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Abstract

State-space multivariate dynamical systems (MDS) (Ryali et al., 2011) and other causal estimation 

models are being increasingly used to identify directed functional interactions between brain 

regions. However, the validity and accuracy of such methods is poorly understood. Performance 

evaluation based on computer simulations of small artificial causal networks can address this 

problem to some extent, but they often involve simplifying assumptions that reduce biological 

validity of the resulting data. Here, we use a novel approach taking advantage of recently 

developed optogenetic fMRI (ofMRI) techniques to selectively stimulate brain regions while 

simultaneously recording high-resolution whole-brain fMRI data. ofMRI allows for a more direct 

investigation of causal influences from the stimulated site to brain regions activated downstream 

and is therefore ideal for evaluating causal estimation methods in vivo. We used ofMRI to 

investigate whether MDS models for fMRI can accurately estimate causal functional interactions 

between brain regions. Two cohorts of ofMRI data were acquired, one at Stanford University and 

the University of California Los Angeles (Cohort 1) and the other at the University of North 

Carolina Chapel Hill (Cohort 2). In each cohort optical stimulation was delivered to the right 

primary motor cortex (M1). General linear model analysis revealed prominent downstream 

thalamic activation in Cohort 1, and caudate-putamen (CPu) activation in Cohort 2. MDS 

accurately estimated causal interactions from M1 to thalamus and from M1 to CPu in Cohort 1 

and Cohort 2, respectively. As predicted, no causal influences were found in the reverse direction. 

Additional control analyses demonstrated the specificity of causal interactions between stimulated 

and target sites. Our findings suggest that MDS state-space models can accurately and reliably 

estimate causal interactions in ofMRI data and further validate their use for estimating causal 

interactions in fMRI. More generally, our study demonstrates that the combined use of 

optogenetics and fMRI provides a powerful new tool for evaluating computational methods 

designed to estimate causal interactions between distributed brain regions.
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Introduction

State-space multivariate dynamical systems (Daunizeau et al., 2009; Friston et al., 2003; 

Friston et al., 2008; Ryali et al., 2011; Smith et al., 2009) and other causal estimation models 

are being increasingly used to investigate how cognitive functions emerge as a result of 

directed functional interactions between distributed brain regions (Cai et al., 2015; Cooray et 

al., 2015; Ham et al., 2013; Urner et al., 2013; Vossel et al., 2015; Vossel et al., 2012; Wen et 

al., 2013; Wen et al., 2012). Validating the performance of these methods in neuroimaging 

data remains a challenging problem because the true causality is typically not known. Here 

we take advantage of recently developed optogenetic stimulation techniques with 

simultaneous high-resolution whole-brain fMRI recordings to investigate whether our state 

space based multivariate dynamical systems (MDS) (Ryali et al., 2011) models for fMRI can 

accurately estimate causal functional interactions between distributed brain regions.

Computer simulations of artificial neural networks with a small number of nodes have been 

thus far the most widely-used strategy for validating causal estimation methods (Havlicek et 

al., 2015; Schippers et al., 2011; Seth et al., 2013; Smith et al., 2011). However, these 

simulations do not adequately model neurophysiological and vascular features underlying in 
vivo fMRI data. Another notable problem with most extant simulation studies is that the 

dynamical model used for generating test data is also used for validating the estimation 

procedures. For example, vector autoregressive models have been used to simulate data for 

validating Granger causal analysis (GCA) (Roebroeck et al., 2005; Schippers et al., 2011). 

