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ABSTRACT 

Pigmented skin lesions have been a cause for global concern in efforts to prevent the 

development of skin cancer. In addition, skin cancer can be diagnosed at an early stage, 

during which the patient has a higher probability of cure, and more favourable conditions 

for being properly treated. To deal with this problem, computer-aided diagnosis (CAD) 

systems have been developed to assist dermatologists in early diagnosis of skin cancer. 

Pattern recognition in macroscopic and dermoscopic images is a challenging task in skin 

lesion diagnosis. Thus, in an initial step of this project, the current computational methods 

suggested for skin lesion diagnosis in such images were reviewed according to the 

fundamental steps of image computational analysis. In addition, the strengths and 

weaknesses of the reviewed methods were discussed. The search for better performing 

classification has been a relevant issue for pattern recognition in images. One challenge 

that affects performance of classification includes defining which features are meaningful 

to describe skin lesion patterns. Hence, this project was particularly focused on feature 

extraction and skin lesion classification, especially in macroscopic and dermoscopic 

images.  

For the pattern recognition in macroscopic images, a computational approach was 

developed to detect skin lesion features according to the asymmetry, border, colour and 

texture properties, as well as to diagnose types of skin lesions, i.e., nevus, seborrheic 

keratosis and melanoma.  In this approach, an anisotropic diffusion filter was applied to 

enhance the input image and an active contour model without edges was used in the 

segmentation of the enhanced image. Finally, a support vector machine (SVM) classifier 

was adopted to classify each feature property according to their clinical principles, and 

also for the classification between different types of skin lesions. Experiments were 

performed regarding the segmentation and classification of pigmented skin lesions in 

macroscopic images, with the results obtained being very promising. 

Given that the evaluation and improvement of the classification performance is an 

essential requirement of pattern recognition, the ensemble methods are seen as promising 

methods to be used for skin lesion classification due their ability to integrate several 

classification models to provide a more robust system. In addition, appropriate features 

and ensemble methods can be combined to achieve superior performance for skin lesion 
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classification. For the pattern recognition in dermoscopic images, firstly, a combination 

of features was analysed based on shape properties, colour variation, and texture analysis 

by using different feature extraction methods. Furthermore, several colour spaces were 

used for the feature extraction related to both colour and texture features. For evaluating 

the proposed feature extraction, different categories of classifiers were adopted, and 

different feature selection algorithms were compared. The combination of features 

presented is effective for skin lesion classification.  

For the skin lesion computational diagnosis in dermoscopic images, ensemble 

classification models based on input feature manipulation were proposed. The extracted 

features were used to ensure the diversity of the ensemble classification models. The input 

feature manipulation process was based on subset selection models: 1) a feature subset 

selection model based on specific feature groups, 2) a correlation-based subset selection 

model, and 3) a subset selection model based on feature selection algorithms. Each 

ensemble classification model was generated by using an optimum-path forest (OPF) 

classifier and integrated with a majority voting strategy. Promising results were achieved 

with the proposed ensemble classification models. The performed experiments allowed 

to analyse the effectiveness of the developed approaches, as well as to verify the aspects 

that should be improved. 

Keywords: Macroscopic and dermoscopic images; Image processing and analysis; Image 

segmentation; Image classification; Feature extraction and selection; Classifiers; 

Ensemble classification models. 
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RESUMO 

As lesões de pele pigmentadas têm sido motivo de preocupação global no que diz respeito 

aos esforços para prevenir o desenvolvimento de câncer de pele. Além disso, o câncer da 

pele pode ser diagnosticado em uma fase precoce, durante a qual o paciente tem uma 

maior probabilidade de cura, e condições mais favoráveis para ser devidamente tratada. 

Para lidar com esse problema, sistemas de diagnóstico auxiliado por computador (CAD) 

têm sido desenvolvidos para auxiliar os dermatologistas no diagnóstico precoce de câncer 

de pele. O reconhecimento de padrões em imagens macroscópicas e dermatoscópicas é 

uma tarefa desafiadora no diagnóstico de lesões de pele. Assim, em uma etapa inicial 

deste projeto, métodos computacionais que têm sido recomendados para diagnóstico de 

lesões de pele nessas imagens foram identificados e revistos de acordo com as etapas 

fundamentais de análise computacional de imagens. Além disso, os pontos fortes e fracos 

dos métodos foram identificados e discutidos. A busca por melhor desempenho da 

classificação tem sido uma questão relevante para o reconhecimento de padrões em 

imagens. Um desafio que afeta o desempenho da classificação inclui definir quais as 

características que são significativas para descrever padrões das lesões de pele. Deste 

modo, este projeto focou-se particularmente na extração de características e na 

classificação das lesões de pele, especialmente em imagens macroscópicas e 

dermatoscópicas. 

Para o reconhecimento de padrões em imagens macroscópicas, foi desenvolvida uma 

abordagem computacional para detetar características de lesão de pele de acordo com as 

propriedades de assimetria, borda, cor e textura, bem como para diagnosticar tipos de 

lesões de pele, isto é, nevo, queratose seborréica e melanoma. Nesta abordagem, um filtro 

de difusão anisotrópico foi aplicado para melhorar a imagem de entrada e um modelo de 

contorno ativo sem bordas foi usado na segmentação da imagem melhorada. Finalmente, 

foi adotado um classificador de máquina de vetores de suporte (SVM) para classificar 

cada propriedade de característica de acordo com seus princípios clínicos, e também para 

a classificação entre diferentes tipos de lesões de pele. Foram realizados experimentos 

relacionados a segmentação e classificação de lesões de pele pigmentadas em imagens 

macroscópicas, sendo os resultados obtidos muito promissores. 

Dado que a avaliação e melhoria do desempenho da classificação é um requisito 

essencial para o reconhecimento de padrões, os métodos de ensembles são vistos como 
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métodos promissores para a classificação de lesões de pele devido à sua capacidade de 

integrar vários modelos de classificação para fornecer um sistema mais robusto. Além 

disso, características adequadas e métodos de ensembles podem ser combinados para 

alcançar um desempenho superior para a classificação de lesões de pele. Para o 

reconhecimento de padrões em imagens dermatoscópicas, primeiramente, uma 

combinação de características foi analisada neste projeto com base em propriedades de 

forma, variação de cor e análise de textura usando diferentes métodos de extração de 

características. Além disso, vários espaços de cores foram usados para a extração de 

características relacionadas com cor e textura. Para avaliar a extração de características 

propostas, foram adotadas diferentes categorias de classificadores e comparados 

diferentes algoritmos de seleção de características. A combinação de características 

apresentou ser eficaz na classificação das lesões de pele. 

Para o diagnóstico computacional de lesões de pele em imagens dermatoscópicas, 

foram propostos modelos de classificação de ensembles baseados na manipulação das 

características de entrada. As características extraídas foram utilizadas para garantir a 

diversidade dos modelos de classificação de ensembles. O processo de manipulação das 

características de entrada foi baseado em modelos de seleção de subconjuntos: 1) modelo 

de seleção de subconjuntos de características a partir de grupos de características 

específicas, 2) modelo de seleção de subconjuntos usando correlação e 3) modelo de 

seleção de subconjuntos baseado em algoritmos de seleção de características. Cada 

modelo de classificação de ensemble foi gerado usando um classificador de floresta de 

caminho ótimo (OPF) e integrado com uma estratégia de voto majoritário. Resultados 

promissores foram obtidos com os modelos de classificação de ensembles propostos. Os 

experimentos realizados permitiram analisar a efetividade das abordagens desenvolvidas, 

bem como verificar os aspetos a serem melhorados. 

Palavras-chave: Imagens macroscópicas e dermatoscópicas; Processamento e análise de 

imagens; Segmentação de imagens; Classificação de imagens; Extração e seleção de 

características; Classificadores; Modelos de classificação de ensembles. 
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1. Introduction 

Skin cancer is one of the most commonly diagnosed cancers worldwide and melanoma is 

the most aggressive form of skin cancer, as well as the one with the highest mortality rate. 

For example, in the United States, 87,110 new cases of melanoma were estimated to be 

diagnosed in 2017. Furthermore, 9,730 deaths from melanoma were estimated for the 

same year [1]. Computational systems have been proposed in order to assist 

dermatologists in skin cancer diagnosis, or even to monitor skin lesions [2]. Image 

acquisition, pre-processing, segmentation, feature extraction and selection, and 

classification are fundamental steps commonly found in computational systems for 

diagnosing skin lesions. Macroscopic and dermoscopic images are examples of images 

acquired from non-invasive imaging techniques [3], which have been widely used in such 

systems.  

This PhD project is focused on feature extraction and skin lesion classification in both 

macroscopic and dermoscopic images. Macroscopic images are usually obtained by using 

common digital cameras, while dermoscopic images are acquired by a dermatoscope 

device that allows a more detailed visualization of the lesion patterns on the skin surface. 

Figures 1 and 2 show some examples of such images considered in this project. 

Macroscopic images in Figure 1 (a-c) show three examples of pigmented skin lesions, 

i.e., nevus, seborrheic keratosis, and melanoma, respectively. Nevus and seborrheic 

keratosis are benign lesions, and melanoma is a malignant lesion. The difficulty in 

distinguishing such types of skin lesions has become a challenging research area. Hence, 

the differentiation between these types of skin lesions and their features were explored in 

this project. Dermoscopic images are shown in Figure 2 (a-b), which presents benign and 

malignant lesions, respectively. The search for better classification performance in 

dermoscopic images is a challenging task for skin lesion computational diagnosis. Thus, 

using skin lesion computational analysis in dermoscopic images to improve the diagnosis 

for benign and malignant lesions was the main goal of this research project. 

The feature extraction process is usually based on the intensities of the pixels within 

the regions of interest (ROI). Segmentation is an important step that allows the extraction 

of the ROI within an image. Previous studies have shown that computational methods for 

image segmentation can provide suitable results for the identification of skin lesions in 

images [4]. Customarily, the images under analysis can be pre-processed for image 
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enhancement and artefact removal, so that more robust segmentations can be achieved 

[5]. The extraction of representative features of the ROI under analysis is essential for 

efficient classification of the skin lesions. The extracted features are usually based on 

clinical approaches used by dermatologists in diagnosing skin lesions. The ABCD rule is 

a commonly used method to classify such lesions in macroscopic and dermoscopic 

images according to asymmetry, border, colour and diameter (or differential structures in 

the case of dermoscopic images) criteria [6,7]. Additionally, texture analysis can be 

performed to assess the surface roughness of the lesions to assist in discriminating 

between benign and malignant lesions. Several computational solutions have been 

proposed for feature extraction of pigmented skin lesions, in order to represent them 

according to such clinical approaches [8-10].  

 

Figure 1: Examples of pigmented skin lesions in macroscopic images: (a) nevus, (b) seborrheic 
keratosis and (c) melanoma [11]. 

 

Figure 2: Examples of pigmented skin lesions in dermoscopic images: (a) benign lesion and (b) 
malignant lesion [12]. 

Skin lesion classification systems should demonstrate high performance and efficacy, 

considering that they will be used to assist in dermatological diagnosis. The evaluation 

and improvement of the classification performance are essential requirements of pattern 

recognition [13]. Some relevant challenges that should be considered are: 1) defining 

what features are meaningful and essential to represent the skin lesion patterns, 2) 

analysing whether there are redundant and irrelevant features that should be removed 

from the feature set, and 3) confirming whether the number of selected features is 

sufficient to describe the classification problem. The application of several descriptions 
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may be needed, considering the enormous quantity of information present in images. 

Nevertheless, a larger feature space can include redundant and irrelevant data. One 

solution to this problem is the application of feature selection algorithms to define the 

most appropriate features from images, since such algorithms permit the removal of 

redundant and irrelevant features [8,14]. Moreover, these algorithms reduce the 

dimensionality of data. As a result, they decrease the time of feature extraction, training, 

testing, and the complexity of classification, and they still can improve the classification 

accuracy rate.  

Another solution to improve classification performance is ensemble methods [15]. 

Several studies have recently proposed ensemble classification models to achieve better 

performance of skin lesion classification from dermoscopic images [16,17]. Ensemble 

methods consist of integrating several classification models in order to develop a more 

robust system that provides more accurate results than by using a single classifier. Such 

models can be composed of either only one learning algorithm, classified as 

homogeneous or several learning algorithms, classified as heterogeneous. Several 

algorithms for constructing homogeneous ensembles have been developed through data 

manipulation, such as manipulating the training samples or the input features [18,19]. 

Algorithms for manipulating the training samples allow the generation of multiple 

hypotheses, in which the learning algorithm is applied to different subsets of the training 

samples. Algorithms for manipulating the input features allow the generation of 

ensembles based on different features available to the learning algorithm. This process 

can involve, for example, the splitting of a set of features into subsets. Therefore, the use 

of ensemble methods to classify skin lesion images has presented promising perspectives, 

and this PhD project was particularly dedicated to exploring such perspectives. 

1.1. Main goals of the project 

The main objective of this PhD project was to develop algorithms for pattern recognition 

in skin lesion images in order to assist dermatologists in diagnosis of skin cancer. Hence, 

some important goals to be achieved in this project were: 

• To provide a review of the most relevant computational methods that have been 

developed to assist pigmented skin lesion diagnosis from macroscopic and 

dermoscopic images. Essentially, this review is highly valuable for the design and 
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implementation of competent expert systems for the skin lesion pattern recognition 

in images; 

• To segment skin lesions and extract their features, based on clinical approaches 

commonly used by dermatologists in pigmented skin lesion diagnosis, for the 

classification process; 

• To analyse a combination of features by using different techniques for feature 

extraction; then, compare several feature selection algorithms and classifiers to 

evaluate the classification performance from the extracted features, in order to 

identify several features that may be relevant for skin lesion computational 

diagnosis;  

• To develop new classification models based on ensemble methods and input 

feature manipulation for pattern recognition in skin lesion images. For these 

models, the feature subsets and ensemble methods are one of the most important 

factors for identifying malignancy in pigmented skin lesions, since the 

combination of several classification models and appropriate features can improve 

the performance of classification. This last goal was selected as the main objective 

of this project. 

By fulfilling the aforementioned goals, this project aimed to contribute substantially 

to the Biomedical and Computational area, as well as to provide information that can 

assist dermatologists in obtaining more efficient diagnoses with the developed 

computational solutions. 

1.2. Main contributions achieved 

Five papers related to our research have been submitted to international journals during 

the development of this project. Of these, three papers have already been published [20-

22], and two papers are currently under review. In addition, one full paper [23] and two 

abstracts [24,25] related to the developed work have been included in conference 

proceedings. One full paper [26] and one abstract [27] has also been accepted in 

conferences. 

The main achievements and contributions obtained from this research can be 

summarized as follows: 
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•  A comprehensive and current review concerning the most relevant computational 

methods to assist skin lesion diagnosis in both macroscopic and dermoscopic 

images was presented. This review includes methods that have been suggested for 

the steps of image pre-processing and segmentation, feature extraction and 

selection, and image classification, in which their advantages and disadvantages 

are identified. In addition, several of the reviewed segmentation methods are 

applied to macroscopic and dermoscopic images, in order to exemplify and discuss 

their applications;  

• An effective computational approach was developed for the segmentation and 

classification of pigmented skin lesions in macroscopic images. The developed 

approach is based on asymmetry, border, colour and texture analysis for extracting 

skin lesion features and it allowed for distinguishing between some types of skin 

lesions; 

• An effective approach for the combination of skin lesion features by using different 

feature extraction algorithms was proposed. The combination of features presented 

is relevant for skin lesion computational diagnosis in dermoscopic images. The 

main contribution of this approach was the texture analysis based on several colour 

channels, as well as the application of different texture-based feature extraction 

algorithms. In addition, experiments to analyse these features were performed for 

the image classification in benign or malignant lesions by using different classifiers 

and feature selection algorithms that ensure the effectiveness of this approach; 

• Novel effective classification models based on ensemble methods and input feature 

manipulation to improve the skin lesion computational diagnosis from 

dermoscopic images were developed. The main contribution of these models is the 

feature subset selection based on specific feature groups and feature selection 

algorithms for the input feature manipulation, which allowed the finest generation 

of diversity for the ensemble models and better classification accuracy. 

1.3. Organization of the thesis 

This thesis is divided into two parts; namely, Part A and Part B. A summary description 

of the research developed, the conclusions drawn for the PhD project, and possible future 

studies about skin lesion classification are provided in Part A. In Part B, the research 

developed is detailed in five articles. In these articles, the computational methods for skin 
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lesion pattern recognition in both macroscopic and dermoscopic images that were 

developed to fulfil the presented objectives are described. The articles included in this 

part are: 

• Article 1:  

Title: Computational methods for the image segmentation of pigmented skin 

lesions: A Review 

Authors: Roberta B. Oliveira, Mercedes E. Filho, Zhen Ma, João P. Papa, Aledir 

S. Pereira and João Manuel R. S. Tavares 

Published in Journal: Computer Methods and Programs in Biomedicine, 131:127-

141, 2016 

• Article 2: 

Title: Computational methods for pigmented skin lesion classification in images: 

Review and future trends 

Authors: Roberta B. Oliveira, João P. Papa, Aledir S. Pereira and João Manuel R. 

S. Tavares 

Published in Journal: Neural Computing and Applications, 27:1-24, 2016 

• Article 3: 

Title: A computational approach for detecting pigmented skin lesions in 

macroscopic images 

Authors: Roberta B. Oliveira, Norian Marranghello, Aledir S. Pereira and João 

Manuel R. S. Tavares 

Published in Journal: Expert Systems with Applications, 61:53-63, 2016 

• Article 4: 

Title: Computational diagnosis of skin lesions from dermoscopic images using a 

combination of features 

Authors: Roberta B. Oliveira, Aledir S. Pereira and João Manuel R. S. Tavares 

Submitted to an international journal (under review), 2017 

• Article 5: 

Title: Skin lesion computational diagnosis of dermoscopic images: Ensemble 

models based on input feature manipulation 

Authors: Roberta B. Oliveira, Aledir S. Pereira and João Manuel R. S. Tavares 

Submitted to an international journal (under review), 2017 
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2. Brief description of the developed work 

Skin lesion pattern recognition in macroscopic and dermoscopic images has become a 

challenging research area due to the difficulty in discerning some patterns of skin lesions. 

In order to fulfil the goals of this project, the following steps were defined: 1) reviews of 

computational method for pigmented skin lesion analysis, 2) pattern recognition in 

macroscopic images, and 3) pattern recognition in dermoscopic images. The first step 

includes the revision of the current state of the art concerning the segmentation and the 

classification of pigmented skin lesions in both macroscopic and dermoscopic images, 

which is provided in Articles 1 and 2 included in Part B. The second step reviews both 

the segmentation and the classification problems in macroscopic images, which is 

described in Article 3 included in Part B. Finally, the third step mainly outlines the feature 

extraction and classification problems in dermoscopic images, which is addressed in 

Articles 4 and 5 included in Part B. The overview of the developed work for the skin 

lesion pattern recognition is presented in Figure 3. In this section, a brief description of 

the developed work is presented. 

 

Figure 3: Overview of our research on skin lesion pattern recognition. (In addition to the article 
indicated in this scheme, two articles were provided with the revision about the segmentation and 
the classification of pigmented skin lesions in both macroscopic and dermoscopic images.) 
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2.1. Reviews of computational methods for pigmented skin lesion analysis 

In order to analyse the current methods that have been proposed for skin lesion 

computational diagnosis in both macroscopic and dermoscopic images, two detailed 

reviews with regards to several of the fundamental steps of image computational analysis 

were carried out. One review focused on the image segmentation process, and other one 

on the classification process. These reviews allowed for defining the main guidelines for 

the development of this work concerning the pattern recognition of skin lesion images. 

For the revision of image segmentation computational methods, three fundamental 

steps of image processing were taken; namely, image acquisition, pre-processing and 

segmentation. For each step, the techniques commonly used were explained, and their 

strengths and weaknesses were identified. The image segmentation techniques were 

classified into five categories according to their segmentation principle. In addition, 

several of the reviewed techniques are applied to both macroscopic and dermoscopic 

images in order to exemplify their results. This review is presented in Article 1 included 

in Part B. 

For the revision of computational methods that have been developed for skin lesion 

classification, the steps of feature extraction and selection, and image classification were 

addressed. Feature extraction methods were introduced based on clinical approaches 

commonly used by dermatologists in skin lesion diagnosis. The feature selection process 

was described according to the following steps: 1) feature subset selection, 2) subset 

evaluation, 3) stopping criterion, and 4) validation procedure. The image classification 

step was addressed by including classifiers and evaluation procedures, as well as some 

performance results for pattern and disease classification. In addition, a discussion about 

the advantages and disadvantages of the reviewed methods, as well as future trends are 

also provided. This review is presented in Article 2 included in Part B. 

2.2. Pattern recognition in macroscopic images 

For the identification and classification of pigmented skin lesions in macroscopic images 

a new computational approach was developed based on the asymmetry, border, colour 

and texture analysis. The developed approach involves briefly the following steps: 1) 

image pre-processing, 2) image segmentation and post-processing, 3) feature extraction 

and classification, and 4) classification of type of skin lesions. The first step intends to 
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enhance input images corrupted by noise and is based on an anisotropic diffusion filter 

[28]. The second step identifies the lesion presented in the enhanced image by using an 

active contour model without edges (Chan-Vese model [29]), and for post-processing the 

segmented region is identified based on morphological filtering to improve the quality of 

the segmentation result. In the third step, features are extracted from the post-processed 

region, which include the asymmetry, border, colour, and texture properties. In addition, 

a support vector machine (SVM) classifier is applied to classify each feature property into 

two categories, according to their clinical principles. Finally, the last step concerns the 

binary classification between different types of skin lesions, i.e., nevus, seborrheic 

keratosis, and melanoma, based on the SVM classifier [30] and by using a histogram 

intersection kernel [31]. 

For assessing the asymmetry properties, features are obtained from the ratios between 

each pair of the semi-lines that represents the perpendicular lines by overlapping the two 

sub-regions of the lesion along an axis. For assessing the border properties, a number of 

peaks, valleys and straight lines of the border are computed by using the vector product 

and inflexion point descriptors from a one-dimensional border. For extracting the colour 

properties, statistical measures, i.e., average, variance and standard deviation, are 

computed for each colour channel of the RGB colour space. For the texture analysis, a 

fractal dimension method [32] is adopted based on grey-level images; by using the 

methods mentioned earlier, 44 features were extracted to represent the lesion. These 

feature extraction methods were also important for pattern recognition in dermoscopic 

images considered in the next sub-section. 

A subjective evaluation was performed to analyse the obtained segmentation results. 

Hence, the visual assessment by a specialist of the segmented regions classified whether 

the lesions presented in 408 images were correctly segmented or not. The segmentation 

results obtained by the proposed approach were compared against the threshold-based 

segmentation results achieved by using a well-known method proposed by Otsu [33]. 

Afterwards, 385 correctly segmented images were used for the classification process, in 

which the results obtained by the proposed approach were compared with the results 

achieved by the SVM classifier by using a kernel commonly used, i.e., the radial basis 

function (RBF) kernel [30]. The proposed approach is detailed in Article 3 included in 

Part B.  
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2.3. Pattern recognition in dermoscopic images 

Performance improvement of classifiers has become a challenging research topic for skin 

lesion pattern recognition in dermoscopic images. The defining of what features are 

meaningful to describe the skin lesion patterns is an important issue for the classification 

process. Thus, this project analysed a combination of features based on shape properties, 

colour variation and texture analysis by using different feature extraction methods. This 

approach involves the following steps: 1) feature extraction, 2) data pre-processing, 3) 

feature selection, and 4) image classification.  

For the feature extraction step, 510 features related to shape, colour and texture were 

extracted from the skin lesion images. The shape properties include the lesion area, border 

perimeter, equivalent diameter, compactness, circularity, solidity, rectangularity, aspect 

ratio, eccentricity, lesion asymmetry, and border irregularity. The RGB, HSV, CIE Lab 

and CIE Luv colour spaces were used for extracting both colour and texture properties. 

The average, variance, standard deviation, minimum and maximum colours, and colour 

skewness were computed for each colour channel of the colour spaces. The texture 

features were also extracted for each colour channel of the colour spaces by using the 

fractal dimension analysis [32], discrete wavelet transform [34] and co-occurrence matrix 

[35] methods. For the data pre-processing step, a normalization method and a resampling 

procedure are applied to the data [36] in order to scale all numeric values to within the 

same interval and distribute the samples evenly for each class. 

The feature selection and image classification steps consist of evaluating the 

effectiveness of the proposed combination of features in the benign or malignant lesion 

classification. Different feature selection algorithms were adopted, which include the 

Relief-F [37], information gain-based feature selection [38], gain ratio-based feature 

selection (GRFS) [36], Pearson’s correlation coefficient-based feature selection [38], 

correlation-based feature selection (CFS) [39] and principal-component analysis (PCA) 

[40]. In addition, different categories of classifiers were compared; namely, the k-nearest 

neighbours (KNN) [41], Bayes networks [42], C4.5 decision tree [43], multilayer 

perceptron (MLP) [44], SVM [30] and optimum-path forest (OPF) [45]. The developed 

approach was applied to a set of 1104 dermoscopic images by using a cross-validation 

procedure [36]. This proposed approach is presented in Article 4 included in Part B. 
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From the analysed set of features, ensemble classification models based on input 

feature manipulation were proposed in order to improve the skin lesion computational 

diagnosis in dermoscopic images. Feature subsets from the shape properties, colour 

variation and texture analysis were selected to generate diversity for the ensemble models. 

The feature subsets are based on specific feature groups, subset correlation (CFS), and 

different feature selection algorithms, such as the algorithms mentioned earlier. Each 

ensemble classification model is constructed by using an OPF classifier [45] and 

integrated with a majority voting strategy [15]. For the OPF classifier, the Euclidean, 

Chebyshev and Manhattan distance functions [36] were used to measure the distances 

between the feature subsets.  

The effectiveness of the feature groups used and feature selection algorithms was 

individually evaluated to define the best feature subsets for the benign or malignant lesion 

classification process. For the performance evaluation of the ensemble classification 

models, the data was pre-processed as discussed previously and the proposed models 

were applied to a set of 1104 dermoscopic images by using a cross-validation procedure 

[36]. The classification results achieved by the proposed ensemble classification models 

were compared against the ones obtained using ensemble algorithms that are commonly 

used in the literature; namely, bagging [15], AdaBoost [46] and random forest [47]. 

Furthermore, the proposed ensemble models were also compared to the individual OPF 

classifier [45] to analyse the efficacy of the ensemble algorithms. These ensemble 

classification models are considered in Article 5 included in Part B. 

3. Conclusion and future works 

Skin lesion pattern recognition is an area of great research interest due to its importance 

in skin cancer prevention, as well as in early diagnosis. This PhD project approached both 

macroscopic and dermoscopic image pattern recognition, and promising results were 

obtained for skin lesion diagnosis. Pattern recognition in macroscopic images are still 

little explored in research on pattern recognition field, and most studies do not deal with 

the classification of all features considered in present project. The approach using 

segmentation and classification of pigmented skin lesions in macroscopic images 

presented in this project, as described in Article 3 included in Part B, allowed identifying 

lesion features and the distinguishing between some types of skin lesions. Although the 

proposed approach achieved good segmentation results, mainly with noisy images, it 
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cannot perform well on images with too low contrast boundaries, shadows and reflections. 

Both feature and disease classifications presented significant results. However, some 

classification results were not expressive, e.g., the colour and texture feature 

classifications. Unbalanced databases regarding the number of samples for each class may 

have decreased the accuracy of the classification results, since the classifier tends to be 

based on classes with the highest occurrence. 

Dermoscopic images have been widely applied for pattern recognition of pigmented 

skin lesions, since such images allow suitable visualization with more details of 

pigmentation patterns on the surface of the lesion. Pattern recognition in dermoscopic 

images has involved searching for new methods aiming to develop more effective systems 

for better skin lesion computational diagnosis. An approach for the combination of 

features, based on shape properties, colour variation and texture analysis by using 

different feature extraction methods, was presented in Article 4 included in Part B. The 

colour and texture analysis, based on several colour spaces combined with shape 

properties and by using different feature extraction methods, provided very promising 

results for skin lesion pattern recognition. In addition, the effectiveness of the 

combination of features was very important for the constructing ensemble classification 

models to improve the skin lesion computational diagnosis from dermoscopic images. 

The ensemble classification models described in Article 5 in Part B were based on 

input feature manipulation from the shape properties, colour variation and texture 

analysis. The extracted features obtained successful results for the proposed ensemble 

models. Specific feature groups and feature selection algorithms were defined to find the 

best features for the classification process, as well as to generate diversity for the 

ensemble classification models. The best classification results were obtained by the 

feature subset selection model based on specific feature groups. The feature manipulation 

process based on such feature subsets allowed the best generation of diversity for the 

ensemble classification model. Although the ensemble models developed have achieved 

good results, there are some issues that can be enhanced, such as the ensemble integration 

method to combine the classification results produced by the base classifiers.  

In conclusion, future studies, regarding the methods developed in this Thesis by using 

both macroscopic and dermoscopic images, should include searching for new methods 

aiming to improve the results for better skin lesion pattern recognition. Therefore, 

recommendations for future research can be summarized as follows:  
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• To improve the segmentation process, presented in Article 3 in Part B, the pre-

processing process should be better addressed, since it significantly affects the skin 

lesion segmentation results. Therefore, the development of algorithms for dealing 

with reflections and shadows, as well as hair removal can be considered to solve 

the previously discussed problems concerning the image segmentation step. In 

addition, the definition of an initial automatic curve based on approximate lesion 

localization for the segmentation by using active contours should be addressed in 

order to improve the segmentation accuracy. Another relevant issue to be 

approached is the application of the segmentation algorithm in colour images. 

These improvements can make the segmentation method more accurate and thus, 

it still can be combined with the classification method described in Article 5 in Part 

B, since the lack of a segmentation process is a limitation of such a study.  

• To enhance the ensemble classification models, described in Article 5 in Part B, 

the challenging problem of integration is an objective to be addressed, which can 

improve the classification results achieved with such ensemble models. In order to 

approach other problems concerning the dermoscopic image diagnosis, the 

proposed ensemble models should be taken into account in future studies; for 

example, to identify the presence of global and local patterns. Pattern analysis [48] 

is a challenging task in discriminating between benign and malignant skin lesions.  

• Deep learning architectures [49] should be taken into account in future studies 

related to the skin lesion classification in both macroscopic and dermoscopic 

images. The classification results can be improved by using such architectures, 

since these architectures have revealed one can stress the capacity of learning from 

enormous amounts of data in an unsupervised way. In addition, these architectures 

have been recently used for skin lesion computational diagnosis with promising 

results [50-56].   

References 

[1] American Cancer Society (2017). Cancer Facts & Figures 2017. American Cancer 
Society, Atlanta. 

[2] Scharcanski, J.; Celebi, M. E. (2013). Computer Vision Techniques for the Diagnosis 
of Skin Cancer. Springer, Berlin, Heidelberg. 

[3] Smith, L.; MacNeil, S. (2011). State of the art in non-invasive imaging of cutaneous 
melanoma. Skin Research and Technology, 17 (3):257-269. 



THESIS REPORT 

 

16 
 

[4] Silveira, M.; Nascimento, J. C.; Marques, J. S.; Marcal, A. R. S.; Mendonca, T.; 
Yamauchi, S.; Maeda, J.; Rozeira, J. (2009). Comparison of Segmentation Methods for 
Melanoma Diagnosis in Dermoscopy Images. IEEE Journal of Selected Topics in Signal 
Processing, 3 (1):35-45. 

[5] Abbas, Q.; Fondón, I.; Rashid, M. (2011). Unsupervised skin lesions border detection 
via two-dimensional image analysis. Computer Methods and Programs in Biomedicine, 
104 (3):e1-e15. 

[6] Abbasi, N. R.; Shaw, H. M.; Rigel, D. S.; Friedman, R. J.; McCarthy, W. H.; Osman, 
I.; Kopf, A. W.; Polsky, D. (2004). Early diagnosis of cutaneous melanoma: revisiting the 
ABCD criteria. Jama, 292 (22):2771-2776. 

[7] Johr, R. H. (2002). Dermoscopy: alternative melanocytic algorithms-the ABCD rule 
of dermatoscopy, menzies scoring method, and 7-point checklist. Clinics in Dermatology, 
20 (3):240-247. 

[8] Garnavi, R.; Aldeen, M.; Bailey, J. (2012). Computer-Aided Diagnosis of Melanoma 
Using Border- and Wavelet-Based Texture Analysis. IEEE Transactions on Information 
Technology in Biomedicine, 16 (6):1239-1252. 

[9] Cavalcanti, P. G.; Scharcanski, J. (2011). Automated prescreening of pigmented skin 
lesions using standard cameras. Computerized Medical Imaging and Graphics, 35 
(6):481-491. 

[10] Kasmi, R.; Mokrani, K. (2016). Classification of malignant melanoma and benign 
skin lesions: implementation of automatic ABCD rule. IET Image Processing, 10 (6):448-
455. 

[11] Diepgen, T. L.; Yihune, G. (2012). Dermatology Online Atlas. Dermatology 
Information System - DermIS. http://www.dermis.net/dermisroot/en/home/index.htm. 
Accessed August 2012. 

[12] Gutman, D.; Codella, N. C. F.; Celebi, E.; Helba, B.; Marchetti, M.; Mishra, N.; 
Halpern, A. C. (2016). Skin Lesion Analysis toward Melanoma Detection: A Challenge 
at the International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the 
International Skin Imaging Collaboration (ISIC), arXiv preprint arXiv:1605.01397.  

[13] Webb, A. R. (2003). Statistical pattern recognition. 2 edn. John Wiley & Sons, 
England. 

[14] Celebi, M. E.; Kingravi, H. A.; Uddin, B.; Iyatomi, H.; Aslandogan, Y. A.; Stoecker, 
W. V.; Moss, R. H. (2007). A methodological approach to the classification of 
dermoscopy images. Computerized Medical Imaging and Graphics, 31 (6):362-373. 

[15] Dietterich, T. G. (2000). Ensemble methods in machine learning. In:  Multiple 
Classifier Systems, vol 1857. Lecture Notes in Computer Science. Springer, Berlin, 
Heidelberg, pp 1-15. 

[16] Grzesiak-Kopeć, K.; Ogorzałek, M.; Nowak, L. (2016). Computational 
Classification of Melanocytic Skin Lesions. In: Rutkowski, L., Korytkowski, M., Scherer, 
R., Tadeusiewicz, R., Zadeh, L. A., Zurada, J. M. (eds) 15th International Conference on 



THESIS REPORT 

17 
 

Artificial Intelligence and Soft Computing, Zakopane, June 12-16 2016. Springer, pp 
169-178. 

[17] Abbas, Q.; Sadaf, M.; Akram, A. (2016). Prediction of Dermoscopy Patterns for 
Recognition of both Melanocytic and Non-Melanocytic Skin Lesions. Computers, 5 
(3):13. 

[18] Schaefer, G.; Krawczyk, B.; Celebi, M. E.; Iyatomi, H. (2014). An ensemble 
classification approach for melanoma diagnosis. Memetic Computing, 6 (4):233-240. 

[19] Barata, C.; Emre Celebi, M.; Marques, J. S. (2015). Melanoma detection algorithm 
based on feature fusion. In: 37th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society Milan, August 25-29 2015. IEEE, pp 2653-
2656. 

[20] Oliveira, R. B.; Papa, J. P.; Pereira, A. S.; Tavares, J. M. R. S. (2016). Computational 
Methods for Pigmented Skin Lesion Classification in Images: Review and Future Trends. 
Neural Computing and Applications, 27:1-24. 

[21] Oliveira, R. B.; Marranghello, N.; Pereira, A. S.; Tavares, J. M. R. S. (2016). A 
computational approach for detecting pigmented skin lesions in macroscopic images. 
Expert Systems with Applications, 61:53-63. 

[22] Oliveira, R. B.; Filho, M. E.; Ma, Z.; Papa, J. P.; Pereira, A. S.; Tavares, J. M. R. S. 
(2016). Computational methods for the image segmentation of pigmented skin lesions: a 
review. Computer Methods and Programs in Biomedicine, 131:127-141. 

[23] Oliveira, R. B.; Tavares, J. M. R. S.; Marranghello, N.; Pereira, A. S. (2013). An 
Approach to Edge Detection in Images of Skin Lesions by Chan-Vese Model. In: 8th 
Doctoral Symposium in Informatics Engineering - DSIE'13, Porto, Portugal, January 24-
25 2013. 

[24] Oliveira, R. B.; Tavares, J. M. R.; Pereira, A. S. (2014). Features selection for the 
classification of skin lesion from images. In: 11th World Congress on Computational 
Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM 
V) and 6th European Conference on Computational Fluid Dynamics (ECFD VI), 
Barcelona, July 20-25 2014. 

[25] Oliveira, R. B.; Tavares, J. M. R.; Pereira, A. S. (2013). Selection of Image Features 
based on a Wrapper Model for the Classification of Skin Lesions. In: 12th US National 
Congress of Computational Mechanics, Raleigh, North Carolina, July 22-25 2013. 

[26] Oliveira, R. B.; Pereira, A. S.; Tavares, J. M. R. S. (2017). Pattern Recognition in 
Macroscopic and Dermoscopic Images for Skin Lesion Diagnosis. In: VipIMAGE 2017 
- VI ECCOMAS Thematic Conference on Computational Vision and Medical Image 
processing, Porto, Portugal, October 18-20 2017. 

[27] Oliveira, R. B.; Marranghello, N.; Pereira, A. S.; Tavares, J. M. R. S. (2017). 
Segmentation of Skin Lesion Images based on an Active Contour Model. In: Congress on 
Numerical Methods in Engineering, Valencia, Spain, July 3-5 2017. 



THESIS REPORT 

 

18 
 

[28] Barcelos, C. A. Z.; Boaventura, M.; Silva Junior, E. C. (2003). A well-balanced flow 
equation for noise removal and edge detection. IEEE Transactions on Image Processing, 
12 (7):751-763. 

[29] Chan, T. F.; Vese, L. A. (2001). Active contours without edges. IEEE Transactions 
on Image Processing, 10 (2):266-277. 

[30] Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. 
Data mining and knowledge discovery, 2 (2):121-167. 

[31] Barla, A.; Odone, F.; Verri, A. (2003). Histogram intersection kernel for image 
classification. In: International Conference on Image Processing, Italy, September 14-17 
2003. IEEE, pp 513-516. 

[32] Al-Akaidi, M. (2004). Fractal speech processing. Cambridge university press, New 
York. 

