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recherche français ou étrangers, des laboratoires
publics ou privés.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50539808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00654753


A comparison of eight metamodeling techniques for the

simulation of N2O fluxes and N leaching from corn crops

Nathalie Villa-Vialaneixa,b,∗, Marco Folladorc, Marco Rattod, Adrian Leipc

aIUT de Perpignan (Dpt STID, Carcassonne), Univ. Perpignan Via Domitia, France
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Abstract

The environmental costs of intensive farming activities are often under-
estimated or not traded by the market, even though they play an important
role in addressing future society’s needs. The estimation of nitrogen (N) dy-
namics is thus an important issue which demands detailed simulation based
methods and their integrated use to correctly represent complex and non-
linear interactions into cropping systems. To calculate the N2O flux and N
leaching from European arable lands, a modeling framework has been devel-
oped by linking the CAPRI agro-economic dataset with the DNDC-EUROPE
bio-geo-chemical model. But, despite the great power of modern calculators,
their use at continental scale is often too computationally costly. By compar-
ing several statistical methods this paper aims to design a metamodel able to
approximate the expensive code of the detailed modeling approach, devising
the best compromise between estimation performance and simulation speed.
We describe the use of two parametric (linear) models and six nonparametric
approaches: two methods based on splines (ACOSSO and SDR), one method
based on kriging (DACE), a neural networks method (multilayer perceptron,
MLP), SVM and a bagging method (random forest, RF). This analysis shows
that, as long as few data are available to train the model, splines approaches
lead to best results, while when the size of training dataset increases, SVM
and RF provide faster and more accurate solutions.
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1. Introduction

The impact of modern agriculture on the environment is well documented
(Power, 2010; Tilman et al., 2002; Scherr and Sthapit, 2009; FAO, 2007, 2005;
Singh, 2000; Matson et al., 1997). Intensive farming has a high consumption
of nitrogen, which is often in-efficiently used, particularly in livestock pro-
duction systems (Leip et al., 2011b; Webb et al., 2005; Oenema et al., 2007;
Chadwick, 2005). This leads to a large surplus of nitrogen which is lost to the
environment. Up to 95% of ammonia emission in Europe have their origin in
agricultural activities (Kirchmann et al., 1998; Leip et al., 2011a) contribut-
ing to eutrophication, loss of biodiversity and health problems. Beside NH3,
nitrate leaching below the soil root zone and entering the groundwater poses
a particular problem for the quality of drinking water (van Grinsven et al.,
2006). Additionally, agricultural sector is the major source of anthropogenic
emissions of N2O from the soils, mainly as a consequence of the application
of mineral fertilizer or manure nitrogen (Del Grosso et al., 2006; Leip et al.,
2011c; European Environment Agency, 2010; Leip et al., 2005). N2O is a po-
tent greenhouse gas (GHG) contributing with each kilogram emitted about
300 times more to global warming than the same mass emitted as CO2, on
the basis of a 100-years time horizon (Intergovernmental Panel on Climate
Change, 2007).

Various European legislations attempt to reduce the environmental im-
pact of the agriculture sector, particularly the Nitrates Directive (Euro-
pean Council, 1991) and the Water Framework Directive (European Council,
2000). Initially, however, compliance to these directives was poor (Oenema
et al., 2009; European Commission, 2002). Therefore, with the last reform of
the Common Agricultural Policy (CAP) in the year 2003 (European Council,
2003), the European Union introduced a compulsory Cross-Compliance (CC)
mechanism to improve compliance with 18 environmental, food safety, ani-
mal welfare, and animal and plant health standards (Statutory Management
Requirements, SMRs) as well as with requirements to maintain farmlands
in good agricultural and environmental condition (Good Agricultural and
Environment Condition requirements, GAECs), as prerequisite for receiv-
ing direct payments (European Union Commission, 2004; European Council,
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2009; European Union Commission, 2009; Dimopoulus et al., 2007; Jongeneel
et al., 2007). The SMRs are based on pre-existing EU Directives and Reg-
ulations such as Nitrate Directives. The GAECs focus on soil erosion, soil
organic matter, soil structure and a minimum level of maintenance; for each
of these issues a number of standards are listed (Alliance Environnement,
2007).

It remains nevertheless a challenge to monitor compliance and to assess
the impact of the cross-compliance legislations not only on the environment,
but also on animal welfare, farmer’s income, production levels etc. In or-
der to help with this task, the EU-project Cross-Compliance Assessment
Tool (CCAT) developed a simulation platform to provide scientifically sound
and regionally differentiated responses to various farming scenarios (Elbersen
et al., 2010; Jongeneel et al., 2007).

CCAT integrates complementary models to assess changes in organic car-
bon and nitrogen fluxes from soils (De Vries et al., 2008). Carbon and ni-
trogen turnover are very complex processes, characterized by a high spatial
variability and a strong dependence on environmental factors such as mete-
orological conditions and soils (Shaffer and Ma, 2001; Zhang et al., 2002).
Quantification of fluxes, and specifically a meaningful quantification of the
response to mitigation measures at the regional level requires the simulation
of farm management and the soil/plant/atmosphere continuum at the high-
est possible resolution (Anderson et al., 2003; Leip et al., 2011c). For the
simulation of N2O fluxes and N-leaching, the process-based biogeochemistry
model DNDC-EUROPE (Leip et al., 2008; Li et al., 1992; Li, 2000) was used.
As DNDC-EUROPE is a complex model imposing high computational costs,
the time needed to obtain simulation results in large scale applications (such
as the European scale) can be restrictive. In particular, the direct use of the
deterministic model is prohibited to extract efficiently estimations of the evo-
lution of N2O fluxes and N-leaching under changing conditions. Hence, there
is a need for a second level of abstraction, modeling the DNDC-EUROPE
model itself, which is called a meta-model (see Section 2 for a more specific
definition of the concept of metamodeling). Metamodels are defined from a
limited number of deterministic simulations for specific applications and/or
scenario and allow to obtain fast estimations.

This issue is a topic of high interest that has previously been tackled in
several papers: among others, (Bouzaher et al., 1993) develop a parametric
model, including spatial dependency, to model water pollution. (Krysanova
and Haberlandt, 2002; Haberlandt et al., 2002) describe a two-steps approach
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to address the issue of N leaching and water pollution: they use a process-
based model followed by a location of the results with a fuzzy rule. More
recently, (Pineros Garcet et al., 2006) compare RBF neural networks with
kriging modeling to build a metamodel for a deterministic N leaching model
called WAVE (Vanclooster et al., 1996). The present article compares in
detail different modeling tools in order to select the most reliable one to
meta-model the DNDC-EUROPE tasks in the CCAT project Follador and
Leip (2009). This study differs from the work of Vanclooster et al. (1996)
because of the adopted European scale and of the analysis of 8 meta-modeling
approaches (also including a kriging and a neural network method). The
comparison has been based on the evaluation of meta-model performances,
in terms of accuracy and computational costs, with different sizes of the
training dataset.

The rest of the paper is organized as follows: Section 2 introduces the
general principles and advantages of using a meta-model; Section 3 reviews
in details the different types of metamodels compared in this study; Sec-
tion 4 explains the Design Of the Experiments (DOE) and show the results
of the comparison, highlighting how the availability of the training data can
play an important role in the selection of the best type and form of the
approximation. The supplementary material of this paper can be found at:
http://afoludata.jrc.ec.europa.eu/index.php/dataset/detail/232.

2. From model to metamodel

A model is a simplified representation (abstraction) of reality developed
for a specific goal; it may be deterministic or probabilistic. An integrated
use of simulation based models is necessary to approximate our perception
of complex and nonlinear interactions existing in human-natural systems by
means of mathematical input-output (I/O) relationships. Despite the con-
tinuous increase of computer performance, the development of large simula-
tion platforms remains often prohibited because of computational needs and
parametrization constraints. More precisely, every model in a simulation
platform such as DNDC-EUROPE, is characterized by several parameters,
whose near-optimum set is defined during the calibration. A constraint ap-
plies restrictions to the kind of data that the model can use or to specific
boundary conditions. The flux of I/O in the simulation platform can thus
be impeded by the type of data/boundaries that constraints allow - or not
allow - for the models at hand.
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The use of this kind of simulation platform is therefore not recommended
for all the applications which require many runs, such as sensitivity analysis
or what-if studies. To overcome this limit, the process of abstraction can
be applied to the model itself, obtaining a model of the model (2nd level of
abstraction from reality) called meta-model (Blanning, 1975; Kleijnen, 1975;
Sacks et al., 1989; van Gighc, 1991; Santner et al., 2003). A metamodel is
an approximation of detailed model I/O transformations, built through a
moderate number of computer experiments.

Replacing a detailed model with a metamodel generally brings some pay-
offs (Britz and Leip, 2009; Simpson et al., 2001):

• easier integration into other processes and simulation platforms;

• faster execution and reduced storage needs to estimate one specific
output;

• easier applicability across different spatial and/or temporal scales and
site-specific calibrations, as long as data corresponding to the new sys-
tem parametrization are available.

As a consequence, a higher number of simulation runs become possible: using
its interpolatory action makes a thorough sensitivity analysis more convenient
and leads to a better understanding of I/O relationships. Also it offers usually
a higher flexibility and can quickly be adapted to achieve a wide range of
goals (prediction, optimization, exploration, validation). However, despites
these advantages, they suffer from a few drawbacks: internal variables or
outputs not originally considered can not be inspected and the prediction
for input regimes outside the training/test set is impossible. Hence, a good
metamodeling methodology should be able to provide fast predictions. But,
considering that limitations, it also must have a low computational cost to be
able to build a new metamodel from a new data set including new variables
and/or a different range for these input variables.

