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Optimality of Treating Interference as Noise:
A Combinatorial Perspective
Xinping Yi, Member, IEEE and Giuseppe Caire, Fellow, IEEE

Abstract—For single-antenna Gaussian interference channels,
we reformulate the problem of determining the Generalized
Degrees of Freedom (GDoF) region achievable by treating
interference as Gaussian noise (TIN) derived in [3] from a
combinatorial optimization perspective. We show that the TIN
power control problem can be cast into an assignment problem,
such that the globally optimal power allocation variables can
be obtained by well-known polynomial time algorithms (e.g.,
centralized Hungarian method or distributed Auction algorithm).
Furthermore, the expression of the TIN-Achievable GDoF region
(TINA region) can be substantially simplified with the aid of
maximum weighted matchings. We also provide conditions under
which the TINA region is a convex polytope that relax those in [3].
For these new conditions, together with a channel connectivity
(i.e., interference topology) condition, we show TIN optimality
for a new class of interference networks that is not included, nor
includes, the class found in [3].

Building on the above insights, we consider the problem of
joint link scheduling and power control in wireless networks,
which has been widely studied as a basic physical layer mecha-
nism for device-to-device (D2D) communications. Inspired by the
relaxed TIN channel strength condition as well as the assignment-
based power allocation, we propose a low-complexity GDoF-
based distributed link scheduling and power control mechanism
(ITLinQ+) that improves upon the ITLinQ scheme proposed in
[4] and further improves over the heuristic approach known
as FlashLinQ. It is demonstrated by simulation that ITLinQ+
without power control provides significant average network
throughput gains over both ITLinQ and FlashLinQ, and yet
still maintains the same level of implementation complexity.
Furthermore, when ITLinQ+ is augmented by power control,
it provides an energy efficiency substantially larger than that of
ITLinQ and FlashLinQ, at the cost of additional complexity and
some signaling overhead.

Index Terms—Gaussian Interference Channels, Treating Inter-
ference as Noise, Generalized Degrees of Freedom, Power Control,
Device-to-Device Communications.

I. INTRODUCTION

Power control and treating interference as Gaussian noise
(TIN) is one of the most well-known, vastly employed, and
yet most attractive interference management techniques, due
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to its low complexity, robustness to channel uncertainty, and
to the fact that codes for the single-user Gaussian channel
are well understood and efficiently implemented. Interestingly,
it has also been shown that in some cases TIN is optimal
or approximately optimal. For example, we know that TIN
achieves the sum-capacity in the noisy regime of the two-
user Gaussian interference channel [5]–[7]. In the general
K-user single-antenna Gaussian interference channel, Geng
et. al [3] have shown that, subject to certain conditions on
the channel strengths, TIN achieves the optimal Generalized
Degrees of Freedom (GDoF) region, and achieves the capacity
region to within a constant gap, independent of the channel
coefficients and the signal-to-noise ratio (SNR). The TIN
optimality condition found in [3] is simply expressed in words
as the fact that, for each user (i.e., intended transmitter-receiver
pair) the desired signal strength level is no less than the
sum of maximum strengths of all interfering signals from
the transmitter to the other (unintended) receivers, and to the
receiver from the other (unintended) transmitters, when all
signal strengths are expressed in log-scale (e.g., in dB). For
future reference, we indicate this condition as the “GNAJ”
condition, from the initials of the authors of [3]. Under the
GNAJ condition, the TIN-Achievable GDoF region (briefly
referred to as “TINA region”) is a convex polytope defined
by the individual GDoF constraints and by the sum-GDoF
inequalities corresponding to all possible ordered subsets of
users. With the aid of a combinatorial tool named potential
graphs, the K-user TINA region was characterized in [3]
by ∑Km=2 (

K
m
)(m − 1)! ≈ (K − 1)! constraints. More recently,

it has been also shown by Sun and Jafar in [8] that, by a
series of transformations of linear programs, the sum-GDoF
characterization can be translated into a minimum weighted
matching problem in combinatorial optimization. As such, the
sum-GDoF under the GNAJ condition can be characterized as
disjoint cycles partition of the interference network.

Such remarkable findings have inspired various related works,
such as the TIN optimality of general X-channels [9], parallel
interference networks [8], and compound interference networks
[10]. In general, the TIN problem consists of two subproblems.
Beyond the TINA region characterization, it is also important to
find efficient methods to solve the TIN power control problem,
that is, finding the (minimum) transmit powers that achieve a
certain desired GDoF-tuple in the TINA region. The TIN power
control problem has been open for a long time until a recent
progress reported by Geng and Jafar in [10], where a simple
yet elegant polynomial-time centralized iterative algorithm to
find the globally optimal power allocation variables is provided.
This centralized algorithm relies still on the representation by
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potential graphs.
One may wonder if the potential graph representation

is the only path to both TINA region characterization and
TIN power control problems. Further, due to the distributed
nature of interference channels, decentralized power allocation
algorithms are more interesting, desirable and yet challenging.
In addition, it is worth noting that the GNAJ condition was
only proven to be sufficient. An interesting counter-example
in [3] showed that there exist partially-connected (in the sense
of channel strength levels) interference channels, such that
TIN achieves the optimal GDoF region and yet the GNAJ
condition is not satisfied. A natural question then arises as
to whether there exists a larger class of networks, including
partially-connected ones, such that TIN is GDoF-optimal (i.e.,
TIN with power control still achieves the optimal GDoF region
of the channel). These questions motivate this work.

In this paper, the optimality of TIN is revisited. The TIN
optimality problem was formulated in [3] by first eliminating
power allocation variables using the potential theorem [11], to
establish the TINA region in terms of GDoF variables only,
and then by finding the optimal power allocation variables for
a given GDoF-tuple in the TINA region [10]. In contrast,
we reformulate this problem in a reversed way, from a
combinatorial optimization perspective [11]. Interestingly, by
first casting power allocation into an assignment problem, the
globally optimal power allocation variables corresponding to
any feasible GDoF tuple in the TINA region can be found
by solving the equivalent assignment problem in polynomial
time, either in a centralized manner (e.g., Hungarian method
[12], [13]) or in a distributed one (e.g., Auction algorithm
[14]). Inspired by the duality between the assignment and the
maximum weighted matching problems in combinatorial opti-
mization [15], we can express the TINA region characterization
in terms of a maximum weighted matching problem. In doing
so, the TINA region is significantly simplified, requiring only
2K − 1 constraints instead of ≈ (K − 1)!. Interestingly, such
a representation also offers an interpretation of the disjoint
cycle partition in [8]. By this new formulation, we show that
the TINA region is a convex polytope under a novel channel
strength condition that relaxes the GNAJ condition in [3]. This
new condition requires that the desired signal strength of each
user is no less than the maximum difference between the sum
strength of any pair of incoming/outgoing interference signals
and the strength of the link between such a pair (all in dB
scale). Furthermore, together with a connectivity condition, we
are able to establish the optimality of TINA region for a new
class of networks. Such conditions are not included nor include
the GNAJ condition [3].

Beyond the theoretical interest of characterizing the TINA
region, we are also interested in translating these results into
practical system optimization algorithms. Device-to-Device
(D2D) communication is expected to play an important role in
future wireless communication systems (e.g., 5G), including
applications such as car-to-car, machine-to-machine, proximity-
based services, and multi-hop infrastructureless mesh networks.
The physical layer of D2D systems is usually modeled as a
Gaussian interference channel. Under the practical constraint
of treating interference as Gaussian noise for the sake of

complexity and robustness,1 a long-standing problem consists of
controlling the power of the D2D links (transmit-receive pairs)
in order to maximize the overall network throughput.2 The
usual approach of guaranteeing a target signal-to-interference-
plus-noise ratio (SINR) to each link turns out to yield an
operating point that can be arbitrarily far from optimal. This
is because some bottleneck links may impose too stringent
constraints to the overall network. In contrast, much better
network throughput can be achieved by selecting a subset
of active links in each slot and allocating positive power
only to these selected links [4], [18], [19]. By scheduling
the subsets of active links over time, it is possible to achieve
individual throughputs such that some network utility function
is maximized. In turn, the shape of the network utility function
determines the desired fairness criterion (e.g., see [20], [21]).
Link selection and scheduling has become the subject of
intensive research. This problem is closely related to power
control, since link selection corresponds to allocating either
zero or positive power to the transmitters. For a general D2D
network, this problem is non-convex and, as a matter of
fact, has a combinatorial nature. For example, a well-known
power control method consists of replacing log(1+SINR) with
log(SINR) in the user rate expression, and using Geometric
Programming (GP) [22]. However, by neglecting the “1+”
inside the “log” one has implicitly forced all links to use
positive power, since assigning zero power to some links would
drive the GP objective function to −∞. Instead, it is known that
generally much better solutions can be found by first selecting
a “good” subset of active links, and then allocating (positive)
power only to the selected links.

Various schemes for link selection have been proposed in
the literature, e.g., [4], [18], [23]–[25] to name a few. For
example, a large number of works is based on constructing an
interference conflict graph [26], and then selecting maximal
independent sets. These “maximal independent set scheduling”
schemes are flawed by a fundamentally arbitrary choice of the
threshold according to which two links are considered to be
in conflict. Recently, a distributed link scheduling mechanism
called FlashLinQ was proposed in [18]. Compared to “maximal
independent set scheduling” schemes, FlashLinQ takes both
signal and interference strength into account. In FlashLinQ,
links are ranked in priority order and considered one by one. A
candidate link is scheduled if it does not cause/receive too much
interference to/from links of higher priority that have already
been selected (i.e., declared active). It is also possible to enforce
fairness among the links by changing the priority order at each
scheduling slot, such that each link with a certain probability
will be given the highest priority. More recently, inspired by
the GNAJ condition in [3], the authors in [4] proposed a
new distributed link scheduling mechanism (referred to as
“ITLinQ”) that provides sum throughput gains over FlashLinQ
and yet maintains the same level of low-complexity. Instead of

1From [16] we know that this condition is essentially equivalent to imposing
the use of minimum distance decoding at each receiver.

2Consistently with [17], we use the term “throughput” to indicate the time-
averaged rate over a long sequence of scheduling time slots. In contrast, the
instantaneous rate is the rate achieved in a single slot, for a given set of active
users, i.e., links with positive transmit power.



3

comparing the ratio of signal to interference strength of each
new candidate link with a fixed threshold as in FlashLinQ,
ITLinQ compares the interference level caused to/received from
existing links with an appropriately chosen exponent of the
signal strength of the new candidate link. It was verified by
simulation in [4] that ITLinQ outperforms FlashLinQ with
28%-110% gains for a scenario where up to 4096 links can
be scheduled.

As a matter of fact, for general channel strength coefficients,
the maximal subset of links satisfying the GNAJ condition
may not lead to the maximal (weighted) sum throughput or
sum-GDoF. As will be demonstrated later, our relaxed channel
strength conditions provide a larger convex polytope TINA
region. This provides a generally larger subset of links on which
power control can be applied, resulting in generally higher
weighted sum-GDoF. As a consequence, we are able to design
a new distributed link scheduling and power control mechanism
(named “ITLinQ+”), further fine-tuning the decision criterion
of link selection. It is demonstrated by simulation that, when
only link selection with constant power transmission for the
selected links is used, ITLinQ+ gains 5%-20% average sum
throughput improvement over ITLinQ with 1024 links, at the
expense of slightly increased signaling overhead. A problem
with both FlashLinQ and ITLinQ is that they do not consider
power control and simply enforce constant transmit power
for all the selected links. In contrast, thanks to the new
understanding of the TINA region developed in this paper, we
can augment ITLinQ+ with also a power control mechanism
able to find the minimum power vector supporting the GDoF
tuple corresponding to the selected links. When ITLinQ+
is applied together with this power control mechanism, the
achieved average sum throughput is further enhanced. Most
notably, the energy efficiency of ITLinQ+ can be substantially
improved (e.g., 30 dB power saving to achieve 60 bit/s/Hz sum
throughput for a 16-user D2D network), at the cost of additional
computational complexity and some signaling overhead. In
short, ITLinQ+ improves the sum throughput performance
and yet requires much less energy consumption, which is
desirable for battery-powered D2D communications. Notice
that achieving better or equal throughput with less energy
consumption is not a contradiction here, since the network is
operated in an interference limited regime, such that rate is
not immediately and obviously correlated to transmit power.