Similarly, data from a generative dynamic causal model (DCM) model was used to 

investigate the performance of DCM on a four-node network model (Razi et al., 2014), and 

in a previous study, we used MDS-generated datasets to test MDS algorithms (Ryali et al., 

2011). To address this issue, Smith and colleagues used a DCM generative model to 

simulate multiple test datasets, which were then used to investigate the performance of 

several causal estimation methods other than DCM (Smith et al., 2011). Additionally, Seth 

and colleagues used more neurophysiologically realistic simulations to characterize the 

performance of GCA and clarify its strengths and weaknesses (Seth et al., 2013). More 

recently, Smith and colleagues demonstrated inherent limitations in testing causal 

estimations models based on simulated fMRI data that are generated by common underlying 

models (Smith et al., 2013). Experimental approaches have also been used to validate causal 

estimation methods. In human fMRI data, this approach has primarily focused on the 

demonstration of converging evidence from dynamic causal modeling and differential 

relative timing of brain activation profiles (Katwal et al., 2013; Sridharan et al., 2008; 

Supekar and Menon, 2012). David and colleagues suggested a more direct approach by 

using invasive intracranial EEG and fMRI recordings to validate causal estimation methods 

and identify neural drivers of spontaneous spike-and-wave discharges, albeit in rodent 

models of epilepsy (David et al., 2008).
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A potentially more powerful approach for validation of methods such as MDS is to combine 

brain stimulation with in vivo imaging to uncover causal interactions between stimulated and 

target regions. Until recently, technologies to conduct such investigations have been sorely 

lacking. Here we take advantage of recent developments in optical brain stimulation with 

simultaneous whole-brain fMRI recording to validate the performance of MDS on 

experimental data. We used viral transfection to express light sensitive channelrhodopsin-2 

(ChR2) proteins in specific brain regions. BOLD fMRI signals were then recorded during 

optical stimulation, allowing for detection of activation in the stimulated site as well as in 

downstream functional targets (Kahn et al., 2011; Lee et al., 2010; Shih et al., 2013). ofMRI 

is an ideal technique for validating dynamic causal estimation methods in vivo. In this study, 

we used ofMRI to validate MDS procedures for estimating dynamic causal interactions from 

stimulated “seed” regions in primary motor cortex (M1) to downstream “target” regions.

Two cohorts of ofMRI data were acquired at three different small animal imaging facilities, 

one by Lee and colleagues at UCLA and at Stanford University (Cohort 1) and the other by 

Shih and colleagues at University of North Carolina, Chapel Hill (Cohort 2). Both cohorts 

feature optical stimulation to right primary motor cortex (M1) and significant activation in a 

single downstream target: thalamus in Cohort 1, and caudate-putamen (CPu) in Cohort 2. 

We used MDS to investigate causal interactions between M1, the optically stimulated site, 

and respective downstream target regions that showed significant activation as a result of the 

stimulation. We hypothesized that MDS would accurately uncover significant causal 

interactions from the optically stimulated seed region to the downstream target regions. 

Additional control analyses were then conducted to examine the specificity and stability of 

the results. In these analyses, we hypothesized that MDS would not detect causal 

interactions between control regions and downstream targets, and that estimated causal 

interactions from stimulated to downstream targets would remain stable with the addition of 

control regions.

Methods

Cohort 1: UCLA/Stanford-ofMRI

ofMRI data was acquired from five adult female Sprague-Dawley rats (250–350g; Charles 

River Laboratories, Wilmington, MA). Data from two rats were excluded because one did 

not respond to optical stimulation and the second had movement related artifacts. Of the 

final three rats included in this study, one was imaged at UCLA and two at Stanford 

University using identical imaging protocols.

During surgery, M1 was targeted and injected with an adeno-associated virus expressing a 

ChR2-EYFP fusion protein using coordinates −2.7 mm anteroposterior (AP), +3.0 mm 

mediolateral (ML) right hemisphere, −2.0 mm and −2.5 mm dorsoventral (DV) (Figure 1a 

and 1b). Additional surgical procedures and details can be found in our previous ofMRI 

publications (Lee et al., 2010; Shih et al., 2013). Figure 1c shows anatomical overlays on 

single subject T1-weighted MRI depicting regions of interest in the current study.

