. The 

result of this analysis is simply the operator’s idea of what noise looks like. Second, signal averaging 

could be used to form a synthetic clean electrogram. This assumes that the signal (i.e. the true 

waveform shape) is always identical, that timing is matched exactly and that all noise is random: 

none of which are guaranteed. Third, an artificial patient model or cadaver could be used, but this 

assumes that all noise originates from the measurement equipment – not true as respiratory and 

muscle activity are known to be significant components of ECG artefact. Last, a live patient with 

temporarily ceased ventricular activation could be measured, for example after adenosine induced 

atrioventricular block. Whilst likely the most robust measurement, it is also riskiest for the patient 

and does not guarantee that non-cardiac signals are preserved. 

For this reason, assessment of methods should occur using a wide range of sample noise frequencies 

and amplitude. Figure 6.23 demonstrates that for frequencies and amplitudes approaching QRS and 

T wave values, it is difficult to say if an electrogram is noisy or there are genuine abnormalities in 

activation or repolarization that should be preserved for measurement.  

Performance of signal and result averaging 

Signal averaging outperformed result averaging both overall and for most noise frequencies and 

amplitudes tested. These frequencies and amplitudes included values in the range of representative 

T waves, so the amount of noise added can be judged to be as extensive as any readings analysed by 

cardiologists. Any higher amplitudes would obscure the T waves. 

For the purposes of further experimentation, this result would appear to recommend signal 

averaging as the default method for approximating ground truth.  
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Cut-offs for exclusion 

Exploratory analysis was performed on the simulation dataset to determine if an exclusion threshold 

could be set for T wave characteristics. As T wave peak gradient rises, mean absolute error falls. This 

is not a surprising result as larger, steeper signals should be less vulnerable to most noise and less 

altered by filtering. 

In our example dataset, large numbers of electrograms (26-63%) would have been discarded to 

remove the greatest outliers. Summary statistics such as whole-heart conduction could be drastically 

affected by discarding this many electrograms, and low amplitude ‘diseased’ electrograms could be 

preferentially deselected. This fact strengthens the case for simply excluding outlier values assuming 

they must be erroneous, for example by using the central 95% of total repolarization time. 

Limitations  

One caveat is that we do not know which extrinsic noise frequencies and amplitudes are truly most 

common (see section Noise Characteristics). In a minority of noise frequencies and amplitudes result 

averaging may be superior. 

This simulation also only considered a set of 232 T wave morphologies, which should be extended to 

ensure that any proposed cut-offs are applicable to wider groups. However, this experimental 

method could be used as a framework for future determination of the optimal cut-offs for T wave 

rejection. 

6.2.5 Conclusion 

Signal averaging appears superior to result averaging for the analysis of noisy electrograms – we 

would recommend that it be used in any electrogram analysis process which is prone to poor 

reproducibility. In a wider experiment it may be possible to determine optimal cut-offs for 

electrogram rejection based on the measured characteristics. The true extent of noise in our signal is 

difficult to know, as at certain frequencies and amplitudes, noise can be indistinguishable from 

pathological signs. This forces us to make the key assumption underlying signal averaging: that the 

ground truth is static. In the highly dynamic interplay of trigger and substrate for arrhythmia, this 

remains an inherent challenge to the measuring electrophysiological characteristics in diseased 

hearts. 
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Chapter 7: The arrhythmic substrate of 

Brugada syndrome 

 

7.1 Introduction 

Ventricular conduction stability was shown to successfully differentiate Brugada syndrome patients 

from controls in chapter 4, but electrophysiological differentiators of ventricular fibrillation survivors 

are still lacking. 

Invasive descriptions of the arrhythmic substrate in Brugada syndrome are becoming established, 

and even forming the basis of ablative treatment that has been shown to reduce short term 

arrhythmia inducibility (Brugada, Pappone et al. 2015). Electrocardiographic imaging (ECGi) has also 

been used to non-invasively describe the difference between patients with a spontaneous Type 1 

ECG, demonstrating ST segment elevation, delayed right ventricular outflow tract activation, 

prolonged recovery and steep repolarization gradients. 

Patients with spontaneous Type 1 ECG are a minority of modern Brugada syndrome cohorts – 

including many patients suffering cardiac arrest (Raju, Papadakis et al. 2011; Leong, Ng et al. 2019). 

The effect of previous ventricular fibrillation on epicardial electrophysiology is unknown. 

Using the automated and reproducible methods from chapter 6, we hypothesise that ECGi can 

demonstrate electrophysiological differences between Brugada patients and their unaffected 

relatives, and potentially be used to identify Brugada patients with a personal history of cardiac 

arrest. 

7.2 Methods 

7.2.1 Patient selection 

The patient cohort from Chapter 4 was re-analysed. To recapitulate: 

Fifty-two patients were selected from our cohort. 

4. 21 survivors of ventricular fibrillation or sustained ventricular tachycardia and 

haemodynamic compromise with Brugada syndrome (‘BrS VF’). 
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5. 20 patients with Brugada syndrome without previous ventricular fibrillation or sustained 

ventricular tachycardia (‘BrS’) 

6. 11 asymptomatic relatives of patients with Brugada syndrome, proven not to have the same 

condition by a negative Ajmaline challenge reaching dose endpoint of 1mg/kg (up to 120mg 

total dose). 

Exclusion criteria were identical to those described in Chapter 4. 

7.2.2 Exercise ECGi testing and epicardial reconstruction 

Each volunteer underwent the following procedures as detailed in Chapter 2: Methods: 

• Drug cessation if necessary 

• Torso preparation and vest application 

• Maximal Bruce protocol exercise testing 

• Supine recovery for a minimum 10 minutes or to return of resting pulse rate 

• Low dose-CT scan of chest 

• Epicardial reconstruction of electrograms. 

7.2.3 Measures of epicardial electrophysiology 

Measurements were made in anatomical subdivisions of the epicardial shell as well as the whole 

heart. Magnitude, spread and gradient measures were calculated for each of activation and 

repolarization in these subdivisions for both exercise and recovery. 

Finite impulse response filtering, signal averaging and electrogram segmentation by convolutional 

neural network were performed as described in Chapter 6. 

To better understand the electrophysiology of the three groups, three domains were defined for 

analysis: 

1. The mean of activation or repolarization times was used to describe overall conduction or 

repolarization delay. 

2. The central 95% range of activation or repolarization times was used to describe conduction 

or repolarization dispersion. 

3. The mean gradient of activation or repolarization times in space was used to detect the 

presence of steep gradients in conduction or repolarization. 
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7.2.3.1 Activation measures 

QRS complex start for each reconstructed epicardial electrogram was predicted by the convolutional 

neural network. The 2.5th percentile of all electrogram QRS starts was taken to represent whole-

heart activation start in order to exclude prediction outliers. 

Local activation time was defined as the steepest negative deflection, or 𝑚𝑎𝑥 (−
𝑑𝑉

𝑑𝑡
) of the 

electrogram QRS complex. Whole-heart activation start was used as the reference timing, and the 

mean was calculated. Spread was measured by the central 95% range of activation times to exclude 

likely outliers. 

For two neighbouring vertices 𝑖 and 𝑗 on the epicardial shell, the activation gradient in 

milliseconds/millimeter can be expressed as 𝑔 =  
𝐴𝑇𝑖−𝐴𝑇𝑗

𝑑(𝑖,𝑗)
, where 𝐴𝑇 is the local activation time for a 

given vertex, and 𝑑(𝑖, 𝑗) is the Euclidean distance between the vertices in 3-dimensional space. 

Euclidean distances were calculated using the Pythagorean formula 𝑑(𝑖, 𝑗) =

 √(𝑖1 − 𝑗1)2 + (𝑖2 − 𝑗2)2 + (𝑖3 − 𝑗3)2 where the coordinates of vertices 𝑖 and 𝑗 are (𝑖1, 𝑖2, 𝑖3) and 

(𝑗1, 𝑗2, 𝑗3) respectively. To determine the local mean gradient for a given vertex, this calculation was 

performed for all neighbouring vertices within a given distance and averaged. The mean of these 

local gradients could then be expressed over the whole heart or within an anatomical segment. 

Exploratory testing in 6 patients using multiple search distances revealed that 5 millimeters allowed 

the whole-heart gradient to stabilize for each patient with no advantage to searching further (Figure 

7.1). Using a 5 mm search distance, Figure 7.2 demonstrates how the mean gradient measure can 

numerically express irregularities in conduction seen in traditional activation maps. 
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Figure 7.1: To determine optimal search distance to express activation gradients over, search distances were increased from 

0 to 10 millimetres. Under 5 millimetres, changes in search distance were accompanied by poor reproducibility for repeat 

measurement. At 5 millimetres and above, gradients were consistently replicated. Activation time, AT. 
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Figure 7.2: To illustrate the visual implications of mean activation gradient, three example segments of activation maps are 

shown. On the left, smooth transition between two closely activating areas produces the lowest gradient of 0.14ms/mm. In 

the middle two contiguous areas separated by a line of block under the left anterior descending artery (black line, surrogate 

for septum) produces an intermediate gradient of 0.36ms/mm. On the right, patchy areas of late conduction embedded 

within early activation produce the highest gradient of 0.88ms/mm. 

 

7.2.3.2 Repolarization measures 

Local repolarization time was defined as the steepest negative deflection, or 𝑚𝑎𝑥 (
𝑑𝑉

𝑑𝑡
) of the 

electrogram T wave. Whole-heart activation start was used as the reference timing, and the mean 

was calculated. Spread was measured by the central 95% range of repolarization times to exclude 

likely outliers. Activation recovery intervals (ARI) were also calculated for each vertex as 𝐴𝑅𝐼 =

𝐴𝑇 − 𝑅𝑇 where 𝐴𝑇 is the local activation time and 𝑅𝑇 is the local repolarization time. Mean and 

central 95% range were calculated. 

Repolarization time was used in the measures of delay and dispersion to closer reflect the spatial 

variation in refractoriness at any given point in time. As spatial information is included in the 

gradient, activation recovery interval was used for gradient calculations to accentuate any deviation 

from normal action potential duration gradients seen in normal tissue (Myles, Bernus et al. 2010). 
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Corrections for heart rate were made using the Fridericia formula. Gradients were also calculated in 

a similar method to the activation times for rate-corrected activation recovery intervals only. Search 

distance was preserved at 5mm for consistency. 

7.2.3.3 Surface measures 

To ensure direct concordance with the epicardial measurements, raw surface ECG data was 

extracted from the CardioINSIGHT™ vest alongside reconstructed potentials. The visually cleanest 

body surface signal from vest electrodes 71-79 was selected as a surrogate for V2 on a 12 lead ECG. 

As the central terminal for the CardioINSIGHT™ vest is only an approximation of Wilson’s, no 

comments were made on morphology and the measurements were made of timings only. 

Heart rate, QRS duration, QT interval and correction by Fridericia formula were obtained for 

comparison to the epicardial measurements using a PyQt5 based graphical user interface. 

7.2.3.4 Anatomical subdivisions 

Left and right ventricle divisions were made using the left anterior descending artery as a surrogate 

for the septum as this cannot be segmented from the non-contrast scans used by CardioINSIGHT™. 

The right ventricular outflow tract was defined as the area of the right ventricle immediately 

proximal to the pulmonary trunk. 

To ensure concordance between exercise and recovery epicardial reconstructions, epicardial shell 

coordinates were saved to a custom file per-patient denoting the vertices assigned to each segment. 

These could then be loaded for each new beat, ensuring identical subdivisions of anatomy. 

7.2.4 Statistical analysis 

Three-way comparisons were made using the Kruskal-Wallis test, and pairwise comparisons made 

using the Wilcoxon rank-sum test. Significance was defined as p < 0.05. Any significant three-way 

comparisons were further examined for pairwise significance.  

Repeat analysis was performed excluding patients exhibiting a Type 1 ECG at any time to assess 

electrophysiological differences in patients with a concealed pattern. 

7.3 Results 

7.3.1 Patient characteristics and surface measures 

Study groups were not significantly different in gender balance, age, heart rates and peak exercise or 

recovery. QRS durations were also not significantly different during exercise or recovery. Corrected 
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QT intervals at peak exercise were however different for both BrS VF versus BrS and BrS VF versus 

BrS relatives (means 372.4, 340.7 and 332.1 milliseconds, pairwise comparisons p = 0.04, p = 0.011 

respectively). QTc for peak exercise was not significantly different between BrS and BrS relatives (p = 

0.33). Corrected QT intervals at end recovery were different between BrS VF and BrS relatives 

(means 415.8 and 376.1 milliseconds, p = 0.012). Comparisons of BrS VF versus BrS and BrS versus 

BrS relatives did not yield a significant difference (pairwise comparisons p = 0.093 and 0.33 

respectively).  

There was a significant difference between the proportion of electrograms selected by the 

automated method as suitable for analysis. BrS VF underwent the greatest deselection, followed by 

BrS then BrS relative (p = 0.04). 

Table 7.1: Characteristics of volunteers undergoing electrocardiographic imaging exercise testing. Peak and recovery phase 

heart rates were those when signal was clean enough for measurement using the electrocardiographic imaging system. 

*Spontaneous type 1 ECG was defined as positive if the ECG pattern were seen during the exercise test or any ECG recording 

from clinic. Brugada syndrome, BrS; Brugada ventricular fibrillation or haemodynamically unstable sustained ventricular 

tachycardia survivor, BrS VF; Electrocardiogram, ECG. 

Parameter BrS VF  BrS BrS relative p-value 

Males (proportion) 85.7% 75% 72.7% 0.60 

Age (years, mean) 46.9 46.1 45.5 0.93 

Spontaneous type 1 ECG (proportion)* 23.8% 15.0% - 0.21 

Syncope (proportion) 14.3% 15.0% - 0.41 

Peak phase heart rate (bpm, mean) 145.4 144.1 135.3 0.39 

Peak phase QRS duration (ms, mean) 103.3 100.8 88.4 0.26 

Peak phase corrected QT interval (ms, 

mean) 

372.4 340.7 332.1 0.02 

Recovery phase heart rate (bpm, mean) 91.5 91.8 96.1 0.16 

Recovery phase QRS duration (ms, 

mean) 

113.0 118.6 101.1 0.09 

Recovery phase corrected QT interval 

(ms, mean) 

415.8 390.4 376.1 0.03 

Electrograms automatically selected for 

analysis (proportion) 

92.4% 92.6% 95.5% 0.04 
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7.3.2 Activation 

Full results are summarized in Table 7.2. 

7.3.2.1 Peak exercise 

During peak exercise, the three groups differed significantly in mean whole heart activation time 

(mean times BrS VF = 56.8ms, BrS = 52.5ms, BrS relatives = 49.8ms, p = 0.01). In the pairwise 

comparisons of Figure 7.3, BrS relatives were significantly different from BrS VF (p = 0.004) but not 

the BrS group (p = 0.21). The BrS VF group were also not significantly different from the BrS group (p 

= 0.08). The greatest difference in activation times was seen in the right ventricular segment (mean 

times BrS VF = 52.1ms, BrS = 46.8ms, BrS relative = 44.1ms, p = 0.009).  
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Figure 7.3: Comparison of whole heart mean activation time immediately following peak exercise between Brugada VF 

survivors (BrS VF), Brugada syndrome patients without a history of potentially lethal arrhythmia (BrS) and unaffected, 

asymptomatic relatives (BrS relatives). Local activation time was defined as the onset of the first epicardial QRS complex to 

the steepest  negative slope of the electrogram-QRS. The mean of all times across the heart is reported per patient.   

7.3.2.2 End recovery 

During end recovery, activation times differences widened (mean times BrS VF = 60.6ms, BrS = 

55.7ms, BrS relatives 52.4ms, p = 0.0008). In the pairwise comparisons of Figure 7.4, all three groups 

were significantly differentiated (BrS VF vs BrS, p = 0.017; BrS vs BrS relative, p = 0.016; BrS VF vs BrS 

relative, p = 0.0006). The greatest difference between groups was again seen in the right ventricle (p 
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= 0.0006); focusing on the right ventricular outflow tract and left ventricle also yielded significant 

results (p = 0.008 and p = 0.01 respectively). 

 

Figure 7.4: Comparison of whole heart mean activation time in end recovery between Brugada VF survivors (BrS VF), 

Brugada syndrome patients without a history of potentially lethal arrhythmia (BrS) and unaffected, asymptomatic relatives 

(BrS relatives). Local activation time was defined as the onset of the first epicardial QRS complex to the steepest  negative 

slope of the electrogram-QRS. The mean of all times across the heart is reported per patient. 

In the right ventricle, all three groups were differentiated (BrS VF vs BrS, p = 0.02; BrS vs BrS relative, 

p = 0.02; BrS VF vs BrS relative, p = 0.0002). In the right ventricular outflow tract BrS VF and BrS 
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groups could not be significantly differentiated (p = 0.13) and in the left ventricle the BrS and BrS 

relatives could not be significantly differentiated (p = 0.21). 

Table 7.2: Comparison of automated epicardial activation measurements between Brugada VF survivors (BrS VF), Brugada 

syndrome patients without a history of potentially lethal arrhythmia (BrS) and unaffected, asymptomatic relatives (BrS 

relatives). 