This paper is organized as follows. In the next section, we
present the system model of the general K-user Gaussian inter-
ference channels, followed by a summary of the main existing
results of the approximate optimality of treating interference as
Gaussian noise. In Section III, we reformulate the TIN problem
from a combinatorial optimization perspective and we obtain
a simplified description of the TINA region. By the simplified
TINA region, we are able to identify a relaxed channel strength
condition under which the general TINA region is a convex
polytope. In Section IV, we consider the GDoF-based link
scheduling and power control problem, offering a framework
in this regard. Driven by this framework, the new decentralized
link scheduling and power control mechanism named ITLinQ+
is proposed in Section V with detailed implementations. Section
VI provides numerical results and comparisons with ITLinQ and

FlashLinQ for some scenarios of D2D networks. We conclude
the paper in Section VII.

Notation: Throughout this paper, we define K ≜

{1,2, . . . ,K}. Let A, A, and A represent a variable, a set, and
a matrix, respectively. In addition, Ac is the complementary
set of A, and ∣A∣ is the cardinality of the set A. Aij

presents the ij-th entry of the matrix A, and Ai is the i-
th row of A. AS ≜ {Ai, i ∈ S}, and AS ≜ ∪i∈SAi. Define
A/{a} ≜ {x∣x ∈ A, x ≠ a} and A1/A2 ≜ {x∣x ∈ A1, x ∉ A2}.
Logarithms are in base 2. With a bit abuse of notation, k ≠ i ≠ j
means k ≠ i, i ≠ j and k ≠ j.

II. SYSTEM MODEL

A. Channel Model

We consider a K-user interference channel where both
transmitters (Tx) and receivers (Rx) are equipped with a single
antenna each. We shall refer to the j-th Tx-Rx pair as the
j-th user or link. At Rx-j (∀j ∈ K ≜ {1, . . . ,K}), the received
signal at the discrete-time instant t is given by

Yj(t) =
K

∑
i=1

hijX̃i(t) +Zj(t) (1)

where X̃i(t) is the transmitted signal from Tx-i with power
constraint E (∣X̃i(t)∣

2) ≤ Pi, hij is the channel coefficient
between Tx-i and Rx-j, Zj(t) ∼ CN(0,1) is the (normalized)
additive white Gaussian noise at Rx-j. Following [3], we
translate the signal model in (1) into an equivalent GDoF-
friendly form, given by

Yj(t) =
K

∑
i=1

√
PαijejθijXi(t) +Zj(t) (2)

where Xi(t) =
X̃i(t)√
Pi

is the normalized transmitted signal
with power constraint E (∣Xi(t)∣

2) ≤ 1,
√
Pαij and θij are

magnitude and phase of the channel coefficient between Tx-i
and Rx-j, respectively, and the exponent αij is defined as the
corresponding channel strength level

αij =
log(max{1, ∣hij ∣

2Pi})

logP
(3)

where P > 1 is the average power. Given a transmit power
adjustment P ri with ri ≤ 0, by which the actual transmit power
is P riPi at Tx-i, the signal-to-interference-plus-noise ratio
(SINR) achieved by TIN at Rx-j is given by Pαjj+rj

1+∑i∶i≠j P
αij+ri .

We assume that the transmitters know the channel strength
levels perfectly for power control, and the receivers have access
to both the magnitude and phase of channel coefficients.

B. Treating Interference as Noise

We follow standard definitions for encoding/decoding func-
tions and achievable rates. The individual achievable GDoF of
message Wk is defined as dk ≜ limP→∞

Rk
logP

where Rk is the
achievable rate for message Wk, associated to the k-th link. The
GDoF region is the collection of all achievable GDoF-tuples
(d1, d2, . . . , dK). The TIN-Achievable GDoF (TINA) region
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defined in [3] is the set of all K-tuples d = (d1, d2, . . . , dK)

with components satisfying

dj ≤ max{0, αjj + rj −max{0,max
i∶i≠j

(αij + ri)}} , (4)

for some assignment of the power allocation variables r =

(r1, r2, . . . , rK) ∈ RK− . In the following, we denote the TINA
by RTINA, where the dependence on the specific network
defined by {αij ∶ i, j ∈ K} is clear from the context. From
[3] we also know that the polyhedral TINA region is obtained
by removing the positive part operator3 from the right-hand
side of (4). Using the potential theorem [11], the authors of
[3] are able to find a convex polytope form for the polyhedral
TINA region for any subnetwork formed by a subset S ⊆ K

and its associated desired and interfering links. We shall denote
such a polytope by PTINA

S . Since removing the positive part
in the right-hand side of (4) restricts the GDoF region, then
PTINA
S is achievable by switching off all users in Sc = K/S

and by using TIN for the users in S. We also denote by R∗

the optimal GDoF region of the interference network, i.e., the
region of GDoF-tuples achievable over any possible coding
scheme (not restricted to TIN).

The main results in [3] are summarized as below.

Theorem 1. [ GNAJ [3] ] Consider a K-user single-antenna
Gaussian interference channel with channel strengths {αij ∶
i, j ∈ K}.

1) For any subnetwork formed by users in S ⊆ K, PTINA
S

can be described by4

0 ≤ dk ≤ αkk,∀k ∈ S, di = 0,∀i ∈ Sc

m−1

∑
k=0

dik ≤
m−1

∑
k=0

(αikik − αi[k−1]modm
ik),

∀ ordered subsets (i0, . . . , im−1) ∈ S,∀ m ∈ {2, . . . , ∣S∣}.
(5)

2) The TINA region of the whole network is given by

R
TINA

= ⋃
S⊆K

P
TINA
S , (6)

which is generally non-convex, since it is the union of
convex polytopes, each one corresponding to a specific
set of active users.

3) If ∀k ∈ K,

αkk ≥ max
i∶i≠k

{αik} +max
j∶j≠k

{αkj}, (7)

then TIN is GDoF-optimal, i.e., R∗ = RTINA = PTINA
K

(the whole region is a single convex polytope).

Remark 1. It is easy to see that, for S = K, there are in
total ∑Km=2 (

K
m
)(m − 1)! ≈ (K − 1)! constraints in (5). Since

the sum-GDoF ∑
m−1
k=0 dik does not depend on the order of

the indices, for each unordered set of indices {i0, . . . , im−1}

there are (m − 1)! inequalities, of which only one is relevant.

3The positive part of x is max{0, x}.
4We use the term ordered subset to indicate that order matters, but elements

are not repeated. For example, (1,2,3) and (1,3,2) are two rising such
subsets for m = 3, but (1,2,2) is not valid, because it contains repeated
elements.

However, finding which one is relevant involves, in general,
extensive search, such that finding a general more compact
form that eliminates redundant inequalities is non-trivial. ◊

III. TIN PROBLEM REFORMULATION FROM A
COMBINATORIAL PERSPECTIVE

The expression of the TINA region in (5) involves a huge
number of constraints, some of which are redundant. However,
it is unclear which one is unnecessary and which one is
required. To make progress in this regard, we reformulate the
TIN problem of [3], [10] from a combinatorial optimization
perspective. By casting the power allocation into an assignment
problem, we find an alternative form for the TINA region via its
dual – the maximum weighted matching problem [15]. Some
basic definitions of weighted matching are recalled in Appendix
A.

A. Casting Power Allocation into Assignment Problems

In what follows, we consider a feasible GDoF tuple in
PTINA
S for any user set S ⊆ K, where 5

dj = αjj + rj −max{0,max
i∶i≠j

(αij + ri)}, j ∈ S (8)

given power allocation parameters {rj , j ∈ S}. In general, a
given GDoF-tuple in PTINA

S may be achieved by different
assignments of the power control variables {rj ∶ j ∈ S}. The
componentwise minimum configuration corresponding to a
given target GDoF tuple is referred to as the globally optimal
power control assignment. In this case, no user can reduce its
transmit power while still achieving the same GDoF-tuple.

Thus, for S ⊆ K, the globally optimal power control
assignment problem can be formulated as a multi-objective
minimization problem:

min
{rj}

{rj , ∀j ∈ S} (9a)

s.t. dj = αjj + rj −max{0,max
i∶i≠j

(αij + ri)}, (9b)

dj ≥ 0, rj ≤ 0, ∀j ∈ S. (9c)

By introducing two sets of non-negative auxiliary variables,
namely, left labels {yuj} and right labels {yvj}

yuj = −rj (10)
yvj = max{0,max

i∶i≠j
(αij + ri)}, (11)

the individual achievable GDoF can be rewritten as

dj = αjj − (yuj + yvj). (12)

Using also the fact that, for all i ≠ j,

yui + yvj = −ri +max{0,max
i′∶i′≠j

(αi′j + ri′)} (13a)

≥ −ri + max
i′∶i′≠j

(αi′j + ri′) (13b)

≥ αij , (13c)

5Note that we consider di > 0, ∀ i ∈ S. If di = 0, user pair i will be not
activated and we simply remove it from S without affecting others.
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we have the following relaxed optimization problem:

max
{yuj ,yvj }

{yuj , ∀j ∈ S} (14a)

s.t. yuj + yvj = αjj − dj ,∀j ∈ S (14b)
yui + yvj ≥ αij ,∀i, j ∈ S, i ≠ j (14c)
yuj ≥ 0, yvj ≥ 0, ∀j ∈ S (14d)

which can be tightened as long as maxi∶i≠j(αij + ri) is always
made non-negative, such that for all i ≠ j, the constraints in
(14c) implied by the definition of {yui} and {yvj} inherit the
relation between ri and rj in (9b).

Taking a closer look at the optimization problem (14),
we found that the multi-objective optimization problem can
be transformed through linear scalarization [27] to a single-
objective one, given by

max
{yuj ,yvj }

∑
j∈S

yuj (15a)

s.t. (14b), (14c), (14d) (15b)

such that the optimal solution to (15) is the Pareto optimal
solution to (14). As shown in [10], the unique Pareto optimal
power control solution is also globally optimal.

In addition, the equality in (14b) can be further relaxed
to yuj + yvj ≥ αjj − dj whereas is tightened back through
minimizing ∑j∈S(yuj + yvj). As such, the global minimum
power allocation problem in (9) can be reformulated as the
following two-objective optimization problem:

min
{yuj ,yvj }

∑
j∈S

(yuj + yvj), max
{yuj ,yvj }

∑
j∈S

yuj (16a)

s.t. yuj + yvj ≥ αjj − dj ,∀j ∈ S (16b)
(14c), (14d). (16c)

Note that we are not really interested in the minimization of
the first objective function (as the solution is known) but the
parameters that achieve the minimum. We can further relax the
optimization problem in (16) by dropping the second objective
function, so that the resulting optimization problem can be
recognized as a dual formulation of an assignment problem
(see later development and definitions in Appendix A).

The globally optimal power allocation parameters in (9)
can be found through solving such an assignment problem,
and choosing among all the solutions that minimize the sum
of the overall labels (i.e., min∑j(yuj + yvj)), that particular
solution for which the sum of the left labels is maximum (i..e,
max∑j yuj ). Such a solution is referred to as the maximum
left label equilibrium. Notice that because of constraints (16b)
and (16c) there is tension between left and right labels. This
means that the same minimum overall sum can be achieved
in many ways, and here we are interested in the maximum
left label equilibrium (which coincides with the minimum
right label equilibrium). Thus, the above optimization problem
formulation can be summarized as follows.

Theorem 2. For any (dj ∶ j ∈ K) ∈ PTINA
S , the globally

optimal power control assignment (rj , j ∈ S) can be found

as the maximum left label equilibrium of the following linear
program:

(AP ) ∶ min
{yuj ,yvj }

∑
j∈S

(yuj + yvj) (17a)

s.t. yui + yvj ≥ αij ,∀i ≠ j (17b)
yuj + yvj ≥ αjj − dj ,∀j ∈ S (17c)
yuj ≥ 0, yvj ≥ 0, ∀j ∈ S (17d)

where rj = −yuj , ∀j ∈ S .