[33] Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE 
Transactions on Systems, Man and Cybernetics, 9 (1):62-66. 

[34] Scheunders, P.; Livens, S.; Van de Wouwer, G.; Vautrot, P.; Van Dyck, D. (1998). 
Wavelet-based texture analysis. International Journal on Computer Science and 
Information Management, 1 (2):22-34. 

[35] Haralick, R. M.; Shanmugam, K.; Dinstein, I. H. (1973). Textural features for image 
classification. IEEE Transactions on Systems, Man and Cybernetics, SMC-3 (6):610-621. 

[36] Witten, I. H.; Frank, E.; Hall, M. A. (2011). Data Mining: Practical machine 
learning tools and techniques. Morgan Kaufmann, San Francisco. 

[37] Kononenko, I. (1994). Estimating attributes: Analysis and extensions of RELIEF. In: 
Bergadano, F., De Raedt, L. (eds) Machine Learning: ECML-94, vol 784. Lecture Notes 
in Computer Science. Springer, Berlin, Heidelberg, pp 171-182. 

[38] Guyon, I.; Elisseeff, A. (2003). An introduction to variable and feature selection. The 
Journal of Machine Learning Research, 3:1157-1182. 

[39] Hall, M. A. (2000). Correlation-based Feature Selection for Discrete and Numeric 
Class Machine Learning. In: Proceedings of the 17th International Conference on 
Machine Learning, San Francisco, USA, June 29 - July 02 2000. Morgan Kaufmann 
Publishers Inc., pp 359-366. 

[40] Hand, D.; Mannila, H.; Smyth, P. (2001). Principles of Data Mining. The MIT Press, 
London. 

[41] Cover, T.; Hart, P. (1967). Nearest neighbor pattern classification. IEEE 
Transactions on Information Theory, 13 (1):21-27. 

[42] Congdon, P. (2007). Bayesian statistical modelling, vol 704. 2 edn. John Wiley & 
Sons, Chichester. 



THESIS REPORT 

19 
 

[43] Quinlan, J. R. (1993). C4.5: programs for machine learning. Morgan Kaufmann 
Publishers Inc., USA. 

[44] Haykin, S. S. (1999). Neural networks: a comprehensive foundation. Prentice Hall, 
Englewood Cliffs, USA. 

[45] Papa, J. P.; Falcao, A. X.; Suzuki, C. T. (2009). Supervised pattern classification 
based on optimum‐path forest. International Journal of Imaging Systems and Technology, 
19 (2):120-131. 

[46] Freund, Y.; Schapire, R. E. (1997). A desicion-theoretic generalization of on-line 
learning and an application to boosting. Journal of Computer and System Sciences, 55 
(1):119-139. 

[47] Breiman, L. (2001). Random forests. Machine learning, 45 (1):5-32. 

[48] Argenziano, G.; Soyer, H. P.; Chimenti, S.; Talamini, R.; Corona, R.; Sera, F.; 
Binder, M.; Cerroni, L.; De Rosa, G.; Ferrara, G.; Hofmann-Wellenhof, R.; Landthaler, 
M.; Menzies, S. W.; Pehamberger, H.; Piccolo, D.; Rabinovitz, H. S.; Schiffner, R.; 
Staibano, S.; Stolz, W.; Bartenjev, I.; Blum, A.; Braun, R.; Cabo, H.; Carli, P.; De Giorgi, 
V.; Fleming, M. G.; Grichnik, J. M.; Grin, C. M.; Halpern, A. C.; Johr, R.; Katz, B.; 
Kenet, R. O.; Kittler, H.; Kreusch, J.; Malvehy, J.; Mazzocchetti, G.; Oliviero, M.; 
Özdemir, F.; Peris, K.; Perotti, R.; Perusquia, A.; Pizzichetta, M. A.; Puig, S.; Rao, B.; 
Rubegni, P.; Saida, T.; Scalvenzi, M.; Seidenari, S.; Stanganelli, I.; Tanaka, M.; 
Westerhoff, K.; Wolf, I. H.; Braun-Falco, O.; Kerl, H.; Nishikawa, T.; Wolff, K.; Kopf, 
A. W. (2003). Dermoscopy of pigmented skin lesions: Results of a consensus meeting via 
the Internet. Journal of the American Academy of Dermatology, 48 (5):679-693. 

[49] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in 
Machine Learning, 2 (1):1-127. 

[50] Lequan, Y.; Chen, H.; Dou, Q.; Qin, J.; Heng, P. A. (2016). Automated Melanoma 
Recognition in Dermoscopy Images via Very Deep Residual Networks. IEEE 
Transactions on Medical Imaging:1-11. 

[51] Codella, N.; Nguyen, Q.-B.; Pankanti, S.; Gutman, D.; Helba, B.; Halpern, A.; Smith, 
J. R. (2017). Deep Learning Ensembles for Melanoma Recognition in Dermoscopy 
Images. IBM Journal of Research and Development, 61 (4/5):1-28, arXiv preprint 
arXiv:1610.04662v04662. 

[52] Esteva, A.; Kuprel, B.; Novoa, R. A.; Ko, J.; Swetter, S. M.; Blau, H. M.; Thrun, S. 
(2017). Dermatologist-level classification of skin cancer with deep neural networks. 
Nature, 542:115-118. 

[53] Demyanov, S.; Chakravorty, R.; Abedini, M.; Halpern, A.; Garnavi, R. (2016). 
Classification of dermoscopy patterns using deep convolutional neural networks. In: 13th 
International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, April 
13-16 2016. IEEE, pp 364-368. 

[54] Sabbaghi, S.; Aldeen, M.; Garnavi, R. (2016). A deep bag-of-features model for the 
classification of melanomas in dermoscopy images. In: 38th Annual International 



THESIS REPORT 

 

20 
 

Conference of the Engineering in Medicine and Biology Society (EMBC), Orlando, 
Florida, August 16-20 2016. IEEE, pp 1369-1372. 

[55] Kawahara, J.; BenTaieb, A.; Hamarneh, G. (2016). Deep features to classify skin 
lesions. In: 13th International Symposium on Biomedical Imaging (ISBI) Prague, Czech 
Republic, April 13-16 2016. IEEE, pp 1397-1400. 

[56] Sun, X.; Yang, J.; Sun, M.; Wang, K. (2016). A Benchmark for Automatic Visual 
Classification of Clinical Skin Disease Images. In: Leibe, B., Matas, J., Sebe, N., Welling, 
M. (eds) 14th European Conference on Computer Vision, Amsterdam, October 11-14 
2016. Springer, pp 206-222. 
 



 

21 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

PART B - ARTICLE 1 

 

COMPUTATIONAL METHODS FOR THE IMAGE 

SEGMENTATION OF PIGMENTED SKIN LESIONS: A REVIEW 

 
 

Roberta B. Oliveira, Mercedes E. Filho, Zhen Ma, João P. Papa, Aledir S. Pereira 

and João Manuel R. S. Tavares 

 

 

Published in: Computer Methods and Programs in Biomedicine, 131:127-141, 

2016 

 
 
 
 
 
 
 
 
 
 



 

 

 
 
 



COMPUTATIONAL METHODS FOR THE IMAGE SEGMENTATION OF PIGMENTED SKIN LESIONS: A REVIEW 

23 
 

Abstract    

Background and Objectives: Because skin cancer affects millions of people worldwide, 

computational methods for the segmentation of pigmented skin lesions in images have 

been developed in order to assist dermatologists in their diagnosis. This paper aims to 

present a review of the current methods, and outline a comparative analysis with regards 

to several of the fundamental steps of image processing, such as image acquisition, pre-

processing and segmentation. Methods: Techniques that have been proposed to achieve 

these tasks were identified and reviewed. As to the image segmentation task, the 

techniques were classified according to their principle. Results: The techniques employed 

in each step are explained, and their strengths and weaknesses are identified. In addition, 

several of the reviewed techniques are applied to macroscopic and dermoscopy images in 

order to exemplify their results. Conclusions: The image segmentation of skin lesions has 

been addressed successfully in many studies; however, there is a demand for new 

methodologies in order to improve the efficiency.  

Keywords:  Image acquisition; Image pre-processing; Image segmentation; Pigmented 

skin lesion images. 

1. Introduction 

Pigmented skin lesions, which may be classified as benign or malignant, are mainly 

caused by an abnormal production of a group of cells in some specific regions. Benign 

lesions have a more organized behaviour than malignant lesions, since the former do not 

proliferate into other tissues. Nevus, such as melanocytic, blue, halo, sptiz and dysplastic 

(Figure 1a), and seborrheic keratosis (Figure 1b), are examples of benign lesions. In the 

case of malignant lesions, i.e., skin cancer, the cells split quickly, and may invade other 

parts of the body. Indeed, these cells do not die as generally occurs with normal cells. 

Skin cancer may be divided into two categories: melanoma (Figure 1c) and non-

melanoma (Figure 1d). Basal cell carcinoma and squamous cell carcinoma are two 

examples of non-melanoma skin cancer (NMSC) and are the most common of all skin 

cancers. Moreover, these types of cancer have a higher chance of cure than melanoma, 

since they have a reduced capacity to spread (metastasis) to other parts of the body. 

Melanoma is the most aggressive form of skin cancer, and the one with the highest 

mortality rate, due to its high levels of metastasis [1]. 
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Figure 1: Four examples of skin lesions: (a) dysplastic nevus, (b) seborrheic keratosis, (c) 
melanoma, and (d) squamous cell carcinoma (images publicly available in [2]). 

Melanoma was the 19th most common cancer worldwide in 2008, with an approximate 

estimation of 200,000 new cases, and with the highest incidence rate in Australia/New 

Zealand, Northern America and Northern Europe, and the lowest in South-Central Asia 

[3]. Table 1 presents recent data regarding skin cancer in the United States of America 

(USA), the United Kingdom (UK) and Brazil, according to gender. In the USA, 76,100 

new cases of melanoma were estimated to be diagnosed in 2014 [4]. This estimate does 

not include NMSC, since this form of skin cancer is not required to be reported to cancer 

registries. For the same year, 9,710 deaths from melanoma were estimated. Another 

interesting point concerns melanoma incidence rates, which have increased during the 

last 30 years; for example, the incidence rates from 2006 to 2010 have increased by 2.7% 

per year. In the UK, melanoma was the 15th most common cancer in 2010, with 

approximately 12,800 new cases of this disease [3]. As a result, melanoma was the 18th 

most common cause of death from cancer in the UK. In 2011, there were 2,209 deaths 

from melanoma, and 590 deaths from NMSC in the UK. Of these deaths from melanoma, 

59% of the deaths were male patients, and 41% of the deaths were female patients. In 

Brazil, NMSC will be the most common form of cancer, since approximately 182,000 

new cases are estimated in 2014 and 2015 [5]. Although NMSC has a lower mortality 

rate, it has a higher incidence than melanoma.  
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Table 1: Number of new cases of skin cancer, according to gender, in the USA, UK and Brazil. 

Country Type of skin cancer Year 
Number of new cases 

Male Female 

USAa Melanoma 2014 43,890 32,210 

UKb Melanoma 2010 6,201 6,617 

 Non-melanoma  55,747 43,802 

Brazilc Melanoma 2014 2,960 2,930 

 Non-melanoma  98,420 83,710 

a Estimated number, based on 1995-2010 incidence rates. 
b Confirmed cases in 2010. 

c Estimated number in 2014, and valid also for 2015. 

Recently, there has been a great interest in the development of computer-aided 

diagnosis (CAD) systems for the detection and analysis of pigmented skin lesions from 

images [6-9], which can assist the dermatologist in preventing the development of 

malignant lesions. Particularly, CAD systems may be used to monitor benign skin lesions, 

in order to prevent the development of malignancy. Moreover, malignant lesions may be 

diagnosed at an early stage, during which the patient has a higher probability of cure, and 

more favourable conditions for being properly treated.  

On the other hand, there is also a great interest concerning the image segmentation 

step of the CAD systems. This step allows for a better representation of the lesion under 

study, and extraction of its features. Image segmentation has, therefore, a critical role in 

the effectiveness of the CAD systems. Previous studies [10-15] have shown that 

computational methods for image segmentation may provide suitable results for the 

identification of skin lesions in images. Frequently, the images under analysis are pre-

processed for image enhancement and artefact removal, so that more robust 

segmentations may be achieved [16,17]. An overview of lesion border detection methods, 

which addresses the pre-processing, segmentation and post-processing steps, is presented 

in Celebi et al. [18]. In addition, the authors also discuss performance evaluation issues, 

and propose guidelines for future studies. However, they primarily focus on dermoscopy 

images of pigmented skin lesions, and the segmentation methods were classified 

according to the images to be segmented. In this review, we introduce some of the most 

relevant solutions that have been developed to assist the diagnosis of skin lesions from 

images, including those concerning the steps of image acquisition, pre-processing and 

segmentation. In particular, we comprehensively review the computational techniques 

that have been suggested for the image segmentation of pigmented skin lesions. In the 

following sections, these techniques are classified into five classes according to their 
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segmentation principle, specifically, based on edges, thresholding, regions, artificial 

intelligence techniques, and the ones based on active contours. In addition, several of the 

reviewed techniques are applied to macroscopic and dermoscopy images, in order to 

exemplify and discuss their applications. 

The paper is organized as follows: in Section 2, a review of the current state-of-the-art 

concerning the image segmentation of pigmented skin lesions is provided. In addition, 

smoothing and segmentation results by using several methods are presented. In Section 

3, the properties of some of the reviewed computational methods are discussed, and their 

advantages/disadvantages are identified. Finally, in Section 4, the conclusions of the 

review and future trends are outlined. 

2. Image segmentation of pigmented skin lesions 

2.1. Imaging techniques 

Different non-invasive imaging techniques have been employed to assist dermatologists 

in the diagnosis of skin lesions. Dermoscopy, photography, confocal scanning laser 

microscopy (CSLM), optical coherence tomography (OCT), ultrasound, magnetic 

resonance imaging (MRI), and spectroscopic imaging are examples of these techniques 

[19-21]. Macroscopic images, commonly known as clinical images [13,22,23], and 

images acquired by epiluminescence microscopy (ELM), also called dermoscopy or 

dermatoscopy images [12,14,15,24-27], are normally used in the computational analysis 

of skin lesions. Figure 2 presents examples of dermoscopy and macroscopic images. 

Clinical images are usually obtained using common digital video or image cameras. 

However, the imaging conditions are frequently inconsistent; for example, images are 

acquired from variable distances or/and under different illumination conditions. 

Furthermore, the images may have poor resolution, which may cause complications when 

the size of the lesion is small. An additional problem with clinical images is related to the 

presence of artefacts, such as hair, reflections, shadows and skin lines, which may hinder 

the adequate analysis of the imaged skin lesions.  
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Figure 2: Examples of dermoscopy (a and c) and macroscopic (b and d) images: (a) and (b) are 
images of melanoma in situ, and (c) and (d) are of invasive melanoma (these images are publicly 
available in [2]). 

Essentially, ELM is a non-invasive technique for image acquisition, where the lesion 

is immersed in oil, and subsequently a dermatoscope device (which includes a specific 

camera) acquires the images. This technique allows a better visualization of the 

pigmentation pattern on the skin surface. Besides the non-polarised imaging modality due 

to the oil immersion, there are two other modalities of ELM that may be used: cross-

polarization and transillumination, also called side or epi-transillumination. In these 

modalities, the images are acquired via a nevoscope device, which allows the acquisition 

of images with a variable amount of transillumination or cross-polarized surface light. 

Both modalities highlight the surface pigmentation, but the transillumination modality 

has the advantage of highlighting the subsurface vasculature and blood flow. However, 

hairs and air bubbles must be subsequently removed from the images, to allow for a better 

recognition of the skin lesions. 

2.2. Image pre-processing 

The image pre-processing step is an important aspect for the effective identification and 

analysis of pigmented skin lesions in images. As mentioned earlier, the images under 
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analysis may contain several artefacts, such as hairs, reflections, shadows, skin lines and 

air bubbles, which may affect the accuracy of the image segmentation step. Effective 

methods based on colour space transformation [28-30], illumination correction [31,32], 

contrast enhancement [28,29,33,34] and artefact removal [28,35], as a pre-processing step 

have been proposed in order to improve the segmentation accuracy.  

In order to pre-process both macroscopy and dermoscopy images, the original RGB 

(red, green, blue) colour image may be used. The application may adopt scalar (single 

channel) or vector (multichannel) processing. In scalar processing, the colour image is 

converted into a scalar image such as, for example, a grey-level image, or only the blue 

channel is retained, since the lesions are often more evident in this channel [18]. In vector 

processing, the original RGB image may be used directly or after conversion to other 

colour spaces, such as the CIE L*a*b*  [29], CIE L*u*v*  [6], and HSV (hue, saturation, 

value) spaces [31]. These colour spaces are commonly used in literature to enhance colour 

images, since they augment the approximate perceptual uniformity of the image colours. 

Several pre-processing methods were originally designed for scalar images. However, 

these methods may also be applied to colour images, for example, by applying the scalar 

method separately to each colour channel of a given colour space, and then combining 

the results [36], or adopting methods that deal with vector data [37]. 

Artefacts due to illumination variation, such as shadows and reflections, may 

significantly affect the skin lesion segmentation results, specifically in macroscopic 

images. For shading effect attenuation in macroscopic images, Cavalcanti et al. [31] 

proposed a method for illumination variation modelling with a quadratic function. This 

method converts the original RGB image to the HSV colour space, and retains the V 

channel in order to obtain a higher visibility of the shading effects. The normalized image 

is obtained by applying, on the HSV image, an estimate of the quadratic function 

computed from the local illumination intensity in V channel. Afterwards, the normalized 

image is converted from the HSV colour space back to the RGB colour space, but now 

with the shading effects significantly attenuated. Colour image segmentation is then 

performed on this illumination-corrected image, by using the Otsu’s thresholding 

segmentation approach [38]. Recently, Glaister et al. [32] proposed a new multistep 

illumination modelling method to correct the illumination variation in macroscopic 

images. This method first determines a nonparametric model of the illumination by using 

a Monte Carlo sampling method. Then, a parametric quadratic surface model is used to 
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determine the final illumination estimation. Finally, the illumination-corrected image is 

obtained by using the reflectance component computed from the final estimated 

illumination. 

Another factor that complicates the segmentation of skin lesions, in both macroscopic 

and dermoscopy images, is the low contrast of the lesions. Celebi et al. [34] presented a 

method to enhance the contrast in dermoscopy images. The method searches for the 

optimal weights to convert an original RGB image to the corresponding grey-level image, 

by maximizing an Otsu’s histogram bimodality measure. Recently, Barata et al. [36] used 

a shades-of-grey method for colour compensation in dermoscopy images. This method 

only uses image information to estimate the colour of the light source. Morphological 

filtering [39], which is based on set theory, may also be used to enhance skin lesions in 

images [40]. For example, one may refer to the work of Beuren et al. [40], where colour 

morphological filtering is used to enhance the regions of the lesions. Moreover, 

morphological filtering has been applied in order to include areas with low contrast 

borders in the detected lesion regions [26,41], and to remove image noise [12,41]. 

Algorithms for hair removal, in both macroscopic and dermoscopy images, are 

commonly used in pre-processing steps, since this artefact may considerably affect the 

detection of the lesion borders. Lee et al. [42] proposed a solution for hair removal, 

especially thick dark hairs, which is based on one of the first widely adopted methods for 

hair removal in dermoscopy images, and consists of three main steps: 1) identify the hair 

location by applying a grey-level morphological operation to the three colour channels of 

the original RGB image separately, and build the binary hair mask image by using 

thresholding to divide the image into hair and non-hair regions; 2) replace the values of 

the detected hair pixels in the original image by the values of the corresponding nearby 

non-hair pixels; and 3) apply a binary morphological operation and median filter to 

smooth the thin lines. This method has influenced several other methods for hair detection 

and removal [43-46]. 

The presence of hairs in images may also be reduced by the application of image 

smoothing methods, such as the median and anisotropic diffusion filters, without losing 

relevant information about the lesions, and, therefore improving the accuracy of the 

segmentation process. The median filter [47], which is a non-linear image filtering 

method, has been commonly applied on noisy images showing successful results. Unlike 

linear filters, such as the average filter [47], this type of filter allows the smoothing of the 
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original image without blurring edges and thin details. The median filter has been often 

applied to smooth images of skin lesions, as well as to remove artefacts, maintaining the 

edges of the lesions, which is imperative for an adequate segmentation [6,12,48,49]. To 

establish the best median filtering mask for the smoothing of skin lesion images, Celebi 

et al. [48] established a theory, which considers that, for an effective smoothing, the size 

of the filtering mask should be proportional to the size of the input image. Anisotropic 

diffusion [50] has also been used for smoothing skin lesion images [17]. This filter is 

applied iteratively, such that the number of iterations is determined according to the 

amount of noise presented in the input image. However, relevant edges may be removed 

when the number of iterations is too large. Improvements have been proposed, in order 

to enhance the results of the anisotropic diffusion filter. For example, Barcelos et al. [51] 

proposed an enhancement of the anisotropic diffusion algorithm, originally suggested by 

Perona and Malik [50]. The improved algorithm not only aims at smoothing very noisy 

images without removing relevant edges, but also considers the improvements proposed 

by Alvarez et al. [52] and Nordström [53] to enhance the edges. 

The results of the application of the median [47], average [47] and anisotropic 

diffusion [50] filters to an 256 x 256 pixel image are shown in Figure 3. A 9 x 9 

convolution mask was used in the median and average filtering, since other masks did not 

lead to a successfully smoothed image with a reduced noise level. Regarding the 

anisotropic diffusion filter, the smoothing was halted after 150 iterations. 

Unlike most methods proposed in literature for reducing the influence of hairs on 

images of skin lesions, Abbas et al. [16] suggested an effective pre-processing method 

for the reduction of different artefacts, in both dermoscopy and macroscopic images, and, 

consequently, a better detection of lesion borders. Essentially, this method consists of 

three steps: 1) specular reflection reduction by applying homomorphic filtering [54], Fast 

Fourier Transform (FFT) and high pass filtering, in order to modify the illumination and 

reflectance, and obtaining, therefore, high contrast skin lesions, 2) the reduction of 

dermoscopic-gel or air bubble artefacts, based on an adaptive and recursive weighted 

median filter, and 3) hair, blood vessel and skin line detection and reduction, using a line 

detection procedure, based on the two-dimensional (2D) derivatives of Gaussian (DOG) 

[55], and the exemplar-based inpainting technique [56].  
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Figure 3: Application of smoothing filters: (a) original dermoscopy image of a melanoma 
(publicly available in [2]), and the corresponding images obtained after (b) median, (c) average, 
and (d) anisotropic diffusion filtering. 

2.3. Image segmentation 

Segmentation allows the extraction of the region of interest (ROI) of an image. Bearing 

in mind that the skin lesion is the ROI in the image under analysis, the segmentation 

process should not cease until the lesion is fully detached from the image background, or 

until some other outcome is reached. Some artefacts, such as hairs, reflections, shadows, 

skin lines and bubbles, may influence the result of the segmentation process, making it a 

complex computational task. Nonetheless, as mentioned previously, pre-processing 

techniques may be applied to the original images, with the purpose of facilitating the 

segmentation process and improving the resultant accuracy. 

In general, the segmentation process is based on the discontinuity and similarity of 

some properties of the ROIs to be segmented [57]. The segmentation methods may be 

edge-based, i.e., the methods are based on information about the image edges, more 

specifically, they search for abrupt changes, i.e., discontinuities, in the intensity of the 

image pixels relative to their neighbours. Edge detectors are the most common examples 

of such methods. In addition, the segmentation process may depend on similarity criteria, 
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such as similar grey-levels, colours or textures. Thresholding- and region-based 

segmentation are some examples of methods that use similarity criteria to identify skin 

lesions in images. Many segmentation methods are originally designed for scalar images. 

Therefore, several applications are available to convert the original colour image to scalar 

data [58], for example, grey-level images, pursuing the computational simplicity and 

convenience of scalar processing. However, in order obtain better segmentation results 

by using the information contained in all the colour channels of the original images, 

segmentation methods dedicated to process vector images have been developed [59]. 

However, this vector image processing is usually more computationally demanding and 

requires appropriate colour spaces. 

In the following sections, we discuss the applicability of some methods commonly 

used in literature for the segmentation of pigmented skin lesions in images, such as the 

edge-, thresholding- and region-based methods, and methods based on artificial 

intelligence (AI) and active contours. Other methods are discussed in Section 3. The 

reviewed research is summarized in Table 2. Research that combines different methods 

[10,14,60,61], and that compares segmentation methods [12], is also include in Table 2. 

Table 2: Research that has been performed related to the segmentation of skin lesions in images. 

Segmentation method Technique References 

Edge-based Edge detectors [17,62] 

Thresholding-based Otsu’s thresholding [6,26,29,31,34,41,44,49,63-67] 
Fuzzy logic [14] 

Renyi’s entropy [40] 

Adaptive thresholding [12,68]  
Iterative thresholding [33,61,69] 
Ensemble [24] 

Statistics [7,23,70] 

Region-based Region growing [6,7,10,12] 
Statistical region merging [32,48,62,71] 
Iterative stochastic region merging [13] 

AI-based Neural networks [33,60,69] 
Evolutionary computation [11] 
Fuzzy logic [10,12,14,27,44,60,61,71] 
k-means clustering [44,71,72] 

Active contour-based  Adaptive snake [12] 
Gradient vector flow [12,15,65,73,74] 

Level set [66]  

Region-based active contour algorithm [16,28] 

Active contour without edges [12,67]  

Expectation-maximization level set [12] 

Other methods Hill-climbing algorithm  [29] 

Dynamic programming [58,75] 
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2.3.1. Edge-based segmentation 

The changes in intensity of the pixels in an image to be segmented may be determined 

based on the magnitude of the gradient used to detect the edges of the ROI [57]. The 

Prewitt, Sobel, Roberts, Laplacian [57] and Canny [76] operators are common examples 

of edge detectors that lead to image segmentation based on edges. According to Sonka et 

al. [39], edge detectors may only achieve partial image segmentation. Therefore, the 

application of another segmentation method is needed to improve the final segmentation 

result. In particular, edge detectors present the following problems [39]: 1) the detection 

of an edge where no real border exists, 2) the non-detection of an edge where a real border 

exists, 3) the possibility of generating double edges, and 4) the large sensitivity to image 

noise.  

The edge detector developed by Canny [76] has been applied to skin lesion images 

[17,62], due to its advantages compared with other edge detectors: 1) it provides good 

edge detection with a low error probability, 2) it allows a good location of the edge pixels, 

and 3) it avoids the detection of double edges. Firstly, Canny’s algorithm smooths the 

input image ���, ��, performing a convolution with a Gaussian function ���, ��: 
	��, �� = ���, �� ∗ ���, ��,               (1) 

where: 

���, �� = �
��� ���������� 	,               (2) 

and where � is the Gaussian function standard deviation. Then, the gradient magnitude ���, ��, and the direction ���, ��, at each pixel in the smoothed image 	��, ��, are 

computed: 

���, �� = �	�
 + 	�
, and               (3) 

���, �� = � !�� "�"�.                (4) 

Subsequently, the non-maximum suppression technique is used to preserve all pixels with 

local maximum in the gradient image. Afterwards, double thresholding �#�, #
� is 

established to remove the weak edges. The pixels with a gradient magnitude below the #� 

are considered as weak edges, and the pixels with a gradient magnitude above #
 are 

considered as strong edges. Finally, the final edges are defined by all the pixels considered 

as strong edges or also by the weak pixels that can be connected to any strong pixels. 
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Figure 4 illustrates the segmentation results from application of Canny’s edge detector 

to two skin lesion images [76]. Usually, a median filter [47] is applied before the edge 

detector, in order to smooth the original image and reduce the noise. However, the edges 

generated by Canny’s edge detector are usually not satisfactory. Although the lesions are 

identified by the detector, the generated edges are discontinuous; thus, the boundaries of 

the lesions are not fully detected. In addition, there is a large sensitivity to the noise, which 

generates boundaries that are not part of the lesions.  

 

Figure 4: Segmentation results after applying Canny’s edge detector to a dermoscopy image (a 
and c), and to a macroscopic image (b and d). 

Barcelos and Pires [17] employed Canny’s edge detector after the application of an 

anisotropic diffusion smoothing filter [51], and the results demonstrated that the 

unwanted edges were removed. However, some regions of the skin lesions were not 

included in the detected edge map, and the edges were not completely closed. 

2.3.2. Thresholding-based segmentation 

The thresholding technique has been commonly used in several skin lesion segmentation 

methods proposed in literature. This technique is based on the histogram of the input 

image, which represents the distribution of the image pixels, $% = !%/', in terms of each 



COMPUTATIONAL METHODS FOR THE IMAGE SEGMENTATION OF PIGMENTED SKIN LESIONS: A REVIEW 

35 
 

possible intensity level, ( = [1, 2, … , -], where !% is the number of pixels for a particular 

intensity level (, ' is the total number of pixels of the image, and L is the number of 

intensity levels. Thus, the thresholding technique entails the selection of one or multiple 

threshold values to separate the ROIs in the input images. 

Among the various techniques proposed in literature to define the threshold value(s), 

we may cite Otsu's method [38], which has many applications in image segmentation of 

skin lesion [6,26,29,41,49,63,67]. This method is based on a normalized histogram, built 

in order to set the optimal threshold value /, which separates the pixels of the input image 

into two homogeneous classes �01, 0��, with minimal variance (�2
): one class for the 

ROI, 01 = [1,2, … , /], and the other class for the image background, 0� = [/ + 1, / +2, … , -]: 
�2
 = 31�41 − 46�
 + 3��4� − 46�
,             (5) 

31 =	∑ $%8%9� , 3� =	∑ $%:%98;� ,              (6) 

41 	= 	∑ %<=>?8%9� , 4� 	= 	∑ %<=>=
8%98;�  , and             (7) 

46 	= 	∑ ($%8%98;� ,                (8) 

where 31 and 3� are the probabilities, and 41 and 4� the means of the classes 01 and 0�, 

respectively. Thus, 46 is the total mean of the intensities of the input image. Figure 5 

presents the segmentation results after the application of Otsu's method [38] to 

dermoscopy and a macroscopic images. A median filter [47] was employed before the 

segmentation step, to reduce the noise in the original images. Although several lesion 

boundaries are correctly detected, several other regions, such as edges with low contrast, 

are not identified as part of the lesions. Furthermore, this edge detector is very sensitive 

to artefacts and, therefore, because of reflections, some interior regions of the lesions are 

wrongly identified as belonging to the lesions. 

Otsu's method has revealed some problems, such as: (1) the segmented lesions tend to 

be smaller than they are in reality; and (2) it may lead to very irregular lesion edges. 

Yuksel and Borlu [14] proposed a method using the type-2 fuzzy logic technique [77] to 

solve such problems, which automatically determines the threshold value to segment 

dermoscopy images. This technique exhibits good performance in dealing with fuzzy 

values, by determining whether a specific image intensity level belongs to lesion regions 

or belongs to the background skin. Alcón et al. [23] proposed an improved thresholding 
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technique to overcome some issues of Otsu’s method. In the proposed algorithm, the 

threshold is defined by finding the average value between the means of both background 

and lesion probability distributions. Cavalcanti et al. [31] and Gómez et al. [72] suggested 

building projections of the original RGB colour space, where they were able to properly 

apply Otsu’s method. A thresholding method based on the Renyi’s entropy [78] has also 

been applied to define the desired threshold value, leading to segmentations that preserve 

the geometry and shape of the lesions [40]. Another technique to define the threshold 

value is indicated by Xu et al. [70], which considers the average intensity of the strongest 

gradient pixels in the input image. Threshold selection by an iterative [33,61,69] or an 

adaptive [12,68] process has also been adopted to segment skin lesions in images. The 

fusion of the results provided by the ensemble of thresholding methods results in another 

segmentation technique based on thresholding [24]. 

 

Figure 5: Segmentation results after applying Otsu’s method (a) to the dermoscopy image shown 
in Figure 4a, and (b) to the macroscopic image shown in Figure 4b. 

2.3.3. Region-based segmentation 

The region growing algorithm [79], splitting and merging operations [80], and the 

Mumford-Shah method [81] are examples of region-based techniques that have been used 

to segment skin lesion images. The region growing algorithm consists in grouping similar 

neighbouring pixels, or in grouping sub-regions, into larger homogeneous regions 

according to a growing criterion. For example, in a given region of an image, pixels with 

similar properties, such as grey-level, colour or texture, are grouped together [6,7]. The 

splitting and merging operations are region-based techniques applied to group similar 

regions [10,12]. Thus, the same intensity is attributed to all input pixels that have similar 

intensity, in agreement with the grouping criterion. On the other hand, the Mumford-Shah 

method divides the original image into several regions ΩA = Ω� ∪ Ω
 ∪ …∪ ΩC ∪ k, 
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where / is the boundary between them, merging the close regions by analysing their pixel 

intensities. This technique is based on an energy functional E�/�, calculated as: 

E�/� = ∑ FF G|I − J%|G
K�	K�LM +⋋ O�/�% ,             (9) 

where I is a constant function into each image region ΩA, J% = P� !�I�, K� and K� are 

the differentials of � and �, ⋋ is a parameter that is incremented at each iteration, and O�/� is the total length of the regions at each iteration. 

The active contour model without edges [82] is based on the Mumford-Shah method 

and has been used in the image segmentation of skin lesions [12,16]. Examples of the 

results obtained by the Mumford-Shah method applied to skin lesion images are presented 

in Figure 6. The method was employed on two images that were previously smoothed 

using the median filter [47]. Observation of the resultant images, shows that the lesions 

are completed identified, including the lesion regions with considerable colour variation. 

However, some regions are erroneously identified as belonging to the lesions due to 

image artefacts. 

 

Figure 6: Segmentation results after applying the Mumford-Shah method: (a) to the dermoscopy 
image shown in Figure 4a, and (b) to the macroscopic image shown in Figure 4b.   

Castillejos et al. [71], Celebi et al. [48] and Ganzeli et al. [62] employed the statistical 

region merging (SRM) algorithm [83] to detect the edges in images of skin lesions. This 

algorithm is a technique developed to segment colour images based on region growing 

and merging. Simplicity, computational efficiency and excellent performance are the 

main advantages reported for the SRM algorithm. Image quantization and colour space 

transformation steps, that are commonly applied to the original images before their 

segmentation, are unnecessary when this algorithm is used to segment skin lesion images. 
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A method to segment skin lesion images through iterative stochastic region merging 

has been proposed by Wong et al. [13], based on the SRM algorithm [83]: each image 

pixel is assigned to a single region, which is subsequently merged with other regions in a 

stochastic way, based on a probability function of region fusion. This process is 

characterized by a multi-path refining of the results, in order to achieve the best final 

segmentation. This method has been shown to be robust to image artefacts, and to perform 

successfully in cases where several skin lesions, structural lesion variations, varying 

illuminations and colour variations are present in the input images. In addition, it achieves 

successful segmentation in cases where there is low contrast between the lesion and the 

skin background near the lesion boundaries. 

2.3.4. Segmentation based on artificial intelligence 

Techniques based on artificial intelligence (AI) have also been proposed for the image 

segmentation of skin lesions, in which the image pixels are classified as belonging to the 

ROIs or to the background of the images. Neural networks, evolutionary computation and 

fuzzy logic are some examples of these techniques, which aim at performing similar tasks 

to humans, based on learning, natural evolution and human reasoning. These techniques 

may be combined among themselves, or with other traditional image processing 

techniques, in order to improve segmentation performance. 

Artificial neural networks (ANNs) [84], which are parallel distributed systems 

composed of simple processing units with the purpose of obtaining similar results to the 

human brain, have been applied to segment images with skin lesions [33,69]. The 

segmentation performance of ANNs may be improved through the application of Genetic 

Algorithms (GAs) [85], which are computational techniques for searching and 

optimization. GAs are based on natural evolution and biological genetics, with the aim of 

finding the best solution for a given problem; for example, GAs may be employed to 

optimize ANN parameters.  

Roberts and Claridge [11] presented a method to segment skin lesion images through 

Genetic Programming (GP) [86], which is a technique based on natural evolution to solve 

problems following the concepts of genetic algorithms. The proposed method consists in 

creating a random population of programs from the function and terminal sets. The 

function set is built from the image processing operations, such as image thresholding, 

morphological operations, edge detection and merging. The terminal set is built from 

information in the input image, such as the intensity and coordinate values of the pixels. 
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This method showed good generalization with a very small set of training samples. 

Furthermore, the system learns by example, thus increasing the amount of problems in 

which it is applicable. However, this method has some disadvantages regarding the 

complexity of its implementation, and the presence of unnecessary steps, which is 

computationally demanding. 

Fuzzy logic deals with uncertain and imprecise values. Many algorithms based on 

fuzzy logic have been proposed to segment skin lesions in images [10,12,14,27,60,61]. 

This method allows the representation of intermediate values within an interval; in other 

words, the input data is qualitatively analysed (linguistic values). Frequently, the fuzzy 

method is applied together with other segmentation techniques. In Maeda et al. [10] and 

Silveira et al. [12] the fuzzy method, combined with both splitting and merging 

techniques, was used to segment dermoscopy images. This combination, originally 

proposed by Maeda et al. [87, 88], generates an algorithm for the unsupervised perceptual 

segmentation of natural colour images using a fuzzy-based homogeneity measure, which 

performs the fusion of colour and texture features. The algorithm includes four steps: 

simple splitting, local merging, global merging and boundary refinement. 

The fuzzy method was also used to define a threshold value from fuzzy intensity, by 

applying the type-2 fuzzy logic technique [77]; the idea was to determine whether a 

specific intensity belongs to the ROI or to the image background [14]. Another method, 

named neuro-fuzzy approach [60], combines fuzzy logic with neural networks to segment 

dermatological images. In addition, fuzzy logic, combined with clustering techniques, has 

been employed in the image segmentation of skin lesions, e.g., the fuzzy c-means (FCM) 

algorithm [27,61,71]. The basic idea behind the FCM algorithm is to find the centre of 

each cluster, similarly to the traditional k-means algorithm. Nevertheless, this process is 

more flexible, since partial membership may be introduced in the clusters. For each 

iteration of FCM, the minimization of the objective function Q is computed as: 

Q =	∑ ∑ 4%R8SR9� T�% − JRT
U%9� ,            (10) 

4%R = �
∑ V W�=XYZW

T�=XY[T�/�\X]�^_[`]
 , and            (11) 

JR = ∑ a=Z\ �=b=`]∑ a=Z\b=`]  ,               (12) 
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where ' is the number of pixels in the input image, 0 is the number of defined clusters, JR is the centre of each cluster c, 4%R is the degree of membership for the pixels �% in cluster 

c, and / is a coefficient that defines the fuzziness of the resulting clusters. The term 

T�% − JRT is used to measure the similarity of the pixels to the centre JR of a given cluster 

c. 
Figure 7 presents the segmentation results obtained by applying the fuzzy c-means 

method to two images, which have been previously smoothed by applying the median 

filter [47]. Two clusters were defined with the initial mean intensities of 8 and 250. Using 

these parameters, the resultant images demonstrates that the lesions are successfully 

segmented. However, some lesion pixels with low contrast are not clustered into the 

lesion groups. 

