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Abstract
In this paper, some solutions of the density-dependent diffusion Nagumo equation
are obtained by using a new approach, the Lie symmetry group-preserving scheme
(LSGPS). The effects of various model parameters on the solution are investigated
graphically using LSGPS. Finally, a different reduction method of PDEs is applied to
construct two new analytical solutions and a first integral of the Nagumo equation.
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1 Introduction
A systematic and powerful method to derive the exact solutions of nonlinear differen-
tial equations is the Lie symmetry method which has some important properties such as
conservation laws, can successfully be obtained using the symmetries [–]. Among the
existing numerical algorithms, the group preserving scheme (GPS) provided by Liu [] is
a numerical method based upon Lie group solvers that preserves the Lie group structure
under discretization. This method uses the Cayley transformation and the Padé approx-
imations in the augmented Minkowski space M

n+. One of the major benefits of GPS in
the Mn+ is that it can avoid ghost fixed points and spurious solutions. We refer the reader
to the following papers about GPS, e.g. [–].

The density-dependent diffusion Nagumo equation []

∂u
∂t

=
∂

∂x

(
um ∂u

∂x

)
+ u( – u)(u – α), α ∈R, m ≥ , ()

with its diffusion coefficient being a simple power function and the nonlinearity assumed
to be singular at zero, has various biological applications, such as population genetics, nu-
clear reactor theory, chemical reactions, and it is used in the modeling of electrical pulse
propagation of nerve axons. The existence of one-dimensional traveling wave solutions of
() has been studied in [] by Sánchez-Garduño and Maini. Mansour in [] has computed
the traveling wave solutions of () with the wave speed c and the special case m = . The
minimum speed and the corresponding trajectory for the sharp traveling waves have been
determined in the mentioned paper. An approximation to the wave speed is considered by
Pedersen in [] and he claimed that the wave speed does not depend on the parameter
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gK ,ATP , mimicking the glucose concentration in the islet. The δ-expansion method in []
has been applied to obtain traveling wave solutions of () on the real line, subject to con-
ditions at infinity. Masemola et al. in [] have recently applied the Lie symmetry method
to construct the conservation laws and the exact solutions of the underlying equation for
the special cases m =  and α = –.

2 Group-preserving schemes
Most of the physical systems are formulated in terms of a system of k ordinary differential
equations,

dW
dξ

= f(ξ , W), ξ ∈R, W ∈R
k , ()

such that equation () is a differential equation on the manifold M ⊂R
k , if

W ∈M implies W(ξ ) ∈M for all ξ . ()

Many numerical approaches have been proposed to approximate the solution of equation
(). Almost all methods discretize the system of differential equations to produce related
difference equations. Obviously, from the same differential equations, the methods obtain
different difference equations, but they have the same aim in that the dynamics of the
difference equation must correspond closely to the dynamics of the differential equations.

This section gives an introduction to GPS from the class of the relatively new area of nu-
merical analysis called geometric integration. The name ‘geometric integration’ is utilized
to a series of numerical approaches that aim to preserve the qualitative and geometrical
features of a differential equation when it is discretized [–]. Hairer in [] illustrated
a procedure to modify classical methods for solving differential equations on manifolds in
order to preserve certain geometric properties of the exact flow. The concept of geometric
numerical integration by the important example of the Störmer/Verlet method is given by
Hairer et al. in [].

2.1 A Lie algebra formulation
In the formulation of GPS, for a k-dimensional ordinary differential equations system (),
it is possible embed them into the k + -dimensional augmented dynamical systems:

d
dξ

[
W

‖W‖

]
=

[
k×k

f(ξ ,W)
‖W‖

fT(ξ ,W)
‖W‖ 

][
W

‖W‖

]
. ()

Clearly, the first equation in equation () is the same as the dynamical system (), whereas
the second equation imposes a Minkowskian structure of the augmented state variables
of X := (WT,‖W‖)T, satisfying the cone condition:

XTgX = , ()

where

g =

[
Ik k×

×k –

]
()
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is a Minkowski metric. Hence equation () in terms of X becomes

