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Abstract: There is currently no quantum mechanical transport model for charge (or 

phonon) transport in multiphase nano-crystalline structures. Due to absence of 

periodicity, one cannot apply any of the elegant theorems, such as Bloch's theorem, 

which are implicit in the basic theory of crystalline solids. Atomistic models such as 

Kubo and NEGF may assume an accurate knowledge of the interatomic potentials; 

however, calculations for real 3D random multi-phase systems require so large 

computational times that makes them practically impossible.  

In a multi-phase nano-crystalline material, grains and interfacial microstructures may 

have three distinct types as depicted in figure. In such a material, the physical processes 

in each individual grain no longer follow the well described classical continuum linear 

transport theory. Therefore, a proper model for coupled transport of charge carriers and 

phonons that takes into account the effect of their non-equilibrium energy distribution is 

highly desirable. 

Two new theories and associated codes based on Coherent Potential Approximation 

(CPA) one for electron transport and one for phonon transport are developed. The codes 

calculate the charge and phonon transport parameters in nanocomposite structures. These 

can be nano-crystalline (symmetric case) or the material with embedded nano-particles 

(dispersion case). CPA specifically considers multi-scattering effect that cannot be 

explained with other semi-classical methods such as Partial Wave or Fermi’s golden rule. 

To our knowledge this is the first CPA code developed to study both charge and phonon 

transport in nanocomposite structures.  

The codes can be extend to different types of nano-crystalline materials taking into 

account the average grain size, as well as the grain size distribution, and volume fraction 

of the different constituents in the materials. This is a strong tool that can describe more 

complex systems such as nano-crystals with randomly oriented grains with predictive 

power for the properties of electrical and thermal properties of disordered nano-

crystalline electronic materials. 
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Outline 

The efforts in thermoelectrics research have been focused on enhancing thermoelectric figure of 

merit ZT. The best thermoelectric materials are recognized as “phonon-glass electron-crystal” (or 

PGEC in short), which means that the materials should have a low lattice thermal conductivity 

like a glass, and a high electrical conductivity and charge carrier mobility like crystals [1]. Unlike 

insulators which have poor electrical conductivity and metals which have low Seebeck 

coefficient, the heavily doped semiconductors seem to be the best candidates for thermoelectric 

materials. In semiconductors, the thermal conductivity has contributions from both charge 

carriers (ke) and phonons (kp(l)), with the majority usually coming from quantized lattice 

vibrations or phonons. The reduction in phonon thermal conductivity without causing too much 

reduction in the electrical conductivity is possible. A well-known approach to reduce the phonon 

thermal conductivity is through alloying [2]. The scattering due to mass difference in an alloy 

reduces the phonon thermal conductivity significantly without considerable deterioration to the 

electrical conductivity. 

Most of the existing theoretical studies heavily rely on information about the force constants of 

the pure materials [3, 1]. A direct first principles calculation of the electronic band structure and 

phonon dispersion for such systems is very demanding computationally even with the highly 

efficient linear response techniques presently available. Therefore,devising a method to treat 

disordered alloys and nanocomposites with an affordable amount of computer resources retaining 

an accuracy similar to that of direct first principles calculationsis desirable. 

In this dissertation the methods based on coherent potential approximation as introduced by 

Sheng [4] are developed and presented within effective mass approach for calculating relaxation 

times of grain boundaries for both charge carriers and phonons in nanocomposite thermoelectrics. 

The method takes into account the average grain size as well as the grain size distribution and 

volume fraction of the different constituent in the nanocomposite material. Furthermore, an 

approach to describe more complex systems such as nanocomposite thermoelectrics with 

randomly oriented grains is developed. In the remainder of this chapter, some background on the 

theory and the motivations for investigating the electronic and phononic properties of composite 

mixtures are discussed. Remarkably, in nanocomposites the granularity is largely high and the 

physical processes in each individual grain are well described by classical continuum linear 

transport theory. D. J. Bergman [5] showed that in a composite material thermoelectric power 

factor, the product of the square of the Seebeck coefficient and electrical conductivity, can be 
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enhanced over that of the individual constituents, but the figure-of-merit cannot. This predication 

is expected to fail in nanocomposites due to the size effects which are ignored in this theory. 

In the following sections, firstlythe importance of new concept of nanostructuring in the context 

of thermoelectrics is mentioned.In Chapter II,a detailed theoretical description of modeling 

charge carriertransport for semiconductors by Boltzmann transport equation (BTE)is given. 

Chapter III contains a review of phonon transport for semiconductors by BTE and also Callaway 

method [50]. The necessary details of general coherent potential approximation (CPA)are 

presented in Chapter IV. Chapter V presents the boundary value mathematical formalism of the 

CPA and its relation to Green’s function based formalism. The numerical results, analysis, 

verification of code, future studies and conclusion are given in Chapter VI . 

The predictive power of these methods in the case of disordered materials such as 

nanocomposites where some established experimental results existis demonstrated. These 

developed methods have been applied to charge carrier and phonon transport in 

nanocompositesBi2Te3-Sb2Te3Si-Ge to calculatethe grain boundary scattering time. The 

dependency of charge carrier and phonon scattering ratesas a function of the grain size is shown 

in this dissertation.  

1.2 The Theory of Electronic Structure of Alloys 

The charge carrier transport models of substitutionally disordered alloys cannot be applied 

exactly for arbitrary alloy compositions. Even for very simple model compositions, one can 

obtain exact spectra only by numerical calculations on a system of several thousand atoms. The 

primary difficulty in developing a theory to treat such a system stems directly from the absence of 

any real simplifying features in the system geometry. In fact, there is no periodicity in the system. 

The atom configurations are locally ordered and periodic within each individual grain but grains 

are randomly oriented and there is no long range periodicity or order. Thus one cannot apply any 

of the elegant theorems, such as Bloch's theorem, which are implicit in the basic theory of 

crystalline solids. Furthermore, disordered systems in general and alloy compositions in particular 

are systems for which the perturbative approach is most likely to be unsuccessful. This situation 

is mainly caused by lack of a definite small parameter which describes the system. Nevertheless, 

many approximate approaches, of varying degrees of efficiency and simplicity have been 

developed to deal with such systems over the past years [4]. For disordered alloys or composite 

systems, a common method for developing a theory of the electronic properties is to treat the 

electronic structure in a tight binding picture with both the diagonal and off-diagonal matrix 

elements of the tight binding Hamiltonian being taken as random variables which take on 

different values depending on the probability of a given site being occupied by a given type of 

atomic constituent. Many approximate approaches have been proposed to calculate the electronic 

properties of disordered alloys in such a model, with most theories focusing on determining the 

electronic band structure and density of states. These approximate methods includes the Virtual 

Crystal Approximation (VCA)[6], the Average T-Matrix Approximation (ATA) [7], the Coherent 

Potential Approximation (CPA)[ 8 ], the Embedded Cluster Method [ 9 ], various cluster 

generalizations of the CPA [9]. Several sources such as books by Sheng [4] and Economou [10] 

give detailed discussions of some of these methods. The Coherent Potential Approximation 
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(CPA) as an approach to the theory of disordered alloys has proven successful in application to a 

large number of electronic properties under the above mentioned tight binding model. The CPA 

has been shown to be one of the most effective out of a class of theories known as "single-cell" 

theories. The CPA can predict successfully the major trends in the band structures of alloys as a 

function of their composition. Nevertheless, the calculations remain relatively simple for 

applications to real systems. Historically, this approximation was based on the multiple scattering 

approach of Lax [11]. The multiple scattering approach was originally developed by Taylor [12] 

(for vibrational properties) and by Soven [13] (for electronic properties) for binary alloys. The 

CPA is a mean-field theory approach which replaces the random alloy by an effective medium. 

The effective medium is self-consistently determined, so that the average scattering of waves or 

quasi-particles from each unit cell vanishes. Another way to express this approximation is that the 

self-consistently determined effective medium leads to a zero average electronic scattering from a 

single unit cell embedded in the effective medium. In this way one obtains the average 

eigenvalues for the random alloy. The CPA will be discussed in detail in chapters IV and V. After 

the pioneering papers of Taylor and Soven, various extensions of the CPA have been made by 

many researchers. Some of these extensions and generalizations may be found in papers by Sen 

and Hartman [14] and in the Refs. [15,16].  

 

1.3 Nanostructured Thermoelectric Materials 
Superlattices, quantum wires, quantum wells and quantum dots as nanostructured or low-

dimensional materials, offer new ways to manipulate the charge carrier and phonon transport 

properties of a given material [17]. When the quantum effects are dominant, the energy spectra of 

charge carriers and phonons can be controlled through varying the size of the structures. So, the 

quantum effects offer a possible way for enhancement of the ZT. In this regime, the 

nanostructured materialsshow new physical properties despite the fact that they are made of the 

same atomic components as their parent materials. Thus looking for high ZT systems in 

nanostructured materials can be considered as analogous to synthesizing many different bulk 

materials and measuring their thermoelectric properties. When quantum size effects are not 

dominant, improving classical size effects to adjust the transport processes is still possible. The 

exploitation of interfaces and boundaries to scatter phonons more effectively than charge carriers 

is a possibility. Investigations over the past decade on nanostructured materials have utilized both 

quantum and classical size effects for charge carriers and phonons. As another possibility, 

Dresselhaus proposed the use of quantum wells to increase the power factor via quantum size 

effects of electrons in 1993 [18]. The implementation of these quantum-well structures calls for 

superlattices or multiple quantum well structures. Meanwhile, there were also suggestions and 

experimental evidence that superlattices could be made into superior thermal insulators, 

promising another method to enhance the figure-of-merit [19]. Later experimental efforts have 

demonstrated significantreduction of the thermal conductivity in superlattices [20].  

To explain the reduction in thermal conductivity of nanostructures, many different approaches 

have been developed. These approaches can be categorized in two different groups. In the first 

group the phonons are considered as incoherent particles, and interface scattering is treated as a 

classical size effect [21 ,22 ]. These approaches assume that interface scattering is partially 

specular and partially diffusive, with the fraction of specular interface scattering as a fitting 

parameter. In the second group of approaches the phonons are considered totally coherent. Three 
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major effects on the phonon spectra in superlattice nanostructures can be attributed to the 

periodicity:  

(1) phonon branches are folded in the growth direction due to the new periodicity, 

(2) small band-gaps appear, and  

(3) thespectrum of acoustic phonons with higher frequency becomes flat or confined because 

of the spectrum mismatch. 

 

As a result, the phonon group velocity in the cross-plane direction is reduced which in turn lowers 

the thermal conductivity [23]. Nevertheless, compared to experimental data, the reduction in the 

phonon group velocity alone is not enough to explain the magnitude of the thermal conductivity 

reduction perpendicular to the film plane. Additionally, the reduction in the phonon group 

velocity fails to explain the thermal conductivity reduction across the film plane [24]. A possible 

explanation is that the lattice dynamics model does not include the possibility of diffusive 

interface scattering, which destroys the phase coherence.  

To overcome this difficulty a partially coherent phonon transport model was introduced that can 

describe the thermal conductivity behavior in superlattices over the full range of period 

thicknesses for both the in-plane and the cross-plane directions [24]. These theoretical and 

experimental efforts show difficulty of involving wave effects in phonon transport mechanisms 

due to the small phonon wavelength compared to the characteristic roughness and geometric 

variations of typical nanostructures. As an example a typical dominant phonon room temperature 

wavelength for most of materials is ~10-20 nm [25]. The wavelength must be much smaller than 

the interface roughness to consider it as a smooth interface. Therefore, interface imperfections 

resulted from mixing of atoms or formation of steps can easily destroy the phonon coherence. For 

thermoelectric applications, this destruction of phonon coherence is favored.  

 

 

 

1.4 Transport Theory for Nanostructures 
The conductance formula � � ��� where �is theconductivity, A is the area of cross-section of the 

conductor,and L is its length, breaks down at sub-micrometer length scales and electrical 

conductivity reaches a limiting value ��. Quantum mechanics explains that we should put aside 

the charged particle picture of electrons and consider them as wave-particles. This wavecharacter 

of theelectrons is responsible for many phenomena like Anderson localization,propagation of 

light through arandom medium, and mesoscopic conduction through adisordered sample. A 

mesoscopiclength scaleis defined as lengthscale at which the wave character of electrons has 

definiteeffect on the measurable physical properties. The conductance no longer 

monotonicallychanges but it shows jumps in units of�� �� �	
��
.  

The charge carrier transport needs quantum mechanics to be utilized when the following three 

parameters become ofthe order of the sample size: 

(1) the de-Broglie wavelength associated with the charge carriers,  

(2) the mean free path,which is the distance traveled by the charge carriers before 

theirinitial momentum are destroyed, and  

(3) the phase relaxationlength, which is the distance traveled by thecharge carriers before 

their initial phase are destroyed,  
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In this regime, all of our intuition about charge carrier transportcollapses. Newinteresting effects, 

such as conductance quantization, conductance fluctuations, Coulomb blockade in quantum dots, 

Kondo effect, non-equilibrium Kondo effect, etc. appear in this regime. 

Primitive quantum theories of charge carrier transport in bulkmaterials were semi-classical in 

nature, and includedtwo steps:  

(1) The charge carriers were accelerated by external forces across Bloch states, and then 

scattered between Bloch states by impurities or phonons.  

(2) Balancing processes were handled using simple occupation probability distributions, 

which do not consider any coherent processes and all the phase information was 

neglected in scattering.  

This semi-classicalapproach completely fails forcharge carrier transportin 

nanostructuredmaterials, where the phase relaxationlength of charge carriers becomes of the order 

of the size ofthe sample. A new approach wasneeded to explain coherent transport in 

nanostructured materials. The first steps were takenby Landauer [26] and Buttiker [27]. In brief, 

the recent transport theory through a nanostructuredsample can be categorized into three regimes: 

 

1. Ballistic regime.If the sample size is very small thenthe elastic scattering of charge carriers by 

the impurities will be negligibledue to few impurities in the path of charge carriers, and a new 

regime which is called ballistic transport regime is appeared. Considering conductance as an 

average transmission of the sample is very helpful, conceptually and computationally. The 

transmission properties of the sample depend effectively on the shape and size of the sample. The 

transport in this regime can be very well understood by using the Landauer formalism. Buttiker 

generalized the twoterminalsLandauer formalism to a multi-terminal formalism [27].  

 

2. Diffusive regime. The 2D (two dimensionalelectron) gas at the interface of a hetero-junction 

like GaAs/GaAlAs has some special features. The 2D electron gas has very low electron density 

(~ 10
12

/cm
2
) which is controllable by gate electrodes. The electron density implies large electron 

mean free path (~10�m) at low temperatures and the quantum interference effects extend over the 

length of the sample. There is no phonon generation and inelastic scattering.The electrical 

conductivity of a disordered sample is mainly influenced by the distribution of impurities in the 

sample. Electrical conductivity differs from sample to sample and grain to grain. In this regime 

the sample is muchlarger than the average electron mean free path. Another important length 

scale is the localization length. In strongly disorder materials, charge carriers form localized 

states due to back scattering and quantum interference effects. The length scale over whichthe 

wave packet is localized is named the localization length [4].  

In this dissertation a diffusive regime is assumedunless stated. 

 

 

3. Adiabatic regime. Adiabatic regimeoccurs in 2D systems in the presence of a strong 

perpendicular magnetic field. In this case, a shell of charge carriers around the Fermi levelis 

divided into levels called Landau levels. In this situation, the new length scale is the magnetic 

length of the electron (�� 
��  ~10 nm). If the magnetic length is of the order of the sample size, 

then inter-Landau level scattering of the charge carriers is annihilated and there will be no 

scattering. This regime is called the adiabatic transport regime. In most of the quantum transport 
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cases we have a non-equilibrium situation. Therefore, a different theory called non-equilibrium 

Green's function formalism (NEGF) is required to describe the interacting non-equilibrium 

nanostructuredmaterials. Moreover, the semi-classical kinetic transport theory of Boltzmann can 

be derived from the NEGF formalism. 

 

1.5 Motivation for Studying 
Despite theindustrial and experimental importance of nanostructured thermoelectrics very few 

systematic theoretical treatments of their transport properties have been carried out. An 

understanding of the electronic and phononic properties of these materials, particularly of their 

electronic band structures, densities of states, and phonon dispersion could be of importance for 

increasing the understanding of charge carrier and heat transport phenomena in these systems, 

and thus could contribute to the improvement of the devices manufactured from these materials. 

To the best of our knowledge, the theory of these properties is not yet sufficiently developed to 

enable the accurate prediction of either band structures and the density of states spectra or phonon 

dispersion. 