 

Figure 7: Segmentation results obtained after applying the fuzzy c-means method: (a) to the 
dermoscopy image shown in Figure 4a, and (b) to the macroscopic image shown in Figure 4b. 

Zhou et al. [27] proposed a new mean shift approach, based on the FCM algorithm, 

called the anisotropic mean shift algorithm (AMSFCM), to segment dermoscopic images. 

The AMSFCM algorithm [89] is more effective than the FCM algorithm, and requires 

less computational time than the traditional mean shift technique. Furthermore, it 

provides superior segmentation results. Mean shift-based techniques [90] allow the 

estimation of local density gradients of similar pixels by using radially symmetric kernels. 

However, these kernels may not adequately deal with the presence of irregular structures 

and noise in the input image. On the other hand, the AMSFCM algorithm provides 

improved performance in these cases, since it uses an anisotropic kernel. Castillejos et al. 

[71] proposed a cluster pre-selection algorithm based on the FCM algorithm (CPSFCM), 

in order to use fuzzy logic to automatically determine the optimal number of clusters, 

based on the input image data, such as the intensity values.  
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2.3.5. Segmentation based on active contours 

Algorithms based on active contours have been used for segmenting skin lesion images 

[12,15,16,28,66]. In these algorithms, the initial curves move toward the boundaries of 

the objects of interest through appropriate deformation. A deformable model may be 

classified as parametric [91-93] or geometric [59,82,94-96], according to the technique 

used to track the curve movement.   

Parametric models include the traditional active contour models, namely, snake 

models [92]. Typically, in these models, the curve deformation is guided by energy forces, 

in which an internal energy determines the smoothness level by the definition of the 

curve’s elasticity and rigidity; in other words, it controls the degree of shrinkage or 

expansion of the model curve in order to avoid over-deformations. An external energy is 

also included in the models, which has the function of driving the curve to the desired 

boundary. This energy may be defined by the user or through an automatic process. 

Image-based energies may also be defined, which drive the curve toward interesting 

image features, such as those based on image intensity, gradient, line segments and 

corners. However, these models have some limitations [82,93]: 1) the curve initialization 

must be near the object’s boundary, 2) the models have difficulty in dealing with 

boundaries with large curvatures, 3) the stop criterion of the curve deformation usually 

depends on the image gradient, which may cause bad edge localization when the gradient 

value is not high enough, and 4) these models have difficulty in dealing with topological 

changes during the curve evolution. 

The gradient vector flow (GVF) [93] is another parametric model that has been used 

in the segmentation of skin lesions [12,15,65]. Xu and Prince [93] proposed a new 

external energy for the active contour models, which is computed by a linear partial 

differential equation, and extends the gradient vectors at the image edges to the whole 

image. The goal of the new model was to overcome some of the main problems of the 

traditional snake model, in particular, the curve initialization and the convergence onto 

boundary regions with large curvature. On the other hand, Zhou et al. [15,73,74] proposed 

a new type of dynamic energy for the segmentation of skin lesions, that combines the 

classical GVF model [93] and the mean shift algorithm [97]. This algorithm was designed 

to find the most similar edges to the true boundaries, by calculating the distance between 

the centroid of the curve and the true boundary of the object of interest. Thus, the curve 

evolution towards the ROI is generated by the gradient vector flow as well as by the mean 
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shift of the pixels contained within the curve. This combination makes the model 

versatile, because the successful calculation of the image-based energies is guaranteed, 

even in very noisy images. 

Geometric models are characterized by the topological changes that the curve may 

experience during the segmentation process, and are less dependent on the initial curve 

conditions. Level set method [94] and active contour model without edges, known as 

Chan-Vese’s model [82], are such examples of geometric models. The level set method 

was originally proposed by Osher and Sethian [94] to handle topological changes during 

the curve evolution, which is one of the limitations of the traditional parametric models. 

The curve evolution is implicitly tracked by a level set function, which allows the easy 

identification of a pixel: whether an image pixel is located inside, outside or on the curve. 

The geometric properties of the curve may be easily computed by the level set function. 

The active contour model without edges proposed by Chan and Vese [82] is based on 

the average of the intensities of the image pixels, and not on the image gradient. 

Therefore, the model uses the concepts of the Mumford-Shah [81] and Level Set [94] 

segmentation techniques. Essentially, Chan-Vese’s model considers a "fitting" term Q for 

the energy minimization, which is calculated by means of an energy functional based on 

the level set function, d, to identify whether the object of interest is inside or outside the 

curve, 0. The minimization of the energy function Q�J�, J
, d� allows the deformation of 

the curve toward the boundary of the object, where the inside and outside intensities are 

constant and similar:  

Q�J�, J
, d� = 4 F efd��, ��g|∇d��, ��|K�	K�L + i F jfd��, ��gK�	K�L +⋋� F |I1��, �� −L
J�|
jfd��, ��gK�	K� +⋋
 F |I1��, �� − J
|
 k1 − jfd��, ��gl K�	K�L ,                  (13) 

where I1 is a pre-processed image, as a bounded function on Ωm and with real values. The 

fixed parameters 4, i ≥ 0, ⋋� and ⋋
> 0 are weights for the fitting term. The terms j 

and e are the Heaviside and Dirac delta functions, respectively. The constants J� and J
, 

which are based on Mumford-Shah’s segmentation model, are the average image I1 

inside and outside the curve 0, respectively, and given by: 

J��d� = F q?��,��r�s��,���t�t�u F r�s��,���t�t�u 	, and            (14) 
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J
�d� = F q?��,�����r�s��,����t�t�u F ���r�s��,����t�t�u 	.             (15) 

Chan-Vese’s model has been used in the segmentation of skin lesions in images 

[12,16,67], due to its advantages when compared with other segmentation techniques 

based on the active contour model [82], such as: 1) the initial curve may be defined more 

freely in the image, 2) the inner contours are automatically detected without the need to 

introduce a second curve in the image, 3) the object detection is carried out even in the 

presence of varying intensities, very smooth boundaries and where the boundaries may 

not be successfully defined by the gradient, a situation which is not effectively handled 

by the traditional active contour model, and 4) it provides effective detection of object 

boundaries even on noisy images, without the necessity to previously smooth the original 

images. 

Figure 8 presents the segmentation results obtained by applying the traditional Chan-

Vese’s model [82] to two images, which were previously smoothed using a median filter 

[47]. The segmentation process was halted when the edges were on the lesion boundaries, 

or when the maximum number of iterations was reached. From the resultant images, one 

may confirm that this model has provided good segmentation results, having identified 

low contrast boundaries and overcome the image noise. 

 

Figure 8: Segmentation results obtained after applying Chan-Vese’s model: (a) to the dermoscopy 
image shown in Figure 4a, and (b) to the macroscopic image shown in Figure 4b.  

Abbas et al. [28] proposed an improved, perceptually-oriented region-based active 

contour (RAC) scheme [98], where the segmentation concept is based on Chan-Vese’s 

model [82] to determine the edges of the lesion to be segmented. The authors suggested 

this model due to its ability to simultaneously define multiple regions, separate 
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heterogeneous objects, successfully deal with image noise, and because of the automatic 

convergence of the modelled curve. 

3. Discussion 

In general, the segmentation results are post-processed, in order to improve the accuracy 

of the obtained lesion edges. In many cases, morphological filters are used to smooth the 

edges, to remove the isolated regions and/or even to fill the interior of the segmented 

lesion regions [12,26,27,41,48,61]. The final contours obtained for the lesions may be 

compared with ground truths defined by one or more specialists. Additionally, the 

accuracy of the edge detection results may be measured using statistical metrics, in order 

to estimate the associated precision and recall, sensitivity and specificity, error probability 

and operation exclusive disjunction (XOR) [29,49,99]. The accuracy of the segmentation 

depends on the model and techniques used to solve the problem. Figure 9 illustrates the 

distribution of the methods reviewed in this article, according to the applied principle, 

which have been developed to segment pigmented skin lesions in images. 

 

Figure 9: Distribution of the reviewed methods for the segmentation of skin lesions according to 
the applied principle. 

Threshold-based techniques have been widely used, mainly because of their 

simplicity, computational efficiency and good performance. The wide use of techniques 

based on AI is justified by the advantages it offers, such as the possibility of learning from 

sample cases provided by the ANNs, the search and optimization for the best 
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segmentation results provided by algorithms based on GAs, and the capability to deal 

with imprecise values that are provided by fuzzy logic. Algorithms based on the active 

contour model have also been frequently proposed for the segmentation of skin lesions. 

Nevertheless, parametric models have difficulty in dealing with topological changes and 

large curvatures. On the other hand, geometric models do not present such problems, but 

their computational complexity may be prohibitive. Region-based methods have also 

been used, since such methods have shown successful performance even in the presence 

of several obstacles, such as illumination and colour variation. Usually, edge-based 

segmentation techniques are not applied independently, since these techniques may not 

completely identify the edges of the lesions, which is imperative in the analysis of skin 

lesions in images.  

Clustering algorithms have also been applied to segment skin lesion images 

[44,71,72]. For example, the k-means clustering algorithm is used by Castillejos et al. 

[71]. The authors present a novel approach to segment the images based on the wavelet 

transform for k-means, FCM and CPSFCM algorithms. The proposed methods achieved 

superior results when compared with techniques that did not apply the wavelet transform. 

The hill-climbing algorithm (HCA) is a technique based on the clustering of points on an 

image, which is also applied to detect the ROIs of skin lesion images [29]. This algorithm 

takes an image and the number of histogram bins in each dimension as input parameters, 

and returns a labelled image, whereas in the traditional k-means algorithm, the numbers 

of clusters (k) are specified manually by the users. Image segmentation based on such a 

technique relies on a simple, fast and non-parametric algorithm. In Abbas et al. [58,75], 

a new segmentation method based on dynamic programming was proposed, in order to 

overcome the limitation of thresholding, region-growing and clustering, as well as level 

set-based segmentation methods. This method is a general optimization solution, with 

good edge-based segmentation capabilities, its ability to solve for local minima or 

overlapping problems, its computational efficiency, and its excellent performance in 

detecting lesion borders in dermoscopy images. The combination of different methods 

have also been adopted to improve the final result of the image segmentation process, 

such as finding the approximate location of lesion, and automatically defining the initial 

contours, mainly to be used with the active contour model [7,65,69].  

Table 3 allows the performance comparison of the methods reviewed to segment both 

macroscopic and dermoscopy images of skin lesions, which are mostly performed 
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automatically. The segmentation results are compared against the ground-truth defined 

by one or more specialists, or their quality has been visually assessed. The table indicates 

the number and type of image used, the colour spaces and channels employed in the pre-

processing and segmentation steps, and the values of the evaluation measures. 

In order to obtain enhanced segmentation results, both from dermoscopy and 

macroscopic images, pre-processing methods, such as colour space transformation, 

illumination correction, contrast enhancement and artefact removal, have been used. The 

median filter [47] and anisotropic diffusion filter [51] are usually applied to smooth 

images, in order to reduce the noise. Nonetheless, these filters cannot deal with some 

obstacles, such as illumination variation and very thick dark hair. Algorithms based on 

hair detection and repair, for example, based on inpainting techniques, have been used for 

hair removal [43].These enhance the lesions, which can lead to important improvements, 

and, therefore, favorably affect the diagnosis. 

With regards to the segmentation step, edge-based techniques are not suggested for 

segment skin lesions, since these techniques may produce segmentations with edges that 

are not completely closed. On the other hand, thresholding-, region-, and AI-based 

segmentation techniques may completely identify the lesions in the images. However, 

lesion boundaries with low contrast are generally not detected by such techniques. 

Moreover, these techniques are susceptible to image artefacts. Other techniques based on 

entropy or fuzzy logic [14,40], to define the threshold value, may sometimes achieve 

superior segmentation results. The region-based approach proposed by Wong et al. [13] 

has a better segmentation performance, even in the presence of boundaries with low 

contrast. In addition, such a method can tackle structural variations, varying illumination 

and colour variations. Other techniques have also been suggested to convert the FCM 

segmentation method into a more effective approach for segmenting skin lesions in 

images [27]. Using these methods, better segmentation results may be achieved, even in 

the presence of irregular lesions and image noise. Active contour models [82] are a good 

option for the segmentation of skin lesions, since these models can adequately deal with 

varying intensities, low contrast boundaries and noisy images. Nevertheless, these models 

also have disadvantages; for example, the segmentation result depends on the suitability 

of the initial curve. 
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Table 3: Comparison of the reviewed segmentation methods for skin lesions, both in macroscopic 
and dermoscopy images. 

Ref. Year Image number 
(Type) 

Pre-processing 
(Colour space) 

Segmentation 
(Colour space) 

Mean result 
(Evaluation measure) 

[66] 2015 90 (DB1) / 
160 (DB2) 
(Dermoscopy) 

Smoothing (RGB) Thresholding + Active 
contour (CIE L*a*b*  and 
CIE L*u*v*)  

DB1: 10.82% (XOR); 
DB2: 13.92% (XOR) 

[73] 2013 100 
(Dermoscopy) 

- Active contour (Grey-
levels) 

0.86 (SE), 0.99 (SP) 

[67] 2013 152 
(Macroscopic) 

Illumination 
correction (HSV) 

Thresholding + Active 
contour 
(w
̅Uand w 	̅: channels) 

15.60% (XOR), 90.07% 
(SE), 99.11% (SP) 

[24] 2013 90 
(Dermoscopy) 

- Thresholding + fusion 
(Blue-channel - RGB) 

8.31% (XOR) 

[29] 2013 100 
(Dermoscopy) 

Contrast 
enhancement (CIE 
L*a*b* ) 

Hill-climbing algorithm + 
thresholding 
(CIE L*a*b* ) 

94.25% (TP), 3.56% 
(FP), 4% (EP) 

[75] 2012 100 
(Dermoscopy) 

Artefact removal 
(CIE L*a*b*)  

Dynamic programming 
(CIE L*a*b* and Grey-
levels) 

94.64% (SE), 98.14% 
(SP), 5.23% (EP) 

[28] 2012 175 
(Dermoscopy) 

Illumination 
correction, contrast 
enhancement, hair 
removal (JCh and 
CIECAM02) 

Active contour 
(JCh and CIECAM02) 

Single contour 
initialization: 8.38% 
(EP); 
Multi-contour 
initialization: 4.10% 
(EP) 

[26] 2012 426 
(Dermoscopy) 

Smoothing, 
Illumination 
correction (Grey-
levels, RGB) 

Thresholding 
(RGB) 

NoMSLs: 84.5% 
(Prec.), 88.5% (Rec.); 
MSLs: 93.9% (Prec.), 
93.8% (Rec.) 

[71] 2012 50 
(Dermoscopy) 

- AI-based 
(RGB) 

Non-reported 
SE, SP, AUC 

[40] 2012 100 
(Macroscopic) 

Mathematical 
morphology (HSI) 

Thresholding 
(Grey-levels) 

Ben.: 95.22% (FM), 
4.79 (NRM); 
Mal.: 94.65% (FM), 
5.56% (NRM) 

[58] 2011 240 
(Dermoscopy) 

Artefact removal 
(HSV) 

Dynamic programming 
(Grey-levels) 

Ben. Mel.: 8.6% (EP); 
Melan.: 5.04% (EP); 
BCC: 9.0% (EP); 
MCC: 7.02% (EP); 
Seb. Kerat.: 2.01% 
(EP); 
Nevus: 3.24% (EP) 

[16] 2011 320 
(Dermoscopy) 

Artefact removal 
(RGB) 

Active contour 
(Grey-levels) 

4.58% (EP) 

[74] 2011 100 
(Dermoscopy) 

- Active contour 
(Grey-levels) 

0.81 (SE), 0.99 (SP) 

[13] 2011 60 
(Macroscopic) 

- Region-based 
(RGB) 

9.16% (EP) 

[33] 2011 100 
(Dermoscopy) 

Colour and contrast 
enhancement 
(RGB) 

AI-based (RGB and Grey-
levels) 

RGB: 0.24, 0.16, 0.17 
(XOR); 
Grey-levels: 0.16 
(XOR) 

[49] 2011 85 
(Dermoscopy) 

Hair removal, 
Smoothing, 
Contrast 
enhancement (RGB 
and Grey-levels) 

Thresholding + AI-based 
(XYZ, RGB 
and Grey-levels) 

89.64% (SE), 99.43% 
(SP) 

[63] 2010 300 
(Dermoscopy) 

- Thresholding (Grey-levels) Visual 

[15] 2010 100 
Dermoscopy 

- Active contour (Grey-
levels) 

0.99 (SP), 0.81 (SE) 
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Table 3: Continued. 

Ref. Year Image number 
(Type) 

Pre-processing 
(Colour space) 

Segmentation 
(Colour space) 

Mean result 
(Evaluation measure) 

[12] 2009 100 
(Dermoscopy) 

Mathematical 
morphology, 
smoothing (HSV) 

Active contour 
(CIEL*a*b* ) 

12.63% (HM), 95.47% 
(TDR), 36.90% (HD) 

[34] 2009 367 
(Dermoscopy) 

Contrast 
enhancement 

Thresholding (Grey-levels) 16.56% (XOR) 

[14] 2009 Non-reported 
(Dermoscopy) 

- Thresholding + Fuzzy logic 
(Grey-levels) 

Visual 

[17] 2009 10 
(Macroscopic) 

Smoothing (RGB) Edge-based (Grey-levels) Visual 

[27] 2009 100 
(Dermoscopy) 

- AI-based (RGB) 0.78 (SE), 0.99 (SP) 

[48] 2008 90 
(Dermoscopy) 

Black frame 
removal, smoothing 
(HSL) 

Region-based (RGB) Ground-truth 1: 11.10% 
(EP); 
Ground-truth 2: 10.27% 
(EP); 
Ground-truth 3: 10.53% 
(EP) 

[7] 2008 319 
(Dermoscopy) 

Smoothing (RGB) Thresholding + region-
based (RGB) 

94.1% (Prec.), 95.3% 
(Rec.) 

[10] 2008 50 
(Dermoscopy) 

- AI-based + region-based 
(CIEL*a*b* ) 

Non-reported 

[65] 2005 100 
(Dermoscopy) 

Smoothing (Grey-
levels) 

Thresholding + Active 
contour (Grey-levels) 

Ben.: 13.77% (EP); 
Melan.: 19.76% (EP) 

[100] 2004 Non-reported 
(Dermoscopy) 

Mathematical 
morphology 
Smoothing (Grey-
levels) 

Thresholding + AI-based 
(RGB) 

Non-reported 

[11] 2003 100 
(Dermoscopy) 

- AI-based (Non-reported) 97% (SE), 81% (SP) 

Ref.: reference; Prec.: precision; Rec.: recall; Ben.: benign; Mal.: malignant; Ben. Mel.: benign melanocytic; Melan.: 
melanoma; Seb. Kerat.: seborrheic keratosis; DB: database; XOR: exclusive disjunction; SE: sensitivity; SP: 
specificity; EP: error probability; TP: true positive rate; FP: false positive rate; AUC: area under an ROC curve; 
ROC: receiver operating characteristics; FM: F-measure; NRM: negative rate metric; NoMSLs: non-melanocytic 
skin lesions; MSLs: melanocytic skin lesions; BCC: basal cell carcinoma; MCC: Merkel cell carcinoma; HM: 
Hammoude distance; TDR: true detection rate; HD: Hausdorff distance. 

4. Conclusions 

Image segmentation is an important step for the effective computational diagnosis of 

pigmented skin lesions in images. Skin lesion diagnosis is an area of increased interest, 

due both to the importance of prevention and to early diagnosis of skin cancer. Although 

the image segmentation of skin lesions has been addressed in several studies and 

successful applications, there is the potential to develop new methodologies and to 

improve the performance of existing methods. Here, we have presented a review about 

current methods that have been proposed to segment skin lesions. Additionally, we have 

introduced techniques used to acquire and pre-process images, with a focus on their 

subsequent segmentation. 

From the presented review, one may conclude that dermoscopy images should be more 

commonly used in the computational diagnosis of skin lesions, since these images present 
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less artefacts and more detailed features, which may lead to more adequate lesion 

segmentation and analysis. Nevertheless, techniques to remove or reduce the artefacts are 

usually necessary to obtain robust segmentation results.  

The reviewed segmentation techniques were classified into: edge-, thresholding-, 

region-, AI- and active contour-based, and others categories. We have presented and 

discussed results obtained with some of these techniques applied to dermoscopy and 

macroscopic images of skin lesions. Active contour models can provide good results on 

images with colour variation and low contrast of the lesion boundaries. Therefore, such 

models are a good option for the segmentation of skin lesions. However, other methods 

with improvements, or in combination with other techniques, may also provide good 

lesion detections.  

In conclusion, the future trends regarding the image segmentation of skin lesions are 

to search for superior accuracy in terms of the detection of the lesion edges, as well as to 

take into account other issues in the development of computational solutions, such as 

computational performance, automaticity level, image noise smoothing and removal, and 

image enhancement. 
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Abstract    

Skin cancer is considered as one of the most common types of cancer in several countries 

and its incidence rate has increased in recent years. Melanoma cases have caused an 

increasing number of deaths worldwide, since this type of skin cancer is the most 

aggressive compared to other types. Computational methods have been developed to 

assist dermatologists in early diagnosis of skin cancer. An overview of the main and 

current computational methods that have been proposed for pattern analysis and 

pigmented skin lesion classification is addressed in this review. In addition, a discussion 

about the application of such methods, as well as future trends are also provided. Several 

methods for feature extraction from both macroscopic and dermoscopic images and 

models for feature selection are introduced and discussed. Furthermore, classification 

algorithms and evaluation procedures are described, and performance results for lesion 

classification and pattern analysis are given.  

Keywords:  Pattern analysis; Feature extraction and selection; Classification methods; 

Macroscopic and dermoscopic images. 

1. Introduction 

Computational methods for skin cancer diagnosis have been proposed in order to aid 

dermatologists in early assessment of skin cancer and in the follow-up of pigmented skin 

lesions [1-3]. Such lesions represent an abnormal production of melanocytes cells, which 

are mainly caused by excessive sun exposure. Melanocytes cells are responsible for 

creating the substance melanin, one of the functions of which is to provide pigmentation 

in the skin. Furthermore, the number of skin cancer cases has increased in the last years, 

and consequently, an increasing number of deaths caused by this disease has been 

reported, particularly due to melanoma cases (Figures 1c and d) [4-6]. Therefore, 

pigmented skin lesions have been a cause for global concern, since some types of benign 

lesions may become skin cancer, such as dysplastic nevi (Figures 1a and b).  
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Figure 1: Two examples of macroscopic images (a and c) and dermoscopic images (b and d): (a) 
and (b) are images of a dysplastic nevus and, (c) and (d) are of an invasive melanoma (images 
publicly available from Bourne et al. [7]). 

Image acquisition, pre-processing, segmentation, feature extraction, and classification 

are fundamental steps commonly found in computational systems for diagnosing skin 

lesions. Different non-invasive imaging techniques have been used to assist 

dermatologists [8]. Macroscopic images [9,10] and dermoscopic images [11,12] are 

examples of images acquired from such techniques that have been widely used in the 

diagnosis of pigmented skin lesions by computational methods. Macroscopic images 

(Figures 1a and c), commonly known as clinical images, are usually acquired from 

standard cameras or mobile devices. On the other hand, dermoscopic images (Figures 1b 

and d), may be acquired from dermatoscope devices or specific cameras in order to better 

visualize the pigmentation pattern on the skin surface. However, their imaging conditions 

are frequently inconsistent; for example, macroscopic images can be acquired from 

variable distances and/or under different illumination conditions. Furthermore, the 

images may have poor resolution, which may be challenging when the lesion under study 

is small. An additional problem with both macroscopy and dermoscopic images is related 

to the presence of artefacts, such as hair, reflections, shadows, skin lines and bubbles, 

which may hinder adequate analysis of the imaged skin lesions. 

The identification of the regions of the lesions in such images may be performed in 

order to assist in the process of classification [13]. Segmentation is an important step that 

allows the extraction of such regions of interest (ROI) from an image [14-34]. However, 
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before the segmentation step, previous pre-processing methods are usually applied to 

reduce the effects of undesirable artefacts that may influence the outcome of the 

segmentation step. These methods can be based on colour space transformation 

[20,26,35], illumination correction [36,37], contrast enhancement [20,22,23,26,38-42], 

artefact removal [14,20,21,43,44] and approximate lesion localization [45]. In addition, 

hair removal methods are also used in pre-processing steps, since this artefact may 

considerably affect the detection of lesion borders [46-53]. Lee et al. [54] proposed a 

solution for hair removal, especially thick dark hairs, which is based on one of the first 

widely adopted methods for hair removal in dermoscopy images, and consists of 

identifying the hair location, replacing the values of the detected hair pixels in the original 

image by the values of the corresponding nearby non-hair pixels, and smoothing the thin 

lines. An overview of lesion border detection methods, including the pre-processing, 

segmentation and post-processing steps, is presented in Celebi et al. [55,56]. In addition, 

the authors also discuss performance evaluation issues and propose guidelines for future 

studies.  

Computational methods for pigmented skin lesion classification are usually based on 

the features of the pixels within the segmented ROIs. Therefore, the extraction of 

representative features of the ROIs under analysis is an important step for the efficient 

classification of the segmented lesions. In this step, common difficulties are: 1) 

identification of the features to be used; 2) to confirm that the number of selected features 

is sufficient to describe the classification problem; 3) the number of selected features is 

too large, which requires high computational resources; and 4) there are redundant and/or 

irrelevant features that should be removed from the feature set. Techniques to reduce the 

dimensionality of the data may be used to solve these problems according to one of the 

following reduction strategies: feature transformation (also known as feature extraction 

in literature concerning pattern recognition [57,58]), and feature selection [59].  

The feature extraction strategy allows the modification of all the data of the image, in 

order to emphasize the most effective features, ensuring the correct separation of the 

classification classes [57]. Such strategy is based on the generation of a new feature space, 

which may expand or reduce, according to the adopted strategy. The new features may 

be extracted by means of discovery of missing information from relationships among the 

features, or even by means of searching for a new feature space with smaller dimensions 

through functional mapping. Contrary, new features are not created in the feature 
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selection strategy, meaning that a subset from the original features is defined when using 

this approach. Both strategies may also be combined in order to achieve a better 

representation of the features. For example, in cases in which the feature extraction step 

increases the number of features, feature selection algorithms can provide an automatic 

reduction of such excessive features. Furthermore, a larger feature space may include 

redundant or irrelevant data [60].  

Several solutions [61-64] have been proposed for feature extraction and selection of 

pigmented skin lesions, in order to represent them according to a certain clinical criteria 

[65-67]. Such features may be used for the classification process, in order to provide 

dermatologists with a computer-aided diagnosis of pigmented skin lesions [2,12]. In this 

review, some of the most relevant solutions that have been developed to assist the skin 

lesion diagnosis from macroscopic and dermoscopic images are introduced, including 

those concerning the steps of feature extraction and selection, and image classification. 

Hence, this review is highly valuable for those wishing the design and/or implementation 

of competent expert systems for the automated classification of skin lesions in images. 

This paper is organized as follows: a review of the main computational methods that 

have been applied to extract and select features from macroscopic and dermoscopic 

images of pigmented skin lesions is presented in Section 2. The main focus of that section 

is on the feature extraction step according to several clinical criteria. In addition, the 

feature selection process is addressed. The current state-of-the-art concerning the 

pigmented skin lesion classification, including the advantages and disadvantages of the 

reviewed methods, evaluation measures, and performance results for pattern and lesion 

classification, is presented in Section 3. Finally, conclusions and future trends about the 

computational methods of pigmented skin lesion classification are pointed out in the last 

section. 

2. Image analysis of pigmented skin lesions 

Computational methods regarding the feature extraction have been commonly developed 

based on the ABCD(E) rule, pattern analysis, seven-point checklist and Menzies’ method, 

which are examples of clinical approaches used for the diagnosis of skin cancer from 

images [67-69]. The first approach can be used to extract features from both macroscopic 

and dermoscopic images, whereas the other approaches are usually applied to 

dermoscopic images in order to identify more detailed pattern features on the surfaces of 
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the lesions. The feature analysis based on these approaches, as well as the feature 

selection and extraction steps are presented with details in the following sections. 

2.1. Feature analysis based on clinical approaches 

The ABCD(E) rule is based on asymmetry, border, colour, diameter (or differential 

structures in the case of dermoscopic images), and evolution (or elevation) features, 

according to the criteria presented in Table 1. Such rule has been widely used for the 

feature extraction and automatic diagnosis of pigmented skin lesions [10,70].  

Table 1: Criteria of the ABCD(E) rule for the diagnosis of skin cancer from clinical and 
dermoscopy analysis. 

Feature Clinical analysis Feature Dermoscopy analysis a  
Benign lesion Malignant lesion Definition Score Weight 

factor 
Asymmetry (A) Shape is 

symmetric 
Shape is 
asymmetric 

Asymmetry (A) Border, colours or 
structures are asymmetric 
in 0, 1, or 2 perpendicular 
axes 

0-2 1.3 

Border (B) Border is 
regular or well-
defined  

Border is 
irregular or ill-
defined 

Border (B) Abrupt cut-off of network 
at the border in 0-8 
segments 

0-8 0.1 

Colour (C) Colours are 
uniform 

Colours are non-
uniform 

Colour (C) Presence of six possible 
basic colours b  

1-6 0.5 

Diameter (D) Size <6 mm Size ≥ 6 mm Differential 
structural (D) 

Presence of five 
differential structural 
components c 

1-5 0.5 

Evolution (E) No change Changes in size, 
shape or shades 
of colour 
features 

    

Elevation (E) Smooth surface  High surface     

a Total dermatoscopy score (TDS) = (A score x 1.3) + (B score x 0.1) + (C score x 0.5) + (D score x 0.5). Diagnosis: TDS<4.75, 
benign melanocytic lesion; TDS of 4.75-5.45, suspicious lesion; TDS>5.45, lesion highly suspicious for melanoma. 
b White, red, light-brown, dark-brown, blue-grey, and black. 
c Network, structureless areas, branched streaks, dots, and globules. 

 

The feature extraction based on pattern analysis has also been used for the pigmented 

skin lesion automatic diagnosis [71-74]. This approach assists in diagnosis by 

determining the presence of specific patterns visible in dermoscopic images, which may 

be divided into global and local patterns [75], as detailed in Table 2. Global patterns are 

represented by textured structures present in most of the lesions. Some examples of such 

patterns are illustrated in Figure 2. Local patterns are dermoscopic structures. Such 

patterns may be present or absent, as well as presenting irregular/regular or 

atypical/typical structures, as indicated in Table 2, which may define the type of lesion or 

whether it is benign or malignant. Examples of such patterns are illustrated in Figure 3. 
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Table 2: Pattern analysis in dermoscopic images. 

Global pattern Local pattern 

Reticular 
Pigmented network 
(present or absent/ typical or atypical)   

Globular  
Dots/globules  
(present or absent/ regular or irregular)  

Cobblestone  
Streaks  
(present or absent/ regular or irregular) 

Homogeneous  
Blue-whitish veil  
(present or absent)  

Starburst  
Blotches or pigmentation 
(present or absent/ regular or irregular)  

Parallel  
Hypopigmentation  
(present or absent) 

Multicomponent  
(combination of three or more global patterns) 

Regression structures  
(present or absent) 

Non-specific 
(absent patterns)  

Vascular structures 
(present or absent)  

 

 

Figure 2: Examples of global patterns in dermatoscopy images: (a) reticular, (b) globular, (c) 
cobblestone, (d) homogeneous, (e) parallel and (f) starburst (images available in Argenziano et 
al. [76]). 
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Figure 3: Examples of local patterns in a dermatoscopy image: (a) atypical pigmented network, 
(b) irregular dots/globules, (c) blue-whitish veil, (d) irregular pigmentation and (e) irregular 
streaks (adapted from Celebi et al. [77]). 

The pattern analysis consists of examining the size, uniformity and distribution of the 

above-mentioned patterns. The benign lesion structures are usually uniform; in other 

words, the lesions do not present several patterns in their structure. Therefore, the 

presence of at least three (multicomponent), parallel or nonspecific global patterns 

indicates a higher probability of being a melanoma (malignant lesion). Furthermore, the 

presence of local patterns, such as blue-whitish veil and regression structures, or even 

some patterns considered atypical, irregular or asymmetric may identify a melanoma [75]. 

Due to the low number of criteria to be analysed, the seven-point checklist and Menzies’ 

method were introduced for skin lesion diagnosis from dermoscopic images in order to 

simplify the common pattern analysis [67]. The criteria of both clinical approaches are 

detailed in Table 3.  

Table 3: Diagnostic criteria included the seven-point checklist and Menzies’ method. 

Seven-point checklist a Menzies’ method d 
Major criteria b Minor criteria c Colour of lesion Symmetry of pattern Positive feature 
Atypical pigmented 
network 

Irregular streaks One colour Symmetrical pattern  Blue-whitish veil 

Blue-whitish veil 
Irregular 
pigmentation  

More than one 
colour 

Asymmetrical 
pattern 

Multiple brown dots 

Atypical vascular pattern 
Irregular 
dots/globules 

  Pseudopods 

 Regression structures   Radial streaming 
    Scarlike depigmentation 

    
Peripheral black 
dots/globules 

    Multiple colours (5 or 6) 
    Multiple blue/grey dots 
    Broad pigment network 
a Seven-point total score < 3 = non-melanoma or ≥ 3 = melanoma. 
b Major criteria receive 2 points. 
c Minor criteria receive 1 point. 
d Diagnosis for benign lesions (symmetrical pattern and one colour) and malignant lesions (asymmetrical pattern, more than one 
colour and at least one positive feature). 
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The seven-point checklist has been applied in the literature to achieve better accuracy 

for the computational diagnosis of dermoscopic images [24,78,79]. This method consists 

basically of seven criteria based on local patterns that may be applied to diagnose the 

malignancy in pigmented skin lesions, particularly melanomas, which are divided into 

major and minor criteria [75]. A total score of three or more points is more likely to be 

melanoma, for which the presence of each major criterion receive two points and each 

minor criterion receives one point [67]. The Menzies’ method allows for identifying 

colour patterns within the lesion and the asymmetry along any axis drawn through the 

centre of the lesion, as well as the number of positive features [67]. In malignant lesions, 

particularly melanomas, an asymmetric pattern, more than one colour, and at least one 

positive feature are usually presented, whereas the benign lesions present a symmetric 

pattern and only one colour [67]. Computational methods based on the Menzies’ criteria 

have been proposed to analyse the presence of six basic colour classes (white, red, light-

brown, dark-brown, blue grey and black) for dermoscopic images [80,81].  

2.2. Feature extraction 

Skin lesion features can be extracted either according to a global or local manner in order 

to obtain information for classification. The most of works explore the global-features of 

the lesion, i.e., extract features from all segmented region [82]. However, some studies 

have used local-features, which allow the characterization of different region of the 

lesion. Bag-of-feature (BoF) approach is a simple strategy that has been used to compute 

local features [11,71,83-85]. In general, skin lesion features are categorized into shape 

features, colour variation and/or texture analysis [9,86]. These features can be extracted 

to detect patterns [73], or diagnose skin lesions [82] from both macroscopic and 

dermoscopic images. Extracted features of pigmented skin lesions from both of images 

are summarized in Table 4 and discussed in the following sections.  

2.2.1. Shape features 

Shape features allow the assessment of lesion’s asymmetry or border’s irregularity. The 

asymmetry features may be examined according to dividing the region of the lesion under 

analysis into two sub-regions by an axis of symmetry, in order to analyse the similarity 

of the area by overlapping the two sub-regions of the lesion along the axis. From such an 

axis, the asymmetry index may be calculated by the difference between the two sub-

regions of the lesion; for example, by applying the XOR operation between them [87]. In 
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some studies, the axis of symmetry is defined based on the principal axis of inertia [87], 

major and minor axis orientation [12,88] and longest or shortest diameter [89]. 

Table 4: Extracted features of pigmented skin lesions from both macroscopic and dermoscopic 
images. 

Feature References 
Shape  
   Asymmetry index [87,90] a; [12,84,88,91] b 
   Statistical geometrical measures [9,10,61,87,92] a; [12,63,84,88,89,93-103] b 
   Statistical measures based on border’s gradient or periphery     
      regions  

[9,10,61,70,104] a; [74,78,84,88,93,94,96,97,105] b 

   Border features (irregularity index) [61,90,92,104] a; [12,89,103,106,107] b  
Colour  

   Statistical measures based on colour models [9,10,70,82,87,90] a; [63,71,73,84,88,93,94,96,101,105,108-
113] b 

   Colour occurrence or percentage [74,81,102,103,113-116] b 
   Absolute or relative colour features [87] a; [77,88,93,94,96,99,113,117-119] b 
   Colour asymmetry [73,88,105,110] b 
   Histogram-based features (colour distribution) [24,62,78,79,83,84,88,97,99,102,110,112] b 
   Colour features based on cluster analysis [102,112,120] b 
   Border’s gradient-based features [96,113] b 
Texture  
   Statistical  [9,10,70] a; [11,63,64,77,83,84,88,93,94,96,101,102,105,108-

112,120-122] b 
   Model-based [90] a; [12,123,124] b 

   Filter-based [12,24,62,73,78,79,83,84,111,112,121,123] b 
Other features  
   Colour-texture features [82] a; [72,124] b 
   High-level intuitive features [125] a 
   Manual information  [10,82] a 
   Diameter  [102] b 
   Differential structures [103,126] b 
   Evolution measures [127] a; [128] b 
a Macroscopic images 
b Dermoscopic images 

 

Geometrical measures from the segmented lesion area have been commonly computed 

for assessing the lesion’s asymmetry and border’s irregularity [12,63,70,84,129]. Such 

measures include the area of the lesion (computed as the number of pixels inside the lesion 

region [10] or by applying the bit quads method [88]), aspect ratio, compactness, 

perimeter, greatest diameter, shortest diameter, equivalent, convex hull, eccentricity, 

solidity, rectangularity, entropy measures, circularity index (namely thinness ratio), and 

irregularity index. Shape features based on wavelet transform [12,61,106], Fourier 

transform [104] and fractal dimension [92,103] have also been used for assessing the 

border’s irregularity.  