Let (X,y) be the dataset consisting of N row vectors of input/output
pairs (xi, yi), where xi = (x1

i , . . . , x
d
i )

T ∈ R
d (i = 1, . . . , N) are the model

input and yi ∈ R (i = 1, . . . , N) are the model responses for N experimental
runs of the simulation platform. The mathematical representation of I/O
relationships described by the detailed model can be written as

yi = f(xi) i = 1, . . . , N (1)
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which corresponds to a first abstraction from the real system. From the
values of X and y, also called training set, f is approximated by a function
f̂ : Rd → R, called metamodel, whose responses can be written as

ŷi = f̂(xi).

and that correspond to a second abstraction from the reality. In this second
abstraction, some of the input variables of Eq. (1) might not be useful and
one of the issue of metamodeling can be to find the smallest subset of input
variables relevant to achieve a good approximation of model (1).

Finally, the differences between the real system and the metamodel re-
sponse, will be the sum of two approximations (Simpson et al., 2001): the
first one introduced by the detailed model (1st abstraction) and the second
one due to metamodeling (2nd abstraction). Of course, the validity and ac-
curacy of a metamodel are conditioned by the validity of the original model:
in the following, it is then supposed that the 1st level of abstraction induces
a small error compared to reality. Then, in this paper, we only focus on
the second error, |ŷi − yi|, to assess the performance of different metamodels
vs. the detailed DNDC-EUROPE model in order to select the best statisti-
cal approach to approximate the complex bio-geo-chemical model at a lower
computational cost. Defining a correct metamodeling strategy is very impor-
tant to provide an adequate fitting to the model, as suggested by (Kleijnen
and Sargent, 2000; Meckesheimer et al., 2002).

Recent work, such as (Forrester and Keane, 2009; Wang and Shan, 2007),
review the most widely used metamodeling methods: splines based methods
(e.g., MARS, kriging...) (Wahba, 1990; Friedman, 1991; Cressie, 1990), neu-
ral networks (Bishop, 1995), kernel methods (SVM, SVR...) (Vapnik, 1998;
Christmann and Steinwart, 2007), Gaussian Process such as GEM (Kennedy
and O’Hagan, 2001), among others. Some of these metamodeling strategies
were selected and others added to be compared in this paper. The compar-
ison is made on a specific case study related to N leaching and N2O fluxes
prediction which is described in Section 4. The next section briefly describes
each of the metamodels compared in this paper.

3. Review of the selected metamodels

Several methods were developed and compared to assess their perfor-
mance according to increasing dataset sizes. We provide a brief description
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of the approaches studied in this paper: two linear models (Section 3.1) and
six nonparametric methods (two based on splines, in Sections 3.2.1 and 3.2.2,
one based on a kriging approach, in Section 3.2.3, which is known to be ef-
ficient when analyzing computer experiments, a neural network method, in
Section 3.2.4, SVM, in Section 3.2.5 and random forest, in Section 3.2.6).

3.1. Linear methods

The easiest way to handle the estimation of the model given in Eq. (1)
is to suppose that f has a simple parametric form. For example, the linear
model supposes that f(x) = βTx + β0 where β ∈ R

d is a vector and β0

is a real number, both of them have to be estimated from the observations
((xi, yi))i. An estimate is given by minimizing the sum of the square errors

N
∑

i=1

(

yi − (βTxi + β0)
)2

which leads to β̂ =
(

XTX
)−1

XTy and β̂0 = y − β̂
T
X with y = 1

N

∑N
i=1 yi

and X = 1
N

∑N
i=1 xi.

In this paper two linear models were used:

• in the first one, the explanatory variables were the 11 inputs described
in Section 4.2. This model is referred as“LM1”;

• the second one has been developed starting from the work of (Britz
and Leip, 2009), that includes the 11 inputs of Section 4.2 but also
their non linear transformations (square, square root, logarithm) and
interaction components. A total of 120 coefficients were involved in
this approach which is denoted by “LM2”. Including transformations
and combinations of the 11 inputs has been designed in an attempt to
better model a possible nonlinear phenomenon of the original model.

In the second case, due to the large number of explanatory variables, the
model can be over-specified, especially if the training set is small. Actually,
if the dimensionality of the matrix of explanatory variables, X, has a large
dimension, XTX can be not invertible or ill-conditioned (leading to numerical
instability). Hence, a stepwise selection based on the AIC criterion (Akaike,
1974) has been used to select an optimal subset of explanatory variables
during the training step in order to obtain an accurate solution having a
small number of parameters. This has been performed by using the stepAIC
function of the R package MASS.
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3.2. Nonparametric methods

In many modeling problems, linear methods are not enough to catch the
complexity of the phenomenon which is, per se, nonlinear. In these situations,
nonparametric are often more suited to obtain accurate approximations of
the phenomenon under study. In this section, six nonparametric approaches
are described: they are compared in Section 4 to model N2O fluxes and N
leaching.

3.2.1. ACOSSO

Among nonparametric estimation approach, the smoothing splines
(Wahba, 1990; Gu, 2002) is one of the most famous and widely used. Re-
cently, (Storlie et al., 2011) presented the ACOSSO, an adaptive approach
based on the COSSO method (Lin and Zhang, 2006) which is in the same
line as smoothing splines: it is described as “a new regularization method for
simultaneous model fitting and variable selection in nonparametric regression
models in the framework of smoothing spline ANOVA”. This method penal-
izes the sum of component norms, instead of the squared norm employed in
the traditional smoothing spline method. More precisely, in splines meta-
modeling, it is useful to consider the ANOVA decomposition of f into terms
of increasing dimensionality:

f(x) = f(x1, x2, . . . , xd) = f0 +
∑

j

f (j) +
∑

k>j

f (jk) + . . .+ f (12...d) (2)

where xj is the j-th explanatory variable and where each term is a function
only of the factors in its index, i.e. f (j) = f(xj), f (jk) = f(xj, xk) and
so on. The terms f (j) represent the additive part of the model f , while
all higher order terms f (jk) . . . f (12...d) are denoted as “interactions”. The
simplest example of smoothing spline ANOVA model is the additive model
where only (f (j))j=0,...,d are used.

To estimate f , we make the usual assumption that f ∈ H, where H is
a RKHS (Reproducing Kernel Hilbert Space) (Berlinet and Thomas-Agnan,
2004). The space H can be written as an orthogonal decomposition H =
{1} ⊕ {

⊕q
j=1 Hj}, where each Hj is itself a RKHS, ⊕ is the direct sum

of Hilbert spaces and j = 1, . . . , q spans ANOVA terms of various orders.
Typically q includes the main effects plus relevant interaction terms. f is
then estimated by f̂ that minimizes a criterion being a trade-off between
accuracy to the data (empirical mean squared error) and a penalty which
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aims at minimizing each ANOVA term:

1

N

N
∑

i=1

(yi − f̂(xi))
2 + λ0

q
∑

j=1

1

θj
‖P j f̂‖2H (3)

where P j f̂ is the orthogonal projection of f̂ onto Hj and the q-dimensional
vector θj of smoothing parameters needs to be tuned somehow, in such a way
that each ANOVA component has the most appropriate degree of smooth-
ness.

This statistical estimation problem requires the tuning of the d hyper-
parameters θj (λ0/θj are also denoted as smoothing parameters). Various
ways of doing that are available in the literature, by applying generalized
cross-validation (GCV), generalized maximum likelihood procedures (GML)
and so on (Wahba, 1990; Gu, 2002). But, in Eq. (3), q is often large and
the tuning of all θj is a formidable problem, implying that in practice the
problem is simplified by setting θj to 1 for any j and only λ0 is tuned. This
simplification, however, strongly limits the flexibility of the smoothing spline
model, possibly leading to poor estimates of the ANOVA components.

Problem (3) also poses the issue of selection of Hj terms: this is tackled
rather effectively within the COSSO/ACOSSO framework. The COSSO (Lin
and Zhang, 2006) penalizes the sum of norms, using a LASSO type penalty
(Tibshirani, 1996) for the ANOVA model: LASSO penalties are L1 penalties
that lead to sparse parameters (i.e., parameters whose coordinates are all
equal to zero except for a few ones). Hence, using this kind of penalties
allows us to automatically select the most informative predictor terms Hj

with an estimate of f̂ that minimizes

1

N

N
∑

i=1

(yi − f̂(xi))
2 + λ

Q
∑

j=1

‖P j f̂‖H (4)

using a single smoothing parameter λ, and where Q includes all ANOVA
terms to be potentially included in f̂ , e.g. with a truncation at 2nd or 3rd

order interactions.
It can be shown that the COSSO estimate is also the minimizer of

1

N

N
∑

i=1

(yi − f̂(xi))
2 +

Q
∑

j=1

1

θj
‖P j f̂‖2H (5)
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subject to
∑Q

j=1 1/θj < M (where there is a 1-1 mapping between M and
λ). So we can think of the COSSO penalty as the traditional smoothing
spline penalty plus a penalty on the Q smoothing parameters used for each
component. This can also be framed into a linear-quadratic problem, i.e. a
quadratic objective (5) plus a linear constraint on 1/θj. The LASSO type
penalty has the effect of setting some of the functional components (Hj’s)
equal to zero (e.g. some variables xj and some interactions (xj, xk) are not
included in the expression of f̂). Thus it “automatically” selects the appro-
priate subset q of terms out of the Q “candidates”. The key property of
COSSO is that with one single smoothing parameter (λ or M) it provides
estimates of all θj parameters in one shot: therefore it improves considerably
the simplified problem (3) by setting θj = 1 (still with one single smoothing
parameter λ0) and is much more computationally efficient than the full prob-
lem (3) with optimized θj’s. An additional improvement from the COSSO
is that the single smoothing parameter λ can be tuned to minimize the BIC
(Bayesian Information Criterion) (Schwarz, 1978), thus allowing to target
the most appropriate degree of parsimony of the metamodel. This is done
by a simple grid-search algorithm as follows (see (Lin and Zhang, 2006) for
details):

1. for each trial λ value, the COSSO estimate provides the corresponding
values for θj and subsequently its BIC;

2. the grid-search algorithm will provide the λ̂ with the smallest BIC.