Measure BrS VF BrS BrS relative p-value 

Peak exercise 

Whole heart  

Mean whole heart activation time 

(ATmean, milliseconds) 

56.8 52.5 49.8 0.01 

Whole heart total activation time 

(TAT95, milliseconds) 

56.6 46.3 47.1 0.55 

Whole heart mean activation gradient 

(AT-Gradientmean, 

millisecond/millimeters) 

0.46 0.41 0.39 0.81 

Right ventricular outflow tract (RVOT) 

Mean RVOT activation time (RVOT-

ATmean, milliseconds) 

50.5 48.5 45.8 0.43 

RVOT total activation time (RVOTAT95, 

milliseconds) 

34.4 30.0 29.9 0.97 

RVOT mean activation gradient (RVOT-

AT-Gradientmean, 

millisecond/millimeters) 

0.53 0.55 0.62 0.98 

Right ventricle (RV) 

Mean RV activation time (RV-ATmean, 

milliseconds) 

52.1 46.8 44.1 0.009 

RV total activation time (RVAT95, 

milliseconds) 

46.9 38.1 44.4 0.47 

RV mean activation gradient (RV-AT-

Gradientmean, millisecond/millimeters) 

0.46 0.38 0.39 0.81 

Left ventricle (LV) 
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Mean LV activation time (LV-ATmean, 

milliseconds) 

62.0 58.5 55.9 0.07 

LV total activation time (LVAT95, 

milliseconds) 

53.9 46.6 42.2 0.20 

LV mean activation gradient (LV-AT-

Gradientmean, millisecond/millimeters) 

0.45 0.42 0.39 0.42 

End recovery 

Whole heart 

Mean whole heart activation time 

(ATmean, milliseconds) 

60.6 55.7 52.4 0.0008 

Whole heart total activation time 

(TAT95, milliseconds) 

57.2 46.9 43.9 0.07 

Whole heart mean activation gradient 

(AT-Gradientmean, 

millisecond/millimeters) 

0.47 0.42 0.43 0.91 

Right ventricular outflow tract (RVOT) 

Mean RVOT activation time (RVOT-

ATmean, milliseconds) 

55.3 50.7 46.1 0.008 

RVOT total activation time (RVOTAT95, 

milliseconds) 

37.2 28.3 23.7 0.54 

RVOT mean activation gradient (RVOT-

AT-Gradientmean, 

millisecond/millimeters) 

0.76 0.54 0.43 0.27 

Right ventricle (RV) 

Mean RV activation time (RV-ATmean, 

milliseconds) 

55.6 50.1 46.1 0.0006 

RV total activation time (RVAT95, 

milliseconds) 

43.0 36.2 34.2 0.87 

RV mean activation gradient (RV-AT-

Gradientmean, millisecond/millimeters) 

0.44 0.41 0.38 0.53 

Left ventricle (LV) 
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Mean LV activation time (LV-ATmean, 

milliseconds) 

65.9 62.0 59.2 0.01 

LV total activation time (LVAT95, 

milliseconds) 

55.8 47.3 46.3 0.13 

LV mean activation gradient (LV-AT-

Gradientmean, millisecond/millimeters) 

0.49 0.42 0.46 0.21 

 

7.3.3 Repolarization 

Full results are summarized in Table 7.3. 

7.3.3.1 Peak exercise 

During peak exercise the three groups were differentiated significantly by whole heart total 

corrected repolarization time (mean ranges BrS VF = 153.8ms, BrS = 133.7ms, BrS relatives = 

111.5ms, p = 0.001). In the pairwise comparisons of Figure 7.5, the BrS VF and BrS groups could not 

be significantly differentiated (p = 0.24), but the BrS relatives were significantly differentiated from 

them both (p = 0.0048, 0.049 against BrS VF and BrS respectively). This was most exaggerated in the 

right ventricle, where all three groups were differentiated significantly (BrS VF vs BrS, p = 0.04; BrS vs 

BrS relative, p = 0.04; BrS VF vs BrS relative, p = 0.0027), and less so in the left ventricle, where BrS 

VF and BrS groups could not be significantly differentiated (p = 0.23). 



210 
 
 

 

 

Figure 7.5: Comparison of whole heart total repolarization time immediately following peak exercise between Brugada VF 

survivors (BrS VF), Brugada syndrome patients without a history of potentially lethal arrhythmia (BrS) and unaffected, 

asymptomatic relatives (BrS relatives). Local repolarization time was defined as the onset of the first epicardial QRS 

complex to the steepest positive slope of the electrogram-T wave. The central 95% range across the heart is reported per 

patient. Correction for heart rate was made using the Fridericia method. 

Mean repolarization time of the left ventricle weakly differentiated the BrS relatives from BrS VF and 

BrS groups (mean times BrS VF = 283.8ms, BrS = 269.9ms, BrS relatives = 226.9ms, p = 0.02). This 

was not in the context of a detectable whole heart difference (p = 0.07). 

Whole heart repolarization gradients were significantly steeper in Brugada patients than BrS 

relatives (mean gradients BrS VF = 1.86ms/mm, BrS = 1.68ms/mm, BrS relatives = 1.39ms/mm, p = 
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0.016). In the pairwise comparisons of Figure 7.6 the BrS relatives were significantly differentiated 

from BrS VF and BrS groups (p = 0.0048, 0.049 respectively) but BrS VF patients could not be 

differentiated from BrS patients (p = 0.24). This effect was significant only in the right ventricle (p = 

0.01). Pairwise significant differences again only existed between BrS relatives and both Brugada 

groups (p = 0.0073 against BrS VF and p = 0.032 against BrS).  

 

Figure 7.6: Comparison of whole heart total repolarization time in end recovery between Brugada VF survivors (BrS VF), 

Brugada syndrome patients without a history of potentially lethal arrhythmia (BrS) and unaffected, asymptomatic relatives 

(BrS relatives). Local repolarization time was defined as the onset of the first epicardial QRS complex to the steepest positive 

slope of the electrogram-T wave. The central 95% range across the heart is reported per patient. Correction for heart rate 

was made using the Fridericia method. 
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Figure 7.7: Comparison of whole heart corrected activation recovery interval (ARI) gradients immediately following peak 

exercise between Brugada VF survivors (BrS VF), Brugada syndrome patients without a history of potentially lethal 

arrhythmia (BrS) and unaffected, asymptomatic relatives (BrS relatives). ARI was defined as the steepest negative slope in 

the electrogram-QRS to the steepest positive slope in the electrogram-T wave. Gradients between individual nodes are 

calculated by the difference in ARI divided by the Euclidean distance between them. Each individual node is assigned the 

mean gradient against all neighbours within a search distance of 5mm and the mean value is reported across the heart for 

each patient. Correction for heart rate was made using the Fridericia method. 

7.3.3.2 End recovery 

During end recovery, whole heart repolarization times were significantly different across the groups 

(mean times BrS VF = 334.4ms, BrS = 319.2ms, BrS relatives = 317.7ms, p = 0.048). Pairwise 
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differences only existed between the two Brugada groups (p = 0.028) whilst BrS relatives could not 

be differentiated for either group (p = 0.061 against BrS VF, p = 0.82 against BrS). Significant 

differences were seen in the right ventricular outflow tract (p = 0.0003) and right ventricle (p = 0.03). 

In the right ventricular outflow tract, mean repolarization time significantly differentiated both BrS 

VF from BrS (means 358 vs 325ms, p = 0.012) and BrS relatives (means 358 vs 306ms, p = 0.00002). 

BrS and BrS relatives were not significantly different in the RVOT or right ventricle (p = 0.1, 9,56 

respectively).  In the right ventricle, BrS VF were significantly differentiated from BrS (means 346 vs 

328ms, p = 0.026) and BrS relatives (means 346 vs 325ms, p = 0.031). 

Whole heart total repolarization time was also different in end recovery (mean ranges BrS VF = 

147.4ms, BrS = 134.2ms, BrS relatives = 116.0ms, p = 0.004). The pairwise comparisons of Figure 7.7 

demonstrated that BrS relatives were differentiated from both Brugada groups (p = 0.001 against 

BrS VF, p = 0.032 against BrS). The two Brugada groups could not be differentiated (p = 0.12). The 

right ventricle also demonstrated this significant difference in total repolarization time (p = 0.01) 

whereas the right ventricular outflow tract and left ventricle did not (p = 0.52 and 0.08 respectively).  

Table 7.3: Comparison of automated epicardial repolarization measurements between Brugada VF survivors (BrS VF), 

Brugada syndrome patients without a history of potentially lethal arrhythmia (BrS) and unaffected, asymptomatic relatives 

(BrS relatives). 

Measure BrS VF BrS BrS relative p-value 

Peak exercise 

Whole heart 

Mean whole heart corrected 

repolarization time (RTcmean, 

milliseconds) 

295.3 282.4 275.4 0.07 

Whole heart total corrected 

repolarization time (TRT95, 

milliseconds) 

153.8 133.7 111.5 0.001 

Whole heart mean corrected ARI 

gradient (ARIc-Gradientmean, 

millisecond/millimeters) 

1.86 1.68 1.39 0.016 

Right ventricular outflow tract (RVOT) 
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Mean RVOT corrected repolarization 

time (RVOT-RTcmean, milliseconds) 

315.6 295.0 279.9 0.05 

RVOT total corrected repolarization 

time (RVOTRT95, milliseconds) 

115.9 113.2 104.6 0.20 

RVOT mean corrected ARI gradient 

(RVOT-ARIc-Gradientmean, 

millisecond/millimeters) 

2.71 2.49 2.54 0.81 

Right ventricle (RV) 

Mean RV corrected repolarization time 

(RV-RTcmean, milliseconds) 

306.1 294.6 283.5 0.17 

RV total corrected repolarization time 

(RVRT95, milliseconds) 

154.2 132.9 117.3 0.004 

RV mean corrected ARI gradient (RV-

ARIc-Gradientmean, 

millisecond/millimeters) 

2.09 1.77 1.43 0.01 

Left ventricle (LV) 

Mean LV corrected repolarization time 

(LV -RTcmean, milliseconds) 

283.8 269.9 226.9 0.02 

LV total corrected repolarization time 

(LVRT95, milliseconds) 

141.7 127.9 105.8 0.009 

LV mean corrected ARI gradient (LV-

ARIc-Gradientmean, 

millisecond/millimeters) 

1.57 1.59 1.35 0.42 

End recovery 

Whole heart 

Mean whole heart corrected 

repolarization time (RTcmean, 

milliseconds) 

334.4 319.2 317.7 0.048 

Whole heart total corrected 

repolarization time (TRT95, 

milliseconds) 

147.4 134.2 116.0 0.004 
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Whole heart mean corrected ARI 

gradient (ARIc-Gradientmean, 

millisecond/millimeters) 

1.89 1.77 1.57 0.13 

Right ventricular outflow tract (RVOT) 

Mean RVOT corrected repolarization 

time (RVOT-RTcmean, milliseconds) 

358.8 324.7 306.4 0.0003 

RVOT total corrected repolarization 

time (RVOTRT95, milliseconds) 

110.2 121.5 106.2 0.40 

RVOT mean corrected ARI gradient 

(RVOT-ARIc-Gradientmean, 

millisecond/millimeters) 

2.81 2.89 2.32 0.52 

Right ventricle (RV) 

Mean RV corrected repolarization time 

(RV-RTcmean, milliseconds) 

345.7 327.5 324.8 0.03 

RV total corrected repolarization time 

(RVRT95, milliseconds) 

145.9 136.1 112.4 0.01 

RV mean corrected ARI gradient (RV-

ARIc-Gradientmean, 

millisecond/millimeters) 

1.97 1.82 1.53 0.12 

Left ventricle (LV) 

Mean LV corrected repolarization time 

(LV -RTcmean, milliseconds) 

322.1 310.1 310.6 0.09 

LV total corrected repolarization time 

(LVRT95, milliseconds) 

132.8 123.4 113.5 0.08 

LV mean corrected ARI gradient (LV-

ARIc-Gradientmean, 

millisecond/millimeters) 

1.87 1.71 1.58 0.34 

 

7.3.4 Visual representations of automated measurements 

Activation and repolarization maps from two patients in both peak exercise and end recovery are 

displayed in Figure 7.8: one with Brugada syndrome and a Brugada relative – normal heart. These 

patients have been selected to help visualize the group differences measured by the automated 
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measures. The Brugada syndrome heart has delayed conduction and slower repolarization than the 

normal heart. Although activation and repolarization gradients were often not significantly different 

between the groups, lines of steep activation or repolarization change can be visualized in the 

Brugada epicardium, contrasting with the smooth graduation of colours in the normal heart. Upon 

inspection of electrograms from the right ventricular outflow tract, the Brugada electrograms clearly 

demonstrate abnormal ST segment elevation followed by T wave inversion, not seen in the 

electrograms from the normal heart subject. 

 

Figure 7.8: Comparison of non-invasive epicardial maps between a patient with Brugada syndrome and an asymptomatic, 

unaffected relative. Scales are matched for activation and repolarization separately to aid comparison. Examples are 

selected to illustrate the differences seen in the overall cohort. In activation, the Brugada syndrome heart (left panel) has 

delayed conduction and repolarization compared to the normal heart (right panel). The normal heart appears to have a 

smoother colour progression, not indicative of steep activation or repolarization gradients that may be seen in the Brugada 

heart. Right ventricular outflow tract (RVOT) electrograms are displayed for both hearts, with the Brugada heart exhibiting 

abnormal ST segment elevation. Right ventricle, RV; Left ventricle, LV; Left anterior descending artery, LAD. 

7.3.5 Differentiation of concealed Brugada syndrome patients from unaffected relatives 

33 Brugada patients from our cohort had never been seen to exhibit a spontaneous Type 1 ECG. 

They were compared to the 11 unaffected Brugada relatives. Concealed Brugada values are reported 

first. 
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7.3.5.1 Peak exercise 

Whole heart mean activation time only trended towards significance between concealed Brugada 

patients and unaffected relatives (means ±SD: 54.1 ±6.9ms vs 49.9 ±3.5ms, p = 0.057). Total 

activation time was not significantly different (means ±SD: 48.9 ±18.9ms vs 47.1 ±8.3ms, p = 0.53). 

Whole heart activation gradients were also similar (means ±SD: 0.40 ±0.2ms/mm vs 0.39 

±0.1ms/mm, p = 0.87). 

Whole heart mean repolarization time was not significantly different between groups (means ±SD: 

287 ±23.0ms vs 275 ±18.9ms, p = 0.15). However, total repolarization time was significantly higher in 

the concealed Brugada group (means ±SD: 139 ±30.0ms vs 112 ±16.9ms, p = 0.0007). Repolarization 

gradients were also significantly higher in the concealed Brugada group (means ±SD 1.7 ±0.4ms/mm 

vs 1.4 ±0.3ms/mm, p = 0.029). 

7.3.5.2 End recovery 

Whole heart mean activation time was longer in concealed Brugada patients than unaffected 

relatives (means ±SD: 57.6 ±5.9ms vs 52.5 ±3.3ms, p = 0.0022). Total activation time was not 

significantly different (means ±SD: 49.1 ±15.1ms vs 44.0 ±5.6ms, p = 0.55). Likewise, whole heart 

activation gradients were similar (means SD: 0.4 ±0.2ms/mm vs 0.4 ±0.2ms/mm, p = 0.83). 

Whole heart mean repolarization time was not significantly different between groups (means ±SD: 

326 ±20.5ms vs 318 ±14.8ms, p = 0.3). However, total repolarization time was significantly higher in 

the concealed Brugada group (means ±SD: 136 ±25.2ms vs 116 ±12.2ms, p = 0.0094). Repolarization 

gradients were not higher in the concealed Brugada group (means ±SD 1.8 ±0.5ms/mm vs 1.6 

±0.3ms/mm, p = 0.083). 

7.3.5.3 Differences in VF survivors, BrS without potentially lethal arrhythmia and relatives when 

spontaneous Type 1 ECGs are excluded 

Mean activation times were higher in BrS VF survivors than Brugada relatives in peak exercise (effect 

size 6.1ms, p = 0.02) and end recovery (effect size 6.7ms, p = 0.006). BrS and BrS relatives were 

differentiated by mean activation time in end recovery only (effect size = 3.6ms, p = 0.0093). 

Repolarization dispersion was greater in BrS VF survivors than Brugada relatives in peak exercise 

(effect size 30ms, p = 0.0022) and end recovery (effect size = 20ms, p = 0.009).  Repolarization 

gradients were greater in BrS VF survivors than Brugada relatives in peak exercise only (effect size 

0.32ms/mm, p = 0.026). BrS and BrS relatives were differentiated by repolarization dispersion in 

peak exercise (effect size = 23ms, p = 0.004) and end recovery (effect size = 20ms, p = 0.047) 
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Once spontaneous Type 1 ECGs were excluded, there were no significant differences between 

Brugada VF survivors and other Brugada syndrome patients.  

7.3.6 Differentiation of spontaneous Type 1 ECG Brugada patients from unaffected relatives 

8 Brugada patients from our cohort had been seen to exhibit a spontaneous Type 1 ECG either 

during routine follow up or during ECGi exercise testing. They were compared to the 11 unaffected 

Brugada relatives. Spontaneous Brugada values are reported first. 

7.3.6.1 Peak exercise 

Whole heart mean activation time was significantly longer in spontaneous Brugada patients 

compared to unaffected relatives (means ±SD: 57.3 ±6.1ms vs 49.9 ±3.5ms, p = 0.007). Total 

activation time was not significantly different (means ±SD: 62.9 ±16.4ms vs 47.1 ±8.3ms, p = 0.09). 

Whole heart activation gradients were higher in the Brugada patients (means ±SD: 0.56 ±0.2ms/mm 

vs 0.39 ±0.1ms/mm, p = 0.03). 

Whole heart mean repolarization time was significantly longer in spontaneous Brugada syndrome 

(means ±SD: 295 ±22.2ms vs 275 ±18.9ms, p = 0.034). Total repolarization time was also significantly 

longer in the spontaneous Brugada group (means ±SD: 167 ±43.6ms vs 112 ±16.9ms, p = 0.0036). 

Repolarization gradients were also significantly higher in the concealed Brugada group (means ±SD 

2.1 ±0.7ms/mm vs 1.4 ±0.3ms/mm, p = 0.0012). 

7.3.6.2 End recovery 

Whole heart mean activation time was longer in spontaneous Brugada patients than unaffected 

relatives (means ±SD: 60.9 ±7.0ms vs 52.5 ±3.3ms, p = 0.009). Total activation time was significantly 

longer (means ±SD: 64.8 ±17.7ms vs 44.0 ±5.6ms, p = 0.012). Whole heart activation gradients were 

longer in spontaneous Brugada patients (means ±SD: 0.6 ±0.2ms/mm vs 0.4 ±0.2ms/mm, p = 0.04). 