Shape features of differential structures inside the lesion in dermoscopic images may 

also be considered [66], such as solid pigments of the lesions computed according to 

Chang et al. [87]. In other studies [63,93,96], the asymmetry is assessed, according to 

pre-defined regions inside the lesion under analysis. 
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In order to identify the sharp transition between inside and outside regions of a lesion 

concerning its border, Iyatomi et al. [94,96] divided the lesion region into eight 

equiangular regions. For each region, the ratio of the colour intensity inside and outside 

the lesion and the gradient of the colour intensity were computed in particular colour 

channels, according to a pre-defined window centred at the border of the lesion, whereas, 

Celebi et al. [88] computed the differences and ratios of two statistics (mean and standard 

deviation) over a particular colour channel, considering the following regions: lesion and 

inner and outer peripheral regions relative to the border of the lesion. 

2.2.2. Colour variation 

The RGB colour space is commonly used to represent the colours of skin lesions [63,110]. 

Other colour spaces have also been applied in order to obtain more specific information 

about a lesion’s colours, such as: normalized RGB [110,111], HSV [11,84,110], HVC 

[109], CMY [108], YUV [108], I1/2/3 [110], Opp [83,84], w%̅U [70], JCh [73], L*C*H [87], 

CIEXYZ [111], CIELAB [11,83,84] and CIELUV [11,110]. 

Statistical measures are widely applied to the feature extraction from skin lesion 

images [10,63,70,93]. The minimum, maximum, average, standard deviation, skewness 

and variance are examples of such measures, which may be computed for each colour 

channel of the lesion region by using one or several colour models. Furthermore, these 

measures may also be applied to other regions associated with the lesion’s border, in order 

to identify a sharp transition between them, which indicates malignancy. The background 

skin (normal skin), and surrounding skin (inner or outer peripheral regions) are examples 

of such regions, which may be considered as part of the lesion. Peripheral regions may 

be defined by a recursive erosion process [93,110], a fast Euclidean distance transform 

algorithm [88], or a circular region with centre point upon the lesion’s centroid [87]. In 

addition, such regions may reduce the effects of peripheral inflammation and errors 

caused by automatic border detection, as proposed by Celebi et al. [88]. 

Skin lesion features based on relative colours have been proposed [77,88,93], in order 

to assess colour features from the different regions associated with the lesion. The relative 

colour consists of comparing each pixel value of the lesion to the average colour value of 

the surrounding skin. Furthermore, this feature may present advantages such as 

compensating the variation of colour of the image caused by illumination, and equalizing 

variations in skin colour among individuals [77].  
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The occurrence of the possible basic colours present in the skin lesions has also been 

analysed [74,81], as well as the number or percentage of pixels within the segmented area 

for each of the basic colours [9,73].  

2.2.3. Texture analysis 

Texture analysis is frequently considered for image analysis of skin lesions, since it assists 

in discriminating between benign and malignant lesions by measuring the roughness of 

their structure. Texture descriptors with statistical-, model- and filter-based approaches 

[130], have been used for texture quantification of skin lesions. Among the various 

statistical-based texture descriptors applied in the literature, the grey-level co-occurrence 

matrix (GLCM) proposed by Haralick et al. [131] has been one of the most commonly 

used [63,84,101,105,110,111]. The GLCM is a statistical measure that computes the joint 

probability of occurrence of grey-levels considering two pixels spatially separated by a 

fixed vector. Several measures may be computed based on the GLCM, such as variance, 

entropy, dissimilarity, correlation, contrast, energy, maximum probability, inverse 

difference, angular second moment (ASM), mean, standard deviation and homogeneity. 

In Schaefer et al. [110], the authors computed the ratio and difference of the same co-

occurrence features between different image regions.  

Skin lesion features from histograms, which are also statistical-based descriptors, are 

extracted by some researchers to represent texture features [11,84]. Tanaka et al. [121] 

computed some aforementioned statistical measures based on the intensity histogram, 

whereas Barata et al. [83] applied gradient histograms, such as the gradient amplitude and 

orientation to represent the texture feature. In order to compute the image gradient, the 

authors applied a Gaussian filter to the grey-level image for further computation of the 

gradient vector at each pixel using the well-known Sobel filter. Local binary pattern 

(LBP) that is a discriminative rotation invariant feature descriptor [84,102,112], statistical 

measures based on pixel intensities [9,70], run-length matrix [121], and entropy features 

[120], have also been applied to texture extraction based on statistical approaches. 

Model-based texture descriptors have also been proposed to assess the skin lesion’s 

texture, such as fractal dimensional [12], auto-regression [123], and Markov random 

fields (MRF) [124].  Among these, fractal dimension have been applied with the box-

counting method (BCM), being one of the most commonly used methods, since it is 

simple and effective [132]. Image-based fractal dimension [132] is a procedure for 
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splitting the image in several quadrants to quantify the irregularity level or self-similarity 

of the image’s fractals. 

Wavelet transform [12,71,112], Fourier transform [24,78,79,112,121], Gabor filtering 

[83,84,123], scale-invariant feature transform (SIFT) [84] and steerable pyramid 

transforms [73], which are filter-based texture descriptors, have also been proposed for 

feature extraction of skin lesion images. Such descriptors allow the decomposition of the 

input image into component parts in order to extract features from the structures of 

interest. Sobel, Hessian, Gaussian and difference of Gaussians (DoG) features have also 

been extracted based on bank of Gaussian filters [111]. Further details regarding texture 

analysis techniques for image feature extraction are presented in Xie [130]. 

2.2.4. Other features 

Skin lesion features based on shape, colour and texture properties have been commonly 

used for skin lesion recognition. However, other features have also been considered, such 

as information regarding the part of the body, size and gender, since they can assist in 

skin lesion diagnosis [10,82]. Colour-texture descriptors have also been recently used to 

assess skin lesion features; e.g., colour image analysis learning vector quantization (CIA-

LVQ) in the RGB colour space [82], and joint distribution of colour (JDC) in the L*a*b*  

colour space [72]. Further details regarding colour-texture descriptors are presented in 

Xie [130]. 

The lesion’s diameter is another feature that can be used for skin lesion diagnosis. This 

feature is examined according to the size of the lesion, which is defined by the greatest 

distance between any two points of a lesion’s edge [65]. This feature is not commonly 

applied to skin lesion classification due to its great dependence on the image resolution 

[88], since the image size affects the number of pixels for each segmented lesion’s region. 

An application of this feature is presented in Møllersen et al. [102], in which the diameter 

of a lesion is defined as the length of the major axis of the best-fit ellipse. The differential 

structures of skin lesions may also be assessed, more specifically in dermoscopic images. 

For example, in Torre et al. [126] multidimensional receptive field histograms (MFHs) 

were obtained by means of Gaussian derivatives and a Laplacian Gaussian operator, in 

order to reproduce features of the local differential structures of skin lesions.  

Elevation and evolution features can be assessed to assist in skin lesion classification 

process [66,133]. The former is a morphological feature that may be measured 

considering its surface. The latter may represent the historical evolution of the lesion in 
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order to diagnose it, including changes in its shape, size, shades of colour, or surface 

features. To the best of our knowledge, few previous image analysis systems of skin 

lesions surveyed in the literature have used such features [127,128]. One of the reasons 

may be related to the complexity of feature extraction from the elevation criterion, or even 

the unavailability of a database with at least two images of the same lesion that must be 

taken over time to assess its evolution.  

Three-dimensional digital imaging may be designed to extract information about the 

elevation feature of skin lesions. For example, Hani et al. [134] and Fadzil et al. [135] 

proposed a method to measure the thickness of some skin lesion types from the 3D surface 

image. Lesion’s thickness is the elevation present between the base and the surface of the 

lesion. In addition, registration methods may be applied to track skin lesions in images 

[136], or to detect changes in their structure over time, as the algorithm introduced by 

Huang and Bergstresser [127]. The authors proposed a new method for the melanoma 

registration, based on bipartite graph matching, in order to find sufficiently good 

correspondences between successive images of multiple skin lesions. The authors used 

the Voronoi cells and distances between points to transform the point registration problem 

in images to a bipartite graph-matching problem. 

2.3. Feature selection 

A feature selection step [137] has been used for pattern analysis and skin lesion 

classification in order to select the most relevant features and reduce the dimensionality 

of the feature space so that irrelevant and/or redundant features are removed 

[93,98,108,121]. Moreover, such features may influence the performance of the 

classification process, i.e., render it a slower process [138]. Several benefits are associated 

with the application of feature selection schemes, such as [88]: 1) to reduce the feature 

extraction time, 2) to decrease the classification complexity, 3) to improve the 

classification accuracy rate, 4) to decrease training and testing time, and 5) to simplify 

the understanding and visualizing the data. 

Essentially, the feature selection process has the following steps: 1) feature subset 

selection, 2) feature subset evaluation, 3) stopping criterion, and 4) validation procedure 

[139]. Search strategies may be applied to define candidate subsets from extracted 

features of skin lesions, which are evaluated and compared to the previous best subset 

until a given stopping criterion is reached. This process is iterative, and it only finishes 
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when it reaches the established stop criterion. Thus, the selected best subset should be 

verified for the specific problem, i.e., the skin lesion classification.  

Feature subset selection step consists of finding features through a given process of 

heuristic searches in order to identify a candidate feature subset for evaluation. Several 

search algorithms, such as best-first [108], ranker [12,108], incremental stepwise [93,98] 

and random [87,88], have been used for the feature subset selection process. Exhaustive 

and genetic searches are other examples of such algorithms that may be applied [140]. 

These algorithms influence the search direction and execution time of the selection 

process depending on the adopted search strategy, which may be complete, sequential, or 

random [139,141]. Another model to establish a feature subset is applying embedded 

methods such as decision-tree algorithms, which incorporate the feature selection in its 

training process [138]. 

In evaluation step, the selected feature subset is then evaluated according to the type 

of search algorithm applied before. The filter model [141] has been commonly used for 

the evaluation process of skin lesion feature selection. This model allows for evaluating 

the goodness of selected features without using any classification algorithms. Each 

candidate subset is evaluated by means of applying an independent criterion, which may 

be based on distance1, information2, dependency3, or consistency4 measures, in order to 

compare it with the best current subset previously established. If the evaluated subset is 

considered the best, it becomes the best current subset. Examples of filter methods applied 

in the literature based on the aforementioned independent measures are: gain ratio feature 

selection (GRFS) [12], information gain measure [12], chi-squared [12], correlation-

based feature selection (CFS) [10,12,61], ReliefF [12,88], mutual information-based 

feature selection (MIFS) [88], sequential feature selection (SFS) [80], generalized 

sequential feature selection (GSFS) [108], and fast correlation-based feature filter (FCBF) 

[110]. 

Wrapper [142], hybrid [141] and embedded [138] models can also be used to evaluate 

the selected feature subset by a search strategy. The evaluation of feature subsets based 

                                                 
1 These measures try to find the feature that may separate the classes as far as possible by greater distance 
between them. 
2 These measures establish the information gain from a feature. 
3 These measures are also known as correlation measures applied to evaluate the ability to predict the value 
of one feature from the value of another. 
4 These measures consist of finding a minimum number of features that may separate classes as consistently 
as the full set of features may.  
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on the wrapper model is similar to the filter model. The main difference between these 

two models is the use of classification algorithms to evaluate each candidate subset in 

order to determine the most relevant subset, for which the classification algorithm tends 

to perform better when searching for such a subset [141]. The hybrid model combines 

properties of filter and wrapper models to evaluate feature subsets in order to consider the 

advantages of both models, as well as to deal with large data sets. The embedded model 

has a built-in mechanism to perform the feature selection; it incorporates the feature 

selection as part of the training process. The decision tree induction algorithms, such as 

classification and regression tree (CART), are examples of such a model [137].  

Feature selection methods based on a filter model [141] are more often preferred to 

other models due to the following advantages: computationally efficient, simpler and 

faster methods, independent evaluation criteria, and ability to overcome over-fitting 

[10,12,98]. Nevertheless, the features selected by using a filter model may not be the most 

relevant for the application, whereas the wrapper model [142] may be applied to search 

for the most relevant features based on classification algorithms to improve the 

performance of the feature selection. The wrapper model is not commonly applied due to 

the high computational time, as demonstrated by Celebi et al. [88]. However, efficient 

search strategies may be proposed for this model to avoid the time-consuming task of 

classifying skin lesions. Although the hybrid model inherits the advantages of both filter 

and wrapper models, this model may be complex and also inherits the disadvantages of 

wrapper model. Methods based on an embedded model provide simplicity and a faster 

solution for the feature selection step compared to methods based on the filter model 

[137].  

The stopping criterion determines the situation in which the feature selection process 

must stop. Some examples of such criteria occur when: 1) the search is complete, 2) the 

predefined minimum number of features is achieved, 3) the predefined maximum number 

of the process is achieved, and 4) addition or removal of any feature occurs that worsens 

the outcome of the best found subset until that moment [141]. The validation procedure 

consists of verifying the best feature subset established by the previous steps. Hence, the 

validation process may be performed upon applying classifiers from a new set of features 

in order to measure the classification performance or error rate of the selected feature 

subset.  
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Principal component analysis (PCA) [143] and linear discriminant analysis (LDA) 

[62], which are methods for space dimensionality reduction, have also been applied to 

feature selection [24,70,73]. Maglogiannis and Doukas [108] applied several 

classification methods to evaluate the obtained subsets by using feature selection 

algorithms such as the CFS, PCA and GSFS. Furthermore, the achieved results are 

compared to the ones obtained from all features without applying any feature selection 

algorithm. The authors concluded that the application of feature selection algorithms may 

reduce the complexity of the classification. On the other hand, the performance is not 

always good, and is highly dependent upon the classifier. Therefore, they opted to use all 

features for the skin lesion classification. On the other hand, Ma and Staunton [61] used 

a feature selection scheme based on correlation analysis for skin lesion classification 

based on a neural network, since it achieved better result than original feature-based 

classification. Arroyo and Zapirain [111] analysed the relevant features based on the 

minimum number of samples per leaf by using decision tree classifier. Several other study 

have achieved good classification results by using a feature selection scheme [80,84,110]. 

Another means of determining the most discerning features based on colour and 

texture was addressed by Barata et al. [11], who compared the features performed by 

using each individual feature, all the colour features, both texture and colour features, and 

the best texture and colour features. The authors concluded that the colour features 

provide better results than the use of texture features when used individually. On the other 

hand, Rastgoo et al. [84] evaluated the most discerning features between shape, colour 

and texture features and the evaluation revealed the potential of texture features for skin 

lesion classification. 

3. Skin lesion classification  

The classification step consists of recognizing and interpreting the information about the 

pigmented skin lesions based on features extracted from images. The classification 

process generally occurs by randomly dividing the available image samples in training 

and test sets. The training step consists of developing a classification model to be used by 

one or more classifiers based on the samples of the training set. Each sample is composed 

of features extracted from a given image and its corresponding class value, which are 

applied as input data to the classifier for the learning process. The testing step consists of 

measuring the accuracy of the model learned by the training step over the test set. In 
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addition, such a process may present several problems concerning the dataset, such as 

features containing different ranges, unbalanced dataset regarding the number of samples, 

and/or a large number of features. Therefore, this process may require pre-processing of 

data, in which several methods may be applied to overcome these problems. 

Feature normalization is a pre-processing step, in which methods may be applied in 

order to solve the problem of different ranges. The z-score transformation is a common 

method used for data normalization, which allows transforming all numeric features in 

values within the same range, as discussed by Celebi et al. [88] and by Cavalcanti and 

Scharcanski [70]. Therefore, this procedure prevents the feature with range of values 

greater than other features from influencing the results, since several classifiers may not 

deal properly with different ranges.  

Unbalanced datasets concerning the number of samples in each class is also a 

classification problem that may decrease the accuracy of the evaluation result, since the 

classifiers tend to be based on classes with the highest occurrence. Sampling techniques, 

such as over- and under-sampling [140,144], have been used to solve this problem 

[88,110]. Nevertheless, random under-sampling may remove important samples, and 

random over-sampling may lead to over-fitting. Synthetic minority oversampling 

technique (SMOTE) [145] is an over-sampling techniques for overcoming the over-fitting 

and expand the decision region of minority class samples. Such techniques can also be 

combined with ensemble methods for addressing unbalanced classes [110]. Another 

method to solve the unbalanced dataset problem was used by Barata et al. [11], in which 

the dataset is composed of 25 samples of melanoma and 151 samples of nevi. The authors 

repeated the melanoma features belonging to each training set until the same number of 

samples for both classes was obtained. Furthermore, they added Gaussian noise to each 

repeated feature set in order to prevent equal samples in the training set.  

As mentioned previously, feature selection [137], which is a pre-processing step in 

machine learning, can be addressed to deal with datasets contain a large number of 

features for skin lesion classification (Section 3.3). The classification methods used for 

skin lesion diagnosis, as well as its evaluation procedures, are presented with details in 

following sections. Furthermore, some results of recent studies for classification of skin 

lesion and its patterns are also provided. 
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3.1. Methods for classification 

Classification methods based on instance-based learning [140], decision trees [138], 

Bayesian learning [146], artificial neural networks (ANNs) [147], support vector 

machines (SVMs) [148], and ensemble methods [140], have been commonly applied to 

discriminate skin lesions in images. A description and the main advantages and 

disadvantages of such methods are summarized in the following, while their algorithms 

applied to the learning objective are presented in Table 5. 

Table 5: Classification methods applied to discriminate skin lesions from images. 

Classification Method References 
Instance-based learning  
   KNN [11,63,70,73,83,109,149] 
   KStar [108] 
   LWL [108] 
Decision tree  
   NBTree [64,108] 
   AD-Tree [64] 
   CART [70,80,102,108] 
   J48/ C4.5/ C5.0 [10,64,77,87,106,111,150] 
   C&R [106] 
   LMT [10,12,24,79,151] 
   Decision Stump [10,64] 

Bayesian network  

   BayesNet [10,62,82,108] 
   NBL [108] 
   HNB [12] 

ANN  

   MLP architecture [61,63,81,94,97,99,106,117] 
   RBF network [108] 

SVM  

   Linear kernel [125] 
   RBF kernel [11,12,73,88,90,108,109,152] 
   Polynomial kernel [63,110,123] 
   PUK kernel [63] 

Ensemble of classifiers  

   Homogeneous ensemble [110,112,153] 
   Heterogeneous ensemble [82,109] 
   Bagging [110] 
   Random forest [12,63,64,83,84] 
   Boosting [84,100,101,154] 
   AdaBoost [73,83] 

Other methods  

   Linear classifier [93,96,105] 
   Regression analysis [104,108] 
   Prototype-based [82] 
   Discriminant analysis [80,102,155] 
   Maximum likelihood [62,109,149] 

KNN: k-nearest neighbour; LWL: locally weighted learning; NBTree: naïve Bayes/decision tree; AD-Tree: alternative decision 
tree; CART: classification and regression trees; C&R: classification and regression; LMT: logistic model tree; RF: random forest; 
NBL: naïve Bayes multinomial; HNB: hidden naïve Bayes; ANN: artificial neural network; MLP: multilayer perceptron; RBF: 
radial basis function; SVM: support vector machine; PUK: Pearson VII function-based universal kernel. 

 

In instance-based classifiers [140], a distance function is used to assess which sample 

of the training set is closest to an unknown sample and then assigning the unknown 

sample to the class with the majority of the nearest neighbours. These classifiers have 



COMPUTATIONAL METHODS FOR PIGMENTED SKIN LESION CLASSIFICATION IN IMAGES: REVIEW AND FUTURE TRENDS 

79 
 

been applied due to their simplicity of implementation and their facility to deal with the 

existence of correlated features. In addition, new samples can be added to the training set 

at any time. However, they are sensitive to the existence of irrelevant features, and they 

require a great deal of time for classifying large datasets. Barata et al. [11] used the k-

nearest neighbours (KNN) algorithm to classify the lesions and compared several distance 

functions, such as Euclidean, Kolmogorov and Kullback–Leibler, in order to measure the 

distance of k-nearest neighbours from different k values. The authors concluded that it is 

not clear which of these three used distances is the best for such a problem, since all were 

considered to be the best for certain test situations. On the other hand, Rahman et al. [109] 

used the Bhattacharyya distance measure, since such a measure is based on the correlation 

between the colours and may perform better than the traditional Euclidean distance. 

A decision tree [138] has a structure similar to a flowchart, in which each internal node 

(non-leaf) represents a test of a feature, each branch represents a result of the test, and 

each external node (leaf) indicates a prediction of the class. Several methods based on 

decision trees have been frequently applied to classify skin lesions [10,12,24,77,106,108]. 

Understanding such a structure, as well as ease of rule generation, is quite straightforward. 

However, the excess of adjustments (over-fitting) and the difficulties in dealing with 

correlated features are the major drawbacks of decision trees. 

Bayesian learning-based methods [146] compute the probability of a given set of 

features to belong to each class, assuming that the features are independent. These 

methods have been applied to classify skin lesions particularly because of their fast 

training [10,12,108]. Although Bayesian methods provide fast training and no sensitivity 

to irrelevant features, they assume that the features need to be independent, which can be 

a disadvantage of these methods.  

ANNs [147] are parallel distributed systems composed of layers of input and output 

elements linked by weighted connections. During the learning phase, the weights are 

adjusted to predict the correct class based on the input samples. The multilayer perceptron 

(MLP) is one of the most applied architectures of ANNs [81,106], since such architecture 

presents good capability and flexibility to solve several non-separable problems. This 

architecture may include one or more layers of processing, also called hidden layers, 

placed between the input and output layers. The back-propagation is a supervised learning 

algorithm widely used in the MLP architecture [61], which consists of forward and 

backward processes applied to adjust the weight values of the connections. Although 
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ANNs have been proposed to solve many pattern recognition problems, these classifiers 

may have long training time depending on the size of the training set. 

SVMs [148] involve a method based on statistical learning applied to building a hyper-

plane to separate the data according to the defined classes. This kind of classifier has been 

commonly applied to classify skin lesions due to its good generalization properties. 

Furthermore, kernel functions simplify the process of separating the non-linear data by 

using a simple hyper-plane in a high dimension feature space. However, these classifiers 

are sensitive to noise and the classification process is based on a binary class. The radial 

basis function (RBF) kernel have been commonly adopted in several studies [11,12,108] 

due to the several advantages compared to other kernels, such as: greater stability 

compared to the polynomial kernel and reduced number of hyper-parameters that need to 

be established compared to the polynomial and sigmoid kernels [88]. 

The ensemble methods [140] have been recently adopted to diagnoses skin lesions [82-

84,110,156]. Ensemble models may be constructed with either several classification 

algorithms, classified as heterogeneous, or only with one classification algorithm, 

classified as homogeneous, which can be developed through data manipulation [157]. 

Average, weighted average, sum, product, maximum, minimum and median are some 

examples of integration strategies based on the outputs of classifiers. Voting methods 

from the candidates of a rank may also be used for this same purpose. The common 

algorithms applied to manipulate the training samples are the Bagging and Boosting 

algorithms [157]. Random Forest [158] and AdaBoost [159] are also popular ensemble 

methods. Random Forest is a variation of the Bagging algorithm that is used to create 

individual decision trees, whereas AdaBoost is a popular boosting algorithm that 

maintains a set of weighting systems over the training samples. Ensemble methods consist 

of combining the results of several classification models in order to develop a more robust 

system that provides more accurate results than by using a single classifier. However, 

such methods can present a high computational complexity. 

3.2. Evaluating the classification 

The main objective of the classification process of skin lesions is to achieve good results 

for distinguishing between different lesion classes. In order to fulfil this purpose, several 

classification models based on different feature subsets, samples and classifiers are 

evaluated by using test sets. Therefore, new samples are classified and the predicted class 
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is compared to the known class to evaluate the classification performance. Among several 

evaluation procedures, the cross-validation (XVAL) procedure [140] is the most 

commonly used in the literature to evaluate the results of skin lesion classification, since 

it avoids over-fitting while testing the capacity of the classifier to generalize. The k-fold 

cross-validation [12,108] and leave-one-out [11,93] are examples of cross-validation 

procedures proposed for classifying skin lesions in images. The half-and-half test is 

another evaluation procedure, which was applied by Iyatomi et al. [96]. In addition, the 

authors evaluated the performance of classifiers using 10-fold cross-validation, leave-

one-out cross-validation and half-and-half tests, and they concluded that the results are 

almost equivalent and may be considered reasonable.  

Statistical measures based on performance metrics [160] are computed to compare the 

performance of one or several classification models according to the outcomes of 

classifiers. Some possible outcomes of classifiers based on the predicted class and known 

class are: 1) true positive (TP), 2) true negative (TN), 3) false positive (FP), and 4) false 

negative (FN). These outcomes represent the number of correct (true) and incorrect (false) 

classification for each class (positive and negative). For example, in a classification 

process between two classes, one class may be considered positive and another negative. 

Usually, the positive samples represent the most important class to classify (e.g., skin 

cancer), and benign lesion stands for the negative samples. Therefore, the TP rate is the 

number of correctly classified positive samples, the TN rate is the number of correctly 

classified negative samples, the FP rate is the number of incorrectly classified negative 

samples, and the FN rate is the number of incorrectly classified positive samples.  

The aforementioned rates may be represented by a confusion matrix, which is the basis 

for several metrics used by researchers to measure the performance of the classification 

[10,12,81], such as: 1) the precision that is the percentage of correctly classified samples 

for each given class with respect to its true and false predictions, 2) the recall or 

sensitivity, which is the percentage of correctly classified positive samples with respect 

to all positive samples, 3) the specificity, which is the percentage of correctly classified 

negative samples with respect to all negative samples, and 4) the accuracy that is the 

percentage of correctly classified positive and negative samples based on all samples. 

Area under the ROC curve (AUC) is an additional term associated with the receiver 

operating characteristics (ROC) graph [160], which is also used to compare the 

performance of the classification, since it is a very useful tool for visualizing and 
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evaluating classifiers [10,11,81]. Currently, such measure is commonly used and are able 

to provide a more robust classification performance measure than other evaluation 

measures [160]. 

3.3. Skin lesion classification performance 

For the skin lesion classification process, one or several techniques have been evaluated 

to achieve the best results. The performance of such a process depends on several issues, 

such as the segmented image, and extracted or selected features, as well as the 

classification method used. The classification process may be binary or multi-class, and 

includes different classes according to the classification goal, such as: 1) malignancy of 

the lesions (benign versus malignant) [12,106], and 2) distinct types of skin lesions 

(melanoma versus nevus [94,108], melanocytic versus non-melanocytic [93], and 

dysplastic versus non-dysplastic versus melanotic [108]). Furthermore, skin lesion 

features are also classified in terms of: 1) border features (regular versus irregular 

[90,106] and irregularity level [95]), 2) presence of main colours existing in malignant 

lesions [81,112], 3) presence of features of the seven-point checklist [24,79,161], 4) 

presence of global patterns [72,73,162] and 5) presence of local patterns [71,128].  

Table 6 summarizes the best results of recent studies concerning skin lesion 

classification. The table indicates the number and type of image used, the techniques 

employed in the segmentation step and feature selection, the number of extracted and 

selected features, the classification algorithms and the values of the evaluation measures 

used. The performance of several classifiers has been compared, e.g. in terms of the 

discrimination between benign lesions and melanomas, by several authors.  

Zortea et al. [80] compared the classification performance of quadratic discriminant 

analysis (QDA), linear discriminant analysis (LDA) and classification and regression 

trees (CART), and obtained the best results with QDA. In the study of Rastgoo et al. [84], 

better results were achieved using a random forest than a gradient boosting and SVM 

classifier. Likewise, Barata et al. [83] have also obtained the best results by applying a 

random forest than using AdaBoost, SVM and KNN. Schaefer et al. [110] proposed an 

ensemble method based on a SVM (polynomial kernel), non-pairwise measure of 

diversity (fuzzy Shannon), and neural network based on classifier fusion, which obtained 

the best results when compared with other ensemble methods, as well as with individual 

SVM classifier. 
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Table 6: Results of recent studies focused on the skin lesion classification. 

Ref. Number 
of image  
(Type) 

Segmentation Feature selection 
(EF/ SF) 

Classifier Classification Mean results 
(Evaluation 
measures) 

[112] 200 
(Derm.) 

- - 
(NM/ -) 

Ensemble method 
(SVM) 

Malignant/ benign 91% (ACC), 97% 
(SE), 65% (SP), 
92% (Prec.), 94% 
(FM), 95% (AUC). 

[82] 170 
(Macro.) 

K-means 
Clustering 

- 
(NM/ -) 

 Ensemble method  
(CLAM, CIA-
LVQ, Naïve Bayes) 

Melanoma/ nevus 81% (ACC), 0.741 
(PPV), 0.859 
(NPV). 

[105] 968 
(Derm.) 

Thresholding Incremental 
Stepwise  
(828/ 25) 

Linear classifier Melanoma/ nevus/ 
BCC/ SK  

Melanoma: 90.48% 
(DR); 
Nevus: 82.51% 
(DR); 
BCC: 82.61% (DR); 
SK: 80.61% (DR). 

[84] 180 
(Derm.) 

Thresholding PCA 
(NM/ NM) 

Ensemble method 
(Random forest) 

Melanoma/ 
dysplastic nevus 

98% (SE), 70% 
(SP). 

[83] DB1: 
200 
DB2: 
482 
(Derm.) 

NM Fusion strategies 
(NM/ NM) 

Ensemble method 
(Random forest) 

Melanoma/ nevus DB1: 98% (SE),  
90% (SP); 
DB2: 83% (SE), 
76% (SP). 

[102] 210 
(Derm.) 

NM Feature analysis/ 
wrapper + filter 
(59/ 19) 

Discriminant 
analysis 

Not-cut/ cut 
(benign lesion/ 
suspicious lesion 
and melanoma) 

81% (CR), 83% 
(SE), 80% (SP). 

[125] 206 
(Macro.) 

- - 
(62/ -) 

SVM Melanoma/ non-
melanoma 

83.59% (ACC), 
91.01% (SE), 
73.45% (SP). 

[80] 206 
(Derm.) 

NM SFS 
(53/ 7.6) 

Discriminant 
analysis 

Melanoma/ benign 86% (SE), 52% 
(SP), 63.3% (CR). 

[110] 564 
(Derm.) 

Thresholding, 
region-growing 
and merging 

FCBF  
(437/ 74) 

Ensemble method 
(SVM) 

Melanoma/ benign 93.83% (ACC), 
93.76% (SE), 
93.84% (SP). 

[61] 134 
(Macro.) 

- Correlation 
analysis 
(25/ 13) 

ANN Melanoma/ benign 0.83 (SE), 0.90 
(SP), 0.89 (AUC). 

[149] 152 
(Macro.) 

Thresholding - 
(Stage one: 52; 
stage two: 12/ -) 

Stage one: KNN; 
Stage two: 
maximum 
likelihood 

Malignant/ benign 99.34% (ACC), 
100% (SE), 97.78% 
(SP). 

[11] 176  
(Derm.) 

Thresholding Individual and 
combined feature 
analysis  
(NM/ -) 

 Ensemble method 
(AdaBoost) 

Melanoma/ nevus 96% (SE), 80% 
(SP). 

[103] 120 
(Derm.) 

Dynamic 
programming 

SFFS 
(NM/ NM) 

SVM Melanoma/ nevus Melanoma: 88.2% 
(SE), 91.30% (SP), 
0.880 (AUC); 
Nevus: 86.5% (SE), 
88.2% (SP), 0.824 
(AUC). 

[12] 289 
(Derm.) 

Thresholding GRFS 
(35,455/ 23) 

Ensemble method  
(random forest) 

Malignant/ benign 91.26% (ACC), 
0.937 (AUC). 

[70] 152 
(Macro.) 

Thresholding - 
(52/ -) 

KNN/ KNN-DT  
 

Malignant/ benign 96.71% (ACC), 
96.26% (SE), 
97.78% (SP). 

[104] 167 
(Macro.) 

Ncut - 
(NM/ -) 

Regression analysis Melanoma/ benign 70.5% (ACC), 
71.8% (SE), 69.8% 
(SP). 

[93] 655 
(Derm.) 

Thresholding, 
morphological 
operations 

Incremental 
Stepwise  
(428/ 2) 

Linear classifier Melanocytic/ 
non-melanocytic 

97.99% (SE), 
86.64% (SP). 

[10] 152 
(Macro.) 

Thresholding CFS 
(45/ 5) 

LMT Melanoma/ nevus 86% (ACC), 94% 
(SE), 68% (SP), 
0.890 (AUC). 

[106] 30 
(Derm.) 

- - 
(NM/ -) 

C5.0 Malignant/ benign 93.30% (ACC), 
80% (SE), 96% 
(SP). 

[108] 3639 
(Derm.) 

NM - 
(31/ -) 

MLR/ SVM/ LWL/ 
CART 

Melanoma/ nevus 100% (ACC), 1.0 
(AUC). 
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Table 6: Continued. 

Ref. Number 
of image  
(Type) 

Segmentation Feature selection 
(EF/ SF) 

Classifier Classification Mean results 
(Evaluation 
measures) 

[108] 3639 
(Derm.) 

NM - 
(31/ -) 

ANN/ SVM/  
Bayes networks 

Dysplastic/ 
non-dysplastic 

73.29% (ACC), 
0.688 (AUC)/  
76.08% (ACC), 
0.607 (AUC)/  
68.94% (ACC), 
0.663 (AUC). 

[108] 3639 
(Derm.) 

NM - 
(31/ -) 

SVM Melanotic/ 
dysplastic/ 
non-dysplastic 

77.06% (ACC), 1.0 
(AUC). 

[94] 1258 
(Derm.)  

Thresholding, 
region-growing 

Incremental 
Stepwise  
(428/ 72) 

ANN Melanoma/ nevus 94.10% (ACC), 
85.90% (SE), 86.0% 
(SP), 0.928 (AUC). 

[96] 199 
(Derm.)  

NM Incremental 
Stepwise  
(482/ 10) 

Linear classifier Melanoma/ 
nevus 

100% (SE), 95.9% 
(SP), 0.993 (AUC). 

[109] 358 
(Derm.)  

FCM, 
thresholding 

PCA 
(128/ 10) 

Ensemble method 
(KNN, SVM, 
GML) 

Malignant/ benign/ 
dysplastic 

75.69% (ACC). 

[88] 564 
(Derm.)  

Region-
growing and 
merging 

CFS 
(473/ 18) 

SVM Melanoma/ 
benign 

92.34% (SE), 
93.33% (SP), 0.966 
(AUC). 

Ref.: reference; Macro.: macroscopic; Derm.: dermoscopic; BCC: basal cell carcinoma; SK: seborrheic keratosis; EF: extracted 
features; SF: selected features; NM: non-mentioned; ACC: accuracy; SE: sensitivity; SP: specificity; Prec.: precision; FM: F-
Measure; AUC: area under the ROC curve; PPV: positive predictive value; NPV: negative predictive value; DR: detection rate; 
CR: correct rate; DB: database; Ncut: normalized cut; FCM: fuzzy c-means; GRFS: gain ratio feature selection; CFS: correlation-
based feature selection; PCA: principal component analysis; SFS: sequential feature selection; SFFS: sequential floating feature 
selection; FCBF: fast correlation-based feature filter; LMT: logistic model tree; MLR: multinomial logistic regression; SVM: 
support vector machine; LWL: locally weighted learning; CART: classification and regression trees; ANN: artificial neural 
network; GML: Gaussian maximum likelihood; KNN: k-nearest neighbours; KNN-DT: k-nearest neighbours-decision tree; 
FKNN: fuzzy k-nearest neighbours; CLAM: cluster-based adaptive metric; CIA-LVQ: colour image analysis-leaning vector 
quantization. 

Ensemble methods have performed better than individual classifiers in several studies 

[11,109], whereas Alcón et al. [10] obtained the best results in both the individual logistic 

model tree (LMT) classifier and AdaBoost ensemble method. Meanwhile, the authors 

considered the LMT classifier more useful due to the complexity computation of the 

ensemble model. Consequently, there is no ideal method to solve all problems in skin 

lesion classification, as may be observed in findings in the literature. The performance of 

the classification relies on several conditions, mainly on discriminative features, as 

previously discussed. 

The features extracted from the lesion have also been used for pattern detection or 

classification in order to assist in skin lesion diagnosis. Table 7 summarizes the best 

results of recent studies concerning global and local pattern classification in dermoscopic 

images. The table indicates the number of image used, the target of the detection or 

classification, and the values of the evaluation measures.  
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Table 7: Results of recent studies focused on the global and local pattern analysis in dermoscopic 
images. 

References Year Number 
of images 

Detection/classification Mean results 
(Evaluation measures) 

Global pattern 

   [73] 2013 350 Reti./ Glob./ Cob./ Homo./ Paral./ Starb./ 
Mult. 

89.28% (SE), 93.75% (SP), 0.986 (AUC). 

   [162] 2012 180 Reti./ Glob./ Cob./ Homo./ Paral./ Starb./ 93.08% (SE), 91.45% (SP), 0.948 (AUC). 

   [72] 2012 325 Reti./ Glob./ Cob./ Homo./ Paral./ 86.8% (ACC). 

   [74] 2011 160 Reti.; Glob./ 89% (ACC); 95% (ACC). 

   [71] 2011 360 Mult. NM 

   [98] 2009 100 Reti./ Glob./ Cob./ Homo./ Paral./ 94% (ACC) 

   [124] 2009 100 Reti./ Glob./ Cob./ Homo./ Paral./ 86% (ACC) 

   [96] 2008 213 Paral. ridge; paral. furrow; fibrillar 0.985 (AUC); 0.931 (AUC); 0.890 (AUC). 

   [121] 2008 44 Reti./ Glob./ Homo./ 94% (ACC) 

Pigmented network 

   [112] 2015 NM Typical 74% (ACC), 0.82 (AUC), 79% (Prec.). 

   [163] 2014 122 Present/ absent; typical/ atypical 85% (ACC), 0.821 (AUC); 100% (ACC). 

   [111] 2014 220 Present/ absent 86% (SE), 81.67% (SP). 

   [100] 2012 200 Present/ absent  86.2% (ACC), 91.1% (SE), 82.1% (SP). 

   [62] 2011 734 Present/ absent  0.922 (AUC) 

   [71] 2011 360 Melanoma/ benign NM 

   [24] 2010 115 Atypical/ absent 80% (SE), 82% (SP). 

