23 research outputs found

    Spontaneous Dynamics of Asymmetric Random Recurrent Spiking Neural Networks

    Full text link
    We study in this paper the effect of an unique initial stimulation on random recurrent networks of leaky integrate and fire neurons. Indeed given a stochastic connectivity this so-called spontaneous mode exhibits various non trivial dynamics. This study brings forward a mathematical formalism that allows us to examine the variability of the afterward dynamics according to the parameters of the weight distribution. Provided independence hypothesis (e.g. in the case of very large networks) we are able to compute the average number of neurons that fire at a given time -- the spiking activity. In accordance with numerical simulations, we prove that this spiking activity reaches a steady-state, we characterize this steady-state and explore the transients.Comment: 28 pages, 7 figure

    Event-driven simulation of spiking neurons with stochastic dynamics

    Get PDF
    We present a new technique, based on a proposed event-based strategy (Mattia & Del Giudice, 2000), for efficiently simulating large networks of simple model neurons. The strategy was based on the fact that interactions among neurons occur by means of events that are well localized in time (the action potentials) and relatively rare. In the interval between two of these events, the state variables associated with a model neuron or a synapse evolved deterministically and in a predictable way. Here, we extend the event-driven simulation strategy to the case in which the dynamics of the state variables in the inter-event intervals are stochastic. This extension captures both the situation in which the simulated neurons are inherently noisy and the case in which they are embedded in a very large network and receive a huge number of random synaptic inputs. We show how to effectively include the impact of large background populations into neuronal dynamics by means of the numerical evaluation of the statistical properties of single-model neurons under random current injection. The new simulation strategy allows the study of networks of interacting neurons with an arbitrary number of external afferents and inherent stochastic dynamics

    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Get PDF
    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines, a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. Synaptic sampling machines perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate & fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based synaptic sampling machines outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware

    A spike-based head-movement and echolocation model of the bat superior colliculus

    Get PDF
    Echolocating bats use sonar to sense their environment and hunt for food in darkness. To understand this unusual sensory system from a computational perspective with aspirations towards developing high performance electronic implementations, we study the bat brain. The midbrain superior colliculus (SC) has been shown (in many species) to support multisensory integration and orientation behaviors, namely eye saccades and head turns. Previous computational models of the SC have emphasized the behavior typical to monkeys, barn owls, and cats. Using unique neurobiological data for the bat and incorporating knowledge from other species, a computational spiking model has been developed to produce both head-movement and sonar vocalization. The model accomplishes this with simple neuron equations and synapses, which is promising for implementation on a VLSI chip. This model can serve as a foundation for further developments, using new data from bat experiments, and be easily connected to spiking motor and vocalization systems

    Unsupervised Heart-rate Estimation in Wearables With Liquid States and A Probabilistic Readout

    Full text link
    Heart-rate estimation is a fundamental feature of modern wearable devices. In this paper we propose a machine intelligent approach for heart-rate estimation from electrocardiogram (ECG) data collected using wearable devices. The novelty of our approach lies in (1) encoding spatio-temporal properties of ECG signals directly into spike train and using this to excite recurrently connected spiking neurons in a Liquid State Machine computation model; (2) a novel learning algorithm; and (3) an intelligently designed unsupervised readout based on Fuzzy c-Means clustering of spike responses from a subset of neurons (Liquid states), selected using particle swarm optimization. Our approach differs from existing works by learning directly from ECG signals (allowing personalization), without requiring costly data annotations. Additionally, our approach can be easily implemented on state-of-the-art spiking-based neuromorphic systems, offering high accuracy, yet significantly low energy footprint, leading to an extended battery life of wearable devices. We validated our approach with CARLsim, a GPU accelerated spiking neural network simulator modeling Izhikevich spiking neurons with Spike Timing Dependent Plasticity (STDP) and homeostatic scaling. A range of subjects are considered from in-house clinical trials and public ECG databases. Results show high accuracy and low energy footprint in heart-rate estimation across subjects with and without cardiac irregularities, signifying the strong potential of this approach to be integrated in future wearable devices.Comment: 51 pages, 12 figures, 6 tables, 95 references. Under submission at Elsevier Neural Network
    corecore