Remark 2. This linear program (17) can be recognized as
a dual formulation of an assignment problem [15], so that
the unique globally-optimal power allocation can be found
in polynomial time (i.e., O(K3)) using e.g., the (centralized)
Hungarian method [12], [13] or the (distributed) Auction
algorithm [14]. ◊

As most of the implementations of the Hungarian method
are dedicated merely the first objective function in (16)
(i.e., (17a)), they may not lead to the maximum left label
equilibrium and thus not find the optimum power allocation in
(9). Fortunately, the Kuhn-Munkres algorithm also targets the
second objective function in (16) and tightens the relaxations
by means of the following three ingredients: (1) The left label
yui = −ri is initialized as max{maxj∶j≠i(αij), αii − di} and
keeps decreasing, whereas the right label yvj is initialized as
0 and keeps increasing, through which maxi∶i≠j(αij + ri) is
always made non-negative, and in turn the relaxation in (14) is
tightened; (2) In each iteration, {yuj} are made to decrease and
{yvj} are made to increase carefully step by step, in which
the maximum left label equilibrium of {yuj} is gradually
explored; (3) The algorithm is terminated when the equalities
in (16b) hold for all j ∈ S , by which the relaxation of constraint
from (14) to (16) is tightened. In other words, the algorithm
terminates when the solution to the assignment problem is
{(j, j), ∀j ∈ S}, and outputs the maximum equilibrium of left
labels {y∗uj}, which gives the global minimum power allocation
{rj = −y

∗
uj}. A detailed implementation of the Kuhn-Munkres

algorithm with some parameters specified to fit our problem is
relegated to Appendix B (see Algorithm 2). It is also worth
noting that, according to the equality in (12), the optimal
solution to (17) is achieved when the equality of (17c) holds.
This observation is also added to Algorithm 2 as the new
termination criterion. In particular, for an assignment problem
with size K, the Kuhn-Munkres algorithm requires at most
K rounds of iteration to converge to the optimal assignment
solution. This fact can be also used to check the feasibility of
GDoF tuples. If Algorithm 2 does not converge to the optimal
solution for a given GDoF tuple within K iterations, then this
GDoF tuple is infeasible.

It is also worthwhile to mention that a distributed Auction
algorithm, originally due to Demange, Gale, and Sotomayor
[14], achieves the minimum right label equilibrium, whose
values are componentwise smaller than any other feasible
ones, leading to the global optimality of power allocation in a
decentralized manner. A detailed implementation is presented
in Section V-C (see Algorithm 1).
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Hereafter, we refer to the centralized Kuhn-Munkres al-
gorithm (see Algorithm 2) and the distributed Demange-
Gale-Sotomayor Auction algorithm (see Algorithm 1) as the
assignment-based power control algorithms.

B. TINA Region Representation

In the following, starting from the power allocation solution
of Theorem 2 and exploiting the duality between assignment
and maximum weighted matching problems (see Appendix A),
we shall reformulate the TINA region in a more useful and
compact form. First, given a GDoF tuple (d1, . . . , dK) and
channel strength level values {αij , i, j ∈ K}, we define the
following matrix associated with the assignment problem (17):

Aij = {
αij , i ≠ j
αjj − dj , i = j

. (18)

We refer to the subnetwork involving S ⊆ K with channel
strength {Aij , i, j ∈ S} as the original subnetwork S.

By the duality theory in linear programming, we observe
that the dual problem of (17) is given by

max ∑
(i,j)∈E

Aijx(i, j), (19a)

s.t. ∑
i∈U∶(i,j)∈E

x(i, j) ≤ 1, (19b)

∑
j∈V∶(i,j)∈E

x(i, j) ≤ 1, (19c)

x(i, j) ∈ [0,1]. (19d)

It is known that this linear program has integer-valued optimal
solutions for bipartite graphs [28]. Since in our case the graph
associated to the transmitters and receivers in S and correspond-
ing intended and interfering links is bipartite by construction,
then (19) coincides with a maximum weighted matching
problem, obtained by replacing (19d) with x(i, j) ∈ {0,1}.
By the strong duality theorem, the minimum of the sum of all
left and right labels {yuj , yvj} in the primal problem (17) is
equal to the maximum weight sum over all matchings of the
original network in the dual problem (19).

Next, due to the complementary slackness condition [15],
an edge (i, j) belongs to the maximum-weight matching, i.e.,
x(i, j) = 1, if and only if yui + yvj = Aij . For all given
S ⊆ K, due to (12) we have that a feasible GDoF-tuple implies
equality in (17c). Hence, it follows that the set of feasible
GDoF-tuples (i.e, the region PTINA

S ) coincides with the set of
all (dj ∶ j ∈ S) for which the maximum matching solution to
(19) is {(j, j), j ∈ S} in the original subnetwork S. This key
observation enables us to provide a more compact form for
the TINA region.

For notational convenience, we construct a weighted fully-
connected bipartite graph G = (K,K,K×K), where the weight
α′ij is modified upon the original network and specified as

α′ij = {
αij , i ≠ j
0, i = j

. (20)

For any S ⊆ K, we define the subgraph G[S] = (S,S,S ×
S) with weights {α′ij ∶ i, j ∈ S}, which is referred to as
the modified subnetwork S. According to Appendix A, we

denote by MS a matching in G[S], and by M∗
S the matching

with the maximum weight in the modified subnetwork S . The
observation made above implies that, for all S ′ ⊆ S ⊆ K, the
matching {(j, j), j ∈ S ′} has the maximal sum weight among
all matchings in the original subnetwork S ′. Hence, it follows
that

∑
j∈S′

Ajj = ∑
j∈S′

(αjj − dj) ≥ maxw(MS′) = w(M
∗
S′),

∀ S
′
⊆ S ⊆ K (21)

where w(⋅) is the weight sum of a matching. The in-
equality (21) is the necessary and sufficient condition that
{(j, j), j ∈ S ′} is the maximum weighted matching in the
original subnetwork S ′. For the necessity, as the maximum
weighted matchingM∗

S′ in each modified subnetwork S ′ is also
a valid matching in the corresponding original subnetwork S ′,
the matching of sum weight w({(j, j), j ∈ S ′}) is no less than
any other matchings in the original subnetwork S ′ including
M∗
S′ . For the sufficiency, as (21) holds for any S ′ ⊆ S ⊆ K, the

matching of sum weight w({(j, j), j ∈ S ′}) is always larger
than any other matchings of sum weight w({(i, j), i ≠ j ∈ S ′})
in every original subnetwork S ′. As such, as long as (21)
holds for every subnetwork S ′ ⊆ S ⊆ K, {(j, j), j ∈ S ′} is the
maximum weighted matching in every original subnetwork S ′.
This will also be further clarified in Appendix C through the
proof of the following theorem.

Theorem 3. Consider a K-user single-antenna Gaussian
interference channel with channel strengths {αij ∶ i, j ∈ K}.
For any user subset S ⊆ K, PTINA

S is given by:

{(dk ∶ k ∈ K) ∶
dk ≥ 0, ∀k ∈ S, di = 0,∀i ∈ Sc

∑k∈S′ dk ≤ ∑k∈S′ αkk −w(M∗
S′), ∀S

′ ⊆ S
}

(22)

where w(M∗
S′) = 0 if ∣S ′∣ = 1. This simplified representation

is equivalent to the expression in (5).

Proof. See Appendix C.

Remark 3. For individual users, i.e., ∣S ′∣ = 1, we have
individual GDoF constraints, i.e., dk ≤ αkk. Using Theorem 3
into (6), we find that we need only 2K−1 non-trivial inequalities,
one for each non-trivial subset of K, to describe the K-user
TINA region PTINA

K , which is significantly less than ≈ (K −1)!
in [3].

1 

1.5 

0.5 

0.2 

0.5 

0.1 

1 

2 

0.5 

Fig. 1: (a) A 3-user interference channel, and (b) the input weight
matrix of Hungarian method for the GDoF tuple (0.5, 0.6, 0.7).
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Example 1. We consider the example in [10, Fig. 8] to
show the efficiency of our formulation, as shown in Fig. 1(a).
According to Theorem 3, the TINA GDoF region is immediately
given as

P
TINA
{1,2,3} = {(d1, d2, d3) ∶ 0 ≤ d1 ≤ 2,0 ≤ d2 ≤ 1,0 ≤ d3 ≤ 1.5,

d1 + d2 ≤ 2.3, d2 + d3 ≤ 1.5

d1 + d3 ≤ 2.4, d1 + d2 + d3 ≤ 2.5},

which is identical to the expression found in [10]. In order
to solve the power allocation for a given GDoF-tuple (say
(0.5,0.6,0.7) in this case), we take the weight matrix in
Fig. 1(b) as the input of the Kuhn-Munkres algorithm (see
Algorithm 2 in Appendix B) and we obtain:

yu1 = 1.2, yu2 = 0.4, yu3 = 0.7, yv1 = 0.3, yv2 = 0, yv3 = 0.1.

Thus, the globally optimal power allocation assignment is
r1 = −1.2, r2 = −0.4, r3 = −0.7, which coincide with what
found in [10]. The details are relegated to Appendix B.

Clearly, to start Algorithm 2, yuj and yvj are initialized
respectively with the maximum value of the j-th row of A
and 0. Following the procedure in Algorithm 2, we gradually
decrease yuj and increase yvj to make sure the constraints in
(17) satisfied. Note that rj = −yuj is increasing during this
procedure. Once we find one solution, it will be the global
optimum assignment, because it is impossible to decrease rj
(correspondingly increase yuj ) and find another solution in the
region that we have already explored. ◊

C. A New TIN Optimality Condition

Besides the significant reduction of the number of inequal-
ities of the TINA region as stated in Theorem 3, this new
formulation enables us to identify a relaxed channel strength
condition, by which the TINA region is a convex polytope.

Theorem 4. Consider a K-user single-antenna Gaussian
interference channel with channel strengths {αij ∶ i, j ∈ K}. If

αkk ≥ max
i,j∶ i,j≠k

{αik + αkj − α
′
ij}, ∀ k ∈ K, (23)

where α′ij is defined in (20), then PTINA
S is monotonically

non-decreasing with respect to S, i.e., if S1 ⊆ S2 ⊆ K then
PTINA
S1

⊆ PTINA
S2

. Also, RTINA = PTINA
K is a convex polytope.

Proof. See Appendix D.

Remark 4. The newly found channel strength condition is
a relaxed version of the GNAJ condition (7), because α′ij is
non-negative such that if (7) is satisfied, then (23) is satisfied
automatically. When i = j ≠ k, (23) reduces to αkk ≥ αik +αki,
∀ k, i, s.t. k ≠ i, which is the same as that induced by (7).
When i ≠ j ≠ k, it reduces to a quadrangular inequality αkk ≥
αik + αkj − αij , for all k ≠ i, k ≠ j and i ≠ j, saying that
the desired signal strength of each user is no less than the
maximum difference between the sum strength of any pair of
incoming/outgoing interference signals and the strength of the
link between such a pair (all in dB scale). ◊

With solely the condition (23), a relaxation of (7), we are
not able to prove the optimality of the corresponding TINA

region (although a convex polytope) through the techniques at
hand (e.g., the cyclic bounds [3], [29]). Nevertheless, we can
exhibit a class of networks different from the class identified
in [3], for which the TINA region is GDoF-optimal. This is
a special class of partially connected interference channels
satisfying a topological condition given below. Interestingly,
this class of networks is not included nor includes the class
defined by the GNAJ condition. The converse proof follows
the approach in [3] and is presented in Appendix E.

Theorem 5. Consider a K-user single-antenna Gaussian
interference channel with channel strengths {αij ∶ i, j ∈ K}.
Assume that (23) holds and, in addition, that for every S ⊆ K
with ∣S∣ > 2, and the corresponding fully connected weighted
subgraph G[S] = (S,S,S × S) with weights {α′ij ∶ i, j ∈ S},

∃ (i, j) ∈ M∗
S , s.t. αij = 0. (24)

Then, R∗ = RTINA = PTINA
K .

Proof. See Appendix E.