   [128] 2010 NM Present/ absent NM 

   [101] 2010 436 Present/ absent; absent/ typical/ atypical 93% (ACC), 0.935 (Prec.), 0.933 (Rec.);  
82% (ACC), 0.820 (Prec.), 0.823 (Rec.). 

   [64] 2010 106 Melanoma/ benign 95.4% (ACC) 

   [164] 2008 173 Typical/ atypical 85% (ACC) 

   [165] 2006 60 No network/ partial/ complete 88.3% (ACC) 

   [166] 2006 30 Typical/ atypical NM 

   [122] 2004 155 Present/ absent 80% (ACC) 

   [155] 1998 NM Present/ absent NM 

Dots/globules 

   [112] 2015 NM Absent; typical; atypical 47% (ACC), 0.53 (AUC), 47% (Prec.); 
70% (ACC), 0.55 (AUC), 39% (Prec.); 
61% (ACC), 0.51 (AUC), 29% (Prec.). 

   [63] 2015 108 Malignant/ non-malignant 0.903 (ACC), 0.884 (SE), 0.923 (SP). 

   [128] 2010 NM Present/ absent NM 

   [71] 2011 360 Melanoma/ benign NM 

   [155] 1998 NM Present/ absent NM 

Streaks     

   [112] 2015 NM Absent 85% (ACC), 0.79 (AUC), 95% (Prec.). 

   [154] 2013 945 Present/ absent; regular/ irregular; absent/ 
regular/ irregular 

78.3% (ACC), 83.2% (AUC); 83.6% 
(ACC), 88.9% (AUC); 76.1% (ACC), 
85% (AUC). 

   [152] 2012 99 absent/ regular/ irregular 91% (ACC) 

   [151] 2010 53 Present/ absent 86% (SE), 88% (SP). 

   [24] 2010 200 Irregular/ absent 86% (SE), 88% (SP). 

   [78] 2005 10 Present/ absent NM 

Blue-whitish veil 

   [112] 2015 NM Absent 90% (ACC), 0.96 (AUC), 99% (Prec.). 

   [118] 2013 200; 100 Present/ absent 87% (ACC); 67% (ACC). 

   [150] 2011 887 Present/ absent 80.50% (SE), 90.93% (SP). 

   [74] 2011 160 Present/ absent 86% (ACC) 

   [71] 2011 360 Melanoma/ benign NM 

   [24] 2010 110 Present/ absent 90% (SE), 93% (SP). 

   [151] 2010 135 Present/ absent 87% (SE), 85% (SP). 

   [77] 2008 100; 545 Present/ absent; Melanoma/ benign 84.33% (SE), 96.19% (SP); 69.35% (SE), 
89.97% (SP). 
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Table 7: Continued. 

References Year Number  
of images 

Detection/classification Mean results 
(Evaluation measures) 

Blotches 

   [24] 2010 110 Irregular/ absent 87% (SE), 90% (SP). 

   [99] 2009 424 Melanoma/ benign 81.2% (ACC) 

   [120] 2009 50 Present/ absent NM 

   [117] 2005 512 Melanoma/ benign 77% (ACC) 

Hypopigmentation 

   [97] 2011 244 Melanoma/ nevus 0.952 (AUC) 

Regression structures 

   [112] 2015 NM Absent 89% (ACC), 0.86 (AUC), 98% (Prec.). 

   [24] 2010 110 Present/ absent 80% (SE), 83% (SP). 

   [151] 2010 80 Present/ absent 80% (SE), 83% (SP). 

Vascular structures 

   [166] 2006 NM Present/ absent NM 

The references of research about local features also include the works focused on the seven-point checklist method. 
NM: non-mentioned; ACC: accuracy; SE: sensitivity; SP: specificity; AUC: area under the ROC curve; Prec.: precision; Rec.: 
recall; Reti.: reticular; Glob.: globular; Cob.: cobblestone; Homo.: homogeneous; Paral.: parallel; Starb.: starburst; Multi.: 
multicomponent. 

 

Several methods have been proposed for the pattern analysis task in skin lesion 

diagnosis. Some of these methods have also used feature selection techniques, and the 

performance of several classifiers has also been taken into account [62,63,73]. One 

concern in this task is in identifying the presence of global patterns, since few studies 

have been done on such patterns in automatic diagnosis of skin lesions. To the best of our 

knowledge, only one study dealing with the classification of all global patterns of skin 

lesions has been proposed [73], and no previous study has addressed the issue to identify 

the absence of such patterns. Indeed, it should be noted that the multicomponent pattern 

and the absence of patterns can indicate a higher probability of being a malignant lesion. 

Abbas et al. [73] proposed the classification of skin lesion global patterns by using 

AdaBoost algorithm based on colour and texture properties from a perceptually uniform 

colour space. Furthermore, the authors developed a multi-label learning algorithm 

(AdaBoost.MC) to solve the problem of multicomponent pattern. This pattern is 

determined by fusing the results produced by AdaBoost.MC based on maximum a 

posteriori (MAP) and robust ranking principles. The method achieved superior results 

compared with the multi-label SVM and KNN.  

Local pattern detection of dermoscopy images is a challenging task to assist in 

discriminating between benign and malignant skin lesions. The presence of local patterns, 

such as blue-whitish veil and regression structures, or even some patterns considered 

atypical, irregular or asymmetric, may identify a malignant lesion. To the best of our 

knowledge, no previous study has dealt with all skin lesion local patterns. Leo et al. [24] 
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proposed a method based on LMT to classify five local patterns based on the seven-point 

checklist method. The authors segmented the lesion colour by using PCA, 2D histogram 

construction, peak-picking algorithm, and histogram and lesion partitioning, in order to 

detect a blue-whitish veil, irregular pigmentation, and regression structures. In addition, 

the authors combined structural and spectral methods to extract texture features, such as 

median filter, close-opening operation, fast Fourier transform (FFT), high-pass filtering, 

inverse fast Fourier transform (IFFT) and suitable thresholding, in order to detect the 

atypical pigment network, and irregular streaks. The authors achieved good results in the 

detection of such local patterns. 

Most studies have been proposed for the pigmented network detection [100,111,163]. 

In addition, other studies have considered feature extracted from patterns for 

discriminating between benign and malignant skin lesions [63,64,77]. Maglogiannis and 

Delibasis [63] classified the skin lesion into malignant and non-malignant and achieved 

superior results with inclusion of the dot-related features to the lesion-related features. 

The SVM classifier (polynomial kernel) yielded better results than MLP, KNN, random 

forest and SVM (PUC kernel) based on dot-related features. The dots were segmented 

using a circularity function and definition of diffusivity after enhancing dark circular 

structures using inverse non-linear diffusion.  

4. Discussion 

Dermoscopic images have been widely used for diagnosis of pigmented skin lesions 

[167,168], since they allow suitable visualization with more details of pigmentation 

patterns on the surface of the lesion. Furthermore, previous clinical studies have 

addressed an increase of sensitivity of the melanoma diagnosis by dermoscopic compared 

to diagnosis by macroscopic image [169]. Among the several skin lesion diagnostic 

methods using dermoscopic images [67], the ABCD rule has been commonly applied to 

extract features for computational analysis [84,149]. This rule allows for easy 

understanding and provides simplicity of application while showing reliable results for 

the melanoma diagnosis. On other hand, previous clinical studies [69] reported that 

methods based on pattern analysis performed better than the ABCD rule for the diagnosis 

of melanocytic skin lesions. In recent years, descriptors mainly based on shape, colour 

and texture have been proposed to identify and classify patterns in skin lesion images, as 

well as to discriminate benign and malignant lesions. Pattern analysis of pigmented skin 
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lesions has shown promising results and may continue to be the focus of intense research 

in the coming years [73,81]. Figure 4 illustrates the distribution of the methods that have 

been proposed for skin lesion classification reviewed in this article according to the main 

feature used. 

 

Figure 4: Distribution of the reviewed skin lesion classification methods according to the main 
feature used. 

The classification process of skin lesions in images must be effective, since it is crucial 

to assist dermatologists in the diagnosis of these lesions by means of CAD systems. In 

addition, the evaluation and improvement of the performance of classifiers are essential 

for the pattern recognition research field [58]. A relevant problem that affects the 

performance of classifiers is the definition of the meaningful features for representing the 

classes. Consequently, the feature extraction and selection steps are very important to 

achieve better performance for the computational diagnosis of skin lesions in images. The 

application of several descriptions may be required considering the large number of 

features extracted from images. For dealing with this issue, feature selection methods 

have been applied to establish the most relevant features [61,80,84,110], since these 

methods allow removing the redundant and/or irrelevant features. As a consequence, the 

feature extraction time, the training and testing computational load and the classification 

complexity are all reduced, while the classification performance may be improved. The 

result of the feature selection process depends on the search strategy and evaluation model 

applied as well as their established parameters. In regard to the classification process, the 

performance depends on several factors, such as the extracted and selected features, 

established parameters and chosen classification method. The classification algorithms 

should be chosen based on the classification problem and available data regarding 
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advantages and disadvantages of each algorithm. Figure 5 illustrates the distribution of 

the classification algorithms used in the methods reviewed in this article for skin lesion 

classification. 

 

Figure 5: Distribution of the classification algorithms used by the reviewed methods for skin 
lesion classification. 

Classification methods based on a decision tree have been used by many authors for 

the skin lesion classification [10,12,24]. The simplicity of the structure in terms of ease 

of understanding and visualization, as well as the easy rule generation, is one of the 

important advantages of this method. Ensemble methods [140], which aim to combine 

the strengths of different classifiers, have also been commonly proposed to improve the 

performance of the classification of skin lesions. These methods have performed better 

than individual classifiers [11,110]. The SVM classifier [148] has also been applied to 

discriminate skin lesions due to its good generalization and simplification of the non-

linear data separation by means of kernel functions [63,73]. Despite the long training 

time, ANNs have been proposed in various studies [61,81,106] to deal with complex 

pattern recognition problems. Recently, the linear classifier [93], regression analysis 

[104], prototype-based classifier [82], discriminant analysis [80] and maximum 

likelihood [149], have also been proposed to solve problems of skin lesion classification. 

5. Conclusion and future trends 

Pigmented skin lesion classification is an area of great research interest due to its 

importance in skin cancer prevention, as well as in the early diagnosis. This review 
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provides an overview of current developments of computational methods for skin lesion 

image classification. Studies specifically addressing automatic methods applied to the 

feature selection and extraction steps, based on several clinical approaches, were 

presented in this review. In addition, the skin lesion classification step was addressed by 

including classifiers and evaluation procedures, as well as some performance results for 

pattern and lesion classification. 

From this review, one may conclude that several studies focused on skin lesion 

classification have been proposed for use in CAD systems. Such systems aim at an 

effective computational diagnosis of pigmented skin lesions to assist dermatologists in 

their diagnosis. Although this research topic has been addressed in several studies, 

resulting in successful systems, new methodologies may be proposed to fill gaps that still 

have not been fully addressed, as well as to improve the performance of existing methods. 

Most studies involve extraction of several features from dermoscopic images and 

comparison of two or more classification methods to identify benign and malignant 

lesions. However, some studies used feature selection methods to achieve a better 

classification performance. Detection and classification of skin lesion patterns have also 

been the goal in several studies. Recently, global and local pattern recognition has been 

of great interest to researchers. 

In conclusion, future trends regarding image computational analysis of pigmented skin 

lesions involve searching for new methods aiming to develop more efficient and effective 

expert systems for the computational diagnosis based on macroscopic and dermoscopic 

images. Hence, several issues may be addressed to achieve this goal, in particular: 1) the 

evolution features may be better explored in order to develop methods to analyse changes 

in size, shape, shades of colour and surface features on skin lesions - extracted features 

based on evolution criterion along with the other criteria features may complement the 

diagnosis; 2) the development and evaluation of new computational methods to identify 

the presence of global patterns, mainly the starburst and multicomponent patterns, since 

few studies have explored such patterns; 3) the lack of computational methods to detect 

some skin lesion local patterns and access their irregularity that can also be important to 

assist in diagnosis of specific lesions; 4) the development of new approaches for colour 

and asymmetry patterns, and positive feature analysis based on Menzies’s method is 

important for future applications of this method for computational diagnosis of skin 

lesions; 5) in order to find more relevant features for the given problem, different feature 
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selection models may be compared; and 6) the evaluation of new classifiers, ensemble 

models and parameter optimisation need to be addressed in order to classify skin lesions 

and to improve on the current results. 

Computational methods based on the issues aforementioned may perform better and 

more effectively in diagnosing skin lesions in images. In addition, such methods may 

cover several problems regarding skin lesion classification, which convert CAD systems 

into more complete expert systems for diagnosing such lesions based on macroscopic and 

dermoscopic images. 
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Abstract  

Skin cancer is considered one of the most common types of cancer in several countries 

and its incidence rate has increased in recent years. Computational methods have been 

developed to assist dermatologists in early diagnosis of skin cancer. Computational 

analysis of skin lesion images has become a challenging research area due to the difficulty 

in discerning some types of skin lesions. A novel computational approach is presented 

for extracting skin lesion features from images based on asymmetry, border, colour and 

texture analysis, in order to diagnose skin lesion types. The approach is based on an 

anisotropic diffusion filter, an active contour model without edges and a support vector 

machine. Experiments were performed regarding the segmentation and classification of 

pigmented skin lesions in macroscopic images, with the results obtained being very 

promising. 

Keywords: Image pre-processing; Image segmentation; Image classification; Anisotropic 

diffusion filter; Active contour model without edges; Support vector machine. 

 

1. Introduction 

Computational analysis of skin lesion images is an area of great research interest due to 

its importance in skin cancer prevention, particularly in achieving a successful early 

diagnosis [1-3]. Such lesions, which can be classified as benign or malignant, are mainly 

due to abnormal production of melanocyte cells originating from factors such as excessive 

sun exposure. Melanocyte cells are responsible for creating the substance melanin, whose 

main function is to provide skin pigmentation. In the case of malignant cells, i.e. 

melanoma (Figure 1a), such cells divide quickly and may invade other parts of the body. 

An increasing number of deaths due to melanoma have been observed worldwide, since 

this type of malignant lesion is the most aggressive compared to other lesion types due to 

its high level of metastasis [4]. Benign lesions display a more organized structure than 

malignant lesions, since the former are unable to proliferate into other tissues. Seborrheic 

keratosis (Figure 1b) and melanocytic nevus (Figure 1c) are examples of benign lesions. 

However, these skin lesions have also been of global concern, since some types of nevi 

may become melanoma; moreover a melanoma may resemble a seborrheic keratosis or a 

nevus in its initial state. 
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Figure 1: Three examples of pigmented skin lesions: (a) melanoma, (b) seborrheic keratosis and 
(c) melanocytic nevus. 

Different non-invasive imaging techniques have been employed to assist 

dermatologists in diagnosing skin lesions [5]. Macroscopic images, commonly known as 

clinical images, are normally used in computational analysis of skin lesions [6,7], since 

such images may be obtained using common digital video or image cameras. Figure 1 

presents examples of macroscopic images. However, their imaging conditions are 

frequently inconsistent; for example, images are acquired from variable distances and/or 

under different illumination conditions. Furthermore, the images may have poor 

resolution, which may be challenging when the lesion under study is small. An additional 

problem with clinical images is related to the presence of artefacts, such as hair, 

reflections, shadows and skin lines, which may hinder adequate analysis of the imaged 

skin lesions.  

Pre-processing, segmentation, feature extraction, and classification are fundamental 

steps commonly found in computational systems of image analysis. In terms of skin 

lesions, the image pre-processing step is an important aspect for good segmentation, i.e. 

identification, of the image’s pigmented skin lesions. Effective approaches based on 

colour space transformation [8], contrast enhancement [9] and artefact removal [10] have 

been proposed for this step in order to improve the accuracy of the following 

segmentation step. Segmentation allows for extracting the region of interest (ROI) from 

the macroscopic image under analysis. Previous studies [6,11,12] have shown that 

computational methods for image segmentation may provide suitable results for the 

identification of skin lesions in images.  

The feature extraction of skin lesion images is usually based on methods used by 

dermatologists in their clinical routine diagnosis. Of these methods, the ABCD rule is 

mostly used, being a criteria based on the Asymmetry, Border, Colour and Diameter 

characteristics of the lesion under study [13]. The asymmetry criterion may be examined 
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by dividing the region of the lesion into two sub-regions by an axis of symmetry, in order 

to analyse the similarity of the area by overlapping the two sub-regions along the axis. 

The lesion is considered symmetric when the two sub-regions are highly similar, which 

is prevalent in benign lesions. Otherwise, the lesion is considered asymmetric which is 

associated with malignant lesions. The border criterion corresponds to the measure of the 

regularity of the lesion’s shape. According to this criterion, a border of regular shape is 

associated with benign lesions while a border of irregular shape is associated with 

malignant lesions instead. The colour criterion consists of analysing the tonality variation 

of the pigmented skin lesions in order to identify the malignant lesions, which usually 

present non-uniform colours. The diameter criterion is associated with the size of the 

lesion and is defined by the greatest distance between any two points of the lesion’s 

border. As such, a diameter equal to or greater than 6 (six) millimetres may indicate 

malignancy. Texture analysis may also be performed for image-based examination of skin 

lesions, since it assists in discriminating benign from malignant lesions by assessing the 

roughness of their structure [7]. 

Several computational solutions [1,14] have been proposed for extracting features 

from pigmented skin lesions in images in order to represent them according to certain 

criteria. Then, the classification step consists of recognizing and interpreting the 

information about the pigmented skin lesions based on these features. Hence, 

computational classifiers are important tools to assist the computational diagnosis of skin 

lesions in macroscopic images [15-17].  

The objective of this work was to develop a novel computational approach based on 

the ABCD rule and texture analysis for the identification and classification of pigmented 

skin lesions in macroscopic images, in order to provide information that may assist 

dermatologists in their diagnosis. In this approach, an anisotropic diffusion filter [18] is 

applied to reduce the noise present in the image under study. Then, the active contour 

model without edges [19] is employed in the segmentation of the lesion in the pre-

processed image. Afterwards, features related to the asymmetry, border, colour and 

texture of the lesion are extracted from the segmented image. Finally, the features are 

used as input to a support vector machine (SVM) classifier [20] to classify the skin lesion. 

This paper is organized as follows: a review of the computational methods that have 

been applied to classify pigmented skin cancers and other skin lesions is provided in 

Section 2. A novel approach for detecting and classifying skin lesions in macroscopic 
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images is proposed in Section 3. The results and their discussion are provided in Section 

4. Finally, conclusions drawn and proposal for future studies are in the last section. 

2. Related studies 

Computer-aided diagnosis (CAD) systems for skin lesions in images have been proposed 

in order to assist dermatologists, predominantly in the early assessment of skin cancer. In 

these systems, image filters are commonly applied to pre-process the input images in 

order to increase the accuracy of the segmentation step. A median filter, which is a non-

linear image filtering algorithm, has been applied often to smooth images of skin lesions 

as well as to remove artefacts, preserving the border of the lesion, which is imperative to 

assure adequate segmentation [1,11,21]. An anisotropic diffusion filter has also been 

regularly used for smoothing skin lesion images, particularly to remove artefacts with 

good results and without losing relevant information about lesions [22]. Based on set 

theory, morphological filtering [23] enables removing image noise [11,24], and may also 

be used to enhance skin lesions in images [25], as well as to include areas with borders 

of low contrast in previously detected lesion regions [24,26]. 

Algorithms of image segmentation have been developed based on several techniques 

to assist the diagnosis of skin lesions from images [27]. From these, threshold-based 

algorithms have been widely used, mainly because of their simplicity. Thus, thresholding 

algorithms, such as the Otsu [1,24,26,28], type-2 fuzzy logic [29] and the Renyi entropy 

method [25], aim to establish the threshold values in order to separate the regions of 

interest (ROIs) in the input images. However, these techniques may reveal some 

problems; for example the segmented lesions tend to be smaller than their real size, and 

the segmentation process may lead to highly irregular lesion borders [29].  

Algorithms based on active contour models (ACM) have been frequently proposed for 

the segmentation of skin lesions in images [8,11,12]. In these algorithms, initial curves 

move toward the boundaries of the objects of interest through appropriate deformation. 

The algorithms of active contour may be classified as edge- or region-based models [30] 

according to the technique used to track the curves movement. Additionally, mixed 

models have been also adopted, see, for example, Li et al. [31]. The edge-based models 

include classic parametric models [32], gradient vector flow (GVF) [33] and geometric 

(or geodesic) active contours (GAC) [34]. However, classic parametric models and GVF 

have difficulty in dealing with topological changes and large curvatures. On the other 
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hand, GAC models, such as level-set-based algorithms, do not present such problems. 

The region-based active contour model proposed by Chan and Vese [19] has been used 

in the segmentation of skin lesions [11] due to its advantages relatively to other 

segmentation algorithms based on ACM [19], such as: 1) the initial curve may be defined 

more freely in the input image, 2) the inner contours are automatically detected without 

the need to define additional curves in the image, and 3) the segmentation is successfully 

carried out even in the presence of intensity variations, very smooth boundaries and 

boundaries not successfully detected by gradient operators. Region-based algorithms, like 

the region growing, splitting and merging methods have also been used to segment skin 

lesions in images [1,11,17,35]. These methods consist of grouping similar neighbouring 

pixels, or sub-regions, into larger homogeneous regions according to a growing criterion. 

Such methods have shown successful performance even under complex conditions such 

as great variations of illumination and colour. However, some of these methods may not 

adequately identify lesion regions that present low contrast relatively to the skin 

background. 

The wide use of algorithms based on artificial intelligence (AI) is justified by the 

advantages they offer [11], such as the possibility of learning from sample cases provided 

by artificial neural networks (ANNs) [9], the search and optimization for the best 

segmentation results provided by techniques based on genetic algorithms (GAs) [36], and 

the capability of dealing with imprecise values provided by fuzzy logic, e.g., by applying 

the type-2 fuzzy logic technique [29]. In addition, fuzzy logic combined with clustering 

techniques have been employed in the image segmentation of skin lesions, such as the 

fuzzy c-means (FCM) algorithm [37] and the anisotropic mean shift approach based on 

the FCM algorithm (AMSFCM) [38]. The hill-climbing algorithm (HCA) is a technique 

based on the clustering of points on an image, which is also applied to detect ROIs in skin 

lesion images [39]. In Abbas et al. [40], a new segmentation method based on dynamic 

programming was proposed to overcome the limitation of thresholding, region-growing 

and clustering, as well as level-set-based segmentation methods. However, some 

algorithms based on AI may also present disadvantages regarding the complexity of their 

implementation and the presence of unnecessary steps, which requires high 

computational efforts [36]. 

The ABCD rule and texture analysis are examples of approaches employed in the 

literature for the computational analysis of skin lesions in macroscopic images. However, 
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other descriptors have also been extracted for the characterization of skin lesions in 

images: 

• Asymmetry (A): asymmetry index descriptors based on axis of symmetry [41,42], 

and geometrical descriptors [7];  

• Border (B): geometrical descriptors based on the best-fit of ellipse axes [41,42], and 

statistical descriptors based on border gradient and edge regions [7];  

• Colour (C): statistical descriptors based on colour models [7,41,42], amount of 

colour pixels [7], and relative colour descriptors [41];  

• Diameter (D): semi-major axis of the best-fit ellipse [42]; and  

• Texture (T): statistical descriptor based on the intensity of the pixels inside the 

lesion regions [7].  

For the classification process, one or several methods have been evaluated to achieve 

the best results. The performance of this process depends on several issues, such as the 

quality of the segmented image and extracted features, as well as on the classification 

method used. The output of the skin lesion classification process may be binary or multi-

class, and concern different classes according to the classification goal, e.g., malignancy 

of the lesions (benign versus malignant) [43], and distinct types of skin lesions (melanoma 

versus nevus [16,17], melanocytic versus non-melanocytic [14], and dysplastic versus 

non-dysplastic versus melanotic [16]). Furthermore, skin lesion features, such as border 

features (regular versus irregular) [44] can also be classified. 

Classification methods based on a decision tree have been used in the classification of 

skin lesions by many authors [15,16,41]. The simplicity of the classification structure in 

terms of ease of understanding and visualization, as well as the easy rule generation, is 

one of the important advantages of this approach. However, the difficulties in dealing 

with correlated features and the possibility of excessive adjustments (over-fitting) are its 

major drawbacks. Bayesian learning-based methods have also been applied to classify 

skin lesions [16,43]. Although Bayesian methods provide fast training and no sensitivity 

to irrelevant features, they assume that the features are independent. Despite the long 

training time, artificial neural networks have been proposed in various studies [16,17] to 

cope with many complex pattern recognition problems, since such classifiers present 

good capability and flexibility to solve several non-separable problems. The SVM 
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classifier [20] has also been applied to discriminate skin lesions, due to its good 

generalization and simplification of the non-linear data separation by means of kernel 

functions [1,16]. The SVM performed better than other computer classifiers in several 

studies [16]. However, this classifier may be sensitive to noise and the classification 

process is binary. 

3. Proposed approach 

In this section, a computational approach for identification and classification of 

pigmented skin lesions in macroscopic images is presented, in order to provide 

information that may assist dermatologists in their diagnosis. Figure 2 illustrates the 

pipeline of the proposed approach, which involves the following steps: 1) image pre-

processing, 2) image segmentation, 3) image post-processing, 4) feature extraction, and 

5) lesion classification. The first step is mainly applied to deal with noisy images based 

on an anisotropic diffusion filter [18]. The second step is responsible for identifying the 

lesion presented in the image being studied by using an active contour model without 

edges, known as Chan-Vese’s model [19]. The third step consists of the post-processing 

of the segmented image based on morphological filtering [23] in order to improve the 

quality of the segmentation result. In the fourth step, features are extracted from the 

identified lesion, including the lesion’s asymmetry, border, colour and texture properties. 

Finally, the last step concerns the lesion classification based on the extracted features that 

are inputted into an SVM classifier [20]. In the next sections, each step of the proposed 

approach is detailed. 

3.1. Image pre-processing 

As mentioned previously, the image under analysis may contain several artefacts that can 

affect the accuracy of the image segmentation step. Hence, an anisotropic diffusion filter 

[18] is applied to smooth the input image, mainly in order to reduce the presence of hairs. 

Hence, initially, the original RGB (red, green, blue) image is converted into a grey-level 

image, since the segmentation method used is applied to grey-level images. Afterwards, 

the anisotropic diffusion filter is applied to the converted image according to the solution 

proposed by Barcelos et al. [18], which aims at smoothing very noisy images without 

removing relevant borders. 
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Figure 2: Pipeline of the proposed approach for detecting and classifying pigmented skin lesions 
in images. 

The implementation of this filter is based on the following equations: 

Iy = 	�|��� ∗ ∇I|�	|∇u|	K({	 k ∇q|∇||l − 	}	�1 − 	��I − w�	,           (1) 

	�|��� ∗ ∇I|� 	= ��;8|�~�∗∇q�|�	, and              (2) 

�y��, �� = �
��y� �XG�����G���� 	,               (3) 

where I��, �, 0� = w��, ��, � ∈ Ω, � > 0, w��, �� is the original image to be processed, I 

the smoothed image at scale �, K({ the divergence operator, ∇I the gradient of I, and } a 

parameter related to the diffusion speed. The term 	�|��� ∗ ∇I|�	 is used for border 

detection, where / is a parameter, �� the Gaussian function, and � the standard deviation 

of ��. The convolution �� ∗ ∇I is a Gaussian scale space of 	 given by: #"��, �, �� = 	 ∗
�y��, �� where �y is given by Eq. (3) and � is the scale. Considering a neighbourhood of 

a pixel �, when the gradient ∇ has a low average value; i.e., there are few noisy pixels in 

the input image, � is considered an inner pixel (homogeneous region), resulting in 		 ≅
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1. Otherwise, � will be a pixel of a contour, 		 ≅ 0. The moderation selector �1 − 	� [18] 

allows a balanced diffusion of the input image, i.e., the homogeneous regions are 

smoothed even more with respect to the borders of the regions. This filter is iteratively 

applied to the image, such that the number of iterations ('w) is determined according to 

the amount of noise presented in the input image. However, relevant borders may be 

removed when the number of iterations is too large.  

3.2. Image segmentation 

The segmentation process should be effective, so information of the lesion may be 

extracted with high confidence. In addition, the accuracy of this process directly 

influences the feature extraction step, which is required to suitably represent the lesion 

for its classification process. Therefore, an appropriate segmentation technique is crucial 

to obtain good classification results for the problem in question. The Chan-Vese model 

[19] is based on the average of the intensities of the image’s pixels, and not on the image’s 

gradient. This model uses the concepts of the Mumford-Shah and level-set segmentation 

models. Essentially, Chan-Vese’s model considers a "fitting" term Q for the energy 

minimization, which allows the deformation of the curve toward the boundary of the 

object to be segmented, in which the inside and outside intensities are constant and 

similar. In order to identify whether the object of interest is inside or outside the curve, 

the energy minimization Q�J�, J
, d� is calculated as: 

Q�J�, J
, d� = 4 F efd��, ��g|∇d��, ��|K�K�L + i F jfd��, ��gK�K�L +⋋� F |I1��, �� −L
J�|
jfd��, ��gK�K� +⋋
 F |I1��, �� − J
|
�1 − j�d��, ����	K�K�L 	 ,				                               (4) 

where I1 is a pre-processed image, as a bounded function on Ωm and with real values. The 

fixed parameters 4, i ≥ 0, and ⋋� and ⋋
> 0 are weights for the fitting term. The terms j and e are the Heaviside and Dirac delta functions, respectively, used in order to obtain 

the level-set energy function Q�J�, J
, d�. The constants J� and J
, which are based on 

the Mumford-Shah segmentation model, are the average image I1 inside and outside 

curve 0, respectively. Such constants are given by: 

J��d� = F q?��,��r�s��,���t�t�u F r�s��,���t�t�u 	,                    (5) 

J
�d� = F q?��,�����r�s��,����t�t�u F ���r�s��,����t�t�u 	.              (6) 
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3.3. Image post-processing 

Frequently, the segmentation results are post-processed to improve the accuracy of the 

obtained lesion region. In many cases, morphological operations [23] are employed for 

this purpose [21,26,38]. Here, a morphological filtering, presented in Eq. (7), is applied 

to the segmented image w by using a structuring element E. This process allows the 

smoothing of borders, the removing of isolated regions, and/or even filling the segmented 

lesion region. This filter consists of the opening operation w ∘ E, defined by Eq. (8), 

followed by the closing operation of the result by E, defined by Eq. (9), respectively:  

�w ∘ E� ∙ E	,                  (7) 

w ∘ E = �w ⊖ E�⊕ E	,               (8) 

w ∙ E = �w ⊕ E�⊖ E	,	               (9) 

where w ⊕ E is the dilation operation given by Eq. (10) and w ⊖ E is the erosion operation 

given by Eq. (11). Therefore, the opening of set w by E is the erosion of w by E, followed 

by the dilation of the result by E. The closing of the set w by E is the dilation of w by E, 

followed by the erosion of the result by E: 

w ⊕ E = ��| �fE�g�⋂ w� ⊆ w�	,	            (10) 

w ⊖ E = ��|�E�� ⊆ w�	,                              (11) 

where E� is the reflection of set E (structuring element), fE�g� is the translation of set E� by 

pixel �, and �E�� is the translation of set E by pixel �. 

3.4. Feature extraction 

After the ROI identification, the next step is to extract a lesion’s features based on the 

ABCD rule in order to numerically describe its properties. The clinical assessment is 

usually based on all of the rule’s criteria to diagnose the malignancy of lesions in images. 

However, the diameter criterion was not applied here due to its great dependence on the 

image resolution [1], since the size of the image highly affects the number of pixels of 

each segmented lesion regions. Instead, a texture analysis is performed to assess the 

surface roughness of the lesion. Therefore, asymmetry, border, colour and texture 

properties are extracted from the original RGB image using the segmented image after 

post-processing as a feature extraction mask. 
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3.4.1. Asymmetry 

In order to extract features based on the asymmetry criterion, the region of the lesion 

under analysis is dividing into two sub-regions ���, �
� by an axis according to the 

longest diagonal K defined by Euclidian distance [23]:  

���,�� = ���� − �
�
 + ��� − �
�
	,           (12) 

where ���, ��� and ��
, �
� are the coordinates of the border’s pixels � and �. All the 

border’s pixels are analysed in order to find which pair has the greatest distance ���,��.  
Perpendicular lines from the pixels of the longest diagonal K are computed to analyse 

the similarity between two sub-regions of the lesion. The number of perpendicular lines 

may be different for each image, since it depends on the size of the diagonal K of the 

lesion. Therefore, ' = #/$ is computed to determine the number of perpendicular lines 

for all images to be classified; i.e. it determines a set of perpendicular lines �, where # is 

the total number of perpendicular lines along the diagonal K, and $ is a pre-defined fixed 

number of expected perpendicular lines. In order to determine an adequate set �, the 

following values for $ have been experimentally established, $ = �10, 20, 30, 40, 50�. 
Ten perpendicular lines $ = 10 obtained the best results in experimental tests to represent 

the size of the set of perpendicular lines for each image. Afterwards, two semi-lines were 

determined from each perpendicular line of the set �, one semi-line represents the sub-

region ��, and the other represents the sub-region �
. For each perpendicular, the distance ���,�� of the semi-line for both sub-regions ���, �
� is computed, where � is a pixel of 

the diagonal K and � is a pixel of the border. 

Eleven features are extracted to represent the asymmetry criterion: 

• The ratio between the shortest and longest distances based on the semi-lines ���,	�
� from each perpendicular line of set � (10 features); 

• The standard deviation from ratios based on all perpendicular lines of set � (1 

feature). 

The ratio between the two semi-lines allows for determining whether the lesion area 

may be more symmetric or more asymmetric to a particular pixel of the longest diagonal, 

i.e., the area is either more asymmetric when its coefficient is closer to zero, or more 

symmetrical when its coefficient is closer to one. 



A COMPUTATIONAL APPROACH FOR DETECTING PIGMENTED SKIN LESIONS IN MACROSCOPIC IMAGES  

120 
 

3.4.2. Border 

A border is represented by pixels comprising the lesion's boundary, obtained as a result 

of the lesion segmentation process. A one-dimensional border [23] of the lesion under 

analysis is defined to extract features based on this criterion. The number of peaks, valleys 

and straight lines of the border is extracted by vector product and inflexion point 

descriptors by means of the one-dimensional border. An inflexion point descriptor is 

applied to measure small irregularities in the border, whereas a vector product descriptor 

is applied to measure substantial irregularities in the border [45]. 

The inflexion point descriptor aims to analyse border’s pixels $% to define which pixels 

show a change of direction. Therefore, a four-point neighbourhood 'R for both left and 

right directions is considered for each border’s pixel $%. In order to detect if a given pixel $% is an inflexion, weights �R are assigned to its neighbour pixels. From the analysis of 

the � axis of a system of coordinates, each neighbour pixel 'R that is below the pixel 

under analysis $% receives �R = 1. Otherwise, each neighbour pixel receives �R = −1. 

Afterwards, the weights �R corresponding to each direction (left, ��, and right, ��) are 

added separately, �� , �� = ∑ �RR . Pre-defined thresholds #� = 2 and #
 = −2 [45] are 

considered to analyse small irregularities in the border, based on the sum of the weights �� , �t. An inflexion pixel $% is achieved when �� 	and �� ≥ #� or �� 	and �� ≤ #
. The 

sum of the weights for both left and right neighbour pixels �% = �� + �� identifies the 

inflexion pixel $% as a peak when �% > 0, as a valley when �% < 0, or as a straight line 

when �% = 0. 

On the other hand, the vector product descriptor aims to analyse a border’s pixels to 

identify peaks and valleys with substantial irregularities. The vector product �% is based 

on three border pixels ��, �
, and	�¢ established according to a difference of fifteen pixels 

between them, totalling a difference of thirty pixels between �� and �¢ [45]. The vector 

product �% is computed for each border’s pixels as: 

�% = ��
 − �����¢ − ��� − ��
 − �����¢ − ���	,           (13) 

where (��, ��), (�
, �
) and (�¢, �¢) are the three aforementioned pixels ��, �
, and	�¢. 
Such points determine whether a segment belongs to a peak, valley or straight line. 

Therefore, a border’s pixel $% is identified as a peak when �% > 0, as a valley when �% <0, or as a straight line when �% = 0.   
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Six features are extracted to represent the border criterion: 

• The number of  peaks, valleys and straight lines based on small irregularities of the 

border by using the inflexion point descriptor (3 features); 

• The number of  peaks, valleys and straight lines based on large irregularities of the 

border by using the vector product descriptor (3 features). 

The peak, valley and straight-line values may be relatively different for each image, 

since they depend on the size of the lesion’s border. In order to solve the problem of 

different ranges that may influence the classification results, such values are adjusted into 

an interval between 0 (zero) and 1 (one). Therefore, the values obtained by the inflexion 

point descriptor are divided by the total number of pixels obtained, and the values 

obtained by the vector product descriptor are divided by the total number of border’s 

pixels. These features allow the assessment of the regularity or irregularity of the lesion’s 

border. 

3.4.3. Colour 

The RGB colour model is commonly employed to represent the colours of skin lesions in 

images [1,14,17,41,42]. Therefore, statistical measures based on this model are applied 

to represent the colour criterion. The mean, variance and standard deviation values for 

each RGB channel were extracted (nine features). These features allow for analysing 

tonality changes of pigmented skin lesions in order to identify malignant lesions. 

3.4.4. Texture 

In order to extract texture properties of the skin lesions, fractal dimensions are computed 

from the image under study by using a box-counting method (BCM), since it is simple 

and effective [43,46]. A fractal dimension [47] is a procedure for splitting the input image 

into several quadrants to quantify the irregularity level or self-similarity of the image's 

fractals according to: 

� = £¤¥�¦�£¤¥�� §⁄ �	,                          (14) 

where N represent the number of elements of the self-similar parts that reconstruct the 

original image, and T is the amount of quadrants corresponding to a fraction of its 

previous size. 

The BCM method demarcates a grid over the image; i.e., it divides the image into 

several squares. The process is iterative, in which the size of each square decreases and 
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the amount of squares that covered the fractal is counted at each iteration. The box-

counting algorithm uses a least squares error to compute the fractal dimension:  

� = 	∑ f�% − �«¬g
% , with	( = 1,2, … ,',           (15) 

where N is the number of elements and the term �«¬, which is an approximation to function �%, is defined as:  

�«¬ = ±�% + J	,               (16) 

where the slope ± and intercept	J of the line �«¬ are computed as:  

± = 	U∑ ²=�=��∑ ²== ��∑ �== �=U∑ �=���∑ �== �� 	,             (17) 

J = 	∑ ²=�	³	∑ �=== U 	.              (18) 

The image-based fractal dimension �
 is computed individually for each row and 

column of the image. Afterwards, the final fractal dimension is defined as:  

�
 = k∑ ´==y l + 1	,              (19) 

where �% is the fractal dimension obtained at each iteration and � is the total amount of 

fractal dimensions. 

