10,517 research outputs found

    Combinatorial channels from partially ordered sets

    Get PDF
    A central task of coding theory is the design of schemes to reliably transmit data though space, via communication systems, or through time, via storage systems. Our goal is to identify and exploit structural properties common to a wide variety of coding problems, classical and modern, using the framework of partially ordered sets. We represent adversarial error models as combinatorial channels, form combinatorial channels from posets, identify a structural property of posets that leads to families of channels with the same codes, and bound the size of codes by optimizing over a family of equivalent channels. A large number of previously studied coding problems that fit into this framework. This leads to a new upper bound on the size of s-deletion correcting codes. We use a linear programming framework to obtain sphere-packing upper bounds when there is little underlying symmetry in the coding problem. Finally, we introduce and investigate a strong notion of poset homomorphism: locally bijective cover preserving maps. We look for maps of this type to and from the subsequence partial order on q-ary strings

    Observation of the Bs0ηηB^0_s\to\eta'\eta' decay

    Get PDF
    The first observation of the Bs0ηηB^0_s\to\eta'\eta' decay is reported. The study is based on a sample of proton-proton collisions corresponding to 3.03.0 fb1{\rm fb^{-1}} of integrated luminosity collected with the LHCb detector. The significance of the signal is 6.46.4 standard deviations. The branching fraction is measured to be [3.31±0.64(stat)±0.28(syst)±0.12(norm)]×105[3.31 \pm 0.64\,{\rm (stat)} \pm 0.28\,{\rm (syst)} \pm 0.12\,{\rm (norm)}]\times10^{-5}, where the third uncertainty comes from the B±ηK±B^{\pm}\to\eta' K^{\pm} branching fraction that is used as a normalisation. In addition, the charge asymmetries of B±ηK±B^{\pm}\to\eta' K^{\pm} and B±ϕK±B^{\pm}\to\phi K^{\pm}, which are control channels, are measured to be (0.2±1.3)%(-0.2 \pm1.3)\% and (+1.7±1.3)%(+1.7\pm1.3)\%, respectively. All results are consistent with theoretical expectations

    Optimality of Treating Interference as Noise: A Combinatorial Perspective

    Get PDF
    For single-antenna Gaussian interference channels, we re-formulate the problem of determining the Generalized Degrees of Freedom (GDoF) region achievable by treating interference as Gaussian noise (TIN) derived in [3] from a combinatorial perspective. We show that the TIN power control problem can be cast into an assignment problem, such that the globally optimal power allocation variables can be obtained by well-known polynomial time algorithms. Furthermore, the expression of the TIN-Achievable GDoF region (TINA region) can be substantially simplified with the aid of maximum weighted matchings. We also provide conditions under which the TINA region is a convex polytope that relax those in [3]. For these new conditions, together with a channel connectivity (i.e., interference topology) condition, we show TIN optimality for a new class of interference networks that is not included, nor includes, the class found in [3]. Building on the above insights, we consider the problem of joint link scheduling and power control in wireless networks, which has been widely studied as a basic physical layer mechanism for device-to-device (D2D) communications. Inspired by the relaxed TIN channel strength condition as well as the assignment-based power allocation, we propose a low-complexity GDoF-based distributed link scheduling and power control mechanism (ITLinQ+) that improves upon the ITLinQ scheme proposed in [4] and further improves over the heuristic approach known as FlashLinQ. It is demonstrated by simulation that ITLinQ+ provides significant average network throughput gains over both ITLinQ and FlashLinQ, and yet still maintains the same level of implementation complexity. More notably, the energy efficiency of the newly proposed ITLinQ+ is substantially larger than that of ITLinQ and FlashLinQ, which is desirable for D2D networks formed by battery-powered devices.Comment: A short version has been presented at IEEE International Symposium on Information Theory (ISIT 2015), Hong Kon

    Oblivious channels

    Get PDF
    Let C = {x_1,...,x_N} \subset {0,1}^n be an [n,N] binary error correcting code (not necessarily linear). Let e \in {0,1}^n be an error vector. A codeword x in C is said to be "disturbed" by the error e if the closest codeword to x + e is no longer x. Let A_e be the subset of codewords in C that are disturbed by e. In this work we study the size of A_e in random codes C (i.e. codes in which each codeword x_i is chosen uniformly and independently at random from {0,1}^n). Using recent results of Vu [Random Structures and Algorithms 20(3)] on the concentration of non-Lipschitz functions, we show that |A_e| is strongly concentrated for a wide range of values of N and ||e||. We apply this result in the study of communication channels we refer to as "oblivious". Roughly speaking, a channel W(y|x) is said to be oblivious if the error distribution imposed by the channel is independent of the transmitted codeword x. For example, the well studied Binary Symmetric Channel is an oblivious channel. In this work, we define oblivious and partially oblivious channels and present lower bounds on their capacity. The oblivious channels we define have connections to Arbitrarily Varying Channels with state constraints.Comment: Submitted to the IEEE International Symposium on Information Theory (ISIT) 200

    Conformal blocks of W_N Minimal Models and AGT correspondence

    Get PDF
    We study the AGT correspondence between four-dimensional supersymmetric gauge field theory and two-dimensional conformal field theories in the context of W_N minimal models. The origin of the AGT correspondence is in a special integrable structure which appears in the properly extended conformal theory. One of the basic manifestations of this integrability is the special orthogonal basis which arises in the extended theory. We propose modification of the AGT representation for the W_N conformal blocks in the minimal models. The necessary modification is related to the reduction of the orthogonal basis. This leads to the explicit combinatorial representation for the conformal blocks of minimal models and employs the sum over N-tupels of Young diagrams with additional restrictions.Comment: 16 pages; v2: typos removed, more comments, references added; v3: minor corrections, references added, JHEP versio
    corecore