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Abstract Neuromorphic engineering (NE) is an emerg-

ing research field that has been attempting to identify

neural types of computational principles, by implementing

biophysically realistic models of neural systems in Very

Large Scale Integration (VLSI) technology. Remarkable

progress has been made recently, and complex artificial

neural sensory-motor systems can be built using this

technology. Today, however, NE stands before a large

conceptual challenge that must be met before there will be

significant progress toward an age of genuinely intelligent

neuromorphic machines. The challenge is to bridge the gap

from reactive systems to ones that are cognitive in quality.

In this paper, we describe recent advancements in NE, and

present examples of neuromorphic circuits that can be used

as tools to address this challenge. Specifically, we show

how VLSI networks of spiking neurons with spike-based

plasticity mechanisms and soft winner-take-all architec-

tures represent important building blocks useful for

implementing artificial neural systems able to exhibit basic

cognitive abilities.

Keywords Neuromorphic engineering � Cognition �
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Introduction

Machine simulation of cognitive functions has been a

challenging research field since the advent of digital

computers. Despite the resources dedicated to this field,

humans, mammals, and many other animal species,

including insects, still outperform the most powerful

computers in relatively routine functions such as, for

example, vision. The disparity between the effectiveness of

computation in biological nervous systems and in a com-

puter, in such types of functions, is primarily attributable to

the way the elementary devices are used in the system, and

to the kind of computational primitives they implement

[48]. Rather than using Boolean logic, precise digital rep-

resentations, and clocked operations, nervous systems carry

out robust and reliable computation using hybrid analog/

digital unreliable components; they emphasize distributed,

event-driven, collective, and massively parallel mecha-

nisms, and make extensive use of adaptation, self-

organization, and learning. Understanding these principles,

and how they can lead to behaviors that exhibit cognitive

qualities is one of the major challenges of modern science.

Neuromorphic engineering (NE) is a research field that

is addressing these issues by designing and fabricating

electronic neural systems whose architecture and design

principles are based on those of biological nervous sys-

tems. The term neuromorphic engineering was coined by

Carver Mead in the late 1980s to describe Very Large Scale

Integration (VLSI) systems comprising analog circuits and

built to mimic biological neural cells and architectures
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[47]. Since then, NE has been attempting to identify neural

types of computational principles, by implementing bio-

physically realistic models of neural systems in VLSI

technology to reproduce the same physics of computation

[27].

During the last decade, the NE community has made

substantial progress by designing hybrid analog/digital

circuits that implement silicon neurons and synapses [7, 38,

66], silicon retinas, and cochleas [13, 43], and by devel-

oping the technology for constructing distributed multi-

chip systems of sensors and neuronal processors that

operate asynchronously and communicate using action-

potential-like signals (or spikes) [17, 49]. A number of

research groups worldwide are already developing large

scale (in terms of component count) neuromorphic systems

[59, 60]. Today, however, NE stands before a large con-

ceptual challenge that must be met before there will be

significant progress toward an age of genuinely intelligent

neuromorphic machines. The challenge is to bridge the gap

from reactive systems to ones that are cognitive in quality.

In NE, as in neuroscience and computer science, we

understand very little about how to configure these large

systems to achieve the sophistication of processing that we

could regard as effective cognition.

In the case of NE and neuroscience, the question is

sharpened by the need to understand cognition in the

context of the nervous systems’ peculiar hardware and

style of processing. We know, for instance, that nervous

systems can exhibit context-dependent behavior, can exe-

cute ‘‘programs’’ consisting of series of flexible steps, and

can conditionally branch to alternative behaviors, using

spiking neurons and dynamic synapses as basic computa-

tional modules.