Eighteen features are extracted to represent the texture properties of the lesion under 

analysis: 

• The fractal dimension of the lesion’s area (1 feature); 

• The fractal dimension of the original image (1 feature); 

• The fractal dimension of sixteen parts of the image, with the original image divided 

into parts of the same size to measure their fractal dimension (16 features). 

The fractal dimension is a value between two and three, which allows for measuring 

the irregularity level or self-similarity of the image surface.  

Overall, the number of features P extracted from each image under study is 44 (11 

asymmetry, 6 border, 9 colour and 18 texture features). From this set of features, datasets 

are constructed with a set of samples ��A�, according to the number of images ! for a 

given classification problem, ( = 1,… , !. Each sample (�A) is composed of P features 
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(�%µ) and the class to which it belongs (�%). Such datasets are used for the classification 

process. 

3.5. Lesion classification 

After building the set of features, the next step is the lesion classification based on the 

extracted features. The classification process occurs by randomly dividing the available 

image samples into training and test sets. The training step consists of developing a 

classification model based on the training samples, which are applied as input data to the 

classifier for the learning process. The testing step consists of measuring the accuracy of 

the model learned in the training step over the set of tests. The classification process 

should have high performance and robustness, since its results are often used to assist 

dermatologists in their diagnosis. Therefore, the SVM classifier [20] was used mainly due 

to its good generalization properties.  

The SVM classifier involves an algorithm based on statistical learning applied to build 

a hyperplane that separates the data according to the defined classes. Such data may be 

linearly separable or linearly non-separable. Let us consider the training data ��% , �%�, with �% ∈ Χ and �% ∈ Y, where Χ is the set of samples and Y is the class to which they belong �−1,+1�. A separating hyperplane may be defined as ���� = � ∙ � + ¸. Then, the points � that lie on the hyperplane satisfy ���� = 0, where � is the normal distance to the 

hyperplane, and |¸|/‖�‖ is the perpendicular distance from the hyperplane to the origin, 

with ¸ ∈ 	ℜ and ‖�‖ being the Euclidian norm of �. Therefore, the ���� divides Χ into 

two regions: positive samples if ���� > 0, and negative samples if ���� < 0. For the 

linearly separable case, the algorithm is used to search the data with largest distance 

(“named as largest margin”) from the hyperplane based on the following constraints: 

�%�� ∙ �% + ¸� − 1 ≥ 0, with	∀%= 1,… , !,           (20) 

where � ∙ �% + ¸ ≥ +1 for �% = +1, and � ∙ �% + ¸ ≤ −1 for �% = −1. 

The largest border is represented by a pair of parallel hyperplanes, j� and j
. The 

points defined for these hyperplanes are the training points used for classification, called 

support vectors. The pair of hyperplanes is obtained by minimization of ‖�‖
 based on 

the constraints defined in Eq. (20).  Such minimization is given by the Lagrangian 

function subject to the conditions � = ∑ �%�%�%¼%9�  and ∑ �%�% = 0¼%9� , where �% are 
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positive Lagrange multipliers for each of the constraints (Eq. (20)). The Lagrangian 

function is defined as:  

-� = ∑ �%¼%9� − �
∑ �%�R�%�R�%�R¼%,R9� , with	�% ≥ 0	.         (21) 

For the linearly non-separable case, positive slack variables ½%, ( = 1,… , !, are 

introduced in the constraints: 

�%�� ∙ �% + ¸� ≥ 1 − ½%	, with		½% ≥ 0, and	∀%= 1,… , !	,         (22) 

where � ∙ �% + ¸ ≥ +1 − ½% for �% = +1, and � ∙ �% + ¸ ≤ −1 + ½% for �% = −1. In 

order to deal with noise and outliers, parameter 0 is introduced for assigning a penalty to 

errors, which becomes: 

-
 = ∑ �%¼%9� − �
∑ �%�R�%�R�%�R¼%,R9� 	,           (23) 

subject to 0 ≤ �% ≤ 0, ∀%= 1,… , !, and ∑ �%�% = 0¼%9� .    

In order to simplify the process of separating the non-linear data, a kernel function 

may be applied to map the set of samples of the original space Χ to a new space with 

infinite dimensional ℑ, defined as Φ:Χ → ℑ. The kernel function receives two points of 

the original space (x%, xR), and computes the scalar product in the new space, defined as 

Ãfx%, xRg = Φ�x%� ∙ ΦfxRg. The mapping, by using kernel function based on a dual 

problem presented in Eq. (23), is defined as: 

-¢ = ∑ �%¼%9� − �
∑ �%�R�%�RÃfx% , xRg¼%,R9� 	,           (24) 

subject to 0 ≤ �% ≤ 0, and ∑ �%�% = 0¼%9� . The application of kernel functions for non-

linear data makes the algorithm efficient, so that simple hyperplanes are constructed in a 

space with high dimensions. 

In this study, the histogram intersection kernel [48] is adopted, as defined by Eq. (25), 

since such a kernel is proposed especially for image classification and it has achieved 

superior results compared to other kernels. The histogram intersection kernel has been 

proposed for colour-based image recognition [48], whereas in this study it is based on all 

extracted lesion features, i.e., asymmetry, border, colour and texture: 

Ãfx%, xRg = ∑ min��% , �R�¼%9� 	.            (25) 

Here, the classification algorithm is based on supervised learning and the classification 

process is binary, since the SVM classifier is originally binary. The image classification 
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is divided into two steps: feature classification and skin lesion classification. The feature 

classification step consists of analysing the following classification processes: 1) region 

asymmetry (symmetric or asymmetric), 2) border irregularity (regular or irregular), 3) 

colour uniformity (uniform or non-uniform), and 4) texture irregularity (regular or 

irregular). Each process takes into account only the features related to the classification 

goal, i.e., a subset of features. The skin lesion classification step consists of distinguishing 

the following types of skin lesions: 1) nevus and seborrheic keratosis, 2) nevus and 

melanoma, and 3) seborrheic keratosis and melanoma. In this case, each classification 

process considers the entire set of features. 

4. Experimental Results and Discussion 

In this section, segmentation and classification results are described and discussed. First, 

the image databases used to evaluate the results are described. Second, the experiments 

for border detection, regarding the pre-processing, segmentation and post-processing 

steps are presented. Finally, the experiments on the feature extraction of skin lesions, 

which correspond to the lesion’s asymmetry, border, colour, and texture, are presented as 

well as those for lesion classification. 

4.1. Image databases 

The databases used to evaluate the proposed approach are composed of macroscopic 

images of pigmented skin lesions. Examples of such images are shown in Figure 1. A 

great deal of information concerning the diagnosis of the imaged lesions provided by 

expert dermatologists is available in these databases, including among them, diagnostics 

on the lesions and their features (i.e., asymmetry, border, colour and texture). All the 

information contained in the datasets has been used for the development and evaluation 

of this work.  

The used databases have a total of 408 images, which were collected from Loyola 

University Chicago [49], YSP Dermatology Image Database [50], DermAtlas [51], 

DermIS [52], Saúde Total [53], Skin Cancer Guide [54], and Dermnet - Skin Disease 

Atlas [55,56]. Of these, 62 images were melanocytic nevi, 86 images were seborrheic 

keratosis, and 260 images were melanoma. In regard to the asymmetry criterion, the 

lesions were symmetric in 137 images and in 271 images were asymmetric. In regard to 

the border criterion, the lesions have regular borders in 77 images and irregular borders 
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in 331 images. In regard to the colour criterion, the lesions present uniform colours in 32 

images and non-uniform colours in 376 images. In regard to the texture criterion, the 

lesions present regular texture in 224 images and in 184 images they present irregular 

texture. The images of the databases have been resized to 200	 Å 200 pixels to simplify 

their processing. 

4.2. Border detection 

In order to remove noise and enhance the lesions, an anisotropic diffusion filter was 

applied to the input images according to the discretization of Eq. (1). The parameters were 

defined by experimental tests, based on parameters suggested by Barcelos and Pires [22], 

with the following values: ∆� = 0.1, � = 1, } = 1, / = 0.0008, and 'w = 100. The 

smoothing results obtained by applying the anisotropic diffusion filter to grey-level 

images are shown in Figure 3(a-c). The resultant images in (d-f) indicate that the filter 

has successfully reduced the presence of hairs. However, this filter may not remove other 

artefacts, such as, reflections and shadows.  

 

 
Figure 3: Image processing results for each step of the proposed approach: (a-c) grey-level 
images, (d-f) smoothed images, (g-i) segmented images, (j-l) post-processed images, and (m-o) 
original images with the detected borders (white contours) overlapped. 

Afterwards, Chan-Vese’s model was applied to segment the smoothed image 

according to Eq. (4). The parameters were defined by experimental tests, based on the 

parameters proposed by Chan and Vese [19]: 4 = 0.2, i = 0, }� and }
 = 1, È = 1, Δt =0.1, and 500 iterations were established for the evolution of the curve. In order to define 

an appropriate curve 0, several initial shapes and sizes were tried and visually assessed. 
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A square-shaped curve was defined and positioned close to the image’s centre. However, 

the imaging conditions are usually inconsistent, and the clinical images are acquired from 

variable distances, implying that the size of the lesions may be different as they are 

dependent on the distance adopted in the image acquisition. Therefore, two curves, CË 
and CÌ, with different sizes were established: for small lesions, CË = 40 Å 40 pixels, and 

for large lesions, CÌ = 140	 Å 140 pixels. Examples of the segmentation results obtained 

by applying the Chan-Vese model to the smoothed images (d-f) are shown in Figure 3. 

Although the resultant binary images (g-i) are of good quality, some binary images 

presented holes in the interior of the segmented lesion region and/or split regions, which 

were mainly caused by reflections and shadows. 

A morphological filter [23] was applied to the segmented binary images to achieve 

better segmentation results. In order to define an appropriate structuring element E, 

several shapes and sizes were tested. Ellipse-shaped structuring elements with radii Í�, Í
 = 4, presented the best results according to a visual assessment. The post-

processing results obtained by applying the morphological filter to the binary images (g-

i) are shown in Figure 3. The resultant images (j-l) confirm the removing of isolated 

regions and the filling of hole regions, as well as the smoothing of the borders without 

losing their important characteristics. Afterwards, the borders found were overlapped on 

the original images (m-o) based on the post-processing image results (j-l).  

A subjective evaluation [57] was applied to evaluate the proposed approach, which 

included a visual assessment of the border detection results by a specialist. The first 

evaluation analysed whether the lesions were correctly or incorrectly segmented; Figure 

4 includes some example results. The evaluation of the results obtained revealed that the 

proposed approach is effective in detecting skin lesions and extracting their contours from 

clinical images. The proposed approach adequately tackled the noisy images. However, 

some images with low contrast boundaries, shadows and reflections were incorrectly 

segmented.  

The second evaluation compared the segmentation results obtained by the proposed 

approach against the threshold-based segmentation results achieved by using Otsu’s 

method [58], since this method has been widely applied in this domain [1,24,26,39]. 

Figure 5 presents examples of the segmentation results obtained by applying both 

segmentation methods to the original images (a-e). The evaluation performed on the 

results obtained revealed that the proposed approach defined the border of the lesion in a 
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more effective way than Otsu’s method in several cases. Furthermore, the proposed 

approach also achieved better results when dealing with images of low contrast, and with 

shadows and reflections. The percentages of correctly segmented images for both 

segmentation methods, based on the visual assessment of the resultant borders by a 

specialist, are shown in Table 1. It may be seen that the proposed approach obtained 

significantly superior results compared to the threshold-based method. The quality of the 

detected borders of the 385 images correctly segmented by the proposed approach was 

also visually evaluated by the specialist, with 91.43% of these considered having good 

quality and the remaining ones having acceptable quality. 

 
Figure 4: Example of border detection results obtained by applying the proposed approach: (a-d) 
examples of correctly segmented images and (e-h) examples of incorrectly segmented images. 

 

Figure 5: Comparison of the two segmentation methods: (a-e) original images, (f-j) borders 
detected by Otsu’s method, and (k-o) detected by the proposed approach.  
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Table 1: Skin lesion segmentation results.  

Segmentation 
method Melanocytic nevus (%) Seborrheic keratosis (%) Melanoma (%) All (%) 

Thesholding 80.65 81.40 80 80.39 

Proposed approach 96.77 93.02 94.23 94.36 

4.3. Skin lesion classification 

In order to differentiate types of skin lesions and to detect their features, several 

classification experiments were performed. The sets of training and test for the 

classification process were randomly defined from the available image samples, i.e., from 

the 385 correctly segmented images. In order to define adequate training sets and test for 

each classification problem, several sizes for the training set were assessed, with the 

remaining ones employed as test sets. The size values considered for the training set were TÎ = �10, 20, 30, 40, 50� (in percentage). Each classification model was obtained by 

applying the SVM classifier [20] by using a histogram intersection kernel [48] based on 

the set or subset of features and on the samples of the training set. Afterwards, the samples 

of the test set were classified based on the classification model and the predicted classes 

were compared to the known classes. Classification performance metrics, such as the 

precision for each class and the accuracy for each model, were measured to assess the 

quality of the results obtained.  

The following experiments for feature classification were performed: 1) the first 

experiment involved asymmetry classification, in which TÎ = 10 was considered the best 

training set, 2) the second experiment comprised the border classification, in which TÎ =50 was considered the best training set, 3) the third experiment comprised the colour 

classification, in which TÎ = 50 was considered the best training set, and 4) the last 

experiment was the texture classification, in which TÎ = 30 was considered the best 

training set. The feature classification results are shown in Table 2. The asymmetry 

classification obtained good results for both classes. In contrast, the texture and colour 

feature classifications have not led to good generalization between the classes, whereas 

border feature classification has resulted in an average distinction between the two 

classes.  
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Table 2: Feature classification results of the proposed approach. 

Classification Radial basis function Histogram intersection 

Class 1 Class 2 
Accuracy (%) 

Class 1 Class 2 
Accuracy (%) 

Precision (%) Precision (%) Precision (%) Precision (%) 
Asymmetry Symmetric Asymmetric  Symmetric Asymmetric  

60.71 73.62 69.45 89.29 100 96.54 

Border Regular Irregular  Regular Irregular  

22.86 94.30 81.35 71.43 74.68 74.09 

Colour Uniform Non-uniform  Uniform Non-uniform  

43.75 75.71 73.06 56.25 75.14 73.58 

Texture Regular Irregular  Regular Irregular  

61.69 64.10 62.73 60.39 69.23 64.21 

 

The results obtained for the skin lesion classification are shown in Table 3. The 

following experiments for skin lesion classification were performed: 1) the first 

experiment involved classification between nevus and seborrheic keratosis, in which TÎ =40 was considered the best training set. Although these two types of lesions are benign, 

the classification model had an average separation between the two classes, 2) the second 

experiment was determined by the classification between nevus and melanoma, in which TÎ = 50 was considered the best training set. The classification result between these two 

types of lesion has not been quite expressive, since several samples of the database are 

composed of skin lesions that do not exactly follow the rule that distinguishes these 

lesions, and 3) the last experiment was based on the classification between seborrheic 

keratosis and melanoma, in which TÎ = 20 was considered the best training set. In this 

case, such lesions are usually too similar, with texture being the main feature used to 

differentiate them. Therefore, the outcome of the texture classification properly explains 

why the classification results between seborrheic keratosis and melanoma were not so 

expressive. 

Table 3: Skin lesion classification results of the proposed approach. 

Classification Radial basis function Histogram intersection 

Class 1 Class 2 
Accuracy (%) 

Class 1 Class 2 
Accuracy (%) 

Precision (%) Precision (%) Precision (%) Precision (%) 
Nevus – Keratosis 
(Class 1 – Class 2) 72.22 73.33 72.84 77.78 80 79.01 

Nevus – Melanoma 
(Class 1 – Class 2)     56.67 73.02 69.87 76.67 73.81 74.36 

Keratosis – Melanoma 
(Class 1 – Class 2) 60 72.64 69.73 80 72.64 74.33 

 

The classification results obtained by applying the histogram intersection kernel for 

the SVM classifier were compared with the results obtained by applying the radial basis 

function (RBF) kernel [1,16,37]. The comparison results between the two kernels for both 
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feature and skin lesion classifications are shown in Table 2 and Table 3, respectively. The 

application of a histogram intersection kernel showed superior performances for the 

image classifications. Although the border classification by using an RBF kernel had 

better accuracy than the classification by using a histogram intersection kernel, the 

precision of the regular border classification was somewhat low (22.86%). On the other 

hand, the border classification by using a histogram intersection kernel achieved a more 

balanced classification result between the regular and irregular classes. In regard to the 

colour and texture classification, the results were similar for both kernels. In contrast, the 

asymmetry classification presented significantly superior results. Moreover, the 

application of a histogram intersection kernel presented much better results for all skin 

lesion classifications than the RBF kernel. 

The proposed approach has been developed using: 1) Matlab 8.4.0.150421 

environment for the algorithms of pre-processing, segmentation, post-processing and 

feature extraction; and 2) Dev-C++ 5.11 environment for the algorithms of texture 

extraction and classification. The pre-processing step took 63.76 s in smoothing the 385 

images. As to the segmentation step, the algorithm took around 49.12 min to segment the 

images. The post-processing step required 5.09 s to enhance the segmented images. The 

extraction of the image features from the enhanced images required 1.54 min: asymmetry, 

48.65 s; border, 7.35 s; colour, 6.53 s; and texture, 29.44 s. Finally, the classifier required 

a total of 4.48 s for the training and testing steps. From these values, which are the average 

times over 10 runs, one can note that the segmentation step was the most time-consuming; 

however, the computation time required by this step can be considerably decreased by 

using optimized C/C++ implementations. All algorithms were performed on an Intel(R) 

Core(TM) i5 CPU 650 @ 3.20 GHz 3.33 GHz with 8 GB of RAM, running Microsoft 

Windows 7 Professional 64-bits. 

5. Conclusion and future works 

There are several approaches in the literature for pigmented skin lesion classification. 

Nevertheless, most of the studies involve only dermoscopy images, in which these images 

may be more difficult to obtain, since they require a dermoscopy device. In contrast, 

macroscopic images may be obtained using common digital video or image cameras, so 

that many computational methods to process them become accessible to dermatologists 

in several regions of the world. Furthermore, the feature classifications in macroscopic 
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images are still little explored in research on automated diagnosis, and most studies do 

not deal with the classification of all features considered in this paper. 

An approach was presented for the segmentation and classification of pigmented skin 

lesions in macroscopic images. This approach is based on an anisotropic diffusion filter, 

Chan-Vese’s model and a SVM classifier to allow for extracting lesion features and the 

distinguishing between some types of skin lesions, in order to assist dermatologists in 

their diagnosis. Asymmetry, border, colour and texture properties were considered for the 

classification process. Although the proposed approach achieved good segmentation 

results, mainly with noisy images, it may not perform well on images with too low 

contrast boundaries, shadows and reflections. Both feature and skin lesion classification 

presented significant results. However, some classification results were not expressive, 

e.g., the colour and texture based classifications. Whereas these features were extracted 

from the original RGB images of the databases, in which some images contain too much 

hair and too many reflections and shadows. Therefore, such artefacts may harm the 

assessement of the colour and texture properties of the lesions. In addition, the features 

of some images of the databases are too heterogeneous for both classes, which can 

adversely affect the classification results. Unbalanced databases regarding the number of 

samples for each class may have decreased the accuracy of the classification results, since 

the classifier tends to be based on classes with the highest occurrence. 

In conclusion, future studies regarding the segmentation and classification of 

pigmented skin lesion images should involve searching for new methods aiming to 

develop more efficient and effective systems for better computational diagnosis based on 

macroscopic images. For example, the development of methods for dealing with 

reflections and shadows may be considered, in order to solve the previously discussed 

problems concerning the image segmentation step. Other features and types of pigmented 

skin lesions may also be approached for the purpose of lesions classification from 

macroscopic images. The skin lesion classification results can be improved using deep 

learning architectures, since these architectures have presented excellent performances in 

different applications, including of Computational Vision. From the advantages that these 

architectures have revealed, one can stress the capacity of learning from large amount of 

data in an unsupervised way [59]. Therefore, deep learning architectures should be taken 

into account in future works related to the classification of skin lesions in images. 
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Abstract 

There has been an alarming increase in the number of skin cancer cases worldwide in 

recent years, which has raised interest in computational systems for automatic diagnosis 

to assist early diagnosis and prevention. Feature extraction to describe skin lesions is a 

challenging research area due to the difficulty in selecting meaningful features. The main 

objective of this work is the find the best combination of features, based on shape 

properties, colour variation and texture analysis, to be extracted using various feature 

extraction methods. Several colour spaces are used for the extraction of both colour- and 

texture-related features. Different categories of classifiers were adopted to evaluate the 

proposed feature extraction step and different feature selection algorithms were compared 

for the classification of skin lesions. The developed skin lesion computational diagnosis 

system was applied to a set of 1104 dermoscopic images using a cross-validation 

procedure. The best results were obtained by an optimum-path forest classifier with very 

promising results. The proposed system achieved an accuracy of 92.3%, sensitivity of 

87.5% and specificity of 97.1% when the full set of features was used. Furthermore, it 

achieved an accuracy of 91.6%, sensitivity of 87% and specificity of 96.2%, when 50 

features were selected using a correlation-based feature selection algorithm. 

Keywords: Feature extraction and selection; Fractal dimension analysis; Discrete wavelet 

transform; Co-occurrence matrix; Skin lesion image classification. 

1. Introduction 

Dermoscopic images are widely applied for automated diagnosis of pigmented skin 

lesions. Such images can be acquired from dermatoscope devices or specific cameras to 

provide a better visualization of the pigmentation pattern on the skin surface. Several 

computational systems have been proposed to assist dermatologists in obtaining an 

effective diagnosis [1]. These systems can be used to monitor benign skin lesions, and 

malignant lesions may be diagnosed at an early stage, so that the patient has a higher 

probability of being cured with less aggressive therapies.    

The features extracted from skin lesion images must represent their class, e.g., benign 

or malignant. Several methods to extract shape-, colour- and texture-related features for 

the automated diagnosis have been proposed in the literature [2,3]. Such features can 
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represent skin lesion properties adequately. Nevertheless, few of them combine different 

methods to extract features in a similar category, e.g., texture analysis. The assessment of 

classifiers is an important issue for pattern recognition processes [4]. Other difficulties 

involve defining which features are meaningful to describe the skin lesions, including the 

presence of highly correlated, redundant and irrelevant features. Some studies have 

proposed feature selection methods [5] to overcome these problems [2,3]. An overview 

of the computational methods for pigmented skin lesion classification in images, which 

addresses the feature extraction and selection, and the classification steps, is presented in 

Oliveira et al. [6]. 

The aim of the present study is to find and extract the most relevant features for skin 

lesion computational diagnosis based on shape properties, colour variation and texture 

analysis using different techniques. Figure 1 provides an overview of the skin lesion 

classification approach proposed in this study. The main contribution of this study is the 

texture analysis based on twelve colour channels, since texture features are usually 

extracted using grey-level images or few colour channels [3,7]. In addition, these features 

are combined with shape and colour features to construct a set of features. A dataset is 

constructed from this set of features with a number of samples ��A�. According to the 

number of images ! for a given classification problem, ( = 1,… , !. Each sample (�A) is 

composed of P features (�%µ) and the class to which it belongs (�%). Such a dataset is 

used in the image classification process of benign or malignant lesions using different 

classifiers and feature selection algorithms. 

 

Figure 1: Overview of the proposed approach for the skin lesion classification. 
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This paper is organized as follows: The proposed feature extraction system, based on 

shape, colour and texture properties, is explained in Section 2. The algorithms used for 

selecting features and classifying skin lesions in dermoscopic images are detailed in 

Section 3. The experimental results and their discussion, are presented in Section 4. 

Finally, the conclusions drawn and the proposals for future studies are expressed in 

Section 5. 

2. Proposed feature extraction 

In this section, a combination of features to represent the skin lesion images is proposed. 

These features are based on clinical approaches commonly used by dermatologists when 

diagnosing skin lesions. Various features have been proposed in the literature for skin 

lesion diagnosis in dermoscopic images [6]. The feature extraction step is based on the 

intensities of the pixels in the regions of interest (ROIs) defined by specialists, i.e., binary 

images, where the non-zero pixels belong to the lesion, and the others to the background 

skin. The features described are categorized in shape properties, colour variation and 

texture analysis in Table 1. 

Table 1: Features extracted from skin lesion images based on shape properties, colour variation 
and texture analysis. 

Skin lesion features Denotation 
Number of 

features 
(channels) 

Shape properties   

     Geometrical properties Ï, $, E�, 0Ð, 0w, �, �, Ï�, � 9 
     Lesion asymmetry 4Ë, ÑË
, ÑË 3 
     Border irregularity �Î, {Î, OÎ, �: , {: , O: 6 
Colour variation   

     Colour average, variance and standard 
     deviation 4Ò, ÑÒ
, ÑÒ 3 (Å 12) 

     Minimum and maximum colours P(!Ò, P �Ò 2 (Å 12) 
     Colour skewness �ÃÒ 1 (Å 12) 
Texture analysis   

     Fractal dimension analysis �Ò
 1 (Å 12) 
     Discrete wavelet transform E��¸�Ò , j��¸�Ò; �¸ = 10 20 (Å 12) 
     Co-occurrence matrix Ï��Ò , 0Ò , 0�-Ò , �Ï�Ò, w��Ò , �ÏÒ , ��Ò , �jÒ , jÒ , ��Ò , �jÒ , 0�-1Ò , 0�-2Ò , �00Ò 14 (Å 12) 

2.1. Shape properties 

Shape properties provide measures of the lesions based on their geometrical properties, 

their asymmetry or irregularity of their borders. These features are important for skin 

lesion diagnosis, as an asymmetric shape, border irregularity or ill-defined structure can 
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characterize malignant lesions. Other geometrical properties of the lesion area which are 

commonly computed include the number of pixels inside the lesion region, aspect ratio, 

compactness, perimeter, greatest and shortest diameters, equivalent diameter, 

eccentricity, solidity, rectangularity, and circularity [2,3,8].  

The lesion asymmetry can be evaluated by dividing the region of the lesion under 

analysis into two sub-regions using an axis of symmetry, and thereby analyse the 

similarity of the area by overlapping the two sub-regions of the lesion along the axis. In 

some studies, the axis of symmetry is based both major and minor axes [2,3]. Features 

extracted from a wavelet transform [3,9], Fourier transform [10], fractal dimension [11], 

and irregularity index [3] have also been used to assess border irregularity. In this study, 

18 lesion shape features were extracted from each image under analysis. These features 

are based on some of the standard features previously mentioned and some new features 

presented in a previous study [12]. 

2.1.1. Geometrical property measures  

These measures can provide the geometrical properties of a lesion by comparing the shape 

of the lesion with geometrical objects, e.g., a circle or a rectangle. However, some of these 

features depend on the image resolution and frequently the properties of the images are 

different as they may have been acquired from different distances and therefore, have 

different resolutions. Consequently, a normalization procedure is required. This will be 

considered in the following sections.  

a) Lesion area and border perimeter: The lesion area Ï is the number of pixels within 

the lesion border, and the border perimeter $ is the number of pixels along the lesion 

border.  

b) Equivalent diameter, compactness and circularity: These measures are based on a 

circle. The equivalent diameter E� is the diameter of a circle whose area is same as 

the lesion area Ï, which is given by E� = �4	Ï Ô⁄ . The compactness 0Ð measures 

the ratio of the lesion area to a circle with the same perimeter. Nonetheless, an 

alternative version based on the perimeter can be calculated as the ratio between the 

equivalent diameter E� and maximum diameter �� of the lesion [2], 0Ð =		E� ��⁄ . The circularity 0w is the measure of how closely the lesion area approaches 

that of a circle, 0w = 4	Ï	Ô $
⁄ . 

c) Solidity and rectangularity: These measures are based on a convex hull (it checks a 

curve for convexity defects and corrects them) and a bounding rectangle from the 
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lesion area. The solidity � is computed by the ratio of lesion area Ï to its convex hull 

area 0j, � = Ï 0j⁄ . Rectangularity � is the ratio of the lesion area to the bounding 

rectangle area ÕÏ, i.e., a bounding-box, � = Ï ÕÏ⁄ , where	ÕÏ = �(K�È ∗ È�(	È�. 
d) Aspect ratio and eccentricity: These measures can be based on the structure of 

moments, up to the 3rd order of a lesion shape [2]. The aspect ratio Ï� is determined 

by the ratio of the length of the major axis Ï� to the length of the minor axis Ï
, Ï� =Ï� Ï
⁄ , where Ï� and Ï
 are given by:  

Ï�, Ï
 	= �8ÖPI1
 +PI
1 ± [�PI1
 −PI
1�
 + 4PI��]� 
⁄ Ø�� 
⁄
,                          (1) 

where PI%R, defined in Eq. (2), is the �(, c�th order of central moments of the lesion 

shape. The relation fJ�, J�g denotes the lesion shape centroid given by: J� =P�1 P11⁄  and J� = P�1 P11⁄ , which is computed from the geometric moments, P%R, 
given by Eq. (3). 

PI%R = ∑ ∑ �� − J��% ∙ f� − J�gRÒÙ�Ë�9��ÙÚË�9�  ,                                                                                (2) 

P%R = ∑ ∑ �% ∙ �RÒÙ�Ë�9��ÙÚË�9�   .                                                                                                                    (3) 

The eccentricity � is a measure of the shape elongation of the lesion region, which 

can be computed as: � = [�PI1
 −PI
1�
4PI��] �PI1
 +PI
1�
⁄  ,                                                                 (4) 

where PI%R is the central moments defined in Eq. (2). 

2.1.2. Lesion asymmetry 

In order to extract features based on the asymmetry properties, adapted from Oliveira et 

al. [12], the region of the lesion under analysis is divided into two sub-regions ���, �
� 
by an axis, according to the longest diagonal, K, defined by the Euclidian distance: 

���,�� = ���� − �
�
 + ��� − �
�
, where ���, ��� and ��
, �
� are the coordinates of 

the border pixels � and �. All the border pixels are analysed in order to find which pair 

has the greatest distance ���,��. Perpendicular lines	�% from the pixels of the longest 

diagonal K are computed to analyse the similarity between two sub-regions of the lesion. 

Afterwards, two semi-lines are determined from each perpendicular line of the set �%, one 

semi-line represents the sub-region ��, and the other represents the sub-region �
.  

The distance ���,�� of the semi-line for both sub-regions ���, �
� is computed for each 

perpendicular, where � is a pixel of the diagonal K and � is a pixel of the border. The 

ratio between the shortest and longest distances based on the semi-lines ���, �
� from 
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each perpendicular line of set �% are computed. The ratio between the two semi-lines can 

determine whether the lesion area is more symmetric or more asymmetric to a particular 

pixel of the longest diagonal. Three features are extracted to represent the lesion 

asymmetry: average 4Ë, variance ÑË
 and the standard deviation ÑË from the ratios between 

the two semi-lines based on all perpendicular lines of set �%.  
2.1.3. Border irregularity 

The border is represented by pixels that make up the lesion boundary. A one-dimensional 

border of the lesion under analysis is defined to extract features based on this property. 

The number of peaks, valleys and straight lines of the border is computed using the vector 

product and inflexion point descriptors from the one-dimensional border, according to 

Oliveira et al. [12]. The inflexion point descriptor aims to analyse border pixels $% to 

define which pixels show a change of direction. On the other hand, the vector product 

descriptor aims to analyse the border pixels to identify peaks and valleys with substantial 

irregularities. Six features are extracted to represent border irregularities: 1) the number 

of peaks �Î, valleys {Î and straight lines OÎ based on small irregularities of the border 

using the inflexion point descriptor; and 2) the number of peaks �:, valleys {: and straight 

lines O: based on large irregularities of the border using the vector product descriptor.  

2.2. Colour spaces 

Several different colour spaces, described in the literature, are used to obtain more 

specific information about the colours of a lesion [6]. Here, for the extraction of colour 

and texture features, four colour spaces were used: RGB, HSV, CIE Lab and CIE Luv, 

which correspond to 12 channels ! = 12. These colour spaces are commonly used to 

represent the colours of skin lesions [2,8,13,14]. HSV, CIE Lab and CIE Luv colour spaces 

represent colours based on human perception. Furthermore, CIE Lab and CIE Luv are 

unified colour spaces and can simplify the identification of colour properties [15]. 

a) RGB colour space: This colour space represents the numerical values of the red, green 

and blue channels, and is widely used, since the images are originally obtained with 

this colour space. Moreover, the original RGB colour image can be used for 

conversion to other colour spaces. Although this colour space presents some 

disadvantages such as high correlation between the channels and no perceptual 

uniformity [16], several studies have achieved good results from it [2,8].  
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b) HSV colour space: This colour space represents the hue, saturation and value 

channels, which define the perceived colour of an area, the purity of colour and the 

brightness of colour, respectively. The conversion from the RGB colour space to the 

HSV colour spaces is given by: � = max	��, �, Õ� , 
� = Û[� − min��, �, Õ�]/�, (�	� ≠ 0	0	,																																							(�	� = 0 , 

j = Ý60�� − Õ�/[� − min��, �, Õ�],																(�	� = �120 + 60�Õ − ��/[� − min��, �, Õ�], (�	� = �240 + 60�� − ��/[� − min��, �, Õ�], (�	� = Õ  ,               

j = j + 360, (�	j < 0 ,                                                                                                                      (5) 

where 0 ≤ j ≤ 360, 0 ≤ � ≤ 1 and 0 ≤ � ≤ 1, and the separation of each channel 

corresponds to j = j/2, � = 255� and � = 255�. 

c) CIE Lab and CIE Luv colour spaces: These colour spaces were proposed by the 

International Commission on Illumination (CIE, in French), whose main goal was to 

provide a uniform colour space. This means that the distance between two colours in 

such a colour space is strongly correlated with the human visual perception. Another 

advantage of these colour spaces is the separation of the luminance component L from 

the chrominance channels (a, b) and (u, v). A difference between these two colour 

spaces is that the CIE Lab colour space normalizes the values by division with the 

white colour point of the CIE XYZ colour space, whereas the CIE Luv colour space 

normalizes the values by the subtraction of such a white colour point [15,16]. The 

conversion from RGB colour space to the CIE Lab and CIE Luv colour spaces is based 

on the CIE XYZ colour space. Considering the values ß¼, à¼, and á¼ as being the 

white colour points, the CIE Lab colour space is computed by the following equations: 

- = 	 Û116�à à¼⁄ �� ¢⁄ − 16	, �âÍ	à > 0.008856903.3 à à¼⁄ ,																		�âÍ	à ≤ 0.008856 , 

 = 500ä�ß ß¼⁄ �� ¢⁄ − �à à¼⁄ �� ¢⁄ å ,                                                                                     

¸ = 200ä�à à¼⁄ �� ¢⁄ − �á á¼⁄ �� ¢⁄ å ,                                                                                                 (6) 

where 0 ≤ - ≤ 100, −127 ≤  ≤ 127 and −127 ≤ ¸ ≤ 127, and the separation of 

each channel corresponds to - = - ∗ 255/100,  =  + 128 and ̧ = ¸ + 128. And 

finally the CIE Luv colour space is computed by the following equations: 
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- = 	 Û116�à à¼⁄ �� ¢⁄ − 16	, �âÍ	à > 0.008856903.3 à à¼⁄ ,																			�âÍ	à ≤ 0.008856 , 

I = 13-�Iç − I¼�, { = 	13-�{ç − {¼� ,       Iç = 4ß/ß + 15Y + 3Z , {ç = 9à/ß + 15Y + 3Z , I¼ = 4ß¼/ß¼ + 15à¼ + 3á¼,	{¼ = 9à¼/ß¼ + 15à¼ + 3á¼ ,                                              (7) 

where 0 ≤ - ≤ 100, −134 ≤ I ≤ 220 and −140 ≤ { ≤ 122, and the separation of 

each channel corresponds to - = - ∗ 255/100, I = 255/354�I + 134� and { =255/262�{ + 140�. 
2.3. Colour variation 

Statistical measures based on several colour spaces are commonly applied to the feature 

extraction from the lesion region [2,8,14]. Furthermore, these measures are also applied 

to other regions associated with the lesion border. The background skin [8] and 

surrounding skin (inner or outer peripheral regions) [2] are examples of such regions that 

are considered for feature extraction. Skin lesion features based on relative colours have 

been proposed [2,8] in order to assess colour features from the different regions associated 

with the lesion. Basic colours in the skin lesions have also been considered and computed 

[17]. 

In order to analyse the colour variation, six statistical measures are computed for each 

colour channel J of the lesion region using the four-colour spaces as defined earlier, with	J = 1,2, … , !, where ! is the number of channels used for the colour feature 

extraction. 

a) Colour average, variance and standard deviation: These measures evaluate the 

average and the variation of a set of lesion intensity values w�, of each colour channel 

J. The average 4Ò, variance ÑÒ
, and standard deviation ÑÒ are computed by the 

following equations:  

4Ò = �U∑ �w��U�9�  ,                                                                                                                                       (8) 

ÑÒ
 = �U��∑ fw� − 4Òg
U�9�  ,                                                                                                                     (9) 

ÑÒ = �ÑÒ
 ,                                                                                                                                                  (10) 

where ' is the number of pixels of the ROI in the image. 
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b) Minimum and maximum colours: These measures define the minimum value, 	P(!Ò = P(!fw�g, and the maximum value, P �Ò = P �fw�g of the set of lesion 

intensity values w�, of each colour channel J.  

c) Colour skewness: This measure computes the asymmetry �ÃÒ of the data around the 

set of lesion intensity values w�:  

�ÃÒ = ��U∑ fw� − 4Òg¢U�9� � /ÑÒ¢ ,                                                                                                       (11) 

where 4, Ñ are the average and the standard deviation of the set of lesion intensity 

values w�, and ' is the number of pixels of the ROI in the image. 

2.4. Texture analysis 

Texture analysis methods are usually categorized as structural, statistical, model-based 

and transform. Although the structural approach provides a good symbolic description, 

some extracted features can be more useful for synthesis rather than an analysis task [18]. 

