18 research outputs found

    Conservation laws, classical symmetries and exact solutions of the generalized KdV-Burgers-Kuramoto equation

    Get PDF
    For a generalized KdV-Burgers-Kuramoto equation we have studied conservation laws by using the multiplier method, and investigated its first-level and second level potential systems. Furthermore, the Lie point symmetries of the equation and the Lie point symmetries associated with the conserved vectors are determined. We obtain travellingwave reductions depending on the form of an arbitrary function. We present some explicit solutions: soliton solutions, kinks and antikinks

    Dispersive shock waves in systems with nonlocal dispersion of Benjamin–Ono type

    Get PDF
    We develop a general approach to the description of dispersive shock waves (DSWs) for a class of nonlinear wave equations with a nonlocal Benjamin–Ono type dispersion term involving the Hilbert transform. Integrability of the governing equation is not a pre-requisite for the application of this method which represents a modification of the DSW fitting method previously developed for dispersive-hydrodynamic systems of Korteweg-de Vries (KdV) type (i.e. reducible to the KdV equation in the weakly nonlinear, long wave, unidirectional approximation). The developed method is applied to the Calogero–Sutherland dispersive hydrodynamics for which the classification of all solution types arising from the Riemann step problem is constructed and the key physical parameters (DSW edge speeds, lead soliton amplitude, intermediate shelf level) of all but one solution type are obtained in terms of the initial step data. The analytical results are shown to be in excellent agreement with results of direct numerical simulations

    Dispersive shock waves in systems with nonlocal dispersion of Benjamin-Ono type

    Get PDF
    We develop a general approach to the description of dispersive shock waves (DSWs) for a class of nonlinear wave equations with a nonlocal BenjaminOno type dispersion term involving the Hilbert transform. Integrability of the governing equation is not a pre-requisite for the application of this method which represents a modification of the DSW fitting method previously developed for dispersive-hydrodynamic systems of Korteweg-de Vries (KdV) type (i.e. reducible to the KdV equation in the weakly nonlinear, long wave, unidirectional approximation). The developed method is applied to the Calogero-Sutherland dispersive hydrodynamics for which the classification of all solution types arising from the Riemann step problem is constructed and the key physical parameters (DSW edge speeds, lead soliton amplitude, intermediate shelf level) of all but one solution type are obtained in terms of the initial step data. The analytical results are shown to be in excellent agreement with results of direct numerical simulations

    Wavelet Methods for the Solutions of Partial and Fractional Differential Equations Arising in Physical Problems

