1,697 research outputs found

    Evaluating distributed cognitive resources for wayfinding in a desktop virtual environment.

    Get PDF
    As 3D interfaces, and in particular virtual environments, become increasingly realistic there is a need to investigate the location and configuration of information resources, as distributed in the humancomputer system, to support any required activities. It is important for the designer of 3D interfaces to be aware of information resource availability and distribution when considering issues such as cognitive load on the user. This paper explores how a model of distributed resources can support the design of alternative aids to virtual environment wayfinding with varying levels of cognitive load. The wayfinding aids have been implemented and evaluated in a desktop virtual environment

    Wayfinding in Complex Multi-storey Buildings: A vision-simulation-augmented wayfinding protocol study

    Get PDF
    Wayfinding in complex multi-storey buildings often brings newcomers and even some frequent visitors uncertainty and stress. However, there is little understanding on wayfinding in 3D structure which contains inter-storey and inter-building travelling. This paper presents the method of vision-simulation-augmented wayfinding protocol for the study of such 3D structure to find its application from investigating pedestrians’ wayfinding behaviour in general-purpose complex multi-storey buildings. Based on Passini’s studies as a starting point, an exploratory quasi-experiment was developed during the study and then conducted in a daily wayfinding context, adopting wayfinding protocol method with augmentation by the real-time vision simulation. The purpose is to identify people’s natural wayfinding strategies in natural settings, for both frequent visitors and newcomers. It is envisioned that the findings of the study can inspire potential design solutions for supporting pedestrian’s wayfinding in 3D indoor spaces. From the new method developed and new analytic framework, several findings were identified which differ from other wayfinding literature, such as (1) people seem to directly “make sense” of wayfinding settings, (2) people could translate recurring actions into unconscious operational behaviours, and (3) physical rotation and constrained views, instead of vertical travelling itself, should be problems for wayfinding process, etc. Keywords: Wayfinding Protocol; Real-time Vision Simulation; 3D Indoor Space; Activity Theory; Structure of Wayfinding process</p

    Where do we go from here? An assessment of navigation performance using a compass versus a GPS unit

    Get PDF
    The Global Positioning System (GPS) looks set to replace the traditional map and compass for navigation tasks in military and civil domains. However, we may ask whether GPS has a real performance advantage over traditional methods. We present an exploratory study using a waypoint plotting task to compare the standard magnetic compass against a military GPS unit, for both expert and non-expert navigators. Whilst performance times were generally longer in setting up the GPS unit, once navigation was underway the GPS was more efficient than the compass. For mediumto long-term missions, this means that GPS could offer significant performance benefits, although the compass remains superior for shorter missions. Notwithstanding the performance times, significantly more errors, and more serious errors, occurred when using the compass. Overall, then, the GPS offers some clear advantages, especially for non-expert users. Nonetheless, concerns over the development of cognitive maps remain when using GPS technologies

    Three levels of metric for evaluating wayfinding

    Get PDF
    Three levels of virtual environment (VE) metric are proposed, based on: (1) users’ task performance (time taken, distance traveled and number of errors made), (2) physical behavior (locomotion, looking around, and time and error classification), and (3) decision making (i.e., cognitive) rationale (think aloud, interview and questionnaire). Examples of the use of these metrics are drawn from a detailed review of research into VE wayfinding. A case study from research into the fidelity that is required for efficient VE wayfinding is presented, showing the unsuitability in some circumstances of common metrics of task performance such as time and distance, and the benefits to be gained by making fine-grained analyses of users’ behavior. Taken as a whole, the article highlights the range of techniques that have been successfully used to evaluate wayfinding and explains in detail how some of these techniques may be applied

    Evaluation of Multi-Level Cognitive Maps for Supporting Between-Floor Spatial Behavior in Complex Indoor Environments

