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Functional magnetic resonance imaging (fMRI) is an indirect measure of 
neural activity with the hemodynamic response function (HRF) coupling it with 
unmeasured neural activity. The HRF, modulated by several non-neural factors, is 
variable across brain regions, individuals and populations. Yet, a majority of human 
resting-state fMRI connectivity studies continue to assume a non-variable HRF. In 
this article, with supportive prior evidence, we argue that HRF variability cannot 
be  ignored as it substantially confounds within-subject connectivity estimates 
and between-subjects connectivity group differences. We also discuss its clinical 
relevance with connectivity impairments confounded by HRF aberrations in 
several disorders. We present limited data on HRF differences between women 
and men, which resulted in a 15.4% median error in functional connectivity 
estimates in a group-level comparison. We also discuss the implications of HRF 
variability for fMRI studies in the spinal cord. There is a need for more dialogue 
within the community on the HRF confound, and we hope that our article is a 
catalyst in the process.
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1. Introduction

Functional magnetic resonance imaging (fMRI) has contributed significantly to the 
advancement of neuroscience, psychiatry, and neurology over the past three decades (Power 
et al., 2011; Rosazza and Minati, 2011; Nathan et al., 2014). While neural activity can be directly 
measured in vivo through invasive procedures, blood oxygenation level-dependent (BOLD) 
fMRI is a complex, indirect measure of neural activity (Logothetis et al., 2001; Figure 1A), 
measuring local blood oxygenation variations in response to active neurons. Dilation and 
constriction of blood vessels modulates this process, which, in turn, is modulated through 
numerous non-neural and neural factors that are difficult to delineate (Biessmann et al., 2012). 
The combination of factors that lie between neural activity and BOLD is the hemodynamic 
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response function (HRF; Duarte et al., 2015; Kim and Ress, 2016). 
HRF shape is characterized by its amplitude (response height, RH), 
latency (time-to-peak, TTP) and width (full-width at half max, 
FWHM; Figure  1B). Representing neurovascular coupling in the 
BOLD signal, the HRF is modulated by several non-neural factors 
(Biessmann et al., 2012; Yang et al., 2019) such as hematocrit, variable 
size/density of vasculature, global magnetic susceptibilities, alcohol/
caffeine/lipid ingestion, pulse/respiration differences, and partial 
volume imaging of veins (Aguirre et  al., 1998; Levin et  al., 1998; 
Noseworthy et al., 2003; Handwerker et al., 2004; Buxton, 2010; Tong 
and Frederick, 2014; Bernier et al., 2018; Yang et al., 2019). The HRF 
shape varies across the brain and individuals (Aguirre et al., 1998; 
Handwerker et al., 2004; Lewis et al., 2018).

The current ‘perspective’ article focuses on this HRF variability 
(HRFv) and its impact on fMRI data processing and subsequent 
outcome measures within the scope of human fMRI research. This topic 
is important because thousands of human fMRI studies are published 
each year, but a significant portion of those do not account for HRFv. 
Resting-state fMRI (rs-fMRI) and connectivity studies dominate that 
list. Thus, there is a need for more dialogue within the community on 
HRFv. We argue that HRFv causes a measurable impact on the BOLD 
time series, which, if ignored, will confound fMRI outcomes such as 
connectivity. We substantiate our argument with prior human HRFv 
research, including those focusing on rs-fMRI connectivity. We also 
present limited new data (to substantiate our ‘perspective’) on HRFv 
across two important demographic variables: age and sex. Lastly, to 
cover structures of the central nervous system beyond the brain, we also 
discuss the implications of HRFv for spinal cord fMRI.

2. The problem of HRF variability

HRFv was first demonstrated in 1998 (Aguirre et al., 1998) and 
further examined in later years (Miezin et al., 2000; Handwerker et al., 
2004; de Zwart et al., 2005; Badillo et al., 2013). The HRF of a given 
brain region was identified to be  different across individuals, and 
within a given individual, it was different across brain regions. 
Non-neural factors affecting the HRF is not merely the concern 
because a variable known HRF could be accounted for. Instead, the 
concern is that we do not understand these variable factors (and thus 

the HRF). The issue is alleviated in task fMRI studies by often modeling 
the HRF confound as time/dispersion derivatives of the canonical HRF 
in a general linear model (GLM) framework, which works well since 
BOLD is time-locked to an external stimulus. However, the outlook is 
different in rs-fMRI studies, which mostly ignore HRFv. The notion of 
HRF not being variable enough to be  a serious confound was 
challenging to test, if not impossible, a few years ago because of the 
inability to estimate the HRF from rs-fMRI data. Necessary technical 
advancements [e.g., point-process theory (Tagliazucchi et al., 2012; 
Power et  al., 2015)] have now resulted in rs-fMRI deconvolution 
techniques that are capable of HRF estimation from resting-state fMRI 
data (Havlicek et al., 2011; Karahanoğlu et al., 2013; Wu et al., 2013; 
Havlicek et al., 2015). We take a closer look at these techniques next.