The work presented in this dissertation was motivated by a desire to understand and to be able to 

predict transport properties of these technologically important nanostructured thermoelectrics. 

The main purpose of the work presented here is thus to lay the foundation for a theory of the 

electronic properties and thermal properties of nanostructured thermoelectric materials.  

The Coherent Potential Approximation (CPA) introduced by Soven [13] has been used widely to 

calculate electronic properties of disordered alloys and composites. CPA has shown excellent 

agreement with experiments for scattering related quantities. In the CPA as a mean field and 

single site theoryone assumption is that a localized region of a material like a single site can 

specify the behavior of the entire material. The CPA introduces an effective medium with a 

complex propagation constant (wave number) which represents the electronic features of 

materials. This effective medium is characterized by requiring that the total cross section resulting 

from the difference between scattering of the host and embedded nanoparticle vanish on the 

average. In fact, the scattering medium is embedded in a host material in such a way that each 

single scatterer sees all other scatterers as composing the host. When the composite inclusion is 

embedded in the host, the net scattering when�� � �� should be zero if the scattering amplitudes 

of the single scatterers satisfy the CPA condition. The host material has adjustable properties (like 

elastic constants). The requirement of no net scattering gives rise to same effective properties for 

both composite and the host material. The properties of the effective medium are affected by its 

microstructure. The volume fractions of the components, the shapes and geometric arrangement 

of the inhomogeneties specify the microstructure of an effective medium. The microstructure 

represents the statistical correlation in a disordered alloy or composite. Therefore, to determine an 

effective medium both the material properties of the components and their microstructure should 

be specified. Therefore, the CPA is based on three main concepts: 

(1) Introduction of a periodic effective medium with a complex propagation constant by a 

self-consistency requirement. The CPA condition sets the average value of scattering 

amplitude equal to zero and eliminates its local fluctuations. 

(2) Calculating the average of a desired property of a disordered material. 

(3) Choosing a structural unit to represent the microstructural information of a disordered 

medium. 
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Several particular features of the CPA were especially interesting for the purpose of this work. 

Firstly, its mathematical formalism based on multiple scattering is simple and easy to understand. 

Secondly, the CPA is not computationally demanding. Thirdly, the CPA works well for samples 

even with high volume fraction of nanoparticles. For low concentrations of nanoparticles (<0.01), 

one may apply partial wave method, but as the concentration increases, the partial wave method 

fails. Finally, besides electron wave, the extension of the CPA to classical waves in disordered 

alloys enables us to treat the acoustic wave propagation in random media with a similar 

theoretical framework. 

The discussion on the thermal conductivity reduction mechanism mentioned above suggests that 

the periodicity of superlattices is not a necessary condition for thermal conductivity reduction. 

The reduced thermal conductivity in superlattices comes from the sequential interface scattering 

of phonons rather than the coherent superposition of phonon waves. This conclusion leads 

naturally to the idea of using nanocomposites as a possibleinexpensive alternative to superlattices 

in the quest for high ZT materials [ 28]. Such nanocomposites can be in the form of nano-

particles and nanowires embedded in a host matrix material, or mixtures of two different kinds of 

nanoparticles [29]. To reduce the thermal conductivity without deteriorating the charge carrier 

transport properties, one should work with constituent materials that have significant differences 

in lattice properties, but negligible differences in electronic properties. Recent experimental 

results on Bi2Te3/Sb2Te3 superlattices and PbTe/PbSeTe quantum dots superlattices [30,31] show 

no significant reduction in the electrical conductivity were observed for current flow 

perpendicular to the interface of Bi2Te3/Sb2Te3 superlattices and no reduction of electrical 

conductivity along the interface of PbTe/PbSeTe quantum-dot superlattices. Therefore, by 

properly choosing the mismatch in electronic properties, the electron transport properties can be 

maintained at a level comparable to bulk materials or even enhanced using interfaces as energy 

filters or energy quantization barriers. 

Although the nanocomposite approach seems promising, currently there are few theoretical or 

modeling papers regarding thermoelectric properties of nanocomposites that one can rely on to 

achieve good design of nanocomposites. There exists a variety of challenges for simulation of 

both charge carrier and phonon thermoelectric transport in nanocomposites. First of all, question 

often rises whether one needs to look into the wave effect in transport processes in nanostructures 

[25]. Another challenge to study the thermoelectric properties of nanocomposites is to simulate 

the charge carrier and phonon transport in the whole composite structure with nanoparticles or 

nanowires embedded in a host material. The distribution of the size and location of nanoparticles 

can vary considerably. To accurately model the transport, the simulation box should be as large as 

possible, or even the same size as the sample made. The memory and computational time 

requirements for such a multiscale problem are very demanding.  

Both the deterministic solution of phonon BTE and Monte Carlo simulation have been used to 

predict the thermal conductivity of nanocomposites with Si nanowires and nanoparticles 

embedded in Ge matrix [29]. The study shows that the prevailing approach to model thermal 

conductivity of nanocomposites, which includes the interface thermal resistance, or Kapitza 

resistance [32], with the Fourier heat conduction theory [33], underpredicts the effect of interface 

for thermal conductivity reduction. This is understandable since the Fourier heat conduction 

theory is based on the diffusion picture and is not applicable when the phonon mean free path is 

longer than the characteristic length of the nanocomposites such as the particle diameter and/or 

inter-particle separation distance. 
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To conclude, thermal conductivity of nanocomposites can be effectively reduced which, renders 

nanocomposite approach as potentially inexpensive alternative to superlattices for high ZT 

material development. The challenge is to properly choose the mismatch in electronic properties 

between the constituent materials so that the electron transport properties can be maintained or 

even enhanced. There are few modeling tools for electron transport in nanocomposites [5] but the 

methodology developed for studying thermal conductivity of nanocomposites can be extended to 

study the electron performance of nanocomposites and thus facilitate the material optimization. 

In summary, there is currently no transport model for coupled charge and phonon transport in 

nanocomposites. The physical processes in each individual grains no longer follow the well 

described classical continuum linear transport theory. Therefore, a proper model for coupled 

transport of charge carriers and phonons that takes into account the effect of their non-equilibrium 

energy distribution is highly desirable [34]. 

 

 

 

 

 

 

 

 

In a nanocomposite material, grains and interfacial microstructures may have three distinct 

structures as depicted in Figure 1.1.  In Type 1 (Figure 1.1-a), a thin layer of a secondary phase at 

the grain boundaries is introduced. Type 2 (Figure 1.1-b) consists of embedded nano-particles 

inside the grains. Figure 1.1-c is a mixture of two or more of different materials or phases. 

Phonon scattering at grain boundaries (GBs) reduces bipolar thermal diffusion of electron-hole 

pairs. Eelectron transitions through the same and different valleys at GBs, and thermionic 

emission at GBs are some of the main mechanisms that can significantly affect the TE properties 

of nanocomposites.  
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Figure 1.1: Schematics of three kinds of nanocomposites: (a) coated grains, (b) 

embedded nano-particles, and (c) multi-component grains. 
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CHAPTER II 
 

 

SEMICLASSICAL THEORY OF CHARGE CARRIER TRANSPORT 

 

To achieve a high value of ZT a properly designed composition that can reduce the thermal 

conductivity without significantly deteriorating the power factor is needed. In a good design the 

interface boundaries for such a random structure must be carefully modeled. Space charge effects, 

additional scatterings due to the rotation of crystal orientation at the boundaries, and electron-

phonon non-equilibrium transport are some of the main factors that must be studied. With proper 

engineering of the impurity atoms, designing a structure that can maintain or even increase the 

effective power factor of the active media for an optimum ZT might be possible.  Increasing the 

power factor can be achieved with an increased Seebeck coefficient due to the electron filtering at 

the barriers, a reduction in thermal conductivity, and increased carrier density for a high electrical 

conductivity. Transport theory deals with flow of charge carriers and/or flow of heat by phonons 

through a solid material under external fields, such as an electric field and/or a temperature 

gradiant. The motions of charge carriers or phonons are driven by the external fields but resisted 

by internal scattering processes between them and other particles or quasi-particles. There are 

energy and momentum exchanges within the interactions resulting in finite electric or thermal 

conductivity. On the other hand, the interactions have the consequence that the conducted carriers 

are not in their equilibrium states. There are two approaches to deal with a non-equilibrium 

transport, the Green- Kubo theory [35] and the semi-classical Boltzmann transport theory [36]. 

The former relates transport coefficients to the autocorrelation function of the current or heat flux. 

The latter treats effects of various scattering mechanisms on transport properties in terms of 

relaxation times. The Boltzmann transport theory has proven its validity in numerous applications 

where calculated transport coefficients can be readily compared with experimental results. First,a 

general discussion of the Boltzmann transport equation, which is needed for power factor 

modeling is provided. The effects of boundary scattering on electrical conductivity and the 

Seebeck coefficient are then presented.  

 

2.1 The Boltzmann Transport Equation 

Transport phenomena such as the flow of electric current in solids; involve two characteristic 

mechanisms with opposite effects:  
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(1) The driving force of the external fields and  

(2) The dissipative effect of the scattering of the carriers by phonons and defects.  

The interplay between the two mechanisms is described by the Boltzman transport equation. One 

may investigate how the distribution function of charge carriers in thermal equilibrium is changed 

in the presence of external forces with the help of this equation and as a result of charge carrier 

scattering processes. In thermal equilibrium and with no external fields, this distribution function 

is simply the Fermi-Dirac distribution as defined by: 
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                                                                    (2-1) 

 

   

where�� and �� are the Fermi energy and Boltzmann constant respectively. A typical system may 

consist of charge carriers in a material that is acted upon by stationary external electric and 

magnetic fields. When the steady state current is flowing, the system is in a dynamical 

equilibrium. The distribution function for such a system of charge carriers is given by: 

f (x, y, z, ux ,uy, uz,) 

wherex, y, z, are the coordinates of an electron and ux, uy, uz are velocity components. To derive 

the equation consider a region of space about the point ��� �� �� � � �! � �"#$  The number of 

particles having position coordinates in the range from �to � % &�, � to � % &�, � to � % &� and 

velocity coordinates in the range u, to ux+duyuy+duyuz to uz + duz can be represented by the 

following function: 

f (x, y, z, , ux ,uy, uz) dx dydz duxduyduz. 

The time variation of function is due to two independent phenomena: 

1-Drift. The function may vary with time because the particles are moving from one region of 

space to another and are accelerated by external fields during motion. Consider the group of 

particles at an instant t + dt, that are drifted to a cell of phase space corresponding to the 

coordinates (x, y, z,ux ,uy, uz). The number of particles is the same as were in a cell located at 

dtudtudtudtuzdtuydtux zzyxxxzyx ααα −−−−−− ,,,,, at a time t. Here yx αα , and zα are 

the components of acceleration. The relationship holds for a small time interval dt for which the 

collisions have no significant effect on the distribution. Thus the change due to drift in number of 

particles having coordinates x, y, z and velocity ux, uyand uz in time dt is given by: 
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Using Taylor’s expansion and keeping only first order terms in the limit dt� 0 the above equation 

can be expressed as 
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Consequently the rate of change of   f caused by drift is  
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in which subscript d indicates the contribution of drift variation.   

2-Scattering mechanisms.Scattering mechanism is due to relatively discontinuous changes in 

velocity that accompany collisions. If ( )
zyxzyxzyx dududuuuuuuuP '''',',';,, represents the 

probability per unit time that a particle will change its velocity from ux, uy, uzto a value having 

components in the range extending from u’x to u’x+du’z etc. the total number the velocity of 

which alters fromux, uy, uz to some other value is 

 

a = f(x, y, z, ux, uy, uz) � ( )
zyxzyxzyx dududuuuuuuuP '''',',';,,, �

 

 

 

(2-4) 
 

similarly, the number the velocity of which changes to ux, uy, uzfrom another values is 

�= zyxzyxzyxzyx dududuuuuuuuuuufb """),,",","()",","( θ  

 

(2-5) 

 

 

while the ",","),,",","( dududuuuuuuu yxzyxzyxθ  is the probability per unit time that a 

particle change its velocity from  zyx uuu ",","  toux, uy, uz. Thus the rate of change of f caused by 

collisions is    .ab
dt

df

coll

−=�
�

�
�
�

�
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The total rate of time variation is sum of the drift variation and the scattering interactions. Hence 

for equilibrium the sum should vanish i.e., 0
.
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Substituting the values from above equations, the following relation is given 
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(2-6) 

 

whichis called Bolltzmann transport equation. Now two cases can be studied: 

(1) when the material is homogeneous i.e., at the constant temperature in a field free space, 

then 
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which shows that the number of particles that leave and enter a given volume of 

momentum space are equal as a result of collisions. 

(2) for a heterogeneous medium if there is temperature gradient 
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2.2 General Formulation of Charge Transport 

The current and heat flux carried by charge in a solid can be written  
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 (2-9) 

 

 (2-10) 

 

whereΦ is the electrochemical potential and T is the temperature.  From the electron Boltzmann 

equation under relaxation time approximation, the coefficients can be written as 

�

 (2-11) 
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(2-13) 

 

 (2-14) 

 

Here D(E) is the density of states, E is the electron energy, Ef is the chemical potential, fo is the 

Fermi-Dirac distribution, e is the absolute charge of an electron, v is the electron group velocity 

and τ is the relaxation time. Equation (2-11) gives the electrical conductivity. The Seebeck 

coefficient and electronic contributions to the thermal conductivity are obtained from 

 (2-15) 
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(2-16) 

 
�

Band Structures.  The density of states and group velocity depend on the band structure.  

Often, the parabolic band approximation is used.  However, for thermoelectric materialsnon-

parabolicity should be considered because the dopant concentration is high. The model which is 

used is a Kane-type dispersion relation:�

 
(2-17) 

 

 

where � is the non-parabolicity, k the wave vector and m
*
 the effective mass.  
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2.2 Explanation of Calculations 

Here the details of the calculations procedure to model bulk and nanostructured materials are 

explained. In the following discussion, E is the energy, � is the non-parabolicity, �� � ����) is 

the reduced energy, and * � +��) is the reduced non-parabolicity. The Fermi-Dirac distribution 

function is denoted ,- and is given by Equation (2-1). Its derivative, which appears in many of the 

calculations, is given by: 

 (2-18) 

 

�

Determine Fermi level Ef.  The Fermi level determines the carrier concentration, which is 

determined by the dopant concentration.  If the number of impurities is Nd and the energy of 

donor is Ed then the number of impurities that are ionized, and thus the number of donor electrons, 

is given by:    

 ./ � .01 % 2� 
�34536#�7�89 (2-19) 
 

 

Using Boltzmann statistics the total number of electrons in all the bands using the standard 

expressions can also be determined: 

 

 
(2-20) 

 

 

where E(cv),i is the bottom of the conduction band for the i
th
 band, and β=(α/kΒΤ)  is normalized 

non-parobalicity parameter.  By enforcing Ni=nd, it can be solved for Ef using an appropriate root-

finding method. 

Electron/Hole concentration.The electron concentration can be determined from 
 

 
(2-21) 

 

Note that this is the number of electrons available for transport and is, in general, not equal to the 

total number of electrons given by the previous equations. 
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Screening length.The screening length determines the extent of the electric field generated by 

an ionized impurity. 

 

 
(2-22) 

 

 

Conductivity mass. The conductivity mass is used in the calculation of the subsequent 

transport properties:

 
 

(2-23) 

 

 

The transport properties can now be calculated. These standard expressions are derived from the 

Boltzmann equation under the relaxation time approximation. The equations are slightly more 

complex than their standard forms due to the inclusion of non-parabolicity. To account for 

multiple bands, firstthe transport property for each band is calculated, and then the results are 

combined in the appropriate linear combination to get the overall transport property. 