The adaptive COSSO (ACOSSO) of (Storlie et al., 2011) is an improve-
ment of the COSSO method: in ACOSSO, f̂ ∈ H minimizes

1

N

N
∑

i=1

(yi − f̂(xi))
2 + λ

q
∑

j=1

wj‖P
j f̂‖H (6)

where 0 < wj ≤ ∞ are weights that depend on an initial estimate, f̂ (0),
of f , either using (3) with θj = 1 or the COSSO estimate (4). The

adaptive weights are obtained as wj = ‖P j f̂ (0)‖−γ
L2
, typically with γ = 2

and the L2 norm ‖P j f̂ (0)‖L2
= (

∫

(P j f̂ (0)(x))2dx)1/2. The use of adap-
tive weights improves the predictive capability of ANOVA models with re-
spect to the COSSO case: in fact it allows for more flexibility in estimating
important functional components while giving a heavier penalty to unim-
portant functional components. The R scripts for ACOSSO can be found
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at http://www.stat.lanl.gov/staff/CurtStorlie/index.html. In the
present paper we used a MATLAB translation of such R script. The algo-
rithm for tuning the hyper-parameters is then modified as follows:

1. an initial estimate of the ANOVA model f̂ (0) is obtained either using
(3) with θj = 1 or the COSSO estimate (4);

2. given this trial ANOVA model f̂ (0), the weights are computed as wj =

‖P j f̂ (0)‖−γ
L2
;

3. given wj and for each trial λ value, the ACOSSO estimate (6) provides
the corresponding values for θj and subsequently its BIC;

4. the grid-search algorithm will provide the λ̂ with the smallest BIC.

3.2.2. SDR-ACOSSO

In a “parallel” stream of research with respect to COSSO-ACOSSO, us-
ing the state-dependent parameter regression (SDR) approach of (Young,
2001), (Ratto et al., 2007) have developed a non-parametric approach, very
similar to smoothing splines and kernel regression methods, based on recur-
sive filtering and smoothing estimation (the Kalman filter combined with
“fixed interval smoothing”). Such a recursive least-squares implementa-
tion has some key characteristics: (a) it is combined with optimal maxi-
mum likelihood estimation, thus allowing for an estimation of the smooth-
ing hyper-parameters based on the estimation of a quality criterion rather
than on cross-validation and (b) it provides greater flexibility in adapt-
ing to local discontinuities, heavy non-linearity and heteroscedastic error
terms. Recently, (Ratto and Pagano, 2010) proposed a unified approach
to smoothing spline ANOVA models that combines the best of SDR and
ACOSSO: the use of the recursive algorithms in particular can be very ef-
fective in identifying the important functional components and in providing
good estimates of the weights wj to be used in (6), adding valuable infor-
mation in the ACOSSO framework and allowing in many cases to improving
ACOSSO performance. The Matlab script for this method can be found at
http://eemc.jrc.ec.europa.eu/Software-SS_ANOVA_R.htm.

We summarize here the key features of Young’s recursive algorithms of
SDR, by considering the case of d = 1 and f(x1) = f (1)(x1) + e, with e ∼
N(0, σ2). To do so, we rewrite the smoothing problem as yi = s1i + ei,
where i = 1, . . . , N and s1i is the estimate of f (1)(x1

i ). To make the recursive
approach meaningful, the MC sample needs to be sorted in ascending order
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with respect to x1: i.e. i and i − 1 subscripts are adjacent elements under
such ordering, implying x1

1 < x1
2 < . . . < x1

i < . . . < x1
N .

To recursively estimate the s1i in SDR it is necessary to characterize it in
some stochastic manner, borrowing from non-stationary time series processes
(Young and Ng, 1989; Ng and Young, 1990). In the present context, the inte-
grated random walk (IRW) process provides the same smoothing properties
of a cubic spline, in the overall State-Space formulation:

Observation Equation: yi = s1i + ei
State Equations: s1i = s1i−1 + d1i−1

d1i = d1i−1 + η1i

(7)

where d1i is the “slope” of s1i , η
1
i ∼ N(0, σ2

η1) and η1i (“system disturbance”
in systems terminology) is assumed to be independent of the “observation
noise” ei ∼ N(0, σ2).

Given the ascending ordering of the MC sample, s1i can be estimated by
using the recursive Kalman Filter (KF) and the associated recursive Fixed
Interval Smoothing (FIS) algorithm (see e.g. (Kalman, 1960; Young, 1999)
for details). First, it is necessary to optimize the hyper-parameter associated
with the state space model (7), namely the Noise Variance Ratio (NVR),
where NVR1 = σ2

η1/σ
2. This is accomplished by maximum likelihood opti-

mization (ML) using prediction error decomposition (Schweppe, 1965). The
NVR plays the inverse role of a smoothing parameter: the smaller the NVR,
the smoother the estimate of s1i . Given the NVR, the FIS algorithm then
yields an estimate ŝ1i|N of s1i at each data sample and it can be seen that the

ŝ1i|N from the IRW process is the equivalent of f̂ (1)(x1
i ) in the cubic smooth-

ing spline model. At the same time, the recursive procedures provide, in a
natural way, standard errors of the estimated ŝ1i|N , that allow for the test-

ing of their relative significance. Finally, it can be easily verified (Ratto and
Pagano, 2010) that by setting λ/θ1 = 1/(NVR1 ·N

4), and with evenly spaced
x1
i values, the f̂ (1)(x1

i ) estimate in the cubic smoothing spline model equals
the ŝ1i|N estimate from the IRW process.

The most interesting aspect of the SDR approach is that it is not limited
to the univariate case, but can be effectively extended to the most relevant
multivariate one. In the general additive case, for example, the recursive
procedure needs to be applied, in turn, for each term f (j)(xj

i ) = ŝji|N , requiring

a different sorting strategy for each ŝji|N . Hence the “back-fitting” procedure

is applied, as described in (Young, 2000) and (Young, 2001). This procedure
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provides both ML estimates of all NVRj’s and the smoothed estimates of the
additive terms ŝji|N . So, the estimated NVRj’s can be converted into λ0/θj
values using λ0/θj = 1/(NVRj · N

4), allowing us to put the additive model
into the standard cubic spline form.

In the SDR context, (Ratto and Pagano, 2010) formalized an interaction
function as the product of two states s1 · s2, each of them characterized by
an IRW stochastic process. Hence the estimation of a single interaction term
f(xi) = f (12)(x1

i , x
2
i ) + ei is expressed as:

Observation Equation: y∗i = sI1,i · s
I
2,i + ei

State Equations: (j = 1, 2) sIj,i = sIj,i−1 + dIj,i−1

dIj,i = dIj,i−1 + ηIj,i

(8)

where y∗ is the model output after having taken out the main effects, I =
1, 2 is the multi-index denoting the interaction term under estimation and
ηIj,i ∼ N(0, σ2

ηIj
). The two terms sIj,i are estimated iteratively by running the

recursive procedure in turn.
The SDR recursive algorithms are usually very efficient in identifying

in the most appropriate way each ANOVA component individually, hence
(Ratto and Pagano, 2010) proposed to exploit this in the ACOSSO framework
as follows.

We define K〈j〉 to be the reproducing kernel (r.k.) of an additive term Fj

of the ANOVA decomposition of the space F . In the cubic spline case, this
is constructed as the sum of two terms K〈j〉 = K01〈j〉 ⊕ K1〈j〉 where K01〈j〉 is
the r.k. of the parametric (linear) part and K1〈j〉 is the r.k. of the purely
non-parametric part. The second order interaction terms are constructed as
the tensor product of the first order terms, for a total of four elements, i.e.

K〈i,j〉 = (K01〈i〉 ⊕K1〈i〉)⊗ (K01〈j〉 ⊕K1〈j〉) (9)

= (K01〈i〉 ⊗K01〈j〉)⊕ (K01〈i〉 ⊗K1〈j〉)⊕ (K1〈i〉 ⊗K01〈j〉)⊕ (K1〈i〉 ⊗K1〈j〉)

This suggested that a natural use of the SDR identification and estimation
in the ACOSSO framework is to apply specific weights to each element of
the r.k. K〈·,·〉 in (9). In particular the weights are the L2 norms of each of
the four elements estimated in (8):

ŝIi · ŝ
I
j = ŝI01〈i〉ŝ

I
01〈j〉 + ŝI01〈i〉ŝ

I
1〈j〉 + ŝI1〈i〉ŝ

I
01〈j〉 + ŝI1〈i〉ŝ

I
1〈j〉, (10)

As shown in (Ratto and Pagano, 2010), this choice can lead to a significant
improvement in the accuracy of ANOVA models with respect to the original
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ACOSSO approach. Overall, the algorithm for tuning the hyper-parameters
in the combined SDR-ACOSSO reads:

1. the recursive SDR algorithm is applied to get an initial estimate of each
ANOVA term in turn (back-fitting algorithm);

2. the weights are computed as the L2 norms of the parametric and non-
parametric parts of the cubic splines estimates;

3. given wj and for each trial λ value, the ACOSSO estimate (6) provides
the corresponding values for θj and subsequently its BIC;

4. the grid-search algorithm will provide the λ̂ with the smallest BIC.