All ofMRI experiments were conducted three weeks after virus injection for optimal ChR2 

expression. The fMRI scans were performed on a 7T small animal MRI system (UCLA: 
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Brucker Biospec, Stanford: Magnex Scientific). All scans used the same 39 mm outer 

diameter and 25 mm inner diameter custom-designed transmit/receive single-loop surface 

coil. During the fMRI experiment, animals were artificially ventilated under light anesthesia 

with a mixture of O2 (35%), N2O (63.5%), isoflurane (1.2–1.5%) and CO2 (3–4%). A block 

designed fMRI stimulation scheme consisting of six ON-OFF cycles at 20 sec ON and 40 

sec OFF for a total of 6 minutes was used. During the ON cycles, optical stimulation was 

delivered at 20 Hz, with a 5 ms pulse duration. The data were acquired using an interleaved 

spiral readout Gradient Recalled Echo (GRE) BOLD sequence with 0.5 mm slice thickness 

and 23 slices. In-plane field of view (FOV) was designed to be 35×35 mm2 and in-plane 

spatial resolution was 0.5×0.5 mm2. A sliding window reconstruction was then performed to 

reconstruct the data into 128×128×23 matrix-size, 750 ms temporal resolution images.

After reconstruction, subject motion was corrected by the inverse Gauss-Newton motion 

correction algorithm (Miao et al., 2013) and 4D fMRI data was analyzed with statistical 

parameter mapping (SPM) using the general linear model (GLM) with five gamma basis. An 

F-test was then conducted and active voxels were selected as those with corresponding 

Bonferroni-corrected p-values less than 0.05. The ROIs were manually selected based on a 

standard digital rat brain atlas (Schwarz et al., 2006).

Cohort 2: UNC-ofMRI

ofMRI data was acquired from two adult male Sprague Dawley rats (300–450 g; Charles 

River). Rats were deeply anesthetized with isoflurane (2%), and the primary motor cortex 

was targeted for optogenetics. To preferentially target cortical pyramidal cells, we used an 

adeno-associated virus carrying the gene encoding ChR2 fused to an enhanced yellow 

fluorescent protein (EYFP) or only EYFP (all under the calcium/calmodulin kinase IIα 

promoter) (AAV5-CaMKIIα-ChR2(H134R)-EYFP). Injection volume was 1µl and 

coordinates were (in mm from bregma and cortical surface): +3.0 AP, +2.5 ML and −1.5 DV 

(Figure 2a). Injection flow rate was 0.1 µl/min, and an additional 10 minutes were given for 

virus diffusion prior to needle retraction. Chronically implanted optic fibers were placed 0.5 

mm above the virus injection site. A recovery period of at least 3 weeks was given before 

fMRI to allow for adequate opsin expression.

Each rat was endotracheally intubated and ventilated with ~1.5% isoflurane and medical air. 

The ventilation rate and volume were adjusted to maintain end-tidal CO2 (EtCO2) within a 

range of 2.6–3.2% and oxygen saturation (SpO2) above 96%. Rectal temperature was 

maintained at 37±0.5 °C. Dexmedetomidine (0.1 mg/ml) and pancuronium bromide (1.0 

mg/ml) were infused intravenously for the duration of the scan. For CBV-weighted MRI, a 

tail-vein catheter was used to deliver a monocrystalline iron oxide contrast agent at a dose of 

30 mg Fe/kg. Single-shot, single-sampled GE-EPI sequences (BW= 300 kHz, TR= 1000 ms, 

TE= 8.107 ms, 80×80 matrix, FOV= 2.56 × 2.56 cm2, slice thickness= 1 mm) were acquired 

using a Bruker 9.4T MR scanner and homemade surface coil.

ofMRI was conducted using a homemade fiber optic patch cable, connected to a 473 nm 

laser (Shanghai Laser & Optics Century, Shanghai, China) outside of the scanner room. 

Laser wattage was measured as 16–20 mW from the end of the optic fiber. Optical 

stimulation was presented in an OFF-ON-OFF-ON-OFF design, with an initial rest period of 
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20 sec, followed by 2 ON-OFF cycles of 10 sec stimulation and 30 sec rest. During the ON 

cycle, optical stimulation was delivered at 40 Hz, with a 5 ms pulse duration.

