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ABSTRACT

A central task of coding theory is the design of schemes to reliably transmit

data though space, via communication systems, or through time, via storage

systems. Our goal is to identify and exploit structural properties common

to a wide variety of coding problems, classical and modern, using the frame-

work of partially ordered sets. We represent adversarial error models as

combinatorial channels, form combinatorial channels from posets, identify a

structural property of posets that leads to families of channels with the same

codes, and bound the size of codes by optimizing over a family of equivalent

channels. A large number of previously studied coding problems that fit into

this framework. This leads to a new upper bound on the size of s-deletion

correcting codes. We use a linear programming framework to obtain sphere-

packing upper bounds when there is little underlying symmetry in the coding

problem. Finally, we introduce and investigate a strong notion of poset ho-

momorphism: locally bijective cover preserving maps. We look for maps of

this type to and from the subsequence partial order on q-ary strings.
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CHAPTER 1

INTRODUCTION

A central task of coding theory is the design of schemes to reliably transmit

data though space, via communication systems, or through time, via storage

systems. Our goal is to identify and exploit structural properties common to

a wide variety of coding problems, classical and modern, using the framework

of partially ordered sets.

In Chapter 2, we introduce the main ideas. We use the notion of a com-

binatorial channel to represent an adversarial or worst-case error model. We

define partially ordered sets (posets), poset homomorphisms, and the other

fundamental concepts. We describe a simple method for forming combina-

torial channels from posets and identify a structural property of posets that

leads to families of channels with the same codes. This leads to ones of our

core techniques: bounding the size of codes by optimizing over a family of

equivalent channels. In the second half of the chapter, we give examples of

previously studied coding problems that fit into this framework. This chapter

is based primarily on [1] and also contains some material from [2].

In Chapter 3, we apply the methods described in Chapter 2 to the sub-

sequence partial order on q-ary strings. This leads to a new upper bound

on the size of s-deletion correcting codes, for fixed s and input length going

to infinity. The new bounds improves on the previous best bound whenever

the number of deletions is greater than the alphabet size. At the end of this

chapter, we look at the partial order on integer compositions. This has many

features in common with the subsequence partial order, but many enumer-

ative problems are more tractable. The channels related to the composition

partial order also have emerging applications, particularly in DNA storage

systems. This chapter is based primarily on [3] and Section 3.8 is based

on [1].

Chapter 4 covers the linear programming framework for sphere-packing

upper bounds. The main contributions are methods for bounding the values
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of these linear programs when they involve too many variables and con-

straints to evaluate or even analyze exactly. These methods are useful when

there is little underlying symmetry in the coding problem. This chapter is

based on [2].

In Chapter 5, we introduce and investigate a stronger notion of poset

homomorphism: locally bijective cover preserving maps. In particular, we

look for maps of this type to and from the subsequence partial order on q-ary

strings. We have multiple motivations. First, this definition unites several

known functions. These connect single deletion correcting binary codes, per-

mutation statistics, and binary trees. Our main result is the construction

of a q-ary analogue of one of these functions. The binary specialization of

this new function turns out to be distinct from the previously known mo-

tivating function, so as a side effect we obtain a new permutation statistic.

There are a number of unsolved fundamental enumerative problems related

to the subsequence partial order. We hope to attack some of these prob-

lems by identifying new structural properties of the subsequence partial or-

der and by finding connections between the subsequence partial order and

better-behaved partial orders. Finally, more examples of string statistics are

potentially helpful for the construction of deletion correcting codes.

1.1 Notation

Let N denote the set of non-negative integers and let [n] denote the set of

non-negative integers less than n: {0, 1, . . . , n− 1}.
Let X t Y be the disjoint union of X and Y , let X × Y be the Cartesian

product of X and Y , let X → Y = Y X be the set of functions from X to

Y or equivalently strings, sequences, or vectors of elements of Y indexed by

X. Let 2X denote the power set of X. Let
(
X
k

)
= {S ∈ 2X : |S| = k}, the

set of k-subsets of X. Note that |X t Y | = |X|+ |Y |, |X × Y | = |X| × |Y |,
|Y X | = |Y ||X|, |2X | = 2|X|, and

∣∣(X
k

)∣∣ =
(|X|
k

)
.

In particular, let [q]n be the set of q-ary strings of length n. Sometimes

we will wish to emphasize the index set [n] and write [q][n] or [n] → [q]. A

string of length n is indexed by the set [n]. Thus x0 is the first (leftmost)

symbol of x. Indices outside of [n] will be interpreted modulo n. This allows

us to use x−1 to refer to the last (rightmost) symbol of x. A string can be
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written as a list of symbols: x = 〈x0, x1, . . . , x−1〉. This notation makes the

distinction between a symbol and a string of length one clear: i vs 〈i〉. The

empty string is represented by 〈〉. Finally, let [q]∗ be the set of q-ary strings

of all lengths:

[q]∗ =
⊔
n∈N

[q][n].

We represent the closed interval of indices starting at i and ending at j

as [i, j]. Thus x[1,−1] is the string containing all but the first symbol of x,

and x[0,−2] contains all but the last symbol of x.

We will define a number of higher order functions, i.e. functions whose

domain or codomain is a set of functions. For example if we have f : X →
(Y → Z), then for x ∈ X we have f(x) : Y → Z and for y ∈ Y we have

f(x)(y) ∈ Z.

We will also define several functions that map an element of some set X

to a subset of X. For such a function f and a subset S ⊆ X, we will use a

standard abuse of notation and write f(S) to mean
⋃
x∈S f(x).

When R is a semiring and X and Y are finite, for the purposes of matrix

multiplication, we treat elements of RX as |X|-dimensional column vectors

of elements of R indexed by X. Similarly, we treat elements of RX×Y as

|X| by |Y | matrices of elements of R with the rows indexed by X and the

columns indexed by Y . Let 1 be the column vector of all ones and let 0 be

the column vector of all zeros. For a set S ⊆ X, let 1S ∈ {0, 1}X be the

indicator column vector for the set S.

We will need the following asymptotic notation: let a(n) ∼ b(n) denote

that limn→∞
a(n)
b(n)

= 1 and a(n) . b(n) denote that limn→∞
a(n)
b(n)
≤ 1. We will

use the following asymptotic equality frequently: for fixed c,
(
n
c

)
∼ nc

c!
.
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CHAPTER 2

COMBINATORIAL CHANNELS FROM
POSETS

2.1 Sphere-packing bounds and linear programs

In this section, we review the well-known connections between combinatorial

channels, hypergraphs, sphere-packing bounds, and linear programming.

2.1.1 Combinatorial channels

We use the concept of a combinatorial channel to formalize a set of possible

errors.

Definition 2.1.1. A combinatorial channel is a matrix A ∈ {0, 1}X×Y , where

X is the set of channel inputs and Y is the set of channel outputs. An output

y can be produced from an input x by the channel if Ax,y = 1. Each row or

column of A must contain at least a single one, so each input can produce

some output and each output can be produced from some input.

We will often think of a channel as a bipartite graph. In this case, the left

vertex set is X, the right vertex set is Y , and A is the bipartite adjacency

matrix. We will refer to this bipartite graph as the channel graph.1 For

x ∈ X, let NA(x) ⊆ Y be the neighborhood of x in the channel graph (the

1An equivalent approach, taken by Kulkarni and Kiyavash [4], is to represent an error
model by a hypergraph. A hypergraph consists of a vertex set and a family of hyperedges.
Each hyperedge is a nonempty subset of the vertices. A hypergraph H = (V,E) can be

described by a vertex-hyperedge incidence matrix H ∈ {0, 1}V×E
. There are two ways to

encode an error model as a hypergraph. Let A ∈ {0, 1}X×Y
be the combinatorial channel

for that error model. The first option is to take H = A to be the incidence matrix of
the hypergraph. The hypergraph vertices are the channel inputs and there is an edge
for each output. Alternatively, we can let H = AT and obtain the dual of the previous
hypergraph. Now the hypergraph vertices are the channel outputs. This is the option
taken by Kulkarni and Kiyavash.

Throughout this dissertation, we use the language of channels and bipartite channel
graphs rather than that of hypergraphs. This allows us to refer to channel inputs and
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set of outputs that can be produced from x). The degree of x is |NA(x)|. For

y ∈ Y , let NA(y) ⊆ X be the neighborhood of y in the channel graph (the

set of inputs that can produce y). In most cases, the channel involved will

be evident and we will drop the subscript on N .

Note that A1{y} = 1N(y) and 1T{x}A = 1TN(x). Thus A1 is the vector of

input degrees of the channel graph, AT1 is the vector of output degrees, and

1TA1 is the number of edges.

We are interested in the problem of transmitting information through a

combinatorial channel with no possibility of error. To do this, the transmitter

only uses a subset of the possible channel inputs in such a way that the

receiver can always determine which input was transmitted.

Definition 2.1.2. A code for a combinatorial channel A ∈ {0, 1}X×Y is a

set C ⊆ X such that for all y ∈ Y , |N(y) ∩ C| ≤ 1.

This condition ensures that decoding is always possible: if y is received,

the transmitted symbol must have been the unique element of N(y) ∩ C.

2.1.2 Sphere-packing

A code is a packing of the neighborhoods of the inputs into the output space.

The neighborhoods of the codewords must be disjoint and each neighborhood

contains at least minx∈X |N(x)| outputs. Thus the simplest sphere-packing

upper bound on the size of a code C is

|C| ≤ |Y |
minx∈X |NA(x)|

.

This is the minimum degree upper bound, because |NA(x)| is the degree of x

in the channel graph of A. The sphere-packing upper bounds discussed in

this chapter are generalizations of and improvements on this bound.

Maximum input packing and its dual, minimum output covering, are

naturally expressed as integer linear programs.

Definition 2.1.3. For a channel A ∈ {0, 1}X×Y , the size of the largest input

outputs using symmetric language and avoids any confusion between a hypergraph and
its dual.
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packing, or code, is

p(A) = max
w∈NX

1Tw

s. t. ATw ≤ 1.

The size of the smallest output covering is

κ(A) = min
z∈NY

1T z

s. t. Az ≥ 1.

An output covering can be thought of as a strategy for the adversary

operating the channel. Whenever the transmitter selects an input x, there

is at least one y ∈ N(x) included in the covering and the adversary can

select this as the channel output. This restricts the number of distinguishable

messages available to the transmitter to the size of the output covering. Note

that the adversary’s choices do not require knowledge of the transmitter’s

choice of code.

2.1.3 Fractional relaxations

The maximum independent set and minimum dominating set problems over

general graphs are NP-hard [5]. The approximate versions of these problems

are also hard. The maximum independent set of an n-vertex graph cannot

be approximated within a factor of n1−ε for any ε in polynomial time unless

any problem in NP can be solved in probabilistic polynomial time [6]. We

seek efficiently computable bounds. These bounds cannot be good for all

graphs, but they will perform reasonably well for many of the graphs that

we are interested in.

The relaxed problem, maximum fractional set packing, provides an upper

bound on the original packing problem.

Definition 2.1.4. Let A ∈ {0, 1}X×Y be a channel. The size of the maximum
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fractional input packing in A is

p∗(A) = max
w∈RX

1Tw

s. t. w ≥ 0

ATw ≤ 1.

The size of the minimum fractional output covering is

κ∗(A) = min
z∈RY

1T z

s. t. z ≥ 0

Az ≥ 1.

The fractional programs have larger feasible spaces, so p(A) ≤ p∗(A) and

κ∗(A) ≤ κ(A). By strong linear programming duality, p∗(A) = κ∗(A).

Unlike the integer programs, the values of the fractional linear programs

can be computed in polynomial time. However, we are usually interested

in sequences of channels with exponentially large input and output spaces.

In these cases, finding exact solutions to the linear programs is intractable

but we would still like to know as much as possible about the behavior of

the solutions. There is a vast literature devoted to iterative algorithms for

solving linear programs. Because our programs are exponentially large,2 we

cannot estimate their values by simulating these algorithms. Instead, we

analyze the behavior of a few initial iterations of an algorithm. This leads

us to value an unusual set of properties and to propose some very simple

iterative algorithms that meet our needs.

2.2 Confusability graphs and families of channels

Sphere-packing upper bounds for coding problems are obtained from com-

binatorial channels. However, it is well known that for any channel there is

a simpler object that also characterizes the set of codes: the confusability

graph. Furthermore, any particular confusability graph arises from many

2Although the matrices in the programs of interest to us are exponentially large, any
entry can be computed in polynomial time. Thus the specifications of these programs are
highly compressible.
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combinatorial channels. To obtain upper bounds on the size of codes for one

channel it can be useful to consider the sphere-packing bounds that arise

from some other equivalent channel. At the end of this section, we show how

the Hamming and Singleton bounds are an example of this phenomenon.

2.2.1 Confusability graphs and independent sets

First we give a few standard definitions, generally following [7], among others.

Definition 2.2.1. For a channel A ∈ {0, 1}X×Y , the confusability graph of A

has vertex set X. Distinct vertices u and v are adjacent in the confusability

graph of A if and only if N(u) and N(v) intersect.

Definition 2.2.2. Let G be an undirected simple graph with vertex set X.

A set S ⊆ X is independent in G if and only if for all u, v ∈ S, u and v are

not adjacent. The maximum size of an independent set in G is denoted by

α(G).

Now we have a second important characterization of codes.

Lemma 2.2.1. Let G be the confusability graph for a channel A ∈ {0, 1}X×Y .

Then a set C ⊆ X is code for a A if and only if it is an independent set in

G. Thus α(G) = p(A).

Proof: A set C is not a code if and only if there is some y such that

N(y) contains distinct codewords u and v. Equivalently N(u) intersects N(v)

and u and v are adjacent in G.

The confusability graph does not contain enough information to recover

the original channel graph, but it contains enough information to determine

whether a set is a code for the original channel.

2.2.2 Families of channels with the same codes

There are many different channels that have G as a confusability graph. A

clique in a graph G is a set of vertices S such that for all distinct u, v ∈ S,

{u, v} ∈ E(G). If G is the confusability graph for a channel A ∈ {0, 1}X×Y ,

then for each y ∈ Y , N(y) is a clique in G. Let Ω ⊆ 2X be a family of

cliques that covers every edge in G. This means that for all {u, v} ∈ E(G),
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there is some S ∈ Ω such that u, v ∈ S. Let H ∈ {0, 1}X×Ω be the vertex-

clique incidence matrix: Hx,S = 1 is x ∈ S and Hx,S = 0 otherwise. Then

α(G) = p(H).

Thus each family of cliques that covers every edge gives us an integer

linear program that expresses the maximum independent set problem for G.

These programs all contain the same integer points, the indicators of the

independent sets of G. However, their polytopes are significantly different

so the fractional relaxations of these programs give widely varying upper

bounds on α(G).

Each edge in G is a clique, so E(G) is one natural choice for Ω. Then

α(G) = p(HE), where HE ∈ {0, 1}X×E(G) is the vertex edge incidence matrix

for G. However, relaxing the integrality constraint for this program gives

a useless upper bound. The vector w = 1
2
1 is feasible, so p∗(HE) ≥ |X|

2

regardless of the structure of G.

Definition 2.2.3. Let Ω be the set of maximal cliques in G and let HΩ ∈
{0, 1}X×Ω be the vertex-clique incidence matrix. Define the minimum clique

cover of G, θ(G) , κ(HΩ) and the minimum fraction clique cover θ∗(G) ,

κ∗(HΩ).

Every edge is contained in at least one maximal clique, so α(G) = p(HΩ).

Unlike the program derived from the edge set, θ∗(G) gives a nontrivial upper

bound on α(G). In fact, θ∗(G) is the best sphere-packing bound for any

channel that has G as its confusability graph.

Lemma 2.2.2. Let G be a graph with vertex set X and let Ω1,Ω2 ⊆ 2X be

families of cliques that cover every edge in G. Let H1, H2 be the vertex-clique

incidence matrices for Ω1 and Ω2 respectively. If for each R ∈ Ω1 there is

some S ∈ Ω2 such that R ⊆ S, then p∗(H2) ≤ p∗(H1).

Proof: A clique S gives the constraint
∑

x∈S wx ≤ 1 in p. If R ∈ Ω1,

S ∈ Ω2, and R ⊆ S, then the constraint from R is implied by the constraint

for S. Any additional cliques in Ω2 can only reduce the feasible space for

p(H2). Thus the feasible space for p(H2) is contained in the feasible space

for p(H1).

Corollary 2.2.1. Let A ∈ {0, 1}X×Y be a channel and let G be the confus-

ability graph for A. Then θ∗(G) ≤ κ∗(A).
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Proof: For each output y ∈ Y , N(y) is a clique in G and these cliques

cover every edge of G. Each clique in G is contained in a maximal clique, so

the claim follows immediately from Lemma 2.2.2.

Corollary 2.2.1 suggests that we should ignore the structure of our original

channel A and try to compute θ∗(G) instead of κ∗(A). However, there is no

guarantee that we can efficiently construct the linear program for θ∗(G) by

starting with G and searching for all of the maximal cliques. We are often

interested in graphs with an exponential number of vertices. Even worse,

the number of maximal cliques in G can grow exponentially in the number

of vertices. To demonstrate this, consider a complete k-partite graph with

two vertices in each part. If we select one vertex from each part, we obtain

a maximal (and also maximum) clique. The graph has 2k vertices, but there

are 2k maximal cliques.

The fractional clique cover number has been considered in the coding

theory literature in connection with the Shannon capacity of a graph, Θ(G).

The capacity of a combinatorial channel A is limn→∞ p(A
n)

1
n , the number of

possible messages per channel use when the channel can be used many times.

Like p(A), the capacity of the channel depends only on its confusability graph.

Thus the Shannon capacity of a graph G can be defined as the capacity of

a channel with confusability graph G. The Shannon capacity of a graph

is at least as large as the maximum independent set and is not known to

even be computable. Shannon used something equivalent to a clique cover as

an upper bound for Shannon capacity [8]. Rosenfeld showed the connection

between Shannon’s bound and linear programming [9]. Shannon also showed

that the feedback capacity of a combinatorial channel A is p∗(A). Lovasz

introduced the Lovasz theta function of a graph, ϑ(G), and showed that it

was always between the Shannon capacity and the fractional clique cover

number [7]. All together, we have

α(G) ≤ Θ(G) ≤ ϑ(G) ≤ θ∗(G).

The Lovasz theta function is derived via semidefinite programming and con-

sequently is not a sphere-packing bound.

There are also several connections between these concepts and commu-

nication over probabilistic channels. For a combinatorial channel A, the

minimum capacity over the probabilistic channels with support A is p∗(A).
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Recently Dalai has proven upper bounds on the reliability function of a proba-

bilistic channel that are finite for all rates above at the (logarithmic) Shannon

capacity of the underlying confusion graph, in contrast to previous bounds

that were finite for rates above log p∗(A) [10]. The idea of multiple channels

with the same confusion graph plays an important role here.

2.3 Partial orders

Definition 2.3.1. A partially ordered set or poset consists of a set and an

order relation. A relation ≥ is an order relation on a set X if it is

• Reflexive: For all x, x ≥ x,

• Antisymmetric: x ≥ y, y ≥ x =⇒ x = y,

• Transitive: x ≥ y, y ≥ z =⇒ x ≥ z.

Definition 2.3.2. Let (X,≥) be a poset.

• A point x is comparable to a point y if either x ≥ y or x ≤ y.

• A point x is the bottom element if for all y ∈ X, x ≤ y. Denote the

bottom element by ⊥.

• A point x covers a point y, written x � y, if x > y and there is no

z ∈ X such that x > z > y.

• U(x) = {y ∈ P : y ≥ x} is the up-set of x.

• D(x) = {y ∈ P : y ≤ x} the down-set of x.

One important way to construct partial orders is the product operation.

Definition 2.3.3. For i ∈ [k], let (Xi,≤i) be a poset. Then the product

poset is (
∏

i∈[k]Xi,
∧
i∈[k] ≤i). That is, the product poset is defined on the

Cartesian product of the component posets and for y, z ∈
∏

i∈[k] Xi, y ≤ z if

and only if yi ≤i zi for all i ∈ [k].

Example 2.3.1. The natural numbers form a partial order under the usual

order relation: for x, y ∈ N, x ≤ y if there is some z ∈ N such that x+z = y.

Any two natural numbers are comparable. The bottom element is 0 and x ∈ N
is covered by x+ 1.
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2.3.1 Poset homomorphisms

Definition 2.3.4. Let (X,P ) and (Z,Q) be posets and let f : X → Z.

• If for all x, y ∈ X, x ≥ y =⇒ f(x) ≥ f(y), then f is order preserving.

• If x > y =⇒ f(x) > f(y), then f is strict-order preserving.

• If x � y =⇒ f(x) � f(y), then f is cover preserving.

Each property is strictly stronger than the prior properties.

Definition 2.3.5. Let (X,P ) be a poset. A rank function on (X,P ) is a

cover preserving map r : X → N.

All of the posets that we will consider have a rank function and a bottom

element. We will always use the canonical rank function that assigns a rank

of zero to the bottom element and we will write |x| for the rank of x ∈ X.

Definition 2.3.6. Let r be a rank function on (X,P ). For x ∈ X, define

• the rank n elements: Pn = {y ∈ P : r(y) = n},

• Ua(x) = {y ∈ U(x) : r(y) = r(x) + a},

• Da(x) = {y ∈ D(x) : r(y) = r(x)− a}.

Remark 2.3.1. We will define several posets by specifying their cover rela-

tion. The existence of a rank function makes it easy to verify that a particular

relation is in fact the cover relation of a partial order: it is sufficient to check

that the rank function maps all pairs in the cover relation to successive inte-

gers.

Definition 2.3.7. Let r be a rank function on (X,≤). For x ∈ X, define

Us(x) = {y ∈ X : y ≥ x, r(y) = r(x) + s},

Ds(x) = {y ∈ X : y ≤ x, r(y) = r(x)− s}.

Many of the posets that we encounter will be semilattices or lattices.

Definition 2.3.8. A poset (X,≤) is a meet semilattice if for all x, y ∈ X,

the set D(x) ∩ D(y) has a unique maximal element. Call this element the

meet of x and y, written x∧y. (X,≤) is a join semilattice if for all x, y ∈ X,

the set U(x)∩U(y) has a unique minimal element. Call this element the join

of x and y, written x ∨ y. (X,≤) is a lattice if it has both properties.

12



The properties are preserved under products.

2.4 Combinatorial channels from posets

In this section, we show how to define combinatorial channels from a poset

and determine the conditions under which these channels have the same

confusion graph. We can think of a step up or down in poset as a error. This

interpretation allows us to define a family of combinatorial channels poset.

Throughout this section, let (X,≤) be a ranked poset with a bottom element

and let Xn = Un(⊥), the set of elements of rank n. The rank-n, a-down-

error, b-up-error channel has input space Xn and output space Xn−a+b. The

neighborhood of an input x is Ub(Da(x)). In Sections 2.5, 2.6, 2.7, 2.8, and

2.9, we will see that many well-studied combinatorial channels fit into this

framework.