3. HRF estimation from resting-state 
fMRI data

HRF estimation can be straightforward with two known quantities 
(fMRI and neural activity) and one unknown (HRF). This is possible 
with simultaneous fMRI and invasive recordings [e.g., (David et al., 
2008; Wang et  al., 2017b)], which is hardly feasible in humans. 
Obtaining simultaneous rs-EEG/fMRI data and considering EEG as 
the neural input to deconvolve fMRI [using AFNI’s 3dDeconvolve 
(Feige et al., 2017)] is problematic because generative fMRI models do 
not consider scalp EEG as properly representing BOLD-inducing 
neural activity (Logothetis et  al., 2001). A viable alternative is 
estimating HRF latency from a hypercapnic challenge because breath-
hold causes vasodilation and modulates cerebral blood flow (CBF) 
(Thomason et al., 2007; Hall et al., 2016; McDonough et al., 2019) 
independent of neural activity, allowing us to measure vascular 
latency. Chang et al. (Chang et al., 2008) utilized this to correct for 
vascular latency prior to connectivity analysis. The disadvantage is 
that an additional breath-hold scan is not always feasible or available. 
Breath-hold is prone to subjective performance and can be challenging 
in those with some neurological diseases (Spano et al., 2013; Urback 
et al., 2017). Moreover, it only measures one aspect of HRF shape 
(TTP), while the entire HRF impacts BOLD.

To circumvent these concerns, an alternative is to perform blind 
deconvolution; that is, solve the mathematically ill-posed inverse 

FIGURE 1

(A) FMRI is an indirect measure of neural activity. What stands between them is the hemodynamic response function (HRF). (B) The HRF is the BOLD 
response to a neural impulse. It has a peak (response height) occurring sometime after the neural impulse (time-to-peak) (HRF width = FWHM). The 
HRF always has this shape (biological), but these parameters are variable.
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problem of having two unknowns (HRF and neural activity) and one 
known (fMRI). This is feasible because the natural limits and 
biophysics of HRF and fMRI are well understood. HRF estimation 
then becomes a constrained optimization exercise. Such deconvolution 
techniques primarily focusing on task fMRI data (Gitelman et al., 
2003; Gaudes et al., 2011; Hernandez-Garcia and Ulfarsson, 2011; 
Khalidov et  al., 2011; Lopes et  al., 2012; Bush and Cisler, 2013; 
Caballero Gaudes et al., 2013; Bush et al., 2015) are generally robust 
to HRF misspecification within a narrow physiological range, but are 
not viable for estimating voxel-specific HRFs in the entire brain, 
especially in rs-fMRI data. Whole-brain HRF estimation is preferable 
with rs-fMRI data because, with task fMRI, a given task does not 
activate the entire brain uniformly (Taylor et  al., 2018), and even 
among activated voxels, the BOLD response is mostly non-uniform 
(Gonzalez-Castillo et al., 2012), sometimes leading to biologically 
implausible HRF estimates (Taylor et al., 2018). Some techniques that 
might, in principle, be viable for rs-fMRI have never been tested using 
rs-fMRI data (Sreenivasan et al., 2015; Cherkaoui et al., 2019).

