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Abstract: For a generalized KdV-Burgers-Kuramoto equa-
tion we have studied conservation laws by using the mul-
tiplier method, and investigated its �rst-level and second-
level potential systems. Furthermore, the Lie point symme-
tries of the equation and the Lie point symmetries associ-
atedwith the conserved vectors are determined.We obtain
travellingwave reductions depending on the form of an ar-
bitrary function. We present some explicit solutions: soli-
ton solutions, kinks and antikinks.
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1 Introduction
This paper considers the generalized KdV-Burgers-
Kuramoto equation

ut + f (u)x = µuxx + δuxxx − λuxxxx = 0, (1)

where µ > 0 represents a dissipative e�ect, δ ∈ R is a stro-
boscopic coe�cient, λ ≥ 0 represents an unstable func-
tion and f is a nonlinear function. It is a dissipative, stro-
boscopic and unstable system in physics [2], which gener-
alizes the KdV-Burgers-Kuramoto equation

ut + uux + αuxx + βuxxx + γuxxxx = 0 (2)

where α, β and γ are constants.
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Both equations have been in focus of many re-
searchers due to their applications to many phenomena
that are simultaneously involved in nonlinearity, dissipa-
tion, dispersion and instability.

For example, some papers have analyzed the rarefac-
tion waves of this equation in order to �nd a relation be-
tween its stability and its strength and initial perturbation.
In [1] is shown that rarefaction waves are nonlinearly sta-
ble, provided that the initial perturbation is large. How-
ever, in [2] is shown that nonlinearly stable rarefaction
waves are associated with su�ciently small strength and
initial perturbation.

On the other hand, in [3] exact solutions are obtained
by using trigonometric function expansion method, exact
travelling wave solutions have been obtained also in [4] by
a generalized F-expansion method and, moreover, in [5]
the �rst available numerical solutions are obtained by an
homotopy analysis method.

In addition lots of works even have studied the frac-
tional KdV-Burgers-Kuramoto equation. For instance, in
[6] its solution is obtained by using the He’s variational it-
eration method and Adomian’s decomposition method.

Conservation laws have important uses in the study of
PDEs inwhich certain physical properties do not change in
the course of time, especially for determining conserved
quantities and constants of motion. They are also useful
for detecting integrability and linearizations, �nding po-
tentials and nonlocally-related systems, as well as check-
ing the accuracy of numerical solution methods.

Moreover, as part of this analysis of (1), we have
studied the conservation laws of the equation. Anco and
Bluman proposed the multiplier method [7–9] that gave a
general treatment of a direct conservation law for partial
di�erential equations and we have applied it. Few exam-
ples of the multiplier method can be found in [10–13].

We have applied the classical Lie method to (1). Lie
classical method [14] is a successful method with a wider
applicability in physics due to its important applications
in the context of di�erential equations [15]. There aremany
researchers that applied this method to partial di�erential
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equations to understand and study in depth several phe-
nomena.

As example, Ndlovu and Moitsheki studied the Lie
point symmetries admitted by the transient heat conduc-
tion problem [16], Gandarias and Khalique worked with
symmetries in a generalization of the damped externally
excited KdV equation [17], De la Rosa and Bruzón ob-
tained classical and nonclassical symmetries of a general-
ized Gardner equation [18], Garrido and Bruzón made an
analysis of the Generalized Drinfeld-Sokolov System [19],
and so on.

As Alex J. Dragt said “One of the key discoveries of
modern physics is that Lie groups are important for the de-
scription of Nature” [20]. In fact, Lie method may be used
to reduce the number of independent variables of the par-
tial di�erential equations (PDEs); in particular we might
reduce the PDEs to ordinary di�erential equations (ODEs).
The ODEs may also have symmetries that allow us to re-
duce the order of the equation, andwe can integrate to �nd
exact solutions. A great progress has being made in the
development of methods and their applications for �nd-
ing solitary traveling-wave solutions of nonlinear evolu-
tion equations. Many solutions of nonlinear partial di�er-
ential equations have been found by one or other of these
methods [21–24].

Our present work has the following aims. We show
that the generalized KdV-Burgers-Kuramoto equation (1)
admits only trivial local conservation law. We use the con-
servation law to obtain the associated potential systems.
We investigate classical and potential symmetries. From
reduced equation, we obtain exact solutions.