We will be particularly interesting ranked posets that have a useful struc-

tural property. This property can be expressed in several equivalent ways.

Lemma 2.4.1. Let P be a ranked poset. The following conditions are equiv-

alent:

• For all x, y ∈ P such that r(x) ≥ 1 and r(y) ≥ 1,

∃z ∈ D1(x) ∩D1(y) ⇐⇒ ∃w ∈ U1(x) ∩ U1(y)

• For all x, y ∈ P such that r(x) ≥ a and r(y) ≥ b,

∃z ∈ Da(x) ∩Db(y) ⇐⇒ ∃w ∈ Ub(x) ∩ Ua(y)

• For all x such that r(x) ≥ 1, U1(D1(x)) = D1(U1(x))

• For all x such that r(x) ≥ a, Ub(Da(x)) = Da(Ub(x)).

It is easy to show that if two posets each satisfy all of the conditions of

Lemma 2.4.1, then their product does as well.

Definition 2.4.1. Let X be a ranked poset with a bottom element and let r

13



x
y

z
u

v

w

b

b

c

c
d

a

Figure 2.1: The poset elements used in the proof of Lemma 2.4.2. The lines
indicate the order relationships and are labeled with the rank differences.

be the rank function such that r(⊥) = 0. Then for x, y ∈ X, let

f : X ×X → N

f(x, y) = max{r(z) : z ∈ D(x) ∩D(y)}

g : X ×X → N× N

g(x, y) = (r(x)− f(x, y), r(y)− f(x, y)).

Lemma 2.4.2. The function g(x, y) satisfies the following properties:

• g(x, y) ≥ (0, 0)

• g(x, y) = (0, 0) ⇐⇒ x = y

• g(x, y) = (a, b) ⇐⇒ g(y, x) = (b, a)

• Triangle inequality: g(x, y) + g(y, z) ≤ g(x, z)

• Converse of triangle inequality: If g(x, z) = (a + c, b + d) and r(x) −
a+ b ≤ m, then there is some y such that g(x, y) = (a, b) and g(y, z) =

(c, d).

Proof: The first three properties follow immediately from the defini-

tion of g.

14



If Ub(Da(x)) ∩ Uc(Dd(z)) is nonempty, then equivalently

(g(x, y) ≤ (a, b)) ∧ (g(y, z) ≤ (c, d))

⇐⇒ ∃y ∈ Ub(Da(x)) ∩ Ud(Dc(z))

⇐⇒ ∃u ∈ Da(x), v ∈ Dd(z) : ∃y ∈ Ub(u) ∩ Uc(v)

⇐⇒ ∃u ∈ Da(x), v ∈ Dd(z) : ∃w ∈ Dc(u) ∩Db(v)

⇐⇒ ∃w ∈ Dc(Da(x)) ∩Db(Dd(z))

⇐⇒ g(x, z) ≤ (a+ c, b+ d),

so equivalently Da+b(x) ∩Da+b(y) is nonempty.

The middle equivalence uses Lemma 2.4.1. Figure 2.1 illustrates the

relationships between the strings in this proof.

There are many metrics based on g relating poset elements of different

ranks. Within each rank, there is just one natural metric derived from g.

Lemma 2.4.3. The function d : Xn × Xn → N, d(x, y) = n − f(x, y) is a

metric on Xn.

Proof: For x, y ∈ Xn, g(x, y) = (d(x, y), d(x, y)). By the properties of

g from Lemma 2.4.2, d is a metric.

Now we can state the main result: poset channels performing different

mixtures of up and down errors have the same codes.

Theorem 2.4.1. Let X be a ranked poset with a bottom element and let

X satisfy the conditions of Lemma 2.4.1. Then C ⊆ Xn is a code for the

rank-n a-down-error b-up-error channel if and only if for all x, y ∈ Xn,

d(x, y) ≥ a+ b.

Proof: If C is not a code, there are x, y ∈ C such that Ub(Da(x)) ∩
Ub(Da(y)) is nonempty. Then

∃w ∈ Ub(Da(x)) ∩ Ub(Da(y))

⇐⇒ ∃u ∈ Da(x), v ∈ Da(y) : ∃w ∈ Ub(u) ∩ Ub(v)

⇐⇒ ∃u ∈ Da(x), v ∈ Da(y) : ∃z ∈ Db(u) ∩Db(v)

⇐⇒ ∃z ∈ Db(Da(x)) ∩Db(Da(y)),

so equivalently Da+b(x)∩Da+b(y) is nonempty. The middle equivalence uses
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Lemma 2.4.1. The relationships between the poset elements in this proof are

illustrated in Figure 2.2.

n

n− a+ b

n− a

n− a− b

x y

w

u v

z

Figure 2.2: The strings used in the proof of Lemma 2.4.1. Their lengths are

given on the left and the lines indicate their order relationships.

2.5 Constant weight binary vectors: Substitution

errors

In the next few sections we discuss several well-known error models and

distance metrics that are connected to posets.

Let 2 be the poset with two comparable elements. Call the elements 0

and 1 and let 1 > 0. The poset P = 2d is connected to substitution errors for

constant weight binary vectors. The rank function is the Hamming weight.

A down error is the replacement of a one with a zero and an up error is the

replacement of a zero with a one. This poset is a lattice, so for any x and y,

the maximum rank element in D(x)∩D(y) is unique: it is the meet of x and y.

It is not hard to show that as this poset satisfies the parallelogram property.

Sphere packing bounds are trivial to derive because all of the channels are

input and output regular.

Alternatively, this poset can also be thought of as the poset of subsets of

of a set ordered by containment. This perspective connects sphere-packing

bounds for the channels derived from this poset to an well-known problem

of extremal set theory. A family of n-element subsets of d is t-intersecting if

each pair of subsets in the family have at least t elements in common. This

means that the distance in the poset metric between any two subsets in the

family is at most 2n−2t. Thus the family is a clique in the rank-n distance-2s

confusability graph. Translated from the language of intersecting families to

that of combinatorial channels, the Erdős-Ko-Rado theorem [11] states that
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if d is much larger than n, the largest clique in Gd,n is the neighborhood of

an output the s-down error channel.

The complete intersection theorem of Ahlswede and Khachatrian [12]

answers the analogous question for all ranks of 2d. This theorem says that

for all ranks n and distances 2s, the largest clique in the confusability graph

is the neighborhood of an output of some a-down error b-up error channel.

Because the confusability graph is vertex transitive, this implies that covering

bound from that channel is equal to θ∗(G).

2.6 q-ary vectors: Substitution errors and erasures

Consider the poset on {ε} t [q] such that ε has rank zero and each element

of [q] has rank one. This is depicted in Figure 2.3.

ε

0

1

2

· · ·

q − 1

Figure 2.3: The cover relations of the poset ({ε} t [q],≤).

Then the product poset ({ε} t [q])d is connect to substitution errors and

erasure on q-ary vectors of length d. The simplest nontrivial example, q = 2

and d = 2, is depicted in Figure 2.4.

〈0, 0〉

〈0, 1〉

〈1, 0〉

〈1, 1〉

〈ε, 0〉

〈0, ε〉

〈ε, 1〉

〈1, ε〉

〈ε, ε〉

Figure 2.4: ({ε} t [2])2.
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The rank function of an element x ∈ ({ε}t [q])d is the number of symbols

in x that are from [q]. Thus the top rank of ({ε} t [q])d consists of the q-ary

vectors and lower ranks contain partially erased vectors. A down-error is an

erasure, an up-error in an unerasure, and the combination of a down-error

with an up-error is a substitution.

It is easy to show that ({ε} t [q])d satisfies a weaker variant of the par-

allelogram property. This condition is sufficient to guarantee that all of the

s-error channels with the top rank as their input space have the same codes.

Now we can find the best possible sphere-packing bound for the Hamming

distance by optimizing over the following family of channels. Consider the

channel that takes a q-ary vector of length n as its input, erases a symbols,

and substitutes up to b symbols. Thus there are qn channel inputs,
(
n
a

)
qn−a

outputs, and each input can produce
(
n
a

)∑b
i=0

(
n−a
i

)
(q−1)i possible outputs.

Two inputs share a common output if and only if their Hamming distance is

at most s = a+ 2b. For each choice of n and s, we have a family of channels

with identical confusability graphs. Call the q-ary n-symbol a-erasure b-

substitution channel Aq,n,a,b. These channels are all input and output regular,

so

κ∗(Aq,n,a,b) =

(
n
a

)
qn−a(

n
a

)∑b
i=0

(
n−a
i

)
(q − 1)i

=
qn−a∑b

i=0

(
n−a
i

)
(q − 1)i

.

Two special cases give familiar bounds. For even s, setting a = 0 and

b = s/2 produces the Hamming bound:

κ∗(Aq,n,0,s/2) =
qn∑s/2

i=0

(
n
i

)
(q − 1)i

.

Setting a = s and b = 0 produces the Singleton bound:

κ∗(Aq,n,s,0) = qn−s.

For q = 2, the Hamming bound is always the best bound in this family.

When q is at least 3, each bound in the family is the best for some region of

the parameter space.

Lemma 2.6.1. κ∗(Aq,n,a,b) ≤ κ∗(Aq,n,a+2,b−1) when a+ qb ≤ n− 1.

18



Proof: We can rewrite the initial inequality as

κ∗(Aq,n,a+2,b−1) ≥ κ∗(Aq,n,a,b)

qn−a−2∑b−1
i=0

(
n−a−2

i

)
(q − 1)i

≥ qn−a∑b
i=0

(
n−a
i

)
(q − 1)i

b∑
i=0

(
n− a
i

)
(q − 1)i ≥ q2

b−1∑
i=0

(
n− a− 2

i

)
(q − 1)i. (2.1)

To simplify (2.1), we use the following identity:

b∑
i=0

(
n− c+ 2

i

)
(q − 1)i

=
b∑
i=0

((
n− c
i− 2

)
+ 2

(
n− c
i− 1

)
+

(
n− c
i

))
(q − 1)i

=
b−2∑
i=0

(
n− c
i

)
(q − 1)i+2 + 2

b−1∑
i=0

(
n− c
i

)
(q − 1)i+1+

b∑
i=0

(
n− c
i

)
(q − 1)i

=

(
n− c
b

)
(q − 1)b −

(
n− c
b− 1

)
(q − 1)b+1+

((q − 1)2 + 2(q − 1) + 1)
b−1∑
i=0

(
n− c
i

)
(q − 1)i

=

(
n− c
b− 1

)
(q − 1)b

(
n− c− b+ 1

b
− q + 1

)
+

q2

b−1∑
i=0

(
n− c
i

)
(q − 1)i.

By setting c = a+ 2, we can use this to rewrite the left side of (2.1). Elimi-

nating the common term from both sides of the inequality gives(
n− a− 2

b− 1

)
(q − 1)b

(
n− a− b− 1

b
− q + 1

)
≥ 0

n− a− b− 1

b
− q + 1 ≥ 0

n− a− 1− qb ≥ 0,

which proves the claim.
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Theorem 2.6.1. Let q, n, s ∈ N such that q ≥ 3, 0 ≤ s ≤ n− 1, and s even.

Then

argmin
0≤b≤s/2

κ∗(Aq,n,s−2b,b) =

s/2 s ≤ 2
q
(n− 1)⌊

n−1−s
q−2

⌋
s ≥ 2

q
(n− 1).

For fixed δ,2
q
≤ δ ≤ 1, and s = δn

lim
n→∞

1

n
log min

0≤b≤s/2
κ∗(Aq,n,s−2b,b) = (1− δ) log(q − 1).

Proof: Let a+2b = s, so a+qb = s+(q−2)b. Lemma 2.6.1 allows us to

determine the value of b minimizing κ∗(Aq,n,s−2b,b). When s+(q−2) s
2
≤ n−1,

or equivalently s ≤ 2
q
(n − 1), κ∗(Aq,n,0,s/2) is the smallest in the family. For

b ≥ 1

κ∗(Aq,n,a+2,b−1) ≥ κ∗(Aq,n,a,b) ≤ κ∗(Aq,n,a−2,b+1)

if and only if

b ≤ n− 1− s
q − 2

≤ b+ 1.

Let b∗ be the optimal choice of b. Finally,

lim
n→∞

1

n
log

qn−s+2b∗∑b∗

i=0

(
n−s+2b∗

i

)
(q − 1)i

= lim
n→∞

n− s+ 2b∗

n
log q − n− s+ 2b∗

n
H2

(
b∗

n− s+ 2b∗

)
− b∗

n
log(q − 1)

=
q(1− δ)
q − 2

log q − q(1− δ)
q − 2

H2(1/q)− 1− δ
q − 2

log(q − 1)

=
1− δ
q − 2

(
q log q − log q − (q − 1) log

q

q − 1
− log(q − 1)

)
=

1− δ
q − 2

((q − 1) log(q − 1)− log(q − 1))

= (1− δ) log(q − 1),
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where we used

lim
n→∞

b∗

n
=

1− δ
q − 2

,

lim
n→∞

n− s+ 2b∗

n
= 1− δ + 2

1− δ
q − 2

=
q(1− δ)
q − 2

,

lim
n→∞

b∗

n− s+ 2b∗
=

1

q
.

Figure 2.5 plots this optimized bound, the Hamming bound, and Single-

ton bound for q = 4. The intermediate region of the optimized bound is

linear because each clique used in the intermediate cover is the product of a

Hamming-type clique with a Singleton-type clique.

δ

lim
n→∞

1

n
log κ∗

0 1
2

1

log 4

1
2

log 3

Figure 2.5: Sphere-packing bounds for channel performing substitution

errors and erasures. The curved line is the Hamming bound, which

is limn→∞
1
n

log κ∗(A4,n,0,s/2). The upper straight line is the Single-

ton bound, which is limn→∞
1
n

log κ∗(A4,n,s,0). The straight line run-

ning from (1
2
, 1

2
log 3) to (1, 0) is the optimized sphere-packing bound,

limn→∞
1
n

log min0≤b≤s/2 κ
∗(A4,n,s−2b,b).

For q = 2, the Hamming bound is always the best bound in this family.

When q ≥ 3, the Hamming bound is the best for s ≤ 2
q
(n − 1). For larger

number of errors, bounds from other error mixtures become better. Each

bound in the family is the best for some region of the parameter space [13].

This error model has been very thoroughly studied and the sphere-packing
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bounds are superseded by much more sophisticated results, but the connec-

tion with the poset framework is still interesting.

2.7 q-ary strings: Insertions and deletions

Consider the set of q-ary strings of any length ordered by the subsequence

relation. This is depicted in Figure 2.6. The rank function for this poset is

string length. A down error in this poset is the deletion of a symbol from a

string. An up error is the insertion of a symbol.

The order relation can be formally defined as follows.

Definition 2.7.1. Let x ∈ ([m] → [q]) and y ∈ ([n] → [q]). Then x ≤ y if

there is an order preserving injection f : [m]→ [n] such that x = y ◦ f .

It is easy to verify that this defines a partial order. The relation is reflexive

because the identity map [m] → [m] always exists. The relation is antisym-

metric because there are no other order preserving injections [m] → [m].

Transitivity follows from composition of order preserving injections.

〈〉

〈0〉

〈1〉

〈0, 0〉

〈0, 1〉

〈1, 0〉

〈1, 1〉

〈0, 0, 0〉

〈0, 0, 1〉

〈0, 1, 0〉

〈0, 1, 1〉

〈1, 0, 0〉

〈1, 0, 1〉

〈1, 1, 0〉

〈1, 1, 1〉

Figure 2.6: The cover relations for ranks 0 through 3 of the ([2]∗, subseq)

poset.

It is not hard to verify that this channel satisfies the parallelogram prop-

erty. In Chapters 3 and 5, we will thoroughly investigate this poset. In
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particular, we will analyze channels performing a mixture of insertions and

deletions on q-ary strings and find that the best sphere-packing bound comes

from a channel that performs approximately qs
q+1

deletions and s
q+1

insertions.

2.8 Edit distances

In Section 2.7, we defined the subsequence partial order on [q]∗. This defini-

tion can be generalized as follows.

Definition 2.8.1. Let (X,≤) be a poset. Define (X∗, subseq) as follows.

Let x ∈ ([m] → X) and y ∈ ([n] → X). Then x ≤ y if there is an order

preserving injection f : [m]→ [n] such that x ≤ y ◦ f in the product poset on

X [m]. That is, xi ≤ yf(i) for all i ∈ [m].

The subsequence order on [q],([q]∗, subseq), comes from applying this

construction to the partial order on [q] in which all distinct elements are

incomparable and the deletion distance arises from ([q]∗, subseq). If instead

we let X = {ε}t [q] with the partial order described in Section 2.6, we obtain

the poset depicted in Figure 2.7, which corresponds to another interesting

distance.

If x ≺ y, then y can be produced from x either by inserting an ε symbol

or by replacing an existing ε with a symbol from [q]. Thus the rank of

x is equal to the length of x plus the number of symbols in x that are

from [q]. The metric derived from this rank function is an edit distance in

which substitutions, deletions, and insertions all cost 2. To produce an edit

distance with arbitrary weights on the two types of operations, we can define

a generalized “rank” function: α times the length plus β times the number

of symbols from [q]. In the metric derived from this function, substitutions

cost 2β and insertions and deletions cost α+β. The deletion distance comes

from α = 0, β = 1 and the Hamming distance comes from α = 1
2
, β →∞.

2.9 Permutations

There are distance metric and several error models for permutations that

are connect to partial order. Hamming distance on permutations has a very
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〈〉

〈ε〉

〈ε, ε〉

〈0〉

〈1〉

〈ε, ε, ε〉

〈ε, 0〉

〈0, ε〉

〈ε, 1〉

〈1, ε〉

〈ε, ε, ε, ε〉

〈ε, ε, 0〉

〈ε, 0, ε〉

〈0, ε, ε〉

〈ε, ε, 1〉

〈ε, 1, ε〉

〈1, ε, ε〉

〈0, 0〉

〈0, 1〉

〈1, 0〉

〈1, 1〉

Figure 2.7: The cover relations for ranks 0 through 3 of the ([2]∗, subseq)
poset.

simple connection: the permutations are a subset of the n-ary vectors of

length n.

Kendall-tau distance is associated with adjacent transposition errors. It

has a more interesting connection to the erasure poset. A partial order on a

set of n distinguishable elements can be represented by
(
n
2

)
comparisons. The

comparison of incomparable elements is recorded as an erasure. Any binary

vector with erasures of length
(
n
2

)
that satisfies the transitivity condition

corresponds to some poset. Thus partial orderings of a n labeled elements

form a subposet of the poset of length-
(
n
2

)
binary vectors with erasures.

Permutations have no incomparable elements and form the top layer of this

poset The number of comparable pairs is the rank function for this poset and

the Kendall-tau distance is the natural metric.
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CHAPTER 3

THE SUBSEQUENCE PARTIAL ORDER

3.1 Introduction

Deletion channels output only a subsequence of their input while preserving

the order of the transmitted symbols. Deletion channels are related to syn-

chronization problems, a wide variety of problems in bioinformatics, and the

communication of information over packet networks. This chapter concerns

channels that take a fixed-length input string of symbols drawn from a q-ary

alphabet and delete a fixed number of symbols. In particular, we are inter-

ested in upper bounds on the cardinality of the largest possible s-deletion

correcting codebook.

Levenshtein derived asymptotic upper and lower bounds on the sizes of

binary codes for any number of deletions [14]. These bounds easily generalize

to the q-ary case [15]. He showed that the Varshamov-Tenengolts (VT) codes,

which had been designed to correct a single asymmetric error [16, 17], could

be used to correct a single deletion. The VT codes establish the asymptotic

tightness of the upper bound in the case of a binary alphabet and a single

deletion.

Since then, a wide variety of code constructions, which provide lower

bounds, have been proposed for the deletion channel and other closely re-

lated channels. One recent construction uses constant Hamming weight dele-

tion correcting codes [18]. In contrast, progress on upper bounds has been

rare. Levenshtein eventually refined his original asymptotic bound (and the

parallel nonbinary bound of Tenengolts) into a nonasymptotic version [19].

Kulkarni and Kiyavash recently proved a better upper bound for an arbitrary

number of deletions and any alphabet size [4].

Another line of work has attacked some related combinatorial problems.

These include characterization of the sets of supersequences and subsequences
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of any string. Levenshtein showed that the number of supersequences does

not depend on the starting string [20]. He also gave upper and lower bounds

on the number of subsequences using the number of runs in the starting

string [14]. Calabi and Hartnett gave a tight bound on the number of sub-

sequences of each length [21]. Hirschberg extended the bound to larger al-

phabets [22]. Swart and Ferreira gave a formula for the number of distinct

subsequences produced by two deletions for any starting string [23]. Mercier

et al. showed how to generate corresponding formulas for more deletions and

gave an efficient algorithm to count the distinct subsequences of any length

of a string [24]. Liron and Langberg improved and unified existing bounds

and constructed tightness examples [25]. Some of our intermediate results

contribute to this area.

3.1.1 Upper bound technique

To derive our upper bounds, we use a packing argument that can be applied

to any combinatorial channel. Any combinatorial channel can be represented

by a bipartite graph. Channel inputs correspond to left vertices, channel

outputs correspond to right vertices, and each edge connects an input to an

output that can be produced from it. If two channel inputs share a common

output, they cannot both appear in the same code. The degree of an input

vertex in the graph is the number of possible channel outputs for that input.

If the degree of each input is at least r and there are N possible outputs, any

code contains at most N/r codewords.

Any code capable of correcting s deletions is also capable of correcting

any combination of s total insertions and deletions. We discuss this equiva-

lence in Section 3.2.1. Despite this, the packing argument produces different

upper bounds for channels that perform different mixtures of insertions and

deletions. Let Cq,s,n be the size of the largest q-ary n-symbol s-deletion

correcting code. Prior to this work, the bounds on Cq,s,n coming from the

s-insertion channel and the s-deletion channel were known.

For the s-insertion channel, each q-ary n-symbol input has the same de-

gree. For the exact value, see Lemma 3.3.1. For fixed q and s, the degree is
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asymptotic to
(
n
s

)
(q − 1)s. There are qn+s possible outputs, so

Cq,s,n ≤
qn+s(

n
s

)
(q − 1)s

(1 + o(1)). (3.1)

The s-deletion case is slightly more complicated because different inputs

have different degrees. For instance, the input strings consisting of a sin-

gle symbol repeated n times have only a single possible output: the string

with that symbol repeated n − s time. Consequently, using the minimum

degree over all of the inputs yields a worthless bound. Using the following

argument [14], Levenshtein showed that

Cq,s,n ≤
qn(

n
s

)
(q − 1)s

(1 + o(1)). (3.2)

The average degree of an input is asymptotic to
(
q−1
q

)s (
n
s

)
and most inputs

have a degree close to that. The inputs can be divided into two classes: those

with degree at least 1 − ε times the average degree and those with smaller

degree. For an appropriately chosen ε that goes to zero as n goes to infinity,

the vast majority of inputs fall into the former class. Call members of the

former class the typical inputs. The minimum degree argument can be ap-

plied to bound the number of typical inputs that can appear in a code. There

are qn−s possible outputs, so an asymptotic upper bound on the number of

typical inputs in a code is given by (3.2). We have no information about

what the fraction of the atypical inputs can appear in a code, but the total

number of atypical inputs is small enough to not affect the asymptotics of

the upper bound.