 

Mobility.For each valley and scattering mechanism, the mobility can be calculated from 

 

�

 

(2-24) 

 

To determine the mobility for all scattering mechanisms the total relaxation time, which is 

determined from Matthiessen’s rule is used: 

 

�

 
(2-25) 

 

TheMatthiessen’s rule is not applicable for mobilities since the relaxation times do not have the 

same energy dependence.The overall mobility for all the bands is given by the sum of the 

mobilities weighted by the normalized electron concentration of each band: 
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(2-26) 

 

Electrical conductivity.For each band, the electrical conductivity is given by: 

 

 
(2-27) 

 

The total electrical conductivity is simply the sum of the electron and hole conductivities: 

 

 (2-28) 

Seebeck coefficient.The Seebeck coefficient is given by 
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 (2-29) 

 

The overall Seebeck coefficient is obtained by weighting each band’s contribution by its 

normalized electrical conductivity: 
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(2-30) 

 

 

Lorentz number.The Lorentz number is given by: 

 
(2-31) 

 

The electronic thermal conductivity can be obtained from the Lorentz number using the formula 

given below. First, however, the bipolar thermal conductivity contribution to the electronic 

thermal conductivitymust be considered. This type of conduction occurs when carriers moving 

i i

i
TOT

i

i

n

n

µ

µ =
�

�

( )
( )

( )
3/ 2 3/ 2

2 * 2

0

2 3

2

1 2f

DOS

x
nx

e m kT x xf
x dx

m x x

β
σ τ

π β

∞ +∂� �
= −� �

∂ +� �
�

�

, ,TOT e i h j

i j

σ σ σ= +� �

( ) ( )

( )( )

3 / 2
20

3 / 2
20

1 2

1 2

f

f

x
B

Fermi

x

f
x x x x

x
dx

k x
S x

fe
x x x

x
dx

x

τ β

β

τ β

β

∞

∞

� �∂� �
− +� �� �∂� �� �

+� �= − −� �∂� �
− +� �� �

∂� �� �
� �+� �

�

�

, , , ,e i e i h i h i

TOT

i iTOT TOT

S S
S

σ σ

σ σ
= +� �

( ) ( )

( )( )

( ) ( )

( )( )

2
3/ 2 3 / 2

2 2 20 0

3/ 2 3 / 2
2 20 0

1 2 1 2

1 2 1 2

f f

f f

x x
i

i

TOT

x x

f f
x x x x dx x x x x dx

x x

x x
L

f f
x x x dx x x x dx

x x

x x

τ β τ β

σ β β

ο
τ β τ β

β β

∞ ∞

∞ ∞

� �∂ ∂� � � �
− + − +� � � �� �∂ ∂� � � �� �

+ +� �= −� �∂ ∂� � � �
− + − +� �� � � �∂ ∂� � � �� �

� �+ +� �

� �

� �



���

�

between different bands carry heat due to the Peltier effect, and can still transport heat even if the 

net electric current is zero. The Lorentz number for bipolar conduction is given by: 

 (2-32) 

 

Thus we see that bipolar thermal conduction is particularly strong between electrons and holes 

since the Seebeck coefficients are of the opposite sign. Once the Lorentz numbers are calculated 

the electrical thermal conductivity can be determined: 

 

�

 (2-33) 

 

 

2.3 Relaxation Times 

All the expressions needed to calculate the transport properties of the thermoelectric materials 

now are available. Next, the relaxation timefor each scattering mechanism must be determined. 

Assuming the scattering mechanisms are independent the total relaxation time can be determined 

from Matthiessen’s rule, i.e., Equation (2-25).  For bulk materials, there are standard expressions 

for most of the scattering mechanisms, which are enumerated below. The grain-boundary 

scattering relaxation time, which is used to model nanostructured materials,has been developed. It 

should be noted that the relaxation time expressions used are typically for non-degenerate 

semiconductors, and their validity for heavily doped thermoelectric materials are not fully 

validated, although it was found that we can use them to fit experimental data. 

 

Acoustic phonon scattering. This scattering mechanism is caused by longitudinal phonons 

compressing and expanding the lattice as they travel through the material. The relaxation time is 

given by: 

 
(2-34) 

 

where Eac is the deformation potential, vs is the sound speed, and � is the mass density. The 

correction for anisotropic bands can be conducted as: 
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(2-35) 

 

 

Optical phonon scattering.  Optical phonon scattering is similar to acoustic deformation 

potential scattering except that the deformation potential Eacbecomes Eac= ��0, and it is assumed 

that Ka is the same as in the acoustic case. 

 

 
(2-36) 

 

 

 

Ionized impurity scattering.Thermoelectric materials are usually highly doped. When the 

dopants become ionized they generate a net electric field which scatters electrons as they pass 

through the lattice. This scattering mechanism is called ionized impurity scattering, and it is one 

of the most important scattering mechanisms at low temperature. The somewhat complicated 

expression for the ionized impurity relaxation time is given below [37]: 
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(2-37) 

 

  

Polar longitudinal optical phonon scattering.   In materials where there are two or more 

constituent atoms, such as GaAs, it is possible for the bond to become ionic, with each atom 

becoming slightly oppositely charged. When a phonon travels through the solid and deforms the 

lattice, a perturbing potential is generated which can scatter electrons. This scattering is called 

polar longitudinal optical scattering when the phonon is in the optical branch and piezoelectric 

scattering when the phonon is acoustic. Piezoelectric scattering is negligible compared to polar 

optical scattering at the temperature ranges of interest and is not included in the calculations.  

Polar optical scattering is one of the most important scattering mechanisms at high temperature 

for polar materials. Strictly speaking, defining a relaxation time for this scattering mechanism is 

impossible since the collision is not elastic. However, when the thermal energy kBT is much 

smaller than the collision energy the collision can be taken as nearly elastic and a relaxation time 

can be defined. The relaxation time is taken from Gelmont and Shur, who show that their 

relaxation time also extrapolates well to high temperature [38] 
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 (2-38) 

 

Alloy scattering.  In randomly distributed alloys the lattice will not be uniform due to the 

distribution of different types of atoms throughout the material. These non-uniformities in the 

lattice can act as scattering sites for electrons. This scattering mechanism is known as alloy 

scattering, and, though it is not a primary scattering mechanism, can alter the calculated transport 

properties by up to ten percent. The standard expression for alloy scattering is given as: 

( ) ( )

( )

( )

( )

2

2
2

4

3/ 2

2 3

2
3 5

2

/ 2

2

1/ 2
*

2

1 1 4
8

64

2
1 1 2

2
10

2 3

1
ln / 2 1

1

ln 1 /
1

2

2 1

I

DOS

z z

DOS

Ze
g F N

k

m
g E E E

z
z z

z z
F z z z

ze

z
z o w

z

z kR

m E E
k

π
π

τ ε

α α
π

α

−

−

� �� �
� �= ⋅ ⋅� �� �� �� �

= + +

	
+ <




+
 � �

= + − − <� � � +� �




+ −

+�

=

� �+
= � �� �
� �

�

�

�

( )

2

0

2 *
0 0

41 1 2

3 1/ 1/ 1 21DOS op op

x x

e N xm

πε β

τ ε ε βω ω α∞

� � +
= � �

− ++� �

� �

�



���

�

 
(2-39) 

 

Intervalley scattering.Intervalley scattering, both between equivalent and non-equivalent 

valleys, occurs at a far slower rate than do the other scattering mechanisms, and as a result it is 

usually neglected. The relaxation time for equivalent valley scattering is given by: 

 (2-40) 
 

where Z is the number of equivalent valleys, �� corresponds to the intervalley phonon energy, 

and the plus or minus in Ef indicates the absorption or emission of a phonon, respectively.   

 

Short range vacancy scattering [39].Some materials have large amount of vacancies that 

also serve as doping mechanism.  The vacancy scattering is given by 

 
(2-41) 

 

 

2.4 Electron Transport over Nanoscale Grain Boundaries 

The strong influence that the nanocomposite exerts on the electron and phonon properties is 

connected with the increased interfacial scattering at GBs as a result of the small grainsizes 

(~40nm). In addition to the common scattering mechanisms in bulk material, electrons in 

nanostructured material experience further scatterings from the induced crystal defects. Defects 

introduce potential barriers that can scatter electrons and affect the thermoelectric efficiency. 

These defects can include vacancies, dislocations, or the grain boundaries (GBs) space charge 

potentials. Unlike in conventional electronic materials where defects deteriorate electronic 

properties of the material and are not favored, in thermoelectric materials they can improve the 
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energy conversion efficiency by scattering lower energy carriers, and thus resulting in higher 

Grain boundaries (GBs) are two dimensional networks or line charges in juxtaposition. The 

broken bounds at these interfaces attract free carriers and form a space charge. The high density 

of states at GBs (broken bonds) and a space charge on either side represents a double Schottky 

barrier at the boundary; thereby a high resistance to lateral current flow. Early works on modeling 

of GBs in polycrystalline materials used a double diode or two back-to-back diodes model [

There have been several models for the conductivity of the GBs since then. Most re

start with the simple Richardson thermionic emission expression for the current across the barrier 

degenerate semiconductor is [41]:   

 

rrier height, Ve is the external voltage, and A
*
 is the Richardson’s constant. 

composites compared to polycrystalline materials have smaller grains and possess 

completely random crystal orientations that require some additional considerations. Moreov

properties of the nanocomposites, is more interesting than only the carrier mobility. 

GBs can increase the Seebeck coefficient and thus the thermoelectric power factor. The potential 

barrier at GBs act as carrier energy filters as shown in Figure 2.1, eliminating lower energy 

carriers that results in an improvement of the efficiency of thermoelectric energy conversion 

Figure 2.1: Sharp energy cutoff for the allowed electrons increases the power factor significan

with energy higher than barrier can pass it. For low energy electrons the transmission is almost zero.

There are several mechanisms for the existence of an interfacial potential. One is accumulation of 

another is due to different orientations of adjacent grains.   

The space charge extension can be approximated by solving the Poisson’s 

equation in connection with the expression for the potential energy of a degenerate electron gas:
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(2-44) 

 

 

�
Figure 2.2: Space charge domain at a grain boundary. 

 
Eliminating  and integrating under appropriate boundary conditions lead to p(x) and hence the 

size of the depletion region.  Figure 2.2 shows the space-charge region at a sample grain 

boundary. 

In order to find , some arbitrary assumption has to be made about the form of the distribution 

and density of the trap states in the boundary. For instance, one may assume a mono-energetic 

distribution of states . Therefore, can be calculated from: 

 

�

 
(2-45) 

 

 

whereNGis the doping level in the grains, and w is the width of the grain boundary region and Qsc 

is the total number of trap states in the grain-boundary region. Such potential barriers form when 

the GB region has a lower chemical potential for majority carriers than the grains. The incident 

majority carriers into the barrier region create a space charge which repels further flow of 

majority carriers. Therefore, if the chemical potential of the GB region lies somewhere in the 

middle of the band gap, the barriers exist in both n and p type nanocomposite material. Otherwise, 

if it lies close to thevalance (or conduction) band, the GB boundary barrier only exists in the n (or 

p) type nanocomposite material. 
 

Potential barrier due to crystallographic orientation difference.  Apart from the space 

charge potential barrier, electrons may experience a potential barrier (or well) due to the rotation 

of the adjacent grains. For example, an electron moving in L valley in one grain has to enter the 	 

valley in the next grain, which, in lead telluride as an example, presents a potential barrier of 

about 0.7 eV. 

 

Intervalley Scattering at GBs. In a nanocomposite, the grains are randomly distributed with 

an arbitrary crystal orientation. Electrons with sufficiently large energies can pass over the barrier 
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and enter a different valley in the adjacent grain. Electrons with smaller energies may encounter 

an intervalley scattering and enter an equivalent valley in the adjacent grain. Figure 2.3 shows 

how an electron enters an equivalent valley after encountering an intervalley scattering. This can 

happen through electron scattering by phonons or the interface roughness potential. Such 

scatterings reduce the boundary resistance as they provide alternate means for electron transport 

between the grains. The electron conductivity due to the intervalley scattering at GBs can be 

estimated by: 

 
(2-46) 

 

 

 

where is the electron mean free path. 

�
Figure 2.3: Equivalent intervalley scattering between adjacent grains. 

Interface roughness.  The above calculations represent the importance of each process at GB.  

Interface roughness scattering at the GBs decreases the electron mobility in the material.  

However, the roughness scattering can lead to a significant increase in the thermionic current. 

Interface scattering conserves energy but not for interfaces parallel to wave vector. Therefore, the 

scattering at the interfaces mixes the planar motion of the carriers with the longitudinal motion 

perpendicular to the GBs, and removes the requirement for the conservation of transverse 

momentum. In this case, the transmission probability depends on the total kinetic energy of the 

electrons rather than only the perpendicular component to the barrier. This will dramatically 

increase the number of electrons that are transmitted over the barrier, which significantly increase 

the electrical conductivity. Non-conservation of transverse momentum does not significantly 
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change the Seebeck coefficient; therefore, optimizing the material parameters (such as doping and 

barrier height) to gain an overall benefit from the interface roughness scattering is possible.  

For an accurate treatment of the interface scattering, one needs to develop a more comprehensive 

model that includes all the important effects. Interface roughness scattering must be properly 

modeled as interface roughness scattering can have a significant effect on the electron mobility 

and the transmission probability at GBs. For this purpose, one may model the interface roughness 

potential by an effective height 
 and a lateral correlation length � of a Gaussian fluctuation. 

Therefore, the perturbation potential is a random potential that is assumed to have a Gaussian 

distribution with the following autocorrelation: 

 

 
(2-47) 

 

 

where  is an ensemble average, U0 is the barrier height, and L is the size of the grain. r and 

r' are in the plain of free motion, x and x' are normal to the GB (boundaries are at x= ±L/2). This 

expression can be used to calculate the square of the matrix element for the roughness scattering: 

 

 
(2-48) 

 

 

where k and k' correspond to the initial and final states. 

 

Energy relaxation length.  Carriers that are passed over the barrier have higher average 

energy than carriers far from the barrier. Carrier distribution function becomes that of the bulk 

material in a length equal to the energy relaxation length  from the barrier. If the grain sizes 

do not exceed , the carrier distribution function does not return to that of the bulk between 

GBs. Also, if the momentum relaxation length is much shorter than the distance between the GBs, 

the behavior of the carriers with energies greater than that of the barrier may be similar to that of 

carriers in the bulk. In other words, for carriers with energies above those of barriers, the 

differentialconductivity of a material with potential barriers can be approximated by that of 

the material without potential barriers if . Therefore, under the condition of

,the energy relaxation time for the filtered electrons from the following expression 

can be calculated:   
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(2-50) 

 

is the collision term in the Boltzmann equation. Energy averages are given by: 

 

 

      and        
(2-51) 

 

 

Using the hot electron theory [42], the energy relaxation time can be calculated as: 

 

�

 
(2-52) 

 

 

where  is the reduced barrier height , and it is defined that: 

 
(2-53) 

 

Energy relaxation length can be approximated from the following expression: 
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(2-54) 

 

 

wherer is the ratio of the impurity scattering to acoustic phonon scattering. 

 

Spherical potential model.  At presence of such potential barriers, carriers that are passed 

over the barriers have higher average energy than carriers far from the barriers. Under the 

condition of , energy filtering mechanism can increase the effective material 

Seebeck coefficient. It is also understood that since such defects can reduce the electron mobility, 
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the overall effect appears in the power factor S
2
�.  For this reason, studying in detail the effect of 

defects in a nanocomposite is essential. 

For small particles embedded inside a host, such particles can be a specific grain of any material 

or its alloy embedded in a larger domain crystalline material, or a cluster of impurity atoms, we 

can approximate the grain/particle as a spherical region with a constant potential height.  A model 

for the charge scattering process at GBs that can be combined with the relaxation time 

approximation of the Boltzmann transport equation has been developed. This model enables us to 

study the energy filtering mechanism consistently with the size and distribution of the grains. In 

this mode, the scattering center is considered as a spherical potential of magnitude U0. The 

bending of the bands at GBs will be neglected and it will be assumed that the electron scattering 

is elastic. The first step to estimate the quantum mechanical momentum relaxation time is to 

calculate the Hamiltonian matrix element Hkk’ from:  

 

 
�

 
(2-55) 

 

 

Here, : � :�;�< = ��#
5 >>?is a potential barrier with cylindrical symmetry at the interface, where 

zc models the width of the space charge region and rc models the lateral extension of the 

scattering potential. Uc is the strength of the potential barrier�;is the Heaviside step function. An 

exponentially decaying potential was chosen to model the depletion region in the GB region. 

Figure 2.4 presents a crystallite interface scattering potential modeled with a disk-shaped 

potential.  

�
Figure 2.4:  Schematic diagram of the crystallite interface scattering potentials modeled with disk-

shaped potentials with exponential decay in direction normal to the interface. 

 
In a rigorous calculation of the matrix element, we must use the matrix element of the full 

Hamiltonian of the crystal plus grain boundaries between the Bloch functions of the band. To 

simplify the calculations, a free electron gas wave-function is assumed which is often also used 

for treating common scattering mechanisms such as scatterings by ionized impurities or phonons. 