    Get PDF
    People often become disoriented when navigating in complex, multi-level buildings. To efficiently find destinations located on different floors, navigators must refer to a globally coherent mental representation of the multi-level environment, which is termed a multi-level cognitive map. However, there is a surprising dearth of research into underlying theories of why integrating multi-level spatial knowledge into a multi-level cognitive map is so challenging and error-prone for humans. This overarching problem is the core motivation of this dissertation. We address this vexing problem in a two-pronged approach combining study of both basic and applied research questions. Of theoretical interest, we investigate questions about how multi-level built environments are learned and structured in memory. The concept of multi-level cognitive maps and a framework of multi-level cognitive map development are provided. We then conducted a set of empirical experiments to evaluate the effects of several environmental factors on users’ development of multi-level cognitive maps. The findings of these studies provide important design guidelines that can be used by architects and help to better understand the research question of why people get lost in buildings. Related to application, we investigate questions about how to design user-friendly visualization interfaces that augment users’ capability to form multi-level cognitive maps. An important finding of this dissertation is that increasing visual access with an X-ray-like visualization interface is effective for overcoming the disadvantage of limited visual access in built environments and assists the development of multi-level cognitive maps. These findings provide important human-computer interaction (HCI) guidelines for visualization techniques to be used in future indoor navigation systems. In sum, this dissertation adopts an interdisciplinary approach, combining theories from the fields of spatial cognition, information visualization, and HCI, addressing a long-standing and ubiquitous problem faced by anyone who navigates indoors: why do people get lost inside multi-level buildings. Results provide both theoretical and applied levels of knowledge generation and explanation, as well as contribute to the growing field of real-time indoor navigation systems

    Measuring Discoverability in Buildings Using Spatial Analysis and Occupant Surveys: A Study of the UWM Union

    Get PDF
    The architectural layout of a building influences the way people experience it. The more complex the layout, the overall size, the number of floors, and the more discrete spaces they contain, the harder it may be for people to discover the destinations and experiences that are available inside them. This is important because the more people are aware of what the building has to offer, the more likely they are to take advantage of these resources. This dissertation addresses the question: How do the layouts of buildings affect the potential of discoverability of places within them? This study introduces and develops the concept of discoverability as a critical imperative for the design of complex buildings. Discovery of spaces within buildings may be influenced by a variety of factors, including their location, visibility, the particular need the setting serves, word-of-mouth or hearing from others, and marketing efforts through signs, posters, or emails. Although each of these factors are important, this research focuses especially on the relationship between the visibility of a place and its discoverability. The study tries to develop a quantifiable definition for discoverability based on the measures derived from architectural analysis. The study evaluates three methods for measuring building configuration and visual accessibility: space syntax, visual graph analysis, and isovist analysis. Each approach offers benefits as well as shortcomings, the most important of which is their exclusive use of two-dimensional plan analysis. Thus, this study also introduces a new method for three-dimensional visual analysis using a Grasshopper script to produce a three-dimensional isovists. The result of the visibility analysis of the building was compared to the results from an online survey of students that assessed how they experience the Union and their familiarity with different areas inside this building. Results from the survey showed that the visibility of a place is the most important factor involved in its discovery. Comparing survey results with visibility analysis results also revealed that among the different methods, axial line analysis, derived through space syntax could best correlate with students’ responses about whether or not they discovered a place in the Union. The study also found that step depth, derived through visual graph analysis, is another important factor in the discoverability of places. The study provides an operational definition for discoverability based on these two concepts that can be used to measure how discoverable places are. The study also found that there was a relationship between the number of places that students had discovered in the Union and their perception of involvement opportunities in campus activities. This is an important finding which emphasized the importance of studying discoverability in complex settings like student union buildings

    Gaze Behaviour during Space Perception and Spatial Decision Making

    Get PDF
    A series of four experiments investigating gaze behavior and decision making in the context of wayfinding is reported. Participants were presented with screen-shots of choice points taken in large virtual environments. Each screen-shot depicted alternative path options. In Experiment 1, participants had to decide between them in order to find an object hidden in the environment. In Experiment 2, participants were first informed about which path option to take as if following a guided route. Subsequently they were presented with the same images in random order and had to indicate which path option they chose during initial exposure. In Experiment 1, we demonstrate (1) that participants have a tendency to choose the path option that featured the longer line of sight, and (2) a robust gaze bias towards the eventually chosen path option. In Experiment 2, systematic differences in gaze behavior towards the alternative path options between encoding and decoding were observed. Based on data from Experiments 1 & 2 and two control experiments ensuring that fixation patterns were specific to the spatial tasks, we develop a tentative model of gaze behavior during wayfinding decision making suggesting that particular attention was paid to image areas depicting changes in the local geometry of the environments such as corners, openings, and occlusions. Together, the results suggest that gaze during a wayfinding tasks is directed toward, and can be predicted by, a subset of environmental features and that gaze bias effects are a general phenomenon of visual decision making
    • 

    corecore