The NE community has recently developed efficient

VLSI implementations of such types of computational

modules: next to several designs of conductance-based and

integrate-and-fire neurons [19, 25, 38, 58, 66], NE

researchers proposed circuits that implement VLSI

dynamic synapses [7], spike-based plasticity mechanisms

[32, 34, 50, 68], and soft winner-take-all (WTA) networks

[16], for example.VLSI implementations of WTA networks

of spiking neurons, with plastic dynamic synapse circuits

are particularly important, because recent theoretical

studies demonstrated that recurrent neural networks

arranged in a way to implement soft WTA performance can

implement critical aspects of cortical computation [57].

In the next section, we present an overview of the recent

advances made in neuromorphic VLSI circuit design of

spiking neural networks, soft WTA networks, and spike-

based plasticity mechanisms. While in the ‘‘Neuromorphic

Cognition’’ section, we describe the ‘‘neuromorphic cog-

nition’’ challenge, arguing that VLSI networks of spiking

neurons with spike-based plasticity mechanisms and soft

WTA architectures represent a crucial building block use-

ful for constructing future VLSI neuromorphic cognitive

systems.

Neuromorphic VLSI

When implemented in VLSI technology, neuromorphic

circuits use, to a large extent, the same physics used in

neural systems (e.g., they transport majority carriers across

the channel of transistors by diffusion processes, very

much like neurons transport ions inside or outside cell

bodies through their proteic channels). Given the analogies

at the single device level, larger scale neuromorphic cir-

cuits share many common physical constraints with their

biological counterparts (given by noise, temperature

dependence, inhomogeneities, etc.). Therefore, these

architectures often have to use similar strategies for car-

rying out computation while maximizing compactness,

optimizing robustness to noise, minimizing power con-

sumption, and increasing fault tolerance.

In recent years, an interesting class of neuromorphic

devices implementing general-purpose computational

architectures based on networks of silicon neurons and

synapses started to emerge. These devices range from

reconfigurable arrays of basic integrate and fire neuron

models [17, 18, 38, 45, 48], to learning architectures imple-

menting detailed models of spike-based synaptic plasticity

[5, 6, 38, 50, 53, 56]. Spike-based plasticity circuits enable

these systems to adapt to the statistics of their input signals, to

learn and classify complex sequences of spatio-temporal

patterns (e.g., arising from visual or auditory signals), and

eventually to interact with the user and the environment.

Consistent with the NE approach, the strategy used to

transmit signals across chip boundaries in these types of

systems is inspired from the nervous system: output signals

are represented by stereotyped digital pulses (spikes), and

the analog nature of the signal is typically encoded in the

mean frequency of the neuron’s pulse sequence (spike

rates) and the instantaneous inter-spike interval (ISI).

Similarly, input signals are represented by spike trains,

conveyed to the chip in the form of asynchronous digital

pulses, that stimulate their target synapses on the receiving

chip. The circuits that generate the on-chip synaptic cur-

rents when stimulated by incoming spikes are slow low-

power analog circuits. The circuits that generate and

manage these streams of input/output digital pulses are fast

asynchronous logic elements, based on an emerging new

communication standard for neuromorphic chips called the

‘‘address-event representation’’ (AER) [17, 21, 42].

By using both low-power analog circuits and self-

clocked asynchronous digital logic neuromorphic devices

take advantage of the best of both worlds. Using a real-time
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asynchronous digital communication infrastructure, arbi-

trarily complex systems can be constructed by interfacing

multiple chips together. Substantial technological

advancements have been made in this domain, and the

VLSI design aspect of these devices has reached a mature

state. However, although it is now clear how to implement

large distributed networks of spiking neurons with plastic

synapses distributed across multiple chips, there have been

no systematic attempts so far to use this technology for

modeling cognitive processes. Neither has there been a

systematic study so far to determine how to implement

cognitive behaviors with networks of spiking neurons,

which can be directly mapped onto multi-chip networks of

silicon neurons. Similarly, there have been very few

attempts at using neuromorphic networks of spiking neu-

rons on robotic platforms, for implementing real-time

spike-based learning, adaptation, and context-dependent

action selection, for example, in behaving systems.