The total inverse momentum relaxation time is calculated from: 
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 (2-56) 

 

  

When the electron energy is less than the potential height, the electron is completely reflected off 

the boundary, and the scattering process does not couple the different components of the electron 

wave-vectorby assumption; therefore, the transverse momentum of the electron is conserved. The 

momentum relaxation time is thus numerically calculated as follows: 

 

[ ]

[ ] 
�



�

�


�



�

	

>−−++−

<−
×

=

0

22

0

2

6

2

0

3

1)2()2(ln)()2(

)()(
2

1

                 

2

)(

)(

1

UEforCiSinSin

UEforCosSin

kV

EgU

E

k

k

k

km

ξγξξξξξ

ξξξ

π

τ �

 

 

 

(2-57) 

 

whereV  is the volume, k is the electron wave vector, kR2=ξ , )( kEg is the electron density of 

states, γ  is the Euler’s constant, and Ci  is the so called Cosine Integral [43]. This form of 

relaxation time allows including the effect of non-parabolicity of the band, for example, within 

the Kane’s model. In the limit of smallξ , Equation 

 

(2-57) shows that the energy dependent momentum relaxation time changes with
2/1−E versus 

energy, which is similar to the energy dependency of the small point defects [44]. In the limit of 

large ξ when 0UEk > , the relaxation time changes with 
2/3E , which is similar to the 

characteristics of ionized impurity scattering [44]. In the latter limit when 0UEk < , the scattering 

rate oscillates due to the wave nature of the reflection, and its envelope approaches to zero with a 

similar energy dependency as in 0UEk > . 
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For grains with randomly different sizes with a normal distribution we have: 
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For 0UEk < this result in: 

where erfi is the imaginary error function [
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is the imaginary error function [43].  

(2-59) 
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This form of relaxation time allows including the effect of non-parabolicity of the band, for 

example, within the Kane’s model. The model predicts that in the limit of large electron 

wavelength compare to the radius of the sphere, the energy dependent momentum relaxation time 

changes with versus energy, which is similar to the energy dependency of the small point 

defects [44]. In the limit of large wavelength when , the relaxation time changes with 

, which is similar to the characteristics of ionized impurity scattering [45]. In the latter limit 

when , the scattering rate oscillates due to the wave nature of the reflection, and its 

envelope approaches to zero with a similar energy dependency as in . 

 

2.5 Treating Some Special Systems 
The results developed in the last section are applicable to simulate most of bulk thermoelectric 

materials. Here the difficulties unique to modeling special systems are examined. Some problems 

possibly can arise:   

 

� Several scattering mechanisms are usually acting at a given carrier density and 

temperature; therefore, dependence of the relaxation time cannot be represented by 

a power law. The reciprocal of the relaxation times due to the different scattering 

processes  can be summed to estimate the total relaxation time as follows: 

 
�

 (2-61) 
 

 

� The energy band is anisotropic with ellipsoidal constant-energy surface and two 

components of longitudinal and transverse effective mass. Therefore, the 

dependence of the relaxation time on the direction of the electron crystal momentum 

relative to the ellipsoid axes is different for different scattering mechanisms. In particular, 

with the acoustical scattering that is the dominant scattering process over a wide range of 

temperature and doping concentration, the relaxation time depends weakly on the 

direction and is practically inversely proportional to the effective density-of-state mass: 

 
�

 (2-62) 

 
 

This is in contrast with the case of ionized impurities where the scattering is anisotropic.  

 

� The system has a non-parabolic band where the dependence of the carrier energy on the 

crystal momentum is non-quadratic at sufficiently high energies. This implies that the 

effective mass has the energy-dependence: 
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(2-63) 

 

The same mass gives the density of states  and is used in the calculation of the 

relaxation times: 

 

�

 
(2-64) 

 

 

where M is the average matrix element of the interaction of the electron with a scatterer. 

The influence of the non-parabolicity on the momentum dependence of the relaxation 

time enters only through the density of states as the matrix element is assumed to depend 

on the value of the crystal momentum in the same way as inthe case of parabolic band. 

For the specific case of acoustic scattering, the matrix element is independent of the 

crystal momentum and the quantity  does not vary with the carrier energy. 

 

� The bandgap is small (< 0.5 eV). Therefore, at relatively higher temperatures, or low 

carrier densities, contributions from both the conduction and valance bands become 

comparable and use of a two-band model is necessary. For the two-band model, the total 

electrical conductivity is  and Seebeck coefficient is given by: 

�

 (2-65) 
 

where subscripts n and p refer to contributions from electron and hole bands respectively. 

 

� The effective mass is strongly temperature dependent, which contributes to the 

temperature dependency of the carrier mobility. The temperature dependency is 

particularly strong in the scattering by the acoustic phonons, when the mobility is 

proportional to . 

 

 

Transport coefficients are derived from Boltzmann equation in the framework of relaxation time 

approximation. Electrical conductivity depends on the carrier density and mobility which itself 

depends upon the mean free path lengths between successive collisions. In lead telluride material, 

the carriers are primarily scattered by the thermal vibrations of the crystal lattice and ionized 

impurities. The latter is only important at very large doping concentrations (>10
20 

cm
-3

). Both the 

acoustic and the optical phonon modes must be considered in the temperature range of interest. 

The relaxation times for the electron scattering by acoustic and optical modes are given by [46]: 
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(2-66) 

 

 

�

(2-67) 

 

Here C1 is the elastic constant,  is the deformation potential constant, and  are the high 

frequency and static dielectric constants. z is the reduced energy  and � is the 

dimensionless non-parabolicity factor . 

Also:                                       

 

 
(2-68) 

 

The electron wave vector including the nonparabolicity of the band is: 

�

 

 
(2-69) 

 

rsc is the electron screening length given by: 

 

 
(2-70) 

 

where we have the following definition:  

 

 
(2-71) 

 

 

Ionized impurity scattering 
Ionized impurity scattering is an important factor in determining the charge transport in highly 

doped regime. Ionized impurity scattering is often formulated with either the Born approximation 

or the more exact partial-wave method. The formalism given by Csavinsky [47]which uses a 

combination of the variational and perturbation technique in the partial-wave method has been 

followed in this dissertation. This method for the calculation of the resistivity of ionized impurity 
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scattering is valid over a large range of doping concentration that neither the uncorrelated Born 

approximation nor the simplest form of the partial-wave method can be applied.     

 

Thermal Conductivity 
At high doping concentration the electronic and hole contributions may become significant. In the 

intrinsic conduction the bipolar contribution may also be important. The electronic part of the 

thermal conductivity is given by: 

 

 
(2-72) 

 

 

Electrical conductivity and Seebeck coefficient 
The expression for the electron mobility �, electrical conductivity �, and Seebeck coefficient @ 

with the inclusion of nonparabolicity of the band are given by: 

 

 
(2-73) 

 

 
(2-74) 

 

 
(2-75) 

 

 

Intervalley scattering. Intervalley scattering reduces the beneficial effect of the multivalley 

energy band structure of the lead telluride. However, as intervalley scattering will be discussed in 

the next section, it can reduce the boundary resistance. The relaxation time for the intervalley 

scattering is given by: 
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(2-76) 

 

 

is the intervalley deformation potential, is the number of equivalent final valleys,  is 

the final energy of the electron, is the mass density,  is the frequency of the phonons 

responsible for the scattering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�
�
	

+

Ξ
=

emissionN

absorptionN
E

mN
f

ij

ijf

v
12

1 2/1

3

22/3*

�πρωτ

ijΞ fN fE

ρ ijω



���

�

CHAPTER III 
 

 

SEMICLASSICAL THEORY OF PHONON TRANSPORT 

 

For phonon thermal conductivity in nanocomposites, several techniques can be used to capture 

the thermal conductivity, including (1) solving Boltzmann equation for a unit cell of the 

composites, (2) Monte-Carlo simulation of transport in nanocomposites, (3) relaxation time 

treatment in combination with the standard integral expressions for thermal conductivity, and (4) 

modifying the effective medium theory. The CPA is extended for phonons to calculate the 

scattering time due to grain and interface boundary scattering mechanism. The grain boundary 

scattering time calculated by the CPA in combination with other scattering times can be used in 

Boltzmann transport equation for phonons. The results are in good agreement with available 

experimental data. 

 

3.1 Phonons 
The quantized vibrations of a lattice which are major energy and momentum carriers in 

crystalline solids are named phonons. Phonons are the main energy carriers for heat conduction 

[48]. Phonons like photons can be treated as waves or as particles. They obey the Bose-Einstein 

distribution statistically and therefore are bosons. The phonons are said to be transversely or 

longitudinally polarized when the lattice vibration direction is perpendicular to the energy 

propagation direction, or the vibrations are along the direction of energy propagation, respectively. 

The phonon wave-vector ABCrepresents the momentum of a phonon and has the same direction as 

the wave propagation. The norm of the wave-vector is expressed as its wavenumber as, 

 � � 	DE � 	DFGH  (3-1) 

 

in which FG  and H  are the phonon group velocity and phonon angular frequency in rad/s, 

respectively. The momentum of a phonon can be related to its wave-vector ABC by 

 IC � ��BC (3-2) 

where�=1.05457148J 1K5LM J-s is the reduced Planck’s constant. The total energy of a phonon is 

quantized so [48] 

 �N � �O % 2�) �H 
(3-3) 

 



�	�

�

whereP is an integer representing the number of phonons and �- �� �Q�H�	 is called thezero-

point energy which means even in zero temperature the energy of particles cannot be zero as a 

result of uncertainty principle [48].  

The probability that a phonon will have energy �� � �Q�H at equilibrium temperature T is the so-

called energy distribution function. For phonons, this probability is described by the Bose-

Einstein statistics expressed as [48] 

 ,�3�)� H# � 1
�R�897 = 1                                   (3-4) 

 

wherekB is the Boltzmann constant equal to 1$STK� J �1K-23
 J/K. In the limiting cases,,�3�)� H# 

goes to infinity as � tends to zero and vanishes for energy � much larger than��).  

The relationship between phonon frequency H and wavevector �BCis called the dispersion relation 

and may be different along different wave-vector directions. Bulk phonon dispersion spectra are 

interesting not only for their relevance to the properties of pure materials but also as ingredients 

of approximate calculations for complex systems such as semiconductor alloys, superlattices, and 

other quantum microstructures. In the research field of thermoelectrics much attention is 

presently being paid to the vibrational properties of such materials both because of their role in 

thermal conductivity. 

Figure 3.1 shows a typical dispersion relation for crystalline silicon. It indicates that phonons can 

follow an acoustic and an optical branch. Each branch can support longitudinal as well as  

transverse polarizations. The acoustic branch represents the lattice vibration at relative low 

frequencies. It strongly influences heat conduction in a crystal solid. One the other hand, the 

optical branch corresponds to higher frequencies. Indeed, it is so named because it mainly affects 

optical properties of a crystal solid [4]. The first Brillouin zone, is such that −
UV W ��� W UV where ' 

is the lattice constant. It corresponds to the k-space of a crystal lattice with an atomic spacing of'. 

The allowable wavevector in a crystal solid is confined to the first Brillouin zone [48]. 
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Figure 3.1: Dispersion relation for silicon crystal vibrations. 

The speed of energy propagation by phonons is named group velocity. It is defined as XY�Z ���[HZ�[� which \ indicated polarization. In the long wavelength limit as�� � �K, a linear H = �  

relation forms in the acoustic branch, indicating that the group velocity does not depend on 

frequency. In fact, the phonon group velocity in optical branch is negligible compared with that 

of the acoustical branch. Therefore, optical phonons are typically assumed not to contribute to 

heat conduction [48]. 

The number of phonon modes per unit volume of material between wave-vector � and � % &� is 

defined as phonon density of states. In the �-space, the volume of a sphere of radius � is equal to ]D�L�S. So, it can be shown that every phonon mode occupies a cube of volume �	D�^#L  where 

the material volume is ^ J ^ J ^[48]. Thus, the number of phonon modes in a sphere of radius � 

in the �-space and the phonon density of states are expressed as [48] 

 . � ]D�L�S��U� #L  
 

and 

_`a��# � &�bc#&��# � ��	D� (3-5) 

 

respectively. 

Acoustic phonons dominate thermal transport and travel at the speed of sound. The Debye model 

which is based on the following assumptions is used to describe acoustic phonons: 

(1) The phonon frequency cannot be larger than the Debye cut-off frequency Hd�/ for 

polarization idefined as [48],  

(2)  
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Hd�/ � �FG�/�d�/ (3-6) 

in which �d�/indicates the Debye cut-off wavenumber for polarization i. In the Debye 

model, phonon wave-vectors are not allowed to be larger than �d�/ . Physically, this 

corresponds to the fact that phonons cannot assume wavelength smaller than twice the 

atomic spacing. 

(3) The group velocity FG�/  of phonons with polarization \  is constant so that H/ ��FG�/�. 

This approximation is valid at low energies where acoustic phonons populate but is not 

appropriate at high energy. 

(4) The Debye density of states _d�/ as a function of frequency H/ for phonons with 

polarization  iis given by  

_d�/�H/# � ��	D� � SH/�	D�FG�/L  (3-7) 

 

�
Figure 3.2: Typical (a) density of states and (b) phonon dispersion in Debye model. 

A typical density of states and phonon dispersion based on Debye model has been presented in 

Figure 3.2. The phonon dispersion and density of states in nanocomposites can be different from 

bulk materials in general and it is assumed that the phonon concept still is valid in nanostructures. 

It should be noted that the change in phonon dispersion, group velocity and density of states in 

nanostructures is not the main cause for reduction in thermal conductivity.New experiments show 

that the nanostructure interfaces induce a diffuse scattering which reduces intensity of phonon 

mini-bands [49].Therefore, the phonon transport obeys the Boltzmann transport equation which is 

explained in next section. 

�

3.2 General Formulation of Thermal Conductivity 
Boltzmann Transport Equation for Phonons. In order to discuss the thermal conductivity 

of metals it isassumed that there exists a temperature gradient across the specimen. The transport 

of energy in the metals is due to conduction electrons and lattice waves. Here we shall consider 

the thermal conductivity only due to conduction electrons although lattice conduction may 
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become important under certain circumstances such as low temperature, high magnetic field, 

large impurity contents etc.  

We will now consider the application of the Boltzmann equation to effects that involve heat 

transport. Let there be a thermal gradient dT/dx in a metal and a current density Q. In the 

measurement of thermal conductivity the specimen is electrically insulated from its surroundings; 

thus the current vanishes but not the electric fields. This is due to the fact that the temperature 

gradient produces a drift velocity of the electrons, and small electric fields. Counteraction the 

drift velocityis set up internally. Thus the Boltzmann transport equation beside the thermal 

gradient dT/dx includes a term containing an electric field xξ  . In this case the Boltzmann 

equation can be written as 
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Now considering that Ef is independent of T, we get 
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The electric current density Ic and thermal current density Qx are defined as 
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and 
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(3-12) 

 

whereE is the energy of an electron. 

Substituting the value of (f-f0) from above equations, it is found that: 
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Assuming that (3-13) and (3-14)depend on energy and not on the direction of motion, we see that 

the integrals in equation are functions of energy alone. The triple integrals may be transformed 

into single integrals by replacing 
2

xυ by 3/2υ  and dpxdpydpzby dpp24π .Thus          �
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Introducing a set of integral JN 
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Now Qx is calculated under the condition Ix = o, because the thermal conductivity of metals is 

defined as the rate of energy flow divided by thermal gradient when Ix=O. 
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Comparing the above equations we get 
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The value of integral JN is given by  
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Substituting (3-21) into (3-20)we get
m

TNK
K FB τπ 22

3
= where N is the density of electrons. 

In most of the materials, Fτ varies approximately as 1/T, and hence K is nearly temperature 

independent. If the metal contains impurities, then electron-phonon scattering as well as electron 

impurity scattering takes place. If the two scatterings are considered to be independent to each 

other, then the total conductivity K can be represented by  

'
1

111

τKKK
+=  (3-22) 

 

whereKl  is the contribution arising from electron-lattice scattering and Kl is the contribution from 

electron impurity scattering. This expression shows that the impurities decrease the thermal 

conductivity. 

 

Callaway method. As an alternative and simple approach Callaway developed an expression 

for thermal conductivity of solids, assuming isotropic Debye model, but including both normal 

and Umklapp scattering mechanisms.  The final expression for thermal conductivity is given by 

[50]: ��f=�2 % �� (3-23) 

 

where  �2 and �� can be expressed as:  

 ��2 � g)Lh ij��#���#&�k�7
-  (3-24) 
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with 

 

* � m n?�� #no� #k�7- ����#&�m n?�� #no� #np� #���#&�k�7- qP[���l � �h i����#ib��#k�7
- ����#&� (3-26) 

 
where 

 ���# �  rst�st52#u �������� 2nv� # � 2no� # % 2np� # �� � � � �R897 � � w � �89 � � g � 89xy�Uuz{ (3-27) 

 
inwhich �  and kBarePlanck’s and Boltzmann constants, respectively. The phonon angular 

frequency, the phonon group velocity (sound velocity), Debye temperature and absolute 

temperature are indicated by H� FG� |�� and ), respectively. ij �� �ibandi} represent combined, N 

(resistive), and Umklapp relaxation times, respectively. 