Among the various statistical methods, the co-occurrence matrix has shown potential for 

effective texture discrimination of dermoscopic images [8,14,19]. Fractal dimension is a 

model-based method, which is also potentially useful for texture analysis [3]. Fourier 

[20], Gabor [21] and wavelet [3] transforms are also applied to extract texture features in 

skin lesion images. Texture analysis methods based on the Fourier transform may present 

poor performance, due to its lack of spatial localization, whereas a Gabor filter allows a 

superior spatial localization. However, the wavelet transform presents several advantages 

compared to the Gabor transform, i.e., varying the spatial resolution allows it to represent 

textures using the most suitable scale, and there are even several possibilities for the 

wavelet function, in which is possible to choose the best wavelets for a given application 

[18].  

In order to obtain the best features to represent the skin lesion texture in this work three 

different texture analysis methods were chosen. The texture features are computed for 

each colour channel using the four-colour spaces as defined earlier. Thus, a total of 420 

texture features are extracted: 12 features from the fractal dimension analysis [22], 240 

features from the discrete wavelet transform [23] and 168 features from the single-

channel co-occurrence matrix [24].   
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2.4.1. Colour image-based fractal dimensional analysis 

In order to extract the texture properties of the skin lesions, fractal dimensions are 

computed from the image under study using a box-counting method (BCM), since it is 

simple and effective for skin lesion analysis [3]. A fractal dimension [22] is a procedure 

for splitting the input image into several quadrants to quantify the irregularity level or 

self-similarity of the image fractals, according to � = log�P� log�1 T⁄ �⁄ , where $ 

represents the number of elements of the self-similar parts that reconstruct the original 

image, and T is the number of quadrants corresponding to a fraction of its previous size. 

The BCM projects a grid over the image; i.e., it divides the image into several squares. 

The process is iterative, in which the size of each square decreases and the number of 

squares that covered the fractal is counted at each iteration.  

The bi-dimensional fractal dimension �Ò
, which is computed individually for each 

channel J of the colour spaces, is defined as:  

�Ò
 = �U f∑ ∑ �%,RÒÙ�ËR9��ÙÚË%9� g + 1, with	J = 1,2, … , !	 ,                              (12) 

where �%,R is the fractal dimension obtained at each iteration, i.e., it is computed 

individually for each row ( and column c of the image, ' is the total number of fractal 

dimensions, and ! is the number of channels used for the texture feature extraction.  

2.4.2. Colour image-based wavelet transform 

In this work, a bi-dimensional wavelet transform is used to decompose a 2-D image, to 

which one-dimensional transformations are applied individually along the horizontal and 

vertical directions of an image [23]. The decomposition of a one-dimensional signal ���� 
is based on a family of wavelet functions that usually is defined as complete and with an 

orthogonal base: 

íî,Ì = F ����ïî,Ì���K�ð�ð  .                                                                                                                        (13) 

This family is obtained by dilating and translating a single function defined as the 

mother wavelet ï: 

ïî,Ì��� = �√îïky�Ìî l ,                                                                                                                          (14) 

where   and ̧  are the parameters of dilating and translating, respectively. When   and ̧  

are defined for discrete signals, a discrete wavelet transform (DWT) is obtained.  
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The DWT, based on a multi-resolution, decomposes an input signal in two new signals 

with different frequencies using quadrature mirror filters. Such signals correspond to low- 

and high-pass filters that represent the wavelet functions (mother wavelet) ï��� and 

scaling functions (father wavelet) d���, respectively. The low-pass filter corresponds to 

approximation coefficients, whereas the high-pass filter corresponds to detail 

coefficients. 

The decomposition of a bi-dimensional signal using DWT yields a sub-sample with 

four sub-bands for one-level of decomposition that are: LL, LH, HL, HH. The sub-band 

LL corresponds to the clustering of low-pass filtering in the lines and columns. The sub-

band LH corresponds to the clustering of low-pass filtering in the lines and high-pass 

filtering in the columns. The sub-band HL corresponds to the clustering of high-pass 

filtering in the lines and low-pass filtering in the columns. The sub-band HH corresponds 

to the clustering of high-pass filtering in the lines and columns. These sub-bands have an 

equal number of pixels as the original image. A multi-level decomposition can be 

considered, when the decomposition is applied recursively to the LL sub-band. The result 

of such decomposition is standard pyramidal wavelet decomposition.  

A problem in this wavelet decomposition approach is the large number of features that 

can be obtained depending on the number of levels used and it can give the classification 

a high computational cost. Here, a-three-level decomposition was used to decompose the 

colour images, which is considered sufficient to represent the image texture. Therefore, 

ten sub-bands were obtained for each channel of the colour spaces. A Haar wavelet filter 

was used to implement the DWT, with the coefficients defined as È = f1.0/√2, 1.0/√2g. 
This filter was used since it is simple and has been previously applied to extract texture 

from skin lesion images [25].  

The energy E��¸�Ò and entropy j��¸�Ò measures for the feature extraction from the 

coefficients obtained by DWT are computed for each sub-band �¸ and each colour 

channel J:  

E��¸�Ò = ò�U∑ ∑ f�¸%,R
 gÒÙ�ËR9��ÙÚË%9�   ,                                                                                                    (15) 

j��¸�Ò = �U∑ ∑ ä�¸%,R
 Å logf�¸%,R
 gåÒÙ�ËR9��ÙÚË%9�  ,                                                                              (16) 
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where �¸%,R corresponds to the sub-band coefficient for the pixel (, c and ' is the total 

number of pixels in the sub-band. These measures are commonly used to represent the 

texture of skin lesion images [3]. 

2.4.3. Colour image-based co-occurrence matrices 

The grey-level co-occurrence matrices (GLCMs) represent the relationship between the 

intensities of neighbouring pixels to characterize the texture of an image [24]. Such a 

matrix P�(, c, K, ó� is obtained by the joint probability of occurrence of grey-levels 

considering each pair of neighbour pixels (, c of an image, where these pixels are separated 

by a distance K and in a specific direction ó.  

In this study, co-occurrence matrices (CMs) were used for the colour channels. The 

single-channel co-occurrence matrices (SCMs) were applied separately to each colour 

channel, with J = 1,2, … , !, where ! is the number of colour channels. The parameters 

used to set up the matrices are based on Haralick et al. [24]. The intensities of each 

channel are quantized by an equal probability quantizing algorithm, with � = 16. The 

distance K between one pixel and its neighbours is K = 1, and four orientations ó are 

considered ó = �0°, 45°, 90°, 135°�. In order to extract rotation invariant features, a 

normalized SCM is obtained from the SCMs corresponding to the four orientations.  

From the normalized SCM, 14 statistical measures based on Haralick’s texture features 

[24] were extracted from the image: angular second moment Ï��Ò, contrast 0Ò, 
correlation 0�-Ò, variance �Ï�Ò, inverse difference moment w��Ò, sum average �ÏÒ, 
sum variance ��Ò, sum entropy �jÒ, entropy jÒ, difference variance ��Ò, difference 

entropy �jÒ, information measure of correlation 1 0�-1Ò, information measure of 

correlation 2 0�-2Ò, and maximal correlation coefficient �00Ò. These features are 

expressed in Eq. (17)-(30), where P%,R is the entry value in the position (, c of the 

normalized matrix, and ' is the number of different intensities contained in the quantized 

image:  

Ï��Ò = ∑ ∑ fP%,Rg
UR9�U%9�  ,                                                                                                                        (17) 

0Ò = ∑ ∑ äP%,R�( − c�
åUR9�U%9�   ,                                                                                                                 (18) 

0�-Ò = ä∑ ∑ f( Å c Å P%,RgUR9�U%9� − 4�4�å ����õ  ,                                                                       (19) 
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where 4�, 4�, �� and �� are the averages and standard deviations of P� = ∑ fP%,RgUR9�  

and P� = ∑ fP%,RgU%9� ; and: 

�Ï�Ò = ∑ ∑ ä�( − 4�
P%,RåUR9�U%9�  ,                                                                                                          (20) 

w��Ò = ∑ ∑ äP%,R/1 + �( − c�
åUR9�U%9�   ,                                                                                              (21) 

�ÏÒ = ∑ f( Å P�;��%�g
U%9
  ,                                                                                                                         (22) 

��Ò = ∑ ä�( − �EÒö�
P�;��%�å
U%9
  ,                                                                                                           (23) 

�EÒ = −∑ äP�;��%� logfP�;��%�gå
U%9
   ,                                                                                                (24) 

jÒ = ∑ ∑ äP%,R logfP%,RgåUR9�U%9�   ,                                                                                                            (25) 

��Ò = { Í( !J�fP���g ,                                                                                                                            (26) 

�EÒ = −∑ äP����%� logfP����%�gåU��%91  ,                                                                                               (27)  

where P�;��8� = ∑ ∑ fP%,RgUR9�U%9� , with / = 2,3, … ,2', ( + c = /, and P����8� =∑ ∑ fP%,RgUR9�U%9� , with / = 0,1, … ,' − 1, |( − c| = /; with: 

0�-1Ò = �jßà − jßà1� P ��jß,jà�⁄  ,                                                                                      (28) 

0�-2Ò = �1 − ���[−2.0�jßà2 − jßà�]�� 
⁄  ,                                                                             (29) 

where jß and jà are entropies of P��%� and P��R�, jßà = −∑ ∑ äP%,R logfP%,RgåUR9�U%9� , 

jßà1 = −∑ ∑ äP%,R logfP��%�P��R�gåUR9�U%9� , and jßà2 = −∑ ∑ äP��%�P��R� logfP��%�P��R�gåUR9�U%9� , 

and: 

�00Ò = �Ñ�Jâ!K	O Í	�Ñ�	�(	�!	{ OI�	â�	÷�� 
⁄  ,                                                                     (30) 

where ÷%,R = ∑ äfP%,8PR,8g/fP��%�P��8�gåU8 . 

3. Skin lesion classification 

Here, first the set of features for skin lesion diagnosis are constructed, and then classified. 

The classification process must be accurate, since it is used to assist dermatologists in 

their diagnosis; however, the accuracy of the classification depends on several factors, 

such as a reliable dataset. The pre-processing step in this study included data 

normalization, dataset balancing and feature selection. The classification was carried out 

using the Weka library [26].   
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3.1. Data pre-processing 

The data pre-processing step, which precedes the classification process, normalizes the 

dataset values from the feature extraction process as they contain different ranges, and 

some classifiers cannot handle such differences. The normalization procedure scales all 

numeric values in the dataset to within the same interval [0,1] by computing: 

�!%µ = [�%µ −min	��%µ�]/[max��%µ� − min	��%µ�] ,                                                        (31) 

where �%µ is the actual value of the feature P in the sample (, with the minimum and 

maximum values of features of all the samples, and �!%µ is the normalized value of the 

same feature P in the same sample (.  
Another problem is unbalanced datasets. Here the dataset was composed of 916 

samples of benign lesions and 188 samples of malignant lesions. These unbalanced 

datasets with different numbers of samples in each class can decrease the accuracy of the 

evaluation result, since classifiers tend to prioritize classes with the highest occurrence. 

Sampling methods are used to overcome such problems [27], and in this work a 

resampling procedure was applied to the dataset [26]. This procedure produced a random 

subsample of the dataset using sampling with replacement and a uniform distribution of 

the samples was made. 

Another problem that also affects the performance of classifiers is the choice of 

meaningful features to represent the images. Therefore, feature selection algorithms that 

aim to find the best feature subset are used. These algorithms are usually a combination 

of both search and evaluation methods. Search strategies can be applied to select a 

candidate subset from extracted features of skin lesions, which is evaluated and compared 

to the previous best subset until a given stopping criterion is reached. The feature subset 

selection consists of finding features through search or ranking methods in order to 

identify a candidate feature subset for evaluation process.  

The ranking method produces a ranked list of features based on the evaluation process. 

The search method influences the search direction and execution time of the selection 

process depending on the search strategy adopted, which can be complete, sequential, or 

random [28]. The sequential search strategy is usually used for skin lesion feature 

selection and it can be by the forward, backward or bi-direction selection. The forward 

selection process starts with an empty set, and the best features are gradually added to the 

set, according to the performance obtained from the evaluation method, whereas the 
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backward selection process starts with all features and the worst features are removed at 

each iteration. The bi-direction selection combines both the forward and backward 

searches. 

The evaluation process using filters allows for assessing the quality of selected features 

without using any classification algorithms. Each candidate subset is evaluated by 

applying an independent criterion, which can be based on several measures to compare it 

with the best current subset previously established. If the new evaluated subset is 

considered better then it becomes the best current subset. These measures can be defined 

as [29]: 

• Distance measures that try to find the feature that can separate the classes as far as 

possible from each other;  

• Information measures that establish the information gain from a feature and the 

feature with the most information is preferred; and 

• Dependency measures that are also known as correlation measures applied to 

evaluate the ability to predict the value of one feature from the value of another, or 

how strongly a feature is in regard to the class. 

In this study, six feature selection algorithms, based on the measures discussed above 

and on a feature transformation algorithm, were used to generate different subsets of 

features. These six algorithms are commonly used for the selection of skin lesion features 

[6], since they present several advantages over others, such as computationally efficient, 

simpler and faster algorithms, independent evaluation criteria, and ability to overcome 

over-fitting. 

a) Relief-F feature selection [30]: This algorithm is an extension of the relief algorithm 

to deal with noise and multi-class problems. The dataset samples are randomly 

defined. For each sample that is defined, the closest samples of the same and different 

classes are selected using a nearest-neighbour algorithm [31]. The quality of each 

feature is estimated, according to its value in regard to these closest samples.  

b) Information gain-based feature selection [32]: This algorithm estimates the quality of 

a feature, according to its information gain in regard to the class. The information gain 

between each feature Q and the class 0 is measured by the entropy j, according to 

the information theory criteria [33]. Therefore, the features that have high information 

gain w	�S,ø� are considered the most relevant, where w	�S,ø� = j�0� − j�0|Q�.  
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c) Gain ratio-based feature selection (GRFS) [26]: This algorithm is also based on the 

entropy j and it estimates the quality of a feature Q, according to its gain ratio in 

regard to the class 0. Therefore, the features that have high gain ratio �Í�S,ø� are 

considered the most relevant, where �Í�S,ø� = [j�0� − j�0|Q�]/j�Q�. 
d) Correlation coefficient-based feature selection [32]: This algorithm estimates the 

quality of a feature, according to its Pearson’s correlation coefficient in regard to the 

class. The correlation coefficient is computed by a covariance and variance between 

the features and the class. 

e) Correlation-based feature selection (CFS) [34]: This algorithm tries to find a set of 

features that are highly correlated with a class and with low inter-correlation between 

them. The degree of correlation between the features is computed by a symmetrical 

uncertainty, which is a modified version of the information gain measure. 

f) Principal-component analysis (PCA) [35]: Here the features are transformed to a PC 

based on a correlation matrix, where eigenvectors (vectors of features) are defined, 

according to some percentage of the variance in the original data. The worst 

eigenvectors are removed and the new features are ranked, according to the best 

eigenvalues. 

All feature selection algorithms discussed above are single-feature evaluators, with 

exception of CFS that is a feature subset evaluator. The single-feature evaluators are used 

with a ranking method, where the features are ranked individually, according to their 

evaluation, i.e., the most relevant. The number of features to retain is previously defined. 

The feature subset evaluators measure a subset of features and they return a value that is 

used in the search [26]. In this study, both the greedy stepwise and best first search 

methods were applied. The greedy stepwise method searches feature subsets in either 

forward or backward directions in a greedy way. The selection process must stop when 

the addition or removal of any feature worsens the outcome of the best-found subset until 

that moment. The best first method searches the feature subsets by greedy hill-climbing, 

and the search direction can be forward, backward or bi-direction. 

3.2. Classification 

In this study, the focus is on models with a single classifier that can choose the best 

classification using different datasets, e.g., using a stratified k-fold cross-validation 

procedure [26]. This approach splits the training set in k subsets of equal size and the 
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procedure is repeated k times. In each procedure, one subset is employed as a test set 

while the others are used as the training set. The best model is chosen, according to its 

performance, which is measured by averaging the accuracy obtained from each trial. This 

procedure can be applied to avoid over-fitting while testing the capacity of the classifier 

to generalize. In addition, this approach has shown good results compared with other 

procedures [36].   

Six different categories of classifier were applied in this work to evaluate the dataset 

from the extracted features: the k-nearest neighbours (KNN) [31], Bayes networks (Bayes 

Net) [37], C4.5 decision tree [38], multilayer perceptron (MLP) [39], support vector 

machine (SVM) [40] which is the most commonly used classifiers, according to the 

categories presented by Oliveira et al. [6]. In addition, the optimum-path forest (OPF) 

classifier [41] was also used in this study. To the best our knowledge, no previous study 

has used this later classifier to identify skin lesions in images.  

a) kNN: Here, a search algorithm and a distance function are used to assess which 

sample of the training set is closest to an unknown sample and then assigning the 

unknown sample to the class with the majority of k-nearest neighbours. The main 

advantages of these classifiers are their simplicity to implement and the possibility to 

add new samples to the training set at any time.  

b) Bayes Net: This is a Bayesian learning-based algorithm [37] that computes the 

probability of a given set of features to belong to each class, assuming that the features 

are independent. The Bayes Net learning uses search algorithms and quality measures, 

which provide a network structure and conditional probability distributions.  

c) C4.5: This algorithm is used to create a decision tree [42] that has a structure similar 

to a flowchart, in which each internal node (non-leaf) represents a test of a feature, 

each branch represents the result of the test, and each external node (leaf) indicates a 

prediction of the class. A complete decision tree can contain unnecessary structures, 

and strategies of pre-pruning and post-pruning can be performed to simplify its 

structure. Pre-pruning involves decision making during the tree building process, 

whereas in the post-pruning this is done afterwards. The C4.5 algorithm divides the 

features at the nodes based on information gain. It prevents overfitting which is also 

a form of pre-pruning. The post-pruning in C4.5 yields a dense decision tree very 

quickly. It can also deal with situations in which two features that individually present 

no contribution, but are powerful predictors when combined [26].  
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d) MPL: This algorithm is one of the most commonly used architectures of artificial 

neural network (ANNs) [39] that are parallel distributed systems composed of layers 

of input and output elements linked by weighted connections. During the learning 

phase, the weights are adjusted to predict the correct class based on the input samples. 

The MPL can include one or more layers of processing, also called hidden layers, 

placed between the input and output layers. Back-propagation is a supervised learning 

method widely used in the MLP architecture, which consists of forward and backward 

processes applied to adjust the weight values of the connections. The MLP algorithm 

has good capability and flexibility to overcome various non-separable problems. 

e) SVM: This classifier is used to build a hyper-plane to separate data, according to the 

defined classes. This kind of classifier has been commonly applied to classify skin 

lesions due to its good overall properties. Furthermore, kernel functions simplify the 

process of separating the non-linear data using a simple hyper-plane in a high 

dimension feature space. The radial basis function (RBF) and polynomial kernels 

have been frequently used in several different studies [6]. For the SVM classifier, 

Platt's [43] sequential minimal optimization algorithm was used.  

f) OPF: This is applied to solving pattern recognition problems as a graph based on 

prototypes to represent each class by one or more optimum-path trees, considering 

some key samples. The training samples are nodes of a complete graph; whose arcs 

are the link of all pairs of nodes. The arcs are weighted by the distances between the 

feature vectors of their corresponding nodes. The classification of a new sample is 

defined, according to the strong connectivity of the path between the sample and the 

prototype. Therefore, the path with minimum-cost, among all paths, is considered the 

optimum one. The OPF classifier shows some interesting properties, such as speed, 

simplicity, ability to deal with multi-class classification and overlapping between 

classes, parameter independence and no assumptions are based on the shape of the 

classes. For the application of the OPF classifier, it was used the Weka library based 

on LibOPF [41] as proposed by Amorim et al. [44]. 

The performance of the classification was evaluated using accuracy (ACC), sensitivity 

(SE) and specificity (SP) measures, which are based on outcomes of classifiers, according 

to the predicted class and known class. These outcomes represent the number of correct 

(true) and incorrect (false) classification for each class, positive and negative. These 

measures are commonly used according to Oliveira et al. [6] and they are defined as: 
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Ï00 = 6<;6U<;U Å 100% ,                                                                                                                         (32) 

�E = 6<6<;øU Å 100% ,                                                                                                                           (33) 

�$ = 6U6U;ø< Å 100% ,                                                                                                                             (34) 

where P is the number of positive samples and N is the number of negative samples of 

the dataset. Here, the positive samples represent the benign lesions and the negative 

samples the malignant lesions. Therefore, TP (true positive) is the number of correctly 

classified benign lesions, TN (true negative) is the number of correctly classified 

malignant lesions, FP (false positive) is the number of incorrectly classified malignant 

lesions, and FN (false negative) is the number of incorrectly classified benign lesions.  

A cost function 0 adopted from Barata et al. [13] is used to deal with the trade-off 

between SE and SP, which is defined as: 

0 = Ò]?���Îú�;Ò?]���Î<�Ò]?;Ò?]  ,                                                                                                                         (35) 

where J�1 is the cost of an incorrectly classified benign lesion (FN), and J1� is the cost of 

an incorrectly classified malignant lesion (FP). The costs used to evaluate the 

classification were J�1 = 1 and J1� = 1.5, since an incorrect classification of a malignant 

lesion is more critical. The lower the value of the cost 0, the better is the classification 

performance. 

4. Experiment and Discussion 

In order to evaluate the proposed feature extraction in the classification of benign and 

malignant skin lesions, two experiments were performed. First, the experiments for the 

skin lesion classifications using all features of the dataset are presented. Second, the 

experiments for the feature selection of skin lesions are presented as well as these for the 

lesion classification. In this section, classification results are described and discussed. In 

addition, the image dataset used to evaluate the results is presented, as well as the 

computational time of the system. 

4.1. Dermoscopic image dataset 

The dermoscopic images of pigmented skin lesions used to evaluate the extraction of 

features were collected from the International Skin Imaging Collaboration (ISIC) dataset 
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[45]. Examples of these images are shown in Figure 2. In addition, the images are paired 

with the expert manual that contains the skin lesion diagnoses, as well as the ground-truth 

lesion segmentations in the form of binary masks. In this study, a feature extraction 

approach, based on shape properties, colour variation and texture analysis, is proposed. 

Moreover, since the shape properties are obtained from the lesion borders, only the 

images where the lesion fitted completely within the image frame were selected so that 

the features could be extracted with greater precision. A total of 1,104 images were 

selected from the original dataset. Of these, 916 images were benign lesions and 188 

images were malignant lesions. The images of the dataset were resized to an average 

resolution of  400 Å 299 pixels to simplify their processing.   

 
Figure 2: Four examples of dermoscopic images: (a) and (b) are benign lesions, (c) and (b) are 
malignant lesions. 

4.2. Evaluation of the proposed feature extraction 

The performance of the classification using all extracted features was evaluated by 

different classifiers, which were described in the previous section. Each classifier was 

used with different parameters to find the best results with a ten-fold cross-validation 

procedure. A set of parameters was defined based on previous studies that had used these 

classifiers for skin lesion classifications [13,14,46-48]. The best parameters from each 

classifier, according to the experiments are summarized in Table 2, and consequently, 

these parameters were used for all other experiments in this study. 

The kNN classifier used a linear nearest neighbour search algorithm and three distance 

functions were compared, i.e., Euclidean, Chebyshev and Manhattan, to find the nearest 

neighbours. Different values of k were applied for each distance function and the number 

of neighbours used was / = �5,7, … ,25�. The Bayes net classifier used a hill-climbing 
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search algorithm to find the network structures, and a simple estimator to estimate the 

conditional probabilities of a network. The parameter alpha for the simple estimator was 

settled with the following values: Ï = �0.1,0.2, … ,0.9�. The C4.5 classifier used two sets 

to define the minimum number of samples per leaf, �� = �2,4, … ,20� and �
 =�82,84,… ,100�, and the values of the confidence factor used for pruning were 0Q =�0.1,0.2, … ,0.9�. 
Table 2: The best parameters for each classifier. 

 

 The MPL classifier analysed two values: one hidden layer of the neural network, with j� = ��� �IÍ�Ñ + JO ÑÑ�Ñ�/2 and the other j
 = JO ÑÑ�Ñ. The learning rate - = 0.3 

is the number of the weights that were updated, and the momentum � = 0.2 was applied 

to the weights when updating. The SVM classifier analysed two kernels: the polynomial 

and RBF kernels. In the RBF kernel, the parameter gamma was carried out with different 

values of � = �0.001,0.002,… ,0.1�, and the complexity parameter 0 = �1,2, … ,10� was 

applied to both kernels. And finally the OPF classifier compared three distance functions: 

Euclidean, Chebyshev and Manhattan, in order to find the distances between the feature 

vectors. Table 3 shows that good results were achieved using the proposed extracted 

features, mainly for the specificity of the malignant lesion classification (SP).   

Table 3: Performance results for each classifier using all features. 

 

Classifier Parameters 
k-nearest neighbours k:5 

search algorithm: Linear NN Search (distance function: Manhattan) 
Bayes networks estimator: Simple Estimator (alpha: 0.1) 

search algorithm:  hill-climbing 
C4.5 decision tree confidence factor: 0.3  

minimum number: 2 
Multilayer perceptron one hidden layer: ��� �IÍ�Ñ + JO ÑÑ�Ñ�/2 

learning rate: 0.3  
momentum: 0.2 

Support vector machine complexity parameter: 10  
kernel: RBF (gamma: 0.1) 

Optimum-path forest distance function: Euclidean 

Classifier ACC SE SP C 
kNN                         75.8% 69.4% 82.2% 0.229 
Bayes Net    68.2% 54.0% 82.4% 0.290 
C4.5                                                 86.9% 82.2% 91.5% 0.122 
MLP                                  74.5% 61.2% 87.7% 0.229 
SVM                                   91.7% 87.1% 96.2% 0.074 
OPF                                   92.3% 87.5% 97.1% 0.067 



COMPUTATIONAL DIAGNOSIS OF SKIN LESIONS FROM DERMOSCOPIC IMAGES USING A COMBINATION OF FEATURES 

162 
 

The best results were obtained by the OPF and SVM classifiers as shown in Table 3 

(in bold), where both classifiers achieved a good generalization between the classes. 

Despite the fast training of the Bayes Net classifier, the classification results were not so 

expressive, as this classifier is sensitive to redundant features as it assumes that the 

features should be independent. The kNN classifier did not make a good distinction 

between the benign and malignant classes. This classifier is sensitive to the existence of 

irrelevant features, which explains these results. Although the MLP classifier is 

competent to solve several non-separable problems, it was not able to make a good 

distinction between the classes. Furthermore, this type of classifier needs a long training 

time for the size of the feature set. The C4.5 classifier, on the other hand, resulted in a 

more balanced classification result between the two classes. However, this classifier can 

have difficulties in dealing with correlated features. All these classifiers can achieve 

superior results using feature selection algorithms. 

4.3. Performance evaluation using feature selection 

In order to improve the classification results and to avoid over-fitting caused by a large 

number of features, different feature selection algorithms were performed to find the best 

features for the classification process. The single-feature evaluators that use a ranking 

method, i.e., the correlation coefficient, GRFS, information gain, relief-F and PCA, apply 

a certain number of features empirically defined by ' = �25,50,75�, with the exception 

of the PCA that chooses enough eigenvalues to rank the new transformed features. The 

maximum number of features Q = 5 was used in order to include the transformed 

features, and the proportion of variance � = 0.95 was used to retain a sufficient number 

of PC features. Accordingly, 31 eigenvalues are selected by the PCA algorithm to 

represent the vector with the new features. The number of nearest neighbours for the 

relief-F was defined as / = 10 for the feature estimation.  

In the case of the feature subset evaluator, i.e., CFS, the greedy stepwise search 

method, in either forward or backward directions, was applied until the addition or 

removal of any feature caused a lower evaluation. This resulted in 37 features selected by 

the forward direction and 50 by the backward direction. The best first search method was 

also performed in the directions: forward, backward or bi-direction. However, 

experimental results, using the classifiers discussed in the previous section, showed that 

this second method did not improve the classification performance over that obtained 
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using the stepwise search method alone. Therefore, only the stepwise method was used 

with CFS for comparison with the other feature selection algorithms.  

Figure 3 shows the percentage of selected features for each feature selection algorithm. 

The features were divided into five categories: shape, colour, fractal texture, wavelet 

texture and Haralick’s texture; the percentage was computed individually for each 

category. Only the best configurations achieved in the classification results were used for 

each feature selection algorithm. Therefore, 75 features for the correlation coefficient, 

GRFS, information gain and relief-F algorithms, 31 features for the PCA algorithm, and 

50 features for the CFS algorithm were selected and used.   

 

Figure 3: Percentage of selected features after applying feature selection algorithms: (a) 
correlation coefficient, (b) GRFS, (c) information gain, (d) relief-F, (e) PCA, and (f) CFS. 

There were large differences between the feature selection algorithms. The correlation 

coefficient and information gain were the only algorithms that did not select features from 

all the categories. The PCA algorithm selected the greatest percentage of features from 
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the shape and colour categories, whereas the information gain algorithm selected the 

greatest percentage of texture features. The relief-F algorithm selected over 80% of the 

fractal texture, but it did not select the wavelet and Haralick’s texture features 

proportionally. On the other hand, the GRFS and CFS algorithms selected features from 

amongst all the categories in a more uniform way.   

Table 4 shows the best classification results using feature selection algorithms. These 

results, show that the OPF classifier with the features selected by the CFS algorithm and 

the MPL classifier with the features selected by the GRFS algorithm achieved superior 

results compared to the others, as presented in Table 4 (in bold). In addition, the features 

selected by the CFS and GRFS algorithms obtained better results for the classifiers than 

the other algorithms. As mentioned earlier, these algorithms selected the features more 

uniformly, which explains these results. The features selected by the PCA algorithm also 

obtained good results among the classifiers, despite the fact that it selected fewer features 

and with the C4.5 classifier it had a high SP result. However, this classifier did not stand 

out as much as the OPF and MPL classifiers, i.e., the C4.5 classifier had a higher 

classification cost. 

Table 4: The best classification results using feature selection algorithms. 

Classifier 
FS algorithm 

(Search) 
Features ACC SE SP C 

kNN CFS (Backward stepwise) 50 75.8% 67.8% 83.9% 0.225 

Bayes Net CFS (Forward stepwise) 37 74.4% 64.3% 84.4% 0.236 

C4.5 PCA (Ranker) 31 89.7% 83.5% 95.8% 0.091 

MLP GRFS (Ranker) 75 90.6% 86.6% 94.6% 0.086 
SVM Relief-F (Ranker) 75 80.1% 76.1% 84.1% 0.191 

OPF CFS (Backward stepwise) 50 91.6% 87.0% 96.2% 0.075 

 

The classification results are presented in more details in Figure 4, where it is possible 

to analyse the variation of the accuracy, sensitivity and specificity, according to the 

number of ranked features defined by the correlation coefficient, GRFS, information gain 

and relief-F algorithms. Figure 5 shows the variation of the results for the features selected 

by the PCA and CFS algorithms. In addition, the classification results for each feature 

selection are compared with the results using the entire set of features. From the feature 

selection, the OPF and kNN classifiers maintained their results, but they did not achieve 

better results. The MPL, C4.5 and Bayes Net classifiers had better results with the feature 

selection, whereas the SVM classifier achieved much better results with the entire set of 

features.  
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Figure 4: Variation of the classification measures, according to the number of features defined by 
the ranker of each feature selection algorithm for all features of the dataset: (a) correlation 
coefficient, (b) GRFS, (c) information gain, and (d) relief-F. 
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Figure 5: Variation of the classification measures, according to the automatic number of features 
established by the feature selection algorithms for all features of the dataset: (a) PCA and (b) CFS. 

Several automatic diagnosis systems have been proposed using models with a single 

classifier for the skin lesion classification, as was used in this study. In Celebi et al. [2], 

the proposed classification model based on the SVM classifier achieved SE = 93.33% and 

SP = 92.34% in a dataset of 564 dermoscopic images. The authors extracted 11 shape, 

354 colour and 72 texture features. In Abbas et al. [7], the proposed system obtained SE 

= 88.2% and SP = 91.3% in a dataset of 120 dermoscopic images. These authors applied 

the SVM classifier to distinguish between benign and malignant lesions using asymmetry, 

border quantification, colour and differential structure features; however, the number of 

features was not mentioned. Zortea et al. [49] proposed a computational system to 

differentiate benign lesions and melanoma using a discriminant analysis classifier, which 

achieved SE = 86% and SP = 52% in a dataset of 206 dermoscopic images. The feature 

extraction in this later work used 6 asymmetry, 11 colour, 3 border, 3 geometry and 30 

texture features of skin lesions. Moreover, the above-mentioned studies also presented 

the lesion segmentation processes.  

The lack of a lesion segmentation process may be considered a limitation of the present 

study; however ground-truth lesion segmentation masks were used in order to obtain a 
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more accurate computational system. A segmentation approach as presented by Ma and 

Tavares [50] can be used to evaluate the effectiveness of the proposed classification 

model in the segmented images. However, this study did not use all the images of the 

original dataset as mentioned earlier, the results cannot be compared with the results 

obtained in the studies using this same dataset and the ground-truth lesion segmentation 

masks presented in Gutman et al. [45]. These studies considered a set of 1279 images 

partitioned into training and test sets. The best results were achieved by Lequan et al. 

[51], with ACC = 0.855, SE = 0.547 and SP = 0.931. The authors proposed a novel method 

for melanoma recognition by leveraging very deep convolutional neural networks. 

4.4. Computational time 

The proposed approach was developed using: 1) Visual Studio Express 2012 

environment, C/C++ and OpenCV 2.4.9 library for the feature extraction algorithms; and 

2) Eclipse IDE 4.6.1 environment, java 1.8.0_111, and Weka 3.8 library for the 

classification algorithms. Table 5 shows the computational time of the processing of all 

images for each task, which includes feature extraction, and classification with and 

without feature selection using the best classification model. These values show that the 

feature extraction step was the most time-consuming; however, the computation time 

required by this step can be considerably decreased using optimized C/C++ 

implementations. All algorithms were performed on an Intel(R) Core(TM) i5 CPU 650 

@ 3.20 GHz with 8 GB of RAM, running Microsoft Windows 7 Professional 64-bits. 

Table 5: Computational time for the feature extraction and classification tasks considering all 
images. 

Task Features Time 
Shape feature extraction 18 10.26 min 
Colour feature extraction 72 10.12 min 
Fractal feature extraction 12 26.79 min 
Wavelet feature extraction 240 34.37 min 
Haralick’s feature extraction 168 29.48 min 
Classification  
(without feature selection) 

510 8.01 sec 

Classification  
(with feature selection) 

50 5.91 sec 

5. Conclusion and future works 

In this paper, a combination of features based on shape properties, colour variation and 

texture analysis using different feature extraction methods was presented. Geometrical 
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properties, lesion asymmetry and border irregularity were used for the extraction of the 

shape properties. Statistical measures were used to analyse the colour features. The fractal 

dimension analysis, discrete wavelet transform and co-occurrence matrix methods were 

applied to obtain the texture features. Four colour spaces, i.e., RGB, HSV, CIE Lab and 

CIE Luv, were used for the extraction of both colour and texture properties. For the 

evaluation of the proposed feature extraction method, six different categories of 

classifiers were adopted; namely: kNN, Bayes networks, C4.5 decision tree, MLP, SVM 

and OPF. Furthermore, the classification performance was also evaluated using six 

different feature selection algorithms, which were: correlation coefficient, GRFS, 

information gain, relief-F, PCA and CFS.  

Promising results were obtained with the proposed feature extraction for all the models 

evaluated. The best classification results were from the OPF classifier when all the 

features were used. The OPF results were: ACC = 92.3%, SE = 87.5% and SP = 97.1%. 

The OPF classifier also obtained the best classification results using feature selection 

algorithms for the skin lesion computational diagnosis system and achieved: ACC = 

91.6%, SE = 87% and SP = 96.2%, when 50 features were selected using a CFS algorithm. 

It should be noted that the OPF classifier did not achieve better results by applying the 

feature selection algorithms, but it maintained the good results obtain when using all 

features. Moreover, the feature selection step reduced the computational time for the skin 

lesion classification. Another interesting result is that in most cases, the performance of 

the classifiers tends to improve when a percentage of features of all categories are select, 

i.e., shape, colour, fractal texture, wavelet texture and Haralick’s texture by feature 

selection algorithms. 

Future studies regarding the pigmented skin lesion classification of dermoscopic 

images should involve searching for new methods aiming to develop more efficient and 

effective systems for better skin lesion diagnoses. However, the classification results can 

be improved with ensemble methods [26]. Such methods consist of combining the results 

of several classification models in order to develop a more robust system that provides 

more accurate results than using a single classifier. Another solution to improve the 

classification results would be using deep learning architectures [52], since these 

architectures have shown that they have the  capacity to learn from a large dataset in an 

unsupervised way. 
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ABSTRACT 

Background and Objectives: The number of deaths worldwide due to melanoma has risen 

in recent times, partly because this type of skin cancer is the most aggressive. 

Computational systems have been developed to assist dermatologists in early diagnosis 

of skin cancer, or even to monitor skin lesions. However there still remains a challenge 

to improve classifiers for the diagnosis of such skin lesions. The main objective of this 

article is to evaluate different ensemble classification models based on input feature 

manipulation to diagnose skin lesions. Methods: Input feature manipulation processes are 

based on feature subset selections from shape properties, colour variation and texture 

analysis to generate diversity for the ensemble models. Three subset selection models are 

presented here: 1) a subset selection model based on specific feature groups, 2) a 

correlation-based subset selection model, and 3) a subset selection model based on feature 

selection algorithms. Each ensemble classification model is generated using an optimum-

path forest classifier and integrated with a majority voting strategy. The proposed models 

were applied on a set of 1104 dermoscopic images using a cross-validation procedure. 

Results: The best results were obtained by the first ensemble classification model that 

generates a feature subset ensemble based on specific feature groups. The skin lesion 

diagnosis computational system achieved 94.3% accuracy, 91.8% sensitivity and 96.7% 

specificity. Conclusions: The input feature manipulation process based on specific feature 

subsets generated the greatest diversity for the ensemble classification model with very 

promising results. 

Keywords: Image Classification; Feature extraction; Feature Selection; Ensemble of 

Classifiers; Computational Diagnosis. 

1. Introduction 

Skin cancer is one of the most common cancers worldwide, and its incidence has 

increased in recent years [1]. Computational diagnosis systems have been developed to 

assist dermatologists in early diagnosis of skin cancer from dermoscopic images. The 

search for more efficient classifiers for these computational systems is a challenging task. 

