459,306 research outputs found

    From theory to econometrics to energy policy : Cautionary tales for policymaking using aggregate production functions

    Get PDF
    Development of energy policy is often informed by economic considerations via aggregate production functions (APFs). We identify a theory-to-policy process involving APFs comprised of six steps: (1) selecting a theoretical energy-economy framework; (2) formulating modeling approaches; (3) econometrically fitting an APF to historical economic and energy data; (4) comparing and evaluating modeling approaches; (5) interpreting the economy; and (6) formulating energy and economic policy. We find that choices made in Steps 1-4 can lead to very different interpretations of the economy (Step 5) and policies (Step 6). To investigate these effects, we use empirical data (Portugal and UK) and the Constant Elasticity of Substitution (CES) APF to evaluate four modeling choices: (a) rejecting (or not) the cost-share principle; (b) including (or not) energy; (c) quality-adjusting (or not) factors of production; and (d) CES nesting structure. Thereafter, we discuss two revealing examples for which different upstream modeling choices lead to very different policies. In the first example, the (kl)e nesting structure implies significant investment in energy, while other nesting structures suggest otherwise. In the second example, unadjusted factors of production suggest balanced investment in labor and energy, while quality-adjusting suggests significant investment in labor over energy. Divergent outcomes provide cautionary tales for policymakers: greater understanding of upstream modeling choices and their downstream implications is needed

    A comparison of eight metamodeling techniques for the simulation of N2O fluxes and N leaching from corn crops

    Get PDF
    International audienceThe environmental costs of intensive farming activities are often under-estimated or not traded by the market, even though they play an important role in addressing future society's needs. The estimation of nitrogen (N) dynamics is thus an important issue which demands detailed simulation based methods and their integrated use to correctly represent complex and non-linear interactions into cropping systems. To calculate the N2O flux and N leaching from European arable lands, a modeling framework has been developed by linking the CAPRI agro-economic dataset with the DNDC-EUROPE bio-geo-chemical model. But, despite the great power of modern calculators, their use at continental scale is often too computationally costly. By comparing several statistical methods this paper aims to design a metamodel able to approximate the expensive code of the detailed modeling approach, devising the best compromise between estimation performance and simulation speed. We describe the use of two parametric (linear) models and six non-parametric approaches: two methods based on splines (ACOSSO and SDR), one method based on kriging (DACE), a neural networks method (multilayer perceptron, MLP), SVM and a bagging method (random forest, RF). This analysis shows that, as long as few data are available to train the model, splines approaches lead to best results, while when the size of training dataset increases, SVM and RF provide faster and more accurate solutions

    The geometry of fluvial channel bodies: Empirical characterization and implications for object-based models of the subsurface

    Get PDF
    The distribution of channel deposits in fluvial reservoirs is commonly modeled with object-based techniques, constrained on quantities describing the geometries of channel bodies. To ensure plausible simulations, it is common to define inputs to these models by referring to geologic analogs. Given their ability to reproduce complex geometries and to draw upon the analog experience, object-based models are considered inherently realistic. Yet this perceived realism has not hitherto been tested by assessing the outputs of these techniques against sedimentary architectures in the stratigraphic record. This work presents a synthesis of data on the geometry of channel bodies, derived from a sedimentologic database, with the following aims: (1) to provide tools for constraining stochastic models of fluvial reservoirs in data-poor situations, and (2) to test the intrinsic realism of object-based modeling algorithms by comparing characteristics of the modeled architectures against analogs. An empirical characterization of the geometry of fluvial channel bodies is undertaken that describes distributions in (and relationships among) channel-body thickness, cross-stream width, and planform wavelength and amplitude. Object-based models are then built running simulations conditioned on six alternative, analog-informed parameter sets, using four algorithms according to nine different approaches. Closeness of match between analogs and models is then determined on a statistical basis. Results indicate which modeling approaches return architectures that more closely resemble the organization of fluvial depositional systems known from nature and in what respect. None of the tested algorithms fully reproduce characteristics seen in natural systems, demonstrating the need for subsurface modeling methods to better incorporate geologic knowledge