Details of the image processing procedures are described fully in (Shih et al., 2013). In brief, 

the data were co-registered to correct for spatial image drifts over time using SPM’s spatial 

realignment function. All volumes were co-registered to the temporal mean image to 

account for spatial translation and rotation using mutual information as the cost metric. 

Activated brain regions with respect to optical stimulation within each rat were found with 

GLM using the SPM toolbox. A Bonferroni correction against the total number of brain 

voxels (p<0.05) was used to correct for multiple comparisons.

MDS for estimating causal interactions in ofMRI data

MDS is a state-space model (Ryali et al., 2011) consisting of a state equation to model the 

latent “neuronal–like” states of the dynamic network and an observation equation to model 

BOLD-fMRI signals as a linear convolution of latent neural dynamics and HRF responses. 

Like DCM, it estimates both intrinsic and experimentally modulated causal interactions 

between brain regions while accounting for variations in hemodynamic responses in these 

regions.

The state equation in MDS is a multivariate linear difference equation or a first order 

multivariate auto regressive (MVAR) model that defines the state dynamics

(1)

The model for the observed BOLD responses is a linear convolution model

(2)

(3)

In Equation (1), s(t) is a M × 1 vector of latent signals at time t of M regions, Cj is a 

connection matrix ensued by modulatory input vj(t) and J is the number of modulatory 

inputs. The non-diagonal elements of Cj represent the coupling of brain regions in the 

presence of vj(t). Therefore, latent signals s(t) in M regions at time t is a bilinear function of 

modulatory inputs vj(t) and its previous state s(t−1). w(t) is an M × 1 state noise vector 

whose distribution is assumed to be Gaussian distributed with covariance matrix Q(w(t) ~ N 
(0, Q)). Additionally, state noise vectors at time instances 1,2, …., T (w(1), w(2) … w(T)) 

are assumed to be identical and independently distributed (iid). The latent dynamics 

modeled in equations (1) and (2) give rise to observed fMRI time series represented by 

Equation (3).

We model the fMRI-BOLD time series in region m as a linear convolution of HRF and latent 

signal sm (t) in that region. To represent this linear convolution model as an inner product of 

two vectors, the past L values of sm (t) are stored as a L × 1 vector xm (t) in equation (2).
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In equation (3), ym (t) is the observed BOLD signal at time t of m-th region. Φ is a p × L 
matrix whose rows contain bases for HRF. bm is a 1 × p coefficient vector representing the 

weights for each basis function in explaining the observed BOLD signal ym (t). Therefore, 

the HRF in m-th region is represented by the product bmΦ. The BOLD response in this 

region is obtained by convolving HRF (bmΦ) with the L past values of the region’s latent 

signal (xm(t)) and is represented mathematically by the vector inner product bmΦ xm(t). 

Uncorrelated observation noise em(t) with zero mean and variance  is then added to 

generate the observed signal ym (t). em (t) is also assumed to be uncorrelated with w(τ), at all 

t and τ. Therefore, equation (3) represents the linear convolution between the embedded 

latent signal xm (t) and the basis vectors for HRF. Here, we use the canonical HRF and its 

time derivative as bases, as is common in most fMRI studies.

Equations (1–3) together represent a state-space model for estimating the causal interactions 

in latent signals based on observed multivariate fMRI time series. Crucially, MDS also takes 

into account variations in HRF as well as the influences of modulatory and external stimuli 

in estimating causal interactions between the brain regions.