The bounds (3.1) and (3.2) have the same growth rates, but the bound on

deletion correcting codes is a factor of qs better than the bound on insertion

correcting codes, despite the fact that any s-deletion correcting code is an

s-insertion correcting code and vice versa. Note that there is no possible

improvement to the insertion channel bound from dividing the inputs into

typical and atypical classes.

We extend this bounding strategy to channels that perform both dele-

tions and insertions. We obtain a generalized upper bound that includes

Levenshtein’s bound as a special case. Recall that Levenshtein’s bound is

known to be tight for one deletion and alphabet size equal to two. The new
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bound improves upon Levenshtein’s bound whenever the number of deletions

is greater than the alphabet size. The new bound is the best that can be

obtained via the technique of discarding atypical vertices.

The rest of the chapter is organized as follows. In Section 3.2, we present

some notation and basic results on deletion and insertion channels. In Sec-

tion 3.4, we construct a class of well-behaved edges in the channel graph.

Together with an upper bound on the number of edges in the channel graph,

the size of this class establishes the asymptotics of the average input degree.

In Section 3.5, we prove a lower bound on the degree of each input vertex

and use it to establish our main result: an upper bound on the size of a q-ary

s-deletion correcting code.

3.2 Preliminaries

3.2.1 Deletion and insertion channels

The subsequence relation is a partial ordering of [q]∗. Consequently for strings

x and y, we write x � y when x is a subsequence of y.

We formalize the problem of correcting deletions and insertions by defin-

ing the following sets.

Definition 3.2.1. For x ∈ [q]n, define Da(x) = {z ∈ [q]n−a : z � x},
the set of subsequences of x that can be produced by a deletions. Define

Ub(x) = {w ∈ [q]n+b : w � x}, the set of supersequences of x that can be

produced by b insertions. Define Sa,b(x) = Ub(Da(x)).

For each input x to an n-symbol a-deletion b-insertion channel Sa,b(x) is

the set of possible outputs. The following well-known fact about insertions

and deletions shows that the sequencing of insertion and deletion errors does

not matter.

Lemma 3.2.1. For all l, a, b ∈ N and x ∈ [q]l+a, Ub(Da(x)) = Da(Ub(x)).

For all x ∈ [q]l+a and y ∈ [q]l+b, Da(x) ∩ Db(y) 6= ∅ if and only if Ub(x) ∩
Ua(y) 6= ∅.

Proof: By the transitivity of the subsequence relation, Dc(Dd(x)) =

Dc+d(x) and Uc(Ud(x)) = Uc+d(x). It is easy to see that D1(U1(x)) =

U1(D1(x)), The claim then follows from Lemma 2.4.1.
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When two inputs share common outputs they can potentially be confused

by the receiver.

Definition 3.2.2. A q-ary n-symbol a-deletion b-insertion correcting code is

a set C ⊂ [q]n such that for any two distinct strings x, y ∈ C, Sa,b(x)∩Sa,b(y)

is empty.

Applying Theorem 2.4.1, we get the following result. Let a, b, n ∈ N and

x, y ∈ [q]n. Then Sa,b(x) ∩ Sa,b(y) 6= ∅ if and only if Da+b(x) ∩ Da+b(y) 6=
∅. Consequently a set C ⊂ [q]n is a q-ary n-symbol a-deletion b-insertion

correcting code if and only if it is an (a+ b)-deletion correcting code.

3.3 Enumerating subsequences and supersequences

Each q-ary string of length n has the same number of supersequences of length

n. This fact about insertions was originally proved by Levenshtein [20]. Our

proof uses the same ideas as the original to construct an explicit bijection.

Algorithm 1 Encoding and decoding supersequences

Encode : [q]∗ × [q]∗ → [q]∗

Encode(x, y) = case x of

〈〉 : y

〈x0〉+ x′ : case y of

〈〉 : Error — y is not a supersequence of x.

〈y0〉+ y′ : case (y0 − x0) mod q of

0 : 〈0〉+ Encode(x′, y′)

i : 〈i〉+ Encode(x, y′)

Decode : [q]∗ × [q]∗ → [q]∗

Decode(x, z) = case x of

〈〉 : z

〈x0〉+ x′ : case z of

〈〉 : Error — z contains too few zeros.

〈z0〉+ z′ : case z0 of

0 : 〈x0〉+ Decode(x′, z′)

i : 〈(x0 + i) mod q〉+ Decode(x, y′)
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Lemma 3.3.1. For all x ∈ [q]n,

|Us(x)| =
s∑
i=0

(
n+ s

i

)
(q − 1)i.

Proof: The functions Encode(x, ·) and Decode(x, ·) from Algo-

rithm 1 give a bijection between |Us(x)| and the strings of length n + s

with at most s nonzero entries.

The following lemma is originally due to Calabi and Hartnett [21]. Again,

we use ideas from the original proof to give an explicit bijection.

Algorithm 2 Encoding and decoding subsequences

Encode : [q]∗ × [q]∗ → [q]∗

Encode(y, x) = case x of

〈〉 : 〈〉
〈x0〉+ x′ : 〈j〉+ Encode(y′, x′) where (j, y′) = Search(x0,∅, y)

Search : [q]× 2[q] × [q]∗ → ([q]× [q]∗)

Search(i, S, y) = case y of

〈〉 : Error — i does not appear in y.

〈y0〉+ y′ : case y0 of

y0 = i : (|S|, y′)
y0 6= i : Search(i, S + y0, y

′)

Decode : [q]∗ × [q]∗ → [q]∗

Decode(y, z) = case z of

〈〉 : 〈〉
〈z0〉+ z′ : 〈i〉+ Decode(y′, z′) where (i, y′) = Delete(z0,∅, y)

Delete : [q]× 2[q] × [q]∗ → ([q]× [q]∗)

Delete(j, S, y) = case y of

〈〉 : Error — y does not contains j + 1 distinct symbols.

〈y0〉+ y′ : case S of

|S| = j ∧ y0 6∈ S : (y0, y
′)

|S| < j ∨ y0 ∈ S : Delete(j, S + y0, y
′)
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Lemma 3.3.2. For all x ∈ [q]n, |Ds(x)| is at most the number of q-ary

strings of length n− s that sum (over the natural numbers) to at most s:

|Ds(x)| ≤
s∑
i=0

[zi](1 + z + . . .+ zq−1)n−s.

Proof: In Algorithm 2, the functions Search and Delete serve dual

purposes. The Search function deletes symbols from the beginning of y

until it finds an appearance of the symbol i. It returns the tail of y (starting

after the i) along with the number of distinct symbols that it deleted before

finding an i. The Delete function deletes symbols from the beginning of y

until it has deleted j distinct symbols and found a (j + 1)st distinct symbol.

It returns the tail of y and the (j + 1)st distinct symbol that it found.

Thus Search(i,∅, y) = (j, y′) if and only if Search(j,∅, y) = (i, y′).

By induction Encode(y, x) = z if and only if Decode(y, z) = x.

3.4 Constructing edges

Now we will execute the strategy described in Section 3.1.1. The following

graph completely describes the behavior of the channel that takes a q-ary

input string of length l + a and performs a deletions and b insertions.

Definition 3.4.1. Let Bq,l,a,b be a bipartite graph with left vertex set [q]l+a

and right vertex set [q]l+b. The neighborhood of each left vertex x is Sa,b(x).

To obtain our upper bound on code size, we will need a lower bound on the

degree of each left vertex of Bq,l,a,b. The goal of this section is an intermediate

result: an asymptotically tight lower bound on the number of edges in Bq,l,a,b.

To do this, we find a more easily counted parameter set Pq,l,a,b and an injective

construction function Construct : Pq,l,a,b → E(Bq,l,a,b). We demonstrate

the injectivity of Construct by finding a left inverse of Construct and

conclude that |Pq,l,a,b| ≤ |E(Bq,l,a,b)|. We then give a simple upper bound

on the number of edges that matches the lower bound asymptotically. In

Section 3.5, we obtain our lower bound on input degree by working with

the edges of Bq,l,a,b that are in the image of Construct rather than the

complete set of edges.
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0 01 1 1 1 1 1 12 2 2 2

0 01 1 1 1 1 1 12 2 2 2 2 2

0 01 1 1 1 1 1 1 12 2 2 2

x

y

z

Figure 3.1: An example of an edge (x, y) ∈ E(B3,13,2,1) constructed from a
common subsequence z ∈ [3]13.

3.4.1 The construction and deconstruction procedures

Vertices in Bq,l,a,b are adjacent if and only if they have a common subsequence

of length l. Because of this, to construct an edge (x, y) ∈ E(Bq,l,a,b), we start

with a string z ∈ [q]l. Let s = a + b. Partition z into s + 1 intervals. To

produce x, select a of the s boundaries between intervals and insert one new

symbol into z at each. To produce y, insert one new symbol into z at each

of the other b boundaries. Figure 3.1 gives an example.

This construction procedure is capable of producing every edge in Bq,l,a,b,

but many edges can be produced in multiple ways. We will show that if two

restrictions are added to construction procedure, the deconstruction proce-

dure will always be able to recover the construction parameters. This proves

that each edge can be produced in at most one way. At the end of the sec-

tion, we will show that the number of edges that cannot be produced at all

under the restrictions is asymptotically negligible.

The first restriction is that each interval must be nonempty and each

inserted symbol must differ from the leftmost symbol in the interval to its

right. This restriction is needed because inserting a new symbol anywhere

within a run of that same symbol has the same effect. Under the restriction,

a run in z can only be extended by inserting a matching symbol at the right

end.

The second restriction is that each interval of z must be nonalternating.

Definition 3.4.2. A string is alternating if some u ∈ [q] appears at all even

indices, some v ∈ [q] appears at all odd indices, and u 6= v. A string is

nonalternating if it is not alternating. Let Aq,∗ be the set of nonalternating

q-ary strings and let Aq,n be those of length n.

The empty string and all strings of length one are trivially alternating, so

32



the shortest nonalternating strings have length two. For each length n ≥ 2,

each of the q choices for u and q−1 choices for v results in a unique alternating

string, so |Aq,n| = qn − q(q − 1).

Now we decribe the deconstruction procedure. Start with an edge (x, y).

Beginning at the left, find the longest matching prefix of x and y and delete

it from both. This prefix is the first interval of z. Now the first symbols of x

and y differ. One of these symbols is an insertion, but we do not know which

one.

To distinguish these two cases, apply the following heuristic. Provisionally

delete the first symbol of x and determine the length of the longest common

prefix of y and the rest of x. Then do the same with the roles of x and y

reversed. Take the longer common prefix to be the next interval of z and the

deleted symbol that resulted in this prefix to be the insertion.

After removing this prefix, either the first symbols of x and y again differ

or x and y are both the empty string. Apply this heuristic until the latter

case is achieved.

3.4.2 Formalization of construction and deconstruction

In this section we will define our construction and deconstruction functions

more precisely and prove that the latter inverts the former. Fully formal

descriptions of all of the functions described in this section can be found in

Section 3.7.

The functions treat strings as lists of symbols. Let 〈〉 be the empty list.

Recall that x + y is the concatenation of x and y and let (u, v) ++ (x, y) =

(u+ x, v+ y). Let x0 be the first symbol of a nonempty string x and let x−0

be the rest of the string.

To specify an edge (x, y), we need the following parameters. First, we

need s + 1 nonalternating strings. When concatenated together, these will

form the common subsequence of x and y. Second, for each of the s gaps

we pick an element of {X,Y}. This specifies which endpoint of the edge will

receive the inserted symbol. Finally, to specify each inserted symbol we pick

δ ∈ [q] \ {0}. The inserted symbol will be equal to δ plus the first symbol of

the next interval modulo q.

An example of the construction procedure can be found in Figure 3.2. The
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Construct(11, 〈(X, 1, 102), (Y, 2, 21211), (X, 2, 021)〉)

=
11

11

+

+
Insert(〈(X, 1, 102), (Y, 2, 21211), (X, 2, 021)〉)

=
11

11

+

+

2102

102

+

+
Insert(〈(Y, 2, 21211), (X, 2, 021)〉)

=
11

11

+

+

2102

102

+

+

21211

121211

+

+
Insert(〈(X, 2, 021)〉)

=
11

11

+

+

2102

102

+

+

21211

121211

+

+

2021

021

=
112102212112021

11102121211021

Figure 3.2: An example of the construction procedure for a pair of ternary
strings. The Insert function is applied to each triple ({X,Y}× ([3] \ {0})×
A3,∗) to produce a pair of string segments. Construct concatenates these
to produce the final pair.

Construct function takes two arguments. The first is ws, the nonalternat-

ing string that will appear at the beginning of both x and y. Because each

inserted symbol depends on the following nonalternating string, we group the

remaining construction parameters in triples {X,Y}× ([q] \ {0})×Aq,∗. The

second argument to Construct is t, a list of s of these triples. Construct

uses the Insert function to turn t into a pair of strings, then prefixes ws to

both members of the pair. The Insert function starts by translating t0 into

a pair of strings. If w is the string from t0, one of the output strings is w

and the other is (δ + w0) : w. Insert recursively applies itself to t−0 and

concatenates the translation of the first triple to the result the recursive call.

The decontruction procedure attempts to recover the parameters to Con-

struct from an edge (x, y). An example of the deconstruction procedure can

be found in Figure 3.3. The Match function takes two strings x and y and

finds their longest common prefix. More precisely, Match(x, y) = (w, (u, v))

where x = w+u, y = w+v, and w is as long as possible. The Deconstruct

function uses Match to remove the common prefix of the input strings, then

calls Delete on the remaining parts of the input strings. Delete takes a

pair of strings x and y that are either both empty or are both nonempty and

differ in their first symbol. In the former case, there are no more construc-
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Deconstruct

(
112102212112021

11102121211021

)
Match

(
112102212112021

11102121211021

)
= 11

2102212112021

102121211021

=

(
11,Delete

(
2102212112021

102121211021

))
Delete

(
2102212112021

102121211021

)
Match

(
102212112021

102121211021

)
= 102

212112021

121211021
X

Match

(
2102212112021

02121211021

)
= 〈〉 2102212112021

02121211021

= 〈(X, 1, 102)〉+ Delete

(
212112021

121211021

)
Delete

(
212112021

121211021

)
Match

(
12112021

121211021

)
= 121

12021

211021

Match

(
212112021

21211021

)
= 21211

2021

021
X

= 〈(Y, 2, 21211)〉+ Delete

(
2021

021

)
Delete

(
2021

021

)
Match

(
021

021

)
= 021

〈〉
〈〉

X

Match

(
2021

21

)
= 2

021

1

= 〈(X, 2, 021)〉+ Delete

(〈〉
〈〉

)
= (11, 〈(X, 1, 102), (Y, 2, 21211), (X, 2, 021)〉)

Figure 3.3: Deconstruction of the edge constructed in Figure 3.2. First,
Match strips off the common prefix. The Delete function tests whether
it a longer common prefix is achieved by deleting the first symbol of the first
string or the second string. The check marks indicate the longer match. It
produces a triple specifying that deletion and prefix.

35



tion parameters to recover so Delete simply returns 〈〉. In the latter case,

Delete uses the heuristic described in Section 3.4.1 to determine which

first symbol is an insertion. Delete(x, y) computes Match(x−0, y) and

Match(x, y−0). It assumes that whichever common prefix is longer is the

nonalternating string used during construction. The information about the

deletion and prefix becomes a triple. Finally, Delete recursively applies

itself to the leftovers from the chosen match.

Now we will show that Deconstruct is a left inverse of Construct.

The main step is to show that Delete can recover the parameters given to

Insert.

Lemma 3.4.1. The function Delete is a left inverse of Insert. That is,

for all t ∈ ({X,Y} × ([q] \ {0})× Aq,∗)∗, t = Delete(Insert(t)).

Proof: We show this by induction on the length of t. For the base

case, Delete(Insert(〈〉)) = Delete(〈〉, 〈〉) = 〈〉.
If t is nonempty, let (x, y) = Insert(t). Either the first symbol of x or

the first symbol of y is an insertion. Without loss of generality suppose the

former case, so t0 = (X, δ, w) where w = (w0, . . . , wm−1) for some m ≥ 2.

Then x = 〈δ + w0〉 + w + x′ and y = w + y′ where (x′, y′) = Insert(t−0).

Note that the pair of strings produced by Insert(t−0) are either both empty

or both nonempty. If they are nonempty, they have different first symbols.

Recall that Delete computes both Match(x−0, y) and Match(x, y−0).

Match(x−0, y) always equals (w, Insert(t−0)). Let Match(x, y−0) be equal

to (z, (u, v)). Suppose that the length of z is at least m − 1. Then we have

z0 = δ + w0 = w1 and zi = wi−1 = wi+1 for 1 ≤ i ≤ m − 2. This implies

that w is alternating, which is a contradiction. Thus the length of z is

always less than the length of w and Delete correctly concludes that the

first symbol of x was the insertion. The length of t−0 is less than the length

of t, so by the induction hypothesis Delete(Insert(t−0)) = t−0. Finally,

Delete(t) = 〈(X, δ, w)〉+ t−0 = t0 + t−0 = t.

In order for the constructed pair of strings to form an edge in Bq,l,a,b, the

lengths of the nonalternating strings must add up to l. Thus each possible

vector of string lengths is a composition of l with s+ 1 parts.

Definition 3.4.3. A composition of l with t parts is a list of t non-negative

integers with sum l. Let M(t, l, k) be the family of compositions of l with t
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parts and each part of size at least k:

M(t, l, k) =

λ ∈ (N \ [k])t

∣∣∣∣∣∣
∑
i∈[t]

λi = l

 .

Each element of M(t, l, 0) can be uniquely represented by a string of l

item symbols and t−1 divider symbols: the dividers partition the items into

t groups. Thus |M(t, l, 0)| =
(
l+t−1
t−1

)
and |M(t, l, k)| = |M(t, l − kt, 0)| =(

l−kt+t−1
t−1

)
=
(
l−t(k−1)−1

t−1

)
.

Definition 3.4.4. For all q, l, a, b ∈ N, let s = a+ b. Let Pq,l,s be the set

⋃
λ∈M(s+1,l,2)

Aq,λs ×
s−1∏
i=0

({X,Y} × ([q] \ {0})× Aq,λi)

and let Pq,l,a,b contain the elements of Pq,l,s in which X appears exactly a

times and Y appears exactly b times.

The argument of this section is summarized in the following lemma.

Lemma 3.4.2. For all q, l, a, b ∈ N and (ws, t) ∈ Pq,l,a,b, let (x, y) be the pair

of strings produced by Construct(ws, t). Then (x, y) is an edge of Bq,l,a,b,

Deconstruct(x, y) = (ws, t), and |E(Bq,l,a,b)| ≥ |Pq,l,a,b|.

3.4.3 Asymptotically matching lower and upper bounds

Lemma 3.4.3. For fixed q, a, b ∈ N and s = a+b, |Pq,l,a,b| & ql
(
l
s

)(
s
a

)
(q−1)s.

Proof: In Pq,l,a,b, there are
(
s
a

)
possibilities for the s elements of

{X,Y}. There are (q − 1)s possibilities for the s elements([q] \ {0})s. For

λi ≥ 2, |Aq,λi| = qλi − q(q − 1), so the number of possibilities for the s + 1

37



alternating strings is

∑
λ∈M(s+1,l,2)

s∏
i=0

(qλi − q(q − 1))

≥
∑

λ∈M(s+1,l,2)

s∏
i=0

(qλi − q2)

= ql
∑

λ∈M(s+1,l,2)

s∏
i=0

(
1− q2−λi

)
(a)

≥ ql
∑

λ∈M(s+1,l,2+logq l)

s∏
i=0

(
1− q2−λi

)
(b)

≥ ql
(
l − (2 + logq l)(s+ 1) + s

s

)
(1− l−1)s+1

∼ ql
(
l

s

)
.

In (a), we drop the terms of the sum in which for some i, λi < 2 + logq l.

This allows us to apply the inequality q2−λi ≤ q− logq l in (b). We conclude

that for a and b fixed and l large, |Pq,l,a,b| & ql
(
l
s

)(
s
a

)
(q − 1)s.

Recall from Lemma 3.3.1 that each x ∈ [q]n−s has the same number of

supersequences of length n:

|Us(x)| =
s∑
i=0

(
n

i

)
(q − 1)i. (3.3)

We will call this number Iq,s,n. For fixed q and s, Iq,s,n ∼
(
n
s

)
(q − 1)s.

Lemma 3.4.4. For all q, l, a, b ∈ N with s = a + b, the number of edges in

Bq,l,a,b satisfies

|E(Bq,l,a,b)| ≤ qlIq,a,l+aIq,b,l+b

∼ ql
(
l

a

)
(q − 1)a

(
l

b

)
(q − 1)b

∼ ql
(
l

s

)(
s

b

)
(q − 1)s.

Proof: There are qlIq,a,l+aIq,b,l+b triples (z, x, y) ∈ [q]l × [q]l+a × [q]l+b

such that z � x and z � y. If x ∈ [q]l+a and y ∈ [q]l+b are adjacent in Bq,l,a,b,

then they have at least one common subsequence of length l and appear in
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at least one triple.

Our bounds establish the asymptotic growth of the number of edges.

Theorem 3.4.1. For fixed q, a, b ∈ N, the number of edges in Bq,l,a,b satisfies

|E(Bq,l,a,b)| ∼ ql
(
l
s

)(
s
b

)
(q − 1)s. The average of Sa,b(x) over all x ∈ [q]n is

asymptotic to
(
n
s

)(
s
b

)
(q − 1)sq−a.

Proof: From Lemma 3.4.2, we have |E(Bq,l,a,b)| ≥ |Pq,l,a,b|. From

Lemma 3.4.3 we have the asymptotic lower bound and from Lemma 3.4.4 we

have the asymptotic upper bound.

For x ∈ [q]n, Sa,b(x) is the neighborhood of x in Bq,n−a,a,b. The average

degree of the left vertices is asymptotic to ql
(
l
s

)(
s
b

)
(q− 1)s/qn =

(
n−a
s

)(
s
b

)
(q−

1)sq−a.