Remark 5. As the maximum weighted matching may not
be unique, Theorem 5 holds as long as (24) holds for any
one of the maximum matchings. Condition (24) allows us to
establish the optimality of TINA since, under this condition,
we can prove that the converse is tight. This, however, is only
a sufficient condition and there might be a larger class of
networks, including both the subclass defined by Theorem 1
and the one defined by Theorem 5, for which TIN is GDoF-
optimal. It is also worth noting that our new TIN optimality
condition does not violate the conjecture in [3] that the GNAJ
condition is also necessary “except for a set of channel gain
values with measure zero.” ◊

Example 2. We illustrate the relaxed channel strength con-
dition by the example in Fig. 2. It is easy to verify that the
condition (23) holds for the entire network, while the original
GNAJ condition (7) does not hold for users 1 and 2. Note
that M∗ = {(1,3), (2,1), (3,2)} is a (non-unique) maximum
weighted matching and contains α′13 = α13 = 0, such that also
condition (24) holds. Thus, from Theorems 4 and 3, the optimal
TINA region R∗ of this network is the polytope defined by:

P
TINA
{1,2,3} = {(d1, d2, d3) ∶ 0 ≤ di ≤ 1,∀i ∈ {1,2,3}

d1 + d2 ≤ 1.1, d2 + d3 ≤ 1.3

d1 + d3 ≤ 1.2, d1 + d2 + d3 ≤ 1.8}.

◊

Remark 6. A subclass of network topologies for which (24)
holds is those with no perfect matchings in any unweighted
subgraph of G where zero-weight edges removed. A bipartite
graph has no perfect matchings if Hall’s condition does not
hold [28]. The so-called triangular networks in [30] belong
to this category. ◊

IV. A GDOF-BASED LINK SCHEDULING AND POWER
CONTROL FRAMEWORK

In this section, we capitalize on the insight about the TINA
region obtained before, in order to develop a framework for link
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Fig. 2: (a) A 3-user Gaussian interference channel whose TINA
region is a convex polytope. The value associated with each link
represents the channel strength level αij and the missing links
correspond to αij = 0. (b) The links where the relaxed channel

strength condition (23) is satisfied while the GNAJ condition does
not hold (marked in blue and purple).

scheduling and power control in Gaussian K-user interference
channels with the constraint that receivers treat interference
as (Gaussian) noise. In general, the goal is to activate simulta-
neously a subset of links (i.e., transmitter-receiver pairs) with
nonzero transmit power, aiming at maximizing some desired
system utility functions. The classical power control problem
(e.g., as formulated in [31]–[33]) finds the componentwise
minimum transmit power vector that achieves given target
SINRs at the receivers, when such target SINRs are feasible.
However, this approach does not take into account that in
modern TDMA systems the links may not be active in all
scheduling slots. In contrast, by selecting a subset of links
on each slot (scheduling), higher user throughput (i.e., time-
averaged rate) can be achieved. As anticipated in Section I, a
direct application of GP [22] also does not solve the scheduling
problem, since implicitly all links must be allocated positive
power. Intuitively, these approaches work well when SINRs
significantly larger than 1 (0 dB) can be achieved for all the
K links.

A general scheduling framework is provided by considering
the user throughputs Tk = limt→∞

1
t ∑

t
τ=1Rk(τ), where Rk(τ)

indicates the rate achieved by link k during scheduling slot
τ . Let U(T1, . . . , TK) denote a concave componentwise non-
decreasing Network Utility Function (see [20], [21], [34],
[35] and references therein) of the user throughputs (e.g.,
weighted sum throughput), and let T denote the achievable
throughput region of the system. Then, a general Network
Utility Maximization (NUM) problem is given as

(NUM) ∶ max U(T1, . . . , TK) (25a)
s.t. (T1, . . . , TK) ∈ T . (25b)

It is possible to systematically maximize any concave
componentwise non-increasing network utility function
U(T1, . . . , TK) of the user throughputs by using the Lyapunov
Drift-plus-Penalty method [21], [36], [37]. This decomposes
the convex NUM problem over the region of achievable
throughputs,6 into a sequence of instantaneous weighted sum

6Notice that this region is always convex, since it is given by the convex
hull of all instantaneously achievable rate K-tuples. However, the convex
throughput region is very difficult to describe, therefore a direct solution of
the underlying NUM problem is not possible in general, and we have to resort
to the Lyapunov method.

rate maximization problems of the form maxk∑k wk(τ)Rk(τ)
for τ = 1,2,3 . . ., where the weights {wk(τ)} are iteratively
computed. It is clear that, depending on the weights {wk(τ)},
the sum rate may be maximized by turning off some particularly
bad links, and by allocating positive power on subsets of
favorable links. This process is referred to as “link selection”,
or “link scheduling” and power control.

In our case, we shall consider a GDoF criterion and replace
Tk with dk = limP→∞

Tk
logP

. Through an immediate time-
sharing argument, we have that the achievable region of
throughput-GDoF is the convex hull of RTINA, denoted by
conv(RTINA). In general, RTINA is the union of convex
polytopes (see Theorem 1), such that it is not generally
convex. However, when (23) in Theorem 4 holds, then
RTINA = conv(RTINA) = PTINA

K . Using the GDoF criterion,
the corresponding NUM problem becomes

(NUM −GDoF ) ∶ max U(d1, . . . , dK) (26a)

s.t. (d1, . . . , dK) ∈ conv(RTINA
).

(26b)

It turns out that the above problem can be solved by iterating
over time (i.e., over the scheduling slot) a sequence of “instan-
taneous” subproblems. The following result is quite standard
and follows as corollary of the general theory developed for
example in [21], [36]–[38] (and references therein), and shall
be stated without proof here for the sake of space limitation.

Theorem 6. Consider a K-user single-antenna Gaussian
interference channel with channel strengths {αij ∶ i, j ∈ K},
and corresponding TINA region RTINA. For a sequence
of scheduling slots indexed by t = 1,2,3, . . ., consider the
following iterative procedure:

1) Initialize weights wk(1) = 1 for all k ∈ K.
2) For t = 1,2, . . ., repeat the following two steps:

● Compute the GDoF-tuple (d∗1(t), . . . , d
∗
K(t)) solution

of the max weighted sum-GDoF problem

(SUM −GDoF ) ∶ max ∑
k∈K

wk(t)dk (27a)

s.t. (d1, . . . , dK) ∈ R
TINA.

(27b)

● Update the weights according to

wk(t + 1) = max{0,wk(t) − d
∗
k(t) + a

∗
k(t)} , (28)

where (a∗1(t), . . . , a
∗
k(t)) is the solution of the convex

optimization problem

max V U(a1, . . . , aK) − ∑
k∈K

wk(t)ak (29a)

s.t. (a1, . . . , aK) ∈ [0,Amax]
K , (29b)

where V > 0 and Amax > 0 are control parameters
of the algorithm.

Then, for sufficiently large Amax we have that

lim
t→∞

U (
1

t

t

∑
τ=1

d∗1(τ), . . . ,
1

t

t

∑
τ=1

d∗K(τ)) ≥ U(d
∗

1, . . . , d
∗

K)−
κ

V
,

(30)
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where (d
∗

1, . . . , d
∗

K) is the solution of the NUM-GDoF problem
(26), and κ is a constant that depends on the system parameters
but is independent of V . Hence, the above iterative scheduling
algorithm can approach the optimal value of (26) by any
desired accuracy.

Remark 7. It is also possible to show that the time over
which the limit in (30) is closely approached grows as O(V ).
Therefore, in practice there is a tradeoff between how close we
can approach the optimal network utility function value, and
how quickly the scheduling algorithm converges. Nevertheless,
here we are not concerned with this problem, and we use
Theorem 6 as a general tool to translate a NUM problem in
terms of the long-term time averaged rates (or GDoF, in our
case) into a sequence of “instantaneous” (i.e., to be solved at
each scheduling slot) max weighted sum-GDoF problem. ◊

It follows that, from now on, we shall be concerned with
solving the maximum weighted sum-GDoF problem (27) for
an arbitrary set of weights (w1, . . . ,wK). The “power control”
aspect of the problem resides in the fact that, when a solution
(d∗1(t), . . . , d

∗
K(t)) of (27) is found, we must also provide

the powers at which the links have to transmit in order to
realize such a GDoF point in the TINA region. As anticipated
in Section I, such transmit powers are generally not unique,
and in this case we aim at finding the globally optimal power
control assignment for the desired GDoF-tuple.

In what follows, we first introduce the exact GDoF-based
solution, and then subsequently simplify it until we could
obtain an approximation with polynomial-time complexity.
In turn, the exact or approximate solver of (27) can be
plugged into the iterative scheduling algorithm of Theorem
6 in order to obtain a scheme that works for any suitable
network utility function. For example, if throughput max-min
fairness is desired, we can choose U(d1, . . . , dK) = mink dk.
Instead, if proportional fairness is desired, we can choose
U(d1, . . . , dK) = ∑k∈K log(dk).

A. Exact Joint Solution is Hard

We rewrite (27) more conveniently in the form:

(DP ) ∶ max
{dk}

∑
k∈K

wkdk (31a)

s.t. (d1, . . . , dK) ∈ ⋃
S⊆K

P
TINA
S , (31b)

which can be categorized as an instance of Disjunctive
Programming (DP) [39]. The union involves 2K − 1 nontrivial
polyhedra, and PTINA

S is described by 2∣S∣−1 linear inequalities.
As mentioned earlier, the union is not necessarily leading to a
convex polytope, and thus the problem is not a convex optimiza-
tion problem in general. Nevertheless, it can be transformed
to an equivalent convex optimization problem by replacing
⋃S⊆KP

TINA
S with its convex hull Q = conv (⋃S⊆KP

TINA
S ).

The full description of Q may require an exponential number
of inequalities, yet Q has a compact representation in a higher-
dimensional space. The so-called lift-and-project cutting plane
method [40], [41] can be employed to offer an exact solution to
this problem. The principle consists of three steps: (1) lift the
subspace spanned by GDoF tuples into a higher-dimensional

space by introducing some auxiliary variables, (2) obtain the
compact representation in the form of a set of lift-and-project
cutting planes, and (3) project the compact representation onto
the original GDoF spanned subspace. These cutting planes
are valid for the closure of the convex hull Q, and can be
generated by solving cutting generating linear programs derived
from the higher dimensional representation (see [40], [41] and
references therein).

Once we obtain the GDoF tuple d from (DP ) maximizing
the weighted sum-GDoF, the second step is to use either the
centralized algorithm found in [10] or the assignment-based
algorithms found in this paper to find the globally optimal
power allocation vector r. This is illustrated in Fig. 3.

Fig. 3: The exact solution with the optimal link scheduling and
assignment-based power control, where the globally optimal GDoF
tuple is obtained via disjunctive programming over the union of all

convex polytopes.

Unfortunately, the cutting generating linear programs still
involve exponential number of constraints. This fact prohibits
the application of this exact solution via disjunctive program-
ming for network of practical size (e.g., a few tens to a few
hundreds of D2D links). As such, reasonable approximation
and heuristic approaches are desirable, although the global
optimality is not guaranteed.

B. Separated Link Scheduling and Power Control

In view of the complexity of the exact solution, we resort to
separated link scheduling and power control. We can first select
heuristically a subset of links S whose TINA region is easy to
describe and, at the same time, it leads to a reasonably large
weighted sum-GDoF. In particular, we look for user subsets S
whose TINA region coincides with the convex polytope PTINA

S .
Hence, finding the optimal GDoF tuple d ∈ PTINA

S consists of
solving an LP. Given the optimal d (restricted to S), we can
use assignment-based algorithms to obtain the corresponding
optimal power allocation vector r. This procedure is illustrated
in Fig. 4.

Fig. 4: The separated solution with a heuristic link scheduling and
assignment-based power control, where the desired GDoF tuple is

obtained via linear programming over the selected convex polytope.

1) Link Scheduling: Recall that in the disjunctive program-
ming (31), the objective function can be regarded as a moving
hyperplane, and the constraint is the union of convex polytopes.
A locally optimal weighted sum-GDoF solution is met when the
hyperplane touches one of the vertices as a tangent plane to one
convex polytope. The vertices of the largest convex polytope
meet such hyperplanes with high probability, such that the
weighted sum-GDoF can be maximized with high probability
in such a polytope. As such, a heuristic link scheduling consists
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of selecting the largest subset of links whose corresponding
TINA region is a convex polytope.

