6,453 research outputs found

    A Survey of Brain Inspired Technologies for Engineering

    Full text link
    Cognitive engineering is a multi-disciplinary field and hence it is difficult to find a review article consolidating the leading developments in the field. The in-credible pace at which technology is advancing pushes the boundaries of what is achievable in cognitive engineering. There are also differing approaches to cognitive engineering brought about from the multi-disciplinary nature of the field and the vastness of possible applications. Thus research communities require more frequent reviews to keep up to date with the latest trends. In this paper we shall dis-cuss some of the approaches to cognitive engineering holistically to clarify the reasoning behind the different approaches and to highlight their strengths and weaknesses. We shall then show how developments from seemingly disjointed views could be integrated to achieve the same goal of creating cognitive machines. By reviewing the major contributions in the different fields and showing the potential for a combined approach, this work intends to assist the research community in devising more unified methods and techniques for developing cognitive machines

    Conception of the cognitive engineering design problem

    Get PDF
    Cognitive design, as the design of cognitive work and cognitive tools, is predominantly a craft practice that currently depends on the experience and insight of the designer. However, the emergence of a discipline of cognitive engineering promises a more effective alternative practice, one that turns on the prescription of solutions to cognitive design problems. In this paper, the authors first examine the requirements for advancing cognitive engineering as a discipline. In particular, they identify the need for a conception for explicitly formulating cognitive design problems. A proposal for such a conception is then presented

    Cognitive Engineering

    Get PDF
    Cognitive engineering is the application of cognitive psychology and related disciplines to the design and operation of human–machine systems. Cognitive engineering combines both detailed and close study of the human worker in the actual work context and the study of the worker in more controlled environments. Cognitive engineering combines multiple methods and perspectives to achieve the goal of improved system performance. Given the origins of experimental psychology itself in issues regarding the design of human–machine systems, cognitive engineering is a core, or fundamental, discipline within academic psychology

    Cognitive engineering models in space systems

    Get PDF
    NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed

    Towards automatic generation of multimodal answers to medical questions: a cognitive engineering approach

    Get PDF
    This paper describes a production experiment carried out to determine which modalities people choose to answer different types of questions. In this experiment participants had to create (multimodal) presentations of answers to general medical questions. The collected answer presentations were coded on types of manipulations (typographic, spatial, graphical), presence of visual media (i.e., photos, graphics, and animations), functions and position of these visual media. The results of a first analysis indicated that participants presented the information in a multimodal way. Moreover, significant differences were found in the information presentation of different answer and question types

    Towards ontological foundations for agent modeling concepts using UFO

    Get PDF
    Foundational ontologies provide the basic concepts upon which any domain-specific ontology is built. This paper presents a new foundational ontology, UFO, and shows how it can be used as a foundation of agent concepts and for evaluating agent-oriented modeling methods. UFO is derived from a synthesis of two other foundational ontologies, GFO/GOL and OntoClean/DOLCE. While their main areas of application are the natural sciences and linguistics/cognitive engineering, respectively, the main purpose of UFO is to provide a foundation for conceptual modeling, including agentoriented modeling

    The conundrum of categorising requirements: managing requirements for learning on the move

    Get PDF
    This paper reports on the experience of eliciting and managing requirements on a large European-based multinational project, whose purpose is to create a system to support learning using mobile technology. The project used the socio-cognitive engineering methodology for human-centered design and the Volere shell and template to document requirements. We provide details about the project below, describe the Volere tools, and explain how and why we used a flexible categorization scheme to manage the requirements. Finally, we discuss three lessons learned: (1) provide a flexible mechanism for organizing requirements, (2) plan ahead for the RE process, and (3) do not forget 'the waiting room

    Cognitive engineering in aerospace applications

    Get PDF
    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications
    • …
    corecore