3.5 Bounds on input degree and code size

Lemma 3.5.1. Let x ∈ [q]n be a string with r runs. Let c− 1 be the length

of the longest alternating interval of x. Then |Sa,b(x)|, the number of unique

strings that can be produced from x by a deletions and b insertions, is at least(
r − (a+ 1)c− 1

a

)(
n− (2a+ b+ 1)c− 2

b

)
(q − 1)b.

Proof: To lower bound |Sa,b(x)|, we identify a subset Px ⊆ Pq,n−a,a,b

such that for all p ∈ Px, Construct(p) = (x, y). From Lemma 3.4.2, all y

produced this way are in Sa,b(x) and |Sa,b(x)| ≥ |Px|.
To produce an element of Px, we select a symbols of x for deletion, select

b spaces in x for insertion, and specify the b new symbols. The symbols

selected for deletion and the spaces selected for insertion partition x into

s+1 intervals. To ensure that none of these intervals are alternating, we will

require that all of the intervals contain at least c symbols.

There are many equivalent ways to extend a run by inserting a matching

symbol. Construct extends a run by adding a symbol at the right end, so

we only select symbols for deletion from those at the right end of a run. It

is easier to ignore the symbols that do not appear at the end of a run for the

purpose of spacing as well. We need there to be at least c symbols in each

of the a+ 1 intervals produced by the deletions, but we enforce the stronger
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condition that in each of these intervals there are at least c symbols that

appear at the end of their run. There are M(a + 1, r, c) =
(
r−(a+1)c−1

a

)
ways

to pick the symbols for deletion that satisfy this condition.

There are n − 1 potential spaces in which an insertion can be made.

Insertions cannot be performed in the c spaces before and after a deleted

symbol. In the worst case, all of these forbidden spaces are distinct, leaving

n−1−2ac spaces to choose from. There must be c symbols between any two

consecutive chosen spaces, before the first chosen space, and after the last

chosen space. Thus there must be at least c− 1 spaces in each of these b+ 1

intervals. Again, it is easier to enforce the stronger condition that there are

at least c+1 spaces not near a deletion in each interval. Thus there are always

at least M(b + 1, n − 1 − 2ac, c + 1) =
(
n−1−2ac−(b+1)c−1

b

)
=
(
n−(2a+b+1)c−2

b

)
ways to pick the spaces.

Finally, for each of the b insertion points, we must specify the difference

between the inserted symbol and its successor. Thus, there are (q−1)b choices

for this step.

The following argument, very similar to Lemma 3.4.4, shows that this

degree lower bound is asymptotically tight. This is a generalization of a

lemma of Levenshtein [14].

Lemma 3.5.2. For all q, n, r, a, b ∈ N with s = a+ b, if x ∈ [q]n has r runs,

then

|Sa,b(x)| ≤
(
r + a− 1

a

)
Iq,b,n−a+b.

Proof: Any subsequence of x can be specified by the number of sym-

bols deleted from each run. This is a composition of a with r parts, so

|Sa,0(x)| ≤ |M(a, r, 0)| =
(
r−1+a
r−1

)
=
(
r+a−1
a

)
. Each string in Sa,b(x) is a

supersequence of one of these subsequences. Each subsequence has exactly

Iq,b,n−a+b supersequences of length n− a+ b.

If r = pn for fixed p, the bounds of Lemma 3.5.1 and Lemma 3.5.2 are

both asymptotic to (
r

a

)(
n

b

)
(q − 1)b.

To apply Lemma 3.5.1 to a string, we need two statistics of that string:

the number of runs and the length of the longest alternating interval. The

next two lemmas concern the distributions of these statistics.
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Lemma 3.5.3. The number of q-ary strings of length n with an alternating

interval of length at least c is at most (n− c+ 1)qn−c+1(q − 1).

Proof: If some interval of length at least c is alternating, at least one

of its subintervals of length exactly c is alternating. A string of length n

contains n− c+ 1 intervals of length c, so each string of interest fall into at

least one of n − c + 1 classes. In each class, there are q(q − 1) choices for

the symbols in the alternating interval and qn−c choices for the remaining

symbols.

Lemma 3.5.4. The number of q-ary strings of length n with
(
q−1
q
− ε
)

(n−
1) + 1 or fewer runs is at most qne−2(n−1)ε2.

Proof: For x ∈ [q]n, let x′ ∈ [q]n−1 be the string of first differences of

x. That is, let x′i = xi+1 − xi mod q. If x has r runs, then x′i is nonzero at

the r − 1 boundaries between runs. Thus there are q
(
n−1
r−1

)
(q − 1)r−1 strings

with exactly r runs. The number of strings with few runs is

q

( q−1
q
−ε)(n−1)∑
i=0

(
n− 1

i

)
(q − 1)i

= qn
( q−1

q
−ε)(n−1)∑
i=0

(
n− 1

i

)(
q − 1

q

)i(
1

q

)n−1−i

≤ qne−2(n−1)ε2 .

The upper bound comes from the application of Hoeffding’s inequality to the

binomial distribution [26].

Now we can show that there are few inputs with degree significantly below

the average.

Lemma 3.5.5. Let q, a, b ∈ N be fixed and let s = a+ b. For all t ∈ N, there

is a sequence of subsets Tn ⊆ [q]n such that |Tn| is O(qn/nt) and

min
x∈[q]n\Tn

|Sa,b(x)| & (q − 1)s

qa

(
n

s

)(
s

b

)
.

Proof: We form two classes of bad strings: strings with a long al-

ternating interval and strings with few runs. Call these classes T ′n and T ′′n

respectively. Let Tn = T ′n ∪ T ′′n .
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A string falls into T ′n if it has an alternating subinterval of length at least

c. If we let c = (t+ 1) logq n, then by Lemma 3.5.3 we have

|T ′n| < nqn−c+1(q − 1) = n−tqn+1(q − 1),

which is O(qn/nt).

Over all strings in [q]n, the average number of runs is q−1
q

(n − 1) + 1.

A string falls into T ′′n if it has at most
(
q−1
q
− ε
)

(n − 1) + 1 runs. If we let

ε =
√

t logn
2(n−1)

, then by Lemma 3.5.4 we have

|T ′′n | ≤ qne−2(n−1)ε2 = qne−t logn = qn/nt.

For fixed t, this ε is o(1), so
(
q−1
q
− ε
)

(n− 1) + 1 ∼ (q−1)n
q

.

Now we can apply Lemma 3.5.1 to lower bound the degree of the strings

in [q]n \ Tn. The first multiplicative term in the lower bound is asymptotic

to ( q−1
q
n− (a+ 1)(t+ 1) logq n− 1

a

)
∼
( q−1

q
n

a

)
∼
(
q − 1

q

)a(
n

a

)
.

The second term is asymptotic to(
n− (2a+ b+ 1)(t+ 1) logq n− 2

b

)
∼
(
n

b

)
.

Thus

min
x∈[q]n\Tn

|Sa,b(x)| &
(
q − 1

q

)a(
n

a

)(
n

b

)
(q − 1)b

∼ (q − 1)s

qa

(
n

s

)(
s

b

)
.

Our main theorem follows easily.

Theorem 3.5.1. For fixed q, s ∈ N, the number of codewords in an n-symbol
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q-ary s-deletion correcting code satisfies

Cq,s,n . min
0≤b≤s

qn+b

(q − 1)s
(
n
s

)(
s
b

) .
Proof: Consider an a-deletion b-insertion channel with a + b = s. By

Lemma 3.2.1 and Theorem 2.4.1, any code for this channel can also correct

s deletions. There are qn−a+b possible outputs, so for any Tn ⊆ [q]n,

Cq,s,n .
qn−a+b

minx∈[q]n\Tn |Sa,b(x)|
+ |Tn|.

For any choice of t, from Lemma 3.5.5 we obtain a sequence Tn such that

minx∈[q]n\Tn |Sa,b(x)| is Ω(ns) and |Tn| is O(qn/nt). To make the contribution

of the second term negligible, we choose t = s+ 1 and obtain an asymptotic

upper bound of

Cq,s,n .
qn−a+b

(q−1)s

qa

(
n
s

)(
s
b

) +O

(
qn

ns+1

)
∼ qn+b

(q − 1)s
(
n
s

)(
s
b

) .

This improves (3.2), Levenshtein’s upper bound, by a factor of
(
s
b

)
q−b.

By setting b to zero we recover Levenshtein’s bound. Whenever s > q,(
s
1

)
q−1 >

(
s
0

)
q0 = 1 so setting b to one in the generalized bound offers an

improvement.

Corollary 3.5.1. If q + 1 divides s, the size of a q-ary s-deletion correcting

code satisfies

Cq,s,n .
3s

1
2 qn+s+ 1

2

(q + 1)s+1(q − 1)s
(
n
s

) .
Proof: We optimize over b in Theorem 3.5.1. The factor

(
s
b

)
q−b is a

constant times a binomial distribution:(
q + 1

q

)s(
s

b

)(
1

q + 1

)b(
q

q + 1

)s−b
.

The maximum is achieved by b =
⌊
s+1
q+1

⌋
. When q+1 divides s, the maximum

is at least (
q + 1

q

)s
1

3

√
q + 1

qs/(q + 1)
=

(q + 1)s+1

3s
1
2 qs+

1
2
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by Lemma 3.5.6.

Lemma 3.5.6. For a, b, n ∈ N,

(
(α + β)n

αn

)(
α

α + β

)αn(
β

α + β

)βn
≥ 1

3

√
α + β

αβn
.

Proof: One form of Stirling’s approximation is [27]

1 ≤ n!√
2πn

(
n
e

)n ≤ e
1
12 .

Then for α, β, n ∈ N, consider the binomial distribution produced by (α+β)n

trials and success probability α/(α + β). The most likely outcome is αn

successes and the probability of that outcome is:

max
i

(
(α + β)n

i

)(
α

α + β

)i(
β

α + β

)(α+β)n−i

=

(
(α + β)n

αn

)(
α

α + β

)αn(
β

α + β

)βn

≥

√
2π(α + β)n

(
(α+β)n

e

)(α+β)n

e
1
12

√
2παn

(
αn
e

)αn
e

1
12

√
2πβn

(
βn
e

)βn ααnββn

(α + β)(α+β)n

=
1

e
1
6

√
2π

√
α + β

αβn

≥ 1

3

√
α + β

αβn
.

The degree lower bound in Lemma 3.5.5 cannot be raised any further

without excluding an asymptotically non-negligible number of inputs.

Lemma 3.5.7. For fixed q, a, b ∈ N and fixed ε > 0, suppose that there is a

sequence of subsets Tn ⊆ [q]n such that

min
x∈[q]n\Tn

|Sa,b(x)| & (1 + ε)
(q − 1)s

qa

(
n

s

)(
s

b

)
.

Then |Tn| is Ω(qn).

Proof: This is essentially an application of Markov’s inequality. By
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the definition of Tn,∑
x∈[q]n

|Sa,b(x)| ≥
∑

x∈[q]n\Tn

|Sa,b(x)|

& (qn − |Tn|)(1 + ε)
(q − 1)s

qa

(
n

s

)(
s

b

)
.

From Lemma 3.4.4,

∑
x∈[q]n

|Sa,b(x)| = |E(Bq,n−a,a,b)| . qn−a
(
n

s

)(
s

b

)
(q − 1)s.

Chaining these inequalities together and dividing both sides of the result

by qn−a
(
n
s

)(
s
b

)
(q − 1)s yields

(
1− |Tn|

qn

)
(1 + ε) . 1. Thus |Tn| & ε

1+ε
qn and

|Tn| is Ω(qn).

If the number of excluded channel inputs is Ω(qn), the excluded inputs

are the dominant contribution to the upper bound on code size. Thus our

bounds on code size are the best that can be obtained via the technique of

excluding atypical inputs.

3.6 Concluding discussion

In this chapter, we extended Levenshtein’s strategy for obtaining an upper

bound on the size of deletion codes. Levenshtein’s bound arises from the

deletion channel. We derived the corresponding bounds from channels that

perform a mixture of deletions and insertions. This results in an improvement

whenever the number of errors, s, is larger than the alphabet size, q. The best

version of our bound uses a channel where the ratio of deletions to insertions

is q to one.

Our argument relies on the fact that the channel graphs are approxi-

mately regular in the asymptotic regime where the number of errors is fixed.

A natural question is whether this argument can be extended to the regime

where the number of errors is a constant fraction of the input length. How-

ever, it is not clear whether the graphs are approximately regular in the latter

regime. The argument of this chapter relies on the typical spacing between

errors going to infinity. Because this spacing becomes large, any interaction

between two errors becomes rare. When the typical spacing does not grow
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with input length, interactions will not be rare and it will not be possible to

simply discard the cases where they occur. Instead it will be necessary to

understand the details of these interactions.

3.7 Algorithms

Our construction function, Construct, is specified in Algorithm 3 and our

deconstruction function, Deconstruct, is specified in Algorithm 4. The

function Length returns the number of symbols in the string.

Algorithm 3 Construct an edge

Construct : Aq,∗ × ({X,Y} × ([q] \ {0})× Aq,∗)∗ → [q]∗ × [q]∗

Construct(w, t) = (w,w) ++ Insert(t)

Insert : ({X,Y} × ([q] \ {0})× Aq,∗)∗ → [q]∗ × [q]∗

Insert(t) = case t of

〈〉 : (〈〉, 〈〉)
〈(z, δ, w)〉+ t′ : case z of

X : (〈δ + w0〉, 〈〉) ++ (w,w) ++ Insert(t′)

Y : (〈〉, 〈δ + w0〉) ++ (w,w) ++ Insert(t′)
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Algorithm 4 Deconstruct an edge

Deconstruct : [q]∗ × [q]∗ → Aq,∗ × ({X,Y} × ([q] \ {0})× Aq,∗)∗

Deconstruct(x, y) = (w,Delete(x, y))

where (w, (x, y)) = Match(x, y)

Delete : [q]∗ × [q]∗ → ({X,Y} × ([q] \ {0})× Aq,∗)∗

Delete(x, y) = case (x, y) of

(〈〉, 〈〉) : 〈〉
(〈x0〉+ x′, 〈y0〉+ y′) : case (MLength(x′, y),MLength(x, y′)) of

> : 〈(X, x0−y0, a)〉+Delete(b, c) where (a, b, c) = Match(x′, y)

< : 〈(Y, y0−x0, a)〉+Delete(b, c) where (a, b, c) = Match(x, y′)

MLength : [q]∗ × [q]∗ → N
MLength(x, y) =

if (x = x0 + x′) ∧ (y = y0 + y′) ∧ (x0 = y0)

then 1 + MLength(x′, y′)

else 0

Match : [q]∗ × [q]∗ → [q]∗ × [q]∗ × [q]∗

Match(x, y) =

if (x = x0 + x′) ∧ (y = y0 + y′) ∧ (x0 = y0)

then (〈x0〉+ w, x′′, y′′) where (w, x′′, y′′) = Match(x′, y′)

else (〈〉, x, y)

3.8 The poset of compositions

The natural numbers under the usual order form a ranked totally ordered

set, so Nd is a ranked poset. An composition of width d and size n is a

rank-n element of Nd, a vector of d nonnegative integers that sums to n.

Let C(d, n) be the set of such vectors. Elementary counting shows that

|C(d, n)| =
(
n+d−1
n

)
.

In this section we will discuss parallels between composition poset and
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the poset of q-ary strings ordered by the subsequence relation. In order to

illustrate these ideas, we will compute the asymptotic values of the sphere-

packing bounds for the channels that take a composition for various mixtures

of up and down errors.

First, the composition poset is very closely connected to the problem

of correcting restricted set of insertion and deletion errors: repetition and

derepetition error. A repetition error transforms a q-ary string of length n to

a string of length n+1 by replacing a single symbol with two adjacent copies of

that symbol. A derepetition does the reverse, contracting two adjacent copies

of a symbol into a single copy. Repetition and a derepetition errors cannot

change the number of runs in a string or which symbol appears in the ith

run. Thus the space of messages is the union of
∑n

r=1 q(q− 1)r disconnected

components. Within each component, each message can be represented by

the vector of run lengths. Each run length is at least one, so a string of

length n with r runs can be encoded as an element of C(r, n−r). A repetition

increases a single run length by one. Dolecek and Anantharam have exploited

this correspondence and constructed repetition error correcting codes [28].

There are further parallels between the posets. In the subsequence poset,

the number of supersequences of length n + b is constant across all of the

strings in [q]n. Similarly, the number of supercompositions of size n + b is

constant across all compositions in C(d, n). In both cases, this property

does not extend to down errors. A string of length n with r runs has r

subsequences of length n − 1. The number of subsequences of length n − a
depends strongly on r for all a. A composition in C(d, n) with f nonzero

entries has f subcompositions of size n− 1. The number of subcompositions

of size n− a depends strongly on f .

For a fixed alphabet size q, the number of length-n strings grows as qn.

There are
(
n+d−1
n

)
compositions in C(d, n). In order to have exponential

growth as we increase n, we should fix the ratio ρ = d/n. A typical q-ary

string has q−1
q
n runs. The vector encoding the run lengths of a typical string

is in C
(
q−1
q
n, 1

q
n
)

. Thus it makes sense to compare the poset of q-ary strings

to a sequence of posets of compositions with ρ = q − 1.

When we make this precise comparison, a few more similarities emerge. In

the poset of q-ary strings, the rank n+1 contains a factor of q more elements

than rank n. For compositions, the ratio between the size of consecutive
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ranks
|C(d, n+ 1)|
|C(d, n)|

=

(
n+d
n+1

)(
n+d−1
n

) =
n+ d

n+ 1
∼ 1 + ρ = q.

Let x ∈ [q]n have q−1
q
n runs, which is the typical value. Then |U1(x)| =

(n+ 1)(q−1) + 1 and |D1(x)| = q−1
q
n. The ratio of these is asymptotically q.

Let x ∈ C(d, n) have d−1
d+n−1

nonzero entries, which again is the typical value.

Then |U1(x)| = d and |D1(x)| = d−1
d+n−1

. The ratio of these is asymptotically

1 + ρ.

3.8.1 Sphere-packing bounds

Let Ad,n,a,b be the channel that takes an element of C(d, n) and performs a

down errors and b up errors. To obtain an upper bound on p∗(Ad,n,a,b), we

will apply the local degree upper bound. See Chapter 4 for the full details

of this method. This gives

p∗(Ad,n,a,b) ≤
∑

y∈C(d,n−a+b)

1

maxx∈Ua(Db(y)) |Ub(Da(x))|
.

To evaluate this, we need an lower bound on |Ub(Da(x))| for each x ∈ C(d, n).

If x has f nonzero entries, then

|Ub(Da(x))| ≥
(
f

a

)
|C(d− a, b)| =

(
f

a

)(
d− a+ b− 1

b

)
.

There are f entries where we can perform one of the a down errors. We can

distribute the b up error among the other d − a entries. In this way, each

element of Ub(Da(x) is counted at most once.

If y has f nonzero entries, then any x ∈ Ua(Db(y)) has at least f − b

nonzero entries. There are
(
d
f

)(
n−1
n−f

)
such vectors with exactly f nonzero

entries. Thus f follows a hypergeometric distribution.

Putting this together, we obtain

p∗(Ad,n,a,b) ≤
∑
f

(
d
f

)(
n−a+b−1
n−a+b−f

)(
f−b
a

)(
d−a+b−1

b

) .
The average number of nonzero entries is dn

n+d−1
∼ ρ

1+ρ
n. Because the hyper-

geometric distribution concentrates, it is not too hard to show that for fixed
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a and b this sum is asymptotically at most

|C(d, n− a+ b)|

(( ρ
1+ρ

n

a

)−1(
ρn

b

)−1

+O(n−a−b−1)

)
.

We can make a few further simplifications:( ρ
1+ρ

n

a

)(
ρn

b

)
∼ (1 + ρ)−a

(
ρn

a+ b

)(
a+ b

a

)
.

The size of the output space, |C(d, n − a + b)|, is equal to
(
n−a+b+d−1
n−a+b

)
∼(

n+d−1
n

)
(1 + ρ)−a+b. Putting all of this together, we get

p∗(Ad,n,a,b) ≤
(
n+d−1
n

)
(1 + ρ)b(

ρn
a+b

)(
a+b
a

) .

Now we fix the total number of errors s = a+b and optimize across channels.

The quantity
(

1
1+ρ

)s−a (
s
a

)
follows a rescaled binomial distribution and con-

sequently is maximized by a
s
≈ 1

1+ 1
1+ρ

= 1+ρ
2+ρ

. The best sphere-packing bound

for the deletion insertion channels came from the choice a
s
≈ q

q+1
. Thus we

have another example of these two posets exhibiting similar behavior when

ρ = q − 1. It is not hard to show that the largest cliques in the confusabil-

ity graph over compositions are associated with the channel where a
s

= ρ
1+ρ

,

again paralleling the subsequence partial order.

The sizes of the sets Ub(Da(x)) play a central role in the value of the

sphere-packing bounds. In the subsequence poset, when a and b grow with

n, for most strings we do not have good estimates of the sizes of these sets.

Unlike the subsequence partial order, the partial order on compositions in a

lattice, which makes it much easier to compute the necessary quantities. We

believe that analysis of codes in the composition poset capable of correcting

many errors will provide a good first step toward the corresponding analysis

of deletion correcting codes.

3.8.2 Applications

Codes on integer compositions have applications in data storage. One ex-

ample is DNA-based storage. Kiah et al. propose a form of DNA storage in

which information is encoded in the relative frequencies of short sequences as
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intervals of a long sequence [29]. This allows data recovery using sequencing

methods that only make short reads. The computationally expensive step of

assembling short reads to recover the whole long sequence is avoided.

Kiah et al. [29] constructed codes on integer compositions by viewing

compositions as constant-sum q-ary vectors and modifying existing code con-

structions for correcting asymmetric errors in that setting. In addition, they

add a number of other practical constraints to their codes. Unfortunately,

their method of translating results from the q-ary setting to the integer com-

position setting depends on particular properties of the code construction,

so we cannot immediately convert known upper bounds on q-ary asymmetric

error correcting codes to bounds on integer composition codes for the purpose

of comparison.
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CHAPTER 4

SPHERE PACKING AND SPHERE
COVERING BOUNDS

4.1 Introduction

The classic problem of coding theory, correcting substitution errors in a vec-

tor of q-ary symbols, is highly symmetric. First, if s errors are required

to change a vector x into another vector y, then s errors are also required

to change y into x. Second, the number of vectors that can be produced

from x by making up to s substitutions, the size of the sphere around x,

does not depend on x. The sizes of these spheres play a crucial role in

both upper and lower bounds on the size of the largest s-substitution-error-

correcting codes. The Hamming bound is a sphere-packing upper bound and

the Gilbert-Varshamov lower bound is a sphere-covering lower bound. The

two symmetries that we have described make the proofs of the Hamming and

Gilbert-Varshamov bounds extremely simple.