By analogy with information theoretic independent sets
(ITIS) introduced in [4], we define an independent set as a set
of links whose TINA region is a convex polytope. Using the
conditions of Theorem 4, we have

Definition 1. A user subset S is called an improved information
theoretic independent set (“ITIS+”), if for any link k ∈ S

αkk ≥ max
i,j∈S/{k}

{αik + αkj − α
′
ij}. (32)

Remark 8. Comparing Definition 1 with the analogous
definition of information-theoretic independent set (ITIS) in [4]
we notice that any S satisfying the ITIS condition automatically
satisfies also the ITIS+ condition, but the converse is not true.
Hence, an ITIS+ contains no less links than an ITIS, and thus
the TINA region (convex polytope) of the former includes that
of the latter. ◊

Of course, we would like to find the subset S over which the
global maximum of ∑k wkdk is found. However, as already
observed, this turns out to be very difficult and we shall content
ourselves with good heuristics to select the ITIS+ set of active
links S.

2) Power Control: For a given ITIS+ S, the GDoF tuple
with the maximum weighted sum-GDoF can be identified by
solving the following linear problem:

(LP ) ∶ max
di

∑
i∈S

widi (33a)

s.t. (d1, . . . , dK) ∈ P
TINA
S . (33b)

Once the GDoF tuple is identified, various power allocation
algorithms can be applied in order to find the corresponding
power scaling vector r. The LP (33) can be solved by using
simplex, or interior-point method. However, since PTINA

S is
defined by an exponential number of constraints (i.e., 2∣S∣ − 1),
even the complexity solving (33) is impractical as soon as ∣S∣

is of the order of a few tens. The problem of reducing the
size of constraints by exploiting the special structure of linear
program is an interesting one, yet beyond the scope of this
paper.

C. Replacing Linear Programming by Geometric Programming

In order to prevent the exponential complexity of solving
(33), we propose to replace the LP by solving the power
control problem on S using GP [22], which can be solved with
polynomial-time complexity. In general, GP does not lead to the
minimum power vector supporting the given (local optimum)
GDoF vector. Therefore, we shall obtain the minimum power
vector through the assignment-based algorithms. This idea is
illustrated in the conceptual block diagram of Fig. 5.

Given a selected subset of links S , GP is used to maximize
the weighted sum rate at high SNR subject to the constraint
that only links in S are active. We know that the GDoF region
corresponding to the subnetwork S is a convex polytope PTINA

S .
Hence, there is no bottleneck link that forces the system to work
in a bad operating point. It follows that we expect that the GP is
close to the global optimum provided that S is well selected. Let

Fig. 5: The separated solution with a heuristic link scheduling and
assignment-based power control, where the desired GDoF tuple is

obtained instead via geometric programming.

the GP solution be denoted by rgp(S,{wk}). In order to find
the optimal power allocation vector, i.e., the componentwise
minimum vector r∗(S,{wk}) yielding to the same weighted
sum-GDoF, we first calculate the resulting (locally) optimal
GDoF tuple by mapping rgp(S,{wk}) ↦ d∗(S,{wk}). Then,
we use the assignment-based algorithms to find r∗(S,{wk})
from d∗(S,{wk}).

In what follows, we establish the equivalence of such a
replacement. Given the weights {wi, i ∈ S} of a selected use
subset S , we initially aim at solving the following optimization
problem:

max
{P̄i}

∑
i∈S

wi log(1 + SINRi) (34a)

s.t. SINRi =
GiiP̄i

1 +∑j≠iGjiP̄j
(34b)

0 ≤ P̄i ≤ 1 (34c)

where Gij = ∣hij ∣
2Pi is the effective channel gain between

Tx-i and Rx-j with power constraint Pi integrated, and P̄i
is the normalized transmit power allocation adjustment, by
which PiP̄i is the actual transmit power. Let us introduce an
auxiliary variable ti = 1

SINRi
where ti is a posynomial function

of {P̄i, i ∈ S}. Thus, the optimization problem at high SNR
can be approximated to

(GP ) ∶ min
{P̄i,ti}

∏
i∈S

twii (35a)

s.t.
1 +∑j≠iGjiP̄j

GiiP̄i
≤ ti, ∀i ∈ S (35b)

0 ≤ P̄i ≤ 1 (35c)

which is a geometric program with respect to {P̄i, ti, i ∈ S}.
A brief description of GP can be found in Appendix A. The
equivalence between (LP ) and (GP ) is due to the following
proposition.

Proposition 1. Given an ITIS+ S and the weights {wi, i ∈
S}, the GP power allocation is equivalent to the LP power
allocation in the sense that both approaches achieve the same
optimal weighted GDoF.

Proof. Given an ITIS+ S, the condition (23) in Theorem 4
holds, and thus the TINA region is a convex polytope. As such,
each transmitter-receiver pair is active, and thus each transmitter
is allocated with positive power. This is the condition when
GP works well. Let Gij = Pαij and P̄i = P ri ≤ 1. Substituting
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them into GP, we have

min
{ri,ti}

∏
i∈S

twii (36a)

s.t.
1 +∑j≠i P

αji+rj

Pαii+ri
≤ ti (36b)

−∞ ≤ ri ≤ 0 (36c)

By replacing ti with P −di , we have an equivalent formulation:

max
{ri,di}

∑
i∈S

widi (37a)

s.t. 1 +∑
j≠i

Pαji+rj ≤ P −di+αii+ri (37b)

ri ≤ 0, ∀i ∈ S (37c)

Note that the log-sum-exp function can be rewritten as

log(1 +∑
j≠i

Pαji+rj) = (max
j
zij) logP + log∑

j

P z
i
j−maxj′ z

i
j′

= (max
j
zij + εi) logP (38)

where εi =
log∑j P

zij−maxj′ z
i
j′

logP
and

zij = {
αji + rj , j ≠ i
0, j = i

. (39)

It is easily verified that 0 ≤ ε ≤ log∣S∣
logP

, and thus the second term
in RHS is always bounded within [0, logK]. Thus, we can
rewrite the linear program as:

max
{ri,di}

∑
i∈S

widi (40a)

s.t. di ≤ αii + ri −max
j≠i

{0, (αji + rj)} − εi (40b)

di ≥ 0, ri ≤ 0, ∀i ∈ S. (40c)

At high SNR (P → ∞), εi → 0. It is not hard to verify that
the feasible region of (di ∶ i ∈ S) in the above linear program
is exactly the one in (33) formulated by taking GDoF metric
into account. This completes the proof.

Remark 9. Admittedly, given the power allocation obtained
by GP and the corresponding (suboptimal) rate tuple, one
can apply the distributed power control algorithm developed
in [31], [32] to obtain the globally optimal transmit power
allocation to such a suboptimal rate tuple. Note however that,
such an optimal solution is the real transmit power allocation,
which is unique to a specific rate tuple, and unfortunately its
power exponent may be not globally optimal with respect to the
corresponding GDoF tuple [10, Appendix D]. In view of the fact
that the weighted sum-GDoF maximization is of our interest
and that the link scheduling also targets the largest achievable
GDoF region rather than the rate region, the globally optimal
power exponents fit our target better.

As mentioned in [10], while there only exists a unique
locally optimal power vector (and thus globally optimal) for a
rate tuple, there are multiple locally optimal power exponent
vectors for a GDoF tuple. It is because the real power linked
to a specific rate tuple is unique, while the power exponent
concerned for a specific GDoF tuple can be distinct. In other

words, multiple locally optimal power exponent vectors lead
to the same GDoF tuple, but only one locally optimal power
exponent vector is globally optimal, which can be obtained by
assignment-based algorithms or the algorithms in [10]. The
concatenation of the geometric program and assignment-based
algorithms offers maximal sum throughput at high SNR as
well as minimal power consumption. Note that they are not
contradicting, since the network is operated in an interference
limited regime such that the sum rate is not immediately and
obviously correlated to transmit power. ◊

V. ITLINQ+: A DECENTRALIZED IMPLEMENTATION IN
D2D COMMUNICATIONS

In D2D communications, as smart devices are distributively
located, a decentralized or semi-decentralized implementation
of the link scheduling and power control framework illustrated
in Section IV is desirable. The semi-decentralized refers to the
case where some global information can be obtained through a
controlling cellular base station, in base-station-assisted D2D
[42].

In this section, we propose a decentralized mechanism
(referred to as “ITLinQ+”) for the link scheduling and power
control framework aforementioned in Fig. 5. ITLinQ+ consists
of three ingredients: (1) a decentralized implementation of
link scheduling to find a large ITIS+ S, (2) a decentral-
ized GP implementation to find the power allocation vector
rgp(S,{wk}) and the corresponding GDoF tuple d∗(S,{wk}),
and (3) a distributed Auction algorithm to solve the assignment
problem and yield the globally minimal power allocation vector
r∗(S,{wk}) corresponding to d∗(S,{wk}). These ingredients
are detailed in the following subsections.

A. Decentralized Implementation of Link Scheduling
To find a large ITIS+, we design a decentralized link

scheduling criterion similar to a greedy independent sets
selection, requiring protocol signaling overhead and complexity
comparable to that of FlashLinQ and ITLinQ. The decentralized
link scheduling of ITLinQ+ is comprised of two phases: link
scheduling and signaling.

Link Scheduling Phase: We first sort the links in non-
increasing order of their weights wk. If we wish to maximize
the sum-throughput, we let wk = 1 for all k ∈ K and sort the
links in the order of their channel strengths. Notice that this
global coordination information relative to the link priority
order is needed also in FlashLinQ and ITLinQ. Links are
added to the selected set by considering them sequentially
in the above defined priority order. After some steps of the
sequential selection, let S = {i1, . . . , ik−1} denote the currently
selected set. Whether or not a new candidate link ik is suitable
to be scheduled depends on the following criteria. For the
convenience of comparison with FlashLinQ and ITLinQ, we
adopt the notations SNRk ≜ P

αkk and INRij ≜ P
αij , where

the noise power is normalized.
● At Tx-ik, check if the following condition is satisfied:

SNRη
ik
≥

INRikij

(mins<k,s≠j{INRisij})
γ
, ∀ j < k, ij ∈ S

(41)
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where η, γ ∈ [0,1] are design parameters, and
mins<k,s≠j{INRisij} is the least channel strength level
of incoming interfering links of Rx-ij .

● At Rx-ik, check if the following condition is satisfied:

SNRη
ik
≥

INRijik

(mins<k,s≠j{INRijis})
γ
, ∀ j < k, ij ∈ S

(42)

where mins<k,s≠j{INRijis} is the least channel strength
level of outgoing interfering links of Tx-ij .

Note that the minimum value of INR’s is initialized to
be 1 such that the second link i2 is selected if SNRη

i2
≥

max{INRi1i2 , INRi2i1} is satisfied. In the k-th (k ≥ 3) link
selection, if these two conditions are satisfied, then this new
candidate link ik can be scheduled, i.e., S ← S ∪ {ik}. In
words, a candidate link is scheduled if the interference caused
to/received from the already selected higher-priority links is
smaller than the product of the signal strength with an exponent
η of this link and the signal strength with an exponent γ of
the weakest interfering link in the already selected subset.

We point out that the above two criteria for γ = η = 0.5
imply that the user subset S forms an ITIS+. Because of the
fact that mins<k,s≠j{INRisij} ≤ INRiiij , ∀i < k, i ≠ j and
mins<k,s≠i{INRiiis} ≤ INRiiij , ∀j < k, j ≠ i, the selection
rule with η = γ = 0.5 implies that, ∀ii, ij ∈ S/{ik},

INRikij ≤
√

SNRikINRiiij , (43a)

INRiiik ≤
√

SNRikINRiiij . (43b)

From Definition 1 we have that inequalities of (43) imply that
adding ik to the current set S yields an ITIS+. As INRiiij

is usually unavailable at Tx-ik and Rx-ik, we replace it by
the minimum of local interference strengths, which can be
obtained by signaling. Nevertheless, choosing η = γ = 0.5, (43)
may not lead to the best performance (because of no guarantee
of a large enough ITIS+). To compensate for this, we leave η
and γ as design parameters, which can be tuned by simulation
taking into account the channel statistics (path loss law) due
to the specific physical network topology.

Link Signaling Phase: Before the link scheduling phase,
we have two rounds of signaling to inform transmitters and
receivers the channel strength information. This can be done in
two rounds of pilot signals, as in FlashLinQ [18] and ITLinQ
[4].