This leaves us with four rs-fMRI deconvolution techniques that 
have been more widely adopted: (i) Wu et al.’s (2013) data-driven 
rsHRF method (Wu et al., 2021), (ii) parametric generative state-space 
models proposed within the stochastic dynamic causal modeling 
(DCM) framework (Havlicek et al., 2011; Friston et al., 2013, 2014), 
(iii) physiologically informed DCM (Havlicek et al., 2015; developed 
for task fMRI but can be  extended to rs-fMRI), and (iv) Total 
Activation (Karahanoğlu et al., 2013; estimates an “activity-inducing 
signal” from BOLD, from which it is possible in principle to estimate 
the HRF by Wiener deconvolution), which has been applied in the 
brain (Karahanoğlu and Van De Ville, 2015; Zöller et al., 2021) as well 
as the spinal cord (Kinany et al., 2020). Notably, a substantial number 
of studies examining HRFv (described later) utilized Wu et  al.’s 
technique (Wu et al., 2013), hence we describe it briefly here. The Wu 
et al. technique models rs-fMRI data as event-related time series, with 
events modeled as point-processes (Saad et al., 2012). Then it estimates 
the best-fit HRF in a least-squares sense, using the BOLD time series 
at identified events. Finally, the latent neural time series is estimated 
using Wiener deconvolution from the measured BOLD and the 
estimated HRF (Glover, 1999). This technique has been validated 
using simulations, non-invasive and invasive data (Tagliazucchi et al., 
2012; Wu et al., 2013; Rangaprakash et al., 2018b; Wu et al., 2021), and 
has been applied in many recent papers (Amico et  al., 2014; 
Lamichhane et  al., 2014; Boly et  al., 2015; Rangaprakash et  al., 
2017a,b,c, 2018a,b). HRFs separated by 4 weeks demonstrated 
moderate test–retest reliability (ICC = 0.51; Rangaprakash et al., 2020), 
which is impressive by current neuroimaging standards (Noble et al., 
2019). A vast majority of human rs-fMRI studies do not perform 
additional breath-hold scans or do not have invasive recordings. This 
article focuses on the HRF confound in such studies, although some 
of the material is applicable generally to all fMRI studies. We next 
present the impact of HRFv on rs-fMRI data.

4. The confound of HRF variability on 
connectivity estimates

We focus here on functional connectivity (FC; Power et al., 2011) 
because most rs-fMRI studies investigate FC, or metrics derived from 
FC such as dynamic connectivity and graph measures. It is, however, 

notable that the HRF confound has also been investigated for effective 
connectivity models such as DCM (Friston et  al., 2013), Granger 
causality (Deshpande et al., 2010; Lacey et al., 2014; Feng et al., 2015; 
Sreenivasan et al., 2015; Hampstead et al., 2016), and multivariate 
dynamical system models (Ryali et  al., 2011, 2016a,b). Effective 
connectivity estimated from fMRI data is viable (Deshpande et al., 
2010; Handwerker et al., 2012) as well as accurate (David et al., 2008; 
Havlicek et al., 2010, 2011; Wang et al., 2017a) only after deconvolution.

FC studies have, however, largely ignored HRFv either with the 
assumption that the HRF is similar enough among brain regions and 
individuals or due to the unavailability of HRF estimation methods. 
Recent evidence suggests that these assumptions must be re-evaluated. 
Although researchers have been aware, since the early days of fMRI, 
that BOLD measures blood oxygenation and not neural activity, the 
magnitude of HRF confound on FC is being investigated only recently 
with the availability of deconvolution techniques. We take a closer 
look at these. It has been demonstrated that the HRF is variable 
(Aguirre et  al., 1998; Handwerker et  al., 2004; Tak et  al., 2015; 
Rangaprakash et al., 2018b; Bright et al., 2020) and recent reports 
suggest that ignoring it can introduce confounds in FC estimates 
(Rangaprakash et al., 2017b,c, 2018b; Yan et al., 2017, 2018). In fact, 
our study reported significant HRFv in the brain’s default mode 
network (DMN) that confounded FC by about 14.7% (Rangaprakash 
et al., 2018b). This error in FC estimates due to HRFv (FC-error) was 
smaller for within-lobe FC (12.6%) vs. between-lobes (15.6%), 
perhaps due to more variable vasculature in the latter case.

The HRF is not only different across individuals, but also different 
across clinical populations due to impairments in various factors 
contributing to HRFv. Our prior work has highlighted this in autism 
(Yan et  al., 2018), post-traumatic stress disorder (PTSD) 
(Rangaprakash et al., 2017b), obsessive–compulsive disorder (OCD) 
(Rangaprakash et al., 2020), bipolar disorder and schizophrenia (Yan 
et  al., 2022). They also demonstrated that HRF impairments are 
significant enough to confound FC group differences; and sometimes 
the confound was of a similar order of magnitude as FC impairments 
in these diseases. Other labs have made similar observations. For 
example, another study found that HRF alterations confound FC 
(Archila-Meléndez et al., 2020). HRFv also confounded rat FC (Peng 
et al., 2019). Using variable HRFs that are person-specific (vs. fixed 
HRF) improved connectivity estimates (Duffy et al., 2021). Taken 
together, emerging evidence indicates that HRFv is concerning for 
rs-fMRI connectivity and clinical applications.