 

3.3 Relaxation Time 
Phonons are dominant thermal energy carriers in semiconductors and dielectric materials. 

Resistance to heat transfer in a porous material is determined by phonon scattering with (1) three-

phonon scattering, including normal (N) and Umklapp (U) processes, (2) electron-phonon 

scattering, (3) point defect (alloy) scattering, and (4) grain boundary phonon scattering.  

 

Umklapp scattering.  The Umklapp (U) three phonon scattering rate  is given by: 

 

 (3-28) 

 

 

where , h is Planck's constant, � is the Debye temperature, T is the absolute 

temperature, , � is the phonon frequency, M is the total average mass for a specific 

material,  is the Grüneisen constant (or the anharmonicity parameter), assumed to be 1 in most 

cases, is the atomic size determined by the cubic root of the atomic volume, and  is the ratio 

of the normal three phonon-scattering rate to the Umklapp three-phonon-scattering rate, which is 

assumed to be temperature-independent.  

 

Normal scattering.  The normal three-phonon-scattering rate, , is given by: 
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 (3-29) 

 

 

Electron-phonon scattering.  An estimate of the electron-phonon relaxation time, , is 

given by Ziman [45,51] as: 

 

 (3-30) 

wherevs is the sound velocity, md is the density-of-states effective mass, � is the mass density.   

 

Point defects scattering.The relaxation time due to point defects, , is given by: 

 

 (3-31) 

 

 

Here, yi ,Mi, and are the fractional concentration, mass, and atomic size of each element in the 

alloy respectively, where and . determines the contribution of 

strain disorder to point defect scattering of phonons. If the lattice constants of the elements in the 

compound do not differ largely, the effect of strain is small compared with the mass fluctuation. 

 
Impurity atom/vacancy scattering.  The phonon relaxation time due to scattering by impurity 

atoms on a single atomic site is given by: 

  

 
(3-32) 

 

 

where is the fractional concentration of the impurity atom i, and Mi is its mass. 

 

3.4 Grain Boundary Scattering   

Relaxation time due to grain boundary scattering,  worthy special attention as it is a dominant 

mechanism for enhanced ZT in nanostructured materials.  Modeling of the grain boundary 

scattering, however, is not accurate at this stage.  Grain boundaries can scatter phonons via three 

different possibilities: (1) regular reflection and refraction, ,arising from the difference of 
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phonon group velocities when phonons, (2) diffusive scattering due to the corrugation ofthe GB, 

, caused by impurities or interface roughness, and (3) diffraction of waves when the 

wavelength is comparable to the particle size, .   

 

Phonon reflection and refraction at a flat interface.Phonon reflection at a boundary leads 

to the Kapitza resistance, a phenomenon that has been known for a long time but has escaped 

quantitative description except at very low temperatures when the phonon wavelength is long 

such that wave reflection can be treated based on acoustic wave theory.  At room temperature, the 

phonon reflectivity is difficult to calculate because mainly diffuse phonon reflection and also due 

to the phonon spectrum mismatch between two sides of the interface.  We will approximate here 

the phonon relaxation time due to reflection inside a single grain as:[52] 

 

 
(3-33) 

 

where is the mean distance of the GBs, and is the difference of refraction indices of the 

elastic waves in different grains. In the above expression, /vs gives the average time phonon 

transverse a single grain and ∆ν−2
 is a measure of the strength of interface reflection, which can 

arise, for example, due to different orientations of the crystal in the adjacent grains. If the crystal 

orientation is slightly rotated by an angle , one can estimate: 
 

 
(3-34) 

 
 

Phonon scattering by a small grain.If the GB region is much smaller than the wave lengths 

of the excited phonons, the problem should be treated as a diffraction process.  If the scattering is 

diffuse, the phonon relaxation time can be estimated from: 

 
(3-35) 

 

where  is a parameter that characterizes the degree of corrugation of the GB (typically 1<

<10). 

When the grain boundary region is much smaller than the wavelength and surface corrugation is 

also much smaller than the wavelength, the scattering can be described by Rayleigh scattering for 

which the relaxation time can be calculated from: 

  

 
(3-36) 

 

where  is some constant. This approximation is valid for low frequency phonons.  

 

Phonon relaxation time due to grain-boundary scattering.  In real materials, where the above 

discussion of grain boundary scattering mechanism dominates, scattering depends on the grain-
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boundary region size, interface roughness, and phonon wavelength.  At this stage, there is noa 

rigorous way to combine all these mechanisms. All the mechanismsare includedwith the 

Mathiessen’s rule [53] 

 

�

 
(3-37) 

 

 

Total relaxation time of phonons.  By combining all the scattering mechanisms, the total 

phonon relaxation time  can be obtained from Matthiessen’s rule as follows: 

 
(3-38) 
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CHAPTER IV 
 

 

THEORY FOR THE ELECTRONIC DENSITY OF STATES BY GREEN'S FUNCTION  

 

4.1 Green’s Function for Schrodinger Equation 

The following discussion is very general and is presented in order to familiarize the reader with 

the Green's function method. This method is a standard theoretical tool in a number of areas of 

physical sciences and many review papers and books exist which discuss it in more detail than 

what is donein this chapter. The discussion will be brief and in the nature of a quick review. 

Much of what follows is based on the discussions found in Refs. [10�54,55] and more details may 

be found in those resources. In quantum mechanics, a system is described by a wave function ~� � which is the solution of the Schrodinger equation   ��~� �� �~� (4-1) 

or �� = �#~� �� K� (4-2) 

where � is the total Hamiltonian operator of the system, and � is an energy eigenvalue of the 

Hamiltonian (multiplied by the identity operator). Instead of solving the Schrodinger equation 

directly, an operator called the Green's function operator which is defined as the following is 

introduced: ���# � �� = �#52 (4-3) 

where � is a complex variable (again, multiplied by the identity operator). It can easily be seen 

that ���# is the solution of the following equation �� = �#���# � 1� (4-4) 

where 1 is the identity operator. In a nanocomposite (random alloy), the Hamiltonian � is an 

operator which is a random function of position within the nanocomposite. Its eigenvalues are 

thus random variables and its eigenfunctions depend upon the particular configuration of 

components that exists in a given sample. Let us now consider such a nanocomposite and set up a 

Hilbert space formed by the electronic eigenstates ~� � of the nanocomposite. These eigenstates 

are assumed to have the following properties: 



�
�

�

�~+ �� ��~+ ��� (4-5) 

 � +�~+ �� ����, (4-6) 

and �� +~+ �� � 1$ (4-7) 

These equations respectively define the random variable eigenvalues of the Hamiltonian, require 

that the eigenstates ~� � be orthogonal to one another, and require that they be a complete set. 

Using combinations of Equation. (4-4) to (4-7) any arbitrary state~� �, the Hamiltonian �, and 

the Green's function operator ���# can all be expanded in terms of the eigenstates ~� � and the 

eigenvalues ��. This results in the following formal equations: 

 ~� ����~+ �� +� ~� �� (4-8) 

� � ����~� �� +~� � (4-9) 

and 

 ���# � ��~+� �� +���� ~�� = �#52~+ �� +~ 
 

=� ~�� � ���~���5�� � +~����  

 

          =� ~�� � �����5�� � +~����  

 

=  � ~����~�5�� �$���������������������������������������������������������  (4-10) 

 

From Equation (4-10), it can be seen that the positions of the poles of ���# give the eigenvalues 

of Hamiltonian, and that the residues at those poles provide information about the corresponding 

eigenfunctions. It can be easily shown that ���#  is an analytic function everywhere in the 

complex �-plane except at the points �=��. Because the �� are the eigenvalues of the Hermitian 

operator H, they must be real. So the possible singularities of ���# can only occur at those points 

or portions of the real � -axis which correspond to the eigenvalues. The operator ���#  thus 

exhibits simple poles at the ��  . If a particular ��  belongs to the continuous spectrum of the 

Hamiltonian �� ���) will not be well defined. 

 

 

4.2 Calculation of Density of States by Using Green’s Function 
The definition of ���#can be generalized by a limiting procedure as following 

 ����# � �����-� ���� � ��#����������� (4-10) 



���

�

 

where ����# is often known as the retarded (advanced for -) Green's function operator. From 

Equation (2-9), one can see that 

 ����# � ����#$������������������������������������������������ (4-11) 

 

If � is real, �=�and   ¡��¢ , it follows from Eq.(4-10) that ���# is Hermitean. In particular, ���#  
is real. On the other hand, if � belongs to the continuous spectrum, we have from Equations (4-10) 

and (4-11) that �5��# � £�¤��#¥����� (4-12) �
which shows that 

 ¦§¡�5��#�¢ � ¦§¡�¤��#�¢������� (4-13) 

 

and 

 ¨�¡�5��#¢ � =¨�¡�¤��#¢$������������������������ (4-14) 

 

Applying the formal identity (which is really only valid under an integration operation)  

 �����©�- 1ª � �« � ¬­1ª® ¯ �°±�ª# (4-15) 

 

where¬  denotes the principal part and ±�ª# is the Dirac delta function, one can express the 

function ����#by the following relation: 

 ������# � ²\w³�-� ���� � \E# 
 

             =²\w³�-� � ~����~´5´µ�/³�  

 

              =� ²\w³�-� ~����~´5´µ�/³�  

 

              =� ~+ �� +~ ¶�· ¸ 2´5´µ¹ ¯ \D��� = ��#º$���������  (4-16) 

 

By definition, the  density of states for electrons per unit cell is given by  

 _��# ����� = ��#� ���������������������������������� (4-17) 

This relation can be related to the imaginary part of the Green's function by combining Equations 

(4-16) and (4-17). This results in the following formula 



���

�

 _��# � �¯ 1.D lw£)�����#¥� (4-18) 

 

in which» is the total number of unit cells in the alloy and the trace runs over all cells. It simply 

expresses that the density of states is directly proportional to imaginary part of the Green’s 

function so, once we have the Green’s function operator we can calculate the density of states. 

The matrix elements of Green's function for some simple configurations have been presented in 

section Appendices. 
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CHAPTER V 

 

 

COHERENT POTENTIAL APPROXIMATION 

 

The Coherent Potential Approximation (CPA) theory for obtaining the electronic properties of 

random alloys and nanocomposites is about seventeen years old, having been first discussed by 

Taylor [12] and Soven [13] in 1967. The following discussion is in the form of a brief review and 

is included to presenta general review of the theory. The formal theory as presented here is valid 

for the electronic properties of any random alloy or nanocomposite. It has been shown that the 

CPA can be derived in various ways [8,56,57,58,59]. In much of what follows, the discussion is 

based on the reviewes found in Refs. [54,55]. First the Green’s function formalism of the 

coherent potential approximation is introduced and then it is shown how to model the CPA with 

the boundary value formalism of the CPA. 

 

 

5.1 Green’s Function Formalism of the CPA 
As discussed in chapter IV, a random substitutional alloy system is characterized by a random 

distribution of different substances over the lattice sites. In case of a nanocomposite lattice sites 

are exist just locally and are randomly oriented. The lack of periodicity in the underlying lattice 

structure and randomly distributed grains cause theoretical difficulties in the development of a 

model of the electronic properties of such a system, because the usual condensed matter theory 

methods, such as Bloch's Theorem, are only valid for perfectly periodic crystals. The CPA 

method has been shown to be among the most effective approximation methods for dealing with 

this kind of system.  

For the alloy system one can write the total random Hamiltonian as � � �- % ¼ � �- %��FNN ����� (5-1) 

where�- is a suitably chosen periodic Hamiltonian, and V is the total random potential written in 

terms of the sum of atomic potentials FN at each site. At this point, let us introduce a periodic, 

effective (coherent) potential (at this point unknown but which will be determined later) and add 

and subtract it from Equation (5-1). Then, the Hamiltonian can be rewritten as  

 � � ��- % ½# % �¼ = ½# 
    =�����- % : 

    =�����-+� :NN � (5-2) 

 

wherea new (effective) periodic Hamiltonian has been defined as following 
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��- � �- �% �½�������� (5-3) 

and a new random potential as 

 : � ��:NN � ¼ = ½� ���FNN = �N#$ (5-4) 

As mentioned already, the effective Hamiltonian ���- is still periodic, and it will be shown later 

that the self-energy will replace ¾ when one does the configuration average. The corresponding 

alloy Green's function operator can then beexpressed as  

 ���# �� � �� = �- = ¼#52 � �� = ���- = :#52 (5-5) 

 

in which the z is a complex number in general. Of course the total Hamiltonian �  can be 

constructed in detail for a piece of a particular alloy sample and the eigenvalue problem and the 

density of states can then be solved numerically. Ideally, the alloy sample in such a case should 

be sufficiently large that the calculated physical properties do not depend upon the boundary 

conditions. It should also be large enough that the particular configuration of constituents in the 

piece of alloy under consideration is largely irrelevant and assumptions of total randomness are 

valid. This is the idea of the Negative Eigenvalue Theorem Method (NETM) [60]. Such a method 

of approach, while relatively straightforward to implement for simple model alloy systems, 

becomes impractically difficult if applied to real alloy and nanocomposite systems. For realistic 

models of three-dimensional alloys or nanocomposites, the Negative Eigenvalue Theorem 

Method becomes almost hopelessly numerically complex and cumbersome. 

By contrast, rather than attempt to exactly solve for the detailed properties of a large piece of a 

particular disordered alloy or nanocomposite, effective medium theories in general and the CPA 

in particular regard the idea of configuration averaging as fundamental. A macroscopic property 

of the system, such as, for example, the density of states, is then described in terms of an average 

over all configurations of components which are consistent with the known structure of the alloy.  

The basic idea of what follows is to develop a method to choose the self-energy in such a manner 

that the resulting periodic effective medium (that described by the effective Hamiltonian ���- ) 

has as many of the properties of the random alloy as possible. First, a perfect crystal Green's 

function operator corresponding to the periodic Hamiltonian ���-is defined as 

 ·��# � � �� = �-#52� (5-6) �
and define the effective medium Green's function operator corresponding to the effective 

Hamiltonian ���- as  

 �¿��# � � �� = ���-#52$���������������������������������� (5-7) 

 

Using Equations (5-2) and (5-6), Equation (5-7) can be rewritten as 

 �¿��# � �� = �- % ½�#52 ������������ � �·52 % ½�#52 ����������� ·�1 % ½�·�#52�$� (5-8) 
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One of the basic ideas of the CPA is to choose the self-energy À in such a way that the effective 

medium Green's function is, in fact, identical to the configuration average of the alloy Green's 

function. From Equation (5-5), one can formally express the alloy Green's function operator � in 

terms of the effective medium Green's function operator Á�as 

 ���� � �� = ���- = :#52 �������� � �¿52 = :#52 �������� ¿�1 = :¿#52 �������� �1 = ¿:#52¿ �������� ¿ % ¿:�$���� 
(5-9) 

 

In this form, this equation is known as the Dyson equation. Further formal manipulation can 

easily be shown to lead to �� � ¿ % ¿:¿ % ¿:¿:¿ %Â�� ¿ % ¿)¿���� (5-10) 

 

wherethe scattering matrix Ãis defined as 

 �) � :�1 = ¿:#52 � �1 = :¿#52:$ (5-11) �
Formally, this scattering matrix specifies the deviations of the random alloy from the periodic 

effective medium. Microscopically, this is manifested by electrons scattering off of the random 

atomic potentialsÄÅ. Another form for the scattering matrix is 

 ) � : % :¿) 

    =�N % � �N¿N � �N %N � �N¿N  
(5-12) �

Physically, Ã is the total scattering operator due to electrons scattering from the disorder in the 

alloy or nanocomposite system. Now the configuration-average (denoted by the symbol <>) of 

the Green's function operator is taken as: 

 � � ��� ¿ % ¿)¿ � � ¿ % ¿ � ) � ¿$ (5-13) �
The second step in Equation (5-13) can be taken because the effective medium Green's function is 

periodic and is thus configuration independent. It can be seen from Equation (5-13) that if � ) �� K, the averaged Green's function � equals the effective medium Green's function Á. The 

main approximation of all CPA theories is to require that this be so and thus that Á �� � �$ This 

requirement, in turn, will determine the self-energy of the periodic effective medium and thus all 

properties of that medium itself. At this point, however, the "single-site" (or "single- cell") 
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approximation in which the total scattering matrix T can be written as the sum of the scattering 

matrix contributed from each site is made: 

 ) � ���ÆNN  (5-14) 

where ÆN �� � �N % �N¿�N % �N¿�N¿�N %Â ������� �N��1 = ¿�N#52 ���N % �N¿ÆN$ (5-15) 

�
Comparing Equations (5-12) and (5-15), one can see that this approximation neglects terms such 

as  

 � �N¿� �xxÇNN % � �N¿� �xxÇNN ¿� �`` % � �NN ¿� �xx ¿� �``ÇN +… 

 
(5-16) 

which correspond to scattering off of pairs and higher order clusters. Many generalizations of this 

theory, where scattering off of such clusters is accounted for can be found in the literature 

[9,61,62]. As is mentioned above, the CPA requires that � ) �� K$�� (5-17) �
A consequence of this condition is, from Equation (5-13), � � �� ¿$ (5-18) 

 

In this averaging process, the random potential �¾ of the alloy is thus replaced by an effective or 

coherent potential, � � ÈÅÅ  , which simulates the electronic properties of the actual alloy, and yet 

is periodic. In the single site approximation,Equation (5-17) becomes � ÆN �� K (5-19) �
for all P. Because of the periodicity of the averaged quantities, it is sufficient to consider only a 

single site. 