Whole heart mean repolarization time was not significantly different between groups (means ±SD: 

329 ±22.5ms vs 318 ±14.8ms, p = 0.27). However, total repolarization time was significantly higher in 

the spontaneous Brugada group (means ±SD: 162 ±40.9ms vs 116 ±12.2ms, p = 0.001). 

Repolarization gradients were not higher in the Brugada group (means ±SD 2.0 ±0.5ms/mm vs 1.6 

±0.3ms/mm, p = 0.11). 

7.3.7 Correlation of activation and repolarization measures within-patient 

To determine the independence of activation and repolarization measures within patients, 

correlation plots and resultant Pearson correlation coefficients were examined in Figure 7.9. The 
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range of correlation coefficients between any activation and any repolarization measure was 0.13 to 

0.51. 

As expected, activation measures correlated best with other activation measures (coefficients 0.68 

to 0.82). Repolarization measures showed more independence (coefficients 0.23 to 0.61). 

 

Figure 7.9: Correlation matrix plot between activation and repolarization measures in Brugada syndrome patients and their 

unaffected relatives. The diagonal squares going from top left to bottom right contain histograms of activation metrics (top 

three) and repolarization metrics (bottom three). Squares to the bottom left of this diagonal contain scatter plots depicting 

the interaction between two metrics. Squares to the top right of this diagonal contain the Pearson correlation coefficient 

and the significance (***: p <0.001, **: p<0.01, *: p<0.05, · [dot] : p <0.1, [empty]: p >0.1).   

Table 7.4: Summary for pairwise significance of automated epicardial measurements differentiating Brugada syndrome 

patients with and without potentially lethal arrhythmia (BrS VF, BrS), and unaffected asymptomatic Brugada relatives (BrS 

relative). Significance levels in brackets indicate the values once spontaneous Type 1 ECGs are excluded. Significance: * = 

p>0.05, ** = p>0.005, *** = p>0.0005. 

Measure BrS VF vs BrS relative BrS vs BrS relative BrS VF vs BrS 

Peak exercise 

Activation delay ** (*)   
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Activation dispersion    

Activation gradients    

Repolarization delay * (-)   

Repolarization dispersion *** (**) * (**)  

Repolarization gradients ** (*) * (-)  

End recovery 

Activation delay ** (*) * (*) * (-) 

Activation dispersion * (-)   

Activation gradients    

Repolarization delay   * (-) 

Repolarization dispersion ** (*) * (*)  

Repolarization gradients    

 

Table 7.5: Summary for pairwise significance of automated epicardial measurements differentiating concealed Brugada 

syndrome patients and unaffected asymptomatic Brugada relatives (BrS relative). Significance: * = p>0.05, ** = p>0.005. 

Measure Concealed BrS vs BrS relative Spontaneous BrS vs BrS relative 

Peak exercise 

Activation delay  ** 

Activation dispersion   

Activation gradients  * 

Repolarization delay  * 

Repolarization dispersion ** * 

Repolarization gradients * * 

End recovery 

Activation delay ** ** 

Activation dispersion  * 

Activation gradients *  

Repolarization delay   

Repolarization dispersion * ** 

Repolarization gradients   
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7.4 Discussion 

In this subchapter we have compared basic electrophysiological measurements in patients with 

Brugada syndrome and their unaffected relatives. Unlike previous studies into epicardial Brugada 

electrophysiology, we have not stipulated that patients require a Type 1 ECG to take part and have 

also focused on the group surviving ventricular fibrillation. 

Table 7.4 summarizes the pairwise differences between the group epicardial measurements. Table 

7.5 summarizes the pairwise differences between concealed Brugada syndrome patients and 

unaffected relatives.  

7.4.1 Mechanisms in Brugada syndrome: the depolarization and repolarization hypotheses 

Two competing hypotheses exist for the mechanisms underlying Brugada syndrome – the 

depolarization and repolarization hypotheses. 

The depolarization hypothesis holds that conduction delay in the right ventricle leads to the Brugada 

syndrome phenotype, drawing on the use of sodium channel blockade to unmask the ECG pattern, 

the association with right bundle branch block (RBBB) and prolonged His-Ventricular intervals, the 

association with SCN5A and the detection of late potentials during contact epicardial mapping as 

evidence. The repolarization hypothesis counters that simultaneous monophasic action potential 

measurements of endo- and epicardium demonstrate deep notching of the epicardial action 

potential without conduction delay, and transmembrane potential measurements of canine wedge 

preparations demonstrate repolarization heterogeneity causing ST elevation and phase 2 re-entry 

leading to arrhythmia upon exposure to either flecainide and acetylcholine or pinacidil. 

These theories may not be mutually exclusive. The broad methodologies differ – contact 

electrograms for the depolarization hypothesis and action potentials for the repolarization 

hypothesis. Although conversion strategies are commonly used and accepted (such as activation-

recovery interval for 90% of action potential duration), significant variability is also noted (Haws and 

Lux 1990). It is also possible that Brugada syndrome may contain two sub-conditions, one 

repolarization dominant and the other depolarization dominant. 

ECGi has previously been used to differentiate the pathognomonic Type 1 Brugada ECG from right 

bundle branch block and normal ECG (Zhang, Sacher et al. 2015). Delayed right ventricular outflow 

tract activation, prolonged recovery time and steep repolarization gradients were found. Six patients 
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were measured with increased heart rate: outflow tract activation delay worsened but 

repolarization gradients lessened when compared to other areas of the heart.  

Surface ECG data for Brugada syndrome subjects undergoing exercise testing has previously revealed 

that QRS duration increases more in Brugada patients with an SCN5A mutation than either SCN5A 

negative or control subjects (Amin Ahmad, de Groot Elisabeth et al. 2009). Corrected QT was found 

to lengthen in Brugada patients during exercise and not return to baseline at end recovery, unlike 

matched controls who had corrected QT interval shortening on exercise and recovered fully. 

Our data for 11 patients with spontaneous Type 1 ECG demonstrated that whole heart activation 

times were longer both with and without exercise. Effect size was comparable at 8ms in recovery 

and 7.5ms in exercise. Activation dispersion was increased during recovery but not in exercise. 

Repolarization changes were evident during peak exercise – delay, increased dispersion and steep 

gradients were all noted – furthermore these changes were not as evident during recovery. Although 

the p-value of repolarization dispersion differences were lower in recovery (p = 0.001 vs 0.0052), the 

effect size was still larger in exercise (41 vs 37ms).  

Our data suggests that compared to unaffected relatives, exercise suppresses differences in 

activation dispersion in spontaneous Type 1 patients but increases the extent of repolarization 

changes. In concealed Brugada syndrome, activation delays are suppressed by exercise, but once 

again, repolarization changes are accentuated. This does not necessarily contrast with the other 

published ECGi data as their comparisons were made within-subject whereas we have made 

comparisons between BrS and control. Our data would suggest that the finding of poor recovery in 

corrected QT interval found in the ECG data is a combination of activation delay and greater 

repolarization dispersion. 

Both activation and repolarization changes have been demonstrated in this study, supporting 

neither hypothesis outright. By examining the correlation between markers of depolarization and 

repolarization we can determine whether patients with significant abnormalities in one domain also 

have greater abnormalities in the other, or whether the Brugada cohort might be a mixture of 

depolarization dominant and repolarization dominant patients.  

No correlation coefficient between a depolarization measure or a repolarization measure was above 

0.51, indicating that there should be a significant number of patients with greater repolarization 

abnormality than depolarization, and vice versa. This would support a conclusion that Brugada 
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syndrome may be a heterogenous diagnosis. This conclusion is also supported by the range of 

genetic mutations associated with the condition (Hedley, Jørgensen et al. 2009). 

7.4.2 Brugada syndrome beyond the Type 1 ECG 

Expected differences were demonstrated between patients with a spontaneous Type 1 ECG pattern 

at any time and unaffected relatives. Activation delay was present in both exercise and recovery, 

whilst steep gradients existed in exercise and greater dispersion in recovery. Greater repolarization 

dispersion was present in both test phases, whereas repolarization delay and steep gradients were 

primarily exercise related.  

Although the 12 lead ECGs for a concealed Brugada patient and an unaffected relative may be 

visually similar, the high-density body surface mapping used in ECGi may be sufficiently sensitive to 

differentiate the groups. Furthermore, previous exercise ECG work has shown that Brugada groups 

with predominantly concealed ECG (~80%) can demonstrate surface measurement differences with 

healthy controls (Amin Ahmad, de Groot Elisabeth et al. 2009). Sub-analysis for concealed Brugada 

syndrome only was not performed. 

Our exclusion of spontaneous Type 1 ECG for this sub-analysis was stringent. If a patient had 

exhibited spontaneous Type 1 pattern at any time (that is, even if their surface ECG during ECGi 

measurement was normal), they were excluded. From the remaining patients, several differences 

with unaffected relatives remained. Activation delay in end recovery was evident despite the lack of 

a significant difference between QRS duration on the surface ECG. Increased repolarization 

dispersion was present in both exercise and recovery, which tallies with the longer corrected QT 

intervals in Brugada patients, especially those with a personal history of life-threatening arrhythmia.  

Similar to our conclusions for the whole group, this indicates that depolarization and repolarization 

abnormalities exist in patients with concealed Brugada syndrome, and whilst recovery relatively 

accentuates the activation differences, repolarization differences are more evident in peak exercise. 

In a similar way to V-CoS in Chapter 4, these simple automated exercise ECGi measurements could 

inform diagnosis of Brugada syndrome without having to resort to the potentially dangerous sodium 

channel blocker challenge.  
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7.4.3 ECGi electrophysiological measurements for risk stratification of life-threatening 

arrhythmia 

Contrasting with the multiple differences with normal subjects, only two comparisons within 

Brugada syndrome proved to be statistically significant – activation delay and repolarization delay in 

recovery. However, when viewed with the exclusion of spontaneous type 1 subjects, these 

differences are no longer significant. It may be that the presence of a Type 1 ECG during analysis is a 

confounder in the difference between VF survivors and those without life threatening arrhythmia – a 

spontaneous Type 1 ECG was more common in the BrS VF group than the BrS group, but this did not 

reach significance (27.3% vs 14.3%, p = 0.27). 

It is plausible that no electrophysiological difference exists between these groups that can be elicited 

by ECGi exercise testing. This notion is backed up by difficult risk stratification by traditional 

measures mentioned Chapters 1 and 3 of this thesis, and that exercise is only one anecdotal trigger 

for arrhythmia – sleep, fever, drugs and large meals are also cited (Olde Nordkamp, Vink et al. 2015). 

More comprehensive ECGi testing including hyperthermia, sodium channel blockade and so on may 

well have a higher chance of eliciting a significant difference, but this must be balanced with the 

ethically acceptable risk to a research participant or a future patient.  

Alternatively, our sub-analysis may be simply underpowered. Evidence supporting this view comes 

from Table 7.4: we can see that concealed VF survivors have more differences from control than 

Brugada patients without life threatening arrhythmia. During exercise the difference between 

relatives and VF survivors is stronger for activation delay and repolarization gradients. If there are 

greater differences between the VF survivors and relatives than for the other Brugada patients, our 

small study may have failed to detect the difference between BrS VF and BrS groups.  

7.4.4 Limitations 

Due to the small number of patients tested in this analysis, it is not possible to draw definitive 

conclusions on the utility of ECGi measures for clinical applications such as diagnosis or risk 

stratification. Continuous 12-lead analysis was not undertaken to compare with ECGi measurements 

and this means that correlating the commonly used 12-lead ECG to ECGi findings is not easy. Further 

study would be possible to review the body surface traces from areas on the vest analogous to the 

traditional ECG lead positions. We were stringent with our exclusion of Type 1 ECG patients – 

rejecting any showing a spontaneous pattern at any point in their clinical follow up from concealed 

analyses regardless of what their ECG showed on the day of the test. Further review of the body 
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surface ECG from the vest could allow us to power the analysis better by including patients with 

previous spontaneous Type 1 pattern but concealed on the day. 

7.5 Conclusion 

Exercise ECG imaging can pick up multiple differences between Brugada patients and their 

unaffected relatives, even when surface ECG markers are not significantly different and when 

analysis is restricted to only concealed Brugada patients. This may form the basis for improved 

diagnosis of concealed Brugada syndrome with a lower risk to life than gold standard sodium 

channel blocker challenges. Furthermore, both activation and repolarization abnormalities can be 

detected, with some degree of independence from each other, suggesting that the diagnosis of 

Brugada syndrome may be more heterogenous than first thought.  

Differentiation of ventricular fibrillation survivors from Brugada patients without a personal history 

of life-threatening arrhythmia is more difficult and may be almost totally confounded by the higher 

prevalence of spontaneous Type 1 Brugada patterns in the VF survivors or inclusion of Brugada 

patients without current evidence of arrhythmias in our ‘control' BS group who then go on to 

develop fatal arrhythmias (noting event rates are low). For ECGi to become useful in risk 

stratification for sudden death, different stimuli should be considered to elicit measurable 

electrophysiological responses non-invasively.  
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Chapter 8: The arrhythmic substrate of 

hypertrophic cardiomyopathy  

8.1 Introduction 

Hypertrophic cardiomyopathy (HCM) is the commonest genetic cardiovascular disease. The most 

devastating sequela is sudden cardiac death – but accurate risk stratification remains a challenge.             

HCM has been mainly studied as a structural abnormality of the ventricles. The presence or absence 

of non-sustained ventricular tachycardia (NSVT) on 24-hour continuous ECG monitoring is the only 

electrophysiological marker backed by current guidelines (American College of Cardiology 

Foundation/American Heart Association Task Force on, American Association for Thoracic et al. 

2011; O'Mahony, Jichi et al. 2014). Yet NSVT has the highest hazard ratio of any of the risk factors – 

indicating the importance of electrophysiology in this condition (O'Mahony, Jichi et al. 2014). 

Electrophysiological markers of sudden death risk in HCM are affected by increased myocyte size, 

disarray and fibrosis causing slow and discontinuous conduction (Roberts and Sigwart 2005). Invasive 

paced fractionation, a marker of this disordered conduction, has already been shown an effective 

risk stratifier (Saumarez, Pytkowski et al. 2008).  

Non-invasively: longer QRS duration, corrected QTc and more complex T waves were found in HCM 

subjects than controls (Barletta, Lazzeri et al. 2004). ECG abnormalities correlate with structural 

changes detected on MRI (Fronza, Raineri et al. 2016). At the cellular level, repolarization 

abnormalities are detectable in human HCM models which are partially reversible with anti-

arrhythmic drugs (Passini, Minchole et al. 2016). 

ECG imaging (ECGi) has been used to non-invasively describe the epicardial arrhythmogenic 

substrate of HCM, finding greater activation dispersion in HCM than ischemic cardiomyopathy and 

healthy controls (Perez-Alday, Haq et al. 2020). Repolarization characteristics were not studied, nor 

were cardiac arrest survivors examined separately. The ability of ECGi to risk stratify sudden death in 

patients with HCM has not been prospectively established; a pilot study to determine useful 

biomarkers would be essential to that end. 
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To serve these gaps in our knowledge, we tested two hypotheses. First, that HCM is differentiable 

from controls using epicardial electrophysiological measures. Second, that VF/VT survivors are 

differentiable within the HCM cohort from those without a personal history of life-threatening 

arrhythmia. 

8.2 Methods 

Ethics were granted by the UK Health Research Authority and the Fulham Research Ethics 

Committee (London, UK) under references 14/LO/1318 and 17/LO/1660. 

8.2.1 Patient selection 

Sixty-nine patients were screened, approached, and recruited from cardiology clinics at Imperial 

College NHS Trust, Barts Health NHS Trust and Oxford University Hospitals NHS Trust in the United 

Kingdom: 

1. 17 survivors of ventricular fibrillation or sustained ventricular tachycardia and 

haemodynamic compromise with HCM (‘HCM VF/VT’). 

2. 20 patients with HCM without previous ventricular fibrillation or sustained ventricular 

tachycardia (‘HCM controls’) 

3. 10 survivors of ventricular fibrillation in the context of single vessel total occlusion and ST-

elevation, or critical three vessel disease. All patients had full revascularization, recovery of 

left ventricular function by echocardiographic criteria and return to full exercise capacity and 

asymptomatic status for >1 year (‘IHD VF controls’).  

4. 11 patients attending for clinically indicated ablation of benign ventricular ectopy (‘VE 

controls’) with ECGi guidance. These patients had normal echocardiography and/or MRI, no 

family history of cardiac electrical disease and no symptoms of cardiac ischemia. 

Recruitment and testing took place prior to ablation. 

5. 11 asymptomatic relatives of patients with Brugada syndrome (‘BrS relative controls’), 

proven not to have the same condition by a negative Ajmaline challenge reaching dose 

endpoint of 1mg/kg (up to 120mg total dose). 
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8.2.2 Exercise ECGi testing and epicardial mapping 

 

Figure 8.1: The activation-repolarization mapping process. (A) The 252-electrode sensor vest is applied to the patient 

undergoing maximal Bruce protocol exercise. Recordings are made during 10 minutes of supine recovery which is followed 

by non-contrast CT scan of chest (B). The CT scan is segmented (C, left) into a 3D mesh (C, right). A timestrip containing 10 

cardiac cycles from the recording are selected for analysis and body surface signals from the vest too noisy for analysis are 

identified (D, left), and removed from the vest recording (D, right). Epicardial electrograms are reconstructed and extracted 

to our custom software. In this mapping software, reconstructed electrograms (cf. the body surface signals from step D) are 

filtered for baseline wander (E, left). The user selects a template QRS-T complex and the software uses autocorrelation to 

search for the most similar 10 regions of interest (E, right). These 10 matched regions of interest containing the QRS 

complexes are signal averaged to a synthetic EGM per epicardial location (F). A pre-trained neural network identifies the 
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bounds of the QRS complex and the T wave for further processing (G, left). It does this by working out the probability that a 

given timepoint is within a P wave, QRS complex, T wave or the baseline based on its value and the values of its neighbours 

(G, right). EGMs with low amplitude relative to QRS or T waves with 3 or more deflections are rejected (indicative of poor 

interpretability, H). Following this, local activation and repolarization times can be calculated (I). Electrocardiographic 

imaging, ECGi; Computerized tomography, CT; three-dimensional, 3D; Electrogram, EGM; Convolutional neural network, 

CNN.  

