52 research outputs found

    Combining optogenetic stimulation and fMRI to validate a multivariate dynamical systems model for estimating causal brain interactions

    Get PDF
    State-space multivariate dynamical systems (MDS) (Ryali et al., 2011) and other causal estimation models are being increasingly used to identify directed functional interactions between brain regions. However, the validity and accuracy of such methods is poorly understood. Performance evaluation based on computer simulations of small artificial causal networks can address this problem to some extent, but they often involve simplifying assumptions that reduce biological validity of the resulting data. Here, we use a novel approach taking advantage of recently developed optogenetic fMRI (ofMRI) techniques to selectively stimulate brain regions while simultaneously recording high-resolution whole-brain fMRI data. ofMRI allows for a more direct investigation of causal influences from the stimulated site to brain regions activated downstream and is therefore ideal for evaluating causal estimation methods in vivo. We used ofMRI to investigate whether MDS models for fMRI can accurately estimate causal functional interactions between brain regions. Two cohorts of ofMRI data were acquired, one at Stanford University and the University of California Los Angeles (Cohort 1) and the other at the University of North Carolina Chapel Hill (Cohort 2). In each cohort optical stimulation was delivered to the right primary motor cortex (M1). General linear model analysis revealed prominent downstream thalamic activation in Cohort 1, and caudate-putamen (CPu) activation in Cohort 2. MDS accurately estimated causal interactions from M1 to thalamus and from M1 to CPu in Cohort 1 and Cohort 2, respectively. As predicted, no causal influences were found in the reverse direction. Additional control analyses demonstrated the specificity of causal interactions between stimulated and target sites. Our findings suggest that MDS state-space models can accurately and reliably estimate causal interactions in ofMRI data and further validate their use for estimating causal interactions in fMRI. More generally, our study demonstrates that the combined use of optogenetics and fMRI provides a powerful new tool for evaluating computational methods designed to estimate causal interactions between distributed brain regions

    Advancing functional connectivity research from association to causation

    Get PDF
    Cognition and behavior emerge from brain network interactions, such that investigating causal interactions should be central to the study of brain function. Approaches that characterize statistical associations among neural time series-functional connectivity (FC) methods-are likely a good starting point for estimating brain network interactions. Yet only a subset of FC methods ('effective connectivity') is explicitly designed to infer causal interactions from statistical associations. Here we incorporate best practices from diverse areas of FC research to illustrate how FC methods can be refined to improve inferences about neural mechanisms, with properties of causal neural interactions as a common ontology to facilitate cumulative progress across FC approaches. We further demonstrate how the most common FC measures (correlation and coherence) reduce the set of likely causal models, facilitating causal inferences despite major limitations. Alternative FC measures are suggested to immediately start improving causal inferences beyond these common FC measures

    Disentangling causal webs in the brain using functional Magnetic Resonance Imaging: A review of current approaches

    Get PDF
    In the past two decades, functional Magnetic Resonance Imaging has been used to relate neuronal network activity to cognitive processing and behaviour. Recently this approach has been augmented by algorithms that allow us to infer causal links between component populations of neuronal networks. Multiple inference procedures have been proposed to approach this research question but so far, each method has limitations when it comes to establishing whole-brain connectivity patterns. In this work, we discuss eight ways to infer causality in fMRI research: Bayesian Nets, Dynamical Causal Modelling, Granger Causality, Likelihood Ratios, LiNGAM, Patel's Tau, Structural Equation Modelling, and Transfer Entropy. We finish with formulating some recommendations for the future directions in this area

    The explanatory power of activity flow models of brain function

    Full text link
    Tremendous neuroscientific progress has recently been made by mapping brain connectivity, complementing extensive knowledge of task-evoked brain activation patterns. However, despite evidence that they are related, these connectivity and activity lines of research have mostly progressed separately. Here I review the notable productivity and future promise of combining connectivity and task-evoked activity estimates into activity flow models. These data-driven computational models simulate the generation of task-evoked activations (including those linked to behavior), producing empirically-supported explanations of the origin of neurocognitive functions based on the flow of task-evoked activity over empirical brain connections. Critically, by incorporating causal principles and extensive empirical constraints from brain data, this approach can provide more mechanistic accounts of neurocognitive phenomena than purely predictive (as opposed to explanatory) models or models optimized primarily for task performance (e.g., standard artificial neural networks). The variety of activity-flow-based explanations reported so far are covered here along with important methodological and theoretical considerations when discovering new activity-flow-based explanations. Together, these considerations illustrate the promise of activity flow modeling for the future of neuroscience and ultimately for the development of novel clinical treatments (e.g., using brain stimulation) for brain disorders

    The confound of hemodynamic response function variability in human resting-state functional MRI studies