Estimating causal interactions between M regions specified in the model is equivalent to 

estimating the parameters Cj, j = 1,2‥J. In order to estimate Cj’s, the other unknown 

parameters Q,  and  and the latent signal  based on the 

observations , t = 1,2,‥ T, where T is the total number of time samples and S 
is the number of subjects, need to be estimated. We use a variational Bayes approach (VB) 

for estimating the posterior probabilities of the unknown parameters of the MDS model 

given fMRI time series observations for S number of subjects (Ryali et al., 2011). In this 

analysis we set J = 2 corresponding to two conditions: stimulus ON and stimulus OFF and 

report the causal interactions between brain regions in the stimulus ON condition. We use 

the same non-informative hyper-parameters as in our previous study (Ryali et al., 2011). We 

assume a Gaussian prior distribution on each element of Cj(m, n) with mean 0 and precision 

Λj(m, n). We assume that each precision parameter Λj(m, n) follows a Gamma distribution 

with hyper-parameters co and do, which are set to non-informative values of 10−3 each. We 

also use a Gamma distribution for each diagonal element of the noise precision Q−1 in 

Equation (1) with hyper-parameters ao and bo set to non-informative values of 10−3 each. We 

use similar prior distributions for the parameters bm and em(t) in the output Equation (3). 

The details of VB estimation of these parameters are provided in Appendix B of our 

previous study (Ryali et al., 2011). We initialized the MDS algorithm using the same 

procedures as described in (Ryali et al., 2011). The fMRI time time-series for each region m 

and subject s,  is linearly de-trended, its temporal mean removed and normalized by its 

standard deviation prior to applying MDS.

To test the statistical significance of the estimated causal links, we use the posterior 

probabilities of the estimated parameters. More specifically, to test the significance of a 

causal link from n-th region to m-th region we use p(Cj(m, n)|y) which is a normal 

distribution whose mean and variance are estimated using the VB framework (Ryali et al., 

2011). We use this distribution to find the standard normal z-score for the mean value of 
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Cj(m, n) and test its significance at p = 0.05 with a Bonferroni correction for multiple 

comparisons.

Results

Cohort 1: UCLA/Stanford-ofMRI

In all three rats from Cohort 1, GLM analysis identified significant activations in the 

stimulated right hemisphere M1 region and a downstream target in the right hemisphere 

thalamus. Figure 1d shows the significantly activated brain regions in right M1 and thalamus 

for Rat 1. As shown in Figure 1e, BOLD signals synchronous to the optical stimulus in Rat 1 

were observed at both right M1 (white triangle) and the downstream thalamus. Figures 1f,g 

and 1h,i show the same information for Rat 2 and Rat 3, respectively.

We then applied MDS to examine causal interactions between M1 and thalamus. Mean 

BOLD signals were extracted from the significantly activated voxels in the right hemisphere 

M1 and thalamus ROIs. As hypothesized, MDS estimated a highly significant (p < 0.05, 

Bonferroni corrected) causal drive from M1 to thalamus in Rat 1, Rat 2 and Rat 3, as shown 

in the left column of Figure 3. Tables S1a, S2a and S3a respectively show the z-scores for 

the causal directions and their corresponding p-values (shown in parenthesis) for Rat 1, Rat 

2 and Rat 3. Significant connections (p < 0.05, Bonferroni corrected) are highlighted in red 

in these tables. The causal drive in the opposite direction (thalamus to M1) was weak and 

insignificant (p > 0.05, Bonferroni corrected) in all three rats (Figure 3, left column).

Next, we performed a control analysis where we examined causal interactions between a 

right insular cortex “seed” region, which was not activated with the optical stimulation and 

the same target ROI in the thalamus. Mean BOLD signals were extracted from voxels in an 

anatomically defined right hemispheric insula ROI. We found no significant causal drive 

between the insula and the thalamus in Rats 1 and 2 (Figure 3, middle column, and 

Supplementary Tables S1b, S2b). In Rat 3, we found significant causal interactions from 

thalamus to insula (Figure 3, middle column and Supplementary Table S1c). However, the 

strength of this thalamus to insula causal drive was significantly weaker than the strength of 

causal interactions from M1 to thalamus (p < 0.01).

To demonstrate the stability of our findings, we estimated causal interactions between the 

three ROIs together using MDS. We found that the causal drive from M1 to thalamus could 

be detected even with the addition of the insula control region in all three rats (Figure 3, 

right column, and Supplementary Tables S1c, S2c, S3c).