● In the first round, similarly to FlashLinQ, each Tx-i
(∀i) sends pilot signal with full power Pi in a different
frequency band, such that each receiver is able to measure
the received signal levels and obtain SNR’s and INR’s.

● In the second round, similarly to ITLinQ, each Rx-j
(∀j) sends pilot signal with full power Pj in a different
frequency band, such that the transmitters measure the
signal levels with a certain adjustment and obtain SNR’s
and INR’s.

At the end of this procedure, for any link k, the local channel
strength information {INRki,∀ i} and SNRk are accessible
at transmitter k, and {INRjk,∀ j} and SNRk at receiver k.

Another additional signaling cost happens at the end of each
successful link selection. The transmitter and receiver ij (ij ∈

S) have to inform the next being checked links the local min-
imum interfering channel strength (i.e., minis∈S,s≠j{INRijis}

and minis∈S,s≠j{INRisij}, respectively). This signaling can be
done similarly as the above two-round signaling procedure.

To reduce this additional signaling overhead, we can replace
both minis∈S,s≠j{INRisij} and minis∈S,s≠j{INRijis} by the
global minimum value minis,ij∈S,s≠j{INRisij}, which is the
minimum value over all cross links in the selected subset. This
minimum value can be broadcast after each successful link
selection by an assisting base station. If it is not changed with
the newly selected link, then the signaling overhead with this
new link is avoided.

B. Decentralized GP Implementation to Find the Optimal
GDoF-tuple

In what follows, we will consider a distributed implementa-
tion of GP [22] where Rx-i has access to the local knowledge
{r′ji = αji + rj}j only, i.e., the exponent of received signal
power from Tx-j. From the maximum weighted sum rate
problem in (34), replacing the variables with their exponents,
we obtain an approximate linear program from GP taking into
account the local knowledge

max
ri

∑
i∈S

wi(αii + ri −max
j≠i

{0, r′ji}) (44a)

s.t. r′ji = αji + rj ,∀j ∈ S/{i}, ∀i (44b)

rj ≤ 0,∀j ∈ S. (44c)

Introducing Lagrange multipliers {κji} only for the coupling
constraints, we form a partial Lagrangian

L = −∑
i∈S

wi(αii + ri −max
j≠i

{0, r′ji})

+∑
i∈S

∑
j∈S/{i}

κji(r
′
ji − αji − rj) (45)

and thus, each user only has to take care of its local partial
Lagrangian term, given by

Li(ri,{r
′
ji}j≠i;{κji}j) = −wi(αii + ri −max

j≠i
{0, r′ji})

+ ∑
j∈S/{i}

κjir
′
ji −

⎛

⎝
∑

j∈S/{i}

κij
⎞

⎠
ri.

(46)

The minimization of the partial Lagrangian can be solved by
alternating optimization. As initialization, {κji}j are set to be
zero, and in each iteration we alternately do as follows. First,
given the local knowledge of {κji}j at user i, the minimization
can be done locally by each user i in parallel with respect
to the primal local variables ri and {r′ji, j ∈ S/{i}}. Then,
given the updated local variables ri and {r′ji, j ∈ S/{i}}, we
update {κji}j again, and ∑j∈S/{i} κij can be calculated base
on the signaling of {κjk}j from user k. Keep doing this until
it converges.

In particular, the dual variable {κji}j can be obtained by
solving the dual problem

max
{κji}j

g({κji}j) ≜ ∑
i

min
ri,{r′ji}j≠i

Li(ri,{r
′
ji}j≠i;{κji}j). (47)
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A simple solution of {κji}j is to update iteratively with the
updating rule in t-th iteration being:

κji(t + 1) = κji(t) + δ(t)(r
′
ji(t) − r

e
ji(t)) (48)

where reji(t) = αji + rj(t) is the estimation of received signal
power exponent, and δ(t) is a carefully chosen stepsize. As said,
signaling of {κjk}j is needed from user k to other coupled
users through, e.g., broadcasting, in each iteration, and the
reduction of such signaling overhead can be similarly done as
in [22].

C. Decentralized Auction Algorithm for Power Allocation

As shown earlier, the feasible power allocation vector r
can be found by solving an assignment problem. The Auction
algorithm is an efficient way to solve the assignment problem in
a distributed manner. It mimics the sales auction in the business
activities in which bids are compared in multiple rounds to
make the best offer to the products, with each product going
to the highest bidder. It has many variants, and interestingly
the algorithm originally proposed by Demange, Gale, and
Sotomayor [14] (referred to as “DGS Auction”) adopts an
ascending pricing strategy and converges to the minimum price
equilibrium [14].

In our setting, the transmitters are bidders, and the receivers
represent products. Let us look at the assignment problem from
an auction perspective. The bidders have access to the local
channel strength knowledge, i.e., bidder i only knows {Aij , j ∈
K}. Here the right label yvj can be regarded as the price of
the product j, meaning that a bidder must pay as much as yvj
to obtain the product j. For a given price yvj , Aij − yvj can
be regarded as the benefit of the bidder i regarding the product
j. We define profit margin by yui = maxj{Aij − yvj}. The
objective is to determine the best assignment given this local
information, such that each bidder i is happy to be assigned
to a product j with the lowest price yvj and in turn highest
profit margin yui . Specifically, it is to minimize the price while
maximizing the profit margin, satisfying yui + yvj ≥Aij ,∀i, j.

An algorithm inspired by DGS Auction is detailed in
Algorithm 1 where ε is a design parameter. It consists of
multiple rounds of auction process. In each round, the bidder
who is not assigned any product will bid his most profitable
product, i.e., j∗ = arg maxj{Aij − yvj} with j∗ being the
most profitable product of the bidder i. If the associated profit
Aij∗ − yvj∗ is negative or j∗ is already assigned to the bidder
i, then we skip this bidder and consider the next unassigned
bidder. Otherwise, bidding process starts. If the product j∗

was already assigned to another bidder, then this bidder will
be added to the demand set and reconsidered later. If this
product j∗ is free, then it will be assigned to the bidder i, and
at the same time the price of the product j∗ will be raised
by ε. If ε is small, it requires more rounds of iteration to
achieve a reasonably “almostly optimal” solution. While ε is
large, as in real auctions, the bidder may take risks to pay
an unnecessarily high price, leading to a suboptimal solution
with a faster convergence. A demand set D is maintained
among bidders to indicate which bidders are not assigned with
any product, and Oj represents the owner of the product j

who successively bids this product. Keep doing this auction
process until every bidder has his product without competitors.
The final assignment of bidders and products is the optimal
solution to the assignment problem. Each assigned product j
should inform each bidder the raised price yvj in each round,
which can be done similarly as the signaling procedure in link
scheduling.

Algorithm 1 A Decentralized Power Allocation Algorithm via
Auction Algorithm

Require: The bidder i only has the local knowledge Ai =

[αi1 . . . αii − di . . . αiK].
1: Initialization: Set yvj = 0, Oj = 0,∀j, and D =

{1,2, . . . ,K}.
2: while D ≠ ∅ do
3: Choose a bidder i from the demand set, i.e., D ← D/{i}
4: For bidder i, find the best values in {Aij − yvj ,∀j}

zi = max
j

{Aij − yvj}, j∗ = arg max
j

{Aij − yvj}

5: if zi ≥ ε && Oj∗ ≠ i then
6: if Oj∗ ≠ 0 then
7: Add i into the demand set, i.e., D ← D∪{Oj∗}
8: end if
9: Assign the bidder i with the product j∗, i.e., Oj∗ = i

10: Product j∗ raises the price by ε, i.e., yvj∗ ← yvj∗ +ε
11: end if
12: end while

For any set of feasible power allocation parameters {rj =
−yuj}j , there exists an equilibrium price vector yv = {yvj}j .
The minimum price equilibrium always exists as long as the
corresponding GDoF tuple is feasible. It has been proved
in [14] that this DGS Auction algorithm converges to the
minimum price equilibrium y∗v , meaning that any other feasible
price vector yv is componentwise larger than this minimum
equilibrium, i.e., y∗v ≤ yv. As such, the globally minimal
power allocation parameters can be obtained from {ri∗ = yvj∗ −
Ai∗j∗} where (i∗, j∗) belongs to the optimal bidder-product
assignment. If we make ε sufficiently small such that the price
is raised carefully in each round of auction, {yvj}j obtained
by Algorithm 1 can achieve arbitrarily close to the minimum
equilibrium price. The algorithm converges within a finite
number of iterations. An adaptive price increasing strategy
[43] can be applied to speed up the convergence.

Remark 10 (Additional Computational Complexity and Sig-
naling Overhead). In general, ITLinQ+ has an improved sum
throughput and energy efficiency over ITLinQ at the expense
of additional signaling overhead as well as computational
complexity. In what follows, we summarize the additional
signaling and computation in both link scheduling and power
control phases.

For the link scheduling, the additional signaling overhead
of ITLinQ+ consists in the broadcasting of the minimum
interfering link strength in the selected user set after a new
candidate link is successfully scheduled. This can be done
in such a way that the newly selected transmitter/receiver
sends pilot signal on a reserved frequency band while the
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receivers/transmitters in the selection pool measure the received
signal level and estimate such a value. There are at most 2∣S∣
rounds of additional signaling, where S is the finally selected
user set. Except for this signaling overhead, the link scheduling
phase of ITLinQ+ has the same low-complexity computation
as ITLinQ.

The power control in ITLinQ+ involves the calculation of
the GDoF via GP and the corresponding minimum power
exponent vector via either the Hungarian (Algorithm 2) or
the Auction (Algorithm 1) algorithms. This can be achieved
with polynomial-time complexity in ∣S∣. If such schemes are
implemented in a distributed fashion, they involve signaling
overhead due to the exchange of the Lagrange multipliers
(for GP) and prices (for Auction) at each iteration. As an
alternative, in a Base-Station assisted D2D system, the power
and rate assignment can be centrally computed by the Base-
Station. In this case the signaling overhead consists of sending
link strength information to the Base-Station for the selected
nodes in S, and sending back the rate and power allocation
control signals from the Base-Station to the selected nodes.
Notice that if the channel strengths do not change rapidly over
time (e.g., for a proximity D2D network with nomadic users or
in industrial IoT applications), the Base-Station needs to know
only the set of selected links S , and update the channel strength
knowledge on a slower pace. Furthermore, the power control
command can be broadcast to the users over some downlink
control channel on a different frequency band, by piggyback
on existing cellular control channels which are implemented
anyway. Given all these options available to the system designer,
a more precise assessment of the signaling overhead related
to power control must rely on the specific system architecture
and are out of the scope of this paper. ◊

VI. NUMERICAL RESULTS

To demonstrate the gains of our ITLinQ+ mechanism over
FlashLinQ and ITLinQ, we perform numerical analysis under
a similar network setup as in [4], [18].

As the first setup, we only consider the link scheduling
without power control to show the benefit of our new decision
criterion. We consider a 1 km × 1 km square area and randomly
drop n transmitter-receiver pairs. As in [4], [18], the simulated
channel follows the LoS model in ITU-1411, and the system
parameters are listed in Table I. Two scenarios are considered:
(1) Scenario 1: The distance of any two paired transmitter
and receiver is uniformly distributed in [5,30]m, all links are
supposed to operate over a 5MHz bandwidth spectrum, and the
maximum transmit power is 20 dBm; (2) Scenario 2: The range
of distance is enlarged to [10,60]m with a larger maximum
transmit power 30 dBm and a wider bandwidth of 10MHz.
We compare ITLinQ+ with no scheduling case where all links
are activated, FlashLinQ, as well as ITLinQ with properly
chosen parameters η = 0.7 and M = 25 dB as in [4]. In both
scenarios, we use the same parameter η = 0.9 and γ = 0.1 for
our ITLinQ+, where the impact of the desired links is more
emphasized while the influence of the cross link is relatively
lightened. Although this choice of two parameters is probably
not leading to the optimum for a specific scenario, fortunately it

TABLE I: System Parameters

Parameters Values
Cell range 1km × 1km

Carrier Frequency 2.4GHz
Bandwidth 5MHz and 10 MHz

Distance (uniformly distributed) [5,30] and [10,60] m
Transmit Power 20 and 30 dBm

Noise power spectral density -174 dBm/Hz
Antenna Height 1.5 m

Antenna Gain per Device -2.5 dB
Noise Figure 7 dB

leads to good performance which is insensitive to the variation
of system parameters. To take the fairness into account, we
also compare the fair versions for both ITLinQ and ITLinQ+.
For both scenarios of fair ITLinQ, we follow the parameters
carefully chosen in [4] with a threshold SNRth = 110 dB,
η̄ = 0.6 and M̄ = 20 dB. For the fair ITLinQ+, we reduce
η to 0.7 for both scenarios, while keeping other parameters
unchanged.