Many other interesting error models do not have this degree of symme-

try. Substitution errors with a restricted set of allowed substitutions are

sometimes of interest. The simplest example is the binary asymmetric er-

rors, which can replace a one with a zero but cannot replace a zero with a

one. Binary asymmetric errors have neither of the two symmetries we have

described. Erasure and deletion errors differ from substitution errors in a

more fundamental way: the error operation takes an input from one set and

produces an output from another.

In this chapter, we will discuss the generalizations of sphere-packing

bounds to arbitrary error models. These generalizations become especially

important when the sizes of the error spheres are nonuniform. Sphere-packing

bounds are fundamentally related to linear programming and the best pos-

sible versions of the bounds are solutions to linear programs. In highly sym-

metric cases, including many classical error models, it is often possible to
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get the best possible sphere-packing bound without directly considering any

linear programs. For less symmetric channels, the linear programming per-

spective becomes essential.

In fact, recently a new bound, explicitly derived via linear programming,

was applied by Kulkarni and Kiyavash to find an upper bound on the size

of deletion-correcting codes [4]. It was subsequently applied to grain errors

[30, 31] and multipermutation errors [32]. We will refer to this as the local

degree bound. The local degree bound constructs a dual feasible point for

the sphere-packing linear program because computation of the exact solution

is intractable. Deletion errors, like most interesting error models, act on an

exponentially large input space. Because computation of the best possible

packing and covering bounds is often intractable, simplified bounds such as

the local degree bound are useful.

Sphere-packing and sphere-covering arguments have been applied in an ad

hoc fashion throughout the coding theory literature. We attempt to present

a unifying framework that permits such arguments in their most general form

applicable to both uniform and nonuniform error sphere sizes. More precisely,

we derive a series of bounds from approximations to packing and covering

problems. The local degree bound of [4] is one of the bounds in the series.

We associate each bound with an iterative procedure such that the original

bound is the result of a single step. This characterization makes it easy to

study the relationships between the bounds. We apply our generalization of

the local degree bound to improve the best known upper bounds on the sizes

of single deletion correcting codes and single grain error correcting codes.

We use the concept of a combinatorial channel to represent an error model

in a fashion that makes the connection to linear programming natural. These

bounds use varying levels of information about structure of the error model

and consequently make trade-offs between performance and complexity. For

example, one bound uses the distribution of the sizes of spheres in the space

while another uses only the size of the smallest sphere.

Our contributions can be summarized as follows. We provide a unified

framework for describing upper bounds on code size. This allows us to make

very general statements about the relative strengths of the bounds. In par-

ticular, our generalization of the local degree bound allows us to improve the

best known upper bounds for a few channels.

In Section 2.1, we discussed the linear programs associated with sphere-
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packing bounds. In Section 4.2, we present a generalization of the local degree

bound that is related to an iterative procedure. We use this to improve the

best known upper bounds on the sizes of single deletion correcting code and

single grain error correcting codes. In Section 4.3, we discuss sphere-packing

bounds related to the degree sequence and average degree of a channel. In

Section 2.2.2, we discuss families of channels that have the same codes but

give different sphere-packing bounds.

4.2 The local degree iterative algorithm

Let A ∈ {0, 1}X×Y be a channel. We can obtain an upper bound for p∗(A)

(and consequently p(A)) by finding a feasible point in the program for κ∗(A).

Given some t ∈ RY such that t ≥ 0 and (At)x > 0 for all x, let z ∈ RY be

the smallest scaling of t that is feasible for κ∗(A):

zy =
ty

minx∈X(At)x
. (4.1)

We have the upper bound p∗(A) ≤ 1T z, which we call κ∗md(A, t). The special

case

κ∗md(A,1) =
|Y |

minx∈X |NA(x)|
,

is the minimum degree upper bound, which explains the subscript. Through-

out, bounds notated by κ∗ with a subscript come from the construction of a

particular dual feasible point (i.e. feasible in the program for k∗) and bounds

notated by p∗ with a subscript come from the value of a relaxation of the

primal program.

4.2.1 The local degree bound

For channels that are both input and output regular, computation of the

sphere-packing bound p∗ is trivial: the minimum degree bound is exact.

However, even a single low degree input will ruin the effectiveness of the

minimum degree bound. To obtain a better upper bound on p(A) and p∗(A),

we will construct a different feasible point in the program for κ∗(A) by making

a small change to (4.1).
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Definition 4.2.1. Let A ∈ {0, 1}X×Y be a channel. For t ∈ RY such that

(At)x > 0 for all x ∈ X, define ϕA(t) ∈ RY as follows:

ϕA(t)y ,
ty

minx∈N(y)(At)x
.

Define the local degree upper bound κ∗ld(A, z) = 1TϕA(z).

Lemma 4.2.1. Let t ∈ RY such that t ≥ 0 and (At)x > 0 for all x ∈ X.

Then ϕA(t) is feasible in the program for κ∗(A). If t is feasible for κ∗(A),

then ϕA(t) ≤ t.

Proof: To demonstrate feasibility of z = ϕA(t), we need z ≥ 0 and

Az ≥ 1. The first condition is trivially met. For x ∈ X and y ∈ N(x), we

have

zy =
ty

minx′∈N(y)(At)x′
≥ ty

(At)x

(Az)x =
∑

y∈N(x)

zy ≥
1

(At)x

∑
y∈N(x)

ty = 1

and z is feasible.

If t is feasible, then At ≥ 1. For all y ∈ Y we have

zy =
ty

minx∈N(y)(At)x
≤ ty.

We can view the application of ϕA as a single iteration of an algorithm

with the following intuitive description. Suppose that we have a vector t ∈
RY that is a feasible vector in the program for κ∗(A). For any channel, we

can take t = 1 as an initial vector. At each input x, the total coverage,

(At)x, is at least one. The input x informs each output in N(x) that it can

reduce its value by a factor of (At)x. Each output y receives such a message

for each input in N(y), then makes the largest reduction consistent with the

messages.

An iteration fails to make progress under the following condition. From

the definition ϕA(t)y = ty if and only if minx∈N(y)(At)x = 1. Thus ϕA(t) = t

if for all y ∈ Y there is some x ∈ N(y) such that (At)x = 1. This algorithm

is monotonic in each entry of the feasible vector, so it cannot make progress
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if its input is at the frontier of the feasible space.

Scaling the input by a positive constant does not affect the output of ϕA:

for c ∈ R, c > 0, ϕA(t) = ϕA(ct). We could think of κ∗md(A, t) as involving an

iterative procedure as well. It has the same scaling property. In contrast to

the local degree iteration, the minimum degree iteration always stops after a

single step because the output vector is a constant multiple of the input. The

local degree iteration scales different entries in the initial vector by different

amounts, so it is possible for it to make progress for multiple iterations.

4.2.2 Application to the single deletion channel

Now we will apply two iterations of the local degree iteration to obtain a new

upper bound for the single deletion channel. Because some of the calculations

are long, we will state the results in this section and give the proofs in

Section 4.2.4.

Let An be the n-bit 1-deletion channel. The input to the binary single

deletion channel is a string x ∈ [2]n and the output is a subsequence of x,

y ∈ [2]n−1. Each output vertex in An has degree n + 1. Thus κ∗(An) ≥
κ∗md(An) = 2n

n+1
.

Levenshtein [14] showed that

κ∗(An) ≤ 2n

n+ 1
(1 + o(1)).

Kulkarni and Kiyavash computed the local degree upper bound, or equiva-

lently ϕAn(1) [4]. This shows that κ∗(An) is at most

2n

n− 1
=

2n

n+ 1

(
1 +

2

n− 1

)
=

2n

n+ 1
(1 +O(n−1)).

Recently, Fazeli et al. found a fractional covering for An that provides a

better upper bound [33].

For the remainder of this section we abbreviate ϕAn by ϕ. In this section,

we compute ϕ◦ϕ(1) for these channels and analyze the values of these points.

We show that Fazeli’s improved covering is related to the covering ϕ ◦ ϕ(1),

but ϕ ◦ ϕ(1) provides a better bound asymptotically.

More precisely, the upper bound from ϕ ◦ ϕ(1), given in Theorem 4.2.2,
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shows that κ∗(A) is at most

2n

n− 1

(
1− 2

n− 1
+O(n−2)

)
=

2n

n+ 1
(1 +O(n−2)).

The covering in Fazeli et al. gives an upper bound of

2n

n+ 1

(
1 +

1

n− 1
+O(n−2)

)
.

A run in a string is a maximal set of consecutive indices that have the

same symbol. Let r, u, b ∈ N[2]∗ be vectors such that for all x ∈ [2]∗, rx is the

number of runs in x, ux is the number of length-one runs, or unit runs, in x,

and bx is the number of unit runs at the start or end of x.

Theorem 4.2.1. Let

f(r, u, b) ,
1

r

(
1 +

max(2u− b− 2, 0)

(r + 2)(r + 1)

)−1

.

Then the vector zy = f(ry, uy, by) is feasible for κ∗(An), so κ∗(An) ≤ 1T z.

Theorem 4.2.2. For n ≥ 2,

κ∗(An) ≤ 2n

n+ 1

(
1 +

26

n(n− 1)

)
.

Now we will compare this bound to the bound corresponding to the cover

of Fazeli et al. Let

f ′(r, u, b) ,

1
r

(
1− u−b

r2

)
u− b ≥ 2

1
r

u− b ≤ 1.

Fazeli et al. established that zy = f ′(ry, uy, by) is feasible for κ∗(An) [33].

Compare this with the cover given by f ′ and note that the coefficient on u

is 1 in f ′ and 2 in f .

Lemma 4.2.2. Let zy = f ′(ry, uy, by). Then

1T z ≥ 2n − 2

n+ 1

(
1 +

1

n− 1
− 3

(n− 1)(n− 2)

)
.

This shows that the bound of Theorem 4.2.2 is asymptotically better than
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the bound corresponding to the cover of Fazeli et al. We could continue to

iterate ϕ to produce even better bounds. The fractional covers produced

would depend on more statistics of the strings. For example, the value at

a particular output of the cover produced by the third iteration of ϕ would

depend on the number of runs of length two in that output string, in addition

to the total number of runs and the number of runs of length one.

The largest known single deletion correcting codes are the Varshamov-

Tenengolts (VT) codes [14]. The largest length-n VT code, denoted V T0,

contains at least 2n

n+1
codewords, so this sequence of codes is asymptotically

optimal. V T0 is known to be a maximum independent set for n ≤ 10, but

this question is open for larger n [34]. Kulkarni and Kiyavash [4] computed

the exact value of κ∗(An) for n ≤ 14. For 7 ≤ n ≤ 14, the gap between

κ∗(An) and the size of the VT codes was at least one, so it is unlikely that

sphere-packing bounds will resolve the optimality of the VT codes for larger

n. Despite this, it would be interesting to know the asymptotics of the gap

between κ(An) and κ∗(An). For example, is it true that κ∗(An) ≤ 2n

n+1
+

O(2cn) for some constant c < 1?

4.2.3 Application to the single grain error channel

Recently, there has been a great deal of interest in grain error channels,

which are related to high-density encoding on magnetic media. A grain in a

magnetic medium has a single polarization. If an encoder attempts to write

two symbols to a single grain, only one of them will be retained. Because

the locations grain boundaries are generally unknown to the encoder, this

situation can be modeled by a channel.

Mazumdar et al. applied the degree sequence bound to non-overlapping

grain error channels [35]. Sharov and Roth applied the degree sequence

bound to both non-overlapping and overlapping grain error channels [36]. We

discuss the degree sequence bound and its relationship to the local degree

bound in Section 4.3. Kashyap and Zémor [30] applied the local degree

bound to improve on Mazumdar et al. for the one, two, or three error cases.

They conjectured an extension for larger numbers of errors. Gabrys et al [31]

applied the local degree bound to improve on Sharov and Roth.

The input and output of this channel are strings x, y ∈ [2]n. To produce
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n |V T0| κ∗(A) Thm. 4.2.1 FVY KK Thm. 4.2.2
5 6 6 7 7 7 12
6 10 10 12 12 12 17
7 16 17 20 20 21 25
8 30 30 35 35 36 41
9 52 53 61 61 63 69

10 94 96 109 109 113 119
11 172 175 196 197 204 211
12 316 321 357 358 372 377
13 586 593 653 657 682 682
14 1096 1104 1205 1212 1260 1248
15 2048 2237 2251 2340 2301
16 3856 4174 4202 4368 4272
17 7286 7825 7882 8191 7977
18 13798 14727 14845 15420 14969
19 26216 27820 28059 29127 28207
20 49940 52720 53202 55188 53348
21 95326 100194 101163 104857 101226
22 182362 190912 192850 199728 192623
23 349536 364621 368478 381300 367485
24 671092 697865 705511 729444 702697

Figure 4.1: The cardinality of the VT construction and several upper bounds
on p(An), where An is the n-bit single deletion channel. For n ≤ 14, Kulkarni
and Kiyavas [4]h were able computed the exact value of κ∗(An). This requires
solving an exponentially large linear program. Kulkarni and Kiyavash also
constructed a dual feasible point with weight 2n−2

n−1
(column KK). This is

equivalent to the first iteration of the local degree algorithm. Fazeli et al.
improved on this construction (column FVY) [33]. Our Theorem 4.2.1 uses
two interactions of the local degree algorithm. Computing the value of the
FVY and Theorem 4.2.1 columns requires a sum over about n2 terms. Our
Theorem 4.2.2 gives an analytic upper bound on the weight of the feasible
point from Theorem 4.2.1, which improves on existing bounds for n ≥ 22.
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an output from an input, select a grain pattern with at most one grain of

length two and no larger grains. The grain of length two, if it exists, bridges

indices j and j + 1 for some 0 ≤ j ≤ n− 2. Then the channel output is

yi =

xi i 6= j

xi+1 i = j

If xj = xj+1 or if there is no grain of length two, then y = x.

The degree of an input string is equal to the number of runs r: each of the

r− 1 run boundaries could be bridged by a grain or there could be no error.

A grain error reduces the number of runs by 0,1, or 2. The number of runs is

reduced by 1 if j = 0 and x0 6= x1, by 2 if j ≥ 1, xj 6= xj+1, and xj−1 = xj+1,

and by 0 otherwise. Equivalently, the number of runs is reduced by 1 if a

length-1 run at index 0 is eliminated and by 2 if a length-1 run elsewhere is

eliminated. In the previous section, we let ux be the number of length-1 runs

in x and bx be the number of length-1 runs appearing at the start or end of

x. For the grain channel, we need to distinguish between length-1 runs at

the start and at the end, so let bLx and bRx count these.

Theorem 4.2.3. Let An be the n-bit 1-grain-error channel. The vector

zy =
1

ry

(
1 +

2uy − 2bRy − bLy − 2

(ry + 2)(ry + 1)

)−1

is feasible for κ∗(An).

The proof can be found in Section 4.2.4. By applying the techniques used

in the proof of Theorem 4.2.2, it can be shown that Theorem 4.2.3 implies

that κ∗(An) = 2n+1

n+2
(1 +O(n−2)).

4.2.4 Proofs

Theorem 4.2.1. Let

f(r, u, b) ,
1

r

(
1 +

max(2u− b− 2, 0)

(r + 2)(r + 1)

)−1

.

Then the vector zy = f(ry, uy, by) is feasible for κ∗(An), so κ∗(An) ≤ 1T z.
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Proof: By Lemma 4.2.1, ϕ ◦ ϕ(1) is feasible for κ∗(An). From the

definition of ϕ,
zy

ϕ(z)y
= min

x∈N(y)
(Anz)x.

Each x ∈ [2]n has rx total subsequences, so (Anz
′′)x = rx,

1

ϕ(1)y
= min

x∈N(y)
(An1)x = min

x∈N(y)
rx = ry,

and ϕ(1)y = 1/ry.

Of the subsequences of x, ux − bx have rx − 2 runs, bx have rx − 1 runs,

and rx − ux have rx runs, so

(Anϕ(1))x

=
∑

y∈N(x)

1

ry

=
ux − bx
rx − 2

+
bx

rx − 1
+
rx − ux
rx

= 1 + ux

(
1

rx − 2
− 1

rx

)
+ bx

(
1

rx − 1
− 1

rx − 2

)
= 1 +

2ux(rx − 1)− bxrx
rx(rx − 1)(rx − 2)

= 1 +
(2ux − bx)(rx − 2) + 2(ux − bx)

rx(rx − 1)(rx − 2)

≥ 1 +
2ux − bx
rx(rx − 1)

.

The inequality follows from ux − bx ≥ 0.

Let y ∈ [2]n−1 be a string and let x ∈ [2]n be a supersequence of y. It

is possible to create a supersequence by extending an existing run, adding a

new run at an end of the string, or by splitting an existing run into three

new runs, so rx ≤ ry + 2 The only way to destroy a unit run in y is to extend

it into a run of length two, so ux ≥ uy − 1. Similarly, ux − bx ≥ uy − by − 1,

so 2ux − bx ≥ 2uy − by − 2. Applying these inequalities to (Anϕ(1))x, we

61



conclude that

ϕ(1)y
(ϕ ◦ ϕ(1))y

= min
x∈N(y)

(Anϕ(1))x

≥ 1 +
max(2u− b− 2, 0)

(ry + 2)(ry + 1)
,

(ϕ ◦ ϕ(1))y ≤
1

ry

(
1 +

max(2u− b− 2, 0)

(ry + 2)(ry + 1)

)−1

.

Lemma 4.2.3. There are 2
(
n−1
n−r

)
strings in [2]n with r runs.

There are 2
(
n−r−1
n−2r+u

)(
r

r−u

)
strings in [2]n with r runs and u unit runs.

For r ≥ 2, there are 2
(
n−r−1
n−2r+u

)(
r−2
u−b

)(
2
b

)
strings in [2]n with r runs, u unit

runs and b external unit runs.

Proof: For k ≥ 1, there are
(
n+k−1
n

)
ways to partition n identical items

into k distinguished groups. Thus there are
(
n−lk+k−1
n−lk

)
=
(
n−(l−1)k−1

n−lk

)
ways

to partition n items into k groups such that each group contains at least l

items.

A binary string is uniquely specified by its first symbol and it run length

sequence. We have n symbols to distribute among r runs such that each

run contains at least one symbol, so there are
(
n−1
n−r

)
arrangements. This

proves the first claim. We can also specify the run sequence of a string by

giving the locations of the unit runs and the lengths of the longer runs. The

r− u runs of length at least two can appear in r positions so there are
(

r
r−u

)
arrangements, We have n−u symbols to distribute among r−u runs such that

each run contains at least 2 symbols, so there are
(
n−u−(r−u)−1
n−u−2(r−u)

)
=
(
n−r−1
n−2r+u

)
arrangements, which proves the second claim. As long as r ≥ 2, the internal

unit runs two can appear in r − 2 positions and the external unit runs can

appear in two positions, so there are
(
r−2
u−b

)(
2
b

)
possible arrangements, which

proves the third claim.

Note that Lemma 4.2.3 uses the polynomial definition of binomial co-

efficients, which can be nonzero even when the top entry is negative. For

example, the number of strings of length n with n runs, n unit runs, and two

external unit runs is 2
(−1

0

)(
n−2
n−2

)(
2
2

)
= 2.
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For compactness, let

E
r
[f(r)] =

1

2n−1

∑
r≥1

(
n− 1

n− r

)
f(r),

and let E
u,b

[f(r, u, b)] equal

1(
n−1
n−r

) r∑
u=0

2∑
b=0

(
n− r − 1

n− 2r + u

)(
r − 2

u− b

)(
2

b

)
f(r, u, b)

for r > 1 and let Eu,b[f(1, u, b)] = f(1, 0, 0).

If zx = f(rx, ux, bx), then

1T z =
∑
x∈[2]n

f(rx, ux, bx)

= 2f(1, 0, 0)+

2
n∑
r=2

r∑
u=0

2∑
b=0

(
n− r − 1

n− 2r + u

)(
r − 2

u− b

)(
2

b

)
f(r, u, b)

= 2n E
r

[
E
u,b

[f(r, u, b)]

]
. (4.2)

Analysis of the feasible point constructed in Theorem 4.2.1 relies on the

following identities. For k ≥ 0,

E
r

[
1(

r+k−1
r−1

)] =

∑
r≥1

(
n+k−1
n−r

)
2n−1

(
n+k−1
n−1

)
≤ 2k(

n+k−1
n−1

) (4.3)

E
u,b

[(
u

u− k

)]
=

(
r

r−k

)(
r−1

r−k−1

)(
n−1

n−k−1

) (4.4)

E
u,b

[b] =
2(r − 1)

n− 1
. (4.5)

Each of these can be easily derived from the binomial theorem and Vander-

monde’s identity.

Theorem 4.2.2. For n ≥ 2,

κ∗(An) ≤ 2n

n+ 1

(
1 +

26

n(n− 1)

)
.
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Proof: For n ≤ 13, this follows from the bound of Kulkarni and

Kiyavash [4]. This proof covers n ≥ 10.

From Theorem 4.2.1 and (4.2), we have κ∗(An+1) ≤ 2n Er[Eu,b[f(r, u, b)]]

where

f(r, u, b) =
1

r

(
1 +

max(2u− b− 2, 0)

(r + 2)(r + 1)

)−1

.

For x > 0, (1 + x)−1 ≤ 1− x+ x2, so f(r, u, b) is at most

1

r

(
1− max(2u− b− 2, 0)

(r + 2)(r + 1)
+

(max(2u− b− 2, 0))2

(r + 2)2(r + 1)2

)
≤ 1

r
− 2u− b− 2

(r + 2)(r + 1)r
+

2u(2u− 2)

(r + 2)2(r + 1)2r
.

We will bound this term by term using (4.3), (4.4), and (4.5). First

E
r

[
E
u,b

[
1

r
− 2u− b− 2

(r + 2)(r + 1)r

]]
= E

r

[
1

r
− 1

(r + 2)(r + 1)r

(
2
r(r − 1)

n− 1
− 2(r − 1)

n− 1
− 2

)]
= E

r

[
1

r
− 2

n− 1
· (r − 1)2 − n+ 1

(r + 2)(r + 1)r

]
=

2

n− 1
E
r

[
n− 1

2r
− 1

r
+

5

(r + 1)r
+

n− 10

(r + 2)(r + 1)r

]
=

2

n− 1
E
r

[
n− 3

2r
+

5

(r + 1)r
+

n− 10

(r + 2)(r + 1)r

]
≤ 2

n− 1

(
n− 3

n
+

20

(n+ 1)n
+

8n− 80

(n+ 2)(n+ 1)n

)
=

2

n− 1

(
n2 − n− 6

(n+ 2)n
+

28n− 40

(n+ 2)(n+ 1)n

)
=

2

n+ 2

(
n2 − n− 6

n(n− 1)
+

28n− 40

(n+ 1)n(n− 1)

)
=

2

n+ 2

(
1 +

22n− 46

(n+ 1)n(n− 1)

)
<

2

n+ 2

(
1 +

22

(n+ 1)n

)
.
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Second,

E
r

[
E
u,b

[
4u(u− 1)

(r + 2)2(r + 1)2r

]]
= E

r

[
4

(r + 2)2(r + 1)2r
· r(r − 1)2(r − 2)

(n− 1)(n− 2)

]
< E

r

[
4

(r + 2)(r + 1)
· (r − 1)(r − 2)

(n− 1)(n− 2)
· 1

r

]
≤ E

r

[
4

(r + 2)(r + 1)
· (r + 2)(r + 1)

(n+ 2)(n+ 1)
· 1

r

]
= E

r

[
4

(n+ 2)(n+ 1)
· 1

r

]
≤ 8

(n+ 2)(n+ 1)n
.