    Get PDF
    The subject of fractional calculus has gained considerable popularity and importance during the past three decades or so, mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. It deals with derivatives and integrals of arbitrary orders. The fractional derivative has been occurring in many physical problems, such as frequency-dependent damping behavior of materials, motion of a large thin plate in a Newtonian fluid, creep and relaxation functions for viscoelastic materials, the PI D controller for the control of dynamical systems etc. Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry, control theory, neutron point kinetic model, anomalous diffusion, Brownian motion, signal and image processing, fluid dynamics and material science are well described by differential equations of fractional order. Generally, nonlinear partial differential equations of fractional order are difficult to solve. So for the last few decades, a great deal of attention has been directed towards the solution (both exact and numerical) of these problems. The aim of this dissertation is to present an extensive study of different wavelet methods for obtaining numerical solutions of mathematical problems occurring in disciplines of science and engineering. This present work also provides a comprehensive foundation of different wavelet methods comprising Haar wavelet method, Legendre wavelet method, Legendre multi-wavelet methods, Chebyshev wavelet method, Hermite wavelet method and Petrov-Galerkin method. The intension is to examine the accuracy of various wavelet methods and their efficiency for solving nonlinear fractional differential equations. With the widespread applications of wavelet methods for solving difficult problems in diverse fields of science and engineering such as wave propagation, data compression, image processing, pattern recognition, computer graphics and in medical technology, these methods have been implemented to develop accurate and fast algorithms for solving integral, differential and integro-differential equations, especially those whose solutions are highly localized in position and scale. The main feature of wavelets is its ability to convert the given differential and integral equations to a system of linear or nonlinear algebraic equations, which can be solved by numerical methods. Therefore, our main focus in the present work is to analyze the application of wavelet based transform methods for solving the problem of fractional order partial differential equations. The introductory concept of wavelet, wavelet transform and multi-resolution analysis (MRA) have been discussed in the preliminary chapter. The basic idea of various analytical and numerical methods viz. Variational Iteration Method (VIM), Homotopy Perturbation Method (HPM), Homotopy Analysis Method (HAM), First Integral Method (FIM), Optimal Homotopy Asymptotic Method (OHAM), Haar Wavelet Method, Legendre Wavelet Method, Chebyshev Wavelet Method and Hermite Wavelet Method have been presented in chapter 1. In chapter 2, we have considered both analytical and numerical approach for solving some particular nonlinear partial differential equations like Burgers’ equation, modified Burgers’ equation, Huxley equation, Burgers-Huxley equation and modified KdV equation, which have a wide variety of applications in physical models. Variational Iteration Method and Haar wavelet Method are applied to obtain the analytical and numerical approximate solution of Huxley and Burgers-Huxley equations. Comparisons between analytical solution and numerical solution have been cited in tables and also graphically. The Haar wavelet method has also been applied to solve Burgers’, modified Burgers’, and modified KdV equations numerically. The results thus obtained are compared with exact solutions as well as solutions available in open literature. Error of collocation method has been presented in this chapter. Methods like Homotopy Perturbation Method (HPM) and Optimal Homotopy Asymptotic Method (OHAM) are very powerful and efficient techniques for solving nonlinear PDEs. Using these methods, many functional equations such as ordinary, partial differential equations and integral equations have been solved. We have implemented HPM and OHAM in chapter 3, in order to obtain the analytical approximate solutions of system of nonlinear partial differential equation viz. the Boussinesq-Burgers’ equations. Also, the Haar wavelet method has been applied to obtain the numerical solution of BoussinesqBurgers’ equations. Also, the convergence of HPM and OHAM has been discussed in this chapter. The mathematical modeling and simulation of systems and processes, based on the description of their properties in terms of fractional derivatives, naturally leads to differential equations of fractional order and the necessity to solve such equations. The mathematical preliminaries of fractional calculus, definitions and theorems have been presented in chapter 4. Next, in this chapter, the Haar wavelet method has been analyzed for solving fractional differential equations. The time-fractional Burgers-Fisher, generalized Fisher type equations, nonlinear time- and space-fractional Fokker-Planck equations have been solved by using two-dimensional Haar wavelet method. The obtained results are compared with the Optimal Homotopy Asymptotic Method (OHAM), the exact solutions and the results available in open literature. Comparison of obtained results with OHAM, Adomian Decomposition Method (ADM), VIM and Operational Tau Method (OTM) has been demonstrated in order to justify the accuracy and efficiency of the proposed schemes. The convergence of two-dimensional Haar wavelet technique has been provided at the end of this chapter. In chapter 5, the fractional differential equations such as KdV-Burger-Kuramoto (KBK) equation, seventh order KdV (sKdV) equation and Kaup-Kupershmidt (KK) equation have been solved by using two-dimensional Legendre wavelet and Legendre multi-wavelet methods. The main focus of this chapter is the application of two-dimensional Legendre wavelet technique for solving nonlinear fractional differential equations like timefractional KBK equation, time-fractional sKdV equation in order to demonstrate the efficiency and accuracy of the proposed wavelet method. Similarly in chapter 6, twodimensional Chebyshev wavelet method has been implemented to obtain the numerical solutions of the time-fractional Sawada-Kotera equation, fractional order Camassa-Holm equation and Riesz space-fractional sine-Gordon equations. The convergence analysis has been done for these wavelet methods. In chapter 7, the solitary wave solution of fractional modified Fornberg-Whitham equation has been attained by using first integral method and also the approximate solutions obtained by optimal homotopy asymptotic method (OHAM) are compared with the exact solutions acquired by first integral method. Also, the Hermite wavelet method has been implemented to obtain approximate solutions of fractional modified Fornberg-Whitham equation. The Hermite wavelet method is implemented to system of nonlinear fractional differential equations viz. the fractional Jaulent-Miodek equations. Convergence of this wavelet methods has been discussed in this chapter. Chapter 8 emphasizes on the application of Petrov-Galerkin method for solving the fractional differential equations such as the fractional KdV-Burgers’ (KdVB) equation and the fractional Sharma-TassoOlver equation with a view to exhibit the capabilities of this method in handling nonlinear equation. The main objective of this chapter is to establish the efficiency and accuracy of Petrov-Galerkin method in solving fractional differential equtaions numerically by implementing a linear hat function as the trial function and a quintic B-spline function as the test function. Various wavelet methods have been successfully employed to numerous partial and fractional differential equations in order to demonstrate the validity and accuracy of these procedures. Analyzing the numerical results, it can be concluded that the wavelet methods provide worthy numerical solutions for both classical and fractional order partial differential equations. Finally, it is worthwhile to mention that the proposed wavelet methods are promising and powerful methods for solving fractional differential equations in mathematical physics. This work also aimed at, to make this subject popular and acceptable to engineering and science community to appreciate the universe of wonderful mathematics, which is in between classical integer order differentiation and integration, which till now is not much acknowledged, and is hidden from scientists and engineers. Therefore, our goal is to encourage the reader to appreciate the beauty as well as the usefulness of these numerical wavelet based techniques in the study of nonlinear physical system