The ECGi mapping process is graphically represented in Figure 8.1. Each volunteer was fitted with 

the appropriately sized 252 electrode CardioInsight™ vest based on their height and body shape, and 

a heart rate monitor. Volunteers exercised to peak effort (defined as exhaustion and exceeding 85% 

of predicted maximum heart rate) using the treadmill Bruce Protocol, then underwent 10 minutes of 

recording in a supine position. A non-contrast CT scan of the chest was performed. 

Epicardial EGM reconstruction has been previously described (Rudy and Lindsay 2015). A 3D mesh of 

the heart is derived from the CT scan alongside the position of each electrode in the vest. 

CardioInsight™ software then calculates epicardial EGMs by combining information from the body 

surface electrodes and the 3D coordinates from the CT derived mesh. Approximately 1,200 

epicardial electrograms could be extracted per 3D mesh.  

Peak exercise and 10 minutes of recovery were bookmarked at the time of testing. The earliest 10 

cardiac cycles considered sufficiently artefact-free for analysis were selected following each of these 

bookmarks. Heart rates were recorded for each of the sampled segments to detect inter-group 

differences. 

To reduce the effect of random noise, finite impulse response filtering and signal averaging were 

performed, summarizing each timestrip of 10 cardiac cycles to a single, signal averaged beat. To 

minimize user bias, electrogram segmentation and curation were fully automated. We developed a 

convolutional neural network (CNN) based on an existing model to bound QRS complexes and T 

waves (Jia, Zhao et al. 2019). Our CNN was trained on over 20,000 labelled beats from a separate 

public database (Kalyakulina, Yusipov et al. 2018). Once the neural network had estimated the start 

and end bounds of QRS and T waves for each electrogram, the overall bounds were taken from the 

2.5th to 97.5th percentiles of times to diminish outlier effects. Elimination of electrograms unsuitable 

for analysis was automated to two pre-specified criteria: T-waves less than 3% the size of the QRS 

complex or having more than 3 deflections (Wyatt, Burgess et al. 1981). 
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8.2.3 Analysis of surface ECG markers 

To examine for body surface recording signs of conduction pathology, QRS durations were measured 

for the peak exercise and recovery datasets. The vest output rather than conventional 12-lead was 

used to avoid timing issues with the exercise machine output. The positional equivalent of 12-lead 

ECG V2 was used (electrodes 71-76 on the CardioINSIGHT™ vest), with the first beat from the sample 

as the representative measurement.  

8.2.4 Measures of epicardial electrophysiology 

For a given epicardial electrogram, local activation time was defined as the period from QRS start to 

steepest negative point of the QRS complex, and local repolarization time as QRS start to steepest 

positive point of the T wave (Wyatt method (Wyatt, Burgess et al. 1981)). The Wyatt method is 

favored by ECGi mapping papers to date (Zhang, Sacher et al. 2015; Andrews, Srinivasan et al. 2017; 

Zhang, Hocini et al. 2017; Leong, Ng et al. 2018). Local activation recovery interval (ARI) was defined 

as the difference between activation and repolarization times. 

To search for steep electrical gradients, each electrogram location on the epicardial shell was linked 

to neighboring locations within a 5mm Euclidean search distance. For each node-neighbor pair, the 

difference in local activation or repolarization times was divided by the distance between the 

locations, giving a gradient in milliseconds/millimeter. For each node on the epicardial surface, the 

mean gradient within a 5mm radius was calculated, and these values were averaged across the 

epicardial shell to give a whole-heart estimation of steep electrical gradients. 

To fully understand the electrophysiology of the three groups, three domains were defined for 

analysis:  

1. The mean of activation, ARI or repolarization times was used to describe overall conduction, 

ARI or repolarization delay. 

2. The central 95% range of times was used to describe dispersion. 

3. The mean gradient of activation and ARI times in space was used to detect the presence of 

steep gradients. 

8.2.5 Logistic regression for the description of the arrhythmogenic substrate in HCM 

To understand the contribution of different parameters from our panel to the arrhythmogenic 

substrate in HCM, we built multiple variable logistic models from the significant variables. Activation 

and ARI measures were considered; repolarization times were not as both activation and ARI 
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contributed to these figures. To qualify for inclusion, a measure would have to significantly 

differentiate HCM VF and HCM volunteers (p < 0.05). 

Qualifying measures were scaled to the mean and variance of the whole dataset. To improve the 

ability of the model to predict on unseen data, collinearity was reduced by rejecting one measure of 

any pair with a Pearson correlation of >0.8 (Mason and Perreault 1991). A multiple logistic model 

was then fitted using Newton’s method. Backward stepwise selection was used to reject variables 

with p>0.15 (Hosmer Jr, Lemeshow et al. 2013; Chowdhury and Turin 2020). Odds ratios were 

calculated by exponent of the model coefficients. The predicted probability of an observation falling 

into the HCM VF group was compared for the true HCM VF group, and the HCM group without 

previous arrhythmia. 

8.2.6 Ability of a multiple logistic model to predict in unseen data 

A single logistic model only tested on training data cannot guarantee that it will generalize to a larger 

population. Validation in unseen data must be performed to determine wider applicability. 

To determine the ability of logistic models to predict whether a patient was in the HCM or HCM VF 

group based on our ECGi measures, k-folds validation was performed. K-folds validation is used in 

small datasets because it tests on the entire population (𝑛), thereby avoiding the potentially large 

effect of single outliers in small validation sets (Kohavi 1995; Kim 2009). Briefly, a subset of patients 

is reserved for testing (size 
𝑛

𝑘
, a ‘fold’), and the remaining patient data is used to train a logistic 

regression model. The accuracy of this model is then assessed on the reserved testing group. This is 

repeated by reserving a new testing group and training another model on the remaining data. Once 

all 𝑘 folds are tested, the accuracy results are aggregated to estimate sensitivity and specificity.  

8.2.7 Comparison of logistic regression with other machine learning techniques for 

discriminating arrhythmogenic substrates 

Logistic regression models are popular due to their interpretability. Although these techniques are 

well understood and established, there is growing interest in machine learning (ML) as an alternative 

in the classification problem, in this case discerning risk groups. 

To understand possible contributions of machine learning (ML) to risk models, three readily 

implementable ML strategies were compared to logistic regression using k-folds validation. All non-

collinear variables were used. A full methodology is outside the scope of this paper, but each 

strategy is briefly described. Each model was initialised with Scikit-Learn’s default hyperparameters 
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and are available at www.scikit-learn.org, but method references and selected initialization values 

are provided below. 

8.2.7.1 Support vector machine 

Support vector machines (SVM) plot data points in space in such a way that different classes can be 

separated by a hyperplane. The number of dimensions is the number of features (e.g. activation 

time, repolarization time). New validation data points which land on a particular side of the 

hyperplane are predicted to have the same class as the training data points on this same side. SVMs 

are able to generate more complex decision boundaries than logistic regression, allowing the 

prediction of non-linear relationships between variables; furthermore, SVMs may be less sensitive to 

outlier data (Pochet and Suykens 2006).  

Scikit-Learn’s Support Vector Classification function (sklearn.svm.SVC) was initialized with a 

regularization parameter of 1 and radial basis function kernel with a scaled coefficient. 

8.7.2.2 Random forests 

Random forests (RF) are built from decision trees, which are simple binary questions (e.g. is 

activation time greater than 50ms?). A random forest is a large collection of trees which vote for a 

particular class – the class with the greatest number of votes is the prediction for a given data point. 

They can also separate non-linear problems, but increased forest complexity leads to a greater 

chance that the model will overfit – that is, it will not generalize well to previously unseen data. 

Scikit-Learn’s Random Forest Classifier function 

(sklearn.ensemble.RandomForestClassifier) was initialized with 100 trees; quality of 

the split was measured by Gini impurity, trees had no maximum depth and the bootstrap method 

was used. 

8.2.7.3 Artificial neural network 

Artificial neural networks (ANN) are collections of computer neurons which take a numerical input 

and output a number transformed by a function particular to that neuron. Neurons can take multiple 

inputs which can be weighted. The weights are altered until the ANN has learned the best way to 

separate the groups. Neural networks have gained recent attention for their ability to surpass 

human performance in certain problems not well solved by other programming techniques, such as 

suboptimal image recognition (Cireşan, Meier et al. 2012) or even complex board games (Silver, 

Schrittwieser et al. 2017). 

http://www.scikit-learn.org/
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Scikit-Learn’s Multi-layer Perceptron was used 

(sklearn.neural_network.MLPClassifier) with a single hidden layer of 100 neurons and 

the rectifier linear unit activation function with L2 regularization parameter 0.0001. The Limited 

memory Broyden-Fletcher-Goldfarb-Shanno algorithm was used for optimization. 

8.2.8 General statistical analysis 

Comparisons across more than two groups was carried out using the Kruskal-Wallis test. Pairwise 

comparisons were made using the Wilcoxon rank-sum test. Significance was defined as p < 0.05. 

Data were analysed in R v4.0.3 and Python v3.7. 

8.3 Results 

8.3.1 Patient characteristics and surface measures 

Table 8.1: Characteristics of volunteers undergoing electrocardiographic imaging exercise testing. Peak and recovery phase 

heart rates were those when signal was clean enough for measurement using the electrocardiographic imaging system. 

Hypertrophic cardiomyopathy, HCM; HCM ventricular fibrillation or haemodynamically unstable sustained ventricular 

tachycardia survivor, HCM VF; Ischaemic heart disease, IHD; Ventricular ectopy, VE; Brugada syndrome, BrS; European 

society of Cardiology, ESC; ventricular tachycardia, VT. 

Parameter HCM VF HCM IHD VF VE BrS 

relative 

p-value 

Males (proportion) 0.76 0.76 0.9 0.54 0.72 0.18 

Age (years, mean) 45.5 52.0 58.3 44.5 45.4 0.047 

Mean ESC score (5-year 

risk, %) 

5.90 2.85 - - - 0.023 

Syncope (proportion) 0.17 0.05 - - - 0.20 

Max left ventricular 

hypertrophy (mm) 

19.4 18.6 - - - 0.40 

Left atrial size (mm) 40.3 39.5 - - - 0.82 

Left ventricle outflow 

gradient (mmHg) 

26.8 23 - - - 0.54 

Non sustained VT 

history (proportion) 

0.53 0.29 - - - 0.13 

Early familial sudden 

death 

0.35 0.14 - - - 0.14 
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Peak phase heart rate 

(bpm, mean) 

125.3 138.4 119.0 132.4 136.2 0.26 

Recovery phase heart 

rate (bpm, mean) 

70.3 86.5 81.5 91.6 97.4 0.0001 

Peak phase QRS 

duration (ms, mean) 

94.2 88.2 92.6 91.2 90.9 0.61 

Recovery phase QRS 

duration (ms, mean) 

104.7 101.7 100.3 106.7 102.8 0.87 

Peak phase corrected 

QT interval (ms, mean) 

361.3 351.2 350.1 340.9 331.6 0.11 

Recovery phase 

corrected QT interval 

(ms, mean) 

427.4 400.1 391.4 418.1 375.4 0.001 

 

Table 8.1 summarizes patient characteristics and surface ECG markers. 

All patients reached 85% of age-predicted maximal heart rate during peak exertion. One patient 

from the HCM VF group was excluded as their implantable device began back-up pacing during 

recovery. 

The groups had similar gender balance. Across-group comparison of age showed a significant 

difference (p = 0.047). Pairwise analysis indicated that the IHD VF group were older than the HCM 

VF, VE and BrS relatives (p = 0.037, 0.025, 0.01 respectively) but not the HCM group (p = 0.33). The 

HCM VF group had higher European Society of Cardiology (ESC) scores than the HCM group, 

although 8 of 17 HCM VF patients had a score <4%/5-year risk and 11 had a score <6%/5-year risk 

(p=0.023). None of the subcomponents of the ESC score reached significance, although 

approximately double the proportion of patients in the HCM VF group had a history of non-sustained 

ventricular tachycardia or a history of early familial sudden death. 

Following peak exercise, heart rates and QRS durations and QTc intervals between groups were 

similar. During end recovery, heart rates were significantly different (p = 0.0001). Pairwise analysis 

showed no difference between HCM, VE and IHD VF but HCM VF patients had lower heart rates (vs 

HCM, p = 0.0014; vs BrS relative, p = 0.0001; HCM VF vs VE, p = 0.0028). BrS relatives tended 

towards higher recovery heart rates (vs HCM, p = 0.017; vs IHD VF, p = 0.0048). End recovery QRS 
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durations were similar. Recovery corrected QT was significantly different between groups (p = 

0.001). Pairwise comparisons showed that HCM VF patients had significantly longer recovery QTc 

than any group except VE (vs BrS relatives, p = 0.00014; vs IHD VF, p = 0.002; vs HCM, p = 0.01). 

8.3.2 Electrophysiological phenotype of hypertrophic cardiomyopathy 

To determine the electrophysiological features of hypertrophic cardiomyopathy, we compared a 

pooled HCM group with our control groups. Figure 8.2 summarizes the significant variables. All 

variables (including nonsignificant) are graphed in the Supplement. 
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Figure 8.2: Comparison of whole heart activation and repolarization metrics immediately after peak exercise and in end 

recovery between hypertrophic cardiomyopathy (HCM) and a selection of structurally normal heart control groups: (I) fully 

recovered and revascularized ischaemic VF survivors, IHD VF; (II) patients with benign but symptomatic idiopathic 

ventricular ectopy, VE; (III) the unaffected relatives of patients with Brugada syndrome, BrS relative. Local activation time 

(LAT) was defined as the onset of the first epicardial QRS complex to the steepest negative slope of the electrogram-QRS 
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complex. Local repolarization time (LRT) was defined as the onset of the first epicardial QRS complex to the steepest 

positive slope of the electrogram-T wave. Activation recovery interval (ARI) is the difference between LAT and LRT. Mean 

time is the average of all LAT/LRT/ARI across the heart. Dispersion is the central 95% range of LAT/LRT/ARI across the heart. 

Gradient is the whole-heart mean rate of range in LAT/ARI over a 5mm search distance around each epicardial location. 

8.3.2.1 Peak exercise 

Following exercise, whole heart mean activation times were longer in the HCM group than any of 

the control groups (mean 60.1ms, across groups p = 0.0003). All pairwise comparisons were 

significant (vs IHD VF, mean 53.2ms, p = 0.025; vs VE, mean 53.7ms, p = 0.014; vs BrS relative, mean 

49.7, p = 0.0001). Whole heart activation dispersion was similar between HCM and the controls 

(across groups p = 0.17), as were activation gradients (across groups p = 0.92). 

The HCM group had longer mean ARI than the BrS relatives (means 227.2ms vs 210.4ms, p = 0.017), 

but was not significantly different from the other groups (across groups p = 0.06). ARI dispersion was 

also higher in the HCM group than BrS relatives (means 164.1ms vs 131.7ms, p = 0.026) but similar 

to the other groups (across groups p = 0.15). ARI gradients were not significantly different across 

groups (p = 0.25). 

Combining activation and ARI, mean repolarization times were longer in HCM than the control 

groups (mean 304.7ms, across groups p = 0.001). All but the VE pairwise comparisons were 

significant (vs IHD VF, mean 283.9ms, p = 0.0069; vs VE, mean 291.8ms, p = 0.05; vs BrS relative, 

mean 275.4ms p = 0.0013). Repolarization dispersion was higher in HCM patients than the BrS 

relatives (means 156.1ms vs 111.5ms, p = 0.00012). Although the trend for HCM patients to have 

more repolarization dispersion than the IHD VF and VE patients did not reach significance (p = 0.079 

and 0.16 respectively), the across groups comparison did (p = 0.002).  

8.3.2.2 End recovery 

After 10 minutes of recovery, whole heart mean activation times were longer in the HCM group 

(mean 61.3ms, across groups p = 0.0001). All pairwise comparisons were significant – (vs IHD VF, 

mean 55.4ms, p = 0.018; vs VE, mean 54.5ms, p = 0.0026; vs BrS relatives, mean 52.5ms, p = 

0.00012). HCM activation dispersion was significantly higher than in BrS relatives (means 53.2ms vs 

42.9ms, p = 0.024) but other comparisons were not significant (across groups p = 0.1). Activation 

gradients were similar (across groups p = 0.32).  

The HCM group had longer mean ARI than controls (mean 285.9ms, across groups p = 0.009). 

Pairwise comparisons demonstrated that this was due to differences with the BrS relatives (mean 
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256.1ms, p = 0.001); there was no significant difference against IHD VF or VE (p = 0.22, 0.1 

respectively). ARI gradients were similar (across groups p = 0.38). 

Mean repolarization times were longest in HCM (mean 352.5ms, across groups p = 0.001). Pairwise 

comparisons revealed significant differences against VE and BrS relatives (means 328.2ms and 

317.7ms, p = 0.029 and 0.0002 respectively). Repolarization dispersion was highest in HCM patients 

(mean 139.8ms, across groups p = 0.025). The only pairwise significance was against BrS relatives 

(mean  116.0ms, p = 0.0067). No significant difference was demonstrated against IHD VF or VE (p = 

0.35, 0.05 respectively).  

8.3.3 Visual representations of automated measurements 

 

Figure 8.3: Comparison of non-invasive epicardial maps between a patient with hypertrophic cardiomyopathy and an 

asymptomatic, unaffected Brugada relative. Scales are matched for activation and repolarization separately to aid 

comparison. Examples are selected to illustrate the differences seen in the overall cohort. In activation, the hypertrophic 

cardiomyopathy heart (left panel) has delayed conduction and repolarization compared to the normal heart (right panel). 

Apical electrograms are displayed for both hearts, with the HCM heart exhibiting T wave inversion. Right ventricle, RV; Left 

ventricle, LV; Left anterior descending artery, LAD. 