2 Multiplier method. Conservation
laws

A local conservation law of equation (1) is a continuity
equation

DtC1 + DxC2 = 0 (3)

that holds for the whole set of solutions u(x, t), where the
conserved density C1 and the spatial �ux C2 are functions
of x, t, u, and derivatives of u. Here Dt , Dx denote total
derivatives with respect to t, x. The pair of expressions
(C1, C2) is called a conserved current.

Themultipliersmethod provides away to �nd all local
conservation laws admitted by any given evolution equa-
tion [14, 25]. Since equation (1) is a dispersive nonlinear
evolution equation, its conservation laws of physical im-

portance come from low-order multipliers [26, 27]. Conse-
quently, the results inRef.[8, 9, 14] show that all non-trivial
conservation laws arise from multipliers.

Now, we expressed every non-trivial local conserva-
tion law (3) as its characteristic form

Dt C̄1 + Dx C̄2 =
(
−ut − f (u)x + µuxx + δuxxx

)
Λ (4)

where Λ(x, t, u, ut , ux , uxx , uxxx) is the called multiplier
and

(
C̄1, C̄2) is equivalent to

(
C1, C2) because they just

di�er by a trivial conserved current.
Moreover, the function Λ(x, t, u, ut , ux , uxx , uxxx) is a

multiplier if it veri�es that(
−ut − f (u)x + µuxx + δuxxx

)
Λ is a divergence expression

for all function u(x, t), not only solutions of equation (1).
Divergence condition can be characterized as follows

δ
δu

( (
−ut − f (u)x + µuxx + δuxxx

)
Λ
)

= 0. (5)

So, splitting equation (5) with respect to the variables
u, ut , ux , uxx , uxxx we obtained a linear determining sys-
tem for Λ(x, t, u, ut , ux , uxx , uxxx), which can be solved by
the same algorithmic method used to solve the determin-
ing equation for in�nitesimal symmetries.

In this case, for equation (1) the multiplier obtained
is Λ = 1. And �nally, given the multiplier Λ, we have in-
tegrated the characteristic (4) and we have obtained the
corresponding conserved density and �ux

C1 = u,
C2 = λuxxx − δuxx − µux + f (u) . (6)

3 Lie symmetries
The Lie symmetry analysis is performed for the equation
(1) by applying its classical method. It is considered a one-
parameter Lie group of in�nitesimal transformations in
(x, t, u) given by

x* = x + ϵξ (x, t, u) + O(ϵ2),
t* = t + ϵτ(x, t, u) + O(ϵ2), (7)
u* = u + ϵη(x, t, u) + O(ϵ2),

where ϵ is the group parameter. This transformation re-
quires leaving invariant the set of solutions of the equa-
tion (1). Applying this condition determines an overdeter-
mined, linear system of equations for the in�nitesimals
ξ (x, t, u), τ(x, t, u) and η(x, t, u). The associated Lie alge-
bra of in�nitesimal symmetries is the set of vector �elds of
the form

V = ξ (x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u . (8)
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Essentially, the functions u = u(x, t), which are invariant
under the in�nitesimal transformations (8), are solutions
of the following equation named as the invariant surface
condition:

η(x, t, u) − ξ (x, t, u)ux − τ(x, t, u)ut = 0.

The set of solutions of the equation (1) is invariant under
the transformations (7) provided that

pr(4)V(∆) = 0 when ∆ = 0,

where pr(4)V is the fourth prolongation of the vector �eld
(8).

This yields to the following overdetermined linear sys-
tem:

τu = 0,
τx = 0,
ξu = 0,
ηuu = 0,

τt − 4ξx = 0,
4cηux − 6cξxx − bξx = 0,
6cηuxx − 3bηux − 4cξxxx

+3bξxx − 2aξx = 0,
cηxxxx − bηxxx − aηxx + fηx + ηt = 0,

4cηuxxx − 3bηuxx − 2aηux + fuη + 3ξx f
−cξxxxx + bξxxx + aξxx − ξt .

