2,736 research outputs found

    Automated identification of Fos expression

    Get PDF
    The concentration of Fos, a protein encoded by the immediate-early gene c-fos, provides a measure of synaptic activity that may not parallel the electrical activity of neurons. Such a measure is important for the difficult problem of identifying dynamic properties of neuronal circuitries activated by a variety of stimuli and behaviours. We employ two-stage statistical pattern recognition to identify cellular nuclei that express Fos in two-dimensional sections of rat forebrain after administration of antipsychotic drugs. In stage one, we distinguish dark-stained candidate nuclei from image background by a thresholding algorithm and record size and shape measurements of these objects. In stage two, we compare performance of linear and quadratic discriminants, nearest-neighbour and artificial neural network classifiers that employ functions of these measurements to label candidate objects as either Fos nuclei, two touching Fos nuclei or irrelevant background material. New images of neighbouring brain tissue serve as test sets to assess generalizability of the best derived classification rule, as determined by lowest cross-validation misclassification rate. Three experts, two internal and one external, compare manual and automated results for accuracy assessment. Analyses of a subset of images on two separate occasions provide quantitative measures of inter- and intra-expert consistency. We conclude that our automated procedure yields results that compare favourably with those of the experts and thus has potential to remove much of the tedium, subjectivity and irreproducibility of current Fos identification methods in digital microscopy

    Randomized algorithms for statistical image analysis and site percolation on square lattices

    Full text link
    We propose a novel probabilistic method for detection of objects in noisy images. The method uses results from percolation and random graph theories. We present an algorithm that allows to detect objects of unknown shapes in the presence of random noise. The algorithm has linear complexity and exponential accuracy and is appropriate for real-time systems. We prove results on consistency and algorithmic complexity of our procedure.Comment: Submitted for publication on December 11, 200

    The Impact of Different Image Thresholding based Mammogram Image Segmentation- A Review

    Get PDF
    Images are examined and discretized numerical capacities. The goal of computerized image processing is to enhance the nature of pictorial data and to encourage programmed machine elucidation. A computerized imaging framework ought to have fundamental segments for picture procurement, exceptional equipment for encouraging picture applications, and a tremendous measure of memory for capacity and info/yield gadgets. Picture segmentation is the field broadly scrutinized particularly in numerous restorative applications and still offers different difficulties for the specialists. Segmentation is a critical errand to recognize districts suspicious of tumor in computerized mammograms. Every last picture have distinctive sorts of edges and diverse levels of limits. In picture transforming, the most regularly utilized strategy as a part of extricating articles from a picture is "thresholding". Thresholding is a prevalent device for picture segmentation for its straightforwardness, particularly in the fields where ongoing handling is required

    The Impact of Different Image Thresholding based Mammogram Image Segmentation- A Review

    Get PDF
    Images are examined and discretized numerical capacities. The goal of computerized image processing is to enhance the nature of pictorial data and to encourage programmed machine elucidation. A computerized imaging framework ought to have fundamental segments for picture procurement, exceptional equipment for encouraging picture applications, and a tremendous measure of memory for capacity and info/yield gadgets. Picture segmentation is the field broadly scrutinized particularly in numerous restorative applications and still offers different difficulties for the specialists. Segmentation is a critical errand to recognize districts suspicious of tumor in computerized mammograms. Every last picture have distinctive sorts of edges and diverse levels of limits. In picture transforming, the most regularly utilized strategy as a part of extricating articles from a picture is "thresholding". Thresholding is a prevalent device for picture segmentation for its straightforwardness, particularly in the fields where ongoing handling is required

    The Multiscale Morphology Filter: Identifying and Extracting Spatial Patterns in the Galaxy Distribution

    Get PDF
    We present here a new method, MMF, for automatically segmenting cosmic structure into its basic components: clusters, filaments, and walls. Importantly, the segmentation is scale independent, so all structures are identified without prejudice as to their size or shape. The method is ideally suited for extracting catalogues of clusters, walls, and filaments from samples of galaxies in redshift surveys or from particles in cosmological N-body simulations: it makes no prior assumptions about the scale or shape of the structures.}Comment: Replacement with higher resolution figures. 28 pages, 17 figures. For Full Resolution Version see: http://www.astro.rug.nl/~weygaert/tim1publication/miguelmmf.pd

    Detection of dirt impairments from archived film sequences : survey and evaluations