Activation and repolarization maps from two patients in both peak exercise and end recovery are 

displayed in Figure 8.3: one with hypertrophic cardiomyopathy and a Brugada relative (normal 

heart). The hypertrophic cardiomyopathy patient’s heart has delayed conduction and slower 
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repolarization than the normal heart. Lines of steep activation or repolarization change can be seen 

on the hypertrophic cardiomyopathy epicardium, contrasting with the smooth graduation of colors 

in the normal heart. Upon inspection of electrograms from the apex, the hypertrophic 

cardiomyopathy electrograms show abnormal T wave inversion, not seen in the electrograms from 

the normal heart subject. 

8.3.4 Electrophysiological phenotype of ventricular fibrillation survivors with HCM 

To determine the electrophysiological features of HCM VF survivors, we compared them to HCM 

patients without a personal history of arrhythmia. Figure 8.4 summarizes the significant variables. All 

variables (including nonsignificant) are graphed in the Supplement. 

8.3.4.1 Peak exercise 

Following peak exercise, mean activation times in VF survivors were longer than HCM patients 

without personal history of arrhythmia (means 63.2ms vs 57.4ms, p = 0.0073). Activation dispersion 

trended towards being longer in HCM VF than HCM patients (mean ranges 56.9ms vs 53.6ms, p = 

Figure 8.4: Comparison of whole heart activation and repolarization metrics immediately after peak exercise and in end recovery between 
hypertrophic cardiomyopathy (HCM) patients without a personal arrhythmic history and VF or haemodynamically unstable VT survivors (HCM VF). 
Local activation time (LAT) was defined as the onset of the first epicardial QRS complex to the steepest negative slope of the electrogram-QRS 
complex. Local repolarization time (LRT) was defined as the onset of the first epicardial QRS complex to the steepest positive slope of the 
electrogram-T wave. Activation recovery interval (ARI) is the difference between LAT and LRT. Mean time is the average of all LAT/LRT/ARI across 
the heart. Dispersion is the central 95% range of LAT/LRT/ARI across the heart. Gradient is the whole-heart mean rate of range in LAT/ARI over a 
5mm search distance around each epicardial location. 
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0.067). Activation gradients were steeper in HCM VF patients (means 0.45ms/mm vs 0.36ms/mm, p 

= 0.011). 

Activation recovery intervals were longer in HCM VF patients than their HCM counterparts (means 

234.0ms vs 221.4ms, p = 0.026). ARI dispersion was similar between the groups (p = 0.18) but ARI 

gradients trended to being steeper in HCM VF patients (means 1.89ms/mm vs 1.58ms/mm, p = 

0.06). 

Mean repolarization times were significantly longer in HCM VF survivors (means 314.3ms vs 

296.6ms, p = 0.014). Corrected repolarization time dispersion was longer in HCM VF survivors, 

trending towards significance (mean 169.1ms vs 145.2ms p = 0.06).   

8.3.4.2 End recovery 

After 10 minutes of recovery, whole heart mean activation times were longer in HCM VF survivors 

(means 64.4ms vs 58.6ms, p = 0.002). Activation dispersion and gradients were not significantly 

different between groups (p = 0.27, 0.14 respectively).  

Activation recovery intervals were longer in HCM VF patients than their unaffected HCM 

counterparts (means 298.0ms vs 275.5ms, p = 0.012). ARI dispersion and gradients were similar (p = 

0.23, 0.17 respectively). Mean repolarization times were significantly longer in HCM VF patients 

(means 365.9ms vs 341.1ms, p = 0.0048). The dispersion in repolarization times was not significantly 

different between groups (p = 0.24).  

8.3.5 Ventricular conduction stability 

Our group has previously described Ventricular Conduction Stability (V-CoS) as a tool to quantify 

activation heterogeneity in response to exercise (Shun-Shin, Leong et al. 2019). We tested V-CoS on 

the current population. The pooled HCM cohort had significantly less preserved activation patterns 

in response to exercise than the controls (means 96.5 +/- 3.9% vs 98.5% +/- 1.0% V-CoS respectively, 

p = 0.0083). This difference was most evident in the BrS relatives (98.9% +/- 0.8% V-CoS, p = 0.015 

against HCM); neither IHD VF nor VE patients could be differentiated in the pairwise analysis (p = 

0.26, 0.065 respectively). HCM VF patients were not significantly different from HCM patients 

without arrhythmic history (p = 0.89). 

8.3.6 Logistic regression for the description of the arrhythmogenic substrate in HCM 

To understand the contribution of different parameters from our panel to the arrhythmogenic 

substrate in HCM, we built multiple variable logistic models from the significant variables. Five ECGi 
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measures of epicardial electrophysiology significantly differentiated the HCM VF group from their 

HCM counterparts without ventricular arrhythmia: 

1. Mean activation time (exercise) 

2. Mean activation time (recovery) 

3. Mean activation gradients (exercise) 

4. Mean ARI (exercise) 

5. Mean ARI (recovery). 

The only collinear pair of measures were mean activation time in exercise and recovery (Pearson R = 

0.93, p >0.001). The mean activation time in exercise was excluded from analysis to reduce 

collinearity. The remaining 4 variables had Pearson correlations from 0.21 to 0.72 (Table 8.2). 

 

 

Table 8.2: Correlation matrix to detect intervariable dependence. High Pearson correlation between two variables suggests 

a 1:1 relationship and predisposes models to collinearity. In our study we chose to eliminate one of any pair of variables 

more with a Pearson correlation >0.8 (high inter-dependence). In this case, mean activation time in exercise was eliminated 

(high correlation with mean activation time in recovery). Activation recovery interval, ARI. 

 
Recovery 

mean 

activation 

time 

Exercise 

mean 

activation 

time 

Recovery 

mean ARI 

Exercise 

mean ARI 

Exercise 

activation 

gradients 

Recovery mean 

activation time 

1.00 0.93 0.23 0.32 0.72 

Exercise mean 

activation time 

0.93 1.00 0.21 0.34 0.72 

Recovery mean 

ARI 

0.23 0.21 1.00 0.57 0.21 

Exercise mean  

ARI 

0.32 0.34 0.57 1.00 0.31 

Exercise activation 

gradients 

0.72 0.72 0.21 0.31 1.00 
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The 4 variable model achieved a log likelihood ratio (LLR) p-value of 0.04 (lower is better) and 

divided the training group with a sensitivity of 0.82 and a specificity of 0.8. Individual coefficients 

however were non-significant (p = 0.14-0.82, see Supplement). Stepwise exclusion of the least 

significant coefficient was performed until all coefficients reached the pre-specified stop criterion 

(p>0.15). A nested 2-variable model was reached a LLR p-value of 0.008. The remaining variables 

were mean activation time and mean ARI in full recovery. This 2-variable model differentiated the 

HCM VF and HCM groups better than any single variable from our panel (Figure 8.5), and similarly to 

the 4-variable model. 

 

Figure 8.5: Probability distributions for HCM VF or unstable VT survivors as well as HCM patients without a personal history 

of life-threatening arrhythmia, produced by a 2-variable logistic model of mean activation time and mean activation 

recovery interval at rest. Higher probability scores refer to the chance that the patient in question falls in the HCM VF group. 

The dotted line represents a probability of 0.5. Correct classification was defined as p>0.5 for HCM VF and p<0.5 for HCM, 

although this threshold can be defined differently by the clinician. Hypertrophic cardiomyopathy, HCM; Ventricular 

fibrillation, VF; Ventricular tachycardia, VT. 

To understand the relationship between the mean activation time, mean ARI and the likelihood of 

being in the VF group, odds ratios were calculated. Mean activation time had an odds ratio of 1.1 

(95% confidence intervals 0.98-1.23) per millisecond increase, and mean ARI had an odds ratio of 

1.03 (95% confidence intervals 1.00-1.06) per millisecond increase. 
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8.3.7 Ability of a multiple logistic model to predict in unseen data 

A single logistic regression model tested on training data cannot guarantee generalization to a larger 

population. Validation in unseen data must be performed to determine wider applicability. 

To understand the ability of a logistic model containing mean activation time and mean ARI to 

predict whether a volunteer was in the HCM VF or HCM group on unseen data, we performed a 5-

fold validation. 

The balanced accuracy of the 2-variable models was 0.75 (95% confidence intervals 0.70-0.80, Figure 

8.6A). Individual accuracy for conditions was 0.80 for HCM (95% confidence interval 0.8-0.8) and 

0.72 for HCM VF (95% confidence interval 0.63-0.8). In comparison, use of 4-variable models would 

have only produced accuracies of 0.8 and 0.62 for HCM and HCM VF respectively. The receiver 

operating characteristic demonstrated an area under the curve of 0.76 (95% confidence intervals 

0.72-0.81, Figure 8.6B). Using Youden’s method to evaluate the best threshold, the aggregated 

models could achieve a sensitivity of 78.6% with a specificity of 79.8% for identifying a patient from 

the HCM VF group. 

 

Figure 8.6: Results for a k-fold validation of 2-variable logistic models including mean activation times and ARI at rest in 

patients with HCM without a personal history of life-threatening arrhythmia and HCM VF or haemodynamically unstable VT 

survivors. This analysis simulates unseen data to provide a more reliable estimate of how a model with the same input 

variables will generalize. The classification threshold was set to p=0.5 and the dataset was split into 5 folds. Hypertrophic 

cardiomyopathy, HCM; Ventricular fibrillation, VF; Ventricular tachycardia, VT. 
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8.3.8 Comparison of logistic regression with other machine learning techniques for 

discriminating arrhythmogenic substrates 

The discriminative power of support vector machines, random forests and neural networks were 

tested against logistic regression in the HCM vs HCM VF problem to assess the potential future 

contribution to risk stratification problems. 5-fold validation was again used to simulate unseen 

data. 

In terms of accuracy, all predictive models performed comparably with overlapping confidence 

intervals. Support vector machines performed best (accuracy 76.7%, CI: 71.3-82.1%), followed by 

logistic regression (75.6%, CI: 70.3-80.9%), random forests (70.8%, CI: 63.8-77.8%) and finally the 

neural network (65.9%, CI: 57.8-73.9%). 

Models were also evaluated by area under the receiving operator curve (AUC). Again, models were 

comparable with overlapping confidence intervals. Support vector machines again performed best 

(AUC 0.82, CI: 0.79-0.86), followed by random forests (0.79, CI: 0.75-0.83), logistic regression (0.76, 

CI: 0.72-0.81) and finally the neural network (0.64, CI: 0.56-0.72). Using Youden’s method to 

evaluate thresholds on these receiver operating characteristic curves, the highest sensitivity and 

specificity would have been achieved by the SVM model at 80.0% and 79.8% respectively. 

8.4 Discussion 

We sought to understand the electrophysiological differences between patients with hypertrophic 

cardiomyopathy and various control groups. This pilot study uses non-invasive ECGi to describe 

significant differences in activation and repolarization between patients with HCM and a range of 

control groups. Logistic regression and machine learning analysis of these markers can improve the 

identification rate of VF survivors from the HCM cohort. 

8.4.1 Traditional risk markers and surface ECG characteristics 

Aside from a personal history of life-threatening arrhythmia, no traditional risk marker significantly 

differentiated the HCM VF group from the HCM group. In contrast, the ESC scores were significantly 

higher in the HCM VF than the HCM scores. This demonstrates the utility of multiparametric analysis 

to differentiate groups when individual risk factors may (in small samples) fail.  

Even for the significantly different ESC scores, around half of the patients would not have had an 

implantable cardioverter-defibrillator (ICD) mandated by either the 4% “consider” cut-off or the 6% 

“definite” cut-off for 5-year risk. This corroborates earlier observations that many HCM patients 
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surviving sudden cardiac arrest would not be offered an ICD if assessed by their presenting 

characteristics on the ESC risk calculator (Maron, Casey et al. 2015; Leong, Chow et al. 2018). 

Corrected QT intervals were significantly higher in the HCM VF population than HCM, IHD VF and BrS 

relatives in the recovery phase. The observation of prolonged QT intervals in patients at higher risk 

of potentially lethal arrhythmia has been noted before, but has never been included in risk 

stratification guidelines (Gray, Ingles et al. 2013).  

8.4.2 The HCM epicardial electrotype 

Activation and repolarization differences are seen between the HCM patients and the control 

groups. Especially with the HCM VF group, activation happens later with respect to the QRS start 

(delay), takes longer to complete (dispersion) and is subject to higher gradients between 

neighbouring areas of the heart. These differences appear to be present immediately after exercise 

and in the later stages of recovery. 

Our activation findings are consistent with previous publications. During endocardial mapping of the 

left ventricle in 9 patients, long stimulus-to-V times were found in hypertrophic areas of the HCM 

heart during multisite stimulation (Schumacher, Gietzen et al. 2005). ECGi mapping of 10 HCM 

patients demonstrated a greater degree of activation dispersion in HCM patients, especially in the 

basal areas (Perez-Alday, Haq et al. 2020). The authors did not measure recovery times but theorized 

that activation dispersion would contribute to repolarization dispersion and therefore promote 

arrhythmogenesis. Our study confirms that abnormal repolarization exists, but in fact repolarization 

metrics show independence from activation metrics (Table 8.2).  

Surface markers of repolarization have been compared between HCM patients and controls in the 

past – showing that HCM patients with above average maximal wall thickness had longer corrected 

QT intervals and T peak-T end measurements than healthy controls without genetic mutations 

associated with HCM or evidence of ventricular hypertrophy (Jalanko, Väänänen et al. 2018). These 

measurements are correlates of mean and dispersion of epicardial repolarization times. Our healthy 

control group clearly showed differences in mean and dispersion of repolarization in both exercise 

and recovery (HCM vs BrS relatives, p = 0.0001-0.006). Interestingly, our control groups with a 

known non-HCM pathology were only sometimes differentiable by epicardial repolarization times. 

Exercise seemed to accentuate the differences, and mean repolarization time (the correlate of 

surface QTc) was a stronger differentiator. This suggests that exercise is important in revealing the 

epicardial substrate of HCM. 
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The independence of activation and repolarization measures support the idea of HCM as a 

heterogenous condition; further study would be required to subtype HCM patients with activation 

predominant or repolarization predominant disease. This would open the possibility for tailored risk 

stratification or therapy based on reconstructed ECGi measurements. 

8.4.3 Understanding contributors to ventricular fibrillation in HCM using logistic regression 

As well as the differences between HCM and control groups, our study demonstrated that HCM VF 

survivors could be differentiated from HCM patients without a personal history of ventricular 

arrhythmia by longer mean activation times and steeper activation gradients, as well as longer mean 

ARIs. Unlike with repolarization time against the controls, the only marker affected by exercise in 

this analysis was the presence of steep activation gradients in peak exercise.  

Epicardial activation and repolarization times have not previously been directly examined in high risk 

HCM patients; surrogates have been described. Accepted electrophysiological differences between 

HCM VF and HCM patients include non-sustained VT (Elliott, Poloniecki et al. 2000; Monserrat, Elliott 

et al. 2003; O'Mahony, Jichi et al. 2014), paced fractionated electrograms (Saumarez, Camm et al. 

1992), and longer QTc (Gray, Ingles et al. 2013). It is also possible to compare electrophysiological 

markers in HCM patients with higher risk features, such as a higher HCM-SCD risk score (O'Mahony, 

Jichi et al. 2014) or any of its constituents. An unsupervised machine learning study on surface ECG 

in HCM patients found an association with isolated repolarization abnormalities and higher HCM-

SCD scores (Lyon, Bueno-Orovio et al. 2018). HCM patients with greater maximum wall thickness 

were found to have longer surface QTc and T peak-T end measurements than controls or HCM 

patients with milder hypertrophy (Jalanko, Väänänen et al. 2018). 

The paced fractionated electrogram technique was designed to detect the effects of myocardial 

disarray on intraventricular conduction (Saumarez, Camm et al. 1992). Our results show this 

conduction slowing non-invasively and as a continuous variable in patients who cannot be 

differentiated by QRS duration. Whilst QTc combines both activation and repolarization, our 

epicardial study has allowed ARI to be measured, an accepted correlate of APD (Haws and Lux 1990), 

showing that ventricular repolarization is elongated in HCM VF survivors independent of activation 

pattern. 

Our logistic regression model could be simplified down to two variables: mean activation time in 

recovery and mean ARI in recovery. Odds ratios suggest that longer activation time and ARI 

independently increase the risk of falling in the VF category, although the 95% confidence interval 
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crosses zero for activation time. This could be because our study was small. Further work would be 

needed to confidently determine the additional risk per millisecond increase in activation time or 

ARI. 

As with the findings between the pooled HCM group and controls, the independence and poor 

correlation of activation and repolarization measures in our model suggest that there is more than 

one mechanism for VF in HCM. Future therapies may be tailored by the findings of mapping studies. 

8.4.4 Comparison of logistic regression to (other) machine learning methods 

Logistic regression allowed us to understand the relationships between variables and the arrhythmic 

substrate, but it was not clear whether this would be the optimal strategy for future risk prediction. 

In this analysis, logistic regression was one of the strongest models in terms of overall classification 

accuracy but was matched or perhaps bettered by other ML methods in receiver operating 

characteristic (ROC) analysis. 

The range of ROC AUC values for all models except for ANN was comparable to the initially reported 

performance of modern risk stratification scores. Our models scored between 0.76-0.82. 

CHADSVASC had a ROC AUC of 0.606 in the original paper (Lip, Nieuwlaat et al. 2010), compared to 

0.81 for the Sieira Brugada score (Sieira, Conte et al. 2017) and 0.7 for the HCM-SCD risk score 

(O'Mahony, Jichi et al. 2014).  

The underperformance of neural networks for tabular data is well known in the machine learning 

community and expresses itself in user preference for decision tree-based models in the biggest ML 

competitions (Kaggle 2019). Recent developments have been made in Google’s TabNet (Arik and 

Pfister 2019), but this architecture has yet to make it into popular off-the-shelf learning libraries. 

Although neural networks have traditionally been viewed as ‘black boxes’, newer architectures like 

TabNet are specifically designed with interpretability in mind, and the data science community’s 

understanding of how to interpret the workings of other architectures is also rapidly advancing (Fan, 

Xiong et al. 2020). The relative strength of logistic regression as an interpretable statistical tool may 

further diminish in the future. 