Soft Winner-Take-All Circuits

Winner-take-all networks of spiking neurons are ideally

suited for implementing context-dependent action selection

operators. These types of networks typically consist of a

group of interacting neurons which compete with each

other in response to an input stimulus. The neurons with

highest response suppress all other neurons to win the

competition. Competition is achieved through a recurrent

pattern of connectivity involving both excitatory and

inhibitory connections. Cooperation between neurons with

similar response properties (e.g., close receptive field or

stimulus preference) is mediated by excitatory connections.

Competition and cooperation make the output of individual

neuron depend on the activity of all neurons in the network

and not just on its own input. As a result, these networks

performs not only common linear operations but also

complex nonlinear operations (see Fig. 1). The linear

operations include analog gain and locus invariance [36].

The nonlinear operations include nonlinear selection or soft

winner-take-all behavior [3, 20, 67], signal restoration [20,

26], and multi-stability [3, 35, 67].

The computational abilities of soft WTA networks have

been used for solving feature extraction and pattern clas-

sification problems [8, 9, 61]. When soft WTA networks

are used for solving classification tasks, common features

of the input space can be learned in an unsupervised

manner. For example, Bennett [9] showed that competition

supports unsupervised learning because it enhances the

firing rate of the most excited neurons (i.e., the ones

receiving the strongest input) which, in turn, triggers

learning.

Soft WTA networks are believed to play a central role in

cortical processing. A majority of synapses in the mam-

malian cortex originate within the cortex itself [10, 28].

Neurons with similar functional properties are aggregated

together in modules or columns and most connections are

made locally within the neighborhood of a 1 mm column

[41]. Soft WTA models try to emulate the cortical pattern

of connectivity and to study its role in processing sensory

inputs and in generating behavioral outputs.

The highly distributed nature of physical computation in

these types of neural networks can be faithfully reproduced

using neuromorphic circuits that implement networks of

integrate-and-fire neurons and plastic synapses in VLSI

technology.

Several examples of VLSI WTA networks of spiking

neurons can be found in the literature [2, 15, 24, 37, 40,

51]. In 1992, De Yong et al. [24] proposed a VLSI WTA

spiking network consisting of four neurons. The authors

implemented the WTA mechanism through all-to-all

inhibitory connections. They showed how their network

exhibits two different behaviors depending on the time

constant of the inhibitory post-synaptic potential (IPSP)

relative to the time period of the incoming signal: (1) the

network acts as a temporal WTA (only the first neuron

receiving an input spike becomes active and wins the

competition) when the time constant of the IPSP is longer

than the period of the slowest input signal; (2) the network

behaves as a maximum frequency operator (only the neu-

ron receiving the train of spikes with highest frequency

becomes active) when the period of the fastest input signal

is longer than the time constant of the IPSP. In both cases,

the network behaves as a hard WTA, allowing only one

neuron to be active.

In 1993, a three-neuron VLSI WTA chip was proposed

by Hylander et al. [37]. Their network used global inhibi-

tion to implement the WTA behavior. The three neurons

fed their outputs to the global inhibitory generator, which

fed back inhibition to all the neurons in the network. Also

this network behaved as a hard WTA.
Fig. 1 Linear and nonlinear behaviors expressed by soft WTA

networks
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Both De Young et al. and Hylander et al. presented very

simple examples of WTA networks, and showed the ability

of their VLSI networks to select one winner, but not to

perform soft WTA computation. Thanks to the progress of

VLSI technology, more recent implementation of spiking

VLSI WTA networks integrate many more neurons on a

single chip, and implement more elaborate soft WTA

models: in 2001, Indiveri et al. [40] presented a spiking

network consisting of 32 excitatory neurons and one global

inhibitory neuron. The authors characterized the behavior

of the network using the mean rate representation and

Poisson distributed input spike trains. They showed the

network could exhibit soft WTA behaviors modulated by

the strength of lateral excitation and investigated the net-

work’s ability to produce correlated firing, combined with

the WTA function. In 2004, several additional VLSI

implementations of WTA networks were presented: Oster

and Liu [51] presented a 64 neurons network that used all-

to-all inhibition to implement a hard WTA behavior;

