Wayfinding in complex multi-storey buildings often brings newcomers and even some frequent visitors uncertainty and stress. However, there is little understanding on wayfinding in 3D structure which contains inter-storey and inter-building travelling.
This paper presents the method of vision-simulation-augmented wayfinding protocol for the study of such 3D structure to find its application from investigating pedestrians’ wayfinding behaviour in general-purpose complex multi-storey buildings. Based on Passini’s studies as a starting point, an exploratory quasi-experiment was developed during the study and then conducted in a daily wayfinding context, adopting wayfinding protocol method with augmentation by the real-time vision simulation. The purpose is to identify people’s natural wayfinding strategies in natural settings, for both frequent visitors and newcomers. It is envisioned that the findings of the study can inspire potential design solutions for supporting pedestrian’s wayfinding in 3D indoor spaces.
From the new method developed and new analytic framework, several findings were identified which differ from other wayfinding literature, such as (1) people seem to directly “make sense” of wayfinding settings, (2) people could translate recurring actions into unconscious operational behaviours, and (3) physical rotation and constrained views, instead of vertical travelling itself, should be problems for wayfinding process, etc.
Keywords:
Wayfinding Protocol; Real-time Vision Simulation; 3D Indoor Space; Activity Theory; Structure of Wayfinding process</p