For convenience, let us chooseP � K. It should be emphasized that the averaging done in the CPA 

is not a simple arithmetic average. The effective, averaged, self-energy is self-consistently chosen 

to replace and fit the configuration-dependent, real alloy potential. Equation (5-19) is the self-

consistency condition that determines the self-energy. Since ÉÅ is related to the self-energy via 

Equations (5-15) and (5-4), the self-energy À is to be regarded as an unknown in that equation. To 

find the self-energy, one thus solves Equation (5-19) for that quantity. Once this is done all other 

quantities such as the effective medium Green's function and configuration averaged density of 

states are then determined. The configuration-averaged density of states is thus the density of 

states corresponding to the effective medium Green's function  ¿. That is 

 � _��# ��� �= 1.D lw£)��¿#¥$ (5-20) �
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The framework of the general CPA single-site formalism may be finally summarized as follows: 

(1) Choose a perfect crystal as a reference and calculate the corresponding perfect-crystal 

Green's function  ¬ . (It should be noted that the choice of reference crystal, while 

important for actual computational purposes, is arbitrary from the general theoretical 

viewpoint. Since the CPA is a self-consistent theory, the solution for the self-energy l is 

independent of this choice. ) 

(2) From Equations (5-8) and (5-19), solve for the self-energy À, as a function of energy. 

(3) Use Equation (5-8) to obtain the configuration averaged or effective medium Green's 

function which can then be used to calculate the configuration averaged density of states 

via Equation (5-20). 
 

 

5.2 Boundary Value Formalism to Calculate the Scattering 

Amplitude 
The properties of the effective medium are affected by its microstructure. The volume fractions of 

the components, the shapes and geometric arrangement of the inhomogeneties specify the 

microstructure of an effective medium. The microstructure represents the statistical correlation in 

a disordered alloy or composite. Therefore, to determine an effective medium both the material 

properties of the components and their microstructure should be specified. Therefore, the CPA is 

based on three main concepts: 

(1) Introduction of a periodic effective medium with a complex propagation constant by a 

self-consistency requirement. The CPA condition sets the average value of scattering 

amplitude equal to zero and vanishes its local fluctuations. 

(2) Calculating the average of a desired property of a disordered material. 

(3) Choosing a structural unit to represent the microstructural information of a disordered 

medium. 

 

Structural unit is a concept which helps us to capture the microstructural information of a 

disordered medium. There are two frequently encountered microstructures [4]: 

 

(1) Symmetric structural unit and 

(2) Dispersion structural unit.  

 

Symmetric microstructure. First a symmetric microstructure as our structural unit is 

considered. It is symmetric in the statistical sense; i.e., an interchange of the components results 

in the same type of medium with interchanged volume fraction. In this case, there are two 

components and two structural units, each approximated by a sphere of one material component. 

Therefore, the volume fractions are x and 1-x (P and 1-P in the Figure 5.1). The main CPA idea is 

visualized in Figure 5.1 which corresponds to a symmetric case [4].  

 

 



		�

�

�
Figure 5.1: The CPA concept for symmetric structural units. 

 
To calculate the forward scattering amplitudes, each structural unit, characterized by k

2
mand 

radius am (m = 1, 2), is embedded in an effective medium with keseparately. The computational 

scheme introduced by Sheng [4] is followed to calculate the scattering amplitude. In brief, the 

scattering amplitude f (k’0, k0) is defined by: ��H� �#~Ê~�Ë � 
/8ÌÊ % ,��-� � �-# 
/8ÌÊ�  (5-21) 

 

in which the  ��H� �# is the solution to the scalar wave equation �Í� % ��)��=0. The boundary 

condition is the continuity of ��and its normal derivative Î��Î� across the interface of sphere 

and effective medium. The angular frequency H inside and outside of sphere is the same but wave 

speeds are F and Fs respectively. The index 
 refers to effective medium. Inside the sphere the 

solution is an expansion in terms of spherical Bessel functions and Legendre polynomials. 

Outside the sphere, the solution is a sum of two expressions as incident plane wave and scattered 

wave respectively. The scattered wave can be expressed as spherical Hankel function and 

Legendre polynomials. In brief we have: 
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 (5-22) 

where ÏN and 
N�2# are the spherical Bessel functions and spherical Hankel functions of the first 

kind respectively. We should apply two boundary conditions for above solutions and then utilize 

the expansion of plane waves in terms of spherical Bessel functions and Legendre polynomials 

and the orthogonality of these special functions for different angular momentum indices l to 

derive the coefficients _N as below: 

Ð ÑfÏf��'#·f�eÒÓ|# � \f�	² % 1#·f�eÒÓ|# ¶Ïf��s'# % _f
f�2#��s'#º��s ÑfÏ-���'#·f�eÒÓ|# � \f�	² % 1#·f�eÒÓ|#£Ïf���s'# % _f
N�2#���s'#¥Ô (5-23) 
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and 

 


/8Õ�$Ê ��\fË
fÖ- �	² % 1#·f�eÒÓ|#Ïf��s'# (5-24) 

 

After dividing the second row of Equation (5-23) by the first row to remove coefficients Ñf from 

both sides one can get: _f�x# � �sÏf��x'#Ïf���s'# = �xÏf���x'#Ïf��s'#�xÏf����� ��x'#
f��s'# = �s
f���s'#Ïf��x'# (5-25) 

wherem refers to different components and the prime means derivative with respect to the 

argument of the function. Moreover, a comparison of Equations (5-21) and (5-24) gives us the 

scattering amplitude in terms of Legendre polynomials and coefficients _f�x#
 as: 

,��s� � �s# � =\�s � _f�x#·f�eÒÓ|#�	² % 1#Ë
fÖ-  (5-26) 

The |can be set to zero (forward scattering) using optical theorem.  

 

Dispersion microstructure. Secondly, the mathematical formula to calculate the scattering 

amplitude due to a dispersion microstructure is presented. For dispersion microstructure, a 

component is always the dispersed phase in the other component as host or matrix. In the 

dispersion microstructure, as can be seen in the Figure 5.2 (left side) the medium includes similar 

structural units, each consisting of a dispersed component particle surrounded by a layer of the 

host component. These similar structural units can be approximated by a coated sphere. The 

thickness of coating layer R-R0can be calculated from the local volume fraction of the dispersed 

components as following: 

Æ � × = ×- � ¸·�52�0 = 1¹×- (5-27) 

in which R is the radius for the whole unit, R0  is the radius for the dispersed particle and  
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Figure 5.2: The CPA concept for dispersion structur¬� is its local volume fraction which is varying from 

dispersion microstructure the structural unit in 3D

neighboring components respectively

structural unit is embedded in a homogenous effecti

5.3 shows a dispersion microstructure in 2D. In thi

unit cell into three regions. The solutions of scal

written as the following [4]:

ØÙÙ
ÙÙÙ
Ú
ÙÙÙ
ÙÙÛ ��2# ��ÑfË

fÖ- Ïf��2
���# ��£�fË

fÖ- Ïf����#%gf
��L# � 


��\fË
fÖ- �	² % 1#

 

	��

Figure 5.2: The CPA concept for dispersion structural units. 

is its local volume fraction which is varying from one location to the next [

dispersion microstructure the structural unit in 3D,2D and 1D  is a sphere, a circle and two 

neighboring components respectively. To obtain the CPA equations it is 

structural unit is embedded in a homogenous effective medium as shown in the Figure 5.3. Figure 

5.3 shows a dispersion microstructure in 2D. In this case we have two interfaces which divide our 

unit cell into three regions. The solutions of scalar wave equation for each region in 3D can be 

]: 

� 2�#·f�eÒÓ|#����������������������������������������������������,Ò������ W ×
# fOf����#¥·f�eÒÓ|#������������������������������������,Ò��×- � � W


/8Õ�$Ê %�\fË
fÖ- �	² % 1#_f
f�2#��s�#·f�eÒÓ|#

#·f�eÒÓ|# ¶Ïf��s�# % _f
f�2#��s�#º ������������,Ò��� � ×

�

 

one location to the next [4]. For the 

,2D and 1D  is a sphere, a circle and two 

 assumed that the 

dium as shown in the Figure 5.3. Figure 

s case we have two interfaces which divide our 

ar wave equation for each region in 3D can be 

×-
W ×��������

×
Ô 

(5-28) 
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Above mentioned wave functions should satisfy two boundary conditions. The wave functions 

and their normal derivatives are continuous across the two interfaces so, two equations at the two 

interfaces r=Rand  r=R0 are attained: �2Ïf���2×-#��Ïf���2×-# �� �fÏf����×-# % gfOf�� ���×-#�fÏf���×-# % gfOf���×-#  (5-29) 

 

and �sÏf���s×# % _f
f�� ��s×#��Ïf��s×# % _f
f��s×# �� �fÏf����×# % gfOf�� ���×#�fÏf���×# % gfOf���×#  (5-30) 

 

The subscript (1) from the spherical Hankel function has been removed. Now, it is assumed that �2Ïf���2×-#��Ïf���2×-# � Üf (5-31) 

and =Üf�Of���×-# % Of�� ���×-#Üf�Ïf���×-# = Ïf�� ���×-# � Ýf (5-32) 

 

then�f can be expressed in terms of gf as ��f � Ýfgf (5-33) 

�

_f�x#
is solved by inserting (5-33) into (5-30) as following: 

_f�x# � = 8ÕÞß��8Õà#8u %áfÏf��s×#�s
f���s×#��� =áf
f��s×# (5-34) 

 

in which we have  
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áf � ÝfÏf���s×# % Of�� ���×#ÝfÏf��s×# % Of���×#  (5-35) 

 

and scattering amplitude can be calculated as in symmetric case: 

,��s� � �s# � =\�s � _f�x#�	² % 1#Ë
fÖ-  (5-36) 

 

wherethe optical theorem that states for forward scattering | � K has been used $ 
 

 

5.3 Numerical Procedure  

Numerical solution of 1D time-independent Schrodinger equation.To calculate the t-

matrix of each configuration which in turn gives us the average scattering matrix � ) ����� O/ � Æ �//  where O/  is the concentration of each configuration, we need to solve the 

Schrodinger equation. The 1D time-independent form of Schrodinger equation which is given by âu�â u % ���� K,�� � �x�u �� = ¼#can be integrated by stable and accurate Numerov algorithm: 

�N¤2 � 	�1 = ã�1	²��N�#�N = �1 % 1�1	²��N52� #�N521 % 1�1	²��N¤2�  (5-37) 

 

wherel is the spatial step size. For specific values of energy the boundary conditions are satisfied 

and there will be a solution. To find the solution we integrate from both sides to the matching 

point for a given energy knowing the boundary conditions ��ªäåæç# � ��ªèZYéç# � K$ 
�

The matching point is chosen to be in the middle of the well. If the trial energy is not an 

Eigenvalue the slope will be discontinuousat the matching point. The code will search for the 

eigenvalue by minimizing the difference in the slopes of thetwo wave functions (�left and �right) at 

the matching point. The procedure is started with a trial energyE below the eigenstate.Then 

the�left(x) and �right(x) and thedifference in slopes at the matching point, � ê left (xmatch)  

�êright(xmatch),forE + !E, where !E is a suitably chosen energy increment are computed. If the 

difference changed sign, then it is put!E =  !E/2 and it is iterated until the desired accuracy is 

reached. 

 

Scattering time. As mentioned in previous section, the basic idea of CPA is the replacement of 

the disordered medium by an effective medium with a complex propagation constant ke. By 

demanding that the scattering amplitude resulting from the local substitution of the effective 
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medium by the real medium should vanish on the average, we can calculate keself consistently 

[4,10]. For a multicomponent composite the CPA condition can be written as:  

×
���/N
/Ö2 ,/��s�� �s# � K (5-38) 

 

whichxi is the volume fraction of each component. fiis the forward scattering amplitude for an 

incident plane wave scattered by a structural unit of type iembedded in the effective medium with 

probability xi. It simply states that the real part of the average forward scattering amplitude in the 

effective medium is zero. The solutions of the CPA equation for different energies give us the 

effective band structure. The Mean Free Path (MFP) can be calculated in the long wavelength 

regime where the CPA is correct. In an effective medium there is no scattering to the first order 

but the higher order terms in expansion of scattering amplitude in terms of �s×  contain the 

information of MFP [4]. The MFP is exactly the leading order imaginary part of scattering 

amplitude or self-energy, given by ² � =	Dlw� exx ,x��s�� �s# (5-39) 

 

Moreover, the total scattering cross section can be obtained from the optical theorem as 

following: � � ]D�s lw�exx ,x��s�� �s# (5-40) 

 

mrefers to different species in effective medium and ex  are the local volume fractions for each 

configuration. It is known that the relaxation time � is inversely proportional to the total cross 

section. Additionally, calculation of the scattering in terms of MFP is possible as following: i � ²FG (5-41) 

 

in which the FG � �8xÕ44 is the group velocity and �, k andws��are reduced Planck’s constant, 

effective medium wave vector and effective mass respectively. As all the above procedure is 

repeated for each amount of energy to get the effective wave vector the effective medium band 

structure is obtained. Therefore, one may calculate Boltzmann integrals to get the thermoelectric 

properties of composites by knowing the effective band structure and scattering rate [63]. 

It should be noted here that, by using the CPA scattering time we are incorporating the insights of 

an atomic-level approach into the BTE approach as a high-level approach so, a significant higher 

fidelity in our simulations is expected. 

Root finder engine. The core of the above numerical procedure is finding the effective wave 

number for each value of energy �s as a solution of the CPA condition. Therefore, a root finder 

engine to calculate the  �s values which satisfy the CPA condition is needed. In general, the �s 

values are complex numbers [10] and complex solutions of the CPA condition should be look for.  
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There are many complex root finders for linear and non-linear equations which may be real-

valued or complex-valued. In this dissertation two methods which are easier to understand 

areintroduced. In practice, the second one is followed. The first method is an extended version of 

secant method for real roots. It uses an iterative formula and needs two initial values but, does not 

need to calculate the derivative of functions and is considerably stable. To extend the regular 

secant method the variable x shouldbe replaced by the complex variable z to get the complex 

secant method formula. It is separable into two formulas, a real and an imaginary one. The initial 

value of the complex secant formula should be a complex number. Therefore, the method canbe 

expressed as the following: 

�N¤2 � �N = ,��N# �N = �N52,��N# = ,��N52#$�������������� (5-42) 

 

By putting the z=x+iyin the above formula and rearranging the real and imaginary terms and 

equating them in both sides of the formula we get: 

Ð�N¤2 � �N = ,��N# �N = �N52,��N# = ,��N52#�N¤2 � �N = ,��N# �N = �N52,��N# = ,��N52#
Ô (5-43) 

 

wheren=1,2,3,….is the iteration number. Based on above formulas the input values are two 

complex numbers like �- and �2and a tolerance that determines the precision of calculations. In 

each step the above formulas are evaluated by two input values �- and�2. 

If the difference between the value of calculated root and the second input is less than the value of 

tolerance then the true root has been found. Otherwise, the above procedure should be repeated to 

get the true root within the desired precision. 