    Get PDF
    Functional magnetic resonance imaging (fMRI) is an indirect measure of neural activity with the hemodynamic response function (HRF) coupling it with unmeasured neural activity. The HRF, modulated by several non-neural factors, is variable across brain regions, individuals and populations. Yet, a majority of human resting-state fMRI connectivity studies continue to assume a non-variable HRF. In this article, with supportive prior evidence, we argue that HRF variability cannot be ignored as it substantially confounds within-subject connectivity estimates and between-subjects connectivity group differences. We also discuss its clinical relevance with connectivity impairments confounded by HRF aberrations in several disorders. We present limited data on HRF differences between women and men, which resulted in a 15.4% median error in functional connectivity estimates in a group-level comparison. We also discuss the implications of HRF variability for fMRI studies in the spinal cord. There is a need for more dialogue within the community on the HRF confound, and we hope that our article is a catalyst in the process

    A Functional Data Method for Causal Dynamic Network Modeling of Task-Related fMRI

    Get PDF
    Functional MRI (fMRI) is a popular approach to investigate brain connections and activations when human subjects perform tasks. Because fMRI measures the indirect and convoluted signals of brain activities at a lower temporal resolution, complex differential equation modeling methods (e.g., Dynamic Causal Modeling) are usually employed to infer the neuronal processes and to fit the resulting fMRI signals. However, this modeling strategy is computationally expensive and remains to be mostly a confirmatory or hypothesis-driven approach. One major statistical challenge here is to infer, in a data-driven fashion, the underlying differential equation models from fMRI data. In this paper, we propose a causal dynamic network (CDN) method to estimate brain activations and connections simultaneously. Our method links the observed fMRI data with the latent neuronal states modeled by an ordinary differential equation (ODE) model. Using the basis function expansion approach in functional data analysis, we develop an optimization-based criterion that combines data-fitting errors and ODE fitting errors. We also develop and implement a block coordinate-descent algorithm to compute the ODE parameters efficiently. We illustrate the numerical advantages of our approach using data from realistic simulations and two task-related fMRI experiments. Compared with various effective connectivity methods, our method achieves higher estimation accuracy while improving the computational speed by from tens to thousands of times. Though our method is developed for task-related fMRI, we also demonstrate the potential applicability of our method (with a simple modification) to resting-state fMRI, by analyzing both simulated and real data from medium-sized networks

