254 research outputs found

    Learning Curves for Mutual Information Maximization

    Full text link
    An unsupervised learning procedure based on maximizing the mutual information between the outputs of two networks receiving different but statistically dependent inputs is analyzed (Becker and Hinton, Nature, 355, 92, 161). For a generic data model, I show that in the large sample limit the structure in the data is recognized by mutual information maximization. For a more restricted model, where the networks are similar to perceptrons, I calculate the learning curves for zero-temperature Gibbs learning. These show that convergence can be rather slow, and a way of regularizing the procedure is considered.Comment: 13 pages, to appear in Phys.Rev.

    Comment on "Finite size scaling in Neural Networks"

    Full text link
    We use a binary search tree and the simplex algorithm to measure the fraction of patterns that can be stored by an Ising perceptron. The algorithm is much faster than exhaustive search and allows us to obtain accurate statistics up to a system size of N=42. The results show that the finite size scaling ansatz Nadler and Fink suggest in [1] cannot be applied to estimate accurately the storage capacity from small systems. [1] W.Nadler and W.Fink: Phys.Rev.Lett. 78, 555 (1997)Comment: LaTeX with 1 postscript figure, using REVTe

    Statistical physics and practical training of soft-committee machines

    Full text link
    Equilibrium states of large layered neural networks with differentiable activation function and a single, linear output unit are investigated using the replica formalism. The quenched free energy of a student network with a very large number of hidden units learning a rule of perfectly matching complexity is calculated analytically. The system undergoes a first order phase transition from unspecialized to specialized student configurations at a critical size of the training set. Computer simulations of learning by stochastic gradient descent from a fixed training set demonstrate that the equilibrium results describe quantitatively the plateau states which occur in practical training procedures at sufficiently small but finite learning rates.Comment: 11 pages, 4 figure

    Noisy regression and classification with continuous multilayer networks

    Full text link
    We investigate zero temperature Gibbs learning for two classes of unrealizable rules which play an important role in practical applications of multilayer neural networks with differentiable activation functions: classification problems and noisy regression problems. Considering one step of replica symmetry breaking, we surprisingly find that for sufficiently large training sets the stable state is replica symmetric even though the target rule is unrealizable. Further, the classification problem is shown to be formally equivalent to the noisy regression problem.Comment: 7 pages, including 2 figure

    SNA – a toolbox for the stoichiometric analysis of metabolic networks

    Get PDF
    BACKGROUND: Despite recent algorithmic and conceptual progress, the stoichiometric network analysis of large metabolic models remains a computationally challenging problem. RESULTS: SNA is a interactive, high performance toolbox for analysing the possible steady state behaviour of metabolic networks by computing the generating and elementary vectors of their flux and conversions cones. It also supports analysing the steady states by linear programming. The toolbox is implemented mainly in Mathematica and returns numerically exact results. It is available under an open source license from: . CONCLUSION: Thanks to its performance and modular design, SNA is demonstrably useful in analysing genome scale metabolic networks. Further, the integration into Mathematica provides a very flexible environment for the subsequent analysis and interpretation of the results

    An improved algorithm for stoichiometric network analysis: theory and applications

    Get PDF
    Motivation: Genome scale analysis of the metabolic network of a microorganism is a major challenge in bioinformatics. The combinatorial explosion, which occurs during the construction of elementary fluxes (non-redundant pathways) requires sophisticated and efficient algorithms to tackle the problem. Results: Mathematically, the calculation of elementary fluxes amounts to characterizing the space of solutions to a mixed system of linear equalities, given by the stoichiometry matrix, and linear inequalities, arising from the irreversibility of some or all of the reactions in the network. Previous approaches to this problem have iteratively solved for the equalities while satisfying the inequalities throughout the process. In an extension of previous work, here we consider the complementary approach and derive an algorithm which satisfies the inequalities one by one while staying in the space of solution of the equality constraints. Benchmarks on different subnetworks of the central carbon metabolism of Escherichia coli show that this new approach yields a significant reduction in the execution time of the calculation. This reduction arises since the odds that an intermediate elementary flux already fulfills an additional inequality are larger than when having to satisfy an additional equality constraint. Availability: The code is available upon request. Supplementary information: Pseudo code and a Mathematica implementation of the algorithm is on the OUP server. Contact: [email protected]; [email protected]

    Functional stoichiometric analysis of metabolic networks

    Get PDF
    Motivation: An important tool in Systems Biology is the stoichiometric modeling of metabolic networks, where the stationary states of the network are described by a high-dimensional polyhedral cone, the so-called flux cone. Exhaustive descriptions of the metabolism can be obtained by computing the elementary vectors of this cone but, owing to a combinatorial explosion of the number of elementary vectors, this approach becomes computationally intractable for genome scale networks. Result: Hence, we propose to instead focus on the conversion cone, a projection of the flux cone, which describes the interaction of the metabolism with its external chemical environment. We present a direct method for calculating the elementary vectors of this cone and, by studying the metabolism of Saccharomyces cerevisiae, we demonstrate that such an analysis is computationally feasible even for genome scale networks. Contact: [email protected]

    Statistical physics of independent component analysis

    Full text link
    Statistical physics is used to investigate independent component analysis with polynomial contrast functions. While the replica method fails, an adapted cavity approach yields valid results. The learning curves, obtained in a suitable thermodynamic limit, display a first order phase transition from poor to perfect generalization.Comment: 7 pages, 1 figure, to appear in Europhys. Lett
    corecore