271 research outputs found

    Enhancing thermoelectric properties of isotope graphene nanoribbons via machine learning guided manipulation of disordered antidots and interfaces

    Full text link
    Structural manipulation at the nanoscale breaks the intrinsic correlations among different energy carrier transport properties, achieving high thermoelectric performance. However, the coupled multifunctional (phonon and electron) transport in the design of nanomaterials makes the optimization of thermoelectric properties challenging. Machine learning brings convenience to the design of nanostructures with large degree of freedom. Herein, we conducted comprehensive thermoelectric optimization of isotopic armchair graphene nanoribbons (AGNRs) with antidots and interfaces by combining Green's function approach with machine learning algorithms. The optimal AGNR with ZT of 0.894 by manipulating antidots was obtained at the interfaces of the aperiodic isotope superlattices, which is 5.69 times larger than that of the pristine structure. The proposed optimal structure via machine learning provides physical insights that the carbon-13 atoms tend to form a continuous interface barrier perpendicular to the carrier transport direction to suppress the propagation of phonons through isotope AGNRs. The antidot effect is more effective than isotope substitution in improving the thermoelectric properties of AGNRs. The proposed approach coupling energy carrier transport property analysis with machine learning algorithms offers highly efficient guidance on enhancing the thermoelectric properties of low-dimensional nanomaterials, as well as to explore and gain non-intuitive physical insights

    Perspectives on thermoelectrics: from fundamentals to device applications

    Get PDF
    This review is an update of a previous review (A. J. Minnich, et al., Energy Environ. Sci., 2009, 2, 466) published two years ago by some of the co-authors, focusing on progress made in thermoelectrics over the past two years on charge and heat carrier transport, strategies to improve the thermoelectric figure of merit, with new discussions on device physics and applications, and assessing challenges on these topics. Understanding of phonon transport in bulk materials has advanced significantly as the first-principles calculations are applied to thermoelectric materials, and experimental tools are being developed. Some new strategies have been developed to improve electron transport in thermoelectric materials. Fundamental questions on phonon and electron transport across interfaces and in thermoelectric materials remain. With thermoelectric materials reaching high ZT values well above one, the field is ready to take a step forward and go beyond the materials' figure of merit. Developing device contacts and module fabrication techniques, developing a platform for efficiency measurements, and identifying applications are becoming increasingly important for the future of thermoelectrics.MIT Energy InitiativeSolid-State Solar-Thermal Energy Conversion Center (funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-FG02-09ER46577)United States. Dept. of Energy (DOE Grant No. DE-FG02-08ER46516)Robert Bosch Gmb

    Nanoscale heat transfer - from computation to experiment

    Get PDF
    Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in computational and 5 experimental techniques has enabled a large number of interesting observations and understanding of heat transfer processes at the nanoscale. In this review, we will first discuss recent advances in computational and experimental methods used in nanoscale thermal transport studies, followed by reviews of novel thermal transport phenomena at the nanoscale observed in both computational and experimental studies, and discussion on current understanding of these novel 10 phenomena. Our perspectives on challenges and opportunities on computational and experimental methods are also presented.University of Notre Dame (Startup fund)United States. Dept. of Energy. Office of Basic Energy Sciences (Solid-State Solar-Thermal Energy Conversion Center

    Charge carrier and phonon transport in nanostructured thermoelectrics

    Get PDF
    There is currently no quantum mechanical transport model for charge (or phonon) transport in multiphase nano-crystalline structures. Due to absence of periodicity, one cannot apply any of the elegant theorems, such as Bloch's theorem, which are implicit in the basic theory of crystalline solids. Atomistic models such as Kubo and NEGF may assume an accurate knowledge of the interatomic potentials; however, calculations for real 3D random multi-phase systems require so large computational times that makes them practically impossible. In a multi-phase nano-crystalline material, grains and interfacial microstructures may have three distinct types as depicted in figure. In such a material, the physical processes in each individual grain no longer follow the well described classical continuum linear transport theory. Therefore, a proper model for coupled transport of charge carriers and phonons that takes into account the effect of their non-equilibrium energy distribution is highly desirable.Two new theories and associated codes based on Coherent Potential Approximation (CPA) one for electron transport and one for phonon transport are developed. The codes calculate the charge and phonon transport parameters in nanocomposite structures. These can be nano-crystalline (symmetric case) or the material with embedded nano-particles (dispersion case). CPA specifically considers multi-scattering effect that cannot be explained with other semi-classical methods such as Partial Wave or Fermi's golden rule. To our knowledge this is the first CPA code developed to study both charge and phonon transport in nanocomposite structures. The codes can be extend to different types of nano-crystalline materials taking into account the average grain size, as well as the grain size distribution, and volume fraction of the different constituents in the materials. This is a strong tool that can describe more complex systems such as nano-crystals with randomly oriented grains with predictive power for the properties of electrical and thermal properties of disordered nano-crystalline electronic materials

