8 research outputs found

    3D-footprint: a database for the structural analysis of protein–DNA complexes

    Get PDF
    3D-footprint is a living database, updated and curated on a weekly basis, which provides estimates of binding specificity for all protein–DNA complexes available at the Protein Data Bank. The web interface allows the user to: (i) browse DNA-binding proteins by keyword; (ii) find proteins that recognize a similar DNA motif and (iii) BLAST similar DNA-binding proteins, highlighting interface residues in the resulting alignments. Each complex in the database is dissected to draw interface graphs and footprint logos, and two complementary algorithms are employed to characterize binding specificity. Moreover, oligonucleotide sequences extracted from literature abstracts are reported in order to show the range of variant sites bound by each protein and other related proteins. Benchmark experiments, including comparisons with expert-curated databases RegulonDB and TRANSFAC, support the quality of structure-based estimates of specificity. The relevant content of the database is available for download as flat files and it is also possible to use the 3D-footprint pipeline to analyze protein coordinates input by the user. 3D-footprint is available at http://floresta.eead.csic.es/3dfootprint with demo buttons and a comprehensive tutorial that illustrates the main uses of this resource

    FootprintDB: Analysis of plant cis-regulatory elements, transcription factors, and binding interfaces

    Get PDF
    28 Pags.- 8 Figs. The definitive version is available at: http://link.springer.com/bookseries/7651 and http://link.springer.com/book/10.1007/978-1-4939-6396-6.FootprintDB is a database and search engine that compiles regulatory sequences from open access libraries of curated DNA cis-elements and motifs, and their associated transcription factors (TFs). It systematically annotates the binding interfaces of the TFs by exploiting protein-DNA complexes deposited in the Protein Data Bank. Each entry in footprintDB is thus a DNA motif linked to the protein sequence of the TF(s) known to recognize it, and in most cases, the set of predicted interface residues involved in specific recognition. This chapter explains step-by-step how to search for DNA motifs and protein sequences in footprintDB and how to focus the search to a particular organism. Two real-world examples are shown where this software was used to analyze transcriptional regulation in plants. Results are described with the aim of guiding users on their interpretation, and special attention is given to the choices users might face when performing similar analyzes.This work was funded by grant Euroinvestigación EUI2008-03612 under the framework of the Transnational (Germany, France, Spain) Cooperation within the PLANT-KBBE Initiative.Peer reviewe

    Prediction of mono- and di-nucleotide-specific DNA-binding sites in proteins using neural networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA recognition by proteins is one of the most important processes in living systems. Therefore, understanding the recognition process in general, and identifying mutual recognition sites in proteins and DNA in particular, carries great significance. The sequence and structural dependence of DNA-binding sites in proteins has led to the development of successful machine learning methods for their prediction. However, all existing machine learning methods predict DNA-binding sites, irrespective of their target sequence and hence, none of them is helpful in identifying specific protein-DNA contacts. In this work, we formulate the problem of predicting specific DNA-binding sites in terms of contacts between the residue environments of proteins and the identity of a mononucleotide or a dinucleotide step in DNA. The aim of this work is to take a protein sequence or structural features as inputs and predict for each amino acid residue if it binds to DNA at locations identified by one of the four possible mononucleotides or one of the 10 unique dinucleotide steps. Contact predictions are made at various levels of resolution viz. in terms of side chain, backbone and major or minor groove atoms of DNA.</p> <p>Results</p> <p>Significant differences in residue preferences for specific contacts are observed, which combined with other features, lead to promising levels of prediction. In general, PSSM-based predictions, supported by secondary structure and solvent accessibility, achieve a good predictability of ~70–80%, measured by the area under the curve (AUC) of ROC graphs. The major and minor groove contact predictions stood out in terms of their poor predictability from sequences or PSSM, which was very strongly (>20 percentage points) compensated by the addition of secondary structure and solvent accessibility information, revealing a predominant role of local protein structure in the major/minor groove DNA-recognition. Following a detailed analysis of results, a web server to predict mononucleotide and dinucleotide-step contacts using PSSM was developed and made available at <url>http://sdcpred.netasa.org/</url> or <url>http://tardis.nibio.go.jp/netasa/sdcpred/</url>.</p> <p>Conclusion</p> <p>Most residue-nucleotide contacts can be predicted with high accuracy using only sequence and evolutionary information. Major and minor groove contacts, however, depend profoundly on the local structure. Overall, this study takes us a step closer to the ultimate goal of predicting mutual recognition sites in protein and DNA sequences.</p

    Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers

    Get PDF
    Sequence-specific DNA recognition by gene regulatory proteins is critical for proper cellular functioning. The ability to predict the DNA binding preferences of these regulatory proteins from their amino acid sequence would greatly aid in reconstruction of their regulatory interactions. Structural modeling provides one route to such predictions: by building accurate molecular models of regulatory proteins in complex with candidate binding sites, and estimating their relative binding affinities for these sites using a suitable potential function, it should be possible to construct DNA binding profiles. Here, we present a novel molecular modeling protocol for protein-DNA interfaces that borrows conformational sampling techniques from de novo protein structure prediction to generate a diverse ensemble of structural models from small fragments of related and unrelated protein-DNA complexes. The extensive conformational sampling is coupled with sequence space exploration so that binding preferences for the target protein can be inferred from the resulting optimized DNA sequences. We apply the algorithm to predict binding profiles for a benchmark set of eleven C2H2 zinc finger transcription factors, five of known and six of unknown structure. The predicted profiles are in good agreement with experimental binding data; furthermore, examination of the modeled structures gives insight into observed binding preferences

    Experimentally based contact energies decode interactions responsible for protein–DNA affinity and the role of molecular waters at the binding interface

    Get PDF
    A major obstacle towards understanding the molecular basis of transcriptional regulation is the lack of a recognition code for protein–DNA interactions. Using high-quality crystal structures and binding data on the promiscuous family of C2H2 zinc fingers (ZF), we decode 10 fundamental specific interactions responsible for protein–DNA recognition. The interactions include five hydrogen bond types, three atomic desolvation penalties, a favorable non-polar energy, and a novel water accessibility factor. We apply this code to three large datasets containing a total of 89 C2H2 transcription factor (TF) mutants on the three ZFs of EGR. Guided by molecular dynamics simulations of individual ZFs, we map the interactions into homology models that embody all feasible intra- and intermolecular bonds, selecting for each sequence the structure with the lowest free energy. These interactions reproduce the change in affinity of 35 mutants of finger I (R2 = 0.998), 23 mutants of finger II (R2 = 0.96) and 31 finger III human domains (R2 = 0.94). Our findings reveal recognition rules that depend on DNA sequence/structure, molecular water at the interface and induced fit of the C2H2 TFs. Collectively, our method provides the first robust framework to decode the molecular basis of TFs binding to DNA

    Novel Sequence-Based Method for Identifying Transcription Factor Binding Sites in Prokaryotic Genomes

    Get PDF
    Computational techniques for microbial genomic sequence analysis are becoming increasingly important. With next–generation sequencing technology and the human microbiome project underway, current sequencing capacity is significantly greater than the speed at which organisms of interest can be experimentally probed. We have developed a method that will primarily use available sequence data in order to determine prokaryotic transcription factor binding specificities. The prototypical prokaryotic transcription factor: TF) contains a helix–turn–helix: HTH) fold and bind DNA as homodimers, leading to their palindromic motif specificities. The connection between the TF and its promoter is based on the autoregulation phenomenon noticed in E. coli. Approximately 55% of the TFs analyzed were estimated to be autoregulated. Our preliminary analysis using RegulonDB indicates that this value increases to 79% if one considers the neighboring operons. Given the TF family of interest, it is necessary to find the relevant TF proteins and their associated genomes. Due to the scale–free network topology of prokaryotic systems, many of the transcriptional regulators regulate only one or a few operons. Within a single genome, there would not be enough sequence–based signal to determine the binding site using standard computational methods. Therefore, multiple bacterial genomes are used to overcome this lack of signal within a single genome. We use a distance–based criteria to define the operon boundaries and their respective promoters. Several TF–DNA crystal structures are then used to determine the residues that interact with the DNA. These key residues are the basis for the TF comparison metric; the assumption being that similar residues should impart similar DNA binding specificities. After defining the sets of TF clusters using this metric, their respective promoters are used as input to a motif finding procedure. This method has currently been tested on the LacI and TetR TF families with successful results. On external validation sets, the specificity of prediction is ∼80%. These results are important in developing methods to define the DNA binding preferences of the TF protein residues, known as the “recognition code”. This “recognition code” would allow computational design and prediction of novel DNA–binding specificities, enabling protein-engineering and synthetic biology applications

    Comparative footprinting of DNA-binding proteins

    Get PDF
    7 Pág., 4 Fig., 2 Tabl. The original version is available at: http://bioinformatics.oxfordjournals.org/content/22/14/e74Motivation: Comparative modelling is a computational method used to tackle a variety of problems in molecular biology and bio-technology. Traditionally it has been applied to model the structure of proteins on their own or bound to small ligands, although more recently it has also been used to model protein-protein interfaces. This work is the first to systematically analyze whether comparative models of protein-DNA complexes could be built and be useful for predicting DNA binding sites. Results: First, we describe the structural and evolutionary conservation of protein-DNA interfaces, and the limits they impose on modelling accuracy. Second, we find that side-chains from contacting residues can be reasonably modeled and therefore used to identify contacting nucleotides. Third, the DNASITE protocol is implemented and different parameters are benchmarked on a set of 85 regulators from Escherichia coli. Results show that comparative foot-printing can make useful predictions based solely on structural data, depending primarily on the interface identity with respect to the template used.This work has been supported by a postdoctoral fellowship from Universidad Nacional Autónoma de México awarded to B.C.M. and by NIH grant RO1-GM071962.Peer Reviewe

    Comparative footprinting of DNA-binding proteins

    No full text
    corecore