Fig. 6 shows the average sum throughput (bits/s/Hz) versus
the total number of links in the D2D networks ranging from
8 to 1024. The average performance is over 20 randomly
chosen locations of n pairs and 20 randomly permuted orders
of link priority. It demonstrates the significant improvement
of ITLinQ+ over FlashLinQ and ITLinQ. For instance, with
in total 1024 links, ITLinQ+ achieves 40% gain in Scenario
1, 60% gain in Scenario 2 over FlashLinQ, and 20% gain in
Scenario 1 and 40% gain in Scenario 2 over ITLinQ. 7 Fig.
7 plots the comparison of Cumulative Distribution Function
(CDF) versus the average per link rate for 1024 links based on
the software implementation [44]. It is also shown that the fair
version of our ITLinQ+ offers better average sum throughput
than ITLinQ, and guarantees the comparable fairness as the
fair ITLinQ. Better fairness could be achievable by further
reducing η and increasing γ at the cost of sum throughput
degradation.

As shown in Fig. 6, without power control, the benefit of
the sole link scheduling is not significant in a network with a
small number of links. So, we further consider smaller random
networks with 16 and 64 link pairs where both link scheduling
(with the same parameters η, γ and M respectively as before)
and power control are enabled. The desired and cross link
strength levels are uniformly distributed in [0,2] and [0,1],
respectively. We compare in Fig. 8 the sum throughput versus
the actually consumed power for different mechanisms. We
also plot the curves for our ITLinQ+ with no power control,
GP-based power control, and the assignment-based AP power
control for reference.

Notably, to achieve the same sum throughput of for example
60 bits/s/Hz, our ITLinQ+ with AP power control saves transmit
power 30 dB and 38 dB respectively compared with ITLinQ
and FlashLinQ for the 16-user network, and it saves 30 dB and
32 dB respectively for the 64-user network. When it comes to
the per link throughput, to achieve 2.5 bits/s/Hz per link for the
16-user network, it saves 23 dB and 25 dB compared to ITLinQ

7The gap between ITLinQ and ITLinQ+ might be reduced if one can further
fine-tune the parameter M in ITLinQ. Unfortunately, there was no guideline
on how to choose this parameter in [4].
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Fig. 6: Sum throughput comparison among no scheduling, FlashLinQ, ITLinQ, ITLinQ+ and Fair ITLinQ+ without power control. The left is
for Scenario 1 and the right for Scenario 2.
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Fig. 7: Average per link rate comparison among FlashLinQ, Fair ITLinQ, ITLinQ+ and Fair ITLinQ+ without power control for 1024 links.
The left is for Scenario 1 and the right for Scenario 2.

and FlashLinQ, respectively, and for the 64-user network, it
saves 55 dB and more than 60 dB respectively. In the small
network (e.g., 16-user case), ITLinQ+ and ITLinQ tend to
select the same set of links. The improvement of ITLinQ+ over
ITLinQ in small networks is mainly due to power control. For
the larger network (e.g., 64-user case), pure link scheduling
of ITLinQ+ offers 5 dB gains over ITLinQ to achieve sum
throughput of 140 bits/s/Hz.

VII. CONCLUSION

The GDoF optimality problem of treating interference as
noise for Gaussian interference channels has been reformulated
from a combinatorial optimization perspective. Thanks to this
new formulation, we cast power allocation into an assignment
problem, which can be solved in polynomial time. A new
expression for the TIN-Achievable GDoF region is provided,
which is more compact and useful than what known before

since it eliminates many redundant inequalities. A relaxed
version of the condition in [3] on the channel coefficients
is given, for which the TIN-Achievable GDoF region is a
convex polytope. Finally, a new TIN optimality condition is
also revealed, by which TIN still achieves the optimal GDoF
region for a class of networks different from the one identified
in [3].

We are also able to translate these insights into practical
communication systems (e.g., D2D networks). With the newly
found channel strength condition, we employed it as a new
decision criterion in a distributed link scheduling mechanism.
Together with the globally optimal distributed power alloca-
tion algorithms, we proposed a distributed spectrum sharing
mechanism (ITLinQ+) for D2D networks. By simulation, we
have shown that our ITLinQ+ mechanism achieves significant
sum throughput improvement over FlashLinQ and ITLinQ with
the same level implementation complexity. Moreover, ITLinQ+
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Fig. 8: Sum throughput versus actual power consumption for different spectrum sharing mechanisms. The left is for 16-user case and the
right for 64-user case.

also promises a substantial improvement on power saving at
the cost of additional complexity and some signaling overhead.

APPENDIX

A. Background

1) Weighted Matching: In this work we shall make extensive
use of weighted matchings [28] of bipartite graphs. We recall
here some basic definitions. Let G = (U ,V,E) denote a bipartite
graph with left vertices U , right vertices V and edges E ⊆

U × V . A matching M ⊆ E is a set of edges, any two of
which do not share the same vertex. When weights w(u, v)
are associated to the edges (u, v) ∈ E , we denote by w(M) =

∑(u,v)∈Mw(u, v) the weight of the matching M, and we
let M∗ = arg maxMw(M) denote the maximum weighted
matching, i.e., the matching with maximum sum-weight. M∗

can be characterized as the solution of the integer program:

max ∑
(u,v)∈E

w(u, v)x(u, v), (49)

s.t. ∑
u∈U∶(u,v)∈E

x(u, v) ≤ 1, (50)

∑
v∈V∶(u,v)∈E

x(u, v) ≤ 1, (51)

x(u, v) ∈ {0,1}. (52)

When equality holds in all constraints, the resulting solution
is called a perfect matching, i.e., a matching that covers all
vertices. The LP relaxation of (49)-(52), obtained by replacing
(52) with x(u, v) ∈ [0,1], is called fractional matching [45]. For
bipartite graphs, the solution of this LP relaxation is integral,
i.e., x ∈ {0,1}, meaning that, given a fractional matching, there
exists a perfect matching such that the sum-weights of two
matchings are equal. In other words, there always exists an
integral solution to the LP relaxation problem.

A vertex/edge is called matched if it is involved in a
matching; otherwise it is a free vertex/edge. A path is
alternating if its edges alternate between matched and free

edges. The augment operation aug(⋅) is to exchange matched
and free edges in an alternating path that starts from and
ends to free vertices. For instance, given an alternating path
P = {(i0, i1), (i1, i2), (i2, i3), . . . , (i2n, i2n+1)} consists of a
matching M = {(i1, i2), (i3, i4), . . . , (i2n−1, i2n)} and free
edges P/M, the augment of P results in a new matching
M′ = aug(P) ≜ P/M and free edges M.

2) Geometric Programming: Geometric programing is a
powerful tool to solve a class of nonlinear optimization
problems under a standard form

min f0(x) (53a)
s.t. fi(x) ≤ 1, i = 1, . . . ,m (53b)

gi(x) = 1, i = 1, . . . , p (53c)

where {fi(x), i = 0,1, . . . ,m} are posynomial functions
fi(x) ∶ Rn ↦ R in a form of

f(x1, . . . , xn) =
K

∑
k=1

ckx
a1k
1 xa2k2 ⋯xankn (54)

with ck ≥ 0,∀k and {gi(x), i = 1, . . . , p} are monomial
functions gi(x) ∶ Rn ↦ R in the form of

g(x1, . . . , xn) = cx
a1
1 xa22 ⋯xann (55)

with c ≥ 0.

B. The Kuhn-Munkres Algorithm

In what follows, we present the procedure of the Kuhn-
Munkres algorithm together with an illustrative example. To
ease the presentation, we construct a bipartite graph G = (U ,V)
with weight of edge (i, j) being Aij and U ,V being transmitter
and receiver sets respectively. The Kuhn-Munkres algorithm
is to find the maximum weighted matching in this bipartite
graph. The input is the weight matrix A defined in (18), and
the output is the matching with maximum sum weights and the
corresponding left and right labels {yuj , yvj}j , in which the
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left labels {yuj}j achieve the maximum left label equilibrium
[12], [13].

As the initialization, we choose a feasible labeling with
yui = maxjAij ,∀ i, and yvj = 0,∀ j. This labeling is feasible,
because yui +yvj ≥Aij always holds for any pair of i ∈ U and
j ∈ V . We also construct an equality subgraph, GE , including
all the vertices of G but only those edges (i, j) such that

yui + yvj =Aij ,∀i ∈ U , j ∈ V. (56)

It has been proved in [12], [13] that, once GE has a perfect
matching M, then this matching M is a maximum weighted
matching, and thus the corresponding labels are the final
solution to the assignment problem.

The algorithm consists of multiple rounds of iterations. In
each round, we first check if there exists a perfect matching
in GE . Note that for a feasible GDoF tuple, the maximum
matching always involves edges (j, j) according to (12). Thus,
the perfect matching consists of edges {(j, j),∀j ∈ K}. If
not, the left and right labels are carefully decreased and
increased respectively, and the equality subgraph GE is up-
dated accordingly. Once GE contains the perfect matching
{(j, j),∀j ∈ K}, the resulting left labels {yuj}j achieve the
maximum left label equilibrium, yielding the global minimal
power allocation rj = −yuj for all j. The details of the
Kuhn-Munkres algorithm are given in Algorithm 2, where
NL(S) is the neighborhood of a set of nodes of S in GE ,
i.e., NL(S) = {j ∶ (i, j) ∈ GE ,∀i ∈ S, j ∈ V}. An illustrative
example is also given as follows.

Example 3. The detailed power allocation procedure according
to Algorithm 2 is presented as follows.

As an initialization, we assign

yu1
= 1.5, yu2 = 0.5, yu3 = 1, yv1 = yv2 = yv3 = 0 (57)

such that we construct the equality subgraph GE with edges
{(1,1), (2,3), (3,1)} as in Fig. 9(b). Note that GE does not
contain a perfect matching. So we choose an arbitrary matching,
e.g., M= {(2,3), (3,1)}, as shown in Fig. 9(b).

In the first round, we choose a free vertex u1 in GE and set
S = {u1} and T = ∅. Because NL(S) = {v1} ≠ T , we go to
line-12 and pick v1 ∈ NL(S)/T . Note that v1 is matched to
u3, and thus we update S = {u1, u3}, T = {v1}. As NL(S) =
{v1} = T , we go to line-8 and obtain

αL = min
ui∈{u1,u3},vj∈{v2,v3}

{yui + yvj −Aij} = 0.2 (58)

As such, we have

yu1 = 1.3, yu2 = 0.5, yu3 = 0.8, yv1 = 0.2, yv2 = 0, yv3 = 0.
(59)

and go to line-2.
In the second round, we update the equality subgraph GE

with edges {(1,1), (2,3), (3,1), (3,3)} and there still does
not contain a perfect matching, as shown in Fig. 9(c). Thus,
we choose M= {(2,3), (3,1)} as a matching. Still, we pick
the free vertex u1, and set S = {u1} and T = ∅. Now, as
NL(S) = {v1, v3} ≠ T , we pick v1 ∈ NL(S)/T . Because v1 is
matched to u3, we update S = {u1, u3}, T = {v1}. At this point,
NL(S) = {v1, v3} ≠ T again. Thus, we pick v3 ∈ NL(S)/T .

Algorithm 2 A Centralized Power Allocation Algorithm via
the Hungarian Method

Require: Matrix A with ij-th element specified in (18).
1: Initialization: Set yui = maxjAij ,∀ i and yvj = 0,∀ j.

Construct GE according to {yui , yvj ,∀i, j} and choose an
arbitrary matching M contained in GE . Let S = T = ∅.