3.2.3. Kriging metamodel: DACE

DACE (Lophaven et al., 2002) is a Matlab toolbox used to construct
kriging approximation models on the basis of data coming from computer
experiments. Once we have this approximate model, we can use it as a meta-
model (emulator, surrogate model). We briefly highlight the main features
of DACE. The kriging model can be expressed as a regression

f̂(x) = β1φ
1(x) + · · ·+ βqφ

q(x) + ζ(x) (11)

where φj, j = 1, . . . , q are deterministic regression terms (constant, linear,
quadratic, etc.), βj are the related regression coefficients and ζ is a zero
mean random process whose variance depends on the process variance ω2

and on the correlationR(v, w) between ζ(v) and ζ(w). In kriging, correlation
functions are typically used, defined as:

R(θ, v − w) =
∏

j=1:d

Rj(θj, wj − vj).

In particular, for the generalized exponential correlation function, used in
the present paper, one has

Rj(θj, wj − vj) = exp(−θj|wj − vj|
θd+1)

Then, we can define R as the correlation matrix at the training points
(i.e., the matrix with coordinates ri,j = R(θ,xi, xj)) and the vector r

x
=

[R(θ,x1,x), . . . ,R(θ,xN ,x)], x being an untried point. Similarly, we define
the vector φ

x
= [φ1(x) . . . φq(x)]T and the matrix Φ = [φ

x1
· · ·φ

xN
]T (i.e.,
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Φ stacks in matrix form all values of φ
x
at the training points). Then, con-

sidering the linear regression problem Φβ ≈ y coming from Eq. (11), with
parameter β = [β1, . . . , βq]

T ∈ R
q, the GLS solution is given by:

β∗ = (ΦTR−1Φ)−1ΦTR−1y

which gives the predictor at untried x

f̂(x) = φT
x
β∗ + rT

x
γ∗,

where γ∗ is the N -dimensional vector computed as γ∗ = R−1(y −Φβ∗).
The proper estimation of the kriging metamodel requires, of course, to

optimize the hyper-parameters θ in the correlation function: this is typi-
cally performed by maximum likelihood. It is easy to check that the kriging
predictor interpolates xj, if the latter is a training point.

It seems useful to underline that one major difference between DACE and
ANOVA smoothing is the absence of any “observation error” in (11). This is
a natural choice when analyzing computer experiments and it aims to exploit
the “zero-uncertainty” feature of this kind of data. This, in principle, makes
the estimation of kriging metamodels very efficient, as confirmed by the many
successful applications described in literature and justifies the great success
of this kind of metamodels among practitioners. It also seems interesting to
mention the so-called “nugget” effect, which is also used in the kriging liter-
ature (Montès, 1994; Kleijnen, 2009). This is nothing other than a “small”
error term in (11) and it often reduces some numerical problems encountered
in the estimation of the kriging metamodels to the form of (11). The addi-
tion of a nugget term leads to kriging metamodels that smooth, rather than
interpolate, making them more similar to other metamodels presented here.

3.2.4. Multilayer perceptron

“Neural network” is a general name for statistical methods dedicated to
data mining. They comprise of a combination of simple computational el-
ements (neurons or nodes) densely interconnected through synapses. The
number and organization of the neurons and synapses define the network
topology. One of the most popular neural network class is the “multilayer
perceptrons” (MLP) commonly used to solve a wide range of classification
and regression problems. In particular, MLP are known to be able to approx-
imate any (smooth enough) complex function (Hornik, 1991). Perceptrons
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were introduced at the end of the 50s by Rosenblatt but they started be-
coming very appealing more recently thanks to the soaring computational
capacities of computers. The works of (Ripley, 1994) and (Bishop, 1995)
provide a general description of these methods and their properties.

For the experiments presented in Section 4.3, one-hidden-layer percep-
trons were used. They can be expressed as a function of the form

f
w
: x ∈ R

p → g1

(

Q
∑

i=1

w
(2)
i g2

(

xTw
(1)
i + w

(0)
i

)

+ w
(2)
0

)

where:

• w :=
[

(w
(0)
i )i, ((w

(1)
i )T )i, w

(2)
0 , (w

(2)
i )i

]T

are parameters of the model,

called weights. They have to be learned in (R)Q × (Rp)Q × R × (R)Q

during the training;

• Q is a hyper-parameter indicating the number of neurons on the hidden
layer;

• g1 and g2 are the activation functions of the neural networks. Generally,
in regression cases (when the outputs to be predicted are real values
rather than classes), g1 is the identity function (hence the outputs are
a linear combination of the neurons on the hidden layer) and g2 is the
logistic activation function z → ez

1+ez
.

The weights are learned in order to minimize the mean square error on the
training set:

ŵ := argmin
n
∑

i=1

‖yi − f
w
(xi)‖

2. (12)

Unfortunately this error is not a quadratic function of w and thus no exact
algorithm is available to find the global minimum of this optimization prob-
lem (and the existence of such a global minimum is not even guaranteed).
Gradient descent based approximation algorithms are usually computed to
find an approximate solution, where the gradient of w → f

w
(xi) is calculated

by the back-propagation principle (Werbos, 1974).
Moreover, to avoid overfitting, a penalization strategy, called weight de-

cay (Krogh and Hertz, 1992), was introduced. It consists of replacing the
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minimization problem (12) by its penalized version:

ŵ := argmin
n
∑

i=1

‖yi − f
w
(xi)‖

2 + C‖w‖2

where C is the penalization parameter. The solution of this penalized mean
square error is designed to be smoother than that given by Eq. (12). The nnet
R function, provided in theR package nnet (Venables and Ripley, 2002), was
used to train and test the one-hidden-layer MLP. As described in Section 4.3,
a single validation approach was used to tune the hyper-parameters Q and
C which were selected on a grid search (Q ∈ {10, 15, 20, 25, 30} and C ∈
{0, 0.1, 1, 5, 10}).

3.2.5. SVM (Support Vector Machines)

SVM were introduced by (Boser et al., 1992) originally to address clas-
sification problems. Subsequently (Vapnik, 1995) presented an application
to regression problems to predict dependent real valued variables from given
inputs. In SVM, the estimate f̂ is chosen among the family of functions

f : x ∈ R
d → 〈w, φ(x)〉H + b

where φ is a function from R
d into a given Hilbert space (H, 〈., .〉H), here a

RKHS, w ∈ H and b ∈ R are parameters to be learned from the training
dataset. Despite several strategies were developed to learn the parameters w
and b (Steinwart and Christmann, 2008), we opted for the original approach
which consists of using the ǫ-insensitive loss function as a quality criterion
for the regression:

Lǫ(X,y, f̂) =
N
∑

i=1

max
(

|f̂(xi)− yi| − ǫ, 0
)

.

This loss function has the property to avoid considering the error when it
is small enough (smaller than ǫ). His main interest, compared to the usual
squared error, is its robustness (see (Steinwart and Christman, 2008) for
a discussion). The SVM regression is based on the minimization of this
loss function on the learning sample while penalizing the complexity of the
obtained f̂ . More precisely, the idea of SVM regression is to find w and b
solutions of:

argmin
w,b

Lǫ(X,y, f̂) +
1

C
‖w‖2H (13)
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where the term ‖w‖2H is the regularization term that controls the complexity

of f̂ and C is the regularization parameter: when C is small, f̂ is allowed to
make bigger errors in favor of a smaller complexity; if the value of C is high,
f̂ makes (almost) no error on the training data but it could have a large
complexity and thus not be able to give good estimations for new observa-
tions (e.g., those of the test set). A good choice must devise a compromise
between the accuracy required by the project and an acceptable metamodel
complexity.

(Vapnik, 1995) demonstrates that, using the Lagrangian and Karush-
Kuhn-Tucker conditions, w takes the form

w =
N
∑

i=1

(αi − α∗
i )φ(xi)

where αi and α∗
i solve the so-called dual optimization problem:

argmax
αi,α∗

i

(

−
1

2

N
∑

i,j=1

(αi − α∗
i )(αi − α∗

i )〈φ(xi), φ(xj)〉H (14)

−ǫ

N
∑

i=1

(αi + α∗
i ) +

N
∑

i=1

yi(αi − α∗
i )

)

subject to:
N
∑

i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C].

This is a classical quadratic optimization problem that can be explicitly
solved. (Keerthi et al., 2001) provide a detailed discussion on the way to
compute b once w is found; for the sake of clarity, in this paper we skip the
full description of this step.

In Eq. (14), φ is only used through the dot products (〈φ(xi), φ(xj)〉H)i,j.
Hence, φ is never explicitly given but only accessed through the dot product
by defining a kernel, K:

K(xi,xj) = 〈φ(xi), φ(xj)〉H. (15)

This is the so-called kernel trick. As long as K : Rd × R
d → R is symmet-

ric and positive, it is ensured that an underlying Hilbert space H and an
underlying φ : Rd → H exist satisfying the relation of Eq. (15). The very
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common Gaussian kernel, Kγ(u, v) = e−γ‖u−v‖2 for a γ > 0, was used in the
simulations.