Abrahamsen et al. [2] presented a time domain WTA

network that used self-resetting I&F neurons to implement

hard WTA behavior, by resetting all neurons in the array

simultaneously, as soon as the winning neuron fired; and

Chicca et al. [15] presented a recurrent network of spiking

neurons, comprising 31 excitatory neurons and 1 global

inhibitory neuron. This network is an evolution of the one

presented in [40] which includes second neighbor excit-

atory connections (in addition to first neighbor excitation),

and can be operated in open-(linear array) or closed-loop

(ring) conditions. Figure 2 shows experimental data mea-

sured from the chip, describing how it is able to perform

nonlinear selection, one of the typical soft WTA network

behaviors (see also Fig. 1). An input stimulus (see Fig. 2a)

consisting of Poisson trains of spikes, with a mean

frequency profile showing two Gaussian-shaped bumps

with different amplitude, is applied to the input synapses of

each neuron in the soft WTA network. The chip output

response is a series of spike trains produced by the 32

silicon neurons (see Fig. 2b). The mean frequencies mea-

sured from each spike raster in Fig. 2b show how the soft

WTA network (blue line) selects and amplifies the

Gaussian bump with higher activity while suppressing the

other one, with respect to the baseline condition (no

recurrent connections, green line).

More recent hardware implementations of the spiking

soft WTA network have been realized by the authors.

These chips comprise both larger numbers of neurons (e.g.,

up to 2048) and spike-based learning capabilities (see

‘‘Spike-Based Learning’’ section).

Spike-Based Learning

An additional feature that is crucial for implementing

cognitive systems with networks of spiking neurons is

spike-based plasticity. Plasticity is one of the key proper-

ties of biological synapses, which provides the brain with

the ability to learn and to form memories. In particular,

long-term plasticity (LTP) is a mechanism which produces

activity-dependent long-term changes in the synaptic

strength of individual synapses, and plays a crucial role in

learning [1]. A popular class of LTP spike-driven learning

mechanisms, that has recently been the subject of wide-

spread interest, is the one based on spike-timing dependent

plasticity (STDP) [1, 46]. In STDP, the relative timing of

pre- and post-synaptic spikes determine how to update the

efficacy of a synapse. In VLSI networks of spiking neu-

rons, STDP-type mechanisms map very effectively onto

silicon. Several examples of STDP learning chips have
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Fig. 2 Raster plot and mean frequency profile of input stimulus (a)

and network response (b). The input stimulus (a) consists of Poisson

trains of spike, the mean frequency profile over neuron address shows

two Gaussian-shaped bumps of activity with different amplitude. b
The soft WTA network response shows how the bump with higher

amplitude is selected and amplified while the other one is suppressed.

The response of the feed-forward network (no recurrent connections)

to the input, is shown for comparison (green curve in the mean

frequency profile)
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been recently proposed [5, 38, 54, 68], and it has been

shown, both in theoretical models and VLSI implementa-

tions, that STDP can be effective in learning to classify

spatio-temporal spike patterns [5, 33, 34].

However, when considering learning in physical

implementations of synapses, either biological or elec-

tronic, a crucial problem arises: their synaptic weights are

bounded (i.e., they cannot grow indefinitely or assume

negative values) and have limited precision. This con-

straint, often ignored in software simulations, poses strong

limitations on the network’s capacity to preserve memories

stored in the synaptic weights: if synapses cannot be

modified with an arbitrarily large precision, the storage of

new memories can overwrite old ones, eventually making

memory retrieval (and learning) impossible. In these con-

ditions, the synapses tend to reach a uniform equilibrium

distribution very rapidly, at a rate which depends on the

extent by which the synapses are modified [4, 29]. A large

number of synaptic modifications implies fast learning, but

also fast forgetting. Extending the range in which the

synapses vary, or their resolution (i.e., the number of dis-

crete stable states that exist between from their lower to

their upper bound) does not improve the memory perfor-

mance considerably [30]. But the memory lifetime can be

greatly increased by slowing down the learning process

(e.g., by modifying only a small subset of synapses) [4, 29].