    Dispersive shock waves and modulation theory

    Get PDF
    There is growing physical and mathematical interest in the hydrodynamics of dissipationless/dispersive media. Since G. B. Whitham’s seminal publication fifty years ago that ushered in the mathematical study of dispersive hydrodynamics, there has been a significant body of work in this area. However, there has been no comprehensive survey of the field of dispersive hydrodynamics. Utilizing Whitham’s averaging theory as the primary mathematical tool, we review the rich mathematical developments over the past fifty years with an emphasis on physical applications. The fundamental, large scale, coherent excitation in dispersive hydrodynamic systems is an expanding, oscillatory dispersive shock wave or DSW. Both the macroscopic and microscopic properties of DSWs are analyzed in detail within the context of the universal, integrable, and foundational models for uni-directional (Korteweg–de Vries equation) and bi-directional (Nonlinear Schrödinger equation) dispersive hydrodynamics. A DSW fitting procedure that does not rely upon integrable structure yet reveals important macroscopic DSW properties is described. DSW theory is then applied to a number of physical applications: superfluids, nonlinear optics, geophysics, and fluid dynamics. Finally, we survey some of the more recent developments including non-classical DSWs, DSW interactions, DSWs in perturbed and inhomogeneous environments, and two-dimensional, oblique DSWs

    Applied Mathematics and Fractional Calculus

    Get PDF
    In the last three decades, fractional calculus has broken into the field of mathematical analysis, both at the theoretical level and at the level of its applications. In essence, the fractional calculus theory is a mathematical analysis tool applied to the study of integrals and derivatives of arbitrary order, which unifies and generalizes the classical notions of differentiation and integration. These fractional and derivative integrals, which until not many years ago had been used in purely mathematical contexts, have been revealed as instruments with great potential to model problems in various scientific fields, such as: fluid mechanics, viscoelasticity, physics, biology, chemistry, dynamical systems, signal processing or entropy theory. Since the differential and integral operators of fractional order are nonlinear operators, fractional calculus theory provides a tool for modeling physical processes, which in many cases is more useful than classical formulations. This is why the application of fractional calculus theory has become a focus of international academic research. This Special Issue "Applied Mathematics and Fractional Calculus" has published excellent research studies in the field of applied mathematics and fractional calculus, authored by many well-known mathematicians and scientists from diverse countries worldwide such as China, USA, Canada, Germany, Mexico, Spain, Poland, Portugal, Iran, Tunisia, South Africa, Albania, Thailand, Iraq, Egypt, Italy, India, Russia, Pakistan, Taiwan, Korea, Turkey, and Saudi Arabia