Combining these two terms, we get

κ∗(An+1) ≤ 2n
2

n+ 2

(
1 +

22

(n+ 1)n
+

4

(n+ 1)n

)
.

Lemma 4.2.2. Let zy = f ′(ry, uy, by). Then

1T z ≥ 2n − 2

n+ 1

(
1 +

1

n− 1
− 3

(n− 1)(n− 2)

)
.

Proof:

f ′(r, u, b) ≥ 1

r

(
1− u− b

r2

)
≥ 1

r

(
1− u− b

(r − 1)(r − 2)

)
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2n E
r

[
E
u,b

[
1

r

(
1− u− b

(r − 1)(r − 2)

)]]
= 2n E

r

[
1

r

(
1− 1

(r − 1)(r − 2)

(
r(r − 1)

n− 1
− 2(r − 1)

n− 1

))]
= 2n E

r

[
1

r

(
1− 1

n− 1

)]
= 2n

2n − 1

2n−1n

(
1− 1

n− 1

)
=

2n+1 − 2

n+ 2

(
(n+ 2)(n− 2)

n(n− 1)

)
=

2n+1 − 2

n+ 2

(
1 +

1

n
− 3

n(n− 1)

)
.

Theorem 4.2.3. Let An be the n-bit 1-grain-error channel. The vector

zy =
1

ry

(
1 +

2uy − 2bRy − bLy − 2

(ry + 2)(ry + 1)

)−1

is feasible for κ∗(An).

Proof: By Lemma 4.2.1, ϕ ◦ ϕ(1) is feasible for κ∗(A). From the

definition of ϕ,
zy

ϕ(z)y
= min

x∈N(y)
(Anz)x.

Each x ∈ [2]n has rx total neighbors, so (Anz
′′)x = rx,

1

ϕ(1)y
= min

x∈N(y)
(A1)x = min

x∈N(y)
rx = ry,

and ϕ(1)y = 1/ry.

Of the neighbors of x, ux− bLx − bRx have rx− 2 runs, bLx have rx− 1 runs,
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and rx − ux + bRx have rx runs, so (Anϕ(1))x equals∑
y∈N(x)

1

ry

=
ux − bLx − bRx

rx − 2
+

bLx
rx − 1

+
rx − ux + bRx

rx

= 1 + (ux − bRx )

(
1

rx − 2
− 1

rx

)
+ bLx

(
1

rx − 1
− 1

rx − 2

)
= 1 +

2(ux − bRx )(rx − 1)− bLxrx
rx(rx − 1)(rx − 2)

= 1 +
(2ux − 2bRx − bLx )(rx − 2) + 2(ux − bRx − bLx )

rx(rx − 1)(rx − 2)

≥ 1 +
2ux − 2bRx − bLx
rx(rx − 1)

.

Let x ∈ [2]n be an input and let y ∈ N(x). A grain error can leave the

number of runs unchanged, destroy a unit run at the start of x, or destroy a

unit run in the middle of x, merging the adjacent runs. Thus ry ≥ rx − 2 .

The only way to produce a unit run in y is shorten a run of length two in x,

so ux ≥ uy − 1. Similarly, 2ux − 2bRx − bLx ≥ 2uy − 2bRy − bLy − 2. Applying

these inequalities to (Aϕ(1))x, we conclude that

ϕ(1)y
(ϕ ◦ ϕ(1))y

= min
x∈N(y)

(Aϕ(1))x ≥ 1 +
2uy − 2bRy − bLy − 2

(ry + 2)(ry + 1)
,

(ϕ ◦ ϕ(1))y ≤
1

ry

(
1 +

2uy − 2bRy − by − 2

(ry + 2)(ry + 1)

)−1

.

4.3 The degree sequence upper bound

If a channel A ∈ {0, 1}X×Y is input regular, then the local degree bound

reduces to the minimum degree bound. We have A1 = 1d and κ∗ld(A,1) =

κ∗md(A,1) = |Y |/d . The advantage of the local degree bound is robustness

to variation in the input degree distribution. The degree threshold upper

bound is an alternative technique for dealing with nonuniform combinatorial

channels that predates the local degree bound by many decades. Levenshtein

applied this idea to obtain an upper bound on codes for the deletion channel
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[14]. Kulkarni and Kiyavash applied the local degree bound to the deletion

channel and showed that the resulting bound improved on Levenshtein’s

result [4].

The degree threshold bound is a simple generalization of the minimum

degree bound and the basic idea behind the bound does not require linear

programming. Pick a degree threshold d and let S = {x ∈ X : |N(x)| < d},
the set of low degree inputs. Each member of S appears at most once in the

maximum packing. Applying the minimum degree bound to X \ S gives

p(A) ≤ |X| − |S|
d

+ |S|.

This approach is effective when the degree distribution concentrates around

its mean but still has a few vertices with much lower degree.

This idea can be taken a bit further. For any code C ⊆ X,
∑

x∈C |N(x)| ≤
|Y |. The size of the largest input set C satisfying this inequality is an upper

bound on the size of the largest code. This set can be found greedily by

repeatedly adding the minimum degree remaining input vertex. Call this the

degree sequence upper bound.

The degree sequence upper bound is monotonic and decreasing in the

degree of each vertex. The degree threshold bound corresponds to a simplified

degree sequence containing only degrees 1 and d.

Although its definition does not require a linear program, the degree

sequence bound still has a nice linear programming interpretation. Taking

this perspective, we compare the performance of the degree sequence bound

to the local degree bound for arbitrary channels and show that the local

degree bound is always better.

4.3.1 Linear programs for the degree sequence bound

While the local degree upper bound is naturally expressed as a feasible point

in the program for κ∗, the easiest linear programming interpretation of the

degree sequence bound works differently. The degree sequence upper bound

is the value of a further relaxation of the program for p∗. It turns out that

the minimum degree upper bound is easily expressed as both a dual feasible

point and a primal relaxation. Section 4.2 included the former interpretation

and the latter is given here. For a channel A ∈ {0, 1}X×Y and a vector
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t ∈ RY , define

p∗md(A, t) = max
w∈RX

1Tw

s. t. w ≥ 0

tTATw ≤ tT1.

The solution to this program puts all of the weight on the minimum degree

input argminx(At)x, so p∗md(A, t) = κ∗md(A, t).

Recall that A1 is the vector of input degrees of the channel graph of A.

Thus the main constraint of the program for κ∗md(A,1) is
∑

x∈X |N(x)|wx ≤
|Y |. In a code, each vertex can only be included once. We can capture this

fact and improve the upper bound by adding the additional constraint w ≤ 1

to the program.

Definition 4.3.1. For a channel A ∈ {0, 1}X×Y and a vector t ∈ RY such

that (At)x > 0 for all x ∈ X, define the degree sequence bound

p∗ds(A, t) = max
w∈RX

1Tw

s. t. 0 ≤ w ≤ 1

tTATw ≤ tT1.

The degree sequence upper bound is tight: for a given input degree distri-

bution and output space size, there is some channel where the neighborhoods

of the small degree inputs are disjoint. For this channel, the degree sequence

upper bound is tight. The bound cannot be improved with incorporating

more information about the structure of the channel.

The local degree upper bound, which incorporates information about the

channel beyond the degree sequence, is always at least as good as the degree

sequence bound. To see this, we associate the degree sequence bound with a

particular feasible point in the program for κ∗(A).

Lemma 4.3.1. Let A ∈ {0, 1}X×Y be a channel and let t ∈ RY such that

(At)x > 0 for all x ∈ X. Then there is a vector ψA(t) ∈ RY such that

• 1TψA(t) = p∗ds(A, t)

• ϕA(t) ≤ ψA(t)

• ψA(t) is feasible in the program for κ∗(A).
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Proof: The vector At contains the weighted degree of each input under

the output weighting t. For d ∈ R, define the following sets of inputs:

S(d) = {x ∈ X : (At)x < d},

S ′(d) = {x ∈ X : (At)x ≤ d}.

Define f(d) = 1TS(d)At, the sum of the weighted degrees of all of the inputs

with weighted degree less than d, and f ′(d) = 1TS′(d)At. Both f(d) and f ′(d)

are nondecreasing functions of d and f(d) ≤ f ′(d). Because f(0) = 0 ≤
1T t ≤ 1TAt = f ′(1T t), there is some d such that f(d) ≤ 1T t ≤ f ′(d). Then

there is some λ satisfying 1T t = λf ′(d) + (1− λ)f(d).

First we establish that p∗ds(A, t) = (1−λ)|S(d)|+λ|S ′(d)| by constructing

a primal feasible point and a dual feasible point with this value.

The point w = (1 − λ)1S(d) + λ1S′(d) is feasible for the primal program

for p∗ds(A, t). This puts a weight of one, the maximum possible weight, on

each of the inputs with degree below the threshold and fractional weight of

λ on inputs with degree equal to the threshold. To see that the nontrivial

feasibility condition is satisfied, observe that 1TATw = (1−λ)f(d)+λf ′(d) =

1T t.

The dual program for p∗ds(A, t) is

min
c∈R, z∈RX

1T tc+ 1T z

s. t. c ≥ 0

z ≥ 0

Atc+ z ≥ 1.

The point c = 1
d
, zx = max(0, 1− (At)x

d
) is feasible in the dual program. Note

that zx > 0 exactly for those x ∈ S(d). The value of this point is

1T t

d
+
∑
x∈S(d)

d− (At)x
d

= |S(d)|+
1T t− 1TS(d)At

d

= |S(d)|+ 1T t− f(d)

d

= |S(d)|+ λ(f ′(d)− f(d))

d
= |S(d)|+ λ(|S ′(d)| − |S(d)|).
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The final equality follows from the fact that each vertex in S ′(d) \ S(d) has

weighted degree d.

Next, we construct ψA(t) from (c, z):

ψA(t)y = ty

(
c+

∑
x

zxAx,y
(At)x

)
.

To establish the first claim, we compute

1TψA(t) = 1T tc+
∑
y

ty
∑
x

zxAx,y
(At)x

= 1T tc+
∑
x

zx
(At)x

∑
y

Ax,yty

= 1T tc+ 1T z.

Substituting the values c = 1
d

and zx = max(d−(At)x
d

, 0), we obtain

ψA(t)y
ty

=
1

d
+
∑

x∈N(y)

1

(At)x
max

(
d− (At)x

d
, 0

)
=

1

d
+
∑

x∈N(y)

max

(
1

(At)x
− 1

d
, 0

)
≥ 1

d
+ max

x∈N(y)
max

(
1

(At)x
− 1

d
, 0

)
= max

x∈N(y)
max

(
1

(At)x
,

1

d

)
≥ max

x∈N(y)

1

(At)x

=
1

ty
ϕA(t).

This establishes the second claim.

Because ϕA(t) is feasible in κ∗(A), ψA(t) is as well, which establishes the

third claim.

Theorem 4.3.1. Let A ∈ {0, 1}X×Y be a channel and let t ∈ RY such that

(At)x > 0 for all x ∈ X. Then κ∗ld(A, t) ≤ p∗ds(A, t).

Proof: This follows immediately from the first and second claims of

Lemma 4.3.1.

This interpretation of the degree sequence bound allows us to iteratively
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construct dual feasible points, but these points are dominated by those pro-

duced by the local degree algorithm. However, this interpretation does give

some intuition about the source of the superior performance of the local de-

gree bound. When multiple low-degree inputs have a common output, the

local degree bound takes advantage of this fact. This information is not

contained in the degree distribution.

There are several open questions regarding families of channels with the

same confusability graphs. Under what conditions can we find these families?

What is the relationship between these families and distance metrics? When

we have a family of channels that are not input or output regular, what

should we do to get the best bounds?

4.4 Conclusion

We have discussed two aspects of the problem of finding upper bounds on the

size of codes for combinatorial channels: fractional coverings for a particular

channel and families of channels with the same codes. In both cases, there is a

well-defined optimal version of the bound: for a particular channel there is the

minimum weight fractional covering, and for a family there is the minimum

fractional clique cover of the confusion graph. In both cases, finding these

optimal bounds can be intractable.

When the channel is input-regular, the minimum degree, degree sequence,

and local degree upper bounds here are equivalent, but not necessarily equal

to the fractional covering number. The local degree bound is always at least

as good as the degree sequence bound but uses more information about the

structure of the channel. The local degree bound can be iterated to obtain

stronger bounds. The best sphere-packing bound for a given channel can be

much weaker than the best sphere-packing bound for some other channel that

admits the same codes. Consequently, finding a family of channels equivalent

to the channel of interest can be very powerful.
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CHAPTER 5

LOCALLY BIJECTIVE COVER
PRESERVING HOMOMORPHISMS

5.1 Locally bijective poset homomorphisms

In Section 2.3, we defined three types of homomorphisms between posets.

The strongest of these was a cover preserving map. If a map f : X → Z

is cover preserving, then for all x ∈ X and x̂ ∈ U1(x), f(x̂) ∈ U1(f(x)).

Another way to say this is that the partial function from U1(x) to U1(f(x))

defined by f is in fact a function. In this chapter, we will study even stronger

notions of homomorphism.

Definition 5.1.1. Let f be a cover preserving map X → Z. Call f locally

injective if for x ∈ X, the induced function U1(x) → U1(f(x)) is injective.

Define locally surjective and locally bijective analogously.

5.1.1 Properties

The following definitions will be useful for analyzing such maps. Recall that

x ≺ y means that x is covered by y, i.e. x < y and there are no points in

between them.

Definition 5.1.2. Let X be a poset.

• A set S ⊆ X is a chain of X if all of its elements are comparable, i.e.,

the elements can be indexed by [|S|] such that x0 < x1 < . . . < x|S|−1.

• A chain S is rooted if it contains ⊥, the bottom element of X.

• A chain S is skipless if its elements can be indexed by [|S|] such that

x0 ≺ x1 ≺ . . . ≺ x|S|−1.

For compactness, we will refer to an n-element rooted skipless chain as

an n-chain.
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Perm Tree2 [2]∗ Mahonian Y
PtT BTtS Weight Mod

〈5, 2, 3, 0, 1, 4〉

〈2, 3, 0, 1, 4〉

〈2, 3, 0, 1〉

〈2, 0, 1〉

〈0, 1〉

〈0〉

〈〉

〈0, 1, 0, 1, 1〉

〈1, 0, 1, 1〉

〈1, 0, 1〉

〈0, 1〉

〈1〉

〈〉

Nothing

(6, 11)

(5, 8)

(4, 4)

(3, 2)

(2, 1)

(1, 0)

(0, 0)

(6, 5)

(5, 3)

(4, 0)

(3, 2)

(2, 1)

(1, 0)

(0, 0)

Figure 5.1: Corresponding chains in (Perm, subseq), (Nothing t
Tree2, subtree), (Nothing t [2]∗, subseq), (Mahonian,≤), (Y,≤).
These posets and the locally bijective cover reserving maps connecting them
will be defined throughout the chapter.

Lemma 5.1.1. Let X and Z each be a ranked poset with a bottom element

and let f : X → Z be locally surjective. Let z ∈ Z and x ∈ f−1(z). Then

for each n, f induces a surjection between the length-n skipless chains of

X starting at x and the length-n skipless of Z starting at z. If f is locally

bijective, this is a bijection.

Proof: Let T = {t0, . . . , tn−1} ⊆ Z be a skipless chain with t0 = z.

For each i, if we have si such that f(si) = ti, from the definition of locally

surjective, there is some si+1 such that si+1 � si and f(si+1) = ti+1. If f

is locally bijective, si+1 is unique. Because f(x) = z, by induction we can

construct a skipless chain S = {s0, . . . , sn−1} ⊆ X such that f(si) = ti.

Figure 5.1 illustrates corresponding chains in five posets that are linked

by a sequence of locally bijective maps.

Lemma 5.1.2. Let X and Z each be a ranked poset with a bottom element

and let f : X → Z be a cover preserving map. The following properties are

equivalent:

1. f is surjective and locally surjective.
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2. f is locally surjective and bottom preserving (f(⊥) = ⊥).

3. f is surjective and for all z ∈ Z, y ∈ U(z), and w ∈ f−1(z), there is

some x ∈ U(w) such that f(x) = y.

Proof:

(1) =⇒ (2): Because f is cover preserving and r(⊥) = 0 in both X and

Z, for all x ∈ X, r(x) = r(x)− r(⊥) = r(f(x))− r(f(⊥)) ≤ r(f(x)). Because

f is surjective, there is some x such that f(x) = ⊥. Then r(x) ≤ r(f(x)) =

r(⊥) = 0, so x = ⊥.

(2) =⇒ (3): For all z ∈ Z, y ∈ U(z), there is a skipless chain T =

{tr(z), . . . , tr(y)} ⊆ Z, with tr(z) = z and tr(y) = y. From Lemma 5.1.1 there is

a skipless chain S = {sr(z), . . . , sr(y)} ⊆ X such that f(si) = ti. In particular,

f(sr(y)) = y.

We have f(⊥) = ⊥, so for any y ∈ Z there is some x ∈ f−1(y), i.e. f is

surjective.

(3) =⇒ (1): Replacing y ∈ U(z) with y ∈ U1(z) gives the definition of

locally surjective.

We will be primarily interested in locally bijective maps to and from

([q]∗, subseq). Recall from Section 2.7 that ([q]∗, subseq) is not a lattice

or even a semilattice. A locally surjective map from a meet semilattice to

another poset has the following useful property.

Lemma 5.1.3. Let X be a meet semilattice, let Z be a ranked poset with a

bottom element, and let f : X → Z be surjective and locally surjective. Let

z, z′ ∈ Z, let y be a maximal element of D(z) ∩ D(z′), and let w ∈ f−1(y).

Then there are x, x′ ∈ U(w) such that f(x) = z, f(x′) = z′, and x ∧ x′ = w.

Proof: Because z, z′ ∈ U(y), from Lemma 5.1.2 there are x, x′ ∈ U(w)

such that f(x) = z, f(x′) = z′. We have x ≥ x ∧ x′ and x′ ≥ x ∧ x′.
Because f is order preserving, z ≥ f(x∧x′) and z′ ≥ f(x∧x′). Equivalently,

f(x∧x′) ∈ D(z)∩D(z′). Because y is maximal in D(z)∩D(z′), f(x∧x′) 6> y.

On the other hand, x∧ x′ ≥ w so f(x∧ x′) ≥ y, so f(x∧ x′) = y. Because f

is rank preserving, r(x ∧ x′) = r(y) = r(w), and x ∧ x′ is comparable to w so

they must be equal.

In other words, if D(z) ∩ D(z′) has many maximal elements, z and z′

must have many preimages in f .
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For any ranked poset with bottom element Z, there is at least one semi-

lattice X and map f : X → Z such that f is bijective and locally surjective

map to Z. Take X to be the rooted skipless chains of Z ordered by the prefix

relation. This is a meet semilattice: the meet of two chains is their longest

common prefix. However, it is not a lattice. Then let f map each chain to

its maximal element. This is clearly surjective and locally bijective.

5.2 Permutations and Mahonian statistics

A string of length n over the alphabet [n] is a permutation if each symbol

appears exactly once. Let [n]! be the set of permutations of [n]. Let

Perm =
⊔
n∈N

[n]!.

〈〉 〈0〉

〈0, 1〉

〈1, 0〉

〈0, 1, 2〉

〈0, 2, 1〉

〈2, 0, 1〉

〈1, 0, 2〉

〈1, 2, 0〉

〈2, 1, 0〉

〈0, 1, 2, 3〉

〈0, 1, 3, 2〉

〈0, 3, 1, 2〉

〈3, 0, 1, 2〉

〈1, 0, 2, 3〉

〈1, 0, 3, 2〉

〈1, 3, 0, 2〉

〈3, 1, 0, 2〉

. . .

. . .

Figure 5.2: The cover relations of (Perm, subseq) in ranks 0 through 3, and

part of rank 4.

Definition 5.2.1. Let (Perm, subseq) be the subsequence partial order on
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permutations of all lengths. For x ∈ [n]! and y ∈ [n + 1]!, x ≺ y if x is

produced by deleting the symbol n from y.

(Perm, subseq) is depicted in Figure 5.2. The rank of a permutation of

[n] in this poset is n.

A permutation statistic is a map Perm → N. Well-known examples

include the parity of permutation, the number of cycles, the number of in-

versions, and the number of descents. In many cases, multiple permuta-

tion statistics have the same distribution of values over all permutations.

A permutation statistic f is Mahonian if its distribution has the following

generating function [37–41]:

∑
π∈[n]!

zf(π) =
∏
i∈[n]

(1 + z + . . .+ zi) =
∏
i∈[n]

1− zi+1

1− z
.

There is another simple way to achieve this distribution. Let Sn =
∏

i∈[n][i+1]

and let f : Sn → N, f(s) =
∑

i∈[n] si. Then the distribution of f over Sn is

the same as the distribution of a Mahonian statistic over [n]!.

The most well-known Mahonian statistic is the number of inversions of a

permutation:

inv(π) =

∣∣∣∣{(i, j) ∈
(

[|π|]
2

)
: πi > πj

}∣∣∣∣ .
One proof that this is Mahonian involves the subsequence order on permu-

tations. If we have a permutation of [n − 1] and insert the symbol n, we

preserve all of the existing inversions and create between 0 and n − 1 new

inversions, depending on the number of symbols to the right of the inserted

n. In fact, this argument shows that π → (|π|, inv(π)) is a cover preserving

locally bijective map from (Perm, subseq) to the following poset, which is

depicted in Figure 5.3

Definition 5.2.2. Let Mahonian = {(a, b) ∈ N2 : b ≤
(
a
2

)
}. Define the

poset (Mahonian,≤) by the cover relations

(a, b) ≺ (c, d) ⇐⇒ (c = a+ 1) ∧ (0 ≤ d− b ≤ a).

Thus U1((a, b)) = {(a+ 1, b+ i) : i ∈ [a+ 1]}.
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(0, 0) (1, 0)
(2, 0)

(2, 1)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

(4, 5)

(4, 6)

Figure 5.3: Cover relations in ranks 0 through 4 of (Mahonian,≤).