Finally, three hyper-parameters have to be tuned to use SVM regression:

• ǫ of the loss function;

• C, the regularization parameter of the SVM;

• γ, the parameter of the Gaussian kernel.

As described in Section 4.3, a single validation approach was used to
tune the hyper-parameters C and γ which were selected on a grid search
(C ∈ {10, 100, 1000, 2000} and γ ∈ {0.001, 0.01, 0.1}). To reduce the compu-
tational costs and also to limit the number of hyperparameters to the same
value as in MLP case (and thus to prevent the global method from being too
flexible), we avoided tuning ǫ by setting it equal to 1, which corresponds ap-
proximately to the second decile of the target variable for each scenario and
output. This choice fitted the standard proposed by (Mattera and Haykin,
1998) which suggests having a number of Support Vectors smaller than 50%
of the training set. Simulations were done by using the function svm from
the R package e1071 based on the libsvm library (Chang and Lin, 2001).

3.2.6. Random Forest

Random forests (RF) were first introduced by (Breiman, 2001) on the
basis of his studies on bagging and of the works of (Amit and Geman, 1997;
Ho, 1998) on features selection. Basically, bagging consists of computing
a large number of elementary regression functions and of averaging them.
In random forest, elementary regression functions involved in the bagging
procedure are regression trees (Breiman et al., 1984). Building a regression
tree aims at finding a series of splits deduced from one of the d variables, xk

(for a k ∈ {1, . . . , d}), and a threshold, τ , that divides the training set into
two subsamples, called nodes : {i : xk

i < τ} and {i : xk
i ≥ τ}. The split of

a given node, N , is chosen, among all the possible splits, by minimizing the
sum of the homogeneity of the two corresponding child nodes, N 1

c and N 2
c ,

as follows:
∑

i∈N i
c

(

yi − ȳN
i
c

)2

where ȳN
i
c = 1

|N i
c |

∑

i∈N i
c
yi is the mean value of the output variable for the

observations belonging to N i
c (i.e., the intra-node variance).
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The growth of the tree stops when the child nodes are homogeneous
enough (for a previously fixed value of homogeneity) or when the number
of observations in the child nodes is smaller than a fixed number (generally
chosen between 1 and 5). The prediction obtained for new inputs, x, is then
simply the mean of the outputs, yi, of the training set that belong to the
same terminal node (a leaf). The pros of this method are its easy readability
and interpretability; the main drawback is its limited flexibility, especially
for regression problems. To overcome this limit, random forests combine a
large number (several hundreds or several thousands) of regression trees, T .
In the forest, each tree is built sticking to the following algorithm that is
made of random perturbations of the original procedure to make the tree
under-efficient (i.e., so that none of the tree in the forest is the optimal one
for the training dataset):

1. A given number of observations, m, are randomly chosen from the
training set: this subset is called in-bag sample whereas the other ob-
servations are called out-of-bag and are used to check the error of the
tree;

2. For each node of the tree, a given number of variables, q, are randomly
selected among all the possible explanatory variables. The best split
is then calculated on the basis of these q variables for the m chosen
observations.

All trees in the forest are fully learned: the final leafs all have homogeneity
equal to 0. Once having defined the T regression trees, T1, . . . , TT , the re-
gression forest prediction for new input variables, x, is equal to the mean of
the individual predictions obtained by each tree of the forest for x.

Several hyper-parameters can be tuned for random forests such as the
number of trees in the final forest or the number of variables randomly se-
lected to build a given split. But, as this method is less sensitive to parameter
tuning than the other ones (i.e., SVM and MLP), we opted for leaving the
default values implemented in the R package randomForest based on useful
heuristics: 500 trees were trained, each defined from a bootstrap sample built
with replacement and having the size of the original dataset. Each node was
defined from three randomly chosen variables and the trees were grown until
the number of observations in each node was smaller than five. Moreover,
the full learning process always led to a stabilized out-of-bag error.
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4. Simulations and results

4.1. Application to the Cross Compliance Assessment Tool

As described above in the Section 1, the impact assessment of Cross Com-
pliance (CC) measures on the EU27 farmlands, required the development of a
simulation platform called Cross Compliance Assessment Tool (CCAT). The
CCAT framework integrates different models, such as Miterra (Velthof et al.,
2009), DNDC-EUROPE (Follador et al., 2011), EPIC (van der Velde et al.,
2009) and CAPRI (Britz andWitzke, 2008; Britz, 2008), in order to guarantee
an exhaustive evaluation of the effects of agro-environmental standards for
different input, scenario assumptions, compliance rates and space-time reso-
lutions (Elbersen et al., 2010; De Vries et al., 2008). The simulated outputs
are indicators for nitrogen (N) and carbon (C) fluxes, biodiversity and land-
scape, market response and animal welfare. The selection of the CC scenarios
as well as the definition of the environmental indicators to be considered in
this project, are described by (Jongeneel et al., 2008). The CCAT tool eval-
uates the effect of agricultural measures on N2O fluxes and N leaching by
means of the meta-model of the mechanistic model DNDC-EUROPE (Fol-
lador et al., 2011). N2O is an important greenhouse gas (Intergovernmental
Panel on Climate Change, 2007). Agriculture and in particular agricultural
soils are contributing significantly to anthropogenic N2O emissions (Euro-
pean Environment Agency, 2010). N2O fluxes from soils are characterized
by a high spatial variability and the accuracy of estimates can be increased if
spatially explicit information is taken into consideration (Leip et al., 2011a).
Similarly, leaching of nitrogen from agricultural soils is an important source
of surface and groundwater pollution (European Environment Agency, 1995).

The main limits of using DNDC-EUROPE directly in the CCAT platform
are the high computational costs and memory requirements, due to the large
size of input datasets and the complexity and high number of equations to
solve. To mitigate this problem, making the integration easier, we decided
to develop a metamodel of DNDC-EUROPE (Follador and Leip, 2009). The
choice of the best meta-modeling approach has been based on the analysis
of performance of different algorithms, as described in details in Section 4.4.
The best metamodel is expected to have low computational costs and an
acceptable accuracy for all the dataset sizes.
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4.2. Input and Output data description

The set of training observations (around 19 000 observations) used to de-
fine a metamodel f̂ was created by linking the agro-economic CAPRI dataset
with the bio-geochemical DNDC-EUROPE model at Homogeneous Spatial
Mapping Unit (HSMU) resolution, as described in (Leip et al., 2008). We
opted for corn cultivation as case study, since it covers almost 4.6% of UAA
(utilized agricultural area) in EU27, playing an important role in human and
animal food supply (European Union Commission, 2010)1 and representing
one of the main cropping system in Europe. To obtain a representative
sample of situations for the cultivation of corn in EU27, we selected about
19,000 HSMUs on which at least 10% of the agricultural land was used for
corn (Follador et al., 2011).

The input observations used to train the metamodels were drawn from
the whole DNDC-EUROPE input database (Leip et al., 2008; Li et al., 1992;
Li, 2000), in order to meet the need of simplifying the I/O flux of information
between models in the CCAT platform. This screening was based on a pre-
liminary sensitivity analysis of input data through the importance function
of the R package randomForest, and subsequently it was refined by expert
evaluations (Follador et al., 2011; Follador and Leip, 2009). At last, 11 input
variables were used:

• Variable related to N input [kgN ha−1yr−1], such as mineral fertil-
izer (N FR) and manure (N MR) amendments, N from biological fixation
(Nfix) and N in crop residue (Nres);

• variables related to soil: soil bulk density, BD, [g cm−3], topsoil organic
carbon, SOC, [mass fraction], clay content, clay, [fraction] and topsoil
pH, pH;

• variables related to climate: annual precipitation Rain, [mm yr−1],
annual temperature Tmean [℃] and N in rain, Nr, [ppm].

They refer to the main driving forces taking part in the simulation of N2O and
N leaching with DNDC-EUROPE, such as farming practices, soil attributes
and climate information. In this contribution we only show the results for
the corn baseline scenario - that is the conventional corn cultivation in EU27,

1http://epp.eurostat.ec.europa.eu
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as described by (Follador et al., 2011). Note that a single metamodel was
developed for each CC scenario and for each simulated output in CCAT, as
described in (Follador and Leip, 2009). Figure 1 summarizes the relations
between the DNDC-EUROPE model and the metamodel.

As the number of input variables was not large, they were all used in all
the metamodeling methods described in Section 3, without additional vari-
able selection. The only exception is the second linear model (Section 3.1)
which uses a more complete list of input variables obtained by various com-
binations of the original 11 variables and thus includes a variable selection
process to avoid collinearity issues.

Two output variables were studied: the emissions of N2O ([kg N yr−1

ha−1] for each HSMU), a GHG whose reduction is a leading matter in cli-
mate change mitigation strategies, and the nitrogen leaching ([kg N yr−1

ha−1] for each HSMU), which has to be monitored to meet the drinking
water quality standards (Askegaard et al., 2005). A metamodel was devel-
oped for each single output variable. The flux of information through the
DNDC-EUROPE model and its relationship with the metamodel’s one are
summarized in Figure 1. The data were extracted using a high performance
computer cluster and the extraction process took more that one day for all
the 19 000 observations.