    Propriétés électroniques et thermoélectriques des hétérostructures planaires de graphène et de nitrure de bore

    Get PDF
    Graphene is a fascinating 2-dimensional material exhibiting outstanding electronic, thermal and mechanical properties. Is this expected to have a huge potential for a wide range of applications, in particular in electronics. However, this material also suffers from a strong drawback for most electronic devices due to the gapless character of its band structure, which makes it difficult to switch off the current. For thermoelectric applications, the high thermal conductance of this material is also a strong limitation. Hence, many challenges have to be taken up to make it useful for actual applications. This thesis work focuses on the theoretical investigation of a new strategy to modulate and control the properties of graphene that consists in assembling in-plane heterostructures of graphene and Boron Nitride (BN). It allows us to tune on a wide range the bandgap, the thermal conductance and the Seebeck coefficient of the resulting hybrid nanomaterial. The work is performed using atomistic simulations based on tight binding (TB), force constant (FC) models for electrons and phonons, respectively, coupled with the Green's function formalism for transport calculation. The results show that thanks to the tunable bandgap, it is possible to design graphene/BN based transistors exhibiting high on/off current ratio in the range 10⁴-10⁵. We also predict the existence hybrid quantum states at the zigzag interface between graphene and BN with appealing electron transport. Finally this work shows that by designing properly a graphene ribbon decorated with BN nanoflakes, the phonon conductance is strongly reduced while the bandgap opening leads to significant enhancement of Seebeck coefficient. It results in a thermoelectric figure of merit ZT larger than one at room temperature.Les excellentes propriétés électroniques, thermiques et mécaniques du graphène confèrent à ce matériau planaire (bi-dimensionnel) un énorme potentiel applicatif, notamment en électronique. Néanmoins, ce matériau présente de sérieux inconvénients qui pourraient limiter son champ d'applications. Par exemple, sa structure de bandes électronique sans bande interdite rend difficile le blocage du courant dans un dispositif. De plus, pour les applications thermoélectriques, sa forte conductance thermique est aussi une forte limitation. Il y a donc beaucoup de défis à relever pour rendre ce matériau vraiment utile pour des applications. Cette thèse porte sur l'étude des propriétés électroniques et thermoélectriques dans les hétérostructures planaires constituées de graphène et de nitrure de bore hexagonal (BN). Différentes configuration de ce nouveau matériau hybride permettent de moduler la bande interdite, la conductance thermique et le coefficient Seebeck. Cette étude a été menée au moyen de calculs atomistiques basés sur les approches des liaisons fortes (TB) et du modèle à constantes de force (FC). Le transport d'électrons et de phonons a été simulé dans le formalisme des fonctions de Green hors équilibre. Les résultats montrent que, grâce à la modulation de la bande interdite, des transistors à base d'hétérostructures de BN et de graphène peuvent présenter un très bon rapport courant passant / bloqué d'environ 10⁴ à 10⁵. En outre, nous montrons l'existence d'états quantiques hybrides à l'interface zigzag entre le graphène et le BN donnant lieu à des propriétés de transport électronique très intéressantes. Enfin, ce travail montre qu'en agençant correctement des nano-flocons de BN sur les côtés d'un nanoruban de graphène, la conductance des phonons peut être fortement réduite alors que l'ouverture de bande interdite conduit à un accroissement important du coefficient Seebeck. Il en résulte qu'un facteur de mérite thermoélectrique ZT plus grand que l'unité peut être réalisé à température ambiante
    corecore