(9)

The solutions of the system (9) depend on the constants
a, b, c and on the function f = f (u). By solving the sys-
tem (9), four di�erent cases have been obtained. Hence,
the classi�cation of the Lie symmetries is the following:

– Case 1. For f (u) an arbitrary function and a, b, c ar-
bitrary constants, with c = ̸ 0, the in�nitesimal gen-
erators are

V1 = ∂x
V2 = ∂t

– Case 2. If f = k (Ln (u) − 1) u + m u + n and a, b, c
are arbitrary constants, with c ≠ 0, the in�nitesimal
generators are V1, V2 and

V2
3 = t∂x +

(
1
k

)
u ∂u

4 Classical potential symmetries
In [28, 29] Bluman et al. introduced amethod to �nd a new
class of symmetries for a PDE. They are called potential
symmetries and can be obtained for any di�erential equa-
tion which can be written as a conservation law.

It means that given scalar PDE of second order

F(x, t, u, ux , ut , uxx , uxt , utt) = 0, (10)

where the subscripts denote the partial derivatives of u, it
can be written as a conservation law

D
Dt F1(x, t, u, ux , ut) −

D
Dx F2(x, t, u, ux , ut) = 0, (11)

for some functions F1 and F2 of the indicated arguments
and where D

Dx and D
Dt are the total derivative operators de-

�ned by

D
Dx = ∂

∂x + ux
∂
∂u + uxx

∂
∂ux

+ uxt
∂
∂ut

+ . . . ,

D
Dt = ∂

∂t + ut
∂
∂u + uxt

∂
∂ux

+ utt
∂
∂ut

+ . . . .

Then if we introduce a potential variable v = v(x, t)
for the PDE written in the conserved form (6), we obtain a
potential system (system approach) that we call S vx = F1(x, t, u, ux , ut),

vt = F2(x, t, u, ux , ut).
(12)

Furthermore, for many physical equations one can
eliminate u from the potential system (12) and forman aux-
iliary integrated or potential equation (integrated equa-
tion approach)

G(x, t, v, vx , vt , vxx , vxt , vtt) = 0, (13)

for some function G of the indicated arguments.
On the other hand, any Lie group of transformations

for (12)

XS = ξ (x, t, u, v)∂x + τ(x, t, u, v)∂t + ψ(x, t, u, v)∂u
+φ(x, t, u, v)∂v .

induces a nonlocal symmetry, potential symmetry, for the
given PDE (10) when at least one of the in�nitesimals
which correspond to the variables x and u depends explic-
itly on the potential v. So, we obtain potential symmetries
if and only if the following condition is satis�ed

ξ2
v + τ2

v + ϕ2
v ≠ 0. (14)

In order to �nd potential symmetries of (1) and from
the conservation law (11), we consider the equation in con-
served formand theassociatedpotential system is givenby vx = u,

vt = µux + δuxx − λuxxx − f (u).
(15)

In the present work, we present the point symmetries
of (15) and we study which symmetries induce potential
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symmetries of equation (1). These symmetries are such
that the condition (14) is satis�ed. If the above relation
does not hold, then the point symmetries of (15) project
into point symmetries of (1).

A Lie point symmetry admitted by S(x, t, u, v) is a sym-
metry characterized by an in�nitesimal transformation of
the form

x* = x + ϵξ (x, t, u, v) + O(ϵ2)

t* = t + ϵτ(x, t, u, v) + O(ϵ2)

u* = u + ϵη(x, t, u, v) + O(ϵ2)

v* = v + ϵφ(x, t, u, v) + O(ϵ2)

(16)

admitted by system (15). System (15) admits Lie symme-
tries if and only if

pr(1)X(vx − u) = 0,

pr(3)X(vt − µux − δuxx + λuxxx + f (u)) = 0,

where pr(3)V is the third extended generator of

XS = ξ (x, t, u, v)∂x + τ(x, t, u, v)∂t + ψ(x, t, u, v)∂u
+φ(x, t, u, v)∂v .

In other words, we require that the in�nitesimal gen-
erator leaves invariant the set of solutions of (15). This
yields to an overdetermined system of thirteen equations
for the in�nitesimals ξ (x, t, u, v), τ(x, t, u, v), ψ(x, t, u, v)
and φ(x, t, u, v).
From this system we have obtained that