5. The importance of studying HRF 
variability

Non-invasive measurements are not as “clean” as invasive ones. 
There is always an effort to make fMRI data as “clean” as possible by 
maximizing relative variance from neural sources. Examples of such 
efforts include minimizing physiological/thermal noise through ultra-
high-field imaging (7T or greater field strength; Barry et al., 2018), 
improved acquisition sequences (Barth et al., 2016; Islam et al., 2019), 
and better denoising (Glover et al., 2000; Power et al., 2015). Today 
we are in a reproducibility crisis in functional imaging (Gorgolewski 
and Poldrack, 2016; Poldrack et al., 2017; Osmanlıoğlu et al., 2020), 
indicating that further advancements are needed to make this 
technology clinically more useful. We  still do not understand the 
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substantial intra- and inter-subject variability of fMRI outcomes. 
Further characterization of this variability is timely to maximize the 
percentage variance in BOLD explained by the underlying 
neural activity.

Effective modeling of HRFv could potentially contribute to this 
effort. Like head motion or physiological noise, HRFv is an undesirable 
confound reducing fMRI data fidelity. We predict that minimizing 
HRFv in fMRI data will improve data quality and enhance clinical 
discovery. Concerns about the HRF confound also exists among the 
broader neuroscience community. Examples include the viewpoint of 
cellular neuroscientists (Hall et al., 2016), special issue articles on 
HRFv (Ekstrom, 2021), studies on non-neural factors and BOLD (Das 
et  al., 2021), and investigating the link between fMRI and neural 
activity (Mishra et al., 2021).

6. Clinical research and HRF variability

Evidence suggests that HRFv is relevant for clinical and geriatric 
research. HRFs in older adults are different from their younger 
counterparts. Older adults have longer TTP and shorter RH, largely 
due to vascular factors (West et al., 2019). Such change is associated 
with Alzheimer’s disease as well (Shan et al., 2016). Longer TTP is also 
linked to reduced intelligence (Anderson et al., 2020). Aberrant HRFs 
have been observed in stress (Elbau et al., 2018), mild traumatic brain 
injury (Mayer et al., 2014), aging (West et al., 2019; Yabluchanskiy 
et al., 2020; Tsvetanov et al., 2021), isolated cervical dystonia (Berman 
et al., 2020), and levels of consciousness (Gemma et al., 2009; Wu 
et al., 2019). Such HRF changes are concerning because they are at 
least partly driven by non-neural factors and can confound FC group 
differences. Although studying non-neural factors in brain disorders 
is a valid enterprise, attributing FC group differences entirely to neural 
activity is problematic. HRFv in neurological disorders is yet to 
be investigated; however, our prior work in psychiatric conditions 
[autism (Yan et  al., 2018), PTSD (Rangaprakash et  al., 2017b), 
schizophrenia and bipolar disorder (Yan et al., 2022)] demonstrated 
that HRF impairments in these conditions invariably confounds FC 
group differences, and the confound can sometimes be of the same 
order of magnitude as group differences. Taken together, HRFv has 
implications across a spectrum of cognitive, psychiatric and geriatric 
domains, and perhaps also in other cases in which HRFv has yet to 
be investigated.

7. Demographic variables and HRF 
variability

Non-neural factors that affect the HRF also differ across two 
highly relevant variables – age and sex. Aging causes vascular 
degradation; blood vessels of older adults are stiffer and less pulsatile, 
typically resulting in weaker BOLD responses to the same magnitude 
of neural activity (i.e., shorter RH) as well as longer time for peak 
BOLD activity (longer TTP; West et al., 2019; Yabluchanskiy et al., 
2020; Tsvetanov et al., 2021). There is evidence for altered HRF in 
older adults (West et al., 2019; Tsvetanov et al., 2021), although the 
confound of HRFv on young vs. old FC group differences has not yet 
been studied. There is motivation to hypothesize that accounting for 
HRFv is essential for minimizing these vascular and other non-neural 

age-related confounds in rs-fMRI data. In fact, a recent report 
(Tsvetanov et al., 2021) noted that “vascular confounds in fMRI studies 
are common. Despite over 10,000 BOLD-fMRI papers on aging, fewer 
than 20 have applied techniques to correct for vascular effects.”