    Biophysics-based modeling and data analysis of local field potential signal

    Get PDF
    Understanding the neurophysiological mechanisms of information processing within and across brain regions has always been a fundamental and challenging topic in neuroscience. Considerable works in the brain connectome and transcriptome have laid a profound foundation for understanding brain function by its structure. At the same time, the recent advance in recording techniques allows us to probe the nonstationary brain activity from various spatial and temporal scales. However, how to effectively build the dialogue between the anatomical structure and the dynamical brain signal still needs to be solved. To tackle the problem, we explore interpreting electrophysiology signals with mechanistic models. In chapter 2 we first segregate high-coherent brain signals into different pathways and then connect their dynamics to synaptic properties. Based on a state space model of LFP generation, we explore several preprocessing methods to bias the signal to the synaptic inputs and enhance the separatability of pathway-specific contributions. The separated sources are more reliable with the preprocessing methods, especially in highly coherent states, e.g., awake running. With reliably separated pathways, we further studied their synaptic properties and explored the local directional connections in the hippocampus. The estimated synaptic time constant and pathway connection agrees with well-established anatomical studies. In chapter 3 we explore establishing a simple model to capture the impulse response of passive neurons with detailed dendritic morphology. We validate Green’s function methods based on compartmentalized models by comparing them to numerical simulations and analytical solutions on continuous neuron membrane potentials. A parameterized model based on laminar Green’s function is further developed and helps to infer the anatomical properties, like the input current distribution and cell position, from their spatiotemporal response patterns. The effect of cell position and template are examed. Based on the model of chapter 3, we use the biophysical possible impulse response profile to regularize the source separation in the frequency domain in chapter 4. The components from different frequencies are clustered according to the same latent input distributions. The source separation in better-separated frequency bins from the same pathway helps separation in other highly contaminated frequencies. The optimization is formulated as a probabilistic model to maximize the negentropy as well as spatial likelihood. Similar to dipole approximation for EEG signals, Green’s function method provides an effective approximation to capture biologically possible spatiotemporal patterns and helps to guide the separation. We validated the method on real data with optogenetic stimulation. In chapter 5 we further separate the far-field signals from the local pathway activities according to their physiological properties. We propose a pipeline to reliably separate and automatically detect far-field signal components. Based on this, a toolbox is provided to remove the EMG artifacts and assess the cleaning performance. In the free-running animals, we show that EMG artifacts shadow the high-frequency oscillatory events detection, and EMG cleaning rescues this effect. Overall, this thesis explored multiple possibilities to incorporate neurophysiology knowledge to understand and model the electrical field potential signals.Das Verständnis der neurophysiologischen Mechanismen der Informationsverarbeitung innerhalb und zwischen Gehirnregionen war schon immer ein grundlegendes und herausforderndes Thema in den Neurowissenschaften. Weitreichende Arbeiten zum Konnektom und Transkriptom des Gehirns haben eine Grundlage für das Verständnis der Gehirnfunktion gelegt. Des Weiteren ermöglicht uns der derzeitige Fortschritt in der Aufnahmetechnik, die nicht stationäre Gehirnaktivität auf verschiedenen räumlichen und zeitlichen Skalen zu untersuchen. Wie jedoch die anatomischen Strukturen und die dynamischen Gehirnsignal effektiv zusammen wirken können, muss jedoch noch gelöst werden. Um dieses Problem anzugehen, untersuchen wir die Interpretation elektrophysiologischer Signale mit mechanistischen Modellen. In Kapitel 2 trennen wir zunächst die hochkohärenten Gehirnsignale in verschiedene Leitungsbahnen und verbinden dann die Dynamik mit synaptischen Eigenschaften. Basierend auf einem Zustandsraummodell zur Erzeugung lokaler Feldpotentiale (LFP) untersuchen wir verschiedene Vorverarbeitungsmethoden, die die Signale bestmöglich auf die synaptischen Eingangsströme ausrichten und die Trennbarkeit von leitungsbahnspezifischen Beiträgen verbessert. Die Trennung der Signalquellen ist durch das Vorverarbeitungsverfahren insbesondere während hochkohärenter Verhaltenszustände (z. B. laufen im Wachzustand) zuverlässiger. Mit zuverlässig getrennten Leitungsbahnen konnten wir die entsprechenden synaptischen Eigenschaften weiter untersuchen und die lokalen gerichteten Verbindungen im Hippocampus untersuchen. Die geschätzte synaptische Zeitkonstante und die Verbindungen der Leitungsbahnen stimmen mit etablierten anatomischen Studien überein. In Kapitel 3 untersuchen wir die Erstellung eines einfachen Modells zur Beschreibung der Impulsantwort passiver Neuronen mit detaillierter dendritischer Morphologie. Wir validieren Greensche Funktionsmethoden basierend auf kompartimentierten Modellen, indem wir sie mit numerischen Simulationen und analytischen Lösungen des kontinuierlichen Membranpotentials von Neuronen vergleichen. Ein parametrisiertes Modell, das auf der laminaren Greenschen Funktion basiert, wird weiterentwickelt. Es hilft dabei, die anatomischen Eigenschaften - die Verteilung des Eingangsstroms und die Zellposition - aus ihren raumzeitlichen Reaktionsmustern abzuleiten. Die Auswirkung der Zellposition und des Templates werden untersucht. Basierend auf dem Modell aus Kapitel 3 verwenden wir in Kapitel 4 das biophysikalisch mögliche Profil der Impulsantwort, um die Quellentrennung im Frequenzbereich festzulegen. Die Komponenten verschiedener Frequenzen werden nach derselben latenten Eingangsverteilungen geclustert. Die Quellentrennung in besser getrennten Frequenzbereichen derselben Leitungsbahn hilft bei der Quelltrennung in anderen stark kontaminierten Frequenzbereichen. Die Optimierung wird als probabilistisches Modell formuliert, um sowohl die Negentropie als auch die räumliche Wahrscheinlichkeit zu maximieren. Ähnlich wie die Dipolnäherungen für EEG-Signale bietet die Greensche Funktionsmethode eine effektive Annäherung, um biologisch mögliche raumzeitliche Muster zu erfassen, und hilft, die Quellen zu trennen. Wir haben die Methode an realen Daten mit optogenetischer Stimulation validiert. Im Kapitel 5 trennen wir weiter die Fernfeldsignale von den Signalen der lokalen Leitungsbahnen nach ihren physiologischen Eigenschaften. Wir schlagen eine Methode vor, die es erlaubt, Fernfeld-Signalkomponenten zuverlässig von lokaler Aktivitaet zu trennen und automatisch zu erkennen. Es wird eine Toolbox bereitgestellt, die EMG-Artefakte entfernt und die bereinigten Signale bewertet. In Ableitungen von freilaufenden Tieren zeigen wir, dass EMG-Artefakte die Erkennung von hochfrequenten Oszillationen beeintraechtigt, aber nach der Bereinigung des EMG-Signals erkannt werden kann. Insgesamt untersucht diese Dissertation mehrere Möglichkeiten die elektrischen Feldpotentiale neuronaler Aktivität unter Einbeziehung neurophysiologischen Wissens zu modellieren und zu verstehen

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore