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Abstract

The subject of fractional calculus has gained considerable popularity and importance
during the past three decades or so, mainly due to its demonstrated applications in
numerous seemingly diverse and widespread fields of science and engineering. It deals
with derivatives and integrals of arbitrary orders. The fractional derivative has been
occurring in many physical problems, such as frequency-dependent damping behavior of
materials, motion of a large thin plate in a Newtonian fluid, creep and relaxation functions
for viscoelastic materials, the PI*D* controller for the control of dynamical systems etc.
Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry, control
theory, neutron point kinetic model, anomalous diffusion, Brownian motion, signal and
image processing, fluid dynamics and material science are well described by differential
equations of fractional order.

Generally, nonlinear partial differential equations of fractional order are difficult to solve.
So for the last few decades, a great deal of attention has been directed towards the solution
(both exact and numerical) of these problems. The aim of this dissertation is to present an
extensive study of different wavelet methods for obtaining numerical solutions of
mathematical problems occurring in disciplines of science and engineering. This present
work also provides a comprehensive foundation of different wavelet methods comprising
Haar wavelet method, Legendre wavelet method, Legendre multi-wavelet methods,
Chebyshev wavelet method, Hermite wavelet method and Petrov-Galerkin method. The
intension is to examine the accuracy of various wavelet methods and their efficiency for

solving nonlinear fractional differential equations.

With the widespread applications of wavelet methods for solving difficult problems in
diverse fields of science and engineering such as wave propagation, data compression,
image processing, pattern recognition, computer graphics and in medical technology, these
methods have been implemented to develop accurate and fast algorithms for solving
integral, differential and integro-differential equations, especially those whose solutions
are highly localized in position and scale. The main feature of wavelets is its ability to
convert the given differential and integral equations to a system of linear or nonlinear

algebraic equations, which can be solved by numerical methods. Therefore, our main



focus in the present work is to analyze the application of wavelet based transform methods
for solving the problem of fractional order partial differential equations.

The introductory concept of wavelet, wavelet transform and multi-resolution analysis
(MRA) have been discussed in the preliminary chapter. The basic idea of various
analytical and numerical methods viz. Variational Iteration Method (VIM), Homotopy
Perturbation Method (HPM), Homotopy Analysis Method (HAM), First Integral Method
(FIM), Optimal Homotopy Asymptotic Method (OHAM), Haar Wavelet Method,
Legendre Wavelet Method, Chebyshev Wavelet Method and Hermite Wavelet Method
have been presented in chapter 1.

In chapter 2, we have considered both analytical and numerical approach for solving some
particular nonlinear partial differential equations like Burgers’ equation, modified
Burgers’ equation, Huxley equation, Burgers-Huxley equation and modified KdV
equation, which have a wide variety of applications in physical models. Variational
Iteration Method and Haar wavelet Method are applied to obtain the analytical and
numerical approximate solution of Huxley and Burgers-Huxley equations. Comparisons
between analytical solution and numerical solution have been cited in tables and also
graphically. The Haar wavelet method has also been applied to solve Burgers’, modified
Burgers’, and modified KdV equations numerically. The results thus obtained are
compared with exact solutions as well as solutions available in open literature. Error of

collocation method has been presented in this chapter.

Methods like Homotopy Perturbation Method (HPM) and Optimal Homotopy Asymptotic
Method (OHAM) are very powerful and efficient techniques for solving nonlinear PDEs.
Using these methods, many functional equations such as ordinary, partial differential
equations and integral equations have been solved. We have implemented HPM and
OHAM in chapter 3, in order to obtain the analytical approximate solutions of system of
nonlinear partial differential equation viz. the Boussinesqg-Burgers’ equations. Also, the
Haar wavelet method has been applied to obtain the numerical solution of Boussinesg-
Burgers’ equations. Also, the convergence of HPM and OHAM has been discussed in this

chapter.

The mathematical modeling and simulation of systems and processes, based on the
description of their properties in terms of fractional derivatives, naturally leads to

differential equations of fractional order and the necessity to solve such equations. The



mathematical preliminaries of fractional calculus, definitions and theorems have been
presented in chapter 4. Next, in this chapter, the Haar wavelet method has been analyzed
for solving fractional differential equations. The time-fractional Burgers-Fisher,
generalized Fisher type equations, nonlinear time- and space-fractional Fokker-Planck
equations have been solved by using two-dimensional Haar wavelet method. The obtained
results are compared with the Optimal Homotopy Asymptotic Method (OHAM), the exact
solutions and the results available in open literature. Comparison of obtained results with
OHAM, Adomian Decomposition Method (ADM), VIM and Operational Tau Method
(OTM) has been demonstrated in order to justify the accuracy and efficiency of the
proposed schemes. The convergence of two-dimensional Haar wavelet technique has been
provided at the end of this chapter.

In chapter 5, the fractional differential equations such as KdV-Burger-Kuramoto (KBK)
equation, seventh order KdV (sKdV) equation and Kaup-Kupershmidt (KK) equation have
been solved by using two-dimensional Legendre wavelet and Legendre multi-wavelet
methods. The main focus of this chapter is the application of two-dimensional Legendre
wavelet technique for solving nonlinear fractional differential equations like time-
fractional KBK equation, time-fractional sKdV equation in order to demonstrate the
efficiency and accuracy of the proposed wavelet method. Similarly in chapter 6, two-
dimensional Chebyshev wavelet method has been implemented to obtain the numerical
solutions of the time-fractional Sawada-Kotera equation, fractional order Camassa-Holm
equation and Riesz space-fractional sine-Gordon equations. The convergence analysis has

been done for these wavelet methods.

In chapter 7, the solitary wave solution of fractional modified Fornberg-Whitham equation
has been attained by using first integral method and also the approximate solutions
obtained by optimal homotopy asymptotic method (OHAM) are compared with the exact
solutions acquired by first integral method. Also, the Hermite wavelet method has been
implemented to obtain approximate solutions of fractional modified Fornberg-Whitham
equation. The Hermite wavelet method is implemented to system of nonlinear fractional
differential equations viz. the fractional Jaulent-Miodek equations. Convergence of this
wavelet methods has been discussed in this chapter. Chapter 8 emphasizes on the
application of Petrov-Galerkin method for solving the fractional differential equations
such as the fractional KdV-Burgers’ (KdVB) equation and the fractional Sharma-Tasso-

Olver equation with a view to exhibit the capabilities of this method in handling nonlinear



equation. The main objective of this chapter is to establish the efficiency and accuracy of
Petrov-Galerkin method in solving fractional differential equtaions numerically by
implementing a linear hat function as the trial function and a quintic B-spline function as

the test function.

Various wavelet methods have been successfully employed to numerous partial and
fractional differential equations in order to demonstrate the validity and accuracy of these
procedures. Analyzing the numerical results, it can be concluded that the wavelet methods
provide worthy numerical solutions for both classical and fractional order partial
differential equations. Finally, it is worthwhile to mention that the proposed wavelet
methods are promising and powerful methods for solving fractional differential equations
in mathematical physics. This work also aimed at, to make this subject popular and
acceptable to engineering and science community to appreciate the universe of wonderful
mathematics, which is in between classical integer order differentiation and integration,
which till now is not much acknowledged, and is hidden from scientists and engineers.
Therefore, our goal is to encourage the reader to appreciate the beauty as well as the
usefulness of these numerical wavelet based techniques in the study of nonlinear physical

systems.

Keywords: Fractional Differential Equation; Caputo fractional derivative; Grunwald-
Letnikov fractional derivative; Riesz Derivative; Homotopy Perturbation Method;
Homotopy Analysis Method; Variational Iteration Method; Optimal Homotopy
Asymptotic Method; Haar Wavelets; Legendre Wavelet Method; Chebyshev Wavelet
Method; Hermite Wavelet Method; Petrov-Galerkin Method.
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Mathematical Preliminary

1. Introduction

Partial differential equations (PDEs) are of widespread interest because of their connection
with phenomena in the physical world. These are useful tool for describing the natural
phenomena of science and engineering models. For instance, in physics, the heat flow and
the wave propagation phenomena are well described via PDEs. Many engineering
applications are simulated mathematically as partial differential equations with initial and
boundary conditions. The diffusion of neutrons in nuclear reactor dynamics, population
models, the dispersion of a chemically reactive material and many physical phenomena of

fluid dynamics, quantum mechanics, electricity etc. are governed by PDEs.

Partial differential equations are originated from the study of solution of a wide variety of
problems in mechanics. Even though the foundation of nonlinear partial differential
equations is very ancient, they have undergone remarkable new developments during the
last half of the twentieth century. Scientists and methematicians have become actively
involved in the study of countless problems offered by PDEs. The primary reason for this
research was that it plays a vital role in modern mathematical sciences, mainly in applied
physics, mathematical modelling and engineering. With the development of PDEs, several
methods such as the characteristics method, spectral methods and perturbation techniques
have been employed to evaluate the solution of nonlinear problems. But, there is no
general method of finding analytical solutions of nonlinear partial differential equations.
Hence new numerical techniques are required for finding solutions of nonlinear equations.
Therefore, it becomes increasingly important to be familiar with all traditional and
recently developed methods for solving PDEs and the implementations of these methods.
In this context, a relatively new and emerging area in mathematical research with a variety
of applications in engineering disciplines; viz. wavelets theory have attracted the focus of
researchers in the field of science and engineering. Wavelets are very successfully used in
signal analysis for wave form demonstration and segmentations, time frequency analysis,

medical diagnostics, geophysical signal processing, statistical analysis, pattern



recognition, and fast algorithms for easy execution. This work, particularly, deals with the
development of various wavelet methods for the solution of PDEs.

2. Wavelets

The word “wavelet” has been derived from the French word “ondelette”, which means

“small wave”. An oscillatory function y(x) € L(R) with zero mean and compact support

is a wavelet if it has the following desirable characteristics:

i.  Smoothness: w(x) is n times differentiable and their derivatives are continuous.

ii. Localization: y(x) is well localized both in time and frequency domains, i.e. w(x)
and its derivatives must decay rapidly. For frequency localization ‘i’(a)) must
decay sufficiently fast as @ —> oo and that ¥ () becomes flat in the neighborhood
of w=0. The flatness is associated with number of vanishing moments of (x)

ie.,

k

_[x"yx(x)dx =0 or equivalently dd Y(w)=0fork=01...,n

a)k
in the sense that larger the number of vanishing moments more is the flatness when
w is small.

iii. The admissibility condition

suggests that “P(a))( decay at least as |a)|_1 or |x|g_1 for £>0.

Although most of the numerical methods have been successfully applied for many linear
and nonlinear differential equations, they have also some drawbacks in regions where
singularities or sharp transitions occur. In those cases the solutions may be oscillating and
for accurate representation of the results adaptive numerical schemes must be used which
complicates the solution. To overcome the above difficulty wavelet transform methods are

quite useful.

3. Wavelet Transform [1]



Morlet and Grossmann [2, 3] first introduced the concept of wavelets in early 1980s. Since
then, a lot of researchers were involved in development of wavelets. Some notable
contributors include Morlet and Grossmann [3] for formulation of continuous wavelet
transform (CWT), Stromberg [4] for early works on discrete wavelet transform (DWT),
Meyer [5] and Mallat [6] for multi-resolution analysis using wavelet transform, and
Daubechies [7] for proposal of orthogonal compactly supported wavelets. Thereafter, a lot
of work has been done both on development and application of wavelet analysis on a wide
variety of problems like signal and image processing, data condensation and solution of
differential equations.

In 1982, Jean Morlet, a French geophysical engineer, first introduced the concept of
wavelets as a family of functions constructed from dilation and translation of a single

function known as the “mother wavelet” y(t). They are defined by

Wap(t) = iw(%j : a,beR, a=0 (1)

Vi
where a is called a scaling parameter which measures the degree of compression or scale,

and b is a translation or shifting parameter that determines the location of the wavelet. If

|a| <1, the wavelet (1) is the compressed version of the mother wavelet and corresponds

mainly to higher frequencies. On the other hand, when |a| >1, y,,(t) has a larger time

width than w(t) and corresponds to lower frequencies. Thus, wavelets have time-widths
adapted to their frequencies, which is the main reason for the success of the Morlet
wavelets in signal processing and time-frequency signal analysis. It can be noted that the
resolution of wavelets at different scales varies in the time and frequency domains as
governed by the Heisenberg uncertainty principle. At large scale, the solution is coarse in
the time domain and fine in the frequency domain. As the scale a decreases, the resolution

in the time domain becomes finer while that in the frequency domain becomes coarser.

The success of Morlet’s numerical algorithms encouraged Grossmann, a French
theoretical physicist, to make an extensive study of the Morlet wavelet transform which

led to the recognition that wavelets y, (t) correspond to a square integrable

representation of the affine group. Grossmann was concerned with the wavelet transform

of f e L*(R) defined by



7, 1f1@b) = (f.p,, )= ﬁ [t (t)w(%jdt, 2)

where ,,(t) plays the same role as the kernel e'* in the Fourier transform. The
continuous wavelet transform 77, is linear. The inverse wavelet transform can be defined

so that f can be reconstructed by means of the formula

(0= [ [/, 1)@ b, 0@ dayd ®

—00—00

provided C, satisfies the so called admissibility condition, that is,

dw < o, (4)

where W(w) is the Fourier transform of the mother wavelet y(t).

Grossmann’s ingenious work revealed that certain algorithms that decompose a signal on
the whole family of scales, can be utilized as an efficient tool for multiscale analysis. In

practical applications, the continuous wavelet can be computed at discrete grid points. For

this a general wavelet y can be defined by replacing a with a;'(a, #01), b with
nb,ag (b, = 0), where m and n are integers and making

Wina(t) = 35"y (2"t — by ) . (5)

The discrete wavelet transform of f is defined as
f(mn) =7 TF1m,n) = (f.yn0) = [ F 700t (6)
where . (t) is givenineq. (5).

The series

> f(m. (0 ™

m,N=—c
is called the wavelet series of f, and the functions {v, ()} are called the discrete

wavelets or simply wavelets.

In general, the function f belonging to the Hilbert space, L*(R) can be completely
determined by its discrete wavelet transform if the wavelets form a complete system in
L*(R). In other words, if the wavelets form an orthonormal basis of L?(RR), then they are

4



complete and f can be reconstructed from its discrete wavelet transform

{f(m,n)=(f,y,,, )} by means of the formula

f0= Y (F 0 W, ®)

m,N=—o0

provided the wavelets form an orthonormal basis.

Alternatively, the function f can be determined by the formula

F0)= 3 (F W W (0, (©)

m,n=—o

provided the wavelets form a basis and {7, ,(t) } is the dual basis.

For some particular choice of y and a,,b,, the v . constitute an orthonormal basis for

L>(R). If a,=2 and b, =1, then there exists a function y with good time-frequency
localization properties such that

Vaa ) =2""2p(27"t 1) (10)
form an orthonormal basis for L*(*R). These { ¥, (1) } are known as the Littlewood-Paley

wavelets.

Definition of Orthogonal wavelet:

A wavelet e L?(R) is called an orthogonal wavelet, if the family {v..} is an
orthonormal basis of L?(%R); that is,

<l//i,j’l//m,n>:5i,m5j,n' i,j,m,nEZ.

Definition of Semi-orthogonal wavelet [8]:

A wavelet e L*(R) is called an semi-orthogonal wavelet, if the family {w ..} satisfy
the following condition,

<l//i’j,l//m’n>=0, i=m, i, jmnez.
Obviously, every semi-orthogonal wavelets generates an orthogonal decomposition of

L?(R) and every orthonormal wavelet is also an semi-orthogonal wavelet.

Hence the integral wavelet transform (IWT) is defined to be the convolution with respect

to the dilation of the reflection of some function, called a “basic wavelet”, while the

5



wavelet series (WS) is expressed in terms of a single function, called a “wavelet” by
means of two very simple operations: binary dilations and integral translations. In wavelet
analysis, WS and IWT are intimately related. The IWT of a function on the real line
evaluated at certain points in the time-scale domain gives the coefficients for its wavelet
series representation. Wavelet techniques enable us to divide a complicated function into
several simpler ones and study them separately. This property, along with fast wavelet
algorithm makes these techniques very attractive for analysis and synthesis. Unlike
Fourier-based analyses that use global (nonlocal) sine and cosine functions as bases,
wavelet analysis uses bases that are localized in time and frequency to more effectively
represent nonstationary signals. As a result, a wavelet representation is much more
compact and easier for implementation. Using the powerful multiresolution analysis, one
can represent a function by a finite sum of components at different resolutions so that each
component can be adaptively processed based on the objectives of the application. This
capability of representing functions compactly and in several levels of resolutions is the

major strength of the wavelet analysis.

4. Multiresolution analysis (MRA) [8]

In 1989, Stephane Mallat and Yves Meyer introduced the idea of multiresolution
analysis (MRA). The fundamental idea of MRA is to represent a function as a limit of
successive approximations, each of which is a “smoother” version of the original function.
The successive approximations corresponds to different resolutions, which leads to the
name multiresolution analysis as a formal approach to construct orthogonal wavelet bases
utilising a definite set of rules. It also provides the existence of so-called scaling functions
and scaling filters which are then used for construction of wavelets and fast numerical
algorithms. In applications, it is an effective mathematical framework for hierarchical
decomposition of a signal or an image into componenets of different scales represented by

a sequence of function spaces on R.

Any wavelet, orthogonal or semi-orthogonal, generates a direct sum decomposition of

L*(R) . For each j ez, let us consider the closed subspaces

V,=..0W_,®W,,, jez,



of L?(R). A set of subspaces {,|  is said to be MRA of L*(%) if it possess the

jez
following properties:

1. V,cV,, Viez,

2. | Jv; isdensein L*(R),

jez

3.V, ={0},
jez
4. V., =V, @W,,
5. f(f)eV, < f(2)eV,,, Vjez.

Properties (2)-(5) state that {\/J} is a nested sequence of subspaces that effectively

jez

covers L (‘R) That is, every square integrable function can be approximated as closely as

desired by a function that belongs to at least one of the subspaces V;. A function

@ € L*(R) is called a scaling function if it generates the nested sequence of subspaces \4

and satisfies the dilation equation, namely

o(t) =D pplat—k), (11)

with p, €I and a being any rational number.

For each scale J, since V; cV,,,, there exists a unique orthogonal complementary subspace

jH
W; of V, in V,,,. This subspace W, is called wavelet subspace and is generated by
Wi =w(2't—k), where y e L? is called the wavelet. From the above discussion, these
results follow easily

o V,NV, =V, ii>i,

e W, ﬂWj2 =0, j, # J,,

e V,NW, =0, j<],.
In recent years, there have been many developments and new applications of wavelet
analysis for describing complex algebraic functions and analyzing empirical continuous
data obtained from many kinds of signals at different scales of resolurions. The wavelet

based approximations of ordinary and partial differential equations have been attracting

the attention, since the contribution of orthonormal bases of compactly supported wavelet



by Daubechies and multiresolution analysis based Fast Wavelet transform algorithm by
Beylkin [9] gained momentum to make wavelet approximations attractive.

In order to solve partial differential equations by numerical methods, the unknown
solution can be represented by wavelets of different resolutions, resulting in a multigrid
representation. The dense matrix resulting from an integral operator can be sparsified
using wavelet based thresholding techniques to attain an arbitrary degree of solution
accuracy. The main feature of wavelets is its ability to convert the given differential and
integral equations to a system of linear or nonlinear algebraic equations that can be solved
by numerical methods. The goal of this chapter is to convey a general idea about wavelets.



CHAPTER 1

1 Numerous Analytical and Numerical
Methods

1.1 Introduction

The purpose of this chapter is to deliver a brief description of various analytical and
numerical methods viz. Variational Iteration Method (VIM), First Integral Method (FIM),
Homotopy Perturbation Method (HPM), Homotopy Analysis Method (HAM), Optimal
Homotopy Asymptotic Method (OHAM), Haar Wavelet Method, Legendre Wavelet
Method (LWM), Chebyshev Wavelet Method (CWM), Hermite Wavelet Method (HWM)

and Petrov-Galerkin method etc.

The entire chapter can be divided into two parts. In the first part, the basic ideas of some
well-known analytical techniques such as Variational Iteration Method (VIM), First
Integral Method (FIM), Homotopy Perturbation Method (HPM), Homotopy Analysis
Method (HAM), and Optimal Homotopy Asymptotic Method (OHAM) have been
discussed, whereas the second part is devoted to study the elemental concept of various
methods based on wavelet functions. The applicability of these proposed methods have
been examined for solving nonlinear partial differential equations (PDEs) and fractional
partial differential equations (FPDES). Our goal is to encourage the reader to appreciate
the beauty as well as the effectiveness of these analytical and numerical techniques in the

study of nonlinear physical phenomena.

Part |

1.2 Variational Iteration Method (VIM)

The concept of variational iteration method (VIM) was first developed by Ji-Huan He in
the year 1997 [10]. The method has been favorably applied to various kinds of nonlinear

problems by many researchers in a variety of scientific fields. The key advantage of the

9



method is its flexibility and potential to solve nonlinear equations accurately and
conveniently. The method gives the solution in the form of rapidly convergent successive
approximations that may give the exact solution if such a solution exists. The method has
been proved by many authors to be reliable and efficient for a variety of scientific
applications, linear and nonlinear equations as well. To illustrate the elemental concept of
variation iteration method [11-13], we consider the general differential equation as follows

Lu+ Nu = g(x,t) (1.1)
where L is a linear operator, N is a nonlinear operator and g(x,t) is a known analytical

function. According to the variational iteration method, a correction functional can be

constructed as follows

Upa (X%, 1) = U, (X, 1) +j-/1(LUn(X, &)+ N, (x,§) - 9(x,))dS, n=0 (1.2)

where A is a general Lagrange multiplier which can be identified optimally by the

variational theory, the subscript n denotes the n™ order approximation and u, is regarded
as a restricted variation, i.e., 6U, =0. The Lagrange multiplier 4 can be determined from

the stationary condition of the correction functional ou,,; =0.

The main advantages of this method are as follows:

I. The correction functions can be constructed easily by the general Lagrange
multipliers which can be optimally determined by the variational theory. The
application of restricted variations in correction functional makes it much
easier to determine the multiplier.

ii. The initial approximation can be freely selected with possible unknown
constants which can be identified by various methods.

iii. The approximations acquired with the aid of this method are valid not only for

small parameter, but also for very large parameter.

Being different from the other analytical methods, such as perturbation methods, this
method does not depend on small or large parameters, it could possibly in finding wide
application in nonlinear problems without linearization, discretization or small

perturbations.

10



1.3 First Integral Method

The first integral method is one of the powerful mathematical techniques for finding exact
solutions of partial as well as fractional differential equations. This method is based on the
ring theory of commutative algebra. It was first proposed by Feng [14] and was further
developed by the same author in [15, 16]. Many authors have used first integral method
effectively to establish the exact solutions of various nonlinear partial differential
equations (PDEs) and FPDEs arising in mathematical physics [17-19]. In order to apply
the first integral method over FPDEs, the fractional differential equations may be
transformed into classical ordinary differential equations through fractional complex
transform with the help of local fractional derivative. The section below demonstrates the
fundamental concept of first integral method via algorithm.

1.3.1 Algorithm of First Integral Method

In this section, the fundamental concept of first integral method has been established. The

main steps of this proposed method are described as follows:

Step 1: Consider the following general nonlinear fractional order partial differential

equation

F(u,u,, DfU,U, DUy Usyyr) =0, O0<x <1 (1.3)

XXX1*
where u =u(x,t) is an unknown function, D{u is local fractional derivative of u, F is a

polynomial in u and its numerous partial derivatives in which the highest order derivatives
and nonlinear terms are involved.
Step 2: Using the fractional complex transform [20, 21]:

At
IN'a+1)

u(x,t) =¥ (&), &=kx- (1.4)

where k and A are constants, the FPDE (1.3) is transformed to a nonlinear ordinary

differential equation (ODE) for u(x,t) =W¥/(&) of the following form
F(WKY;, AV, K2, K KO ) =0, (1.5)
Step 3: Suppose eq. (1.5) has a solution of the form

¥(&) = X(S) (1.6)
and introducing a new variable Y (&) =¥ (), leads to a system of ODEs of the form

11



IXE) _yzy, Y yixe)ve) (L.7)

dg dg

In general, it is quite difficult to solve a two-dimensional autonomous planar system of
ODEs, such as eq. (1.7).

Step 4: Utilizing the qualitative notion of differential equations [22], if we are able to
evaluate the integrals to eq. (1.7) under the same conditions, then the general solutions to
eq. (1.7) may also be derived directly. With the aid of the division theorem for two
variables in the complex domain € which is based on the Hilbert-Nullstellensatz theorem
[23], one can obtain the first integral to eq. (1.7). This first integral can reduce eq. (1.5) to
a first order integrable ordinary differential equation. Then by solving this equation
directly, the exact solution to eg. (1.3) is obtained.

Theorem 1.1: (Division theorem)
Let Q(x,y) and R(x,y)are polynomials in € [x, y] and Q(x,y) is irreducible in
C [x, y]. If R(x,y) vanishes at all zero points of Q(x, y), then there exists a polynomial

H(x,y) in C [x,y] such that
R(x,y) =Q(x, Y)H(x,y) (1.8)

The division theorem follows immediately from the Hilbert-Nullstellensatz theorem from
the ring theory of commutative algebra [23, 24]. The elementary idea of this procedure is
to construct a first integral with polynomial coefficients of an explicit form to an

equivalent autonomous planar system by utilizing the division theorem.

1.4 Homotopy Perturbation Method (HPM)

In the last three decades with the rapid development of nonlinear sciences, there has
appeared increasing interest of scientists and engineers in the analytical techniques for
nonlinear problems. Various perturbation methods have been widely applied to solve
nonlinear problems in science and engineering. But, most of the perturbation techniques
require the existence of a small parameter in the equation. An unsuitable choice of such
parameter would lead to very bad results. The solutions obtained through perturbation
methods can be valid only when a small value of the parameter is used. Hence, it is

necessary to check validity of the approximations through numerical processes.

12



In contrast to the traditional perturbation methods, the homotopy perturbation method
(HPM) technique is independent of small or large physical parameters, and provides us a

simple way to ensure the convergence of solution.

To illustrate the basic ideas of homotopy perturbation method (HPM) [25] we consider the

following nonlinear differential equation

o/ (u) =f(r)=0, reQ (1.9)
with the boundary conditions
B(u,a—ujzo, rel’ (1.10)
on

where .~/ is a general differential operator, B is a boundary operator, f(r) is a known

analytic function, I is the boundary of the domain Q.

The operator . </ can be divided into two parts linear ~~ and nonlinear . / ". Therefore
eq. (1.9) can be rewritten as follows

7 W+ / (u)—f(r)=0 (1.11)
We construct a homotopy v(r, p) of eq. (1.9) as follows v(r,p):2x[01] — R which
satisfies [26]

HW, P =-pL 7 W)= @)+ ol () -F(O1= 0,  (1.12)
or HEv, p)= 7 (V)= 7 (U)+p~ (U)+ pl. 1 "(v) = F(r)]= 0. (1.13)

where p €[0,1] is an embedding parameter and U, is an initial approximation of eq. (1.9),

which satisfies the boundary conditions. It follows from (1.12) and (1.13) that
H(v0)= & (v)- ~ (u,)=0 (1.14)

or Hvl)=."/() -f(r)=0 (1.15)
The changing process of p from zero to unity is just that of v(r, p) from Uy(r) to u(r). In
topology, this is called deformation, and ~ (v)— ~ (u,), -/ (v) —f(r) are called

homotopic.