    Features for the classification and clustering of music in symbolic format

    Get PDF
    Tese de mestrado, Engenharia Informática, Universidade de Lisboa, Faculdade de Ciências, 2008Este documento descreve o trabalho realizado no âmbito da disciplina de Projecto em Engenharia Informática do Mestrado em Engenharia Informática da Faculdade de Ciências da Universidade de Lisboa. Recuperação de Informação Musical é, hoje em dia, um ramo altamente activo de investigação e desenvolvimento na área de ciência da computação, e incide em diversos tópicos, incluindo a classificação musical por géneros. O trabalho apresentado centra-se na Classificação de Pistas e de Géneros de música armazenada usando o formato MIDI. Para resolver o problema da classificação de pistas MIDI, extraimos um conjunto de descritores que são usados para treinar um classificador implementado através de uma técnica de Máquinas de Aprendizagem, Redes Neuronais, com base nas notas, e durações destas, que descrevem cada faixa. As faixas são classificadas em seis categorias: Melody (Melodia), Harmony (Harmonia), Bass (Baixo) e Drums (Bateria). Para caracterizar o conteúdo musical de cada faixa, um vector de descritores numérico, normalmente conhecido como ”shallow structure description”, é extraído. Em seguida, eles são utilizados no classificador — Neural Network — que foi implementado no ambiente Matlab. Na Classificação por Géneros, duas propostas foram usadas: Modelação de Linguagem, na qual uma matriz de transição de probabilidades é criada para cada tipo de pista midi (Melodia, Harmonia, Baixo e Bateria) e também para cada género; e Redes Neuronais, em que um vector de descritores numéricos é extraído de cada pista, e é processado num Classificador baseado numa Rede Neuronal. Seis Colectâneas de Musica no formato Midi, de seis géneros diferentes, Blues, Country, Jazz, Metal, Punk e Rock, foram formadas para efectuar as experiências. Estes géneros foram escolhidos por partilharem os mesmos instrumentos, na sua maioria, como por exemplo, baixo, bateria, piano ou guitarra. Estes géneros também partilham algumas características entre si, para que a classificação não seja trivial, e para que a robustez dos classificadores seja testada. As experiências de Classificação de Pistas Midi, nas quais foram testados, numa primeira abordagem, todos os descritores, e numa segunda abordagem, os melhores descritores, mostrando que o uso de todos os descritores é uma abordagem errada, uma vez que existem descritores que confundem o classificador. Provou-se que a melhor maneira, neste contexto, de se classificar estas faixas MIDI é utilizar descritores cuidadosamente seleccionados. As experiências de Classificação por Géneros, mostraram que os Classificadores por Instrumentos (Single-Instrument) obtiveram os melhores resultados. Quatro géneros, Jazz, Country, Metal e Punk, obtiveram resultados de classificação com sucesso acima dos 80% O trabalho futuro inclui: algoritmos genéticos para a selecção de melhores descritores; estruturar pistas e musicas; fundir todos os classificadores desenvolvidos num único classificador.This document describes the work carried out under the discipline of Computing Engineering Project of the Computer Engineering Master, Sciences Faculty of the Lisbon University. Music Information Retrieval is, nowadays, a highly active branch of research and development in the computer science field, and focuses several topics, including music genre classification. The work presented in this paper focus on Track and Genre Classification of music stored using MIDI format, To address the problem of MIDI track classification, we extract a set of descriptors that are used to train a classifier implemented by a Neural Network, based on the pitch levels and durations that describe each track. Tracks are classified into four classes: Melody, Harmony, Bass and Drums. In order to characterize the musical content from each track, a vector of numeric descriptors, normally known as shallow structure description, is extracted. Then they are used as inputs for the classifier which was implemented in the Matlab environment. In the Genre Classification task, two approaches are used: Language Modeling, in which a transition probabilities matrix is created for each type of track (Melody, Harmony, Bass and Drums) and also for each genre; and an approach based on Neural Networks, where a vector of numeric descriptors is extracted from each track (Melody, Harmony, Bass and Drums) and fed to a Neural Network Classifier. Six MIDI Music Corpora were assembled for the experiments, from six different genres, Blues, Country, Jazz, Metal, Punk and Rock. These genres were selected because all of them have the same base instruments, such as bass, drums, piano or guitar. Also, the genres chosen share some characteristics between them, so that the classification isn’t trivial, and tests the classifiers robustness. Track Classification experiments using all descriptors and best descriptors were made, showing that using all descriptors is a wrong approach, as there are descriptors which confuse the classifier. Using carefully selected descriptors proved to be the best way to classify these MIDI tracks. Genre Classification experiments showed that the Single-Instrument Classifiers achieved the best results. Four genres achieved higher than 80% success rates: Jazz, Country, Metal and Punk. Future work includes: genetic algorithms; structurize tracks and songs; merge all presented classifiers into one full Automatic Genre Classification System

    A review of R-packages for random-intercept probit regression in small clusters

    Get PDF
    Generalized Linear Mixed Models (GLMMs) are widely used to model clustered categorical outcomes. To tackle the intractable integration over the random effects distributions, several approximation approaches have been developed for likelihood-based inference. As these seldom yield satisfactory results when analyzing binary outcomes from small clusters, estimation within the Structural Equation Modeling (SEM) framework is proposed as an alternative. We compare the performance of R-packages for random-intercept probit regression relying on: the Laplace approximation, adaptive Gaussian quadrature (AGQ), Penalized Quasi-Likelihood (PQL), an MCMC-implementation, and integrated nested Laplace approximation within the GLMM-framework, and a robust diagonally weighted least squares estimation within the SEM-framework. In terms of bias for the fixed and random effect estimators, SEM usually performs best for cluster size two, while AGQ prevails in terms of precision (mainly because of SEM's robust standard errors). As the cluster size increases, however, AGQ becomes the best choice for both bias and precision

    Modeling heterogeneity in ranked responses by nonparametric maximum likelihood:How do Europeans get their scientific knowledge?

    Get PDF
    This paper is motivated by a Eurobarometer survey on science knowledge. As part of the survey, respondents were asked to rank sources of science information in order of importance. The official statistical analysis of these data however failed to use the complete ranking information. We instead propose a method which treats ranked data as a set of paired comparisons which places the problem in the standard framework of generalized linear models and also allows respondent covariates to be incorporated. An extension is proposed to allow for heterogeneity in the ranked responses. The resulting model uses a nonparametric formulation of the random effects structure, fitted using the EM algorithm. Each mass point is multivalued, with a parameter for each item. The resultant model is equivalent to a covariate latent class model, where the latent class profiles are provided by the mass point components and the covariates act on the class profiles. This provides an alternative interpretation of the fitted model. The approach is also suitable for paired comparison data
    corecore