A spike-based learning algorithm that takes into account

these considerations has been recently proposed in [11]. We

developed a hardware implementation of this model using

spike-based plasticity circuits with the minimal number of

stable states (two), and with a weight-update scheme that

consolidates the transitions between one stable state to the

other in a stochastic way, to be able to change the weights

with a small probability [39]. Using just two stable synaptic

states solves efficiently the problem of long-term storage: it

is sufficient to use a bistable circuit that restores the synaptic

state to either its high rail or its low one, depending on

whether the weight is above or below a set threshold. In this

way, memory preservation is guaranteed also in the absence

of stimuli, or when the pre-synaptic activity is very low. The

synaptic weight updated depends on the timing of the pre-

synaptic spike, on the state of the post-synaptic neuron’s

membrane potential, and on a slow variable proportional to

the post-synaptic neuron’s mean firing rate (related to the

Calcium concentration in real neurons). Such a model has

been shown to be able to classify patterns of mean firing

rates, to capture the rich phenomenology observed in neuro-

physiological experiments on synaptic plasticity, and to

reproduce the classical STDP phenomenology [11].

This particular strategy for spike-based learning is

effective for VLSI devices which implement networks of

silicon neurons with a large number of bistable synapses,

and which can make use of a stochastic mechanism for

updating the synaptic weights. Indeed, by modifying only a

random subset of all the stimulated synapses with a small

probability, the network’s memory lifetime increases sig-

nificantly (memory lifetimes increase by a factor inversely

proportional to the probability of synaptic modification)

[29]. The stochastic mechanism required for making a ran-

dom selection of synapses is implemented directly, without

the need of special additional circuits such as random-

number generators, exploiting the properties of the AER

communication protocol. Indeed, if the trains of spikes

(address-events) transmitted to the plastic synapse have a

Poisson distribution (as is the case for address-events pro-

duced by silicon neurons embedded in a recurrent network

with sparse connectivity [14, 65]), and the synaptic transi-

tion between the two stable states occur only after a

sufficient number of spike-driven events accumulate, then

the changes in the synaptic weight are stochastic [14, 31].

To validate the VLSI implementation of the learning

model proposed in [11], we fabricated a small 10 mm2

prototype chip comprising an array of 128 integrate-and-

fire neurons and 4096 adaptive synapses with biologically

plausible temporal dynamics [7], using a standard 0.35 lm

CMOS technology (see Fig. 3). We presented experimental

data from the chip describing the detailed behavior of the

learning circuits in [50], and showed how such circuits can

robustly classify complex patterns of spike trains.

The array of neurons implemented in this chip com-

prises also additional local excitatory and inhibitory

synapses to form a soft WTA architecture. Therefore this

device, thanks to its spike-based plasticity and soft WTA

mechanisms, can be used in distributed multi-chip AER

systems as a general purpose computational module, and

Fig. 3 Layout section of the spike-based learning chip: an array of

128 I&F neurons, represented by the ‘‘Soma’’ block, is connected to

128 rows of 32 AER synapses (28 with plasticity, and 4 nonplastic

synapses with fixed weights). An on-chip multiplexer allows the user

to select how many rows of synapses/neuron to configure. The AER

arbiter is a communication block which transmits the asynchronous

address-events off-chip
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represents a useful tool for the realization of neuromorphic

cognitive systems.