We assume that the solution of eq. (1.13) can be written as a power series in p

13



V=V, + PV + PV, +... (1.16)
The approximate solution of eq. (1.9) can be obtained by setting p=1

u=limv=vy+v+v, +.. (1.17)
p—1

The series in eq. (1.17) is convergent for most cases and the convergence rate depends

upon the nonlinear operator . /' (V).

The nonlinear term . / "(u) can be expressed in He polynomials [27] as

) = P H, (o V) (1.18)

where

,m=0,12,... (1.19)

Ho (Voo Vieooy Vi ) = Lo (N[Zm: pkka

Sl op™ k=0

1.5 Optimal Homotopy Asymptotic Method (OHAM)

Unlike perturbation methods, the Optimal Homotopy Asymptotic Method (OHAM) is
independent of small or large physical parameters, and provides us a simple way to ensure
the convergence of solution series. The method was first devised by Marinca et al. [28-30].
Recently many researchers have successfully applied this method to various nonlinear
problems in science and engineering. This is an effective and powerful method to find the
approximate solution of nonlinear problems. The advantage of OHAM s built in
convergence criteria, which is controllable. In OHAM, the control and adjustment of the

convergence region are provided in a convenient way.

In HPM and OHAM, the concept of homotopy from topology and conventional
perturbation technique were merged to propose a general analytic procedure for the
solution of nonlinear problems. Thus, these methods are independent of the existence of a
small parameter in the problem at hand and thereby overcome the limitations of
conventional perturbation technique. OHAM, however, is the most generalized form of

HPM as it employs a more general auxiliary function H(p) in place of HPM's p.

To illustrate the basic ideas of optimal homotopy asymptotic method [31, 32], we consider

the following nonlinear differential equation

14



Au(x,t)+g(x,t)= 0, xeQ (1.20)
with the boundary conditions

B[u,a—u)zo, xerl, (1.21)
ot

where A is a differential operator, B is a boundary operator, u(x,t) is an unknown

function, I is the boundary of the domain @ and g(x,t) is a known analytic function.

The operator A can be decomposed as
A=L+N, (1.22)
where L is a linear operator and N is a nonlinear operator.

We construct a homotopy @(X,t; p):2x[0,1] >R which satisfies

H(p(x.t; p), p) = L- p)[Llp(x.t; p)) + g(x,)] - H(P[A(p(x.t; p)) +9(x,1)]|=0, (1.23)

where pe[0,1] is an embedding parameter, H(p) is a nonzero auxiliary function for
p=0 and H(0)=0. When p=0 and p=1, we have ¢(x,t;0)=u,(xt) and

@(x,t1) =u(x,t) respectively.

Thus as p varies from 0 to 1, the solution ¢(x,t; p) approaches from Uy(X,t) to u(x,t).

Here Uy (X,t) is obtained from eq. (1.23) and eq. (1.21) with p=0 yields

L(p(x,t;0))+09(x,t) =0, B(uo, %j =0. (1.24)
The auxiliary function H(p) is chosen in the form
H(p)=C,p+C,p?+Cyp° +... (1.25)

where C,,C,,C,,... are convergence control parameters to be determined. To get an

approximate solution, ¢(x,t;C;,C,,Cs,...) is expanded in a series about p as

e}

@(x,t; p,Cp,Cy, Cypen) = Up(X,)+ > Ui (x,1,C;,Cy, Cyn)p' (1.26)
i=1

Substituting eq. (1.26) in eq. (1.23) and equating the coefficients of like powers of p, we

will have the following equations

L(uy(% )+ g(x 1)) = C,N, (Ug (%, ), B(ul, %} _o. (1.27)
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L(uy (%, 1)) = L(uy (%, 1)) = C,Ng (U (X, 1))+ Cy(L(uy (%, 1))+ Ny (U (%, 1), uy (X, 1)), (1.28)

B[uz, oy } -0,
ot

and hence the general governing equations for u;(x,t) is given by

L(u; (1)) = L4 (%, 1))+ C N (ug (x, ))+
ZC,[ ( )+ N, (uo(x t)..., uH(x,t))]; j=23,...

(1.29)

where N (ug(x,t),...,u;(x,t)) is the coefficient of p in the expansion of N(p(x.t; p))

about the embedding parameter p and
N(@(x,t; p,C1,Cp,Capen) = No(Up (%, 1)+ SN, (Ug, Uy o (1.30)
j=1

It is observed that the convergence of the series (1.26) depends upon the convergence

control parameters C;,C,,C;,...
The approximate solution of eg. (1.20) can be written in the following form
0(x,t;C;,Cy,Cyn) = Ug(x,1) +nzluJ (x,1,C;,C,,Cs,...). (1.31)
j=1
Substituting eq. (1.31) in eq. (1.20), we get the following expression for the residual

R,(x,t;C,;,C,,Cs,...)= L(T(x, t;C,,C,,Cy,.. )+ N(U(x,1;C,, Cy, Cs,nn )+ g(X, 1) (1.32)

If R, (x,t ;Cl,CZ,C3,...):0, then U(X,t ;Cl,CZ,C3,...) is the exact solution. Generally such
case does not arise for nonlinear problems. The nth order approximate solution given by
eqg. (1.31) depends on the convergence control parameters C;,C,,Cs,... and these

parameters can be optimally determined by various methods such as weighted residual
least square method, Galerkin method, collocation method and so on.
Case |

According to the collocation method the optimal values of the parameters C;,C,,C;,... can

be obtained by solving the following system of equations.
R t;:C1,C;,.Cy,,C o J=0Fori =12, ... kand j=12,....k  (L33)
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Case Il
According to weighted residual least square method, the optimal values of the

convergence control parameters C,,C,,C,,... can be obtained by solving the following

functional
to
3(C1.Cy Carnn G )= [ [ RE(X,:C1,C, Cnr Gy e, (1.34)
t

where a and b are two values depending on the given problem. The unknown parameters

C,,C,,C;,... can be identified from the conditions

o _a _ _ A, (1.35)
oc,  oc, ac,

The convergence of the n-th approximate solution depends upon unknown parameters
C,,C,,C;,.... When the convergence control parameters C;,C,,C;,... are known by the

above mentioned method then the approximate solution of (1.20) is well determined.

1.6 Homotopy Analysis Method (HAM)

The homotopy analysis method (HAM) was introduced by Liao [33], is an effective and
powerful method to find the approximate solution of nonlinear problems. To illustrate the
basic ideas of homotopy analysis method we consider the following nonlinear differential
equation [34, 35]

1 Juet]= 0, (1.36)

where . / " is a nonlinear operator, x and t denote the independent variables and U(X,t) is

an unknown function. For simplicity, we ignore all boundary or initial conditions, which
can be treated in the similar way. By means of generalizing homotopy analysis method,

we first construct the zeroth-order deformation equation as follows

(L-p) 7 [p(xt; p)—uy(x,1)]= prH(xt). /  [#(x.t; p)], (1.37)

where pe[0]] is the embedding parameter, 7 =0 is an auxiliary parameter, > is an

auxiliary linear operator, ¢(x,t; p) is an unknown function, u,(x,t) is an initial guess of
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u(x,t) and H(x,t) is a non-zero auxiliary function. For p=0 and p =1, the zeroth order

deformation equation given by eq. (1.37) leads to
#(x,1;,0) = uy(x,t) and @(x,t;1) =u(x,t). (1.38)

Thus as p increases from 0 to 1, the solution ¢(x,t; p) varies from the initial guess u,(x,t)

to the solution u(x,t). Expanding ¢(Xx,t;p) in Taylor’s series with respect to the

embedding parameter p, we have

0

#(x,t; p)=uo(x, )+ > pMuy (x,t), (1.39)
m=1
where um(x,t)=%% : (1.40)

The convergence of the series (1.39) depends upon the auxiliary parameter 7. If it is

convergent at p =1, we have

u(x,t)=uy(x,t) +§:um (1.41)
m=1

which must be one of the solutions of the original nonlinear differential equation.
Differentiating the zeroth-order deformation eq. (1.37) for m-times with respect to p then

dividing them by m! and finally setting p=0, we obtain the following m-th order

deformation equation

7 u, (6 0) = 2, (0] = 2H (DR, (Ug, Uy ..U, ), (1.42)
where
1 o™ [t p)]
iR ’ ey Um - = ’ 1'43
(Ug, Uy, U g) (m—1)! op™ o (1.43)
and
1, m>1
= 1.44
Xm {01 m<1 (1.44)

Now, the solution for m-th order deformation eq. (1.42) by applying ~~~* on both sides,

we get
Um(X,t) XmUm- 1(X t) [hH (X t)ER (u01u11"'!um—l)]' (1-45)

In this way, it is easy to obtain u,,(x,t) for m>1 at M -th order, we have
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u(x,t) = %um(x,t) (1.46)
m=0

When M — -0, We obtain an accurate approximation of the original eq. (1.36).

Part 11

“Wavelets” has been a very popular topic of conversations in many scientific and
engineering gatherings these days. The subject of wavelet analysis has recently drawn a
great deal of attention from mathematical scientists in various disciplines. The integral
wavelet transform (IWT) is defined to be the convolution with respect to the dilation of the
reflection of some function, called a “basic wavelet”, while the wavelet series is expressed
in terms of a single function, called a “wavelet” by means of two very simple operations:
binary dilations and integral translations. Analogous to Fourier analysis, there are wavelet
series (WS) and integral wavelet transforms (IWT). In wavelet analysis, WS and IWT are
intimately related. The IWT of a function on the real line evaluated at certain points in the
time-scale domain gives the coefficients for its wavelet series representation. As the
polynomial spline functions are the simplest functions for both computational and

implementation purposes, they are most attractive for analyzing and constructing wavelets.

Some view wavelets as a new basis for representing functions, some consider it as a
technique for time-frequency analysis, and others think of it as a new mathematical
subject. Of course, all of them are right, since “wavelets” is a versatile tool with very rich
mathematical content and great potential for applications. However, as this subject is still

in the midst of rapid development, it is definitely too early to give a unified presentation.

Wavelets are very effectively used in signal analysis for wave form demonstration and
segmentations, time frequency analysis, medical diagnostics, geophysical signal
processing, statistical analysis, pattern recognition, and fast algorithms for easy execution.
The wavelet analysis could be a promising tool for solving various difficulties in physics,
engineering and image processing [1]. Wavelet method is an exciting method for solving
difficult problems in mathematics, physics and engineering, with modern applications in
diverse fields such as wave propagation, data compression, image processing, pattern
recognition, computer graphics, the detection of aircraft and submarines and improvement
in CAT scans and other medical technology. Also, wavelet methods have been used to

develop accurate and fast algorithms for solving integral and differential equations of
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fractional order, especially those whose solutions are highly localized in position and
scale. While wavelets have gained popularity in these areas, new applications are
continually being investigated.

Wavelet techniques enable us to divide a complicated function into several simpler ones
and study them separately. This property, along with fast wavelet algorithm makes these
techniques very attractive for analysis and synthesis. Unlike Fourier - based analyses that
use global (nonlocal) sine and cosine functions as bases, wavelet analysis uses bases that
are localized in time and frequency to more effectively represent nonstationary signals. As
a result, a wavelet representation is much more compact and easier for implementation.
Using the powerful multiresolution analysis, one can represent a function by a finite sum
of components at different resolutions so that each component can be adaptively processed
based on the objectives of the application. This capability of representing functions
compactly and in several levels of resolutions is the major strength of the wavelet analysis.
In the case of solving partial differential equations by numerical methods, the unknown
solution can be represented by wavelets of different resolutions, resulting in a multigrid
representation. The dense matrix resulting from an integral operator can be sparsified
using wavelet based thresholding techniques to attain an arbitrary degree of solution
accuracy. Wavelets allow accurate depiction of a variety of functions and operators. The
main feature of wavelets is its ability to convert the given differential and integral
equations to a system of linear or nonlinear algebraic equations that can be solved by
numerical methods. The goal of this chapter is to convey a general idea about wavelets

and to describe different wavelet methods in details.

Orthogonal functions and polynomial series have received considerable attention in
dealing with various problems of dynamic systems. The main characteristic of this
technique is that it reduces these problems to those of solving a system of algebraic
equations, thus greatly simplifying the problem. Special attention has been given to
applications of Haar wavelets, Legendre wavelets, Chebyshev wavelets, and Hermite

wavelets.

In the present chapter, we introduce different wavelet based methods viz. the Haar wavelet
method, the Legendre wavelet method, the Chebyshev wavelet method and the Hermite

wavelet method. These methods are studied in details in subsequent chapters.
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1.7 Haar Wavelets and the Operational Matrices

Morlet (1982) [8] first introduced the idea of wavelets as a family of functions constructed
from dilation and translation of a single function called the “mother wavelet”. Haar
wavelet functions have been used from 1910 and were introduced by the Hungarian
mathematician Alfred Haar [36]. Haar wavelets (which are Daubechies wavelets of order
1) consist of piecewise constant functions on the real line that can take only three values
i.e. 0, 1 and -1 and are therefore the simplest orthonormal wavelets with a compact
support. Haar wavelet method to be used due to the following features: simpler and fast,
flexible, convenient, small computational costs and computationally attractive. The Haar
functions are a family of switched rectangular wave forms where amplitudes can differ

from one function to another.

The Haar wavelet family for x e [O, 1) is defined as follows [37]

1 xelg,8)
h(x)=1-1 xel&.4&) (1.47)
0 elsewhere
where
k k +0. k+1
§1=E, S = +m05’ 53:%-

In these formulae integer m=2J, j=012..,J indicates the level of the wavelet;

k=012,...,m-1 is the translation parameter. Maximum level of resolution is J. The index

i is calculated from the formula i=m+k +1; in the case of minimal values m=1, k=0,

we have i=2. The maximal value of i=2M =2’", It is assumed that the value i=1

corresponds to the scaling function for which

1 forxel0,1)
h. (x)= 1.48
) {0 elsewhere. (1.48)

In the following analysis, integrals of the wavelets are defined as
X X X
pi(x)= [ (ax, 0 ()= [ pi(x)ax, ri(x)=[a;(x)ox.
0 0 0
This can be done with the aid of (1.47)

21



pi(x)=

x-& forxelé,&)
&—x forxe [fzafs)

0 elsewhere

0 forxe[0,&)

S-gF forxelss)

L_%(gg —xf forxels,, &)

The collocation points are defined as

4m? ]

o2 for x € [£;.1]

1 3

gx=a) forxel5. &)
r(x)= 4—;2(X—§2)+%(§3—x)3 forxe[&,,&)

4—;2(X—(§2) for x e [£,.1)

0 elsewhere

X =I;#, 1=12,...,2M

functions are defined in the interval [A, B] by [38]

0 elsewhere

ho(t)={1 te[A B],

L G)=t<g(0)

ht)=1-1, &) <t<g()

0, otherwise
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(1.49)

(1.50)

(1.51)

It is expedient to introduce the 2M x2M matrices H, P, Q and R with the elements

H@G,1)=h(x), PA,D=p;(x), QU,1)=0q,(x) and R(i,1)=r(x) respectively.

In 2012, the generalized Haar wavelet operational matrix of integration has been derived
by the learned researcher Saha Ray [38]. Usually the Haar wavelets are defined for the

interval t €[0,1) but in general case t €[A, B], we divide the interval [A, B] into m equal

subintervals; each of width At=(B—A)/m. In this case, the orthogonal set of Haar

(1.52)

(1.53)



where & () = A+(k2 1j(B A) = A+(k2 1]mAt

42(i)=A+( 2(1/2)j(8 A=A (%jm,

¢5(1) = A+(%)(B -A)= A+(%)mm ,

for i=12,---,m, m=2’ and J is a positive integer which is called the maximum level of

resolution. Here j and k represent the integer decomposition of the index i. i.e.

i=k+21 -1 0<j<i and 1<k <2)+1.

1.7.1 Function Approximation

Any function y(t) e L?([0, 1)) can be expanded into Haar wavelets by [39]

1
Y(B) = Cohg () + Cih () + oy ) +--, where ¢; = [ y(h; (B)ct. (1.54)
0

If y(t) is approximated as piecewise constant in each subinterval, the sum in eq. (1.54)

may be terminated after m terms and consequently we can write discrete version in the

matrix form as
Y ZC (t)=CI H (1.55)

where Y and C,. are the m-dimensional row vectors.

Here H is the Haar wavelet matrix of order m defined by H =[hy,h,,---,h, ,]" . i.e

hO hO,O hO,l o hO,m—l
h h h o hy

H=|' T | 10 11 1m 1 (1.56)
hm—1 hm—l,O hm—l,l t hm—l,m—l

where hy,hy, -, h,,_; are the discrete form of the Haar wavelet bases.

The collocation points are given by
t, =A+(1-05)At , 1=12,---.m (1.57)
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1.7.2 Operational Matrix of the General Order Integration

The integration of the H,,(t) = [h0 (t), h(),..., hmfl(t)]T can be approximated by [40]

[Ha(@)dz =QH,, (1) (158)
0

where Q is called the Haar wavelet operational matrix of integration which is a square
matrix of m-dimension. To derive the Haar wavelet operational matrix of the general order

of integration, we recall the fractional integral of order «(>0) which is defined by

Podlubny [41]

J‘Zf(t):ﬁj.(t—f)a_lf(f)dr,a>0, o eR* (1.59)
0

where R" is the set of positive real numbers.
The operational metrix for general order was first time derived by learned researcher Saha
Ray [38]. The Haar wavelet operational matrix Q“ for integration of the general order «

is given by [38]
Q“H,(®) = I°H,, (1) = [37h, (1), 3, ©),---, 3°h,,®©]
=[Qhy®).QN, ).~ Qh, . O (1.60)

where

ta
Qhy(t) =T (l+a)’ telA Bl

0, elsewhere .

(1.61)

and
0, A<t<c(),
b LH<t<C0),
h = .
M=y ciyst<a), (162
¢y, C,(1) <t<B,

where

_(t=&0)

e+l

I (E10) N =10V &
b, T 2 ,
(a+1) I'a+1)
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P Ut 10) PN Ut #1 0) AL Y 0) &
3 .
I'a+1) IN'a+1 I'a+1)

for i=12,---,m, m=2’ and J is a positive integer, called the maximum level of
resolution. Here j and k represent the integer decomposition of the index i. i.e.

i=k+2 -1, 0<j<iand 1<k <2’ +1.

1.8 Legendre Wavelets

The application of Legendre wavelets for solving differential and integral equations is
thoroughly considered by many researchers in [42-44] and references therein. Both initial
and boundary value problems can be solved efficiently by using the Legendre wavelet
method. Here, the basic idea of Legendre wavelets are introduced, the operational matrix
of integration is then derived. The derived operational matrix of fractional order
integration is then applied to solve fractional differential equations. The method reduces
the fractional initial or boundary value problem to a system of algebraic equations. The
large systems of algebraic equations may lead to greater computational complexity and
large storage requirements. However the operational matrix for the Legendre wavelets is
structurally spare. This reduces the computational complexity of the resulting algebraic

system.

Wavelets constitute a family of functions constructed from dilation and translation of

single function called the mother wavelet y(t). They are defined by

Wap(t) = ﬁt//(%} , abeR (1.63)

where a is dilation parameter and b is translation parameter. By restricting a, b to discrete
values as:a=ay’, b=khyay!, where a, >1, b, >0 and n,k e N..
The Legendre polynomials of order m, denoted by L, (t) are defined on the interval [-1, 1]

and can be determined with the help of following recurrence formulae [42]

Lo() =1
Ll(t):t,

2m+1 m
Lm+l(t) = mtl_m (t) —m Lm—l(t) y m= 1,2,3,... (164)
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Legendre wavelets v, ,,(t) =w(k,A,m,t) have four arguments; defined on interval [0,1)

by

B B e P
0, elsewhere
where k=23.A=2n-1 n=123...2%, m=01..,M —1 is the order of the Legendre
polynomials and M is a fixed positive integer. The set of Legendre wavelets form an
orthogonal basis of L*(R).
The two-dimensional Legendre wavelets are defined as

A, —1 n+1 n,-1 A, +1
<x<h 22y M

ALml(zklx_ﬁl)Lmz(Zkzt_ﬁz)’ ;kl =X okl ' Toky k2

Yni.mi,no,ma (X't):

0, elsewhere

(1.66)

katky
where A:\/(ml+%j(m2+%) 2 2, nand N, are defined similarly to A, k, and k,

are any positive integers, m;and m,are the orders for Legendre polynomials and

Wiy my.np m, (%) forms a basis for L?([0,1) x[0,1)).

1.8.1 Function Approximation

A function f(x,t) defined over [0,1) x[0,1) can be expanded in terms of Legendre wavelet

as [43]

f(X’t):iiiicn,i,l,jwm,l,j(X1t)- (1.67)

n=1i=01=1 j=0

—

f (X’t) = _ Coit,i%nini (th) =y (X)C \P(t)’ (1.68)

T
UN
Il
o
’[‘
—
1l
o

where W(x) and W¥(t) are 2"1*M, x1 and 2¥27M, x1 matrices respectively, given by

(X)) =102, l/ll,Ml—l(X)f Va0 (X)i---yl//z,M1—1(X)f---a Yo, (X)s-- l//2k1_1'lel(X)]T ,

T

T(t) =[w1, (t)i"”’//l,Mz—l (©).w20(),-.., Yampa (t)v--yl/lzkz—yo (9 Voo, o1 .
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Also, C is a 247M, x2*27*M, matrix whose elements can be calculated from the

formula

C =

nil,j

o0y, ()F (x e, (1.69)

O e
O ey

with n=1,..,2%%i=0,.,M; -1,1=1,...,2% j=0,.,M, —1.

1.8.2 Operational Matrix of the General Order Integration

The integration of the Legendre wavelet function ‘I’(t) :
O =0 ¥im 1O W20 O W 1O Ws Oy O can e
approximated by

t

j Y (r)dz = Q¥(t), (1.70)

0

where Q is called the Legendre wavelet operational matrix of integration. To derive the
Legendre wavelet operational matrix of the general order of integration, we recall the

fractional integral of order «(> 0) which is defined by Podlubny [41]

Jaf(t)zﬁj-(t—f)a_lf(r)dr, w>0, 2R (1.71)
0

where R™ is the set of positive real numbers.
The Legendre wavelet operational matrix Q“ for integration of the general order « is

given by

Q W (t) = J“¥(t)

=[3%W1 o) IW (1), I 0 (1), I W s (1), I al/jzkflyo ®,....,J al/lzk—lvM_l oI
where
1/2 A A
1 KI2 1a K " n-1 n+1
‘]al//n,m(x): (m+§j 27] Lm(2 x—n) B < x<—2k , (1.72)

0, elsewhere

for k=23,..Ai=2n-1 n=123..,2", m=01..,M -1 is the order of the Legendre

polynomials and M is a fixed positive integer.
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1.9 Chebyshev Wavelets

The Chebyshev wavelets are competent for solving some fractional and integral equations
[45, 46]. Nowadays, Chebyshev polynomials have become more significant in numerical
evaluation. Among the four forms of Chebyshev polynomials, the first and second kinds
are certain cases of the symmetric Jacobi polynomials, whereas the third and fourth kinds
are unique instances of the non-symmetric Jacobi polynomials. Great attention has been

focused on first and second kinds of Chebyshev polynomials T,(x) and U, (x) and their

various uses in numerous applications. Nevertheless, there are very few articles that
concentrate on the wavelets shaped through these two types of Chebyshev polynomials for
application in fractional partial differential equations. This motivates our curiosity in such

wavelets.

There are several advantages of using Chebyshev wavelets approximations based on
collocation spectral method. First, unlike most numerical methods, it is now conventional
that they are characterized by the use of exponentially decaying errors. Second, various
numerical methods do not perform well near singularities, whereas approximations
through wavelets effectively handle singularities in the problem. In the end, due to their
fast convergence, Chebyshev wavelets method does not undergo from the instability

problems related with other numerical methods.

The Chebyshev wavelets v, . (t) =w(k,n,m,t) have four arguments; defined on interval

[0, 1) by [45]

Ki2 1T ok n-1 n
1)=12 0, (2“t-2n+1) Jer <t<opr 173)
0, elsewhere

where n=123...2%?, k is assumed to be any positive integer, m is the degree of the

second kind Chebyshev polynomials and t is the normalized time.
Here U_(t)= \/zUm(t), U,@t), m=012,..,M are the second kind Chebyshev
T

polynomials of degree m defined on the interval [-1,1] and satisfy the following recursive

formula
UO(t) = 1!
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U, (t)=2t,
U,.,t)=2tU, (t)-U, @), m=123,... (1.74)

The two-dimensional Chebyshev wavelets are defined as

kq+k
11K2 1

2 2 U, (24x—2n+1)7, (22t—2n, +1) ';k; <x< 2?1{1,
n,-1 n
Vi myng.mp (K1) = 22kz—1 st< 2k22—1 (1.75)
0, elsewhere

where n, and n, are defined similarly ton, k; and k, are any positive integers, m, and m,

are the orders for second kind Chebyshev polynomials.

1.9.1 Function approximation

A function f(x,t) defined over [01)x[01) may be expanded in terms of Chebyshev

wavelets as [46]

o0 0

Xt :ZZiicnll jl//ﬂl| j Xt (176)

n=1i=0 I=1 j=0

If the infinite series in eq. (1.76) is truncated, then eq. (1.76) can be written as

kl lM -1 2k2 IM2

ZZ D0 o Wain i (3, 1) =T (x)C ¥ (t), (1.77)

n=1l i=0 I=1 j=0

where W(x) and ¥(t) are 2“'M, x1 and 2*2"*M, x1 matrices respectively, given by
( ) [w10(X), w11 (X),. ’l//lMl—l(X) Woo (X)W, M1—1(X) W ()0 Ly, l(X)]Ta

lP(t) = [l//l,o (®), Vi (t)v-wV/l,Mz—l (), Voo ®,..., Vamy-t ®),..., l//zkz—lyo (t)v--"//zkz—lyszl (t)]T .

Also, Cisa 2“7M, x2**M, matrix whose elements can be calculated from the formula

o = | [ (9w, O (x )
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1.9.2 Operational Matrix of the General Order Integration

The  integration  of  the  Chebyshev  wavelet  function  ‘P(t),

S QR U7 (9N ZRVINY (9 H7Z29 (9 ISP Z25VENN (oSS ZZ0N (9 OSPL ZN () LN U o

2% 1M

approximated by

[w(ekie~Po() (1.78)

0
where P is called the Chebyshev wavelet operational matrix of integration. To derive the
Chebyshev wavelet operational matrix of the general order of integration, we recall the

fractional integral of order «(>0) which is defined by Podlubny [41]
1 .
Jf(t)=—— | (t-0)* f(r)dr, a>0, aeR" 1.79
7 j (1.79)

where R™ is the set of positive real numbers.

The Chebyshev wavelet operational matrix P“ for integration of the general order « is

given by

PUW(t) = J“ W (1)

=[3%%1o(®) . I (1), I W, o (1), I MY, 4 (1), I al//zkflyo ®),...3% o1

PN V]

where
KI2 1o T [ok n-1 n
Jal//n‘m(X)z 2 \] Um(2 X—2n+1), FSX<F,
0, elsewhere

for n=123,...,2*, m=01,...,M —1 is the order of the Chebyshev polynomials and M is

a fixed positive integer.
1.10 Hermite Wavelets

The Hermite polynomials H_,(x) of order m are defined on the interval (— 0, 00), and can

be deduced with the assistance of the following recurrence formulae:

Ho(x) =1,
H,(x) = 2x,
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H,(X)=2xH_,(X)-2mH__;(x), m=123,... (1.80)

The Hermite polynomials H_,(x) are orthogonal with respect to the weight function e

The Hermite wavelets are defined on interval [0,1) by [47]

1 n-1 A+1
ok/2 H (2x—A) for — = <x<—=
Wom(X) = n12"Jr "”( ) 2k 2k (1.81)
0, otherwise
where k=12,... . is the level of resolution, n=1,2,...,2¥* A=2n-1 is the translation

parameter, M=12,..., M —1 is the order of Hermite polynomials.

The two-dimensional Hermite wavelets are outlined as

AH,, (24 x-1)H,, (22t-1,) L Sxe
l//nl,ml,nz,mz (X’t): ﬁz _1<t< ﬁZ +1 (182)
A &
0, elsewhere

1 1 ko : .
where A= 2 2 nand n, defined similarly to n, k, andk
\/n1!2”1\/;\/ n, 12"z K ’ Y P

are any positive integers, m and m, are the orders for Hermite polynomials.

1.10.1Function Approximation

A function f(x,t) defined over [0,1)x[0,1) can be expanded in terms of Hermite wavelet

as [48]

Xt :iiiicml jl//nllj Xt (183)

n=1 i=0 I=1 j=0

If the infinite series in eq. (1.83) is truncated, then it can be written as

k1 1M 12k2 1M 1

Z > S o Wi ()= ¥ (X)C W) (1.84)

n=l i=0 I=1 j=0

where ¥(x) and ¥(t) are 27'M, x1 and 2*27*M, x1 matrices respectively, given by

\P(X) = [l/ll,O(X)ll//l,l(X)i"'! l//l,Ml—l(X)!VIZ,O(X)F"’WZ,Ml—l(X)l"'l 2k1—l’0(x)!"'! ‘//Zkl_lylel(X)]T )
lI](t) = [l//l,O (®), ‘//1,1(t)|---v ‘//1,M2—1(t)7 l//z,o(t)v--a l//z,Mz—l(t)i"'! l//zkg—lyo(t)l"'i ‘//2k2—1YM271(t)]T .
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Also, Cisa 24"M, x2"*M, matrix whose elements can be calculated from the formula

(o =

nil,j

o (D, ()F (x e, (1.85)

O Ly
O ey

with n=1,...2%%i=0,..,M; -11=1,...2%",j=0,..,M, -1.

1.10.20perational Matrix of the General Order Integration

The integration of the Hermite wavelet function ‘I’(t) :
() =[Wr o) s W 21 (0 W o @)sees W g 1 () Z2 O 7 ) can be
approximated by

t

j P(r)dr = Q¥(t), (1.86)

0

where Q is called the Hermite wavelet operational matrix of integration. To derive the
Hermite wavelet operational matrix of the general order of integration, we recall the

fractional integral of order «(>0) which is defined by Podlubny [41]

J“f(t)zﬁj‘(t—r)“lf(r)dr, a>0, geR’ (1.87)

where R” is the set of positive real numbers.

The Hermite wavelet operational matrix Q“ for integration of the general order « is

given by
QY (t) =J“P(t)

=[J al/jl,o(t)"'”Jal/ll,M—l(t)"]al/lz,o(t)v"’Jal/jz,M—l(t)1‘]al/lzk—lvo(t)!"'lJal/jzkflyM_l(t)]T
where

ke | L gey (kton)  for lep Nt
“ n2"Jr 2k
J ‘//n,m(t): (188)
0, elsewhere

where k=12,..., is the level of resolution, n=12,...,2¥t A=2n-1 is the translation

parameter, m=12,..., M —1 is the order of Hermite polynomial.
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CHAPTER 2

2 Numerical Solution of  Partial
Differential Equations by Haar
Wavelet Method

2.1 Introduction

Historically, partial differential equations originated from the study of surfaces in
geometry and for solving a wide variety of problems in mechanics. Although the origin of
nonlinear partial differential equations is very old, they have undergone remarkable new
developments during the last half of the twentieth century. A large number of
mathematicians became actively involved in the investigation of numerous problems
presented by partial differential equations. The primary reason for this research was that
partial differential equations both express many fundamental laws of nature and frequently
arise in the mathematical analysis of diverse problems in science and engineering. The
PDEs arise frequently in the formulation of fundamental laws of nature and in the
mathematical analysis of a wide variety of problems in applied mathematics, mathematical
physics, and engineering sciences including fluid dynamics, nonlinear optics, solid
mechanics, plasma physics, quantum field theory, and condensed-matter physics. This
subject plays a central role in modern mathematical sciences, especially in applied
physics, mathematical modelling and engineering. In fact, partial differential equations
have been found to be essential to develop the theory of surfaces on the one hand and to

the solution of physical problems on the other.

The development of linear partial differential equations is characterized by the efforts to
develop the general theory and various methods of solutions of linear equations. Several
methods such as the characteristics method, spectral methods and perturbation techniques
have been utilized to study these problems. But, as most solution methods for linear
equations cannot be applied to nonlinear equations, there is no general method of finding

analytical solutions of nonlinear partial differential equations. New numerical techniques
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are usually required for finding solutions of nonlinear equations. Methods of solution for
nonlinear equations represent only one aspect of the theory of nonlinear partial differential
equations. Like linear equations, questions of existence, uniqueness, and stability of
solutions of nonlinear partial differential equations are of fundamental importance. These
and other aspects of nonlinear equations have led the subject into one of the most diverse

and active areas of modern mathematics.

Many problems of physical interest are described by partial differential equations with
appropriate initial and boundary conditions. These problems are usually formulated as
initial-value problems, boundary-value problems, or initial boundary-value problems.
Indeed, the theory of nonlinear waves and solitons has experienced a revolution over the
past three decades. During this revolution, many remarkable and unexpected phenomena
have also been observed in physical, chemical, and biological systems.

2.2 Outline of Present Study

In this chapter, we will focus our study on the nonlinear partial differential equations that
have particular applications appearing in applied sciences and engineering. We have
considered both analytical and numerical approach for solving some specific nonlinear
partial differential equations like Burgers’ equation, modified Burgers’ equation, Huxley
equation, Burgers-Huxley equation, and modified Korteweg—de Vries (mKdV) equation,

which have a wide variety of applications in physical models.

2.2.1 Burgers’ Equation

The one-dimensional Burgers’ equation [49]

u; +uu, —w,, =0,0<x<1 (2.1)
is a nonlinear homogeneous parabolic partial differential equation. Here v (>0) can be
interpreted as viscosity. The Burgers’ equation is considered as a model equation that
describes the interaction of convection and diffusion. It arises in many physical problems
including one-dimensional turbulence, sound waves in viscous medium, shock waves in a
viscous medium, waves in fluid filled viscous elastic tubes and magneto-hydrodynamic

waves in a medium with finite electrical conductivity.
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Various mathematical methods such as the Galerkin finite element method [50], spectral
collocation method [51], quartic B-spline differential quadrature method [52], quartic B-
splines collocation method [53], finite element method [54], fourth order finite difference
method [55], explicit and exact explicit finite difference method [56] and least-squares
quadratic B-splines finite element method [57] have been used in attempting to solve
Burgers’ equations. Our aim in the present work is to implement the Haar wavelet method
to stress its power in handling nonlinear equations, so that one can apply it to various types

of nonlinearity.

2.2.2 Modified Burgers’ Equation

Modifying the nonlinear term uu, ineq. (2.1) to u®u_, the generalized modified Burgers’
equation [58] can be obtained in the following form
u +ufu, —w,, =0, 0<x<1, (2.2)

where p is a positive constant and v (> 0) can be interpreted as viscosity.

The modified Burgers’ equation [59] has the strong nonlinear aspects of the governing
equation in many practical transport problems such as nonlinear waves in medium with
low frequency pumping or absorption, ion reflection at quasi perpendicular shocks,
turbulence transport, wave processes in thermoelastic medium, transport and dispersion of
pollutants in rivers and sediment transport etc. Numerous mathematical methods such as
Petrov-Galerkin method [60], Quintic spline method [61], Sextic B-spline collocation
method [58], local discontinuous Galerkin method [62], and Lattice Boltzmann model [63]

have been used in attempting to solve modified Burgers’ equations.

2.2.3 Burgers-Huxley and Huxley Equations

Generalized Burgers-Huxley equation [64-66] is a nonlinear partial differential equation of
the form

u, +au’u, —u,, = Au(l-u’)u’-y), 0<x<1,t>0, (2.3)
where «, S, y and & are parameters, #>0,5,6>0. When =0, §=1, eq. (2.3)

reduces to the Huxley equation. The Huxley equation [67, 68] is a nonlinear partial

differential equation of second order of the form

u, =u, +u(k—u)u-1), k =0. (2.4)
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This equation is an evolution equation that describes nerve pulse propagation in biology
from which molecular CB properties can be calculated. Generalized Burgers-Huxley
equation is of high importance for describing the interaction between reaction

mechanisms, convection effects, and diffusion transport.

Various powerful mathematical methods such as Adomian decomposition method [64,
69], spectral collocation method [65], the tanh-coth method [66], homotopy perturbation
method [67], Exp-Function method [68], variational iteration method [70] and Differential
Quadrature method [71] have been used in attempting to solve the Burgers-Huxley and the
Huxley equations. The solitary wave solutions of the generalized Burgers-Huxley equation
have been studied by the learned researchers Wang et al. [72] and El-Danaf [73].