XTgX = W · W – ‖W‖ = ‖W‖ – ‖W‖ = . ()

Thus, we imposed a natural constraint (cone condition) on the augmented dynamical sys-
tem and, consequently, we have an k + -dimensional augmented system:

X ′ = AX, ()

with constraint () and

A :=

[
k×k

f(ξ ,W)
‖W‖

fT(ξ ,W)
‖W‖ 

]
, ()

satisfyinga

ATg + gA = . ()

The discretized mapping G ∈ SO(k, ), corresponding to A, preserves the following prop-
erties:

GTgG = g, det(G) = , G
 > , ()

where G
 is the th component of G . Now, we are ready to develop the group-preserving

numerical scheme as follows:

Xn+ = G(n)Xn, ()

where Xn denotes the numerical value of X at ξn, and

G(n) = exp
[
�ξA(n)

]
=

⎡
⎣Ik + (αn–)

‖fn‖ fnfT
n

βnfn
‖fn‖

βnfT
n

‖fn‖ αn

⎤
⎦ , ()

where

αn = cosh

(
�ξ‖fn‖
‖Wn‖

)
, βn = sinh

(
�ξ‖fn‖
‖Wn‖

)
and fn = f(ξn, Wn). ()

Substituting exp[�ξA(n)] for G(n) into equation () yields

Wn+ = Wn +
(αn – )fn · Wn + βn‖Wn‖‖fn‖

‖fn‖ fn = Wn + ηnfn. ()

Since fn · Wn ≥ –‖fn‖‖Wn‖ one can prove that

ηn ≥
[

 – exp

(
–

�ξ‖fn‖
‖Wn‖

)]‖Wn‖
‖fn‖ > , ∀�ξ > . ()

The group properties are preserved for all �ξ > .
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2.2 Lie symmetry group preserving scheme
The LSGPS is actually a new combination of Lie symmetries and GPS. By using this pro-
cedure first the given PDE reduces to some ODEs by Lie symmetries and then we ap-
proximate the solution of reduced ODE by GPS. Generally, we call the combination of Lie
symmetries and GPS LSGPS. To discuss LSGPS, let be a PDE as follows:

	u = f in 
 ⊂R
, ()

where 	 is a nonlinear operator, and u = u(t, x) is an unknown dependent variable.
Suppose that the spatial (time) derivatives of () are discretized by some methods -

finite differences, finite elements, finite volumes, or any other method. Then, this semi-
discretization generates a system of ordinary differential equations that can be solved by
GPS, but some problems may occur during this procedure. Semi-discretization is very
sensitive to the choice of the discretization step size �x (�t), i.e. many criteria should be
considered, e.g. consistency, stability, the Courant-Friedrichs-Levi (CFL) condition, and
so on. Thus, if the choice of �x (�t) were either too little or too big then either the consis-
tency or the stability of the discretization may be missed and thus the final solution of ()
could not be trusted. It may happen that �x (�t) has to be very small, e.g. �x = .,
in order to achieve a good result with semi-discretization, thus leading to a huge number
of ODEs, e.g. �x = –n means a system of n ODEs, for which the traditional GPS or Lie
group shooting method will require a large number of operations and computations.

Instead the benefits of the LSGPS are several, mainly one needs just one ODE, while in
the traditional GPS a large number of ODEs are necessary. Also since discretization re-
duces the accuracy and imposes the error, solutions obtained by LSGPS are more accurate
than by GPS, because LSGPS uses the discretization in one dimension, while GPS uses the
discretization in two dimensions.