ξ = ξ (x, t), τ = τ(t), ψ = α(x, t, v)u + β(x, t, v),
φ = φ(x, t, v)

where ξ , τ, α, β andφmust satisfy the following equations

aαv = 0,
φv − α − τt + 3ξx = 0,

4aαvu + aβv + 3aαx − 3aξxx − bξx = 0,
φvu − αu − ξxu + φx − β = 0,

6aαvvu2 + 3aβvvu + 9aαvxu − 3bαvu
+3aβvx − bβv + 3aαxx − 2bαx

−aξxxx + bξxx − 2cξx = 0,
aαvvvu4 + aβvvvu3 + 3aαvvxu3

−bαvvu3 + 3aβvvxu2 − bβvvu2 + 3aαvxxu2

−2bαvxu2 − cαvu2 + 3aβvxxu − 2bβvxu
−cβvu + aαxxxu − bαxxu − cαxu
+fuαu − ξtu + φt + aβxxx − bβxx

−cβx + fuβ − fα + 3ξx f = 0

(17)

From system (17) we have considered the following
cases:

– The parameters a, b, c are arbitrary constants, with
c ≠ 0, and f is an arbitrary function. From system
(17) we have obtained the in�nitesimals:

ξ = k1, τ = k2, φ = k3, ψ = 0.

However, it is not a potential symmetry of the equa-
tion (1) because the condition (14) is not satis�ed.

– If f = k (Ln (u) − 1) u + m u + n, from system (17) we
have obtained the in�nitesimals:

ξ = k1t + k2, τ = k3, ψ = −k1 u,

φ = k1 v + t ((1 − k) k1 u + k1 n) + r.

Andagain, it is not a potential symmetry of the equa-
tion (1) because the condition (14) is not satis�ed.

Consequently,wehave concluded that the equation (1)
does not admit potential symmetries.

5 Similarity Reductions
Having determined the in�nitesimals, the symmetry vari-
ables are found by solving the characteristic equation
which is equivalent to solving the invariant surface con-
dition

η(x, t, u) − ξ (x, t, u)ux − τ(x, t, u)ut = 0. (18)

Case 1. For a, b, c and f (u) arbitrary, the only symmetries
admitted by (1) are the group of space and time transla-
tions, which are de�ned by the in�nitesimal generators

v1 = ∂x , v2 = ∂t .

Substituting the in�nitesimals in the invariant surface
condition (18) we obtain the similarity variable and the
similarity solution

z = µx − ωt,
u(x, t) = h(z).

(19)

Substituting (22) into (1) we obtain

λ µ4 h′′′′ − δ µ3 h′′′ − µ3 h′′ + µ fh h′ − ω h′ = 0. (20)

Integrating once with respect to z we get

λ µ4 h′′′ − δ µ3 h′′ − µ3 h′ + µ f − ω h + A = 0, (21)

where A is an integrating constant.
Case 2. If f = k (Ln (u) − 1) u +m u + n and a, b, c are arbi-
trary constants, with c = ̸ 0.We provide next the generators
of the nontrivial one-dimensional optimal system which
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are V1, V2 +V3. Substituting the in�nitesimals of the sub-
algebra V2 +V3 into the invariant surface condition (18) we
obtain the similarity variable and the similarity solution

z = x − t2
2 ,

u(x, t) = h(z) exp( tk ).
(22)

Substituting (22) into (1) we obtain

λ h′′′′ − δ h′′′ − µ h′′ + m h′ + k log (h) h′ + h
k = 0. (23)

6 Travelling wave solutions
Let us assume that equation (21) has solution of the form

h = aHb(z), (24)

where a, b are parameters and H(z) can be: a solution of
Jacobi equation

(H′)2 = r + pH2 + qH4, (25)

with r, p and q constants; an exponential function or a
polynomial function.

If H is solution of equation (25) we can distinguish
three subcases: (i) H is the Jacobi elliptic sine func-
tion, sn(z,m), (ii) H is the Jacobi elliptic cosine function,
cn(z,m), (iii) H is the Jacobi elliptic function of the third
kind dn(z,m). We substitute the solution H into ODE y we
determine f (h). In the following we give four examples of
equations, which are solutions with physical interest:

• For

f (h) = √
1−h

[
60λh2 − 12δ

√
1 − hh − 60λh

+3h + 4δ
√

1 − h +
√

1 − h + 8λ − 2
]

where h(z) = cn2(z, 1) is a solution of (21) and taking into
account that cn(z, 1) = sech(z), we obtain that for ω = µ =
1

u(x, t) = sech2(x − t) (26)

is a solution of equation (1) with f (u) =
60λu2−12δ

√
1−uu−60λu+3u+4δ

√
1−u+

√
1−u+8λ−2√

1−u . In Figure 1, we
plot a solution (26), which describes a soliton.

