979 research outputs found

    Aberrant posterior cingulate connectivity classify first-episode schizophrenia from controls: A machine learning study

    No full text
    Background Posterior cingulate cortex (PCC) is a key aspect of the default mode network (DMN). Aberrant PCC functional connectivity (FC) is implicated in schizophrenia, but the potential for PCC related changes as biological classifier of schizophrenia has not yet been evaluated. Methods We conducted a data-driven approach using resting-state functional MRI data to explore differences in PCC-based region- and voxel-wise FC patterns, to distinguish between patients with first-episode schizophrenia (FES) and demographically matched healthy controls (HC). Discriminative PCC FCs were selected via false discovery rate estimation. A gradient boosting classifier was trained and validated based on 100 FES vs. 93 HC. Subsequently, classification models were tested in an independent dataset of 87 FES patients and 80 HC using resting-state data acquired on a different MRI scanner. Results Patients with FES had reduced connectivity between PCC and frontal areas, left parahippocampal regions, left anterior cingulate cortex, and right inferior parietal lobule, but hyperconnectivity with left lateral temporal regions. Predictive voxel-wise clusters were similar to region-wise selected brain areas functionally connected with PCC in relation to discriminating FES from HC subject categories. Region-wise analysis of FCs yielded a relatively high predictive level for schizophrenia, with an average accuracy of 72.28% in the independent samples, while selected voxel-wise connectivity yielded an accuracy of 68.72%. Conclusion FES exhibited a pattern of both increased and decreased PCC-based connectivity, but was related to predominant hypoconnectivity between PCC and brain areas associated with DMN, that may be a useful differential feature revealing underpinnings of neuropathophysiology for schizophrenia

    Boosting brain connectome classification accuracy in Alzheimer's disease using higher-order singular value decomposition

    Get PDF
    abstract: Alzheimer's disease (AD) is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing interest in identifying brain imaging biomarkers that help to automatically differentiate stages of Alzheimer's disease. Here, we focused on brain structural networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain network differences that help in classifying different stages of Alzheimer's disease.View the article as published at http://journal.frontiersin.org/article/10.3389/fnins.2015.00257/ful

    Local-Aggregate Modeling for Big-Data via Distributed Optimization: Applications to Neuroimaging

    Full text link
    Technological advances have led to a proliferation of structured big data that have matrix-valued covariates. We are specifically motivated to build predictive models for multi-subject neuroimaging data based on each subject's brain imaging scans. This is an ultra-high-dimensional problem that consists of a matrix of covariates (brain locations by time points) for each subject; few methods currently exist to fit supervised models directly to this tensor data. We propose a novel modeling and algorithmic strategy to apply generalized linear models (GLMs) to this massive tensor data in which one set of variables is associated with locations. Our method begins by fitting GLMs to each location separately, and then builds an ensemble by blending information across locations through regularization with what we term an aggregating penalty. Our so called, Local-Aggregate Model, can be fit in a completely distributed manner over the locations using an Alternating Direction Method of Multipliers (ADMM) strategy, and thus greatly reduces the computational burden. Furthermore, we propose to select the appropriate model through a novel sequence of faster algorithmic solutions that is similar to regularization paths. We will demonstrate both the computational and predictive modeling advantages of our methods via simulations and an EEG classification problem.Comment: 41 pages, 5 figures and 3 table

    Brain enhancement through cognitive training: A new insight from brain connectome

    Get PDF
    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive function

    Dynamic low-level context for the detection of mild traumatic brain injury.

    Get PDF
    Mild traumatic brain injury (mTBI) appears as low contrast lesions in magnetic resonance (MR) imaging. Standard automated detection approaches cannot detect the subtle changes caused by the lesions. The use of context has become integral for the detection of low contrast objects in images. Context is any information that can be used for object detection but is not directly due to the physical appearance of an object in an image. In this paper, new low-level static and dynamic context features are proposed and integrated into a discriminative voxel-level classifier to improve the detection of mTBI lesions. Visual features, including multiple texture measures, are used to give an initial estimate of a lesion. From the initial estimate novel proximity and directional distance, contextual features are calculated and used as features for another classifier. This feature takes advantage of spatial information given by the initial lesion estimate using only the visual features. Dynamic context is captured by the proposed posterior marginal edge distance context feature, which measures the distance from a hard estimate of the lesion at a previous time point. The approach is validated on a temporal mTBI rat model dataset and shown to have improved dice score and convergence compared to other state-of-the-art approaches. Analysis of feature importance and versatility of the approach on other datasets are also provided

    Neurobiological markers for remission and persistence of childhood attention-deficit/hyperactivity disorder