We then estimated BOLD responses in M1 and thalamus regions using Equations (1–3). Top 

panels of supplementary Figures S1, S2 and S3 display the estimated quasi-neuronal states 

for M1 and thalamus (s(t) as defined in Equation (1)) in Rats 1, 2 and 3 respectively. The 

middle and bottom panels of supplementary Figures S1, S2 and S3 show the estimated and 

actual BOLD responses in M1 and thalamus for Rats 1, 2 and 3 respectively. We excluded 

the first 32 sec, which is the length of the canonical HRF response, because BOLD estimates 

using linear convolution are not reliable due to the zero padding of quasi-neuronal signals in 

that period. The estimates of quasi-neuronal states suggest that they are closely aligned to 
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stimulus onset (top panels of supplementary Figures S1, S2 and S3) whereas the estimated 

and actual BOLD responses show a lagged response (middle and bottom panels of 

supplementary Figures S1, S2 and S3) in all three rats. A comparison between the estimated 

and actual BOLD responses further revealed that the MDS-estimated BOLD responses for 

both regions (M1 and thalamus) in all three rats match well with the actual responses 

(middle and bottom panels of supplementary Figures S1, S2 and S3).

Cohort 2: UNC-ofMRI

In both rats from Cohort 2, GLM analysis identified significant activations in stimulated M1 

and downstream target in the Caudate-Putamen (CPu). Figures 2b and 2c show the 

significantly activated brain regions in the right hemispheric M1 and CPu as well as the 

associated BOLD signal changes for Rat 1. Figures 2d and 2e show the same information for 

Rat 2.

We then applied MDS to examine causal interactions between M1 and CPu. Mean BOLD 

signals were extracted from the two ROIs centered on the locally maximally activated voxels 

in M1 and CPu respectively, both with a radius of 1 voxel. All other procedures were similar 

to those used for analysis of Cohort 1 data. As hypothesized, MDS estimated a causal drive 

from M1 to CPu in Rat 1 (p < 0.05, Bonferroni corrected) and Rat 2 (p < 0.05, uncorrected), 

as shown in the left column of Figure 4. Causal interactions in the opposite direction (CPu to 

M1) were weak and non-significant (p > 0.05, uncorrected) for both rats (Figure 4, left 
column). Supplementary Tables S4a and S5a respectively show the z-scores for the causal 

interactions and their corresponding p-values for Rat 1 and Rat 2.

Next, we performed the same control analyses as those used with Cohort 1. There were no 

significant causal interactions between the non-stimulated control region and the CPu in 

either direction in both rats (Figure 4, middle column and Supplementary Tables S4b, S5b).

To demonstrate the stability of our findings, we then examined causal interactions between 

the three ROIs together using MDS. We found that causal interactions from M1 to CPu 

could be detected even with the addition of the control region in Rat 1 (p < 0.05, Bonferroni 

corrected) and Rat 2 (p < 0.05, uncorrected) (Figure 4, right column and Supplementary 

Tables S4c and S5c). Additionally, the strength of causal interactions from M1 to CPu was 

still greater than all other causal interactions (Supplementary Tables S4c S5c).

We then examined the estimated quasi-neuronal signals s(t) and BOLD responses in M1 and 

CPu. The top panels of supplementary Figures S4 and S5 show the estimated quasi-neuronal 

signals for M1 and CPu while the middle and bottom panels of supplementary Figures S4 

and S5 show the estimated BOLD responses in Rats 1 and 2 respectively. The estimates of 

BOLD responses matched well with their actual BOLD responses and the estimates quasi-

neuronal signals showed the expected lag when compared to the respective BOLD responses 

(middle and bottom panels of supplementary Figures S4 and S5). In this cohort also, the 

quasi-neuronal states were time locked to the stimulus onsets whereas the estimated and 

actual BOLD responses were delayed. Note that here also the first 32 sec of BOLD 

responses are not plotted because of the linear convolution operation.
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Discussion