Factors affecting the HRF also differ between women and men. 
Men have lower CBF independent of neural activity (Ibaraki et al., 
2010; Aanerud et al., 2017), which affects the HRF (Golestani et al., 
2016; Kim and Ress, 2016). Other factors that exhibit sex differences 
include vascular physiology (Boese et  al., 2017), capillary 
microcirculation (Huxley and Kemp, 2018), and overall cerebral 
hemodynamics (Barnes, 2017). Ignoring these factors by assuming a 
fixed canonical HRF is a potential confound in rs-fMRI studies that 
report data from both sexes, and/or perform women vs. men group 
comparisons. Despite this, HRF sex differences have never been 
directly studied. Hence, we next present limited data in this context.

8. Results on HRF differences between 
sexes and their impact on connectivity

We utilized 7 T rs-fMRI data from our earlier HRF study [N = 47, 
22F/25M, healthy adults; Rangaprakash et al., 2018b; data made public 
(Rangaprakash et al., 2018c)] (please refer to these publications for 
data details). Kindly note that since this is a perspective article, 
we have not presented comprehensive results, but we hope that the 
results herein will encourage extensive follow-up studies. Briefly, upon 
standard pre-processing, we extracted mean region-of-interest (ROI) 
time series from DMN regions defined by the Power-Petersen atlas 
(Power et al., 2011) and estimated FC between all DMN ROI pairs 
using Pearson’s correlation (Mejia et al., 2018; Noble et al., 2019). This 
procedure was repeated for two separate pipelines: data with 
deconvolution (DC) and no deconvolution (NDC), which differed 
only in HRFv. We  also obtained HRF parameters for each ROI 
during deconvolution.

We compared ROI-level HRF parameters between men and 
women (p < 0.05, FDR corrected). T-test was used for RH, and 
Wilcoxon rank-sum test was used for discrete variables (TTP, 
FWHM). There were no RH differences, but men had significantly 
longer TTP and/or FWHM in four regions (Figure 2A). Longer TTP/
FWHM in men could be due to CBF and vascular differences between 
sexes (Ibaraki et al., 2010; Golestani et al., 2016; Aanerud et al., 2017; 
Barnes, 2017; Boese et al., 2017; Huxley and Kemp, 2018). The mean 
values averaged across all ROIs and subjects were as follows: RH 
(women = 5.01, men = 4.77), TTP (women = 5.61 s, men = 5.73 s), 
FWHM (women = 5.62 s, men = 5.79 s).

Next, we  computed the error in FC group difference T-stats 
resulting from HRF differences. For this, women vs. men FC stats were 
performed separately for DC and NDC pipelines, and the percentage 
difference in resulting statistical maps was computed (Figure 2B). 
HRF differences between sexes resulted in a 15.4% median FC error. 
After thresholding (p < 0.05, FDR corrected), all three identified FCs 
were false positives (FC of temporal_inf_L/frontal_sup_L/fusiform_L 
with temporal_mid_L). Although only four regions and three 
connections exhibited significant HRF and FC differences, 
respectively, it must not be inferred that the rest of the regions or 
connections were unaffected by HRFv. These HRF/FC differences 
were large enough to be detected for our sample size and data quality, 
but that does not mean that the difference can be ignored in the other 
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connections. The testament to this fact is that HRF differences 
between sexes resulted in 15.4% median FC error with contribution 
even from a vast number of regions/FCs outside of the significant ones 
(Figure 2). Our prior work has demonstrated the same (Rangaprakash 
et  al., 2017b, 2018b; Yan et  al., 2018, 2022). Taken together, a 
measurable portion of sex differences in DMN were attributable 
to HRFv.

As a secondary result not related to sex differences, we also report 
whole-brain-level average metrics of variability in HRF parameters 
within and between healthy young adult subjects, because these were 
not reported in our earlier publication (Rangaprakash et al., 2018b), 

but they support our conclusions and encourage future work. Of 
course, for the nature of this article, these results could be  more 
complex and extensive. Using the same FC data, we (i) computed 
within-subjects variability of each HRF parameter as the mean 
percentage difference between all ROI pairs; and (ii) computed 
between-subjects variability of each HRF parameter as the mean 
percentage difference between all pairs of subjects. We used a t-test for 
RH and a rank-sum test for TTP/FWHM (p < 0.05, FDR corrected). 
Within-subjects, we found on average 14.1% RH variability, 13.5% 
TTP and 13.4% FWHM variability. L/R orbitofrontal had the largest 
HRF difference with other regions (86%/65% RH, 43%/24% TTP, 