Another approach that is adopted to find the solutions of the CPA condition is relatively easy. By 

assumption,��# is a complex valued function of the complex variable z. The procedure of finding 

the complex root is started from an initial value �-. First, two successive points �2 and �2 % ë� 

are used to define a hyperspace and then by doing a mapping in that hyperspace, the third value 

which is the true complex root of the hyperspace is found. This way, convergence to the true root 

of the main function is achieved. This procedure may be stopped in two cases: the difference 

between successive values is very small and the maximum number of iteration is reached. This 

numerical scheme should be repeated for different initial values to find all possible roots of the 

original function. In practice, the original function in our calculations which is the scattering 

amplitude has multiple roots that make the interpretation of results difficult. In fact, we need to 

make decision which roots be selected as a reasonable physical result. A key concept which is 

very useful is that in the low frequency limit, the solution for the CPA is indeed unique.  When 
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the frequency (energy) increases, we encounter multiple roots. That is a signal that the k-

dependence of the self-energy can no longer be ignored.  For such situations, we can always use 

the so-called continuation method, i.e., we can use the solution to the CPA equation at a lower 

frequency (where it is unique) as an initial guess, and then use iteration or Newton's method to 

find the solution at a slightly higher frequency. Then,this process should be repeated to obtain 

solutions at higher frequencies.However, such approach breaks down eventually when the 

frequency is too high, and this can occur when we encounter the situation when the solution 

suddenly jumps to a wildly different value from the one at a lower frequency.  At that point we 

have to quit using the CPA, and use the spectral approach as detailed in Ref. [4]. 

Extension to a random distribution of grain and nanoparticle sizes.Incorporation of 

grain sizes or nanoparticle radiuses in the CPA numerical scheme provides an additional degree 

of freedom for optimizing the thermoelectric properties of materials. Some parameters are related 

to the grain size or nanoparticle radius distribution function. Assuming a unique grain size or 

nanoparticle radius is not physical, but it helps to improve both the charge carrier mobility and 

Seebeck coefficient. Applying a distribution function for grain size or nanoparticle radius actually 

introduces a type of randomness or disorder to the material which in turn increases the rate of 

scattering [64]. In the absence of a distribution function the randomness is decreased and charge 

carriers have more freedom to move which means the carrier mobility will be higher. Moreover, 

the absence of a distribution function leads to sharp profiles in the differential conductivity versus 

energy. Therefore, introducing a distribution function causes less smearing. This sharpness results 

in a larger Seebeck coefficient and power factor. 

Figure 5.3 presents the concept of assigning a size distribution function to each component grain. 

In the model nanocomposite as a symmetric medium there are many grains of each component as 

shown in the figure 5.3. Each component in nanocomposite is depicted by a different orientation 

of parallel lines. In this picture,the nanocomposite has been shown as an assembly of grains of 

three components and the model is extendible to more components. By assumption, for each 

component the grains are represented by a sphere which is filled with that component. The filled 

sphere is placed inside the effective medium. For grains of each component a discrete size 

distribution is assigned. The assumed distribution functions have their own average and variance. 
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       Figure 5.3: Grain size distribution function for different materials in a symmetric medium. 
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As it can be seen in Figure 5.4, the model material as a dispersion medium which has different 

embedded nanoparticles (3 components here) can be considered as an assembly of three different 

nanoparticles inside a host material. Each type of nanoparticle is assumed to be like a sphere 

inside a bigger sphere as host material. Both spheres are placed inside an effective medium. For 

each type of nanoparticles a discrete radius distribution is assumed. The assigned distribution 

functions to each nanoparticle have their own average and variance as indicated in the figure 5.4. 

 

 

 

 

 

 

 

For both symmetric and dispersion mediums a Gaussian distribution is assumed to investigate the 

size distribution effect on thermoelectric properties of materials. The average and variance of 

distribution can be changed. The scattering amplitude of each size is calculated by solving the 

scalar wave equation inside and outside the spheres. The wave functions should satisfy the 

boundary conditions at interfaces. The roots of the CPA equation at each energy �s (E) define the 

effective band structure. Therefore, at the end of calculations we will have the effective band 

structure and the scattering rates. Solving the Boltzmann transport equation by given scattering 

times and calculated effective band structure leads to thermoelectric properties. 

 

Extension to randomly orientated grains and nanoparticles.  The orientation of grains is 

another property of materials which adds a new degree of freedom for optimizing the 

thermoelectric properties. Where crystallites or grains join together, the crystal lattice cannot be 

perfect and therefore a grain boundary exists.  At the atomistic scale, each boundary in the atomic 

packing is a discontinuity. The grain boundaries are unavoidable due to geometrical reasons. In 

most of crystals the thickness of grain boundary is approximately few atoms. It is expected that 

the randomness due to new freedom decreases the electrical and thermal conductivities as a result 

of increase in scattering rates. It is assumed that grains follow a Gaussian distribution function to 

be orientated in different directions. The average and variance of Gaussian function for each 

component can vary. Figure 5.5 shows randomly orientated grains inside a nanocomposite versus 

preferred orientation grains. 
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Figure 5.4: Nanoparticle radius distribution function for different materials in a dispersion medium. 
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A possibility to assign an orientation to grains is through the angular dependency of effective 

mass in the CPA formalism. In anisotropic materials, the effective mass varies with the direction 

of particle movement respect to main axes of crystals because the group velocity and crystal 

momentum do not point to the same direction. Therefore, the effective mass depends on the angle 

between group velocity and momentum. The cyclotron resonance is the most common 

experimental method to measure the effective mass of semiconductor materials.  

For each energy step and within the parabolic band assumption, the carrier energy is a function of 

effective mass as the following: 

� � � ��� �	w �s�� %� ���!�	w!�s�� %� ���"�	w"�s�� (5-44) 

 

where �  ,�! � �" are the components of wave vector along main axes of crystal. After scattering 

of carriers by grain boundary or interfaces, their energy does not change but their momentum 

(which is a vector quantity) may change. By equating the energies before and after scattering the 

effective mass of carriers can be expressed as a scalar function of individual effective masses 

along main axes of a crystal as below: 

� � � ��� �	w �s�� %� ���!�	w!�s�� %� ���"�	w"�s���� ���� �	w �s�� %� ����!
�	w!�s�� %� ����"�	w"�s�� 

(5-45) 

 

Figure 5.5: Randomly orientated grains versus preferred orientation grains. 
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where � � , �!�  and �"�  are the components of scattered wave vector and are given by � � �� ì�P | íîìï ,  �!� � � ì�P| ì�Pï qP[��"� � � íîì|$   By inserting the primed components of 

wave vector in above expression for energy results in the following equation: 

2x� =ðZÅ�u k�ñòuóxt % ðZÅ�u kò/Nuóxô % �ñòukx>  
(5-46) 

 

Now, the scalar effective mass is not a function of energy and varies with angles |and  ï.  

Therefore, the carrier energy can be expressed as � � ��|, ï#$ 
Extension of the CPA formalism for phonons. The phonon waves can be treated like electron 

waves in the CPA formalism as well. For the phonon case, we should take into account two key 

concepts. Firstly, the phonon energy is given by: 

� � �H � �FG�������� �!�" � ²�w� Oõ²� %w� % O� (5-47) 

 

whereFG is the phonon group velocity or sound speed,�H is the angular frequency  and ²� w� O are 

the Miller indices.  The Miller indices are the coordinates of the normal in a system defined by 

the reciprocal lattice, rather than the direct lattice. The Miller indices are directions in the 

reciprocal lattice. Therefore, for the charge carrier each new material in nanocomposite is 

introduced by its different effective mass, while for phonon each new material or component in 

the nanocomposite is introduced by its specific phonon group velocity. So, a possibility to 

incorporate the orientation of grains in the CPA formalism for phonons is assigning a particular 

direction to phonon energy through the wave vector. In reality, the group velocity of phonons 

depends on the direction and magnitude of the phonon wave vector and is specific to the phonon 

polarization. The second point is that we should take into account the Bose-Einstein distribution 

function (look at Equation (3-4)) instead of Fermi-Dirac distribution in calculation of average 

values of scattering times over different grain sizes and different directions: 

The goal is to find the phonon group velocity in a desired direction in terms of | and ï given the 

elastic constants of the grain or crystallite. For this purpose, solving the elastic wave equations in 

a crystal are needed [48]: 

�ö Î��ÎÆ� � g22 Î��Î�� % gMM ÷Î��Î�� % Î��Î��ø % �g2� % g2M# ÷ Î�FÎ�Î� % Î�ùÎ�Î�ø 

�ö Î�FÎÆ� � g22 Î�FÎ�� % gMM ÷Î�FÎ�� % Î�FÎ��ø % �g2� % g2M# ÷ Î��Î�Î� % Î�ùÎ�Î�ø 

ö Î�ùÎÆ� � g22 Î�ùÎ�� % gMM ÷Î�ùÎ�� % Î�ùÎ��ø % �g2� % g2M# ÷ Î��Î�Î� % Î�FÎ�Î�ø (5-48) 
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in which  ö is density of atoms, u ,v, w are the displacements of atomic planes in x, y and z 

directions respectively and g/Þ are the elastic stiffness constants. It should be noted that the above 

equations are valid only for cubic crystals. Similar equations are available for hexagonal crystals. 

In this dissertation a random distribution of phonon group velocity for non-cubic crystals is 

assumed. For each desired direction the relevant general solution is inserted into the above three 

equations and all the terms are rearranged to put the terms which include u, v and w together. 

Finally, an eigenvalue equation is obtained. The eigenvalues give us the phonon group velocity as 

a function of components of wave vector� �!�" . As stated in Equation (5-47) these components 

are related to Miller indices that in turn indicate a particular direction in terms of  | and ï. In this 

way, we can express the phonon group velocity as a function | and ï�i.e. FG=FG�|� ï#. Therefore, 

the phonon energy can be expressedas a function of angleas � � ��|� ï#.  
For more clarification, the above mentioned procedure is applied for direction [111] in the 

following: 

thedisplacements for waves in the [111] direction are set as: 

���� Æ# � �-
/� úõy� ¤!¤"#5Rû##�����������������F��� Æ# � F-
/� úõy� ¤!¤"#5Rû##�������������'O&� 
ù��� Æ# � ù-
/� úõy� ¤!¤"#5Rû## (5-49) 

 

After substitution of above solutions in equation (5-48) and rearranging them an eigenvalue 

equation is obtained: g22� ��- %�gMM��!� % �"�#�- % �g2� % gMM#� �!F- % �g2� % gMM#� �"ù- � öH��- 

g22�!�F- %�gMM�� � % �"�#F- % �g2� % gMM#� �!�- % �g2� % gMM#�!�"ù- � öH�F- 

g22�"�ù- %�gMM�� � % �!�#ù- % �g2� % gMM#� �"�- % �g2� % gMM#�!�"F- � öH�ù- (5-50) 

 

Setting the determinant of coefficients of  �-, F- and  ù- in the left hand side of  (5-49) equal to 

zero: 

üg22� � %�gMM��!� % �"�# �g2� % gMM#� �! �g2� % gMM#� �"�g2� % gMM#� �! g22�!� %�gMM�� � % �"�# �g2� % gMM#�!�"�g2� % gMM#� �" �g2� % gMM#�!�" g22�"� %�gMM�� � % �!�#ü � K������ (5-51) 

 

 leads to a characteristic equation which has 3 roots. One root is the velocity of longitudinal wave: 

Ff � ��S �g22 % 	g2� % ]gMM# (5-52) 
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and the other two roots are the velocities of transversal waves: 

Fû � ��S �g22 = g2� % 1gMM# (5-53) 

 

which are equal meaning that the two transverse branches are degenerate. A single-branch 

polarization average velocity F along a particular direction can be calculated as the following [50, 

65]: 

F � 12L �2zß % 2zý % 2zý# (5-54) 

 

This angle dependent average velocity, which is used to calculate the phonon energy, introduces 

angular dependency to numerical scheme for solving the phonon CPA formalism. 
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CHAPTER VI 
 

 

RESULTS AND DISCUSSION 

 

 

The present Chapter explores the use of Coherent Potential Approximationas introduced by 

Sheng [4] for investigating the charge and thermal transfer properties.The focus of the 

dissertation is on the SiGe and Bi2Te3-Sb2Te3nanocomposites without loss of generality.The 

developed MATLAB code is applicable for other nanocomposites as well. Only the symmetric 

microstructure unit in which the grains are exchangeable is considered for both SiGe and Bi2Te3-

Sb2Te3nanocompositesin this research. Figure 6-1 depicts the schematics of the investigated 

systems.The nanocomposites include the separate single alloy grains. The grains are randomly 

orientated and have different sizes. Their orientation has been represented by the parallel lines. 

The main important result of the code for each material system is the grain boundary scattering 

time for both charge carriers and phonons. The calculated scattering times can be used directly in 

the Boltzmann transport equation. The band structure of charge carriers and also phonon 

dispersion in nanocomposite which give us the effective mass and the speed of sound in the 

calculated effective medium respectively are other outcomes of the code. Moreover, the variation 

of effective mass and speed of sound versus grain size are obtained. Some other quantities like 

scattering total cross section, non-parabolicityand band-gap change can be calculated. The code is 

able to consider the angular orientation of grains as well as grain size as the main independent 

variable but only grain size is used as the independent variable. The angular orientations are used 

 

 

Si 

Ge 

Bi2Te3 

Sb2Te3 

Figure 6.1: Schematics of nanocomposites investigated in this dissertation.
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to show the effect of random orientation on the level of intensity of  grain boundary scattering 

time for both charge carriers and phonons. 

6.1 Basic Parameters 

It has been mentioned already in Section 5.3 that for the charge carrier each new material in 

nanocomposite is introduced by its different effective mass, while for phonon each new material 

or component in the nanocomposite is introduced by its specific phonon group velocity (sound 

velocity) in CPA formalism.Other than effective mass and phonon group velocity we need to 

know the Debye temperature and the density of each material in nanocomposite. The operation 

and Debye temperatures are used for calculation of average scattering times over different 

configurations. The experimental data used in this dissertation are presented in the Table 6.1. In 

this dissertation the focus is on the nanocomposite structure and not specific materials. Therefore, 

the materials used for calculation are examples of the CPA application. The n-type Si-Ge system 

and p-type Bi2Te3 - Sb2Te3has been used for calculations unless stated. 

 

 

Table 1: The basic parameters used in the CPA calculations. 

Property Reference Bi2Te3 Sb2Te3 Si Ge 
Effective mass m1*,kg Ioffe [66] 

,Landolt-

Bornstein [67] 

0.69ws 0.97ws 0.98ws 1.59ws 

Effective mass m2*,kg Ioffe ,Landolt-

Bornstein  
0.69ws 0.97ws 0.19ws 0.0815ws 

Effective mass m3*,kg Ioffe ,Landolt-

Bornstein 
0.69ws 0.97ws 0.19ws 0.0815ws 

Phonon group 

velocityFò� w�Ó 

Landolt-

Bornstein 

3058 2888 8433 5400 

Debye 

temperature)d � þ 

Landolt-

Bornstein 

165 160 645 374 

Densityö,g/cm
3
 Ioffe,Landolt-

Bornstein 

7.86 6.50 2.329 5.3234 

*In case of Bi2Te3 and Sb2Te3 the values of effective mass are calculated through fitting the charge carrier 

mobility resulted from Boltzmann transport equation to experimental data. 

The standard deviation of grain size and angular orientation distributions used in calculations has 

been set to 0.1. 
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6.2 Fitting Procedure 

To have smooth curves and avoid accumulated numerical errors the calculated curves are fitted to 

proper polynomials. The effect of induced numerical error resulted from applying fitted curves 

instead of original curves can be neglected due to averaging process which is performed for 

scattering time over different configurations. To have better understanding of the effect of fitting 

procedure on calculated quantities, the calculated scattering time and total cross section curves 

along with their relevant fitted curves for both charge carrier and phonon in case of Bi2Te3-Sb2Te3 

nanocomposite are presented in Figures 6.2 and 6.3 respectively. 

�

Figure 6.2: Original calculated scattering time curve along with the fitted curve for both of charge 

carriers and phonons in Bi2Te3-Sb2Te3 nanocomposite. 

As it can be seen from Figure 6.2, the difference between original curve and fitted curve is 

negligible. The main Figure depicts the scattering time of charge carriers and the inset indicates 

the scattering time of phonons for Bi2Te3 - Sb2Te3.Additionally, Figure 6.3 clearly shows the 

difference between original curve and fitted one is negligible for both charge carriers and 

phonons. Moreover, from a statistical point of view the average discrepancy almost vanishes after 

the process of average calculation in which many different configurations are used. 
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Figure 6.3:Original calculated total cross section curve along with the fitted curve for both of charge 

carriers and phonons in Bi2Te3-Sb2Te3 nanocomposite. 

�

 

6.4 Band Structure, Phonon Dispersion, Effective Mass and 

Sound Velocity 

The important factor for the effective mass is the curvature of the dispersion curve at the 

minimum of conduction band or maximum of the valence band because it is relevant to the 

second derivative of energy respect to wave number. Large second derivative or small radius of 

curvature gives small effective mass and small second derivative or large radius of curvature 

leads large effective mass. 