Combining optogenetics and fMRI to evaluate methods for causal estimation

ofMRI is a novel technique for selectively stimulating a brain region and observing causal 

effects of such stimulation across the entire brain (Kahn et al., 2011; Lee et al., 2010; Shih et 

al., 2013). Optogenetic stimulation with ChR2 also enables stimulation of a circumscribed 

cortical region in a temporally precise manner. This spatial and temporal precision as well as 

the whole-brain coverage provided by ofMRI delivers exceptional spatial and temporal 

precision for investigating dynamic functional connectivity between distributed regions 

spanning the entire brain. Although previous studies have used ofMRI to examine functional 

connectivity of different brain regions (Lee, 2011, 2012), dynamic causal interactions 

associated with optogenetic stimulation have not been explored yet. In this study, we 

leveraged the unique capabilities of these technologies and demonstrated how combining 

optogenetics and fMRI provides us with powerful new tools for validating dynamic causal 

modeling techniques in ways that were not previously possible.

A particular advantage of optogenetic techniques over other approaches such as forepaw, 

whisker or visual stimulation (Sanganahalli et al., 2009) is that it can be used to validate 

causal interactions associated with specific functional circuits and cell-types. Given the 

complexity of functional connectivity and potential involvement of multiple pathways and 

cell types (e.g. excitatory vs inhibitory neurons), and neurotransmission within and across 

different nuclei, it is extremely challenging to study brain mechanisms underlying causal 

interactions in neural circuits. ofMRI overcomes these weaknesses and provides tools to 

probe specific functional pathways and causal influences.

Validation of MDS by combining optogenetic stimulation with simultaneous fMRI

We used some of the capabilities of ofMRI to validate MDS-based analytic procedures for 

estimating dynamic causal interactions in fMRI data. Across two independent cohorts we 

found that MDS accurately estimated dynamic causal interactions from the stimulated site to 

downstream target sites. Additional control analyses demonstrated the specificity and 

stability of causal interactions estimated by MDS. Our findings suggest that MDS state-

space models can reliably estimate causal interactions in ofMRI datasets and further validate 

their use for causal estimation in fMRI. A powerful feature of MDS (Ryali et al., 2011; 

Smith et al., 2009)) is that it estimates causal interactions in the underlying “quasi-neuronal” 

signals, rather than the BOLD fMRI data which is subject to delay and dispersion by the 

HRF. Furthermore, MDS also provides an estimate of this neuronal signal which was found 

to display two key features: (i) it was time-locked to stimulus onset, and (ii) it showed an 

earlier onset in the stimulated site with respect to the target site (supplementary Figures S1–

S5). These results suggest that MDS deconvolved BOLD responses while estimating causal 

interactions between brain regions. Crucially, in spite of differences in data acquisition 

protocol and experimental design, our findings were replicated across two independent 

cohorts, further validating MDS as a useful technique for investigating causal interactions 

and the underlying deconvolved “neuronal” signals in fMRI data.
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Limitations and future work

The main goal of our study was to investigate whether MDS can accurately estimate causal 

interactions between brain regions in BOLD fMRI. The small ofMRI sample sizes currently 

available preclude a direct comparison with other methods including Granger causal analysis 

(GCA) (Roebroeck et al., 2005), dynamic causal modeling (DCM) (Friston et al., 2003; 

Friston et al., 2008), directed information transfer measures (Patel et al., 2006) and Bayes 

Net (Ramsey et al., 2011). Future studies will need to address such comparisons with much 

larger ofMRI samples than those currently available.