Several studies have proposed an ensemble of classifiers, commonly known as a multiple 

classifier system or an ensemble classification model to improve skin lesion 

classifications from dermoscopic images [2-4]. An ensemble of classifiers consists of 
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integrating several classification models in order to develop a more robust system that 

provides more accurate results than by using a single classifier [5]. Voting methods [6] 

are some examples of the integration strategies based on the outputs of the input 

classifiers for ensemble classification models, e.g., majority voting that counts the votes 

for each class of all the input classifiers and then designates the class with the majority 

votes as the classification result. Statistical methods, such as average, sum, product and 

median can also be used for this same purpose [7]; such as for cases of numeric 

predictions. 

One important requisite for constructing ensembles is to ensure diversity between the 

classification models, which can be obtained by manipulating the modelling process or 

the input data. Manipulation the modelling process consists of constructing the 

classification models by using either different learning algorithms or a single learning 

algorithm but with different parameters. The more popular approaches for input data 

manipulation are to manipulate the training samples and the input features. Algorithms 

used to manipulate the training samples can generate multiple hypotheses, in which a 

learning algorithm is applied to different subsets of the training samples. Bagging and 

boosting algorithms are the traditional ways to manipulate the training samples [5], and 

their hypotheses are integrated by a vote method. The bagging algorithm consists of 

randomly splitting the original dataset in several training subsets of the same size based 

on sampling with replacement, which can be applied to any learning algorithm. Likewise, 

the boosting algorithm combines the classification outputs using the same learning 

algorithm; however, this type of algorithm is iterative, where each new model is based on 

the result of the previously built one.    

Algorithms for manipulating the input features generate ensembles based on different 

feature subsets available to the learning algorithm. This process can be, for example, the 

random splitting of a set of features into subsets [8], or by using a feature selection 

algorithm combined with manipulation of the training samples [4]. One challenge that 

affects the performance of classifiers is how to define which features are meaningful to 

describe the patterns of interest. Consequently, feature selection algorithms [9] can be 

used for the ensemble construction in order to achieve superior performance for skin 

lesion classifications. 

This article presents ensemble classification models based on input feature 

manipulation to improve skin lesion computational diagnosis from dermoscopic images. 
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Two examples of pigmented skin lesions in dermoscopic images are shown in Figure 1. 

The main contributions of this study are the feature subset selection models based on 

specific feature groups and the feature selection algorithms for the input feature 

manipulation. To the best of our knowledge, few studies based on ensemble models and 

feature manipulation for skin lesion classification have been presented with successful 

results [10,11]. 

 

Figure 1: Two examples of pigmented skin lesions: (a) benign lesion and (b) malignant lesion. 

This article is organized as follows: Studies relating to the ensemble methods for skin 

lesion classification are discussed in Section 2. The proposed ensemble classification 

models based on input feature manipulation are presented in Section 3. The experimental 

results and their discussion, which include the evaluation process, feature subset and 

feature selection evaluations, ensemble classification model evaluation and comparison 

between the classification algorithms used are given in Section 4. Finally, the conclusions 

drawn for the proposed ensemble classification models and future works about the skin 

lesion classification are pointed out in Section 5. 

2. Related studies 

An overview of computational methods for pigmented skin lesion classification in 

images, which addresses the feature extraction and selection, and classification steps, is 

presented in Oliveira et al. [12]. The ensemble of classifiers based on input data 

manipulation has been recently adopted for skin lesion classification to achieve better 

results than single classifiers. Several algorithms can be used for constructing ensembles; 

e.g., the AdaBoost [13], which is a popular boosting algorithm that maintains a set of 

weighting systems for the training samples according to a computed error rate. In Barata 

et al. [2], the proposed classification system using AdaBoost achieved a sensitivity of 

96% and specificity of 80% using a dataset of 176 dermoscopic images. The authors 
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obtained the best results by using colour features and with combinations of two to five 

base classifiers for the detection of melanomas and nevi. 

Random forest [14] is another ensemble algorithm used for skin lesion computational 

diagnosis. This algorithm is a variation of the bagging algorithm that is used to create an 

ensemble of decision trees that ensure the diversity by using a random selection of 

features to split each tree node. Its error rates are comparable to AdaBoost, but are more 

robust with respect to noise. Rastgoo et al. [15] proposed an automatic system to 

differentiate melanoma from dysplastic nevi by using texture features and random forest. 

This system achieved a sensitivity of 98% and specificity of 70% in a dataset of 180 

dermoscopic images. Barata et al. [10] built a system for melanoma detection using the 

random forest algorithm and obtained a sensitivity of 98% and specificity of 90% in a 

dataset of 200 dermoscopic images, and a sensitivity of 83% and specificity 76% in a 

dataset of 482 images. This system is based on the global and local feature fusion of 

colour and texture properties.  

The random forest algorithm also obtained the best results in a system proposed by 

Garnavi et al. [16]. The authors developed an optimized selection and integration of 

features derived from texture, border and geometrical properties. This system achieved 

an accuracy of 91.26% in a dataset of 289 dermoscopic images. Rastgoo et al. [11] 

proposed an automatic framework based on ensemble methods to differentiate melanoma 

from dysplastic and benign lesions. This framework used a random forest algorithm and 

a combination of colour and texture features based on global features, and obtained a 

sensitivity of 94% and specificity of 92% in a dataset of 193 dermoscopic images. 

Other ensemble classification models have also been proposed for skin lesion 

classification. In Abedini et al. [17], an ensemble model, based on feature random subsets, 

a linear support vector machine (SVM) classifier and forward model selection for the 

ensemble fusion, was proposed. The best results were obtained by concatenating the 

pattern prediction values, which are considered middle-level features. This model 

achieved an accuracy of 91%, sensitivity of 97% and specificity of 65% for malignant 

and benign lesions in a dataset of 200 dermoscopic images. Schaefer et al. [4] proposed 

a multiple classifier system to deal with imbalanced classes. Such a system consists of a 

random under-sampling method, an SVM using a polynomial kernel, and a neural 

network for the classifier fusion. In addition, a feature selection algorithm is applied to 

each classifier, and a diversity measure is used for pruning a pool of classifiers. The 
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authors used features based on shape, colour and texture properties for the melanoma and 

benign lesion classification, and they obtained an accuracy of 93.83%, sensitivity of 

93.76% and specificity of 93.84% in a dataset of 564 dermoscopic images. 

3. Description of the proposed ensemble classification models 

In this section, the ensemble classification models based on input feature manipulation 

for skin lesion computational diagnoses, as well as the dermoscopic image dataset used 

are presented. Figure 2 gives an overview of three different models for the input feature 

manipulation in order to generate diversity for the ensembles of classifiers. Given a 

dataset # = Ö�û, ��Ø, with � = 1,2… , !, according to the number of images !, where �û 

is a sample, and �� is the class to which it belongs. Each sample �û is composed of a set 

of features Q��, where � = 1,2… ,P, and P is the number of features. An ensemble $ =�0�, 0
, … , 0%�, with ( = 1,2, … , E, and E is the ensemble size, where 0% is composed of 

the classification models obtained with the input feature manipulation, a base classifier 

using optimum-path forest (OPF) [18] and an integration strategy. One classification 

model is obtained in each iteration ( by a subset of feature �% that is sampled from Q�� 

based on specific feature groups or with a feature selection algorithm (Figures 2a and 2b, 

respectively). The classification models are also obtained by applying several feature 

selection algorithms Ï% from Q�� (Figure 2c). 

3.1. Dermoscopic image dataset 

The dermoscopic image dataset is composed of pigmented skin lesions, which were 

collected from International Skin Imaging Collaboration (ISIC) dataset [19]. In addition, 

the images are paired with an expert manual that contains the skin lesion diagnoses, as 

well as the ground-truth lesion segmentations in the form of binary masks. In this study, 

the extracted features from the images are based on shape properties, colour variation and 

texture analysis. The images in which the lesion did not fully fit within the image frame 

were removed from the original dataset, since the shape properties are obtained from the 

lesion borders. In the end, a total of 1104 images were used from the original dataset. Of 

these, 916 images were benign lesions and 188 images were malignant lesions. The 

images of the dataset were proportionally resized to an average resolution of 400 Å 299 

pixels to simplify their processing. 
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Figure 2: Overview of the proposed ensemble classification models based on input feature 
manipulation for the skin lesion computational diagnosis: (a) feature subset ensemble (SE-OPF), 
(b) feature subset ensemble with a feature selection algorithm (SEFS-OPF), and (c) feature set 
ensemble with feature selection algorithms (FEFS-OPF). 

3.2. Feature extraction and data pre-processing 

The feature extraction process is based on the intensities of the pixels belonging to the 

binary masks defined by specialists, in which the non-zero pixels belong to the lesion, 

and the others to the background skin. A combination of features, based on shape 

properties, colour variation and texture analysis using different feature extraction 

methods, were used in this study. A total of 512 features were extracted for each skin 

lesion image. Of these, 18 features were related to the shape properties, 72 features to 

colour variation, and 420 features to the texture analysis. 

a) Shape properties: shape measures are computed based on the geometrical properties, 

lesion asymmetry and border irregularity. To assess the geometrical properties of the 

lesion, the area, perimeter, equivalent diameter, compactness, circularity, solidity, 

rectangularity, aspect ratio and eccentricity [20-22] were computed. To assess the 

lesion asymmetry, three features were computed from the lesion, i.e., the average, 

variance and standard deviation. These features were obtained from the ratios between 

the shortest and longest distances of each pair of the semi-lines that represent the 

perpendicular lines by overlapping the two sub-regions of the lesion along an axis 

[23]. To assess the border irregularity, a number of peaks, valleys and straight lines 
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of the border were computed using the vector product and inflexion point descriptors 

based on small and large irregularities of the border from a one-dimensional border 

[23]. 

b) Colour variation: the RGB, HSV, CIE Lab and CIE Luv colour spaces [24] were used 

to analyse the colour variation of the skin lesions. The RGB colour space is commonly 

used, as the images are originally obtained using this space. Moreover, the original 

RGB colour image can be used for conversion to other colour spaces, and several 

studies have achieved good results from this colour space [20,25]. The HSV, CIE Lab 

and CIE Luv colour spaces represent colours based on human perception. 

Furthermore, CIE Lab and CIE Luv are unified colour spaces and can simplify the 

identification of colour properties, as it is easy to maintain colour-difference ratios 

[26]. Six statistical measures, i.e., average, variance, standard deviation, minimum 

and maximum colours, and colour skewness, are computed for each colour channel 

in the region of the lesion using the aforementioned four-colour spaces that 

correspond to 12 channels. 

c) Texture analysis: three different texture analysis methods were adopted to obtain the 

best features to represent the skin lesion texture based on colour images; namely, 

fractal dimension analysis [27], discrete wavelet transform (DWT) [28] and co-

occurrence matrix [29]. The RGB, HSV, CIE Lab and CIE Luv colour spaces were 

also used for the texture analysis. The bi-dimensional fractal dimension using a box-

counting method [27] is computed individually for each channel of the colour spaces. 

The energy and entropy measures from the coefficients obtained by DWT are 

computed for each of the 10 Haar wavelet sub-bands obtained by a-three-level 

decomposition, as well as for each channel of the colour spaces. Co-occurrence 

matrices were obtained for each channel of the colour spaces, and the intensities of 

each channel were quantized with 16 intensity levels. The distance between each 

reference pixel and its neighbours was one pixel, and four orientations ó =�0°, 45°, 90°, 135°� were used. A normalized matrix was obtained from the matrices 

corresponding to the four orientations. From the normalized co-occurrence matrix, 14 

statistical measures based on Haralick’s texture features [29] were extracted from the 

image. These measures are the angular second moment, contrast, correlation, 

variance, inverse difference moment, sum average, sum variance, sum entropy, 

entropy, variance difference, entropy difference, information measure of correlation 

1, information measure of correlation 2, and the maximal correlation coefficient. 
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Therefore, 12 features were extracted from the fractal dimension analysis, 240 

features were extracted from the discrete wavelet transform, and 168 features were 

extracted from the co-occurrence matrix. 

As the values of the dataset obtained by feature extraction contain different ranges they 

were normalized into the same interval [0,1] for the skin lesion classification process. The 

normalization procedure scales all numeric values in the dataset by computing: 

�!�� = �üý�þACf�üýgþ��f�üýg�þACf�üýg ,                                                                                                                   (1) 

where � = 1,2… , !, � = 1,2… ,P, ! is the number of samples and P is the number of 

features. Thus, ��� is the actual value of feature � in the sample �, with the minimum and 

maximum values of features of all the sets of samples, and �!�� is the normalized value 

of same feature � in the same sample �. In addition, the unbalanced dataset problem is 

considered in this study, since the dataset is composed of 916 samples of benign lesions 

and 188 samples of malignant lesions. These unbalanced datasets concerning the number 

of samples in each class can decrease the accuracy of the evaluation results, since the 

classification tends to be based on the classes with the largest number of occurrences. 

Different sampling methods [30] have been used to solve such classification problems 

[4,31]. Here, the resampling procedure was applied to the dataset [5]. This procedure 

produces a random subsample of the dataset using sampling with replacement and the 

class distribution is made into a uniform distribution. 

3.3. Feature selection  

The feature selection process aims to find the best feature subsets to generate the 

ensembles of classifiers. Feature selection algorithms are usually a combination of both 

search and evaluation methods [9]. Search methods can be applied to select a candidate 

subset from extracted features of skin lesions, which is evaluated and compared to the 

previous best subset until a given stopping criterion is reached. In this study, six feature 

selection algorithms were applied to generate different feature subsets for the ensemble 

of classifiers; namely, Pearson’s correlation coefficient [32], gain ratio-based feature 

selection (GRFS) [5], information gain-based feature selection [32], relief-F [33], 

principal-component analysis (PCA) [34] and correlation-based feature selection (CFS) 

[35]. These algorithms have been commonly used for skin lesion feature selections [12], 

since they have several advantages, such as computationally efficiency, are simple and 
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fast algorithms, independent evaluation criteria, and have the ability to overcome over-

fitting. 

All feature selection algorithms mentioned earlier are single-feature evaluators, with 

the exception of CFS that is a feature subset evaluator. The single-feature evaluators are 

used with a ranking method, where the features are ranked individually, according to their 

evaluation, i.e., the most relevant. The number of features to be maintained is previously 

defined. The feature subset evaluators measure a subset of features and they return a value 

that is used in the search [5]. In this study, both the greedy stepwise and best first search 

methods were adopted.  

The greedy stepwise method searches feature subsets in either the forward or backward 

directions in a greedy way. The selection process must stop when the addition or removal 

of any feature occurs that worsens the outcome of the best-found subset until that moment. 

The best first method searches the feature subsets by greedy hill-climbing, and the search 

direction can be forward, backward or bi-direction. The forward selection process starts 

with an empty set, and the best features are gradually added to the set, according to the 

performance obtained from the evaluation method, whereas the backward selection 

process starts with all features and the worst features are removed at each iteration. The 

bi-direction selection combines both the forward and backward searches. 

3.4. Base classifier and integration strategy  

In this study, the focus is on homogeneous ensemble methods that are built with only 

one base classifier through input feature manipulation, and the classification model results 

are combined by an integration strategy. The number of base classifiers used defines the 

ensemble size. An OPF classifier [18] based on input feature manipulation for a set of 

training data was used to generate the ensemble classification models in this work.   

The OPF classifier is applied to solving pattern recognition problems as a graph based 

on prototypes to represent each class by one or more optimum-path trees, considering 

some key samples. The training samples are nodes of a complete graph; whose arcs are 

the links of all pairs of nodes. The arcs are weighted by the distances between the feature 

vectors of their corresponding nodes. The Euclidean �ú�(, c�, Chebyshev �S�(, c� and 

Manhattan ���(, c� distance functions [5] were used to measure the distances between 

the feature vectors: 
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�ú�(, c� = ò∑ G�%� − �R�G
µ�9�  ,                                                                                                             (2) 

�S�(, c� = ∑ G�%� − �R�Gµ�9�  ,                                                                                                                 (3) 

���(, c� = max�9��,
,..,µ�G�%� − �R�G ,                                                                                                          (4) 

where �%� is the feature value of a sample (, �R� is the feature value of a sample c, � =
1,2… ,P, and P is the number of features. 

The classification of a new sample is defined according to the strong connectivity of 

the path between the sample and the prototype. Therefore, the path with minimum-cost, 

among all paths, is considered the optimum one. The OPF classifier shows some 

interesting properties, such as speed, simplicity, ability to deal with multiclass 

classifications and overlapping between classes, parameter independence and no 

assumption is based on the shape of the classes. Ensembles of OPF classifiers for reducing 

the size of the training set using under-sampling were proposed by Ponti Jr and Rossi 

[36]. For the application of the OPF classifier, it was used the Weka library based on 

LibOPF [18] as proposed by Amorim et al. [37]. 

Applying a good integration method is also important for the performance of the 

ensemble model. The challenge is how to integrate the results produced by the base 

classifiers. Here, the majority voting method [6] combines the classification results to 

generate an ensemble model. This method analyses which class receives the majority 

votes based on the results of all base classifiers and therefore the ensemble model must 

have an odd number of classifiers. 

3.5. Input feature manipulation for the ensemble classification models 

The input feature manipulation process aims to generate diversity for an ensemble 

classification model with the combination of the best feature subsets for the base 

classifier. In this section, three different models for the feature manipulation of skin 

lesions are presented. These models are based on specific feature groups and feature 

selection algorithms in order to create different feature subsets. 

3.5.1. Feature subset selection model based on specific feature groups 

Different groups based on feature categories and feature extraction algorithms are used 

to select the feature subsets. The extracted features are divided in three categories: shape, 
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colour and texture. Also the texture extraction algorithms, i.e., fractal texture, wavelet 

texture and Haralick’s texture, are analysed, as well as the colour and texture extraction 

algorithms for each colour space separately. In this study, the feature groups constructed 

for feature manipulation were: 

• Group 1: shape, colour, and texture; 

• Group 2: fractal texture, wavelet texture, and Haralick’s texture; 

• Group 3: shape + colour, shape + texture, and colour + texture; 

• Group 4: RGB colour, HSV colour, LAB colour, and LUV colour; 

• Group 5: RGB texture, HSV texture, LAB texture, and LUV texture; 

• Group 6: shape + RGB algorithms, shape + HSV algorithms, shape + LAB 

algorithms, and shape + LUV algorithms; and 

• Group 7: RGB algorithms, HSV algorithms, LAB algorithms, and LUV algorithms. 

The effectiveness of the feature groups are also evaluated individually in the 

experimental results section. The feature subset selection model generates a feature subset 

ensemble (SE-OPF). Algorithm 1 shows the procedure to set up this ensemble 

classification model, which was used for the input feature manipulation based on the 

feature groups and was also used by the OPF classifier [18] and majority voting [6]. 

  

3.5.2. Correlation-based feature subset selection model 

The correlation-based feature subsets were set up using the feature groups discussed in 

the previous section and a CFS algorithm for the feature selection. The CFS algorithm 

[35] tries to find a set of features that are highly correlated with the class and have low 

inter-correlation between them. The degree of correlation between the features is 

computed by a symmetrical uncertainty, which is a modified version of the information 

Algorithm 1 SE-OPF 
Require: 
       Ensemble size E,  training sample set #, feature set Q, group-based feature subsets   
       �%ç from the feature set Q  

Procedure: 
1. for ( = 1 to E do 
2.       Select one feature subset �% from �%ç 
3.       Train the OPF classifier 0% using # with the selected feature subset �% 
4. end for 
5. for each new sample do 
6.       Compute the majority voting � of all classification models of the ensemble 0% 
7. end for 
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gain measure. Such an algorithm is adopted for this subset selection model, since 

experimental results using the OPF classifier [18] showed that this algorithm improved 

the classification performance more than the other feature selection algorithms.  

The correlation-based subset selection model generates a feature subset ensemble with 

a feature selection algorithm (SEFS-OPF). Algorithm 2 shows the procedure to set up this 

ensemble model, which was used for feature input manipulation based on feature groups 

and the CFS algorithm, as well as the OPF classifier [18] and majority voting [6]. 

  

3.5.3. Subset selection model based on feature selection algorithms 

All features discussed in the previous sections were used to generate the feature subsets. 

The diversity for an ensemble classification model is obtained by using different feature 

selection algorithms; namely, correlation coefficient [32], GRFS [5], information gain 

[32], relief-F [33], PCA [34] and CFS [35]. This subset selection model generates a 

feature set ensemble with feature selection algorithms (FEFS-OPF). Algorithm 3 shows 

the procedure to set up this ensemble model, which was used for the input feature 

manipulation based on the feature selection algorithms, and with the OPF classifier [18] 

and majority voting [6].  

4. Experimental results and Discussion 

In this section, the classification results are described and discussed. In order to evaluate 

the effectiveness of the ensemble models for the classification of benign and malignant 

skin lesions, three experiments were performed. First, the experiments for the feature 

subset and feature selection evaluations; second, the experiments for the ensemble 

Algorithm 2 SEFS-OPF 
Require: 
      Ensemble size E,  training sample set #, feature set Q,  group-based feature subsets     
      �%ç from the feature set Q  

Procedure: 
1. for ( = 1 to E do 
2.       Select one feature subset �% from �%ç 
3.       Q� ←	Selected features from �% using a CFS algorithm Ï 
4.       Train the OPF classifier 0% using # with the selected features Q� 
5. end for 
6. for each new sample do 
7.       Compute the majority voting � of all classification models of the ensemble 0% 
8. end for 
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classification model evaluation; and finally, the experiments to compare the results with 

the classification methods reported in the literature. In addition, the evaluation process 

used to evaluate the results is introduced. 

Algorithm 3 FEFS-OPF 
Require: 
       Ensemble size E, training sample set #, feature set Q 

Procedure: 
1. for ( = 1 to E do 
2.       Q� ←	Selected features from Q using one feature selection algorithm Ï%        
3.       Train the OPF classifier 0% by using # with the selected features Q� 
4. end for 
5. for each new sample do 
6.       Compute the majority voting � of all classification models of the ensemble 0% 
7. end for 

4.1. Evaluation process 

The performance of the ensemble classification models based on the input feature 

manipulation as described in the previous section was evaluated by using a stratified k-

fold cross-validation procedure [5]. This kind of procedure consists of splitting the 

training set in k subsets of equal size; the procedure being repeated k times. In each 

procedure, one subset is used as a test set while the others are used as the training set. The 

best model based on its performance is chosen. Performance is the average accuracy 

obtained from each trial. The k-fold cross-validation procedure can be applied to avoid 

over-fitting while testing the capacity of the classifier to generalize. In addition, it has 

shown good results compared with other procedures [38]. 

The measures used to evaluate the performance of the classification are accuracy 

(ACC), sensitivity (SE) and specificity (SP), which are based on outcomes of the 

ensemble of classifiers, according to the majority voting. These outcomes represent the 

number of correct and incorrect classifications for each class, positive (benign) and 

negative (malignant). These measures are commonly used [12] and they are defined as: 

SE is the percentage of correctly classified positive samples with respect to all positive 

samples, SP is the percentage of correctly classified negative samples with respect to all 

negative samples, and ACC is the percentage of correctly classified positive and negative 

samples based on all samples. 

A cost function 0 adopted from Barata et al. [2] is used to deal with the trade-off 

between SE and SP, which is defined as: 
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0 = Ò]?���Îú�;Ò?]���Î<�Ò]?;Ò?]  ,                                                                                                                        (5) 

where J�1 is the cost of an incorrectly classified benign lesion (FN), and J1� is the cost of 

an incorrectly classified malignant lesion (FP). The costs used to evaluate the 

classification were J�1 = 1 and J1� = 1.5, since an incorrect classification of a malignant 

lesion is more critical. The lower the value of cost 0, the better the classification is. 

4.2. Evaluation of the feature subset and feature selection 

In order to define the best feature subsets for the ensemble classification models, 

several subsets based on specific feature groups discussed in the previous section were 

evaluated. Table 1 shows the results for each feature subset using the OPF classifier. 

Three distance functions, i.e., Euclidean, Chebyshev and Manhattan were compared using 

this classifier, in order to find the distances between the feature vectors. The Euclidean 

distance was the best distance function for this classifier, according to the experiments 

using all features, which achieved an ACC = 92.3%. Consequently, this distance function 

was used for all other experiments in this study. 

Table 1: Performance results for the feature subsets compared to different feature groups (best 
result for each group is in bold). 

Group Feature subset ACC 
1 Shape 89.1% 

Colour 91.0% 
Texture 91.6% 

2 Fractal texture 89.9% 
Wavelet texture 90.7% 
Haralick's texture 88.3% 

3 Shape and colour 90.5% 
Shape and texture 91.3% 
Colour and texture 91.7% 

4 RGB colour 90.6% 
HSV colour 92.0% 
LAB colour 90.3% 
LUV colour 90.3% 

5 RGB texture 91.8% 
HSV texture 91.1% 
LAB texture 91.2% 
LUV texture 90.8% 

6 Shape and RGB algorithms 91.6% 
Shape and HSV algorithms 93.0% 
Shape and LAB algorithms 92.7% 
Shape and LUV algorithms 91.7% 

7 RGB algorithms 90.8% 
HSV algorithms 91.2% 
LAB algorithms 92.5% 
LUV algorithms 91.4% 
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The results in Table 1 show that there is diversity between the feature subsets. The 

three best feature subsets were the shape combined with the HSV algorithms, the LAB 

algorithms, and the HSV colour. The shape, colour and texture features provided an 

improvement to the classification when they were combined. The texture features, i.e., 

the fractal, wavelet and Haralick’s features, achieved better results when the features were 

combined than when they were used individually. The feature extraction algorithms for 

each colour space provided better results when combined with the shape features. 

The diversity for an ensemble classification model is also obtained by using different 

feature selection algorithms. Such algorithms were used to find the best features for the 

classification process. The single-feature evaluators use a ranking method, i.e., the 

correlation coefficient, GRFS, information gain, relief-F and PCA, and a set of retained 

number of features is empirically defined by ' = �25,50,75�, with the exception of PCA 

that chooses a sufficient number of eigenvalues to rank the new transformed features. The 

maximum number of features Q = 5 was used to include the transformed features, and 

the proportion of variance � = 0.95 was used to retain a sufficient amount of PC features. 

Accordingly, 31 eigenvalues were selected by the PCA algorithm to represent the vector 

with the new features. The feature estimation defined the number of nearest neighbours / = 10 for the relief-F.  

In the case of the feature subset evaluator, i.e., CFS, the greedy stepwise search 

method, in either forward or backward directions, is applied until the addition or removal 

of any feature produces a decrease in evaluation. Consequently, 37 features were selected 

in the forward direction and 50 in the backward direction. The best first search method 

was also carried out until five consecutive non-improving features, in the directions: 

forward (37 features), backward (50 features) or bi-direction (37 features) were found. 

However, experimental results, using the OPF classifier as discussed in the previous 

section, showed that this method did not improve the classification when applied with the 

stepwise search method. Therefore only the stepwise search method was used with CFS 

and compared with the other feature selection algorithms. 

Table 2 shows the best classification results using the feature selection algorithms. 

Although all the feature selection algorithms obtained good results, the OPF classifier 

using the features selected by the CFS algorithm achieved the best results, as shown in 

Table 2. These algorithms were applied to generate the feature subsets for the ensemble 

classification models. 
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Table 2: Comparing several feature selection algorithms (best result is in bold). 

Feature selection Features ACC 
Correlation coefficient 75 89.6% 
GRFS 25 91.1% 
Information gain 75 90.8% 
Relief-F 75 91.0% 
PCA 31 91.0% 
CFS 50 91.6% 

4.3. Evaluation of the ensemble classification models 

The performance of the three ensemble classification models based on the input feature 

manipulation, OPF classifier and majority voting; namely, the SE-OPF, SEFS-OPF, 

FEFS-OPF algorithms, were evaluated using ten-fold cross-validation. Four ensembles 

of classifiers were generated for each algorithm, where E = �3,5,7,9� describes the 

ensemble size, i.e., the number of base classifiers. Several subsets based on combination 

of the specific feature groups were performed for the feature manipulation using the SE-

OPF algorithm. The best subsets of the specific feature groups were performed for the 

feature manipulation based on the SEFS-OPF algorithm using the CFS algorithm for each 

ensemble. In addition, all extracted features were performed using different feature 

selection algorithms for the feature manipulation based on the FEFS-OPF algorithm. 

Table 3 shows the combination of the subsets and feature selection algorithms for each 

ensemble that achieved the best classification results. 

Table 4 shows the best classification results for each ensemble model. The SE-OPF 

algorithm achieved its best classification results using E = 9. Likewise, 9 classifiers for 

the ensemble yielded the best results for the SEFS-OPF algorithm, whereas the FEFS-

OPF algorithm obtained its best results using E = 3. Although the SE-OPF algorithm did 

not have all the best classification measures, it resulted in a more balanced classification 

between the benign and malignant classes, i.e., with a lower classification cost. The 

classification results are presented in more details in Figure 3, which shows the variation 

of the accuracy, sensitivity and specificity measures, according to the ensemble size 

defined for each ensemble classification model.   
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Table 3: Combination of the subsets and feature selection algorithms for each ensemble. 

Ensemble 
classification 

model 

Number of 
classifier 

Feature subsets 

SE-OPF 
 

3 Shape, colour and texture 
5 Shape, RGB algorithms, HSV algorithms, LAB algorithms and LUV 

algorithms 
7 Shape, colour, texture, shape + RGB algorithms, shape + HSV algorithms, 

shape + LAB algorithms and shape + LUV algorithms 
9 Shape, RGB colour, HSV colour, LAB colour, LUV colour, RGB texture, 

HSV Texture, LAB texture and LUV texture 
SEFS-OPF 3 Shape + CFS, colour + CFS and texture + CFS 

5 Shape + CFS, RGB algorithms + CFS, HSV algorithms + CFS, LAB 
algorithms + CFS and LUV Algorithms + CFS 

7 Shape + CFS, colour + CFS, texture + CFS, shape + RGB algorithms + 
CFS, shape + HSV algorithms + CFS, shape + LAB algorithms + CFS and 
shape + LUV algorithms + CFS 

9 Shape + CFS, RGB colour + CFS, HSV colour + CFS, LAB colour + CFS, 
LUV colour + CFS, RGB texture + CFS, HSV texture + CFS, LAB texture 
and LUV texture + CFS 

FEFS-OPF 3 All features + PCA, all features + CFS and all features + GRFS 
5 All features + PCA, all features + correlation coefficient, all features + 

GRFS, all features + information gain and all features + relief-F 
7 All features + PCA, all features + correlation coefficient, all features + 

GRFS, all features + information gain, all features + relief-F, all features + 
CFS (best first) and all features + CFS (stepwise) 

9 All features + PCA + OPF (ED), all features + CFS + OPF (ED), all features 
+ GRFS + OPF (ED), all features + PCA + OPF (CD), all features + CFS 
+ OPF (CD), all features + GRFS + OPF (CD), all features + PCA + OPF 
(MD), all features + CFS + OPF (MD) and all features + GRFS + OPF 
(MD) 

ED: Euclidean distance, CD: Chebyshev distance and MD: Manhattan distance 
 

Table 4: Classification results for the ensemble classification models (best results are in bold). 

Ensemble classification model ACC SE SP C 

SE-OPF (feature subsets + OPF) 94.3% 91.8% 96.7% 0.053 
SEFS-OPF (feature subsets + CFS + OPF) 93.9% 91.8% 96.0% 0.057 

FEFS-OPF (all features + FS + OPF) 93.7% 90.4% 96.9% 0.057 

 

 

Figure 3: Variation of the classification measures, according to the ensemble size established for 
each ensemble classification model: (a) accuracy, (b) sensitivity and (c) specificity. 



SKIN LESION COMPUTATIONAL DIAGNOSIS OF DERMOSCOPIC IMAGES: ENSEMBLE MODELS BASED ON INPUT FEATURE MANIPULATION 

194 
 

4.4. Comparison between classification algorithms 

The classification results achieved by the best ensemble model proposed here, based on 

the input feature manipulation as previously discussed, were compared against the ones 

obtained using three different ensemble algorithms. These algorithms are commonly used 

in the literature; namely, bagging [6], AdaBoost [13] and random forest [14]. The 

proposed ensemble model was also compared to the individual OPF classifier [18] to 

analyse the effectiveness of the ensemble algorithms. In addition, this classifier was 

adopted as a base classifier for the bagging and AdaBoost algorithms, since these 

algorithms can be used with any learning algorithm. The classification algorithms were 

applied with and without feature selection based on all the extracted features. The CFS 

algorithm was used in these experiments, since it improved the classification more than 

the other feature selection algorithms, as mentioned previously. Table 5 shows the results 

using different classification methods, as well as the results of the proposed model; the 

best results for each measure are shown in bold. 

Table 5: Comparative results between classification algorithms (best results are in bold). 

Classification algorithms ACC SE SP C 

OPF 92.3% 87.5% 97.1% 0.067 

OPF (CFS) 91.6% 87.0% 96.2% 0.075 

Bagging (OPF) 89.7% 85.9% 93.5% 0.095 

Bagging (CFS + OPF) 91.8% 88.4% 95.3% 0.075 

AdaBoostM1 (OPF) 92.3% 92.3% 92.3% 0.077 

AdaBoostM1 (CFS + OPF) 91.6% 87.0% 96.2% 0.075 

Random forest 93.9% 91.3% 96.6% 0.055 

Random forest (CFS) 93.7% 90.4% 96.9% 0.057 

Proposed model (feature subsets + OPF) 94.3% 91.8% 96.7% 0.053 

 

The results in Table 5 show that only the bagging and AdaBoostM1 algorithms 

achieved better results by using the features selected by the CFS algorithm rather than 

without the feature selection. Although the AdaBoostM1 algorithm without the feature 

selection yielded a better accuracy and achieved an average distinction between the 

benign and malignant classes, the cost was higher because the specificity was not very 

expressive. On the other hand, the random forest algorithm was more effective without 

the feature selection, since it obtained a better accuracy and a lower cost between the 

sensitivity and specificity. In addition, this algorithm obtained better classification results 

than the bagging and AdaBoostM1 algorithms. Likewise, the individual OPF classifier 

without the feature selection achieved better results than the bagging and AdaBoostM1 
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algorithms. Nevertheless, the accuracy obtained by the OPF classifier was not better than 

the random forest algorithm and the proposed model. Moreover, the classification cost 

was higher between the sensitivity and specificity. 

The proposed model showed good generalization between the benign and malignant 

classes. Furthermore, this model achieved a better accuracy and lower cost compared to 

other classification algorithms used in the literature. Since this study did not use all the 

images from the original dataset as mentioned previously, the results cannot be compared 

with the results obtained in the studies using this same dataset and the ground-truth lesion 

segmentation masks presented in Gutman et al. [19]. These studies used the full set of 

images from the data set which consisted of 1279 images and they divided them into test 

and training sets. The best results were achieved by Lequan et al. [39] using the whole 

dataset, obtaining ACC = 0.855, SE = 0.547 and SP = 0.931. These latter authors proposed 

a novel method for melanoma recognition by leveraging very deep convolutional neural 

networks. 

The proposed ensemble classification model based on input feature manipulation was 

developed using: 1) Visual Studio Express 2012 environment, C/C++ and OpenCV 2.4.9 

library for the feature extraction algorithms; and 2) Eclipse IDE 4.6.1 environment, java 

1.8.0_111, and Weka 3.8 library for the classification algorithms. The feature extraction 

times for all the images from the binary masks were: shape - 10.26 min; colour - 10.12 

min; fractal texture - 26.79 min; wavelet texture - 34.37 min; and Haralick’s texture - 

29.48 min. Finally, the best ensemble classification model required a total of 60.09 s to 

process all the samples. These values show that the feature extraction step was the most 

time-consuming; however, the computation time required by this step can be considerably 

decreased using optimized C/C++ implementations. All algorithms were performed on 

an Intel(R) Core(TM) i5 CPU 650 @ 3.20 GHz with 8 GB of RAM, running Microsoft 

Windows 7 Professional 64-bits. 

5. Conclusion and future works 

In this article, three ensemble classification models based on input feature 

manipulation from the shape properties, colour variation and texture analysis, were 

presented; namely, the SE-OPF, SEFS-OPF and FEFS-OPF algorithms. The first model 

manipulates the features by using different subsets based on specific feature groups. The 

second model manipulates the features by using the CFS algorithm for the feature 
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selection from the subsets defined in the first model. Finally, the third model manipulates 

the features by using different feature selection algorithms, i.e., correlation coefficient, 

GRFS, information gain, relief-F, PCA and CFS, from all extracted features. Each 

ensemble model was generated by using the OPF base classifier and integrated with the 

majority voting strategy. The effectiveness of the feature groups and feature selection 

algorithms used were individually evaluated to find the best features for the classification 

process, as well as to generate diversity for the ensemble classification models. 

Promising results were achieved with the proposed ensemble classification models. 

The best classification results were obtained by the feature subset selection model based 

on feature groups (SE-OPF algorithm). Nine base classifiers were used for this model 

based on shape, RGB colour, HSV colour, LAB colour, LUV colour, RGB texture, HSV 

texture, LAB texture and LUV texture, which yielded the following results: ACC = 94.2%, 

SE = 91.7% and SP = 96.7%. The feature manipulation process based on these specific 

feature subsets also provided an excellent generation of diversity for the ensemble 

classification model.  

The lack of a lesion segmentation process can be seen as a limitation of the present 

study, although ground-truth lesion segmentation masks were used in order to obtain a 

more accurate computational system. A segmentation approach as presented in Ma and 

Tavares [40] can be used to evaluate the effectiveness of the proposed ensemble 

classification model in the segmented images using a level-set approach. Although the 

ensemble algorithms improve accuracy by combining the different classification models, 

these algorithms can present a high computational complexity and are rather hard to 

analyse [5]. Comprehensible models [41], which can be used to solve such problems, aim 

to produce a single classification model from an ensemble model without losing too much 

accuracy compared to using the integrated hypothesis model.  

Future studies for pigmented skin lesion classification from dermoscopic images 

should search for new methods to develop more efficient and effective systems. In order 

to approach other challenges of dermoscopy image diagnoses, the proposed ensemble 

classification models should be taken into account in future works to identify the presence 

of global and local patterns. Discriminating between benign and malignant skin lesions is 

a challenging task for pattern analysis [42]. Essentially, the classification results can be 

improved by using deep learning architectures [43], since these architectures have 

revealed their capacity to learn from large amounts of data. Therefore, deep learning 
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architectures should be taken into account in future works concerning skin lesion 

classification in dermoscopic images. 
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