A second famous Mahonian statistic is the major index of a permutation.

We will define this as maj = vt ◦UpDown. The proof that this statistic is

Mahonian is somewhat more involved The first proof is due to MacMahon

[42]. More combinatorial proofs followed much later [43,44].

Definition 5.2.3. Define the function taking a permutation to its up-down

sequence, UpDown : Perm→ Nothingt [2]∗, as follows. For a nonempty

permutation π, let UpDown(π) ∈ [2]|π|−1 such that

UpDown(π)i =

1 πi < πi+1

0 πi > πi+1

and let UpDown(〈〉) = Nothing.

Define the Varshamov-Tenengolts weight of a binary string as follows:

vt : Nothing t [2]∗ → N

vt(Nothing) = 0

vt(x) =
∑
i∈[|x|]

(i+ 1)xi

Weight : Nothing t [2]∗ →Mahonian

Weight(x) = (r(x), vt(x)).

Lemma 5.2.1. UpDown : (Perm, subseq) → ([2]∗, subseq) is a locally

bijective cover preserving map.
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Proof: Let π be a permutation of [n] and let x = UpDown(p), and

let x̂ � x. Then there is a unique π̂ � π such that x̂ = UpDown(π̂). There

may be multiple ways to decompose x̂ as x̂ = u + 〈j〉 + v where x = u + v.

However, exactly one of the following decompositions exists:

1. x̂ = 〈0〉+ x,

2. x̂ = x+ 〈1〉,

3. x̂ = u+ 〈10〉+ v and x = u+ 〈1〉+ v,

4. x̂ = u+ 〈10〉+ v and x = u+ 〈0〉+ v.

These decompositions correspond to the following rules about extending runs:

only extend a run of zeros by inserting a zero at the left end and only extend

a run of ones by inserting a one at the right end.

In the first case, let π̂ = 〈n〉 + π. In the second case, let π̂ = π + 〈n〉.
In the third and fourth cases, let π̂i = n, where i = |u| + 1. That is,

π̂ = a + 〈n〉 + b, where π = a + b and UpDown(a) = u. In each case, it is

clear that x̂ = UpDown(π̂).

Lemma 5.2.2. Weight : (Nothing t [2]∗, subseq) → (Mahonian,≤)

is a locally bijective cover preserving map.

Proof: We need to show that for all x ∈ Nothing t [2]∗, Weight

bijectively maps U1(x) to U1(Weight(x)). If x = Nothing, U1(x) = {〈〉}
and U1(Weight(x)) = U1((0, 0)) = {(1, 0)} so we have a trivial bijection.

Now let x ∈ [2]∗ and let #(x) be the composition of x. That is, # :

[2]∗ → N[2], #(x)0 is the number of 0 symbols in x, and #(x)1 is the number
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of 1 symbols in x. Let #(x) = (k0, k1) and let n = k0 + k1. Then

vt(x) =
∑
j∈[n]

(j + 1)xj

=
∑

j∈[n]:xj=1

(j + 1)

=
∣∣{(i, j) ∈ [n]2 : i ≤ j, xj = 1

}∣∣
=
∣∣{(i, j) ∈ [n]2 : i ≤ j, xi = xj = 1

}∣∣+∣∣{(i, j) ∈ [n]2 : i < j, xi = 0, xj = 1
}∣∣

=

(
k1 + 1

2

)
+
∣∣{(i, j) ∈ [n]2 : i < j, xi = 0, xj = 1

}∣∣
,

(
k1 + 1

2

)
+ g(x).

For y ∈ U1(x), either #(y) = (k0 + 1, k1) or #(y) = (k0, k1 + 1). For y

of the former type, vt(y)− vt(x) = g(y)− g(x). There are k1 + 1 strings of

the former type and for each these g(y) takes a different value. For y of the

latter type, vt(y)− vt(x) = k1 + 1 + g(y)− g(x). There are k0 + 1 strings of

the latter type and for each these g(y) takes a different value.

The property of being locally bijective and cover preserving is preserved

under composition, so

Weight ◦UpDown : (Perm, subseq)→ (Mahonian,≤)

Weight ◦UpDown = (π 7→ |π| ×maj(π))

is a locally bijective cover preserving map.

5.3 Varshamov-Tenengolts codes

The famous Varshamov-Tenengolts (VT) codes are closely connected to the

locally bijective maps that we have been describing.

Definition 5.3.1. Let Y = {(a, b) ∈ N2 : b ∈ [a + 1]}. Define the poset

(Y,Q) by the cover relations

(a, b) ≺ (c, d) ⇐⇒ (c− a = 1).
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Thus U1((a, b)) = {(a+ 1, d) : d ∈ [a+ 2]}.

(Y,≤) is depicted in Figure 5.4.

(0, 0) (1, 0)
(2, 0)

(2, 1)

(3, 0)

(3, 1)

(3, 2)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

Figure 5.4: The cover relations for ranks 0 through 3 of the (Y,≤) poset.

Define Mod : Mahonian→ Y such that Mod(a, b) = (a, b mod (a+1)).

Lemma 5.3.1. Mod : (Mahonian,≤)→ (Y,≤) is a locally bijective cover

preserving map.

Proof: The point (a, b) ∈ Mahonian is covered by the points (a +

1, b+ i) for i ∈ [a+ 1]. These are mapped by Mod to distict points in Y .

Recall that a set C ⊂ [q]n is an single deletion correcting code if for all

y ∈ [q]n−1, |U1(y) ∩ C| ≤ 1. C is single deletion perfect if |U1(y) ∩ C| = 1

for all y. The Varshamov-Tenengolts construction partitions [2]∗ into single

deletion perfect codes as follows. The ith VT code of length n is {x ∈ [2]n :

Mod(Weight(x)) = (n, i)}. Together, Lemma 5.2.2 and Lemma 5.3.1 give

the the Levenshtein decoding algorithm demonstrates for the Varshamov-

Tenengolts codes. The channel receiver knows that Mod(Weight(x)) =

(n, i) for any transmitted string x, i.e. the transmitted is using the ith VT

code. Given the received string y, compute (n − 1, j) = Weight(y). From

Lemma 5.3.1, there is a unique (n, ĵ) � (n − 1, j) such that Mod(n, ĵ) =

(n, i). From Lemma 5.2.2, there is a unique x � y such that Weight(x) =

(n, ĵ). This is the transmitted string.

5.4 Trees

In the next two sections, we will show that UpDown is the composition

of BTtS : Tree2 → [2]∗ with PtT : Perm → Nothing t Tree2. The
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intermediate objects in this composition of functions are binary trees. There

are several benefits to this perspective.

First, recall from Section 5.1 that we hope to learn something about the

structure of the subsequence order on binary strings by finding locally bijec-

tive maps into it. The function UpDown does not provide much structural

information about ([2]∗, subseq) because the set of permutations of [n] is too

big. In fact, the subsequence order on permutations is isomorphic to the pre-

fix order on the n-chains of ([2]∗, subseq), whose construction we described

at the end of Section 5.1. This construction works for arbitrary ranked posets,

so it does not tell us anything about ([2]∗, subseq) in particular. The set of

binary trees is much smaller, so the existence of a locally bijective map from

that poset gives us nontrivial structural information about ([2]∗, subseq).

Second, working with binary trees will open up a number of generaliza-

tions. While the appropriate q-ary generalization of a permutation is not

immediately obvious, the generalization of a binary tree to a q-ary tree is

straightforward. In Section 5.7, we will define TtS : Treeq → [q]∗. The

specialization of TtS will not turn out to be BTtS. This will give us a new

Mahonian permutation statistic.

Before we discuss the new results involving q-ary trees, we need to estab-

lish some background. In this section, we formally define trees, their vertex

sets, their order relation, and the function PtT.

Definition 5.4.1. A rooted q-ary tree has q slots for children. Each of these

slots either is empty or contains a q-tree:

Treeq = (Nothing tTreeq)
[q].

A q-ary tree t is characterized by its set of vertices, V (t). The natural

partial order on q-ary trees is the inclusion order on their vertex sets: in

(Treeq, subtree), t ≤ t′ when V (t) ⊆ V (t′). (NothingtTree2, subtree)

is depicted in Figure 5.5. Now we will formalize these notions.

The vertices of a tree can be indexed by q-ary strings. In fact, we will go

a step further and say that V (t) ⊂ [q]∗. In general, a vertex is synonymous

with the path through the tree to that vertex. For any t ∈ Treeq, 〈〉 ∈ V (t)

because the empty string is the root vertex. For a vertex x ∈ V (t) with

|x| > 0, i.e. a non-root vertex, the parent of x is the prefix of x of length

l − 1. This indexing scheme is implemented in Algorithm 5.4.
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Figure 5.5: The cover relations for ranks 0 through 4 of (Nothing t
Tree2, subtree).
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Algorithm 5 Vertex Indexing

VertexAt : Treeq × [q]∗ → (Nothing tTreeq)

VertexAt(t, x) = case x of

〈〉 : t

〈i〉+ x′ : case ti of

Nothing : Nothing

Treeq : VertexAt(ti, x
′)

Now we can define

V (t) = {x ∈ [q]∗ : VertexAt(t, x) ∈ Treeq}.

We can extend (Treeq, subtree) to obtain (Nothing t Treeq, subtree)

by defining V (Nothing) = ∅. The bottom element of (Treeq, subtree)

is the tree (i 7→ Nothing) and the bottom element of (Nothing t
Treeq, subtree) is Nothing. Thus for (Treeq, subtree), the canonical

rank function is r(t) = |V (t)|−1, the number of non-root vertices of t and for

(Nothing tTreeq, subtree) the canonical rank function is r(u) = |V (u)|.
Observe that for trees t and t′, V (t)∩V (t′) is also the vertex set of a tree.

Similarly, V (t)∪V (t′) is a valid vertex set. Thus both (Treeq, subtree) and

(Nothing tTreeq, subtree) are lattices.

There is an alternative recursive method of defining subtree.

Definition 5.4.2. Define the subtree order relation on Nothing tTreeq

as follows. For u, u′ ∈ Nothing tTreeq, let u ≤ u′ iff either

1. u = Nothing

2. u, u′ ∈ Treeq and for all i ∈ [q], ui ≤ u′i in subtree.

This definition is often more convenient for proofs.

5.4.1 Increasing vertex labelings, and chains

A labeling of a q-tree t assigns each vertex a unique label from the set [|V (t)|],
i.e. it is a bijection between V (t) and [|V (t)|]. A labeling is increasing if each
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〈5, 2, 3, 0, 1, 4〉

〈2, 3, 0, 1, 4〉

〈2, 3, 0, 1〉

〈2, 0, 1〉

〈0, 1〉

〈0〉

〈〉

0

12

3 45

Figure 5.6: The unique skipless chain of permutations from 〈2, 3, 0, 1, 4〉 to 〈〉,
the skipless chain of trees that results from PtT, and the increasing labeling
of the top tree that summarizes the chain.

nonroot vertex has a larger label than its parent. Clearly, the root vertex

must be assigned 0. A q-tree t with an increasing labeling corresponds to a

rooted skipless chain of q-trees that ends with t. To generate the chain, start

with the empty tree and add vertices in the order of the labeling.

Lemma 5.4.1. A (n+ 1)-vertex tree t has

(n+ 1)!∏
v∈V (t) |VertexAt(t, v)|

increasing labelings, where V (t) ⊂ [q]∗ is the set of vertices of t.

Proof: We prove this by induction on the size of the tree. An empty

tree has one increasing labeling, and 0!/
∏

v∈∅ |U(v)| = 1. Let t be nonempty

and let r be the root vertex of t. Let ki ∈ N be the size of ti, the ith child

of r. Let n =
∑

i∈[q] ki. The zero label must be assigned to r and there

are
(
n
k

)
ways to distribute the other n labels among the children. Because

V (t) = r t
⊔
i V (ti) and |U(r)| = n+ 1, there are(
n

k

)
n+ 1

|U(r)|
∏
i∈[q]

ki!∏
v∈V (ti)

|U(v)|
=

(n+ 1)!∏
v∈V (t) |U(v)|

increasing labelings of t.
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5.4.2 Permutations to Binary Trees

If we take a binary tree with an increasing labeling and traverse the vertices

in infix order, i.e. traverse the left subtree of a vertex, then the vertex itself,

then the right subtree, we obtain a permutation. In fact, every permutation

comes from a unique labeled binary tree. The reverse operation, producing

a binary tree from a permutation, is described in Algorithm 6.

Let S[n] be the set of strings of length n with symbols from S in which each

symbol appears at most once. We use this notation because the cardinality

of this set is the falling factorial |S|n =
∏

i∈[n](|S|− i) = |S|(|S|−1) . . . (|S|−
n+ 1).

Algorithm 6 Permutation to Binary Tree

PtT : N[n] → (Nothing tTree2)

PtT(π) = case π of

π = 〈〉 : Nothing

π 6= 〈〉 : (t0, t1)

where

j ← argmini∈[n] πi

t0 ← PtT(π[0,j−1])

t1 ← PtT(π[j+1,n−1])

The bijection between labeled binary trees and permutations is also a

bijection between n-chains of binary trees and n-chains or permutations.

Equivalently, PtT is locally bijective. An example of this is given in Fig-

ure 5.6.

5.5 Binary trees to binary strings

The following lemma previews our motivation for introducing Treeq.

Lemma 5.5.1. Let x ∈ [q]n. Then |U1(x)| = (q − 1)(n+ 1) + 1. Let t be an

(n+ 1)-vertex q-tree. Then |U1(t)| = (q − 1)(n+ 1) + 1.

We postpone the proof until Section 5.6, where we will also prove a more

refined statement. Because |U1(x)| = |U1(t)| if x and t have the same rank, a
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locally bijective map from q-ary trees to strings could exist. In this section,

we show that BTtS, which we mentioned at the start of Section 5.4, is such

a map for q = 2. BTtS is formally defined in Algorithm 5.5 and Figure 5.1

illustrates its effect on a chain of trees.

Algorithm 7 Binary Tree to Binary String

BTtS : Tree2 → [2]∗

BTtS(t) = BTtS(0, t0) + BTtS(1, t1)

BTtS2 : [2]× (Nothing tTree2)→ [2]∗

BTtS2(k, u) = case u of

Nothing : 〈〉
Tree2 : BTtS3(k, u)

BTtS3 : [2]×Tree2 → [2]∗

BTtS3(k, t) = case k of

0 : BTtS(t) + 〈0〉
1 : 〈1〉+ BTtS(t)

With BTtS defined, we can prove the claim that we made at the start

of Section 5.4.

Lemma 5.5.2. If π is a nonempty permutation, then

UpDown(π) = BTtS(PtT(π)).

Proof: We show this by induction on the length of the input per-

mutation. Let π ∈ [n + 1]! be a nonempty permutation. There are four

possibilities: n can appear at the start of π, at the end of π, neither, or (if

n = 0) both.

If π = 〈0〉, then UpDown(π) = 〈〉, PtT(π) = (i 7→ Nothing), and

BTtS((i 7→ Nothing)) = 〈〉.
If π = 〈n〉+ π′ for some nonempty π′, then n is larger than every symbol

in π′. Thus n is larger than the first symbol of π′ and UpDown(π) =

〈1〉+UpDown(π′). Also t = PtT(π) = (Nothing, t1) where t1 = PtT(π′).

Thus BTtS(t) = 〈〉 + (〈1〉 + BTtS(t1)). By the induction hypothesis, we

have that BTtS(t1) = UpDown(π′), UpDown(π) = BTtS(t).
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The case π = π′ + 〈n〉 is similar.

Finally, suppose π = π′ + 〈n〉 + π′′ for nonempty π′ and π′′. Then

UpDown(π) = UpDown(π′) + 〈01〉 + UpDown(π′′). Also t = PtT(π) =

(t0, t1) where t0 = PtT(π′) and t1 = PtT(π′′). Thus

BTtS(t) = (BTtS(t0) + 〈0〉) + (〈1〉+ BTtS(t1)).

By the induction hypothesis, we have that BTtS(t0) = UpDown(π′) and

BTtS(t1) = UpDown(π′′).

Now we will show that BTtS is locally bijective. The basic idea is as

follows. The mapping from t to x gives us a recursive decomposition of x into

shorter strings. By Lemma 5.5.3, the ends of these shorted strings satisfy

some constraints. When we add a new symbol to x to produce some y � x,

at each level of the decomposition, we must choose to which string we add

the new symbol. There will be only way to make these choices and preserve

the constraints on the ends of the strings at each level. This constructs a

unique tree u � t that maps to y.

The following definition has significantly more flexibility than the amount

required to analyze BTtS. However, this generality will be essential when

we consider TtS in Section 5.7 and the proofs there will be clearer if the

easier variants in this section are parallel.

Definition 5.5.1. For A,B ⊆ [q], define

Γ(A,B) = [q]0 ∪
⋃
`≥1

{y ∈ [q]` : y0 ∈ A, y`−1 ∈ B}.

That is, Γ(A,B) contains the empty string as well as strings that begin with

an element of A and end with an element of B.

Given this definition, the following properties of BTtS and its auxiliary

functions are immediate.

Lemma 5.5.3. Let t ∈ Tree2, let u ∈ NothingtTree2 and let k, l ∈ [2].

1. Let x = BTtS(t). Then x ∈ Γ([0, 1], [0, 1]).

2. Let x = TtS2(k, u). Then x ∈ Γ([k, 1], [0, k]).

3. Let x = TtS3(k, t). Then x ∈ Γ([k, 1], [0, k]).
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The following lemma is the fundamental tool behind the main results of

this section and of Section 5.7, where we need its full generality.

Lemma 5.5.4. Let [q] ⊇ A0 ⊇ A1 and B0 ⊆ B1 ⊆ [q] such that A1 and B0

partition [q]. Let s0 ∈ Γ(A0, B0), let s1 ∈ Γ(A1, B1), and let x = s0 + s1.

1. Then x ∈ Γ(A0, B1). If s0 is nonempty, then x ∈ Γ(A0, B0). If s1 is

nonempty, then x ∈ Γ(A1, B1).

2. Let x̂ ∈ Γ(A0, B1) such that x̂ � x. Then there are unique ŝ0 ≥ s0 and

ŝ1 ≥ s1 such that ŝ0 ∈ Γ(A0, B0), ŝ1 ∈ Γ(A1, B1), and x̂ = ŝ0 + ŝ1.

Proof:

Proof of 1: Consider the following four cases. If s0 = s1 = 〈〉, the claim

holds trivially. If both are nonempty, again it is trivial. If s0 = 〈〉 and s1

is nonempty, then x ∈ Γ(A1, B1). Because A0 ⊇ A1, x ∈ Γ(A0, B1) as well.

The fourth case is symmetric with the third.

Proof of 2: Let k be the symbol that can be inserted into x to produce

x̂. First suppose that the inserted k-symbol extends a run of k-symbols in

x. Because B0 and A1 are disjoint, if s0 and s1 are both nonempty, the last

symbol of s0 differs from the the first symbol of s1. Thus any run of k-symbols

in x is fully contained in either s0 or s1 and there is a unique way to extend

one of these segments to obtain ŝ0 and ŝ1. Extending a run preserves the

initial and final symbols of string, so ŝ0 and ŝ1 have the required properties.

If the inserted symbol does not extend a run, there are unique v, w ∈ [q]∗

such that x = v + w and x̂ = v + 〈k〉+ w. If the inserted symbol is internal

to some si, then that segment is extended by the inserted symbol to produce

ŝi. Because the insertion is internal, ŝi has the same initial and final symbols

as si and is still in Γ(Ai, Bi).

In the final case, x̂ = s0 + 〈k〉 + s1. Then k is a member of exactly one

of B0 and A1. If k ∈ B0, let ŝ0 = s0 + 〈k〉. If s0 is nonempty, ŝ0 is clearly in

Γ(A0, B0). If s0 is empty, k is the initial symbol of x̂, so k ∈ A0 and again

ŝ0 ∈ Γ(A0, B0). The k ∈ A1 case is analogous.

In particular, either ŝ0 � s0 and ŝ1 = s1 or ŝ0 = s0 and ŝ1 � s1.

The first claim of Lemma 5.5.5 establishes that BTtS is locally bijective.

Lemma 5.5.5. Let t ∈ Tree2, let u ∈ Nothing tTree2, and let k ∈ [2].

1. Let x = BTtS(t) and let x̂ � x. Then there is a unique t̂ � t such

that BTtS(t̂) = x̂.
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2. Let x = BTtS2(k, u) and let x̂ � x such that x̂ ∈ Γ([k, 1], [0, k]). Then

there is a unique û � u such that BTtS2(k, û) = x̂.

3. Let x = BTtS3(k, t) and let x̂ � x such that x̂ ∈ Γ([k, 1], [0, k]). Then

there is a unique t̂ � t such that BTtS2(k, t̂) = x̂.

Proof:

Proof of 1: We have x = s0+s1, where si = BTtS(i, ti). By Lemma 5.5.3,

s0 and s1 satisfy the conditions of Lemma 5.5.4: A0 = [0, 1], A1 = [0, 0],

B0 = [1, 1], and B1 = [0, 1]. From the second part of that lemma, there are

unique ŝ0 ≥ s0 and ŝ1 ≥ s1 such that x̂ = ŝ0 + ŝ1 There is exactly one j such

that ŝj � sj. Now we construct the desired t̂ as follows. From claim 2, there

is a unique t̂j � tj such that BTtS2(j, t̂j) = ŝj. For i 6= j, let t̂i = ti. Thus

t̂ � t and TreeToString(t̂) = x̂.

Proof of 2: If u is a tree, then by claim 3, there is a unique û � u such

that x = TtS3(k, û). Otherwise, u = Nothing, x = 〈〉, and x̂ = 〈k〉
because this is the only member of Γ([k, q − 1], [0, k]) of length one. Let

û = (i 7→ Nothing) and note that TtS2(k, û) = TtS3(k, û) = 〈k〉 = x.

Proof of 3: First consider k = 0. Let y = BTtS(t), so x = y + 〈0〉.
Because x̂ ∈ Γ([0, 1], [0, 0]) and x̂ is nonempty, the final symbol of x̂ must be

0 and we can let x̂ = ŷ+ 〈0〉. Clearly, ŷ � y. From claim 1, there is a unique

t̂ � t such that BTtS(t̂) = ŷ. We have BTtS2(0, t̂) = ŷ + 〈0〉, so we are

done.

The argument for k = 1 is analogous.

5.6 Compositions of q-ary strings and q-ary trees

The composition of a q-ary string is a standard concept. In this section we

introduce the composition of a q-ary tree. We observe that BToS preserves

composition (see Figure 5.7). We also introduce an action of permutations

of [q] on q-ary trees. This modifies compositions in the expected way. The

action will be essential to defining TtS in Section 5.7.
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Perm

Tree2 [2]∗

N[2] N

PtT
UpDown

BTtS

#
# Length

Sum

Figure 5.7: A commutative diagram summarizing the results of Sections 5.5

and 5.6.