Neuromorphic Cognition

So far the NE endeavor has succeeded in providing the

physical infrastructure for constructing networks of sen-

sors, neuronal networks, and effectors that are similar in

organization if not in size to the nervous systems of biol-

ogy. However, the tasks that these neuromorphic systems

are able to perform remain rather simple, so that even the

most sophisticated VLSI neuromorphic systems created

thus far are reactive in quality, mapping rather directly

sensory percepts to simple actions. Of course, intelligent

systems are not simply reactive. Instead, given some

knowledge of its environment and some approximate

behavioral objectives, an intelligent agent comes to reason

that certain combinations of actions are more likely to

achieve an objective than others.

The fact that neuromorphic systems still fall short of

such performance is not due to any particular restriction of

the available hardware, which has grown evermore

sophisticated and reliable. It simply reflects the state of

progress of the field. It is only during recent years that it

has become technically possible to consider how neuro-

morphic systems could be configured to perform behavior

that is more elaborate than reactive: to consider how to

make these systems more cognitive. That the community

recognizes this challenge can be seen in the recent estab-

lishment in Europe of the vigorous Capo Caccia

Workshops toward Cognitive Neuromorphic Engineering

[12]; in the redirection of the NSF Telluride Workshops

[64] also toward that goal; and in the launch of the DARPA

SyNAPSE initiative [63].

The step from reaction to cognition is not an easy one.

For a system to exhibit cognition, it must be capable of

creating, storing and manipulating knowledge of the world

and of itself, and of reasoning on this knowledge to plan

and execute economically advantageous behavior. Whereas

we may recognize these properties in the behavior of ani-

mals, it has been extraordinarily difficult to evoke them in

artificial systems, be they either symbolic or connectionist

in design. Nor has either Neuroscience or Psychology been

quick to identify the organization principles of the brain or

mind, which support cognition. By ‘‘identify’’ we mean not

simply a description of what there is, but rather an expla-

nation of how things work, in a manner that can be used to

develop a practical technology. To the extent that science

has been able to evoke artificial cognition at all, it has been

based largely on symbolic encodings of the world pro-

cessed on conventional digital computers that use

predominantly nonreal time, serial, synchronized electronic

processing. In these systems, the algorithmic processing of

information occurs without any intrinsic regard for the

meaning and significance of the processed data. The

meaning and significance are extrinsic to the computation.

They are derived from the interpretation of human pro-

grammers who design the encodings of the data, and the

algorithms that manipulate them. And so cognition is not

inherent to this style of computation. On the other hand,

there is no reason to believe that present methods of

computation are unable to express cognition. It is likely

that intelligence expressed by cognition is a particular style

of computation in which the attribution of meaning, sig-

nificance, purpose, etc. arise out of the self-organization of

encodings by the algorithms themselves, rather than the

external programmers. The challenge for NE is to establish

whether neuromorphic architectures and computation offer

any advantage over conventional digital methods for

implementing this style of computation. The challenge is

not simply about hardware implementation, but more

generally to understand what kinds of computational

models neurons can support, and how to configure the

hardware neurons to perform desired tasks using a partic-

ular computational approach.

For example, one fundamental problem is how nervous

systems transform the world into a form suitable for the

expression of cognition. This is a transformation of the

sensory data into a kind of symbolic representation that can

support reasoning. Biological sensors use real-valued sig-

nals, that must be extracted from noise, amplified,

segmented, and combined to form the objects and their

relations that are the meat of behavioral action. The sen-

sory data are often incomplete, and must be combined with

incomplete theories of how the world functions. How are

these theories derived from the world and implemented in

neurons? Indeed, the ability to infer unknown information

from incomplete sensory data combined with some prior

knowledge must rank as one of the most fundamental

principles for incorporation in neuronal circuits. Already,

there exists interesting progress in this direction. Several

recent studies have considered how single neurons or their

networks could implement belief propagation [52, 55], or

of how they could perform probabilistic computations in

general [22, 23, 44, 69]. Steimer et al. [62] have shown

how pools of spiking neurons can be used to implement the

Belief-Propagation algorithm on a factor graph. The pools

of neurons implement the nodes of a factor graph. Each

pool gathers ’messages’ in the form of population activities

from its input nodes and combines them through its net-

work dynamics. The various output messages to be

transmitted over the edges of the graph are each computed

by a group of readout neurons that feed into their respective

destination pools. They use this approach to demonstrate

how pools of spiking neurons can explain how visual cues
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resolve competing interpretations of an object’s shape and