4.3. Training, validation and test approach

The training observations were randomly partitioned (without replace-
ment) into two groups: 80% of the observations (i.e., NL ≃ 15 000 HSMU)
were used for training (i.e., for defining a convenient f̂) and the 20% re-
maining observations (i.e., NT ≃ 4 000 HSMU) were used for validating the
metamodels (i.e., for calculated an error score). Additionally, in order to
understand the impact of the training dataset on the goodness of the esti-
mations (ŷi) and to compare the different metamodel performance according
to the data availability, we randomly selected from the entire training set a
series of subsets, having respectively NL = 8 000, 4 000, 2 000, 1 000, 500,
200 and 100 observations, each consecutive training subset being a subset of
the previous one.

The methodology used to assess the behavior of different metamodels
under various experimental conditions (size of the dataset and nature of the
output) are summarized in Description 1.

More precisely, for some metamodels, Step 2 requires the tuning of some
hyper-parameters (e.g., SVM have three hyper-parameters, see Section 3).
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● Farm management: crop and seeding info, 
# of crop rotations, tillage info, fertilizer and 
manure info, irrigation info, potential yield, 
land uses

●Soil: Bulk density, structure, organic carbon, pH 
●Meteo: Temp and rain

 N2O flux
 N leaching

●Fertilizers
●Manure
●Soil bulk density
●Soil organic carbon
●Clay fraction
●Rain 
●Temp 
●N in rain
●Topsoil pH
●N fixation
●N residue

 N2O flux*
 N leaching*

Selection of the
most important input variables

DNDC
Model

MetaModel

2° level of 
abstraction

Supervised training:
Model vs Metamodel

IM

OMM

OM

IMM

: Model

: Database

Figure 1: Flow of data through the DNDC-EUROPE model (M) and relationship with
the metamodel’s one (MM). The input variables of the metamodels were selected from the
original DNDC-EUROPE dataset (screening). The estimated (*) output were compared
with the detailed model’s output during the training and test phases to improve the
metamodel and to evaluate the goodness of the approximation.
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Description 1 Methodology used to compare the metamodels under various
experimental conditions

1: for Each metamodel, each output and each size NL do

2: {Train the metamodel with the NL training observations → definition
of f̂ ;

3: Estimate the outputs for the NT ≃ 4 000 inputs of the test set from
f̂ → calculation of ŷi ;

4: Calculate the test error by comparing the estimated outputs, ŷi,
vs. the outputs of the DNDC-EUROPE model for the same test ob-
servations, yi.}

5: end for

These hyper-parameters were tuned by:

• for ACOSSO and SDR: a grid-search to minimize BIC plus an algorithm
to get the weights wj: in these cases, an efficient formula, that does
not require to compute each leave-one-out estimate of f , can be used to
compute the BIC; moreover the COSSO penalty provides all θj given
λ and wj in a single shot. In the SDR identification steps, a maximum
likelihood strategy is applied to optimize NVR’s;

• for DACE, a maximum likelihood strategy;

• for MLP, SVM and RF, a simple validation strategy preferred to a
cross validation strategy to reduce the computational time especially
with the largest training datasets): half of the data were used to define
several metamodels depending on the values of hyper-parameters on a
grid search and the remaining data were used to select the best set of
hyper-parameters by minimizing a mean square error criterion.

Hence, depending on which features are the most interesting (easy tuning of
the hyperparameters, size of the training dataset, size of the dataset need-
ing new prediction...), the use of one method is more or less recommended.
Table 1 summarizes the main characteristics of the training and validation
steps of each method as well as the characteristics to do new predictions. For
instance, linear models are more
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Table 1: Summary of the main features for training, val-
idation (hyperparameters tuning) and test steps of each
method.

Method Training Validation New predictions

characteristics characteristics characteristics

LM1 Very fast to train.
There is no hyper

parameter to tune.
Very fast.

LM2

Fast to train but much

slower than LM1 be-

cause of the number of

parameters to learn.

There is no hyper-

parameter to tune.
Very fast.

ACOSSO

Fast to train only if

the number of obser-

vations is very low:

the dimension of the

kernel matrix is NL ×

NL and it is obtained as

the sum of the kernels of

each [NL×NL] ANOVA

term, which can be long

to calculate.

One hyper-

parameter (λ) is

tuned twice by

minimizing BIC: the

first time to get the

weights wj the sec-

ond to get the final

estimate (given λ

and wj the COSSO

penalty provides

automatically in a

single shot all θj).

The time needed to

obtain new predic-

tions can be high

depending on the

sizes of both the

training dataset and

the test dataset. It

requires to compute

a kernel matrix

having dimension

NL ×NT .

Continued on next page
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Table 1 – Continued from previous page
Method Training Validation Test

characteristics characteristics characteristics

SDR

Fast to train only if

the number of obser-

vations is very low:

the dimension of the

kernel matrix is NL ×

NL and it is obtained as

the sum of the kernels of

each [NL×NL] ANOVA

term, which can be long

to calculate.

As for ACOSSO,

the single hyper-

parameter (λ) is

tuned by minimiz-

ing BIC: the SDR

identification step

to provide wj also

optimizes hyper-

parameters for each

ANOVA component

but this can be done

efficiently by the

SDR recursive al-

gorithms (given λ

and wj the COSSO

penalty provides

automatically in a

single shot all θj).

The time needed to

obtain new predic-

tions can be high

depending on the

sizes of both the

training dataset and

the test dataset. It

requires to compute

a kernel matrix

having dimension

NL ×NT .

DACE

Fast to train only if

the number of obser-

vations is very low:

the dimension of the

kernel matrix is NL ×

NL, and the inversion of

a matrix NL ×NL is re-

quired in the GLS pro-

cedure.

d + 1 hyper-

parameters are

tuned by ML, which

becomes intractable

already for moderate

d: each step of

the optimization a

matrix NL ×NL has

to be inverted.

The time needed to

obtain new predic-

tions can be high

depending on the

sizes of both the

training dataset and

the test dataset. It

requires to compute

a kernel matrix

having dimension

NL ×NT .
Continued on next page
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Table 1 – Continued from previous page
Method Training Validation Test

characteristics characteristics characteristics

MLP

Hard to train: be-

cause the error to min-

imize is not quadratic,

the training step faces

local minima problems

and has thus to be

performed several times

with various initializa-

tion values. It is also

very sensitive to the di-

mensionality of the data

(that strongly increases

the number of weights

to train) and, to a lesser

extent, to the number of

observations.

2 hyperparameters

have to be tuned

but one is discrete

(number of neurons

on the hidden layer)

which is easier.

Nervelessness, cross

validation is not

suited: tuning is

performed by simple

validation and can

thus be less accu-

rate. It can be time

consuming.

The time needed to

obtain new predic-

tions is very low: it

depends on the num-

ber of predictions.

SVM

Fast to train if the

number of observa-

tions is low: SVM

are almost insensitive

to the dimensionality of

the data but the dimen-

sion of the kernel matrix

is NL × Nl and can be

long to calculate.

Three hyperparame-

ters have to be tuned

and in the case where

the size of the train-

ing dataset is large,

cross validation is

not suited. Tuning is

performed by simple

validation and can

thus be less accurate.

It is also time con-

suming.

The time needed to

obtain new predic-

tions can be high

depending on the

sizes of both the

training dataset and

the test dataset. It

requires to compute

a kernel matrix

having dimension

NL ×NT .

Continued on next page
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Table 1 – Continued from previous page
Method Training Validation Test

characteristics characteristics characteristics

RF

Fast to train: al-

most insensitive

to the size or the

dimensionality of

the training dataset

thanks to the random

selections of observa-

tions and variables.

Most of the time

needed to train is due

to the number of trees

required to stabilize

the algorithm, that can

sometimes be large.

Almost insensitive to

hyperparameters so

no extensive tun-

ing is required.

The time needed to

obtain new predic-

tions is low: it de-

pends on the number

of predictions to do

and also on the num-

ber of trees in the

forest.

In Step 4, the test quality criterion was evaluated by calculating several
quantities:

• the Mean Squared Error (MSE):

MSE =
1

NT

NT
∑

i=1

(ŷi − yi)
2

where yi and ŷi are, respectively, the model outputs in the test dataset
and the corresponding approximated outputs given by the metamodel.

• the R2 coefficient:

R2 = 1−

∑NT

i=1(ŷi − yi)
2

∑NT

i=1(ŷi − y)2
= 1−

MSE

Var(y)

where y and Var(y) are the mean and the variance of all yi in the test
dataset. R2 is equal to 1 if the predictions are perfect and thus gives
a way to quantify the accuracy of the predictions to the variability of
the variable to predict.
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• the standard deviation of the SE and themaximum value of the SE were
also computed to give an insight on the variability of the performance
and not only on its mean.

4.4. Results and discussion

This section includes several ways to compare the methods on the problem
described in 4.2. First, Section 4.4.1 compares the accuracy of the predictions
for various methods and various training dataset sizes. Then, Section 4.4.2
gives a comparison of the computational times needed either to train the
model (with the maximum dataset size) and to make new predictions. Fi-
nally, Section 4.4.3 describes the model itself and gives an insight about its
physical interpretation.

4.4.1. Accuracy

The performance on the test set is summarized in Tables 2 to 5: they
include characteristics about the mean values of the squared errors (MSE and
R2) in Tables 2 and 3, respectively for N2O and N leaching predictions, as
well as characteristics related to the variability of the performance (standard
deviations of the squared errors and maximum values of the squared errors)
in Tables 4 and 5, respectively for N2O and N leaching predictions. Note
that, in almost all cases, the minimum values of the squared errors were
equal or close to 0.

The evolution of R2 on the test set in function of the size of the training
set is displayed in Figures 2 (N2O prediction) and 3 (N leaching) for each
method.