2: if ∃ M = {(j, j),∀j ∈ K} in GE then
3: ri = −yui ,∀ i, and return
4: else
5: Pick a free vertex u ∈ U
6: S ← {u}, T ← ∅.
7: end if
8: if NL(S) = T then αL = mini∈S,j∉T {yui + yvj −Aij},
9: Update yuk ← yuk − αL, if k ∈ S,

10: Update yvk ← yvk + αL, if k ∈ T ,
11: Update M= {(i, j) ∶ yui + yvj =Aij}

12: else
13: Pick v ∈ NL(S)/T
14: if v is a free vertex then
15: Augment the alternating path u→ v that contains

the matching M
16: Update M← aug({u→ v}) and goto 2
17: else
18: if v is matched to u′ then
19: S ← S ∪ {u′},T ← T ∪ {v}
20: goto 8
21: end if
22: end if
23: end if

Due to v3 is matched to u2, we update S = {u1, u2, u3} and
T = {v1, v3}. Here NL(S) = {v1, v3} = T , we go to line-8
and have

αL = min
ui∈{u1,u2,u3},vj∈{v2}

{yui + yvj −Aij} = 0.1 (60)

As such, the labels are updated as

yu1 = 1.2, yu2 = 0.4, yu3 = 0.7, yv1 = 0.3, yv2 = 0, yv3 = 0.1.
(61)

and then we go to line-2.
Till now, in the updated equality subgraph shown in Fig.

9(d), we have a perfect matching {(1,1), (2,2), (3,3)}. Thus,
the algorithm returns with

r1 = −1.2, r2 = −0.4, r3 = −0.7. (62)

◊

C. Proof of Theorem 3
For the sake of this proof, we denote by PS the region

defined by (5), and by PTINA
S the region defined by (22). Our

goal is to show that PS = PTINA
S for any S ⊆ K.

PS ⊆ P
TINA
S : To prove this, we show that for any inequality

presented in PTINA
S , we can always find the same one in PS .

Given a subnetwork G[S], the matching with the maximum
weight is a degree-1 subgraph. 8 Connecting the direct links

8If direct links are in the matching, we can eliminate them from S, which
does not affect our proof.
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Fig. 9: Illustration of the Hungarian method. (a) The weighted bipartite graph with weight of ij-th edge being Aij . (b) The equality
subgraph with initiated labeling. (c) The updated equality subgraph with first round label update. (d) The update equality subgraph with

second round label update. The edges in red give a matching in equality subgraphs.

will lead to single or multiple disjoint cycles, as all the nodes
has degree-2.

For the single-cycle case, this cycle corresponds to a sum-
GDoF constraint in PS . For the multiple-cycle case, each cycle
corresponds to a sum-GDoF constraint in PS of the users
involved in this cycle. Thus, the sum-GDoF constraint with
the maximum weighted matching in PTINA

S corresponds to the
combination of these sum-GDoF constraints in PS .

As such, PS contains or implies all the constraints in PTINA
S .

As PS has more constraints, it follows that PS ⊆ PTINA
S .

PTINA
S ⊆ PS: To prove this, we show that, for any subset

of users S, the TINA GDoF region confined by PS is no
smaller than that by PTINA

S . It is clear that PS is determined
by individual GDoF and sum-GDoF constraints of any subset of
users in S . The individual GDoF constraints of two regions are
identical. Thus, our focus will be on the sum-GDoF constraints
for users in S with ∣S∣ ≥ 2.

For the user set S, the sum-GDoF constraints in PS only
come from (1) the sum-GDoF constraints with all possible
permutations of S, and (2) the combination of a number of
individual and/or sum-GDoF constraints of subsets of S . For the
first case, the sum-GDoF constraint in PS is dominated by the
maximum weight of any possible matchings (associated with
cyclic sequences). For the second case, suppose the combination
involves a number of subnetworks S1, . . . ,Sp ⊆ S , where these
subnetworks may have any intersections. This combination of
constraints involves every user with equal times (say b times),
i.e., ∣{i ∶ j ∈ Si}∣ = b for all j ∈ S . Otherwise, the combination
will not lead to a sum-GDoF constraint, because it is a weighted
sum-GDoF constraint and can be implied by the combination
of other sum-GDoF constraints. Each sum-GDoF constraint
for a subnetwork involves a cyclic sequence and hence forms
a matching, and thus the sum-GDoF for each subnetwork can
be given by

∑
j∈Si

dj ≤ ∑
j∈Si

αjj −w(MSi), ∀i = {1, . . . , p}. (63)

The sum-GDoF constraint that comes from the linear combi-
nation 9 of these subnetworks can be written as

p

∑
i=1

∑
j∈Si

dj ≤
p

∑
i=1

∑
j∈Si

αjj −
p

∑
i=1

w(MSi). (64)

9As a subnetwork Si is allowed to present in {S1, . . . ,Sp} many times,
the weighted sum over subnetwork Si in (63) can be done by repeating the
subnetwork Si multiple times. So, here we consider non-weighted sum of
(63), which implies any linear combinations.

Due to the fact that ∣{i ∶ j ∈ Si}∣ = b for all j ∈ S, we have

∑
j∈S

dj ≤ ∑
j∈S

αjj −
1

b

p

∑
i=1

w(MSi). (65)

According to the definition of the weighted matching in
Appendix A, 1

b
w(MSi) corresponds to the sum weight

of a fractional perfect matching in the subnetwork Si by
assigning x(u, v) in (49)-(52) with 1

b
. The sum weights over all

matchings for the subnetworks {S1, . . . ,Sp} can be regarded
as a fractional perfect matching for the overall network S
by assigning x(u, v) = 1

b
. Specifically, the constraint, e.g.,

(50), becomes ∑i∑u∈U∶(u,v)∈Ei x(u, v) ≤ 1 where Ei is the
edge set of subnetwork Si, and it looks as if each vertex
can support b edges from subnetworks of {S1, . . . ,Sp}. In
bipartite graphs, the weight of any fractional perfect matching
equals the weight of a perfect matching [28], [45], i.e.,
1
b ∑

p
i=1w(MSi) = w(MS) for a matching MS .

Thus, neither the weight of any matching nor of any
fractional matching is greater than the maximum weighted
matching, such that the sum-GDoF constraints in PTINA

S will
be more restrictive than those or any combinations in PS , i.e.,
PTINA
S ⊆ PS . This completes the proof.

D. Proof of Theorem 4

In what follows, we prove that under condition (23), PTINA
S

is monotonically increasing. Hence, from (6) this immediately
implies that RTINA = PTINA

K which, by inspection, is a convex
polytope.

Let us start with ∣S∣ = 2. Suppose without loss of generality
S = {k, j}. Due to the condition (23), min{αkk, αjj} ≥ αkj +
αjk, then it is easy to verify that PTINA

k ⊆ PTINA
{k,j} and PTINA

j ⊆

PTINA
{k,j} .
Then, we prove the general cases with the following lemma.

Lemma 1. Given a subgraph G[S] with weights {α′ij , i, j ∈ S},
the difference of maximum weighted matching with and without
the user k is bounded by

w(M
∗
S) −w(M

∗
S/{k}) ≤ max

i,j∈S,i,j≠k
{αik + αkj − α

′
ij}

Proof. Suppose without loss of generality that the maximum
weighted matching of G[S] (k ∈ S) includes links (i, k) and
(k, j) with weights α′ik and α′kj respectively and i, j ≠ k. Note
that whether i = j or not does not affect our proof. After
removing user k and edges (i, k), (k, j) from the matching,
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and adding the link (i, j) with weight α′ij , we have a matching
for S/{k}. Thus, for all {(i, k), (k, j)} ∈M∗

S , we have

w(M
∗
S) −w(M

∗
S/{k})

≤ max
{(i,k),(k,j)}∈M∗

S ,i,j∈S,i,j≠k
{α′ik + α

′
kj − α

′
ij} (66)

≤ max
i,j∈S,i,j≠k

{α′ik + α
′
kj − α

′
ij} (67)

= max
i,j∈S,i,j≠k

{αik + αkj − α
′
ij}. (68)

Together with the condition (23), we have

αkk ≥ w(M
∗
S) −w(M

∗
S/{k}) (69)

for any user k ∈ S. According to Theorem 3, the sum-GDoF
constraints of PTINA

S/{k} consist of

∑
j∈S′

dj ≤ ∑
j∈S′

αjj −w(M
∗
S′), ∀S

′
⊆ S/{k}, (70)

while with an additional k, PTINA
S consists of the above sum-

GDoF constrains in (70) as well as the following ones

∑
j∈S′∪{k}

dj ≤ ∑
j∈S′∪{k}

αjj −w(M
∗
S′∪{k}) (71)

= ∑
j∈S′

αjj + αkk −w(M
∗
S′∪{k}), ∀S

′
⊆ S/{k}

(72)

It is readily verified that as long as (23) is satisfied, for any
S ′ ⊆ S/{k}, the region confined by the sum-GDoF constraint in
(72) with user k is larger than that by the sum-GDoF constraint
in (70) without user k. Thus, it follows that the projection of
PTINA
S onto PTINA

S/{k} is no smaller than PTINA
S/{k} according to

the above relation of sum-GDoF constraints. In other words,
with the additional user k, the GDoF region is not decreasing.
It follows immediately that PTINA

S/{k} ⊆ P
TINA
S (∀k ∈ S). More

generally, if S1 ⊆ S2, then PTINA
S1

⊆ PTINA
S2

. This completes
the proof.

E. Proof of Theorem 5
Due to the fact that R∗ ⊇ RTINA and that, under condition

(23), RTINA = PTINA
K , achievability trivially follows.

For the converse, we follow the cyclic outer bounds first
revealed in [29, Theorem 2] and later used to prove the
optimality of TIN condition in [3, Theorem 3].

Thus, for the K-user Gaussian interference channel in the
weak interference regime, the GDoF region under the condition
(23) is included in the set of GDoF tuples (d1, d2, . . . , dK)

such that

dj ≤ αjj , ∀j ∈ K (73)
m−1

∑
j=0

dij ≤ min{fπ, gπ,0, . . . , gπ,m−1}, (74)

for any ordered subset π = (i0, i1, . . . , im−1) ⊂ K
m, where we

define

fπ ≜
m−1

∑
j=0

max{0, αijij+1 , αijij − αij−1ij} (75)

gπ,k ≜
m−1

∑
j=0

(αijij − αij−1ij) + αik−1ik , k = 0, . . . ,m − 1, (76)

and where the index subscript arithmetic is modulo m.
When m = 2, then condition (23) is equivalent to the GNAJ

condition and the bound is known to be tight. When m > 2,
let us first consider the bound formed by the “g” terms in
(74). Notice that the left-hand side of (74) depends only on
the indices in π but not on its order. Hence, letting S denote a
given unordered subset of size m of K and using the short-cut
notation π ∈ π(S) to indicate the ordered sets formed with the
elements of S, i.e., the permutations of S , we can write

min
π∈π(S)

min
k=0,...,m−1

{gπ,k}

= min
π∈π(S)

⎧⎪⎪
⎨
⎪⎪⎩

m−1

∑
j=0

(αijij − αij−1ij) + min
k=0,...,m−1

{αik−1ik}

⎫⎪⎪
⎬
⎪⎪⎭

= ∑
j∈S

αjj − max
π∈π(S)

⎧⎪⎪
⎨
⎪⎪⎩

m−1

∑
j=0

αij−1ij − min
k=0,...,m−1

{αik−1ik}

⎫⎪⎪
⎬
⎪⎪⎭

= ∑
j∈S

αjj −w(M
∗
S) (77)

where (77) is due to the condition (24). If the maximum
weighted matching involves multiple cycles, then the sum-
GDoF outer bound can be the combination of multiple sum-
GDoF constraints associated with the corresponding cyclic
sequences. Thus, (77) still holds, because condition (24) holds
for any subset of S ⊆ K. Due to the fact that
m−1

∑
j=0

(αijij − αij−1ij) ≤
m−1

∑
j=0

max{0, αijij+1 , αijij − αij−1ij}

we have that

∑
j∈S

dj ≤ min
π∈π(S)

min{fπ, gπ,0, . . . , gπ,m−1} (78)

= ∑
j∈S

αjj −w(M
∗
S) (79)

which coincides with PTINA
S for every S ⊆ K. Under the

condition (23), the TINA is the largest polyhedral region, so
the converse bound is tight.
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