    Get PDF
    Film dirt is the most commonly encountered artifact in archive restoration applications. Since dirt usually appears as a temporally impulsive event, motion-compensated interframe processing is widely applied for its detection. However, motion-compensated prediction requires a high degree of complexity and can be unreliable when motion estimation fails. Consequently, many techniques using spatial or spatiotemporal filtering without motion were also been proposed as alternatives. A comprehensive survey and evaluation of existing methods is presented, in which both qualitative and quantitative performances are compared in terms of accuracy, robustness, and complexity. After analyzing these algorithms and identifying their limitations, we conclude with guidance in choosing from these algorithms and promising directions for future research

    The relationship between chromospheric emissions and magnetic field strength

    Full text link
    Aims. We analyze observational data from 4 instruments to study the correlations between chromospheric emission, spanning the heights from the temperature minimum region to the middle chromosphere, and photospheric magnetic field. Methods: The data consist of radio images at 3.5 mm from the Berkeley-Illinois-Maryland Array (BIMA), UV images at 1600 A from TRACE, Ca II K-line filtergrams from BBSO, and MDI/SOHO longitudinal photospheric magnetograms. For the first time interferometric millimeter data with the highest currently available resolution are included in such an analysis. We determine various parameters of the intensity maps and correlate the intensities with each other and with the magnetic field. Results: The chromospheric diagnostics studied here show a pronounced similarity in their brightness structures and map out the underlying photospheric magnetic field relatively well. We find a power law to be a good representation of the relationship between photospheric magnetic field and emission from chromospheric diagnostics at all wavelengths. The dependence of chromospheric brightness on magnetic field is found to be different for network and internetwork regions.Comment: 13 pages, 14 figures, 3 table

    AN AUTOMATIC SYSTEM FOR THE ANALYSIS OF INTERCELLULAR COMMUNICATION AND EARLY CARCINOGENESIS

    Get PDF
    International audienceSome recent works on intercellular communication pointed out an impaired trafficking of Cx43 proteins in early carcinogenesis. In collaboration with biologists, we propose an automatic system for the analysis of spatial protein configurations within cells at early tumor stages. This system is an essential step towards the future development of a computer-aided diagnosis tool and the statistical validation of biological hypotheses about Cx43 expressions and configurations during tumorogenesis. The proposed system contains two dependent part: a segmentation part in which the cell structures of interest are automatically located on images and a characterization part in which some spatial features are computed for the classification of cells. Using immunofluorescent images of cells, the nucleus, cytoplasm and proteins structures within the cell are extracted. Then, some spatial features are computed to characterize spatial configurations of the proteins with regard to the nucleus and cytoplasm areas in the image. Last, the 3D cell images are classified into pathogenic or viable classes. The system has been quantitatively evaluated over 60 cell images acquired by a deconvolution high-resolution microscope and whose ground truth has been manually given by a biologist expert. As a perspective, a 3D spatial reasoning and visualization module is currently under development

    Automatic Breast Density Classification on Tomosynthesis Images

    Get PDF
    Breast cancer (BC) is the type of cancer that most greatly affects women globally hence its early detection is essential to guarantee an effective treatment. Although digital mammography (DM) is the main method of BC detection, it has low sensitivity with about 30% of positive cases undetected due to the superimposition of breast tissue when crossed by the X-ray beam. Digital breast tomosynthesis (DBT) does not share this limi tation, allowing the visualization of individual breast slices due to its image acquisition system. Consecutively, DBT was the object of this study as a means of determining one of the main risk factors for BC: breast density (BD). This thesis was aimed at developing an algorithm that, taking advantage of the 3D nature of DBT images, automatically clas sifies them in terms of BD. Thus, a quantitative, objective and reproducible classification was obtained, which will contribute to ascertain the risk of BC. The algorithm was developed in MATLAB and later transferred to a user interface that was compiled into an executable application. Using 350 images from the VICTRE database for the first classification phase – group 1 (ACR1+ACR2) versus group 2 (ACR3+ACR4), the highest AUC value of 0,9797 was obtained. In the classification within groups 1 and 2, the AUC obtained was 0,7461 and 0,6736, respectively. The algorithm attained an accuracy of 82% for these images. Sixteen exams provided by Hospital da Luz were also evaluated, with an overall accuracy of 62,5%. Therefore, a user-friendly and intuitive application was created that prioritizes the use of DBT as a diagnostic method and allows an objective classification of BD. This study is a first step towards preparing medical institutions for the compulsoriness of assessing BD, at a time when BC is still a very present pathology that shortens the lives of thousands of people
    corecore