From these results, several facts clearly appeared:

• Even for small datasets, the metamodeling approach behaves correctly
with R2 always greater than 80% for the best approaches. Note that the
poorest results (those that are the closest to 80%) are obtained for small
training dataset sizes (100 or 200). This means that, in the case where
several metamodels are needed to model various assumptions of the
input variables ranges, crude but acceptable estimates can be obtained
at a very low computational cost. For more efficient predictions, larger
datasets are more suited and achieve R2 values greater than 90%.

• Predicting N leaching seems an easier task than predicting N2O fluxes
with greater performance for almost any training dataset size. This is
not surprising because N2O is generated as an intermediate product in
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Size of the LM1 LM2 Dace SDR Acosso MLP SVM RF
dataset

100 67.22% X 74.03% 78.50% 80.40% 58.68% 50.26% 49.90%
11.50 X 9.11 7.54 6.88 14.50 17.45 17.57

200 66.91% -13 093% 77.74% 81.50% 78.88% 65.86% 63.05% 51.87%
11.61 4 626 7.81 6.49 7.41 11.98 12.96 16.89

500 75.20% -163% 83.07% 76.04% 78.39% 73.81% 83.86% 69.91%
8.70 92.35 5.94 8.41 7.58 9.19 5.66 10.56

1 000 76.85% 65.94% 85.58% 82.16% 77.60% 78.81% 84.62% 76.47%
8.47 11.95 5.06 6.26 7.86 7.69 5.40 8.25

2 000 76.89% 76.40% 81.34% 84.16% 78.26% 84.94% 85.73% 77.86%
8.11 8.28 6.55 5.27 7.63 5.28 5.01 7.77

4 000 77.24% 55.67% X X X 88.91% 87.33% 86.01%
7.99 15.55 X X X 3.89 4.45 4.90

8 000 77.05% 84.62% X X X 88.85% 88.98% 89.89%
8.05 5.40 X X X 3.91 3.86 3.55

≃ 15 000 77.10% 87.60% X X X 90.66% 91.05% 92.29%
8.03 3.28 X X X 3.28 3.14 2.71

Table 2: R2 (first line) and MSE (second line) on the test set for each method and various
sizes of the training dataset for N2O prediction. For each size, the best R2 is in bold. X

corresponds to cases impossible to train, either because the model is over-specified (more
parameters to estimate than the number of observations: LM2) or because the training
size is too large for the method to be used (Dace/SDR/Acosso)
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Size of the LM1 LM2 Dace SDR Acosso MLP SVM RF
dataset

100 67.57% X 79.46% 81.72% 79.69% 76.56% 73.54% 71.94%
1 742 X 1 103 982 1 091 1 259 1 421 1 507

200 67.77% -2 086% 83.49% 85.36% 86.08% 82.61% 84.06% 74.85%
1 731 > 106 887 786 747 934 856 1 351

500 69.05% 36.92% 87.17% 86.20% 86.17% 83.69% 86.26% 78.51%
1 662 3 388 689 741 743 876 738 1 154

1 000 69.19% 27.24% 89.08% 88.43% 89.00% 85.13% 85.59% 83.44%
1 655 3 908 587 621 591 799 774 889

2 000 70.13% 60.62% 93.90% 91.39% 91.33% 84.94% 89.77% 85.07%
1 604 2 115 328 462 466 655 549 802

4 000 70.21% 89.92% X X X 93.26% 87.33% 89.01%
1 600 541 X X X 521 362 590

8 000 70.28% 90.78% X X X 92.43% 95.49% 92.21%
1 596 495 X X X 406 242 418

≃ 15 000 70.28% 91.52% X X X 89.65% 96.65% 93.46%
1 596 455 X X X 556 180 351

Table 3: R2 (first line) and MSE (second line) on the test set for each method and various
sizes of the training dataset for N leaching prediction. For each size, the best R2 is in bold.
X corresponds to cases impossible to train, either because the model is over-specified (more
parameters to estimate than the number of observations: LM2) or because the training
size is too large for the method to be used (Dace/SDR/Acosso)

32



Size of the LM1 LM2 Dace SDR Acosso MLP SVM RF
dataset

100 80.4 X 72.7 52.4 50.2 125.5 159.6 150.0
2 400 X 2 319 1 845 1 597 2 911 3 816 3 538

200 84.5 > 105 68.1 52.3 64.6 100.3 113.7 145.4
2 461 > 106 2 207 1 915 2 098 2 534 2 636 3 352

500 59.3 1 472.9 49.6 74.0 60.2 84.9 42.5 99.1
2 027 48 769 1 928 2 589 2 303 2 172 1 753 2718

1 000 56.9 203.5 48.6 51.0 63.4 53.9 48.5 77.7
1 980 8 384 1 643 1 633 2 065 1 888 1 874 2 348

2 000 50.3 81.5 66.7 37.8 62.9 38.4 41.6 70.4
1 826 2 890 2 456 1 212 3 000 1 039 1 663 2 421

4 000 46.1 539.2 X X X 33.0 37.6 52.8
1 711 32 290 X X X 1 110 1 519 2 040

8 000 42.2 60.9 X X X 31.0 43.2 38.3
1 564 2 846 X X X 1 072 1 773 1 645

≃ 15 000 42.2 29.0 X X X 29.0 35.7 25.6

1 568 1 339 X X X 1 339 1 833 807

Table 4: Standard deviation (first line) and maximum (second line) of the squared errors
on the test set for each method and various sizes of the training dataset for N2O prediction.
For each size, the minimal standard deviation and the minimal value of the maxima are
in bold. X corresponds to cases impossible to train, either because the model is over-
specified (more parameters to estimate than the number of observations: LM2) or because
the training size is too large for the method to be used (Dace/SDR/Acosso)
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Size of the LM1 LM2 Dace SDR Acosso MLP SVM RF
dataset

100 6.11 X 5.83 6.45 8.14 6.72 9.79 7.99
173.1 X 180.5 177.0 241.1 238.5 367.7 275.7

200 6.26 > 104 5.24 7.15 8.61 6.28 5.36 7.95
184.7 > 105 152.4 290.6 279.5 213.8 146.8 284.6

500 6.99 45.7 7.34 7.38 8.62 6.89 6.77 7.83
204.1 1 427.7 238.2 280.0 280.9 213.8 302.8 290.7

1 000 7.37 82.3 7.64 7.10 8.90 7.72 10.24 7.47
220.9 4 090.4 270.6 239.8 255.3 289.0 358.1 291.1

2 000 5.91 71.9 2.66 3.15 9.13 5.74 6.63 5.53
177.4 4 309.1 96.6 113.3 128.7 225.9 320.6 212.7

4 000 5.71 4.94 X X X 3.50 3.61 4.51
167.0 213.5 X X X 134.5 123.1 218.2

8 000 5.59 4.31 X X X 2.80 2.38 2.60
162.0 161.8 X X X 77.8 77.4 70.4

≃ 15 000 5.53 2.54 X X X 4.74 1.35 3.00
157.2 72.1 X X X 147.0 36.1 128.7

Table 5: Standard deviation (first line ×103) and maximum (second line ×103) of the
squared errors on the test set for each method and various sizes of the training dataset
for N leaching prediction. For each size, the minimal standard deviation and the minimal
value of the maxima are in bold. X corresponds to cases impossible to train, either
because the model is over-specified (more parameters to estimate than the number of
observations: LM2) or because the training size is too large for the method to be used
(Dace/SDR/Acosso)
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Figure 2: R2 evolution in function of the size of the train set (log scale) for N2O prediction
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the denitrification chain, being produced by the reduction of nitrate,
but being consumed by N2O denitrifiers. As a consequence, N2O fluxes
are the result of a fragile equilibrium between those processes which are
both highly sensitive on environmental conditions such as pH, oxygen
availability, substrate availability (Firestone et al., 1979). Thus, N2O
fluxes are characterized by a very high spatial variability and is much
harder to predict than nitrogen leaching (Britz and Leip, 2009; Leip
et al., 2011a).

• The best results are obtained for the largest training dataset. Mostly,
for all methods, the performance increases with the size of the learn-
ing dataset despite some exceptions: sometimes, using a larger dataset
makes the training process harder and can slightly deteriorate the per-
formance (e.g., for MLP, large datasets leads to harder local minima
problems in the optimization procedure: for this method, the best pre-
diction of N leaching estimates is not obtained from the largest training
set).

• In a similar way, the variability of the errors tends to decrease with
the size of the training dataset but some methods behave differently
(see, e.g., Acosso whose variability strictly increases with the size of
the training dataset for N leaching prediction).

• In most cases, the most accurate predictions (according to MSE or
R2 values) are also the predictions that have the smallest variability
either from the standard deviation point of view or from the smallest
maximum point of view.

Looking deeper into the methods themselves, the following conclusions
can also be derived:

• LM1 gives poor performance because the plain linear model is probably
too simple to catch the complexity of the modeled phenomenon.

• LM2 performs very badly for small training datasets since it is over-
specified (the number of parameters to be estimated is close to the
size of the dataset; R2 are negative which means that the model is
less accurate than the trivial model predicting any observation by the
mean value of the outputs). But for large training datasets, it behaved
correctly. Additionally, the number of variables selected during the step
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Training dataset size Number of selected variables Number of selected variables
(N2O prediction) (N leaching prediction)

200 79 95
500 74 84
1 000 75 89
2 000 79 94
4 000 94 95
8 000 98 97

≃ 15 000 96 100

Table 6: Number of variables selected by AIC stepwise procedure in LM2 for N2O predic-
tion and N leaching prediction in function of the training dataset size

AIC, in function of the training dataset size, is given in Table 6. The
number of selected variables for N leaching prediction is higher than
the number of selected variables for N2O prediction but it also tends
to be more stable regarding the dataset size. Also note that, in any
case, the number of selected variables is high compared to the original
number of variables (120): this means that the underlying model under
study is certainly not plain linear and this explains why LM1 fails to
approximate it accurately.