Continued progress in the use of ofMRI for validating brain connectivity methods will 

require further research on several other fronts as well. More thorough investigation of the 

effects of stimulation parameters including timing, frequency of stimulation, number of 

stimulations, and session duration will be needed. In the Cohort 1 dataset, our findings 

demonstrate that causal interactions from M1 to thalamus were significant in Rat 1, Rat 2 

and Rat 3, and moreover they were stable even in the presence of an additional control 

region (Figure 3, right column). This dataset used a block design with a stimulation 

duration of 20 sec followed by a 40 sec rest block, resulting in 6 blocks of stimulation with a 

session duration of about 360 sec (Figure 1). Whether shorter stimulation and rest blocks 

and event-related paradigms can achieve similar results remains to be investigated. Our 

analysis of the Cohort 2 dataset suggests preliminarily that even with shorter blocks and 

session durations MDS can uncover causal interactions in ofMRI data (Figure 4). Further 

research is needed to determine optimal stimulation timing and session durations for ofMRI 

studies.

ofMRI may be particularly useful in determining optimal experimental designs for 

estimation of dynamic causal interactions in noninvasive brain imaging. In conventional 

GLM analysis of fMRI data, it has been shown that block designs are better suited for 

detecting activations while event-related designs are more optimal for estimating regional 

hemodynamic response (Liu et al., 2001). However, no studies have investigated optimal 

experimental designs for estimating causal interactions in fMRI data; ofMRI may provide a 

unique tool in this regard. Finally, simultaneous electrophysiological and ofMRI recordings 

with integrated data analysis and computational modeling are needed for providing critical 

information about the neurophysiological basis of dynamic causal interactions across 

distributed brain regions.

Conclusions

Our findings demonstrate that MDS can accurately estimate dynamic causal interactions in 

ofMRI data. In spite of differences in data acquisition protocol and experimental design, 

causal interactions from an optically stimulated source region to target sites were replicated 

across two cohorts and scanners, highlighting the robustness of our findings. Validation of 

MDS with ofMRI provides further insights into the applicability of state-space causal 

estimation methods in BOLD-fMRI studies. More generally, our findings suggest that 

ofMRI provides a powerful new tool for validating dynamic connectivity procedures that are 

being increasingly used in brain imaging studies.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design: Cohort 1
(a, b) Schematic of ofMRI experimental paradigm. Right primary motor cortex (M1) was 

targeted and injected with adeno-associated virus expressing a Channelrhodopsin2 (ChR2)-

EYFP fusion protein. Chronically implanted optic fibers were placed above viral infusion 

sites. (c) Anatomical overlays on single subject T1-weighted MRI depicting regions of 

interest in the current study. BOLD signal coherence maps, time courses, and estimated 

HRFs for Rat 1 (d, e), Rat 2 (f, g), and Rat 3 (h, i).
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Figure 2. Study design: Cohort 2
(a) Schematic of ofMRI experimental paradigm. Rats were deeply anesthetized with 

isoflurane (2%), and the primary motor cortex was targeted for optogenetics. To 

preferentially target cortical pyramidal cells, an adeno-associated virus was used carrying 

the gene encoding channelrhodopsin-2 (ChR2) fused to an enhanced yellow fluorescent 

protein (EYFP) or only EYFP. Chronically implanted optic fibers were placed above viral 

infusion sites. (b)–(c), (d)–(e): Representative t-scored functional activation maps from two 

rats, overlaid on same-subject T2-weighted anatomical images (b, d). Corresponding time-

courses of CBV changes in motor cortex and dorsolateral striatum (c, e).
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Figure 3. Causal interactions estimated by MDS in Cohort 1
(Left) Causal interactions between Motor and Thalamus, in all three rats MDS correctly 

uncovered significant causal drive from M1 to thalamus. (Middle) Analysis with insula as 

control region. MDS found no casual drive from the control region insula to thalamus in all 

three rats. (Right) Causal drive from M1 to thalamus was strong and significant even upon 

inclusion of insula as control region. Thicknesses of the arrows depict the strength of 

significant causal interactions (z-score).
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Figure 4. Causal interactions estimated by MDS in Cohort 2
(Left) Causal interactions between Motor and CPu. In both rats MDS correctly uncovered 

significant causal drive from M1 to CPu. Middle: MDS found no causal drive from control 

region insula and CPu. Right: Causal drive from M1 to CPu remained significant even upon 

inclusion of insula as control region. Thicknesses of the arrows depict the strength of 

significant causal interactions (z-score).
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