The biggest limitation in our analysis is the lack of optimization of any of the machine learning 

algorithms, which potentially disadvantages SVM, RF and ANN against logistic regression which has 

been optimized by stepwise backward elimination. The decision to use unoptimized models was 

deliberate. Only a small dataset was available, with every datapoint well known to the investigators; 

although cross validation was used to estimate performance on unseen data, it might be possible for 
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the investigators to ‘over-tune’ hyperparameters to the dataset (Eggensperger, Lindauer et al. 2019). 

Using the Scikit-Learn defaults provided an unbiased but pessimistic view of the ability of machine 

learning to compete with logistic regression. In some ways, the fairest comparison in our analysis 

may be between the full, unselected logistic regression model and SVM, RF or ANNs. 

In the future and with a larger dataset, optimization should occur with the data analysis team 

blinded to the full dataset. A training and validation set can be reserved from the end data for the 

purpose of model selection and development, with final evaluation in a test set never seen by the 

analysis team. 

In the literature there is no clear winner between logistic regression and other machine learning 

techniques, with articles supporting opposing viewpoints (Verplancke, Van Looy et al. 2008; Maroco, 

Silva et al. 2011; Huang, Xu et al. 2014; Mustafa, Rienow et al. 2018; Panesar, D’Souza et al. 2018). 

Like for variable selection, model selection should be guided by the purpose of the research: 

whether we are searching for predictive or descriptive models. Despite being disadvantaged by lack 

of optimization, the competitive sensitivity and specificity of SVM suggests that machine learning 

methods should be strongly considered for predictive model building in future populations. 

8.4.5 Feasibility of a prospective study into ECGi derived predictors for sudden death 

A prospective study would be the ideal for assessing the ability of ECGi to discriminate HCM patients 

who will go on to have life threatening arrhythmia, but the parameters which should be examined 

are unknown. Even with a limited sample size we were able to show a significant difference in 

several electrophysiological parameters between HCM VF survivors and HCM patients without a 

history of life-threatening arrhythmia. 

Single parameters were limited in their ability to differentiate the groups by a significant overlap in 

values. Whilst combining many variables separated the training data well, two of the parameters 

(mean activation gradients and mean ARI in recovery) did not meet our pre-specified significance 

criteria and were dropped to reduce overfitting. This proved to be the optimal strategy as the 2-

variable models outperformed the 4-variable models in K-fold validation (which simulates unseen 

data). We would therefore recommend risk models with fewer variables for both simplicity and the 

avoidance of overfitting. 

Our study took place in a balanced population of VF survivors and those without arrhythmic history. 

In reality, the incidence of VF in an unselected HCM population is only about 1-2% per year 

(O'Mahony, Jichi et al. 2014), and the prevalence of VF in the HCM cohort is far less than 50%. One 
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approach for future studies might be to recruit only primary prevention patients considered to be 

high risk by an existing score, to maximize the event rate. Assuming a five-year study of HCM 

patients considered high to intermediate risk (4% HCM-SCD 5-year risk and above (O'Mahony, Jichi 

et al. 2014)) reached a mean risk of 5% per 5 years, the positive predictive value of our model would 

be 0.16, but the negative predictive value would be 0.98. This early data would suggest that an ECGi 

based risk model is superior predictor of safety than of actual events. Given that sudden cardiac 

arrest is far less survivable than the complications of ICD implantation, clinicians and patients may 

accept this limitation. 

8.4.6 Limitations 

The small size of this pilot predisposes it to type II error, so as well as mean activation time and 

mean ARI other ECGi derived measures for risk prediction could reasonably be considered as 

hypotheses. The univariate significance of measures such as activation gradients in exercise but not 

in recovery could be important in larger studies and explain the possible link between exercise and 

HCM death in the young (Margey, Roy et al. 2011). 

Our study used the only commercially and clinically available ECGi platform (CardioInsight™), which 

allows applicability for healthcare teams already using ECGi in the catheter laboratory. The methods 

with which ECGi reconstructions can be calculated vary (Cluitmans, Brooks et al. 2018) and it was 

important for our study goal to use a system with the widest clinical access. CardioInsight™ uses 

zero-order Tikhonov regularization, optimized for activation, but second-order Tikhonov 

regularization optimizes T wave amplitude (Ramanathan, Jia et al. 2003). It is unknown whether this 

would cause error in our measurements, but to lessen the possibility we did not compare absolute T 

wave amplitudes or gradients between patients. Relative calculations were used to either reject 

uninterpretable electrograms or define local repolarization time; no error should result if 

regularization order affects T wave amplitude uniformly in time. 

The agreement of ECGi compared with invasive mapping has been examined previously, and the 

debate surrounding the validity of these measurements goes on. Correlation coefficients between 

epicardial maps and ECGi reconstructions have been quoted between 0.03 and 0.86 (Cluitmans, 

Bonizzi et al. 2017; Graham, Orini et al. 2018; Duchateau, Sacher et al. 2019). However, all in-vivo 

invasive mapping comparisons to date have suffered from difficulty co-localizing and timing against 

ECGi reconstructed points. Invasive maps are collected over multiple cardiac cycles whilst ECGi maps 

are collected in a single beat – so beat-to-beat variations cannot be captured by invasive methods. 
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Spatial mismatch in these studies could reach 20mm, which in our normal controls could lead to 

activation time mismatch of up to 10 milliseconds. Graham and colleagues recognized this effect 

directly in their validation paper (Graham Adam, Orini et al. 2019). To reduce the effect of 

spatiotemporal disagreement with invasive ground truth, we took the approach of signal averaging 

over 10 beats and taking whole heart means rather than quoting per-epicardial segment values. 

Concordance with the (unknown) ground truth will be a problem for any ECGi based project of this 

type. 

8.5 Conclusion 

ECGi can differentiate HCM from mixed control groups. The HCM epicardial electrotype is 

characterized by slow, dispersed conduction and delayed, dispersed repolarization, often 

accentuated by exercise. These factors occur with some independence between patients, 

corroborating the view from imaging that hypertrophic cardiomyopathy is a heterogenous disease. 

These parameters may be useful for risk stratification of sudden cardiac arrest, but larger 

prospective trials would be recommended to test the findings generated by this pilot.  
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8.6 Supplemental material 

8.6.1 Supplementary figure 1 

 

Supplementary figure 8.1: Comparison of whole heart activation and repolarization metrics immediately after peak exercise 

and in end recovery between hypertrophic cardiomyopathy (HCM) and a selection of structurally normal heart control 

groups: (I) fully recovered and revascularized ischaemic VF survivors, IHD VF; (II) patients with benign but symptomatic 

idiopathic ventricular ectopy, VE; (III) the unaffected relatives of patients with Brugada syndrome, BrS relative. Local 

activation time (LAT) was defined as the onset of the first epicardial QRS complex to the steepest negative slope of the 

electrogram-QRS complex. Local repolarization time (LRT) was defined as the onset of the first epicardial QRS complex to 
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the steepest positive slope of the electrogram-T wave. Activation recovery interval (ARI) is the difference between LAT and 

LRT. Mean time is the average of all LAT/LRT/ARI across the heart. Dispersion is the central 95% range of LAT/LRT/ARI 

across the heart. Gradient is the whole-heart mean rate of range in LAT/ARI over a 5mm search distance around each 

epicardial location. 

8.6.2 Supplementary figure 2 

 

Supplementary figure 8.2: Comparison of whole heart activation and repolarization metrics immediately after peak exercise 

and in end recovery between hypertrophic cardiomyopathy (HCM) patients without a personal arrhythmic history and VF or 

haemodynamically unstable VT survivors (HCM VF). Local activation time (LAT) was defined as the onset of the first 
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epicardial QRS complex to the steepest negative slope of the electrogram-QRS complex. Local repolarization time (LRT) was 

defined as the onset of the first epicardial QRS complex to the steepest positive slope of the electrogram-T wave. Activation 

recovery interval (ARI) is the difference between LAT and LRT. Mean time is the average of all LAT/LRT/ARI across the heart. 

Dispersion is the central 95% range of LAT/LRT/ARI across the heart. Gradient is the whole-heart mean rate of range in 

LAT/ARI over a 5mm search distance around each epicardial location. 

 

8.6.3 Supplementary table 1 

4-variable model regression results 

No. Observations: 37 

Df Residuals: 32 

Df Model: 4 

Pseudo R-squared: 0.1930 

Log-Likelihood: -20.600 

LL-Null: -25.525 

LLR p-value: 0.04302 
 

coefficient SE z-value P>|z| [0.025 0.975] 

constant -14.7861 6.239 -2.370 0.018 -27.015 -2.557 

Recovery mean activation time 0.0784 0.071 1.102 0.270 -0.061 0.218 

Recovery mean ARI 0.0283 0.019 1.476 0.140 -0.009 0.066 

Exercise mean ARI 0.0062 0.027 0.232 0.816 -0.046 0.059 

Exercise mean activation gradients 0.8177 3.674 0.223 0.824 -6.383 8.019 

Supplementary table 8.1: Regression parameters for 4-variable model differentiating hypertrophic cardiomyopathy patients 

with and without a personal history of life-threatening arrhythmia. Standard error of the coefficient, SE; coefficient divided 

by standard error, z-value; significance of the coefficient, P>|z|; lower and upper 95% confidence bound, [0.025 0.975]. 

8.6.4 Supplementary table 2 

2-variable model regression results 

No. Observations: 37 

Df Residuals: 34 

Df Model: 2 

Pseudo R-squared: 0.1904 

Log-Likelihood: -20.665 

LL-Null: -25.525 
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LLR p-value: 0.007754 
 

coefficient std err z-value P>|z| [0.025 0.975] 

constant -14.6505 5.667 -2.585 0.010 -25.758 -3.543 

Recovery mean activation time 0.0918 0.057 1.614 0.107 -0.020 0.203 

Recovery mean ARI 0.0311 0.016 1.963 0.050 4.95e-05 0.062 

Supplementary table 8.2: Regression parameters for 2-variable model differentiating hypertrophic cardiomyopathy patients 

with and without a personal history of life-threatening arrhythmia. Standard error of the coefficient, SE; coefficient divided 

by standard error, z-value; significance of the coefficient, P>|z|; lower and upper 95% confidence bound, [0.025 0.975]. 

8.6.5 Detailed characteristics of the control groups 

8.6.5.1 Ischaemic VF 

Count 10 

Age (years) 58.3 ±8.0 

Gender M:F 9:1 

VF during presentation 10/10 

Anginal symptoms in year prior to testing 0/10 

ECG at testing 3 normal sinus rhythm 

3 residual ST elevation (<1mm) 

1 anterior early repolarization 

3 residual T wave inversion 

MRI Performed in 1, late Gad enhancement of 

papillary muscle but no regional motion 

abnormality 

Normal LV function, no regional wall motion 

abnormalities on echocardiogram 

10/10 

Infarct location/revascularization 2 LAD 

2 Circumflex/OM 

2 RCA/PDA 

4 triple vessel disease 

Mean peak troponin I (ng/L) 15387 ±20919 
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8.6.5.2 Brugada relatives 

Count 11 

Age (years) 45.5 ±11.0 

Gender M:F 8:3 

ECG at testing 8 normal sinus rhythm 

1 RSR’ in V1-2 

1 early repolarization in V1-2 

1 W pattern in V1 

Echocardiogram 10 normal 

1 bicuspid aortic valve, otherwise normal 

MRI Performed in 1, normal 

Coronary assessment 10 normal ETT 

1 normal ETT and DSE 

Negative Ajmaline challenge 11/11 

Family history 4 (aborted) sudden death 

4 spontaneous Type 1 ECG 

3 concealed Type 1 ECG 

 

 

8.6.5.3 Ventricular ectopy ablation 

Count 11 

Age (years) 44.5 ±14.3 

Gender M:F 6:5 

ECG (excluding ectopy) 10 normal sinus rhythm 

1 anterior T wave abnormality 

Echocardiogram 10 normal 

1 mitral valve prolapse, otherwise normal 

MRI 3 normal 

2 mild LV dysfunction in the context of ectopy 

without evidence of fibrosis 

6 not performed 
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Ectopy location 8 RVOT 

1 LVOT 

1 Basal septal LV 

1 inferior LV 

Ectopy burden 17.2 ±10.2% 
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Chapter 9: Conclusions 

 

Risk stratification of sudden death in the inherited cardiac conditions is still dominated by clinical 

history taking and imaging, despite the unifying problem – ventricular tachyarrhythmia – being an 

electrophysiological phenomenon. This is in part due to the difficulties in understanding the 

electrodynamics of the diseased heart within a patient – the most detailed work takes place in-vitro, 

in animal models or immobilized patients despite knowing the importance of the heart’s interaction 

with the body’s homeostatic systems and environmental stressors. Non-invasive technologies 

previously lacked the resolution to compete with other study modalities. 

Electrocardiographic imaging has allowed us to study epicardial electrophysiology in higher 

resolution and a more physiological setting than ever before. The scientific community has used this 

to study the mechanisms of multiple cardiac conditions, giving us a unique look at in-vivo electrical 

conditions for Brugada syndrome (Zhang, Sacher et al. 2015), Hypertrophic cardiomyopathy (Perez-

Alday, Haq et al. 2020), long-QT syndrome (Vijayakumar, Silva et al. 2014) and early repolarization 

(Zhang, Hocini et al. 2017). None of these achievements have yet translated into clinical practice. 

Although the scientific discoveries enabled by ECGi are impressive, it is unclear if this could be used 

for improving risk stratification. To be useful, a tool would have to surpass the performance of 

currently available strategies; it would need to be usable for clinicians handling large, busy clinics; it 

would need to be reproducible. 

This thesis is an exploration of these criteria. In our final chapter, I will draw conclusions on the 

findings, implications and limitations of the work carried out. 

 

9.1 Key findings and clinical implications 

Despite a multitude of risk factors determined from careful patient registry and the development of 

multivariate scores, we found modern risk stratification methods still lacking, with a poor sensitivity 

and specificity for cardiac arrest in our multicenter cohort. 

Registry of patients to determine risk factors of sudden cardiac death has inherent issues that are 

unlikely to be resolved by exclusive study using this strategy. First, by the time a registry is published 
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the data may be outdated – by the time of publication the Sieira score cohort was at least 4 years 

old. With rapid changes in the diagnosis and classification of Brugada syndrome, we showed that 

there are fewer patients with high-risk features in modern registries (Brugada, Brugada et al. 2003; 

Probst, Veltmann et al. 2010; Priori, Gasparini et al. 2012; Sieira, Conte et al. 2017), so model 

coefficients from old studies may not be representative of today’s clinic attendance. Second, clinical 

features attracting high risk scores tend to be exhibited by fewer patients, meaning that small 

chance changes in the register (such as recruiting a single extra patient) could significantly alter 

recommendations. Third, the score model was sensitive to whether patients had undergone invasive 

electrophysiological study, which occurs with a high rate in some areas, but was found in our survey 

to be largely unacceptable to a UK based cohort of cardiologists.  

Similar findings in a multivariable score for hypertrophic cardiomyopathy encouraged our group to 

explore non-invasive electrophysiological differences between cardiac arrest survivors and those 

unaffected by potentially lethal arrhythmia. Following our investigation into the Sieira score, we also 

elected to take this route using electrographic imaging (ECGi). 

Our first step was to test the latest ECGi electrophysiological score, Ventricular Conduction Stability 

(V-CoS) (Leong, Ng et al. 2020). We found that reproducibility of this score was poor when different 

cardiac cycles from the same patients were considered.  

The V-CoS scoring process is complex and there are multiple stages where variance may occur – the 

exercise test, CT scan, 3D mesh reconstruction, cardiac cycle selection and exclusion of electrical 

signals deemed too noisy for accurate analysis. Many of these steps rely on human judgement, 

which is subject to significant variation. We described the V-CoS matrix, a fully automated summary 

of 100 V-CoS scores. This method significantly improved reproducibility between exercise tests. 

Furthermore, the previous strategy of identifying the lowest V-CoS score to represent a patient’s 

arrhythmic substrate enabled bias, as more values could be measured if a result seemed 

inappropriately ‘normal’. The use of a fully automated system allows every patient an equal 

opportunity to manifest an abnormal score but might result in poorer sensitivity when shielded from 

the sharp eyes of the specialist. Cardiology is guided by qualitative human decisions – judgements on 

electrogram noise, coronary stenosis severity and visual ejection fraction being just a few examples. 

To determine whether this more reproducible but possibly insensitive tool could still differentiate 

those at risk of cardiac arrest from controls, we explored the performance of the V-CoS matrix in a 

range of volunteer groups. 
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In previous study, all control patients had either a benign arrhythmia or an inherited cardiac 

condition but were judged to be low risk (Leong, Ng et al. 2020). In this study we tested 

asymptomatic relatives of Brugada syndrome patients. These individuals had normal 

electrocardiogram, no structural abnormality on imaging, nor evidence of channelopathy on drug 

challenge testing. Activation patterns were remarkably conserved despite exercise stress. 

Conservation of activation patterns in response to stress is a logical outcome in patients with normal 

hearts and no history of arrhythmia – we were able to show this conclusively. Patients with benign 

ventricular ectopy and structurally normal hearts (VE) were also tested to determine if non-lethal 

ventricular arrhythmia was associated with reduced V-CoS score, but again activation patterns were 

well conserved – in line with previous research. 

Asymptomatic survivors of ischaemic ventricular fibrillation with full ventricular recovery and 

revascularization (IHD VF) were also tested to determine whether reduced V-CoS was associated 

with previous cardiac arrest, or extant arrhythmic substrates. These patients had slightly more 

activation heterogeneity in response to stress but were indistinguishable from the normal patients. 

This finding supports the hypothesis that once the ventricle is adequately supplied with blood and 

there is no large permanent damage, the electrophysiology returns to near normal. In clinical 

practice these patients would not be routinely offered defibrillators because prognosis is good in 

those with normal ejection fraction. Our evidence corroborates the epidemiological findings. 

We followed this by studying patients with cardiac arrest syndromes. 

Unlike in previous works, V-CoS poorly identified cardiac arrest survivors, but did show promise 

when combined with traditional risk factors spontaneous Type 1 ECG and syncope as seen in Chapter 

4 of this thesis. Despite the poor differentiation of cardiac arrest survivors, V-CoS could separate 

unaffected relatives from patients with Brugada syndrome. This difference persisted when 

spontaneous Type 1 ECG patients were excluded, allowing good diagnostic specificity and sensitivity. 

The current gold standard Ajmaline challenge test poses a small but lethal risk to patients – our data 

suggest V-CoS could be a safer alternative especially in lower risk individuals. 

Previous ECGi mapping focused on Brugada patients with Type 1 ECG patterns at the time of 

recording (Zhang, Sacher et al. 2015). Our work in patients with concealed ECG patients shows that 

ECGi can resolve a difference with unaffected relatives even when the 12 lead ECG is similar. 

Although we cannot draw a direct conclusion, it is interesting that a drug induced Brugada patient is 

closer to a Brugada cardiac arrest survivor than the normal controls. There is some debate over 
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whether asymptomatic, drug-induced Brugada patients are truly outside the spectrum of normal 

(Viskin, Rosso et al. 2015).  Our findings, along with the observation of cardiac arrest in many 

asymptomatic concealed Brugada patients (Raju, Papadakis et al. 2011; Leong, Ng et al. 2019) seem 

to suggest these patients have definite electrophysiological abnormalities even when the Type 1 ECG 

is not readily seen. 

Patients with hypertrophic cardiomyopathy (HCM) were found to have lower V-CoS scores than our 

control patients. Like Brugada syndrome, the survivors of VF or sustained VT had similar V-CoS 

scores to the HCM patients without a personal history of potentially lethal arrhythmia. V-CoS’s 

diagnostic ability here is likely to be less useful than in Brugada syndrome – imaging is a well-

established and low risk method of identifying HCM. A niche application might be in cases where 

imaging is indeterminate – although these patients are unlikely to have an ESC score mandating ICD 

consideration. Interval imaging would be a better evidenced and preferable strategy. 

Patients with idiopathic ventricular fibrillation or tachycardia (VF/VT) were found to have 

significantly lower V-CoS scores than both IHD VF survivors and VE patients. This suggests the V-CoS 

describes extant arrhythmic substrate present in idiopathic VF/VT patients rather than remnant 

disease from previous cardiac arrest as might be found in the IHD VF group.  A high degree of 

variation was noted in the idiopathic VF/VT cohort, underlining the heterogenous nature of this 

group. Patients with multiple VF/VT events trended towards lower scores, suggesting that in a larger 

study V-CoS might correlate with arrhythmia recurrence. 

The low V-CoS idiopathic VF subgroup warrants further investigation – the syndrome of exercise 

induced activation heterogeneity could well become defined as a distinct condition. If patients with 

multiple events could be differentiated by V-CoS in a larger study this would strengthen the case. 

Conversely, cardiac arrest survivors with normal ECGi could be considered close to normal – 

although this finding is unlikely to persuade clinicians that a secondary prevention ICD could be 

avoided. Family screening might be possible for relatives of those with low V-CoS scores – there is 

currently low yield in screening relatives of idiopathic VF survivors with conventional tests (Mellor, 

Blom et al. 2021). 

In all groups tested we saw evidence of periodic patterns in V-CoS. Most patients have cardiac cycles 

with V-CoS scores close to 100%, but patients in the cardiac arrest syndrome cohorts showed 

periodic drops in concordance. Whilst fluctuations in beat-to-beat activation concordance could be 

seen in controls, the magnitude was greater in idiopathic VF/VT, Brugada syndrome and 
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hypertrophic cardiomyopathy. Alternans patterns are well documented in both patients and cardiac 

models, and have been linked to arrhythmia (Kulkarni, Merchant et al. 2019). The reason underlying 

periodic drops in V-CoS is not clear and warrants further investigation – but we have shown that 

exercise induced ECG artefact is not responsible, despite similar frequency. 

Our data suggest a shared final arrhythmic pathway across multiple pathologies that relies on 

discordance between consecutive cardiac cycles in response to stress. This phenomenon appeared 

to be broadly successful at identifying patients with cardiac arrest syndromes, but not necessarily 

risk stratifying them. To further examine the possibility of improving risk stratification in these 

conditions we opted to return to more basic electrophysiological measurements from our dataset. 

Invasive and ex-vivo experimentation has demonstrated disorders of conduction and repolarization 

in all three cardiac arrest syndromes examined in this thesis (Yan and Antzelevitch 1999; Janse and 

De Bakker 2001; Saumarez, Pytkowski et al. 2008; Wilde, Postema et al. 2010; Haïssaguerre, Hocini 

et al. 2018). The inability to study intact individuals undergoing physiological stress is a significant 

disadvantage. Non-invasive studies of activation and repolarization have been performed in those 

with type 1 Brugada ECG, long-QT and early repolarization syndromes (Vijayakumar, Silva et al. 2014; 

Zhang, Sacher et al. 2015; Zhang, Hocini et al. 2017).  

After our experience with V-CoS, we investigated and sought to improve the reproducibility of basic 

ECG imaging measurements before interrogating our cohort. Due to lower signal to noise ratio, 

variable user segmentation and noise exclusion for electrogram T waves, repolarization 

measurements were found to be the most vulnerable to poor reproducibility. 

Through a combination of signal averaging, neural network guided ECG segmentation and rule-based 

T wave rejection we were able to greatly improve reproducibility against manual measurement. The 

process was almost fully automated, reducing opportunity for user bias. As with the V-CoS matrix, 

this has the disadvantage of removing the expertise of the experienced cardiologist. 

For our strategy to be match ground truth, noise must be assumed random and with zero mean due 

to the signal averaging. In practice this is difficult to know as direct contact measurement to non-

invasive recording co-registration can be challenging. We minimized use of neural networks in our 

strategy to only the simplest task – segmenting the ECG trace – to avoid the training dataset biasing 

future decisions. The use of rule-based T wave rejection allows easy modification of the software 

when a consensus on acceptable morphology is reached for ECGi electrograms. In direct contact 

electrograms we have the Wyatt and Yue standards (Wyatt, Burgess et al. 1981; Yue, Betts et al. 
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2005) based on correlation to action potential duration, but ECGi T waves have yet to be validated in 

this way. 

Importantly, standardizing the measurement would mean consistency across sites and research 

teams if this saw widespread adoption. Our software had a graphical user interface and was 

designed with usability in mind: this might open up ECGi post-processing to a wider audience and 

accelerate discovery of electrophysiological phenomena in a wide range of conditions. We cannot 

confidently say how best to use ECGi parameters for risk stratification from our small cohort, but 

reproducible techniques would be the cornerstone of a larger effort toward defining cut-offs for ICD 

implantation. 

Using these reproducible methods, we examined epicardial electrograms from our Brugada and 

HCM cohorts.  

Despite similar resting 12-lead ECG, patients with concealed Brugada syndrome could be 

differentiated from their asymptomatic, unaffected relatives by greater repolarization dispersion 

and steeper gradients in exercise. Activation delay and steep activation gradients were also evident 

at full recovery. The longstanding debate between proponents of the activation and repolarization 

hypotheses in Brugada syndrome is not settled by our data. Poor correlation between activation and 

repolarization times suggests that for some patients, repolarization is the dominant abnormality 

whilst for others, activation is disordered. Brugada syndrome may be more heterogenous than first 

thought – an idea supported by morphological, histopathological, electrophysiological and genetic 

evidence (Gray, Semsarian et al. 2014). 

Differences between normal controls and concealed Brugada patients again raises the possibility of 

using ECGi to help diagnose the syndrome. The same cannot be said of risk stratification – although 

longer activation and repolarization times were seen in the VF survivor group, but there were more 

spontaneous Type 1 ECG patients in the VF group. Once these patients had been excluded, no 

significant differences remained, corroborating earlier data showing electrophysiologic 

abnormalities manifest more in those with Type 1 patterns at the time of testing (Brugada, Pappone 

et al. 2015; Zhang, Sacher et al. 2015). 

Compared to a range of controls, we described longer, more dispersed and steeper gradients of both 

activation and repolarization in patients with HCM. This appeared to be a continuum, with the VF/VT 

survivors having the highest values of all. Once again, poor correlation was seen between activation 

and repolarization measures, suggesting a degree of heterogeneity within the cohort. 
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The longer activation and repolarization times in HCM VF/VT survivors indicate that ECGi might have 

a role in risk stratifying patients for sudden death with HCM. Despite significant group differences, 

there is much overlap between the VF/VT survivors and those without previous significant 

arrhythmia. Drawing a cut-off value for any one of these parameters would entail poor sensitivity or 

specificity, limiting usefulness for guiding ICD implantation. 

Multivariate analysis showed that longer mean activation times and mean activation recovery 

intervals (ARI) at rest identified the HCM VF/VT survivors with the greatest independence. Using a 

logistic regression model, we achieved an area under the ROC curve similar to the currently 

recommended HCM risk score (O'Mahony, Jichi et al. 2014). Our cohort was significantly smaller, so 

the result should be interpreted with extreme caution. We used a highly polarized cohort of cardiac 

arrest survivors and low ESC risk score patients in roughly equal proportions – very different to the 

intake of an inherited cardiac conditions clinic. A project looking at patients in the intermediate risk 

band is needed to generate a more realistic view of these biomarkers. 

In recent years, machine learning has gained great traction in classification problems – we tested 3 

common strategies: support vector machines, random forests and neural networks. Support vector 

machines and random forests scored higher areas under the ROC curve than logistic regression – but 

confidence intervals showed overlap. Furthermore, interpretability of regression models is far more 

accessible to clinicians. Without a clear advantage in performance, machine learning strategies 

should be considered alongside, rather than instead of logistic regression for clinical classification 

problems. 

However they are processed, our data suggests that ECGi measurements can indeed quantify 

electrophysiological substrates for life threatening arrhythmia. These measurements could be used 

as adjunct to currently available tools to improve the risk stratification of sudden death in the 

inherited cardiac conditions. 

9.2 Limitations 

Despite the detailed electrophysiological measurements made in this thesis, patient selection suffers 

from similar limitations to many of the registry studies we previously examined. 

All data here is analyzed retrospectively. To demonstrate true utility, risk stratifiers must show 

prospective performance. In considering cardiac arrest survivors, we exclude patients who did not 

survive ventricular arrhythmia, and assume that the only difference between life and death was the 

efficacy and promptness of resuscitation. In considering patients with appropriate therapy from an 
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ICD equivalent to those with aborted cardiac arrest we assume that ventricular tachyarrhythmia 

never self terminates after the programmed therapy delay, which is known to be false (Gasparini, 

Proclemer et al. 2013). The rarity of ventricular tachyarrhythmia necessitates this assumption, but it 

must be recognized that whilst we might be able to draw conclusions about a combined groups of 

cardiac arrest survivors and appropriate therapy recipients, the results may not be totally applicable 

to a pure primary prevention cohort. 

Our study was also small, meaning that outlier patients might have significant effect on final 

conclusions, but also that true electrophysiological differences may be masked by Type II error. 

Electrocardiographic imaging provides the only current method to reconstruct epicardial 

electrophysiology non-invasively for intact patients undergoing physiological stress, but there is 

extensive debate over how accurate it is (Rudy and Lindsay 2015; Duchateau, Sacher et al. 2019; 

Graham Adam, Orini et al. 2019). Ground truth is ambiguously defined – although contact mapping 

allows direct recording of electrograms, operators must assume that activation and repolarization 

patterns are conserved beat to beat as a map is made up of perhaps thousands of catheter positions 

taken across as many cardiac cycles. Our experimentation suggests that beat to beat 

electrophysiology is not well conserved in the intact, innervated heart, but this claim may be 

unfalsifiable. 

For this reason, we must be cautious when drawing mechanistic conclusions from our data. Despite 

the failure of simulated artefact to nullify our results, it would be prudent to consider detectable 

change within subject, or as a reference against normal subjects rather than absolute values derived 

from ECGi. The similarity of our findings to invasively gained data can give us some confidence, but 

we can never be sure of the relationship between our findings and the true epicardial picture. 

Modern cardiac MRI techniques have demonstrated great utility in diagnostics and as of the latest 

HCM guidelines have also been given a role in risk stratification. Lack of MRI data, especially 

contemporaneous is a limitation of this study. Although MRI-ECGi systems do exist, they are not 

widely used and have not achieved clinical deployment to date. They were also not CE Marked at the 

start of this study, which is the reason they were not selected. ECGi-MRI is inherently more difficult 

to perform in those with implanted cardiac devices; our population had a high prevalence of ICDs. 

Many of the cardiac arrest survivors were first seen and treated years prior to the common 

availability of cardiac MRI, and the study did not have funding to repeat scans in these patients. This 

would be an excellent opportunity for further study. 
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Use of exercise alone may also limit the quantification of arrhythmic substrates. Vagal stimulation, 

ectopic beats, emotional stress and sleep have all been anecdotally linked to cardiac arrest. Exercise 

was chosen for our study as it had the most evidence behind it, was easy to perform and 

standardize. However, the heterogeneity displayed by all 3 cardiac arrest survivor groups suggests 

that perhaps exercise is not the optimal stressor for everyone. 

9.3 Future directions 

At the time of writing, our group has initiated a multi-centre prospective study of intermediate- and 

high- ESC risk HCM patients without a history of cardiac arrest either being offered or with a primary 

prevention ICD. Each patient undergoes exercise ECGi which will allow us to measure the parameters 

examined in this thesis. Alongside this, clinical history, blood tests, 12 lead electrocardiography, 

echocardiographic and in a subset of patients, magnetic resonance imaging will be performed. Twice 

yearly follow up will be used to determine whether patients went onto have life threatening 

ventricular tachyarrhythmia. This comprehensive dataset provides the opportunity to fill remaining 

gaps in our knowledge. 

This prospective data will allow us to know whether V-CoS, or one of the other non-invasive ECGi 

measurements is effective at guiding ICD implantation. Aside from this clinical conclusion, many 

basic science goals could also be pursued. 

The relationship between structural and electrical measurements is still unknown. MRI data was 

lacking in this thesis. Longer, more dispersed conduction and repolarization times with steeper 

gradients would be hypothesized to occur in patients with more myocardial fibrosis, or thicker 

ventricular walls. We had not considered the distribution of electrophysiologic abnormalities in this 

thesis, but it is plausible that localized scar or thick ventricular walls would be associated with 

localized electrophysiological abnormality. The effect of septal fibrosis on epicardial ECGi 

measurements is also unknown and could be assessed in a larger group of MRI evaluated patients. 

A significant issue with interpretation of multiple modalities is anatomic co-registration. This is used 

extensively by clinical radiotherapists. Although co-localized substrates and electrical measurements 

are described in the literature, automation is rare and resolution is in the >1cm range, when 

myocardial abnormalities may be smaller. Further work into electroanatomic co-registration would 

allow better understanding of how structural abnormalities affect conduction and repolarization. 

This work would also benefit the nascent field of non-invasive cardiac radiotherapy for ventricular 

tachycardia, which currently has a coarse targeting system(Cuculich, Schill et al. 2017). 
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The ECGi system is expensive and requires exposure to ionizing radiation. Although we were able to 

detect ECGi differences in patients with broadly similar 12-lead ECGs, machine vision may detect 

abnormalities in this cheap tool that we are unable to with standard clinical measurements like QRS 

duration. An extension of the convolutional neural network (CNN) used for ECG segmentation in our 

work could be turned to classification, using either ECGi derived or clinical measurements as the 

labels.  

As body surface signals are used in the reconstruction of epicardial electrograms, it is plausible that 

this vest data contains sufficient information to differentiate our clinical groups without CT scan. Our 

data could be retrospectively analyzed using automatic QRS and QTc measurements – these being 

gained from tools based on our ECG segmenting CNN.  

9.4 Closing thoughts 

This thesis began with an appraisal of risk models using currently known biomarkers implicated in 

sudden cardiac death. We found these to be lacking. 

Trying to close gaps in our knowledge, we found that electrocardiographic imaging could detect 

differences between patients with and without a history of life-threatening arrhythmia. We found 

that activation patterns in normal patients were unchanged by stress, and periodically deranged in 

those with known arrhythmogenic syndromes. We found computing solutions to improve 

reproducibility and risk stratification. From the new biomarkers we identified, we constructed a 

multivariable model to describe the arrhythmic substrate. 

A globally-collaborative continually updated registry with follow-up should be a future direction; risk 

model coefficients can be expected to change with time and our clinical scores should reflect that. 

The medical problem of static databases is mirrored in the wider machine learning community 

(Parisi, Kemker et al. 2019). Patients and clinicians should be well counselled that risk stratification 

remains a steep challenge and will likely be so for time to come. 
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Thank you for considering our study. We are aiming to test out a new way of measuring the heart s 
electricity to help people at risk of sudden cardiac death. This lea et will explain what is involved. 
Please take  me to read the following informa on carefully and discuss it with others if you wish.

                                 
600 young people die every year from Sudden Cardiac Death due to dangerously fast heart beats. By 
studying both normal and abnormal hearts we are aiming to make a test that can tell if someone is at 
high risk of having these dangerous beats and give them a life ‐saving device called an Implantable 
Cardioverter De brillator (ICD). We are also aiming to ensure people at low risk do not receive ICDs as 
there are risks involved in having one. The study forms part of a PhD project.

                     
The device is called CardioINSIGHT and the test is called Ventricular Conduc on Stability (or V ‐CoS). It 
centres around a vest of sensors combined with a scan of the heart which, in combina on with a 
special computer programme wri en by the research team, might be able to tell the di erence 
between people who need a life ‐saving ICD and those who do not.

                       
We are looking for six main groups of people to take part, and you belong to the group of pa ents with 
Brugada syndrome who have had a previous cardiac arrest or treatment from your ICD.

The other groups are:
 People with normal hearts who are athle c.
 People with normal hearts who have rela ves with Brugada syndrome
 People with atrial  brilla on, an irregular heart beat
 People who have previously had a dangerously fast heart beat due to a heart a ack but have since 

fully recovered
 People who have  safe  but abnormal heartbeats undergoing treatment.