The effective mass of charge carriers in effective medium can be calculated using the resulted 

band structure or E-k curve in the effective medium. For each energy level the CPA takes the 

wave numbers of components in nanocomposite and calculates the effective medium wave 

number for same energy level. The charge carrier energy is changed gradually and for each 

energy a corresponding wave number is calculated for effective medium. 
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The band structure diagram for Bi2Te3-Sb2Te3 as a two components nanocomposite has been 

presented in Figure 6.5. It shows a typical band structure diagram which is calculated by the 

CPA. 

�

Figure 6.4: The energy band diagram for components of Bi2Te3-Sb2Te3 and the relevant effective 

medium. 

It should be mentioned that the volume fraction for each component is 0.5 and the angular 

orientation which has been assigned to grains in this calculation was very small and negligible 

(0.001
o
). The CPA wave number seems as an average of the wave numbers of components. 

A phonon unlike a photon in a box cannot have infinite energy. Its frequency is determined by the 

medium of its propagation. So, in the effective medium which is specified with its effective wave 

number there will be a new speed for propagation of sound. 

 Acoustic phonons are main carriers of thermal energy in most of semiconductors and their 

spectrum in low energies is linear. Therefore, in low energy limit the Debye model can be used to 

describe the phonon dispersion relations. It is clear from Figure 6.5 that the slope of line resulted 

by the CPA calculation as the speed of sound in effective medium is like the average of speeds of 

sound in components of nanocomposite Bi2Te3-Sb2Te3. Again, the volume fraction for each 

component is 0.5 and the angular dependency of phonon group velocity is very small (0.001
o
). 

The presented band structure and phonon spectrum for Bi2Te3-Sb2Te3 nanocomposite are typical 

and without loss of generality the similar results are obtained for Si-Ge system. 
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Figure 6.5:The phonon dispersion diagram for components of Bi2Te3-Sb2Te3 and the relevant 

effective medium. 

�

Figure 6.6:Variation of effective mass versus grain size in the calculated effective medium for Bi2Te3-

Sb2Te3 nanocomposite. 

The calculated values of effective mass for Bi2Te3-Sb2Te3 nanocomposite has been given in the 

Figure 6.6. It shows that if the grain sizes of both components in the nanocomposite are equal 

then the resulted effective mass is the average of effective masses. The resulted effective mass 
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has a linear dependency on volume fraction. Moreover, if the grain sizes are not equal then two 

cases are raised: 

1- a1<a2 

In this case as the difference between a1 and a2 increases the contribution of component 

with smaller effective mass (a1) in the effective mass of the effective medium increases. 

2- a1>a2 

In this case as the difference between a1 and a2 increases the contribution of component 

with greater effective mass (a2) in the effective mass of effective medium increases. 

In summary, the value of effective mass of the effective medium depends on the ratio of grain 

sizes and the effective mass values of the components of the nanocomposite. In fact, the effective 

mass of effective medium follows the larger grain size.The Figure 6.7 shows a similar result for 

the phonon group velocity of the effective medium. The value of the phonon group velocity of the 

effective medium is a function of the ratio of the grain sizes of the components and the phonon 

group velocities of the components. Similar statements can be expressed for the effective phonon 

group velocity of effective medium. If the grain sizes of both 

�

Figure 6.7:Variation of effective phonon group velocity versus grain size in the calculated effective 

medium for Bi2Te3-Sb2Te3 nanocomposite. 

components in the nanocomposite are equal then the resulted effective speed of sound is the 

average of speeds of sounds in the component and has a linear dependency on volume fraction. 
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3- a1<a2 

In this case as the difference between a1 and a2 increases the contribution of component 

with smaller speed of sound (a1) in the speed of sound of the effective medium increases. 

4- a1>a2 

In this case as the difference between a1 and a2 increases the contribution of component 

with greater speed of sound (a2) in the speed of sound of the effective medium increases. 

In brief, the effective phonon group velocity follows the larger grain size. 

6.4 The Optimized Grain Size 

One of the most useful results of the CPA is the optimum value for grain size in the 

nanocomposite. The minimum in the scattering time curve of charge carriers indicates the 

maximum number of scattering events which reduces the electrical conductivity. Therefore, 

staying away from the minimum of scattering time for charge carriers is desired and the range of 

grain sizes which the minimum scattering time occurs for them should be avoided. The minimum 

in the scattering time curve of phonons represents the maximum number of scattering events 

which reduces the thermal conductivity. The reduction of thermal conductivity in the context of 

thermoelectrics is favorable so, the range of grain sizes that the minimum scattering time occurs 

for them is desirable. If the minimums of charge carrier and phonon scattering times coincide 

then there is no chance to reduce the thermal conductivity without deteriorating the electrical 

conductivity 

. 
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Figure 6.8: Hole and phonon GB scattering relaxation times versus grain 

size for nanostructured Si0.8Ge0.2. 
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Figure 6.8 shows the result of calculation of GB scattering times for holes and phonons via CPA 

formalism in a nanostrcutured Si0.8Ge0.2 material. First of all, the existence of minimum in the 

scattering time for both charge carriers and phonons is notable and helps us to find the optimum 

grain size. Secondly, the phonon relaxation time has a minimum at ~4nm and electron relaxation 

time has a minimum at ~10nm. This result presents a criterion for the grain size to be in the range 

of 4 nm for reducing the thermal conductivity without significantly affecting the charge carrier 

mobility. Such a result is the core of the CPA outcomes for designing optimized thermoelectric 

materials. 

In Figure 6.9 the calculated GB scattering times for both charge carriers and phonons are depicted 

for a range of volume fractions. There exist minimums in scattering time for both charge carriers 

and phonons. Additionally, the phonon scattering time has a minimum at 1.5 nm and electron 

scattering time has a minimum at ~ 7 to 10 nm. These numbers indicate a criterion for the grain 

size to be in the range of 1-2 nm to reduce the thermal conductivity without affecting the electron 

mobility considerably. 

�

Figure 6.9:Charge carrier and phonon grain boundary scattering times versus grain size for 

nanocomposite Si-Ge. The grain size of Si is 10 nm and the grain size of Ge varies from 1nm to 

100nm. 
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or grains join together, the crystal lattice cannot be perfect and therefore a grain boundary exists. 

The grain boundaries are unavoidable due to geometrical reasons. The grains have randomly 

orientated crystal directions which can be expressed by a Gaussian distribution function for each 

component separately. The randomness due to new freedom decreases both electrical and thermal 

conductivities as a result of increase in number of scattering events. The effect of randomized 

orientation on phonon GB scattering time has been investigated for both Bi2Te3-Sb2Te3 and Si-Ge 

systems and the results have been presented in Figures 5.5 and 6.6 respectively. The average 

values of Gaussian distribution functions are increased gradually from 0.001
o
 to 180

o
 and 360

o
 for 

angles |  and ï   respectively while the standard deviation is 0.1. The volume fractions of 

components for both nanocomposites are equal. The grain size of the second component a2 varies 

from 1nm to 100 nm while the grain size of the first component a1 was kept equal to 10 nm. It is 

clear from Figures 6.10 and 6.11 that as randomness of angles is increased the value of scattering 

time increases and the curve minimums go down. The similar result was obtained for phonon 

grain boundary scattering time in case of Si-Genanocomposite. These observations are in 

agreement to the physical intuition that more randomness leads to larger scattering rates. 

 

 

�

Figure 6.10: Variation of the phonon GB scattering time versus grain size of Sb2Te3 while 

the grain size of Bi2Te3 is kept constant and the volume fractions are equal. 
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Figure 6.11:Variation of the phonon GB scattering time versus grain size of Ge while the 

grain size of Si is kept constant and the volume fractions are equal. 

 

 

6.6 Validation of the Code 

Validating the calculated grain boundary scattering time by comparison to experimental data is 

difficult. The experimental data are rare subject to specific conditions. Therefore, a direct 

comparison of theoretical and experimental data seems impractical. In practice, the estimated data 

of interfacial or grain boundary scattering time is combined with other types of scattering times 

like impurity, intervalley and alloy scattering based on Matthienssen’s rule. Each scattering time 

has some unknown parameters which are obtained through fitting the calculated quantities like 

charge carrier mobility to available measured data of charge carrier mobility. By this method the 

fitting parameters are tuned. 

Validation of the code can be achieved through checking the calculated results in physical limits. 

If the code meets some known physical requirements then it gains credit. The code predicts 

correctly the amount of scattering time while the effective masses for both components in a 
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the written code satisfies this condition very well. Moreover, it is expected to have more 
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into scattering mechanism provides more freedom for scattering events and so, smaller scattering 

times are expected. As it has been shown in the Section 6.5 the angle increment leads to more 

scattering event, smaller scattering time and deeper minimum in the scattering time curve. 

Furthermore, for the both limits of volume fraction x=0 and x=1 there will be only one type of 

component meaning that there is no change in the effective medium and therefore, the scattering 

should vanish. The code shows that for very small or very large volume fractions like x=0.001 

and x=0.999 the scattering time tends to go to infinity. This trend is another evident that the code 

is trustable. In summary, the code is able to correctly predict the scattering time in physical limits 

for effective mass, angles of orientation and volume fraction. 

Additionally, it is known that the order of magnitude for charge carrier and phonon scattering 

times varies from 10
-10

 to 10
-14

  and from 10
-8

 to 10
-12

 second respectively.  All the figures 

presented in Sections 6.4 and 6.5 show the expected order of magnitude for grain boundary 

scattering times.   

6.7 Conclusionand Future Studies  

The Boltzmann transport equation (BTE) is dominant in the field of semi-classical transport for 

devices. The sizes of semiconductor devices is decreasing into nanometer scale so, the Boltzmann 

transport equation which considers the charge carriers and phonons as particles gets more 

inaccurate. The size effects include a wide range of problems like interfaces, surfaces and metal 

boundaries and the influence of these boundaries onimportant semiconductor parameters.The 

BTE is named semi-classical because it includes both Newtonian mechanics and quantum 

scattering mechanisms. Therefore it is valid only in a specific regime in which the quantum 

effects are negligible. One solution is to use the Monte Carlo approach to solve the BTE.This 

approach is not suitable due to its heavy computational effort. The Landauer-Buttiker approach 

can be used for ballistic regime. In this regime scattering events don’t affect the carriers. 

However, to incorporate the quantum effects in the nanoscale regime the Schrodinger equation is 

needed. Moreover, the non-equilibrium Green’s function (NEGF) approach is suitable to handle 

open systems for both of ballistic and scattering dominated regime depending on the mean free 

path (MFP) of carriers.  The system is in the ballistic regime if the MFP is longer than the device 

size and it is in the scattering dominated regime if the MFP is smaller than the device size. 

Another quantum approach which is used for both ballistic and scattering dominated regimes is 

the Wigner equation which is not positive definite but its results converge to BTE results in the 

classical limit. There are many other quantum approaches which are not common. 

The proposed approach in this dissertation is based on the substituting the input scattering times 

resulted from a particle based formalism for the scattering times which are obtained from a wave 

based formalism in the BTE. The developed CPA in this dissertation can replace the particle 

based model grain boundary scattering time by a wave based model grain boundary scattering 

time.  

A potentially promising work in future would be replacing all types of scattering times resulted 

from particle based models by scattering times resulted from wave based models. 

Although the developed CPA in this dissertation is applies only for two nanocompositesBi2Te3-

Sb2Te3 and Si-Ge but it is good to emphasize that it is applicable for all thermoelectric 
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nanocomposites. Nanocomposites have introduced a new paradigm in thermoelectric field and 

this field seems promising. Therefore, it is expected that the CPA has many applications in the 

field of thermoelectric nanocomposites. 
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APPENDICES 
 

A1.THE GREEN'S FUNCTIONS 

 

The CPA method is mainly based on the nearest-neighbor, tight-binding Hamiltonian 

 � � ��~�Z � �Z � \~ %��~�Å$Å$ � ÉZ� � Ï~���������� (A1-1) �
where the symbol "n.n." denotes that the summation goes over the nearest-neighbor pairs , and |i> 

and |j> are atomic-like tight-binding wave-functions. If the eigenfunctions and eigenvalues of the 

Hamiltonian in k-space are denoted by~A � and ��A# respectively, then the corresponding Green's 

function can be expressed as  

 ���# ��~A �� �~� = ��A# $���������������������������������
�

 (A1-2) 

 

In the tight-binding basis, the matrix elements of the Green's function between states ~� � and ~�> can be written as �ä����# �� ²~���#~w � �� �� ²~A �� �~� �� = ��A# $����������
�

 
(A1-3) 

 

The summation over the first Brillioun zone in A-space can be transformed into an integral over 

the same Brilliounzone. 
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A2.Monoatomic Chain Green' s Function  

The Hamiltonian for the perfect monoatomic chain is 

 � � ��~�Z � �- � \~ %��~�Å$Å$ � Æ � Ï~���������� (A2-1) �
The eigenfunctions and eigenvalues are easily found to be 

 ~A ��� 1õ»�§Z�Å�~P ��Å  (A2-2) ��A# � �- �% 	Éíîì�Aq#������������������������������������ (A2-3) �
whereq is the lattice spacing, and P denotes an atomic site. The Green's function matrix elements 

can be evaluated in closed form by using Equation (A2-3), (we denote the Green's function here 

by the symbol  P, for perfect crystal), ¬ä���# � 1»�§Z��ä5�#�� = ��A#
�

 

 

            =
��
����#m [A� å���	
�#��5�ç
�ð���#

�
�

�
�

 

 

            =
2��m [�� å���	
�#�5�ç
�ð���#�5�  

 

            =�= 2��Zç� [�~�~Ö2 �~	
�~
�u5���¤2 

 

            =  = 2��Zç�[�~�~Ö2 �~	
�~��5���#��5�u�#��� 
 

(A2-4) 

where ª � �� = �-#�	Éê, and �2� and ��� are the two roots of equation �� = 	�ª % 1=0: 

 

�2 � �ª =�ª� = 1������������������������� (A2-5) 

�� � �ª %�ª� = 1$������������������������ (A2-6) �
It follows that 

�2�� � 1$������������������������������������������ (A2-7) �
1. If ~��2~ � 1, then |���~ � 2~���~ � 1; and vice versa. This means that one root is inside of 

the unit circle and the other root is outside of the unit circle. For this case, the Green's 

function can be found, using residue theory, as,  

 



���

�

¬ä���# � �= 2ç ��~	
�~
��5�u= 

2
���5�Ì#u5Mçu �2~ä5�~�$ (A2-8) 

 

 

2. Similarly, if |P2|>1, then l^ i| =1/| P^ | < 1, the Green's function can be found as,  

 ¬ä���# � �= 2ç �u~	
�~
�u5��= 

2
���5�Ì#u5Mçu ��~ä5�~�$ (A2-9) 

 

 

       3. If ~��2~ � |���~ � 1 implying that x is real and   =1 W ª W 1, the two roots 

lye on the unit circle. This condition gives the continuous spectrum of � 

which lies in the real �-axis. In this case, we must follow a limiting  

procedure as in Equation (4-10). The corresponding Green's function is found as 

 ¬ä�� ��# � � ¯�
�]É� = �� = �-#� �ª ¯ ��1 = ª�#~ä5�~$����� (A2-10) 
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A3.Perfect Diatomic Chain Green's 

For the diatomic chain with Hamiltonian (4-1), eigenfunctions (4-4) and eigenvalues (4-6), the 

matrix element of Green's function can be written as  

 

¬ä�����# � � 1»�í����A#í�� �A#� = ���A#��

§Z��ä5�#�$����������������������������������� (A3-1) 

 

Some manipulation leads to 

 ¬ä���# � � 1»� �= ��£� = �2�A#¥£� = ���A#¥�

§Z��ä5�#� 
 � ������� 1»� �= ���� = ���� % ��# % ���� = 	É� = 	É� íîì�Aq#

�

§Z��ä5�#� 
 

             = 
�����m [A� �5��

�u5����¤��#¤����5�çu5�çu 
�ð� #���5��� §Z��ä5�#� 
 

             =
�5���� m [�� å��	
�#�

�u5����¤��#¤����5�çu5�çu 
�ð���#�5�  

 

             =�= �5����Z �[�~�~Ö2 �~	
�~çu�u5£�u5����¤��#¤����5�çu¥�¤çu 
 

             = = �5���Zçu �[�~�~Ö2 �~	
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where  , we have 

 ��2�� � 1$������������������������������������������������ 
 

Comparing Equations  (A-13) and (A-7), we obtain 

 ¬ä�22��# � � � = ��=É���2 = ��# �2~ä5�~ (A3-3) 

 

Similarly, we get 
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