• Splines and kriging based methods have the best performance for small
and medium training datasets (especially for N leaching prediction) but
they can not be run for large training datasets (up to 2 000 observa-
tions) due to the calculation costs. The Dace and SDR models have
the best performance. Additionally, the number of selected variables
for ACOSSO and SDR are given in Table 7. The number of compo-
nents effectively included in the model tend decrease with the training
set size, especially for N2O prediction. Comparing this table with Ta-
ble 6, the number of components is also quite small, even smaller than
the number of original variables for some cases.

• Machine learning methods (MLP, SVM and RF) behave correctly for
medium training datasets and obtain the best performance for large
training datasets. SVM and RF have the best results with a very good
overall accuracy, as, for these methods, R2 are greater than 90% and
95%, respectively for N2O and N leaching predictions.
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Training dataset size Number of selected variables Number of selected variables
(N2O prediction) (N leaching prediction)

ACOSSO SDR ACOSSO SDR
100 30 23 24 39
200 13 17 31 26
500 17 32 18 19
1 000 7 9 28 31
2 000 9 10 29 30

Table 7: Number of ANOVA components selected by the COSSO penalty in ACOSSO and
SDR for N2O prediction and N leaching prediction as a function of the training dataset
size.

Moreover, Wilcoxon paired tests on the residuals (absolute value) were
computed to understand if the differences in accuracy between the best meth-
ods were significant: for N2O prediction, the difference between the best per-
formance (RF) and the second one (SVM) is significant (p-value equal to
0.16%) whereas, for N leaching prediction, the difference between the best
performance (SVM) and the second one (RF) is not significant. This test con-
firms the differences between the best performance of metamodels obtained
with different dataset sizes: for example, the difference between SVM trained
with about 15 000 observations and Dace trained with 2 000 observations is
significant (p-value smaller than 2.2 · 10−16).

Finally, we took into account the time needed to train the metamodel
and subsequently to use it for prediction. The time for training is not so
important as it is spent only once during the calibration step. The time for
prediction is a key point for CCAT project and so it played a leading role in
choosing the best metamodel; it must be quite limited to allow fast multi-
scenario simulations or sensitivity analysis. Table 8 provides the approximate
time spent to train and use each method with large datasets (respectively,
about 15 000 observations for the training step and about 19 000 observations
for the prediction one) on a desktop computer.

4.4.2. Computational time

The training time for LM1 was the best one but the corresponding per-
formance is very poor. RF had a low training time since it does not require
any parameter tuning and it is not very sensitive to the size of dataset thanks
to the bootstrapping procedure. The prediction time is really low for all the
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Use LM1 LM2 Dace SDR Acosso MLP SVM RF

Train <1 s. 50 min 80 min 4 hours 65 min 2.5 hours 5 hours 15 min
Prediction <1 s. <1 s. 90 s. 14 min 4 min. 1 s. 20 s. 5 s.

Table 8: Approximative time for training from about 15 000 observations (first line) and
for predicting about 19 000 observations (second line) on a desktop computer (Processor
2GHz, 1.5GO RAM). In the case of SDR, ACOSSO and DACE we report the time for
training using samples with 2 000 model runs because the method can not be used for
largest training datasets.

methods compared to the DNDC-EUROPE runs which had demanded about
1 day to simulate the same outputs on a high performance computer cluster.
Even though RF was not the fastest approach it provides the best compro-
mise between speed and accuracy. SVM spent more time in prediction since
it required the calculation of the kernel matrix whose size is proportional
(and thus much more sensitive) to the number of new predictions to make.
The same issues applies to splines approach, where the kernel matrix has to
be re-computed for every ANOVA term in the decomposition, as well as for
kriging, thus explaining the larger computational cost. The highest cost for
SDR predictions are linked to the more detailed decomposition, which im-
plies a larger number of reproducing kernels. To compute the large amount
of 19 000 model outputs, the time required for predictions does not exceed a
few minutes in any cases.

4.4.3. Metamodeling interpretation

To give an indication of which variables are important in the prediction
of both inputs, an “importance” measure was calculated for each variable of
the best final model (i.e., random forest trained with the full training dataset
for N2O prediction and SVM trained with the full dataset for N leaching
prediction). For random forests, the importance is quite common: for a
given input variable, the values of out-of-sample observations are randomly
permuted; the mean squared error is then calculated based on all out-of-
sample sets for all trees in the forest. The increase in the mean squared
error compared to the out-of-sample mean squared error calculated with the
true values of the predictor is called the importance of the predictor (see
(Genuer et al., 2010) for a complete study of this quantity in the framework
of variable selection problems). Unfortunately, MLPs and SVMs are not
based on bootstrapping so out-of-sample observations do not exist for these
methods. Hence, importance cannot be defined or directly compared to
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the one given for random forests. Nervelessness, a close definition can be
introduced by using the validation set selected for the tuning process and by
comparing the mean squared error of permuted inputs to the true squared
error on this validation set.

Figure 4 illustrates the values of the importance measure in both cases. It
can be seen that the two metamodels are very different: that (RF) which aims
at estimating N2O fluxes (left) is mainly based on two important variables
(SOC and pH) whereas SVM, used to estimate N leaching, has a less strict
behavior: at least four variables are important in that last modeling, N MR,
N FR, pH and Nres.

●

●

●
●

●
●

●
●

●
●

●

2 4 6 8 10

5
10

15
20

25
30

Rank

Im
po

rt
an

ce
 (

m
ea

n 
de

cr
ea

se
 M

S
E

)

pH

Nr N_MR Nfix
N_FR

clay NresTmean BD rain

SOC ●

●

● ●

●

●
●

●

● ●

●

2 4 6 8 10

0
50

0
10

00
15

00

Rank

Im
po

rt
an

ce
 (

de
cr

ea
se

 M
S

E
) N_FR

Nres pH

Nr
clay

rain

SOC
Tmean Nfix

BD

N_MR

Figure 4: Importance measure for each variable in the case of (left) N2O prediction with
the full training dataset and random forest and of (right) N leaching prediction with the full
training dataset and SVM (For the meaning of the acronyms, please refer to Section 4.2)

N2O fluxes are mainly related to denitrification processes, which require
anaerobic conditions and organic material as substrate (Firestone et al.,
1979). Anaerobic conditions form if diffusion of oxygen is blocked in wet
soils, or in denitrification “hotspots” around organic matter promoting very
high oxygen consumption rates (Parkin, 1987). It is therefore not surprising
that the soil organic carbon content (SOC) was found to be the most impor-
tant for the prediction of N2O fluxes. Soil pH is also an important parameter,
influencing both the reduction of nitrate (total denitrification) but also the
reduction of N2O to N2 (Granli and Bøckman, 1994). For nitrogen leaching,
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on the other hand, we found that the most important factor was the most
important factor was nitrogen input as manure amendment, mineral fertilizer
spreading, and N from crop residue incorporation in the soil before sowing
(these are indeed even more important than pH). To a large degree, nitrogen
leaching is determined by soil texture which controls the percolation rate of
water through the soil profile and precipitation. As a consequence, it is not
surprising to find the top-factors determining nitrogen leaching in a relatively
narrow range, as compared to N2O fluxes.

4.5. Conclusion about the comparison of metamodeling strategies

The experiments described in the following subsections enlighten several
facts: first, metamodeling strategies were able to approximate accurately
N2O and N leaching predictions at a low computational cost. Even with
small dataset sizes (100 HSMUs to train the data), the overall accuracy rate,
measured by R2, is greater than 80% for at least one metamodel. In this case
study, N2O was harder to predict than N leaching. Then, increasing the size
of the training dataset is time consuming but also leads to a better accuracy
in the prediction for (almost) all the methods. Hence, the selection of a
metamodeling approach has to be based on a careful compromise between
computational costs and accuracy. This choice strictly depends on the size
of available training data and on the project’s target. We pointed out that
splines and kriging based methods should be chosen when the number of
training data is smaller than 2 000 since they provided the most accurate
solution with a reasonable running time. With large datasets, random forests
were able to handle the training step and to calculate accurate predictions
with low computational costs (more than 15 000 observations were trained in
about 15 minutes and only several seconds were needed in predicting 19 000
new values).

Finally, we pointed out, in Section 4.4.3, that combining metamodeling
with an importance measure can also be used to provide a simplified insight
on the important processes and on the main input variables involved in the
prediction of N2O fluxes and N leaching. This can help to find strategies to
control nitrogen surplus or to perform a fast sensitivity analysis. This last
issue is currently under investigation.
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5. Conclusion

This article provides a full comparison of several metamodel approaches
for the prediction of N2O fluxes and N leaching from European farmlands.
The conclusions of the meta-model comparison are general enough to be
extended to other similar case studies. A more valuable and detailed impact
assessment of CC standards at European or country level is possible only
by simulating all the 207000 HSMUs that cover the EU27. This approach
demands the collection of enormous amounts of data and their storage into
large datasets. From our work, random forest proved to be a reliable and
effective tool for elaborating large datasets with low computational costs and
an acceptable accuracy. For these reasons it has been chosen to be integrated
into the CCAT platform to estimate the N2O fluxes and N leaching from the
EU27 farmlands.
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