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neurodevelopmental disorders in children. Symptoms of childhood ADHD persist into adulthood in around 65% of patients, which elevates the risk for a number of adverse outcomes, resulting in substantial individual and societal burden. A neurodevelopmental double dissociation model is proposed based on existing studies in which the early onset of childhood ADHD is suggested to associate with dysfunctional subcortical structures that remain static throughout the lifetime; while diminution of symptoms over development could link to optimal development of prefrontal cortex. Current existing studies only assess basic measures including regional brain activation and connectivity, which have limited capacity to characterize the functional brain as a high performance parallel information processing system, the field lacks systems-level investigations of the structural and functional patterns that significantly contribute to the symptom remission and persistence in adults with childhood ADHD. Furthermore, traditional statistical methods estimate group differences only within a voxel or region of interest (ROI) at a time without having the capacity to explore how ROIs interact in linear and/or non-linear ways, as they quickly become overburdened when attempting to combine predictors and their interactions from high-dimensional imaging data set. This dissertation is the first study to apply ensemble learning techniques (ELT) in multimodal neuroimaging features from a sample of adults with childhood ADHD and controls, who have been clinically followed up since childhood. A total of 36 adult probands who were diagnosed with ADHD combined-type during childhood and 36 matched normal controls (NCs) are involved in this dissertation research. Thirty-six adult probands are further split into 18 remitters (ADHD-R) and 18 persisters (ADHD-P) based on the symptoms in their adulthood from DSM-IV ADHD criteria. Cued attention task-based fMRI, structural MRI, and diffusion tensor imaging data from each individual are analyzed. The high-dimensional neuroimaging features, including pair-wise regional connectivity and global/nodal topological properties of the functional brain network for cue-evoked attention process, regional cortical thickness and surface area, subcortical volume, volume and fractional anisotropy of major white matter fiber tract for each subject are calculated. In addition, all the currently available optimization strategies for ensemble learning techniques (i.e., voting, bagging, boosting and stacking techniques) are tested in a pool of semi-final classification results generated by seven basic classifiers, including K-Nearest Neighbors, support vector machine (SVM), logistic regression, Naïve Bayes, linear discriminant analysis, random forest, and multilayer perceptron. As hypothesized, results indicate that the features of nodal efficiency in right inferior frontal gyrus, right middle frontal (MFG)-inferior parietal (IPL) functional connectivity, and right amygdala volume significantly contributed to accurate discrimination between ADHD probands and controls; higher nodal efficiency of right MFG greatly contributed to inattentive and hyperactive/impulsive symptom remission, while higher right MFG-IPL functional connectivity strongly linked to symptom persistence in adults with childhood ADHD. The utilization of ELTs indicates that the bagging-based ELT with the base model of SVM achieves the best results, with the most significant improvement of the area under the receiver of operating characteristic curve (0.89 for ADHD probands vs. NCs, and 0.9 for ADHD-P vs. ADHD-R). The outcomes of this dissertation research have considerable value for the development of novel interventions that target mechanisms associated with recovery

    Machine Learning for Multiclass Classification and Prediction of Alzheimer\u27s Disease

    Get PDF
    Alzheimer\u27s disease (AD) is an irreversible neurodegenerative disorder and a common form of dementia. This research aims to develop machine learning algorithms that diagnose and predict the progression of AD from multimodal heterogonous biomarkers with a focus placed on the early diagnosis. To meet this goal, several machine learning-based methods with their unique characteristics for feature extraction and automated classification, prediction, and visualization have been developed to discern subtle progression trends and predict the trajectory of disease progression. The methodology envisioned aims to enhance both the multiclass classification accuracy and prediction outcomes by effectively modeling the interplay between the multimodal biomarkers, handle the missing data challenge, and adequately extract all the relevant features that will be fed into the machine learning framework, all in order to understand the subtle changes that happen in the different stages of the disease. This research will also investigate the notion of multitasking to discover how the two processes of multiclass classification and prediction relate to one another in terms of the features they share and whether they could learn from one another for optimizing multiclass classification and prediction accuracy. This research work also delves into predicting cognitive scores of specific tests over time, using multimodal longitudinal data. The intent is to augment our prospects for analyzing the interplay between the different multimodal features used in the input space to the predicted cognitive scores. Moreover, the power of modality fusion, kernelization, and tensorization have also been investigated to efficiently extract important features hidden in the lower-dimensional feature space without being distracted by those deemed as irrelevant. With the adage that a picture is worth a thousand words, this dissertation introduces a unique color-coded visualization system with a fully integrated machine learning model for the enhanced diagnosis and prognosis of Alzheimer\u27s disease. The incentive here is to show that through visualization, the challenges imposed by both the variability and interrelatedness of the multimodal features could be overcome. Ultimately, this form of visualization via machine learning informs on the challenges faced with multiclass classification and adds insight into the decision-making process for a diagnosis and prognosis
    corecore