3 Lie group analysis and LSGPS of density-dependent diffusion Nagumo
equation

Let us assume that equation (), with independent variables t, x and dependent variable
u, is invariant under one parameter continuous transformations:

t̆ = t + εξ (t, x, u) + O
(
ε),

x̆ = x + εξ (t, x, u) + O
(
ε),

ŭ = u + εφ(t, x, u) + O
(
ε),

where ε is the group parameter. The associated Lie algebra of infinitesimal symmetries is
the set of vector fields of the form

V = ξ (t, x, u)
∂

∂t
+ ξ (t, x, u)

∂

∂x
+ φ(t, x, u)

∂

∂u
. ()

If the above vector field generates a symmetry of equation (), then

Pr() V (F)|F= = , F :=
∂u
∂t

–
∂

∂x

(
um ∂u

∂x

)
– u( – u)(u – α), ()
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where Pr() X denotes the second prolongation of V and it concludes determining the
equations containing an overdetermined system of linear PDEs in ξ , ξ , and φ.

These determining equations can easily be integrated to show that the symmetry group
of equation () is spanned by the vector fields:

V =
∂

∂t
, V =

∂

∂x
()

for arbitrary m and α,

V =
∂

∂t
, V =

∂

∂x
, V = e–t ∂

∂t
+ e–tu

∂

∂u
()

for α = – and m = . However, it is important that the ambient concentration α should
be in (, ). Thus, the last case α = – has no physical interpretation and we consider it
just from the mathematical viewpoint. Here, we consider two nonzero conjugacy classes
of one-dimensional subalgebras as follows:

L, = 〈V + cV〉, L, = 〈V + cV〉. ()

Below, we list the corresponding similarity variables and similarity solutions as well as the
reduced ODEs obtained from the generators of optimal system.

Reduction  Using the subalgebra L,, we obtain the similarity variables and similarity
solutions u(t, x) = F(ξ ), ξ = x – ct, and the reduced ODE is

((
F(ξ )mF ′(ξ )

))′ + cF ′(ξ ) + F(ξ )
(
 – F(ξ )

)(
F(ξ ) – α

)
= , ()

where c ∈ R is the wave speed. Solutions of equation () are indeed traveling wave so-
lutions of (), which previously were discussed in the literature [–]. The solutions of
equation () are indeed traveling wave solutions of () which previously were discussed
in the literature [–]. Now, if we solve () by GPS, then the obtained results are indeed
the solutions of () achieved by LSGPS. The natural conditions

lim
ξ→–∞ F(ξ ) = A, lim

ξ→∞ F(ξ ) = B, ()

where A, B ∈ {, ,α} are taken into account for dealing with (). Also, the initial condi-
tions F() = . and F ′() = λ (λ ∈ R and specially λ = ), which are determined by the
application at hand are applied in our computations. As can be seen from the figures of
this paper, it tries to achieve the equilibrium limξ→+∞ F(ξ ) = α. To illustrate the behavior
of traveling wave solutions with different parameters m, c and α, we provide several nu-
merical plots obtained from GPS. Figures  and  show the solutions with varying initial
conditions F ′() with respect to α = . and α = ., respectively. Because of the singu-
larity for large values of ‖F ′()‖, small values are singled out. Equilibriums F(ξ ) → . as
ξ → +∞ in Figure  and F(ξ ) → . as ξ → +∞ in Figure  are depicted. Now, in Fig-
ures -, we take the pragmatic convection F ′() = .

Traveling waves, by varying wave speeds c, are demonstrated in Figure . A high smooth-
ness of the solutions by varying c from . to  is reported. Similar to the two previous
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Figure 1 Plot of F(ξ ) when m = 1, c = 0.3, α = 0.6, F(0) = 0.5 for varying F′(0).

Figure 2 Plot of F(ξ ) when m = 1, c = 0.3, α = 0.2, F(0) = 0.5 for varying F′(0).

Figure 3 Plots of F(ξ ) when m = 1, α = 0.6, F(0) = 0.5, F′(0) = 0 for varying c.
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Figure 4 Plots of F(ξ ) when m = 1, α = 0.2, F(0) = 0.5, F′(0) = 0 for varying c.

Figure 5 Plots of F(ξ ) when c = 0.3, α = 0.6, F(0) = 0.5, F′(0) = 0 for varying m.

Figure 6 Plots of F(ξ ) when c = 0.3, α = 0.2, F(0) = 0.5, F′(0) = 0 for varying m.
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Figure 7 Plots of F(ξ ) when m = 1, F(0) = 0.5, F′(0) = 0, c = 0.3 for varying α.