• For

f (h) = 1
288

√
5
√

1−
√
hh

3
4

[
800

√
3λh + 245 3

2 h

−965 3
2 δ
√

1 −
√
hh

3
4 + 288

√
5
√

1 −
√
hh

3
4

−2503 3
2 λ

√
h − 185 3

2
√
h + 365 3

2 δ
√

1 −
√
hh

1
4

+253 3
2 λ
]
,
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0

5

-1

0

1

2

0.0
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1.0

Figure 1: Solution (26)
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Figure 2: Solution (27)

where h(z) = cn4(z, 0) is a solution of (21), and taking into
account that cn(z, 0) = cos(z), we obtain that for µ = ω = k

2

and k =
√

5
12

u(x, t) =
{

cos4
[
k
2 (x − t)

]
|x − t| ≤ π

k ,
0 |x − t| > π

k

(27)

is a solution of Eq. (1) with

f (u) = 1
288

√
5
√

1−
√
uu

3
4

[
800

√
3λu + 245 3

2 u

−965 3
2 δ
√

1 −
√
uu

3
4 + 288

√
5
√

1 −
√
uu

3
4

−2503 3
2 λ

√
u − 185 3

2
√
u + 365 3

2 δ
√

1 −
√
uu

1
4

+253 3
2 λ
]
.

In Figure 2, we plot a solution (27), which is a compacton
solution with a single peak.

• For

F(h) = 1
2
√

1−h
√
h+1

√
1−h2

[
12δ

√
1 − hh2√h + 1

√
1 − h2

−4δ
√

1 − h
√
h + 1

√
1 − h2

+
√

1 − h
√
h + 1

√
1 − h2 − 48λh5 + 80λh3 + 4h3

−32λh − 4h] ,

where h(z) = 1
4sn(z, 1) is a solution of (21), and taking into

account that sn(z, 1) = tanh(z), we obtain that for µ = 1
and ω = 1

2

u(x, t) = 1
4 tanh

(
x − t2

)
(28)
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is a solution of Eq. (1) with

f (u) = 1
2
√

1−h
√
h+1

√
1−h2

[
12δ

√
1 − hh2√h + 1

√
1 − h2

−4δ
√

1 − h
√
h + 1

√
1 − h2

+
√

1 − h
√
h + 1

√
1 − h2 − 48λh5 + 80λh3 + 4h3

−32λh − 4h]

In Figure 3, we plot a solution (28), which describes a kink
solution.
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Figure 3: Solution (28)

• For F(h) = Q1
54

√
1−hh3

√
h+1

√
1−h2 with

Q1 =
[

168δ
√

1 − hh5√h + 1
√

1 − h2

−12δ
√

1 − hh3√h + 1
√

1 − h2

+27
√

1 − hh3√h + 1
√

1 − h2

+60δ
√

1 − hh
√
h + 1

√
1 − h2 − 560λh8

+800λh6 + 72h6 − 192λh4 − 36h4

−208λh2 − 36h2 + 160λ
]
,

where h(z) = sn3(z, 1) is a solution of (21), and taking into
account that sn(z, 1) = tanh(z), we obtain that for µ = 1
and λ = 1

2

u(x, t) = tanh3
(
x − t2

)
(29)

is a solution of equation (1) for f (u) = Q2
54

√
1−uu3

√
u+1

√
1−u2

and

Q2 = 168δ
√

1 − uu5√u + 1
√

1 − u2

−12δ
√

1 − uu3√u + 1
√

1 − u2

+27
√

1 − uu3√u + 1
√

1 − u2

+60δ
√

1 − uu
√
u + 1

√
1 − u2 − 560λu8 + 800λu6

+72u6 − 192λu4 − 36u4 − 208λu2 − 36u2 + 160λ.

In Figure 4, we plot a solution (29), which describes an
anti-kink solution.
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Figure 4: Solution (29)

7 Conclusions
By using the multipliers conservation laws method we
exhibited that equation (1) only admits trivial conserva-
tion laws. The method of Lie group analysis is applied to
the investigation of symmetry properties, as well as cor-
responding reduced ordinary di�erential equations. We
have proved that the potential symmetries project into
point symmetries of Eq. (1). We derive for some functions
many exact solutions which are solitons, kinks, anti-kinks
and compactons.
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