    Methods of symmetry reduction and their application

    Get PDF
    In this thesis methods of symmetry reduction are applied to several physically relevant partial differential equations. The first chapter serves to acquaint the reader with the symmetry methods used in this thesis. In particular the classical method of Lie, an extension of it by Bluman and Cole [1969], known as the nonclassical method, and the direct method of Clarkson and Kruskal [1989] are described. Other known extensions of these methods are outlined, including potential symmetries, introduced by Bluman, Kumei and Reid [1988]. Also described are the tools used in practice to perform the calculations. The remainder of the thesis is split into two parts. In Part One the classical and nonclassical methods are applied to three classes of scalar equation: a generalised Boussinesq equation, a class of third order equations and a class of fourth order equations. Many symmetry reductions and exact solutions are found. In Part Two each of the classical, nonclassical and direct methods are applied to various systems of partial differential equations. These include shallow water wave systems, six representations of the Boussinesq equation and a reaction-diffusion equation written as a system. In Chapters Five and Six both the actual application of these methods and their results is compared and contrasted. In such applications, remarkable phenomena can occur, in both the nonclassical and direct methods. In particular it is shown that the application of the direct method to systems of equations is not as conceptually straightforward as previously thought, and a way of completing the calculations of the nonclassical method via hodograph transformations is introduced. In Chapter Seven it is shown how more symmetry reductions may be found via nonclassical potential symmetries, which are a new extension on the idea of potential symmetries. In the final chapter the relationship between the nonclassical and direct methods is investigated in the light of the previous chapters. The thesis is concluded with some general remarks on its findings and on possible future work

    Dispersive hydrodynamics in a non-local non-linear medium

    Get PDF
    Dispersive shock wave (DSW), sometimes referred to as an undular bore in fluid mechanics, is a non-linear dispersive wave phenomenon which arises in non-linear dispersive media for which viscosity effects are negligible or non-existent. It is generated when physical quantities, such as fluid pressure, density, temperature and electromagnetic wave intensity, undergo rapid variations as time evolves. Its structure is a non-stationary modulated wavetrain which links two distinct physical states. DSW's occurrence in nature is quite omnipresent in classical/quantum fluids and non-linear optics. The main purpose of this thesis is to fully analyse all regimes for DSW propagation in the non-linear optical medium of a nematic liquid crystal in the defocusing regime. These DSWs are generated from step initial conditions for the intensity of the optical field and are resonant in that linear diffractive waves (termed dispersive waves in the context of fluid mechanics) are in resonance with the DSW, leading to a resonant wavetrain propagating ahead of it. It is found that there are six hydrodynamic regimes, which are distinct and require different solution methods. In previous studies, a reductive nematic Korteweg-de Vries equation and gas dynamic shock wave theory were used to understand all nematic dispersive hydrodynamics, which do not yield solutions in full agreement with numerical solutions. Indeed, the standard DSW structure disappears and a ``Whitham shock'' emerges for sufficiently large initial jumps. Asymptotic theory, approximate methods or Whitham's modulation theory are used to find solutions for these resonant DSWs in a given regime. It is found that for small initial intensity jumps, the resonant wavetrain is unstable, but that it stabilises above a critical jump height. It is additionally found that the DSW is unstable, except for small jump heights for which there is no resonance and large jump heights for which there is no standard DSW structure. The theoretical solutions are found to be in excellent agreement with numerical solutions of the nematic equations in all hydrodynamic regimes

    HAMILTONIAN SHOCKS AND OTHER SINGULAR FRONTS IN HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

    Get PDF
    The nature of wave interaction in a continuum dynamical model may undergo a qualitative change in certain asymptotic regimes, most notably when linearity or complete integrability is introduced. This occurs in particular when the mKdV equation is used to model the unidirectional dispersive dynamics of two layer shallow water fluid flow near a critical interfacial height. Motivated by the symmetric properties of conjugate states which have been observed for the MCC equations in the Boussinesq limit, this work elucidates a more subtle qualitative shift, residing purely in the dispersionless reduction of a 2×2 system, which determines whether a Hamiltonian undercompressive shock, representing a profile connecting two conjugate states, may interact with a continuous background wave without producing a loss of regularity, which would take the form of a classical dispersive shock. The resulting criterion is also related to an infinitude of conservation laws, drawing a further parallel to the integrable case.Then, motivated by the study of shallow water fluid flow, criteria are derived for the splitting of corner points in the initial conditions of a solution to a one dimensional quasilinear hyperbolic system of conservation laws. To this end, a distributional approach to moving singularities is elaborated. Then the class of systems admitting solutions with persisting infinite derivatives is shown to coincide with the class for which genuine nonlinearity does not hold uniformly and fails at such singular points in particular. In both cases the application to problems in fluid flow is demonstrated in the context of explicit solutions.Doctor of Philosoph
    corecore