FIGURE 2

HRF results for women vs. men. (A) Comparing HRF parameters between men and women, showing the four regions that exhibited significant HRF 
time-to-peak (TTP) and/or full-width-at-half-max (FWHM) differences. TTP and/or FWHM were significantly higher in men. The 5th and 95th 
percentile values were used for range. (B) A flowchart illustrating our methodology to compute errors in FC estimates arising from HRF variability, and 
the results presented below that. The histogram shows the distribution of % FC error arising from men vs. women HRF differences. The median FC 
error was 15.4%, with a 95% confidence interval of [1.5–131.6%].
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42%/24% FWHM variability), perhaps due to susceptibility (Buxton, 
2010) and/or vascular (Tsvetanov et al., 2021) differences. Temporal 
lobe had larger variability than other lobes in RH (p = 0.034), TTP 
(p = 0.039) and FWHM (p = 0.037). Between-lobe variability was 
higher than within-lobe in RH (p = 0.039), TTP (p = 0.028) and 
FWHM (p = 0.041) (possibly due to vastly different vasculature across 
lobes). Between-subjects HRFv (RH: 29.8%, TTP: 28.5%, FWHM: 
28.1%) was larger than within-subjects. The occipital lobe varied 
significantly less across subjects than other lobes in RH (p = 0.048) and 
TTP (p = 0.045).

9. The HRF in the spinal cord

The central nervous system (CNS), which includes the brain 
and the spinal cord, is a single continuous entity. But prior HRF 
literature is exclusively focused on the brain. Spinal cord rs-fMRI 
studies have so far not accounted for HRFv, except for a recent 
study (Kinany et al., 2020). If systematic brain HRF changes in 
pathological conditions translate to the cord, it is concerning 
because the cord is clinically relevant for several neurological 
diseases [e.g., multiple sclerosis (Conrad et al., 2018), chronic pain 
(Reckziegel et  al., 2019), amyotrophic lateral sclerosis (de 
Albuquerque et al., 2017), transverse myelitis (Cacciaguerra et al., 
2019), ataxia (Faber et al., 2021), and spinal cord injury (Freund 
et al., 2019)]. Cord impairments are being discovered in other 
pathologies [Alzheimer’s disease (Lorenzi et al., 2020) and cerebral 
palsy (Trevarrow et al., 2021)], suggesting that more disorders 
could involve the cord than we currently understand. HRFv could 
confound cord FC impairments in these diseases as well. Hence, 
characterizing HRFv in the spinal cord is clinically relevant 
and novel.

10. Discussion and conclusions

Herein we described prior evidence for HRFv and its confound 
on rs-fMRI FC and elaborated on this research’s importance and 
clinical relevance. Unexplained variability in BOLD is a more 
significant concern today than before because connectivity is used 
in sophisticated contexts such as dynamics (Preti et  al., 2016), 
single-subject-level prediction (Jollans et al., 2019), laminar fMRI 
(Finn et  al., 2020), and precision medicine (Finn et  al., 2015). 
HRFv matters to a larger extent for all the desired ‘precision’ and 
fidelity expected of rs-fMRI today. With fast fMRI acquisition 
becoming prevalent (Preibisch et  al., 2015; Barth et  al., 2016), 
accounting for HRFv is even more critical (Lewis et al., 2018) to 
determine the neural/vascular origin of fMRI timing differences. 
Thus far, FC error arising only from spatial HRFv has been 
quantified, and only in parts of the brain and in small samples 
(Rangaprakash et  al., 2018b). We  provided limited data for FC 
error between sexes. Further research is required to quantify HRFv 
and FC error across various within- and between-subject 
comparison scenarios and demographic variables.

Taken together, measurements of FC often involve unexplained 
variance between 40% (ML prediction) and 70% (behavioral association; 
Finn et al., 2015; Jollans et al., 2019). While the underlying prediction/
association models may be statistically significant and perform above 

chance, there is still a sizeable unexplained variance. We, therefore, 
argue that the HRF confound, typically in the range of 10–30%, may 
explain a part of this variance. We thus conclude that HRFv cannot 
be ignored in rs-fMRI studies, and it should be commonly accounted 
for during rs-fMRI data pre-processing.
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