The composition of a q-ary string is a vector in Nq. We write the com-

position function as # : [q]∗ → Nq. The ith entry of the composition

of a string is the number of i-symbols that appear in the string. Thus

#(x)i = |{j ∈ [n] : xj = i}|. Note that # is a cover preserving function

from ([q]∗, subseq) to (Nq,≤).

Algorithm 8 Compositions

TreeMap : ([q]→ (Nothing tTreeq → X))→ (Treeq → X[q])

TreeMap(f) = t 7→ (x0, . . . , xq−1)

where for i ∈ [q]

xi = f(i)(ti)

# : Treeq → N[q]

#(t) =
∑

i∈[q] ki

where k = TreeMap(#′)(t)

#′ : [q]→ (Nothing tTreeq → N[q])

#′(i)(u) = case u of

Treeq : 1{i} + #(u)

Nothing : 0

We can also define a composition for nonempty q-trees. We will abuse

notation and use # for this composition as well. The ith entry of the com-

position of a tree is the number of vertices that have a nonempty i-child, or

equivalently, the number of vertices that are the ith child of their parent.

Thus

#(t)i = |{x ∈ V (t) \ 〈〉 : x−1 = i}|.
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Like the string composition, the tree composition is a cover preserving func-

tion to (Nq,≤). Algorithm 8 gives a recursive definition of composition. This

formulation, which uses the TreeMap function and the auxilary function

#′, will be useful for proving properties of BTtS and TtS.

Now that we have defined the composition, we can state and prove a

stronger version of Lemma 5.5.1.

Lemma 5.6.1. Let k ∈ Nq and let n =
∑

i∈[q] ki. Let x ∈ [q]n such that

#(x) = k. Then U1(x) contains exactly n + 1− ki strings with composition

1{i} + k. Let t be an (n + 1)-vertex tree such that #(t) = k. Then U1(t)

contains exactly n+ 1− ki trees with composition 1{i} + k.

Proof: If xj = i, then the same string is produced by inserting a new

i-symbol before or after xj. There are n + 1 possible places to insert a new

i-symbol and ki equivalances between places, so there are n+ 1− ki unique

supersequences.

Each of the n + 1 vertices has a slot for a child of type i and ki of these

slots are filled, so there are n+ 1−ki ways to add a new vertex of type i.

We can also show that BTtS : Tree2 → [2]∗ preserves compositions:

# ◦BTtS = #.

Lemma 5.6.2. Let t ∈ Tree2, let u ∈ Nothing tTree2 and let k ∈ [q].

1. #(BTtS(t)) = #(t).

2. #(BTtS2(k, u)) = #′(k)(u).

3. #(BTtS3(k, t)) = #(t) + 1{k}.

Proof:

Proof of 1: This follows from claim 2 and the fact that for x, y ∈ [2]∗,

#(x+ y) = #(x) + #(y).

Proof of 2: If u ∈ Tree2, BTtS2(k, u) = BTtS3(k, u) and this follows

from claim 3. If u = Nothing, we have #(BTtS2(k,Nothing)) = #(〈〉) =

0 and #′(k)(Nothing) = 0.

Proof of 3: This follows from claim 1, #(x + 〈0〉) = #(x) + 1{0}, and

#(〈1〉+ x) = #(x) + 1{1}.
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5.6.1 Permutations actions

In order to define TtS in the next section, we need to introduce permutation

actions on trees and strings. Algorithm 9 defines PC (permute composition),

PS (permute string), and PT (permute tree). In each case, the permutation

acts on the alphabet [q]. Note that PC, PS, and PT all treat their argument

as a function an compose it with either π or π−1. Recall that N[q] = [q]→ N,

[q]∗ =
⊔
i∈N ([i]→ [q]), and Treeq = [q]→ (Nothing tTreeq).

Algorithm 9 Permuting the alphabet

PC : ([q]→ [q])→ (N[q] → N[q])

PC(π) = k 7→ k ◦ π−1

PS : ([q]→ [q])→ ([q]∗ → [q]∗)

PS(π) = x 7→ π ◦ x

PT : ([q]→ [q])→ (Treeq → Treeq)

PT(π) = t 7→ PT2(π) ◦ t ◦ π−1

PT2 : ([q]→ [q])→ ((Nothing tTreeq)→ (Nothing tTreeq))

PT2(π) = u 7→
case u of

Nothing : Nothing

Treeq : PT(π)(u)

These permutation actions interact with the group operation for permu-

tations in the required way:

PS(π) ◦PS(π′) = PS(π ◦ π′)

PT(π) ◦PT(π′) = PT(π ◦ π′)

PC(π) ◦PC(π′) = PC(π ◦ π′).

The compositions of strings and trees are modified by permutations in the
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expected way:

# ◦PS(π) = PC(π) ◦#

# ◦PT(π) = PC(π) ◦#.

5.7 q-ary trees to q-ary strings

In this section, we prove the main new result of this chapter.

Theorem 5.7.1. There is a locally bijective cover preserving map TtS :

Treeq → [q]∗.

TtS is defined in Algorithm 10 along with several auxiliary functions.

It also depends on the string and tree permutation functions, PS and PT,

which were defined in Algorithm 9, and TreeMap, which was defined in

Algorithm 8.

We can generalize Lemma 5.5.4 to longer concatenations of strings.

Lemma 5.7.1. Let si ∈ [q]∗ for i ∈ [m] such that si ∈ Γ(Ai, Bi). Suppose

that for all i ∈ [m− 1], Ai ⊇ Ai+1, Bi ⊆ Bi+1, and Bi and Ai+1 partition [q].

Let x = s0 + . . .+ sm−1.

1. Then x ∈ Γ(A0, Bm−1).

2. Let x̂ ∈ Γ(A0, Bm−1) such that x̂ � x. Then there is a unique tuple of

strings (ŝ0, . . . , ŝm−1) ∈ ([q]∗)m such that ŝ0 + . . . + ŝm−1 = x̂ and for

all i, ŝi ≥ si and ŝi ∈ Γ(Ai, Bi).

Proof: Let u0 = s0 and let uj+1 = uj +sj+1 (so uq−1 = x). Inductively

applying the first part of Lemma 5.5.4, uj ∈ Γ(A0, Bj). Thus uj and sj+1

satisfy the conditions of the second part of Lemma 5.5.4: A0 ⊇ Aj+1, Bj ⊆
Bj+1, and Bj and Aj+1 partition [q]. Suppose we have ûj+1 � uj+1. From

Lemma 5.5.4, we obtain ûj ≥ uj and ŝj+1 ≥ sj+1 such that ûj + ŝj+1 = ûj+1.

Let ûq−1 = x̂. Then by induction we obtain ŝ0, . . . , ŝq−1 with the desired

properties.

Definition 5.7.1. For a, b ∈ [q], define the circular interval [a, b] ⊆ [q] as

follows:

[a, b] =

{i ∈ [q] : a ≤ i ∧ i ≤ b} a ≤ b

{i ∈ [q] : a ≤ i ∨ i ≤ b} a > b.
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Algorithm 10 Tree to String

TtS : Treeq → [q]∗

TtS = Concat ◦TreeMap(TtS2)

TtS2 : [q]→ (Nothing tTreeq → [q]∗)
TtS2(k) = u 7→ case u of

Treeq : TtS3(k)(u)
Nothing : 〈〉

TtS3 : [q]→ (Treeq → [q]∗)
TtS3(k) = PS(π) ◦Concat ◦TreeMap(TtS4(π(k))) ◦PT(π)

where π = (i 7→ q − 1− i)

TtS4 : [q]→ ([q]→ (Nothing tTreeq → [q]∗))
TtS4(l)(k) = u 7→ case u of

Treeq : TtS5(l, k)(u)
Nothing : case (l, k) of

l = k : 〈k〉
l 6= k : 〈〉

TtS5 : [q]× [q]→ (Treeq → [q]∗)
TtS5(l, k) = case

l < k : PS(i 7→ i+ l + 1) ◦TtS3(k − l − 1) ◦PT(i 7→ i− l − 1)
l > k : PS(i 7→ i+ l) ◦TtS3(k − l) ◦PT(i 7→ i− l)
l = k : t 7→ 〈k〉+ TtS(t) + 〈k〉

Concat : ([q]∗)q → [q]∗

Concat(s0, . . . , sq−1) = s0 + . . .+ sq−1

Note that (i 7→ i + k)[a, b] = [a + k, b + k] and (i 7→ −1 − i)[a, b] =

[−1− b,−1− a].

To prove that TtS is locally bijective, we first show that the outputs

of TtS and each of its auxiliary function are members of Γ(A,B) where A

and B are circular intervals. Lemma 5.7.2 contains the precise version of

this statement. Then, in the proof of Lemma 5.7.3, we will use two string

decompositions that meet the conditions of Lemma 5.7.1. We will go through

these decompositions here to give a high level understanding of the proof.

In the first decomposition, let Ai = [i, q− 1] and let Bi = [0, i]. Then the
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end symbols of x and si are from the following sets:

s0 [0, q − 1], [0, 0]
...

...

x [0, q − 1], [0, q − 1] si [i, q − 1], [0, i]

si+1 [i+ 1, q − 1], [0, i+ 1]
...

...

sq−1 [q − 1, q − 1], [0, q − 1].

Note that Bi and Ai+1 partition [q] for all i.

In the second decomposition, we start with x ∈ Γ([0, l], [l, q − 1]) such

that at least one symbol of x is an l. We let x = u + sl + v, u = s0 . . . sl−1

and v = sl+1 . . . sq−1. The restrictions on the end symbols of u, v and each

si are as follows:

u [0, l],[l + 1, l − 1]

x [0, l], [l, q − 1] sl [l, l],[l, l]

v [l + 1, l − 1],[l, q − 1]

s0 [0, l],[l + 1, 0]
...

...

u [0, l], [l + 1, l − 1] si [i, l],[l + 1, i]
...

...

sl−1 [l − 1, l],[l + 1, l − 1]

sl+1 [l + 1, l − 1],[l, l + 1]
...

...

v [l + 1, l − 1], [l, q − 1] sj [j, l − 1],[l, j]
...

...

sq−1 [q − 1, l − 1],[l, q − 1].

The decompositions u = s0 . . . sl−1 and v = sl+1 . . . sq−1 meet the conditions

of Lemma 5.7.1, but the whole sequence x = s0 + . . . + sq−1 does not. In

particular [0, l] 6⊇ [l + 1, l − 1], so the first symbol of v is less restricted than

the first symbol of x, and [l + 1, l − 1] 6⊆ [l, q − 1], so the last symbol of u

is less restricted than the last symbol of x. Thus we also require that sl be
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nonempty, which means it must contains at least one l. With this restriction,

the first symbol of x cannot come from v and the last symbol of x cannot

come from u, so x ∈ Γ([0, l], [l, q − 1]) is achieved.

5.7.1 Properties of TtS

Remark 5.7.1. Lemmas 5.7.2, 5.7.3, and 5.7.4 each contain statements

about TtS, TtS2, TtS3, TtS4, and TtS5. For each lemma, we will

prove these five statements by mutual induction on the size of the trees. This

parallels the mutually recursive definitions of these functions.

The claims 2 and 4 for the input Nothing are the base cases of the

induction. The proofs of claims 1 and 3 depend respectively on claims 2 and

4 for strictly smaller trees and Nothing. The proofs of claims 2 and 4

depend on claims 3 and 5 for trees of the same size. The proof of claim 5

depends on claims 1 and 3 for tree of the same size. Thus assuming all five

claims for trees of size strictly less than n, we can prove claims 1 and 3, then

claim 5, then claims 2 and 4 for trees of size n.

Lemma 5.7.2. Let t ∈ Treeq, let u ∈ NothingtTreeq and let k, l ∈ [q].

1. Let x = TtS(t). Then x ∈ Γ([0, q − 1], [0, q − 1]).

2. Let x = TtS2(k)(u). Then x ∈ Γ([k, q − 1], [0, k]).

3. Let x = TtS3(k)(t). Then x ∈ Γ([k, q − 1], [0, k]).

4. Let x = TtS4(l)(k)(u).

(a) If l < k, then x ∈ Γ([k, l], [l + 1, k]).

(b) If l = k, then x ∈ Γ([k, k], [k, k]).

(c) If l > k, then x ∈ Γ([k, l − 1], [l, k]).

5. Let x = TtS5(l, k)(t).

(a) If l < k, then x ∈ Γ([k, l], [l + 1, k]).

(b) If l = k, then x ∈ Γ([k, k], [k, k]).

(c) If l > k, then x ∈ Γ([k, l − 1], [l, k]).
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Proof: Remark 5.7.1 explains the structure of the induction.

Proof of 1: Because Γ([0, q − 1], [0, q − 1]) = [q]∗, this is trivially true.

Proof of 2: Either x = TtS3(k)(t) or x = 〈〉. In former case, x ∈
Γ([k, q−1], [0, k]) from claim 3. The empty string is also in Γ([k, q−1], [0, k]).

Proof of 3: Let t′ = PT(j 7→ −1 − j)t and let l = −1 − k. Then

x = PS(j 7→ −1 − j)(s0 + . . . + sq−1), where si = TtS4(l)(i)(t′i) and t′i =

t−1−i. From claim 4, si ∈ Γ([i, l], [l, i]). By the first part of Lemma 5.7.1,

s0 + . . .+ sl−1 ∈ Γ([0, l], [l, l− 1]) and sl+1 + . . .+ sq−1 ∈ Γ([l+ 1, l], [l, q− 1]).

Note that [l, l − 1] = [l + 1, l] = [q]. However, from claim 4 sl is nonempty.

By two applications of the first part of Lemma 5.5.4, (s0 + . . .+ sl−1) + sl +

(sl+1 + . . .+ sq−1) ∈ Γ([0, l], [l, q − 1]) Thus x ∈ Γ([k, q − 1], [0, k]).

Proof of 4: If u = Nothing, then x = 〈〉 or x = 〈k〉. We have 〈〉 ∈
Γ(A,B) for all A and B and 〈k〉 ∈ Γ([k, k], [k, k]). If u ∈ Treeq, x =

TtS5(l, k)(t) and the claim follows from claim 5.

Proof of 5a: Let t′ = PT(i 7→ i − l − 1)t. We have x = PS(i 7→
i+ l+ 1)(TtS3(k− l− 1, t′)). From claim 3, we have TtS3(k− l− 1)(t′) ∈
Γ([k − l − 1, q − 1], [0, k − l − 1]) with composition #(t′) + 1{k−l−1}. Thus

x ∈ Γ([k, l], [l + 1, k]) with composition #(t) + 1{k}.

Proof of 5b: In this case, x = 〈k〉 + y + 〈k〉, where y = TtS(t), so the

first claim is immediate. From claim 1, #(y) = #(t).

Proof of 5c: This is completely analogous to claim 5a.

Lemma 5.7.3. Let t ∈ Treeq, let u ∈ NothingtTreeq and let k, l ∈ [q].

1. Let x = TtS(t), and let x̂ � x. Then there is a unique t̂ � t such that

TtS(t̂) = x̂.

2. Let x = TtS2(k)(u). Let x̂ � x such that x̂ ∈ Γ([k, q−1], [0, k]). Then

there is a unique û � t such that TtS2(k)(û) = x̂.

3. Let x = TtS3(k)(t). Let x̂ � x such that x̂ ∈ Γ([k, q− 1], [0, k]). Then

there is a unique t̂ � t such that TtS3(k)(t̂) = x̂.

4. Let x = TtS4(l)(k)(u). Let x̂ � x such that

(a) x̂ ∈ Γ([k, l], [l + 1, k]) if l < k,

(b) x̂ ∈ Γ([k, k], [k, k]) if l = k,

(c) and x̂ ∈ Γ([k, l − 1], [l, k]) if l > k.
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Then there is a unique û � u such that TtS4(l)(k)(û) = x̂.

5. Let x = TtS5(l, k)(t). Let x̂ � x such that

(a) x̂ ∈ Γ([k, l], [l + 1, k]) if l < k,

(b) x̂ ∈ Γ([k, k], [k, k]) if l = k,

(c) and x̂ ∈ Γ([k, l − 1], [l, k]) if l > k.

Then there is a unique t̂ � t such that TtS5(l, k)(t̂) = x̂.

Proof: Remark 5.7.1 explains the structure of the induction.

Proof of 1: We have x = s0 + s1 + . . .+ sq−1 where si = TtS2(i)(ti). By

part 2 of Lemma 5.7.2, for each i, si ∈ Γ([i, q− 1], [0, i]). Thus we satisfy the

conditions of Lemma 5.7.1 and there is a unique (ŝ0, . . . , ŝq−1) ∈ ([q]∗)q such

that ŝ0 + . . . ŝq−1 = x̂ and, for all i, ŝi ≥ si and ŝi ∈ Γ([i, q− 1], [0, i]). There

is exactly one j such that ŝj � sj. From claim 2, there is a unique t̂j � tj

with the desired properties. Let t̂i = ti for i 6= j, so t̂ � t and TtS(t̂) = x̂.

Proof of 2: If u is a tree, then by claim 3, there is a unique û � u such

that x = TtS3(k, û). Otherwise, u = Nothing, x = 〈〉, and x̂ = 〈k〉
because this is the only member of Γ([k, q − 1], [0, k]) of length one. Let

û = (i 7→ Nothing) and note that TtS2(k)(û) = TtS3(k)(û) = 〈k〉 = x.

Proof of 3: Let t′ = PT(j 7→ −1−j)(t) and let l = −1−k. Then PS(j 7→
−1− j)(x) = s0 + . . .+ sq−1, where si = TtS4(l)(i)(t′i) = TtS4(l)(i)(t−1−i).

Let u = s0+. . . sl−1 and let v = sl+1+. . .+sq−1. Then u ∈ Γ([0, l], [l+1, l−1]),

sl ∈ Γ([l, l], [l, l]), and u ∈ Γ([l+1, l−1], [l, q−1]). By two applications of the

second part of Lemma 5.5.4, there are unique û ≥ u, ŝl ≥ sl, and v̂ ≥ v such

that û+ŝl+v̂ = PS(j 7→ −1−j)(x̂) and û, ŝl, and v̂ have the same end-symbol

restrictions as u, sl and v, respectively. If û � u, then by Lemma 5.7.1, there

is a unique (ŝ0, . . . , ŝl−1) ∈ ([q]∗)l such that ŝ0 + . . . ŝl−1 = û and for all i,

ŝi ≥ si and ŝi ∈ Γ([i, l − 1], [l, i]). If v̂ � v, then by Lemma 5.7.1, there is a

unique (ŝl+1, . . . , ŝq−1) ∈ ([q]∗)q−l−1 such that ŝl+1 + . . . ŝq−1 = v̂ and for all

i, ŝi ≥ si and ŝi ∈ Γ([i, l], [l + 1, i]). Thus there is exactly one j such that

ŝj � sj. From claim 4, there is a unique t̂j � tj with the desired properties.

Let t̂i = ti for i 6= j, so t̂ � t and TtS3(k)(t̂) = x̂.

Proof of 4: If u is a tree, then by claim 5, there is a unique û � u such

that x = TtS5(l, k)(û). If u = Nothing and l 6= k, then x = 〈〉 and

x̂ = 〈k〉 because this is the only member of Γ([k, j], [j + 1, k]) of length one.
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If u = Nothing and l = k, then x = 〈k〉 and x̂ = 〈kk〉 because this is

the only member of Γ([k, k], [k, k]) of length two. In either case, let û =

(i 7→ Nothing). Note that for l 6= k, TtS4(l)(k)(û) = TtS5(l, k)(û)
(a)
=

〈k〉 = x and TtS4(k)(k)(û) = TtS5(k, k)(û)
(b)
= 〈kk〉 = x. Here, both (a)

and (b) follow from part 5 of Lemma 5.7.2 and #(û) = 0.

Proof of 5: If l = k, we have x = 〈k〉 + x′ + 〈k〉 where x′ = TtS(t).

Because x̂ ∈ Γ([k, k], [k, k]), x̂ = 〈k〉+ x̂′ + 〈k〉 for some x̂′ � x′. By claim 1,

there is a unique t̂ � t such that TtS(t̂) = x̂′.

If l < k, x and x̂ are in Γ([k, l][l + 1, k]). Let π = (i 7→ i − l − 1),

x′ = PS(π)(x), x̂′ = PS(π)(x̂), t′ = PT(π)(t). Then x′ and x̂′ are in

Γ([k− l− 1, q− 1][0, k− l− 1]), x̂′ � x′, and TtS3(k− l− 1)(t′) = x′. From

claim 3, there is a unique t̂′ � t′ such that TtS3(k − l − 1)(t̂′) = x̂′ Let

t̂ = PT(π−1)(t̂′), so x̂ = TtS5(l, k)(t̂) as required.

The case l > k is analogous.

Theorem 5.7.1 follows immediately from the first claim.

TtS also preserves compositions.

Lemma 5.7.4. Let t ∈ Treeq, let u ∈ NothingtTreeq and let k, l ∈ [q].

1. # ◦TtS = #.

2. # ◦TtS2(k) = #′(k).

3. #(TtS3(k)(t)) = #(t) + 1{k}.

4. Let x = TtS4(l)(k)(u).

(a) If l = k, then #(x) = #′(k)(u) + 1{k}.

(b) If l 6= k, then #(x) = #′(k)(u).

5. Let x = TtS5(l, k)(t).

(a) If l = k, then #(x) = #(t) + 2 · 1{k}.

(b) If l 6= k, then #(x) = #(t) + 1{k}.

Proof: This proof follows the same inductive structure as the previous

two lemmas, so we will only sketch the two main ideas.
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If we have #(f(i)(u)) = #′(i)(u) for some f : [q] → (Nothing t
Treeq)→ [q]∗, then

#(Concat(TreeMap(f)(t))) =
∑
i∈[q]

#(f(i)(ti))

=
∑
i∈[q]

#′(i)(ti)

= #(t).

If we have # ◦ g = # for some g : Treeq → [q]∗, then

# ◦PS(π−1) ◦ g ◦PT(π) = PC(π−1) ◦# ◦ g ◦PT(π)

= PC(π−1) ◦# ◦PT(π)

= PC(π−1) ◦PC(π) ◦#

= #.

This generalizes to handle g satisfying the relation (# ◦ g)(t) = #(t) + 1{k}.

5.8 Conclusion

We have found locally bijective maps from Treeq → [q]∗ for all q. Because

(Treeq,≤) is a lattice, by Lemma 5.1.3 these maps quantify the failure of

([q]∗, subseq) to be a lattice. Is (Treeq,≤) the smallest lattice for which

locally bijective maps to ([q]∗, subseq) exist? More precisely, these maps

give upper bounds on the number of maximal elements of D(x)∩D(y). Can

corresponding lower bounds be found?
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