                       
No, it is up to you to decide whether or not to take part. If you do, you can keep this informa on sheet 
and will be asked to sign a consent form. You will be free to leave the study at any  me without giving 
a reason. Withdrawing from the study or not choosing to join will not a ect the standard of care you 
receive from the service.

FIRST‐BrS: Feasibility of Improving Risk Stra  ca on in Brugada Syndrome 
Version 4.1, 13/02/2018. IRAS 223181.
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Ge ng a  
lea et at 

cl inic/hospital

Consent 
sess ion with 
the team

Tes ng day

Vest   ng 
and CT scan

Exercise test ICD tes ng

Altogether you will spend less than a whole day in the hospital for the tests. The study is a         
      , which means we will test mul ple groups of people and a empt to  nd di erences in their 
results.

               
You ll meet a member of our team who will talk you through the process in detail so you can decide if 
you want to go ahead. This is a good chance to ask any ques ons you might have. You will then be 
given a date for your Tes ng Day.

                     
The test hinges around a vest of sensors you will wear. 
To see how this  ts with your heart we will also do a 
CT scan of your chest, which is like a 3D X ‐ray. 
This part of the test involves a small dose of radia on.

             
Next there will be a treadmill exercise test with the vest on. The test starts o  on the  at and is like 
walking progressively faster up a steepening hill. We will ask you to lie down at various points so we 
can measure the heart s electricity readings. It lasts about 20 minutes and you can stop it at any  me.

          
Only those of you with an implanted device (ICD) will be enrolled to this step. It involves triggering an 

extra beat in your heart and using the vest to measure the response. This is rou nely done during 
other heart procedures called Electrophysiological Studies. We will be approaching people individually 
to do this test; the research fellow or nurse will speak to you before the test about this.

FIRST‐BrS: Feasibility of Improving Risk Stra  ca on in Brugada Syndrome 
Version 4.1, 13/02/2018. IRAS 223181.
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There are no speci c lifestyle changes that you will need to make for this study . We cannot promise 
the study will help you, but the informa on we get might help improve the treatment of people at 
risk for sudden cardiac death related condi ons.

                      
There is risk in every medical procedure; our process has been designed to minimise risks as much 
as possible and has been independently scru nized by an ethics commi ee to ensure that no 
unnecessary risks have been taken. The main points are:

 The CT scan  there is a radia on dose associated with this, equivalent to 3 years of background 
radia on. Combined with the radia on dose from the EP study (below), this raises your chance 
of cancer by less than 1 in 1000.

 The Exercise test  very rarely there is a risk of your heart reac ng badly to this test. It is 
performed rou nely in a place where all the relevant safety professionals are readily available in 
case of emergency. The risk is similar to the risk taken when walking hard up a steep hill.

 The ICD test  there is a 0.5 to 1.5% risk of complica ons in this study. The same safety 
procedures for the Exercise test apply for the ICD test too.

As there is a small radia on dose involved                                                        
                           . If you are at risk of pregnancy we may ask you to have a pregnancy 
test to ensure you can take part safely. If you do become pregnant during the course of the study 
you will have to let us know immediately.

Rarely we may  nd problems in our diagnos c tests that you were previously unaware of. Amongst 
other things this might include abnormal heart beats or growths in your lungs.                     
                                                                                      
                          . At this point we may have meet you to talk about whether you can 
carry on with the study.

Some mes during the course of a research project, new informa on becomes available about the 
process that is being studied. If this happens, we will tell you about it and ask you whether you want 
to con nue in the study. If you decide to withdraw, we will make arrangements for your care to 
con nue. If you decide to con nue in the study you will be asked to sign an updated consent form.

FIRST‐BrS: Feasibility of Improving Risk Stra  ca on in Brugada Syndrome 
Version 4.1, 13/02/2018. IRAS 223181.
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This is known as an  adverse event .                                                            
                                                . All adverse events are reported and recorded. 
If there are any ques ons these are normally directed at the Principal Inves gator. If the adverse 
event is very serious it will be reported to the Research Ethics Commi ee that approved the study .

Imperial College holds Public Liability ( negligent harm ) and Clinical Trial ( non ‐negligent harm ) 
insurance policies which apply to this trial. If you can demonstrate that you experienced harm or 
injury as a result of your par cipa on in this trial, you will be eligible to claim compensa on without 
having to prove that Imperial College is at fault. If the injury resulted from any procedure which is 
not part of the trial, Imperial College will not be required to compensate you in this way . Your legal 
rights to claim compensa on for injury where you can prove negligence are not a ected.

If you wish to complain about any aspect of the way in which you have been approached or treated 
during the course of this study, you should ask to speak to the researchers who will do their best to 
answer your ques ons. Contact details are at the end of the lea et.

If you remain unhappy and wish to complain formally , you can do this by contac ng the Pa ent 
Advisory Liaison Service (PALS). PALS is a con den al NHS service that can provide you with support 
for any complains or queries you may have. Imperial College s PALS team is contactable on 020 3313 
0088 or imperial.pals nhs.net .

                           
If you consent to take part in the research any of your medical records may be inspected by the 
groups sponsoring the research for purposes of analysing the results. They may also be looked at by 
people from the organising bodies and from regulatory authori es to check that the study is being 
carried out correctly. Some mes the informa on learned from your test is used in the future by 
other universi es, hospitals and companies performing research to help  nd ways to treat people 
with a heart condi ons. Your name, however, will not be disclosed outside the hospital/GP surgery  
the informa on will all be anonymous.

                  
The informa on will be analysed to help understand the way in which the vest could detect 
di erences between people at risk of sudden death, and those not at risk. Altogether we expect that 
the study will take 3 years, although individually you will only spend about half a day with us.

During the study we will a empt to fully reimburse you for relevant expenses, and will pass on 
informa on to your family doctor to help guide your care. For pa ents from outside the M25 we will 
provide a maximum of  50 for travel, or  15 from within the M25. Receipts must be provided and 
these arrangements are subject to changes.

FIRST‐BrS: Feasibility of Improving Risk Stra  ca on in Brugada Syndrome 
Version 4.1, 13/02/2018. IRAS 223181.
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We will analyse the informa on gathered and publish our  ndings. No iden  able informa on will 
be released about you to the public, and we will make any results from the study available to you, 
the par cipants. You will then return to your normal follow up schedule if you are a pa ent in a 
clinic.

                                           
The study is funded by The Daniel Bagshaw Trust, a charity 
promo ng research into the early diagnosis of cardiac risk in 
the young and the improvement of treatment methods for 
sudden cardiac arrest. The Principal Inves gators are Dr Prapa 
Kanagaratnam and Dr Amanda Varnava, consultant cardiologists. 
The device is provided by Medtronic, a manufacturer of medical equipment.

This study has been given ethical approval by Fulham Research Ethics commi ee.

                 
If you re about to have your clinic appointment, tell the person you re about to have it with. If you ve 
taken this sheet home to think about it further and you ve decided to you d like to join us, contact:

Dr Ji‐Jian Chow
First‐brs imperial.ac.uk subject: JOIN FIRST‐BrS

020 3313 6758
07774 178478

If you need to contact anyone regarding the study once you are enrolled please do so by email or 
phone as above. If you have a medical ques on not related to the study, please contact your GP.

Thanks for considering our study  We think this could give us new informa on to help us in the 
ongoing research into dangerously fast heart beats and reducing the number of people who die 
from these condi ons.

FIRST‐BrS: Feasibility of Improving Risk Stra  ca on in Brugada Syndrome 
Version 4.1, 13/02/2018. IRAS 223181.
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PATIENT INFORMATION SHEET - SITES EXTERNAL TO IMPERIAL COLLEGE   

  

      Version 2.0, 30/09/2017 

You are being invited to take part in a study.  Before you decide, it is important for you to understand 

why the study is being done and what it will involve.  Please take the time to read the following 

information carefully.  Ask us if there is anything that is not clear or if you would like more information. 

Title-   PREDICTING RISK USING ECVUE: DETECTION OF ACTIVATION CHANGES DURING 

PHYSIOLOGICAL STRESS THAT INDICATE A CRITICAL SUBSTRATE FOR VENTRICULAR FIBRILLATION 

(PREDICT-VF) 

Chief Investigator- Dr Prapa Kanagaratnam 

 

1)      Invitation and brief summary 

 

You have been invited to participate in this study because your cardiologist has diagnosed you with a 

cardiac condition that can cause fast heart rhythms. These conditions are often inherited, but the 

manner in which our genetic information results in fast heart rhythms is not known. Often we have to 

perform invasive tests which involve passing catheters into the heart to diagnose the type of rhythm 

disturbance and whether it is dangerous or not.  Unfortunately, during these tests we cannot mimic 

the conditions under which these fast heart rhythms start and this compromises their reliability.  

 

In this study, we will be trying to understand whether it is possible to predict if a person is going to 

get fast heart rhythms using tests that do not involve passing catheters into the heart. We will use a 

novel vest which can detect the electrical conduction of the heart, and by exposing the study subject 

to typical situations which can trigger rhythm disturbances such as exercise and relaxation, we hope 

to understand the differences between people that develop heart rhythms and those that do not. 

 

2)      What procedures or tests will this study involve? 
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The study will involve you wearing a novel vest which sticks to the skin and looks like a tank top and 

can be worn all day. It has 256 electrodes which measure the electrical impulses from the heart. You 

will have a CT scan with low x-ray exposure which produces a 3D image of the heart. This will take 

approximately 30 seconds. The electrical information from the vest and the 3D images from the scan 

are combined to enable us to work out how fast and the direction in which electricity spreads around 

the heart. 

 

We will then aim to mimic the situations that can trigger these fast heart rhythms whilst information 

is collected with the vest. You will run on a treadmill whilst we collect information from the vest. The 

treadmill test would last anywhere between 5 to 20 minutes depending on your level of fitness. 

 

 After your clinical study is completed we will spend a few minutes trying to mimic the various 

scenarios which can cause rhythm disturbances, and the doctor taking your consent will explain these 

to you in more detail.  

 

In summary, the additional investigations you may undergo by participating in this study are: 

i) Wearing a vest and undergoing a CT scan of your chest 

ii) An exercise treadmill test 

 

3) What are the possible benefits of taking part in the study? 

 

Whilst the study will not alter the current management of your condition, your participation and 

contribution will provide better insight and understanding of your heart condition which could be used 

in the future to guide management. 

  

4) What are the possible disadvantages of taking part? 

There is a small amount of radiation exposure from the CT scan, which carries a very low risk of 

inducing cancer. 

There is also the possibility of discovering health related findings during the course of our tests. We 

will inform and discuss these findings with you and advise you accordingly. 
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5) Am I able to participate if I have a device? (e.g. defibrillator or pacemaker) 

Yes, and it is safe to do so. The aforementioned tests have all been carried out safely in individuals 

with devices.  

6) What is the purpose of the study? 

The purpose of this study is to find out why certain people with a heart condition are more vulnerable 

to dangerous heart rhythms. 

7) Why have I been chosen? 

You have been invited to take part because you have a heart condition that is associated with rhythm 

problems. We would like to do the additional tests using the vest in people undergoing procedures in 

order to compare how information from the vest relates to the information taken directly from the 

heart.  

 

 

8) Who will be excluded from the study? 

We will not include people who have heart conditions that do not cause rhythm disturbance. We will 

not include people who cannot perform exercise tests. Women who are pregnant or not using highly 

effective contraception will not be able to participate.  

9) Do I have to take part? 

It is up to you to decide whether or not to take part.  If you decide to take part you will be asked to 

sign a consent form.  If you decide to take part you are still free to withdraw at anytime without giving 

a reason.  A decision to withdraw at anytime, or a decision not to take part, will not affect your care 

in any way. 

10) What do I have to do? 

We will aim to have all your investigations performed on the same day, and you will receive a letter 

detailing the date of your attendance for these.  Reimbursement for travel costs can be discussed with 

us if you are situated outside of greater London.  
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11) What will happen to me if I take part? 

 

i) On the morning of the study, you will be in the cardiac day ward to have an ECG taken. 

 

ii) The vest will then be fitted followed by a CT scan of the chest. 

 

iii) You will then be taken to the cardiac investigations department to have your treadmill 

test.  

 

iv) We will collect electrical information from the vest during the clinical study. We will also 

perform some manoeuvres that mimic the situations that cause rhythm disturbances. The 

specific test will be explained at the time of your consent. 

 

12) What are the risks and side effects of all the procedures and tests? 

Exercise Testing 

Risks or adverse effects of these physiological tests are low. These include:- 

i) New or worsening heart rhythm disturbance 

ii) Low blood pressure 

iii) Palpitations due to fast or slow heart rates 

ECGi Vest 

During the fitting of the equipment you will undergo a CT scan. This is a special type of X-ray test and 

involves radiation. The amount of radiation is very low – equivalent to about 6 months of the natural 

radiation someone receives during their normal lives.  

  

High levels of radiation can cause cancer; therefore we always use as little as possible. The CT is 

performed by someone professionally trained in using 'as low as reasonably possible’ dose of 

radiation.  

 

In addition to these safety measures, we still warn people that there may be a very small increased risk 

of cancer over the course of your lifetime – about 1 in 3333.  
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Overall, the additional risks of taking part in the study are low.  During these procedures, there will 

be a full complement of staff present that is fully trained to deal with medical emergencies. 

 

13) What if new information becomes available? 

Sometimes during the course of a research project, new information becomes available which may 

affect the research or your clinical care.  If this occurs, we will inform you and discuss with you whether 

you wish to continue with the study. 

If you decide to withdraw from the study, your research doctor will make arrangements for your care 

to continue.  If you decide to continue in the study you will be asked to sign an updated consent form. 

Also, on receiving new information your research doctor might consider to be in your best interests 

to withdraw from the study.  Your doctor will explain the reasons and arrange for your care to 

continue. 

14) What if something goes wrong?  

 

Imperial College London holds insurance policies which apply to this study.  If you experience serious 

and enduring harm or injury as a result of taking part in this study, you may be eligible to claim 

compensation without having to prove that Imperial College is at fault.  This does not affect your legal 

rights to seek compensation. 

 

If you are harmed due to someone’s negligence, then you may have grounds for a legal 

action.  Regardless of this, if you wish to complain, or have any concerns about any aspect of the way 

you have been treated during the course of this study then you should immediately inform the 

Investigator (Insert name and contact details).  The normal National Health Service complaints 

mechanisms are also available to you.  If you are still not satisfied with the response, you may 

contact the Imperial AHSC Joint Research Compliance Office.  

 

15) Will my taking part in the study be kept confidential? 

The information coming out of the study may be shared with other centres or commercial entities to 

help improve present and future research. These may include NHS Trusts, external universities and 

commercial entities involved in this field of study. All information which is collected about you during 
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the course of the research will be kept strictly confidential.  Any information about you which leaves 

the hospital will have your name and address removed so that you cannot be recognised from it.  

We will be asking for your agreement for us to inform you GP of your participation in this trial. 

16) What will happen to the results of the research study? 

The results of this study should be available in 3 years.  We aim to publish these results in a leading 

medical journal.  You will not be identified in any publications.  We will be able to let you know about 

the results at the end of the study. 

17) Who is organising and funding the research? 

Imperial College London is the sponsor and is providing funding for the research which is being done 

as part of a PhD.   

 

18) Contact for further information 

Your first point of contact is Dr Ji-Jian Chow, Research Fellow who will provide you his contact details 

should you decide to participate. You can also contact the Arrhythmia Specialist Nurses via 

switchboard at 02083831000. Alternatively, please contact Dr Prapa Kanagaratnam, Consultant 

Cardiologist at 02033123783. 

In an emergency situation, you should call 999 for an ambulance.  

Thank you for reading this information leaflet.  Please feel free to contact us if you require further 

information or clarification. 

Please keep this copy of the information sheet and signed consent form. 
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Which risk prediction? Quick survey 

Dear colleague, 

We’re interested to know what you personally think about risk stratification in the ICCs using 

Brugada syndrome and Hypertrophic cardiomyopathy as examples. Please take a minute to indicate 

your views using the questions below: 

Brugada syndrome 

1. Do you risk stratify BrS patients by [circle one per question]… 

a. Spontaneous Type 1 pattern and syncope? 

i. Yes 

ii. No 

iii. Not heard of it 

b. Siera-Brugada risk score (EHJ 2017)? 

i. Yes 

ii. No 

iii. Not heard of it 

c. Shanghai score (2016 for diagnosis, used for risk strat in JACC 2018)? 

i. Yes 

ii. No 

iii. Not heard of it 

d. Other [write comment overleaf] 

 

2. How likely are you to perform invasive EPS on BrS patients with [mark a cross on the line]… 

a. Spontaneous Type 1 pattern with syncope? 

Least likely-------------------------------------------------------------------------Most likely 

b. Spontaneous Type 1 pattern without syncope? 

Least likely-------------------------------------------------------------------------Most likely 

c. Concealed Type 1 pattern with syncope? 

Least likely-------------------------------------------------------------------------Most likely 
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d. Concealed Type 1 pattern without syncope? 

Least likely-------------------------------------------------------------------------Most likely 

 

3. If invasive EPS is performed, do you routinely perform sinus node testing? 

a. Yes 

b. No 

 

4. At my centre, we perform EPS on _________________ % of our patients [write an estimate] 

 

Hypertrophic Cardiomyopathy 

1. Which HCM risk stratification system do you use? 

a. 2003 ACC/ESC guidelines 

i. Yes 

ii. No 

iii. Not heard of it 

b. 2011 ACCF/AHA guidelines 

i. Yes 

ii. No 

iii. Not heard of it 

c. 2014 ESC risk calculator 

i. Yes 

ii. No 

iii. Not heard of it 

d. Other [please write comments below] 

 

2. Out of the risk stratification systems do you have a favourite/ one that takes priority? 

a. 2003 ACC/ESC 

b. 2011 ACCF/AHA 

c. 2014 ESC 

 

3. Any comments on why?  
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