illumination. Work such as this shows how networks of

neurons can support a rather general computational model

(in this case, factor graphs) and how the operation of

neurons can be linked to psycho-physical experience.

Another interesting problem is how neurons support

conditional branching between possible behavioral states,

which is a hallmark of intelligent behavior. In a step toward

solving this problem, Rutishauser and Douglas [57] have

recently shown how neuronal networks with a nearly uni-

form architecture can be configured to provide conditional

branching between neuronal states. They show that a multi-

stable neuronal network containing a number of states can be

created very simply, by coupling two recurrent networks

whose synaptic weights have been configured for soft WTA

performance. The two soft WTAs have simple, homoge-

neous locally recurrent connectivity except for a small

fraction of recurrent cross-connections between them, which

are used to embed the required states. The coupling between

the maps allows the network to continue to express the

current state even after the input that evoked that state is

withdrawn. In addition, a small number of ‘‘transition neu-

rons’’ implement the necessary input-driven transitions

between the embedded states. Simple rules are provided to

systematically design and construct neuronal state machines

of this kind. The significance of this finding is that it offers a

method whereby cortex-like plates of neurons could be

configured for sophisticated processing by applying only

small specializations to the same generic neuronal circuit.

These two examples represent only demonstrations of

principle, validated by software simulations. However, they

are sufficiently simple in concept and small in network size

to be directly implemented in neuromorphic VLSI. The

resulting systems, comprising soft WTA neural circuits and

plastic synapses previously described, will be useful for

exploring more sophisticated neuromorphic behavior.

Conclusions

Neuromorphic engineering has been very successful in

developing a new generation of computing technologies

implemented with design principles based on those of the

nervous systems, and which exploit the physics of com-

putation used in biological neural systems. We are now

able to design and implement complex large-scale artificial

neural systems with elaborate computational properties,

such as spike-based plasticity and soft WTA behavior. It is

even possible to build complete artificial sensory-motor

systems, able to robustly process signals in real-time using

neuromorphic VLSI technology. However, there is still a

large gap between the type of reactive systems that have

been built up to now, and neuromorphic behaving systems

able to achieve the sophistication of processing that we

could regard as effective cognition.

In this paper, we presented an overview of the recent

advances made in neuromorphic VLSI technology, focus-

ing on soft WTA networks of spiking neurons and spike-

based plasticity mechanisms, and described some of the

challenges that the research community faces for bridging

this gap and going from NE to neuromorphic cognition. We

argued that the silicon neuron and spike-based plasticity

circuits discussed in ‘‘Neuromorphic VLSI’’ section can be

used to learn to infer unknown information from incom-

plete sensory data (i.e., implement Belief-Propagation

networks), while the soft WTA networks represent a useful

computational paradigm for ‘‘programming’’ networks of

spiking neurons, thanks also to their ability to implement

conditional branching between neuronal states.

The neural network examples that implement Belief-

Propagation networks and soft WTA architectures that

exhibit conditional branching between neuronal states have

only been tested in software models for now, but they

can be directly mapped onto neuromorphic multi-chip

architectures.

By combining research on neuromorphic VLSI tech-

nology, software models of spiking neural architectures,

and neuroscience, it will be soon possible to implement

artificial systems comprising VLSI networks of spiking

neurons, able to exhibit context-dependent cognitive abil-

ities in real-time, and in response to real-world stimuli.
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