Figure 8 Plots of F(ξ ) when m = 1, F(0) = 0.5, F′(0) = 0, c = 1 for varying α.

Figure 9 Plots of F(ξ ) when m = 2, F(0) = 0.5, F′(0) = 0, c = 0.3 for varying α.
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Figure 10 Plots of F(ξ ) when m = 2, F(0) = 0.5, F′(0) = 0, c = 1 for varying α.

Figure 11 Plots of F(ξ ) when m = 3, F(0) = 0.5, F′(0) = 0, c = 0.3 for varying α.

Figure 12 Plots of F(ξ ) when m = 3, F(0) = 0.5, F′(0) = 0, c = 1 for varying α.
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figures, by increasing the c, a smooth tending of the solutions to α = . is reported in
Figure .

As mentioned in [], the power m appearing in the nonlinear density dependence serves
to smooth out the solutions of the density-dependent diffusion Nagumo equation. Indeed,
the oscillations diminish while m is increasing, and Figures  and  exhibit that there are
more oscillations for the standard Nagumo equation (m = ) than m >  and monotone
solutions for m ≥  are reported.

Now, we present the obtained traveling wave solutions for variable density parameter
α ∈ (, ), with respect to c =  and c = .. Comparison of Figures , , and  with their
related Figures , , and  shows that the solutions with respect to c =  tend directly to
α in a more streamlined manner than the solutions with respect to c = ..

Reduction  Using the subalgebra L,, we obtain the similarity variables and similarity
solutions u(t, x) = et�(ξ )√

et+c
, ξ = x, and the reduced ODE is

�(ξ )� ′′(ξ ) + �(ξ )
(
� ′(ξ )

) + �(ξ ) – �(ξ ) = . ()

Now, we utilize the reduction method [, –], instead of using the usual method based
on invariants. Obtaining the first integrals of ODEs is often sophisticated work, however,
using the mentioned reduction method, the first integral of the reduced ODE () is easily
obtained. Equation () can be written as an autonomous system of two ODEs of first
order, i.e.:

{
w′

 = w,
w′

 = w
 ––w


w

,
()

using the obvious change of dependent variables

w(ξ ) = �(ξ ), w(ξ ) = � ′(ξ ). ()

It is possible to choose w as a new independent variable, because () is autonomous.
In this way, a first-order nonautonomous ODE can be extracted from system () as fol-
lows:

dw

dw
=

w
 –  – w


ww

, ()

of which its integration leads to

w =

√
a + w

 – w


w


, ()

with a an arbitrary constant. Clearly, corresponding first integral of equation ()
is

(
� ′(ξ )

)
�(ξ ) –



�(ξ ) +



�(ξ ) = a. ()
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Figure 13 Plot of obtained solution of (1) from Reduction 2 with respect to m = 2 and α = –1.

Lastly we replace () from () into the first equation of system () from which one
concludes to a first-order separable as follows:

w′
 =

√
a + w

 – w


w


. ()

The exact solution of equation () can be implicitly expressed by

∫ w
√

a + w
 – w



dw = ξ + a, ()

and replacing w with �(ξ ) yields the exact solution of (). Assuming a =  yields the
following explicit solutions:

�±(ξ ) =
√




(
 + e± (ξ+a)√



e± ξ+a√


)
, ()

and therefore

u±(t, x) =
√

et


√

et + c

(
 + e± (x+a)√



e± x+a√


)
. ()

The solution of u+(t, x) in three dimensions is plotted in Figure  with respect to c = a = .

4 Final remarks
In this paper, we considered the density-dependent diffusion Nagumo equation within
a new geometric method, LSGPS. Three dimensional Lie algebra and optimal system of
Lie algebras related to equation () were obtained. After the reduction of this equation by
utilizing the Lie symmetries, the traveling wave solutions are first discussed in Reduction .
Another reduction of the Nagumo equation, by using Lie symmetries and Nucci’s method
(Reduction ), leads to a first integral and two new analytical solutions of equation ().
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