2.2.4 Modified Korteweg-de Vries (mKdV) Equation

Next, we consider the generalized modified Korteweg-de Vries (KdV) equation, [49]
which is a nonlinear partial differential equation of the form
u,+quu, +ru, =0,0<x<1,t>0 (2.5)

where g and r are parameters.

The modified Korteweg-de Vries (mKdV) equations are most popular soliton equations
and have been extensively investigated. The modified KdV equation is of important
significance in many branches of nonlinear science field. The mKdV equation appears in
many fields such as acoustic waves in certain anharmonic lattices, Alfvén waves in
collisionless plasma, transmission lines in Schottky barrier, models of traffic congestion,

ion acoustic soliton, elastic media etc. [74].

2.3 Application of Haar Wavelet Method to Obtain

Numerical Solution of Burgers’ Equation

Haar wavelet collocation method is used for solving generalized Burgers’ equation. This
method consists of reducing the problem to a set of algebraic equation by expanding the
term, which has maximum derivative, given in the equation as Haar functions with
unknown coefficients. The operational matrix of integration is utilized to evaluate the
coefficients of Haar functions. This method gives us the implicit form of the approximate

solutions of the problems.

36



Consider the one-dimensional Burgers’ equation [49]

u; +uu, —wi,, =0, 0<x <1, (2.6)
with the following associated initial and boundary conditions

u(x,ty)=f(x), 0<x<1

and u(0,t)=u@t)=0, t=>t,. (2.7)

It is assumed that u"(x,t) can be expanded in terms of Haar wavelets as
2M .
u"(x,t) = Zas (Hh (x), for teft,,t, ;] (2.8)
i=1
where “.”” and “ ' ” stands for differentiation with respect to t and x respectively.

Integrating eq. (2.8) with respect to t from t, to t and twice with respect to x from 0 to x

the following equations are obtained

u"(x,t) = (t —ts)%ZM:as(i)hi (X) +U"(x,t.) | (2.9)
2M
WX 1) = (t—t) D8, () Py () + U(x,t) ~U(0,t) + U0, ) (2.10)
i=1

u(x,t) = (t —ts)%as(i)qi (X) +u(x,ty) —u(0,t,) + x[u'(0,t) —u'(0,t.) ]+ u(0,t),  (2.11)
i=1

2M
U(x,t) = a(i)g;(x) +xu'(0,t) +u(0,t). (2.12)
i=1
By using the boundary conditions at x =1, and from eqgs. (2.12) and (2.11) respectively,
we have
2M ]
u'(0,t) =—>_ay(i)a; (1), (2.13)
i=1
2M .
and  U(0,1)-u'(0,t) =~(t-t,)> a,(i)q, ). (2.14)
i=1
From eq. (1.50), it is obtained that
05 if i=1
a@®=11 i1 (2.15)
m? '
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Substituting egs. (2.13)- (2.15) in egs. (2.10)- (2.12) and discretizing the results by

assuming X — X, t >t , the following equations are obtained

2M
U”(X| ’ts+l) = (ts+1 _ts)zas (I)hl (XI) + U"(X| ’ts) ’ (216)
i=1
2M
U'(X o) = (e )Y as ([P (4) — G D] +u'(x,. t), (2.17)
i=1
2M
LI(XI 'ts+1) = (ts+1 _ts)z as (I)[ql (XI ) - qui (1)]+ U(X| ’ts) ' (218)
i=1
2M
U(x;,t,g) = > ag (g () — % @]. (2.19)
i=1

Substituting egs. (2.16)- (2.19) in eq. (2.6), we have

2M 2M
> a ai(x)-xa@®]=v |:(ts+1 —t) D as(i)h (%) +u"(x 7ts):| -
i1 i-1
2M
|:(ts+l _ts)z as (i)[Qi (%) — X% (1)]+ u(x ’ts):| x  (2.20)
i1

2M
|:(ts+l _ts)z as (I)[pl (XI ) — 0 (1)]+ U'(X| ’ts)}
i=1

From eq. (2.20), the wavelet coefficients as(i) can be successively calculated using
mathematical software. This process starts with

u(x,to) = f(x),

u'(x,to) = F'(x),

u"(x,to) = £"(x).
To show the effectiveness and accuracy of proposed scheme, we consider two test

examples. The numerical solutions thus obtained are compared with the analytical

solutions as well as available numerical results.

Example 2.1 Consider Burgers’ equation with the following initial and boundary
conditions [56]

u(x,0) =sin(xz x), 0<x<1
u(0,t)=u(L,t) =0, t>0. (2.21)
The exact solution of eq. (2.6) is given by [56]
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Zm/i A, nsin(nz x)exp (—n’z%v t)
u(x,t) = n=1 , (2.22)

A, + i A, cos(nz x)exp(—n?z2v t)
n=1

1
where A = j exp [_—1 (1—cos(z x))}dx,
5 2zv
h -1
A = 2_[ exp (—(1— cos(r x)))dx,
5 2zv

The numerical solutions of the example 2.1 are presented for v =0.01 with At =0.001
taking M =64 in Table 2.1 and Figures 2.1 and 2.2. The results are compared with Refs.
[56, 57, 75] and consequently it is found that the present method is much better than the
results presented in [56, 57, 75]. The Figures 2.1 and 2.2 are in good agreement with the
results obtained by learned researcher Jiwari [76].

Example 2.2 In this example, we consider Burgers’ equation with initial condition in the
following form

_ 2nvsin(z X)
a+cos(z x)

u(x,0) a>1 (2.23)

The exact solution of eq. (2.6) is given by [77]

27v exp (—v t) sin(r X)

uxt) = a+exp(-z’vt)cos(z x)

>1 (2.24)

In case of example 2.2, Tables 2.2 and 2.3 show the L, and L errors at different
values of a,v and M. Moreover, the results are compared with Refs. [78, 79] and it

has been observed that the present method is more accurate and efficient than the
other numerical solutions. The physical behaviors of solutions at different time

stages are shown in Figures 2.3 and 2.4.

2.3.1 Numerical Results and Discussion for Burgers’ Equation

The following Table 2.1 shows the comparison of exact solutions with the approximate
solutions of different numerical methods for Burgers’ equation. Agreement between
present numerical results and exact solutions appears very satisfactory through illustration
in Table 2.1. In the following Table 2.1, J has been taken as 6 i.e. M =64 with v =0.01

and different values of t. Similarly Tables 2.2 and 2.3 show the comparison of L, and L,
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errors with other numerical methods for v=0.01 and 0.005 with a=100 and t=1.

From Tables 2.2 and 2.3, it has been observed that the present method is more accurate

and efficient than the other numerical methods presented in References [78, 79].

Table 2.1

Comparison of Haar wavelet solution with other numerical methods for Burgers’

equation (example 2.1) at different values of t with a=2,v=0.01 and At =0.001

X t EFDM EEFDM Least-square | Crank-Nicolson Present Exact
[56] [56] quadratic B- method [75] Method solution
At=0.001| At=0.001 spline FEM At =0.01 At =0.001
[57]
At =0.0001

025 | 04 0.34244 0.34164 0.34244 0.34229 0.34224 0.34191
0.6 0.26905 0.26890 0.27536 0.26902 0.26924 0.26896

0.8 0.22145 0.22150 0.22752 0.22170 0.22148

1.0 0.18813 0.18825 0.19375 0.18817 0.18837 0.18819

3.0 0.07509 0.07515 0.07754 0.07511 0.07516 0.07511

05 | 04 0.67152 0.65606 0.66543 0.66797 0.66106 0.66071
0.6 0.53406 0.52658 0.53525 0.53211 0.52984 0.52942

0.8 0.44143 0.43743 0.44526 0.43953 0.43914

1.0 0.37568 0.37336 0.38047 0.37500 0.37476 0.37442

3.0 0.15020 0.15015 0.15362 0.15018 0.15027 0.15018

0.75 | 04 0.94675 0.90111 0.91201 0.93680 0.90980 0.91026
0.6 0.78474 0.75862 0.77132 0.77724 0.76745 0.76724

0.8 0.65659 0.64129 0.65254 0.64778 0.64740

1.0 0.56135 0.55187 0.56157 0.55833 0.55647 0.55605

3.0 0.22502 0.22454 0.22874 0.22485 0.22497 0.22481

Table 2.2 Comparison of L,andL, errors with other numerical methods for Burgers’

equation (example 2.2) taking a=100,v=0.01 at t =1.

N

Rahman [78]

Mittal and Jain [79]

Present method
At =0.01

Present method
At =0.001

Lo

L,

Lo

L | M

Lo

L,

Lo

L,

10

3.455E-7

4.881E-7

3.284E-7

4.628E-7 | 4

3.267E-8

4.634E-8

1.498E-8

2.157E-8

20

1.013E-7

1.431E-7

8.192E-8

1.164E-7 | 8

2.288E-8

3.239E-8

5.235E-9

7.452E-9

40

4.003E-8

5.668E-8

2.047E-8

2.907E-8 | 16

2.042E-8

2.889E-8

2.779E-9

3.939E-9

80

4.003E-8

3.499E-8

5.119E-9

7.271E-9 | 32

1.981E-8

2.802E-8

2.165E-9

3.064E-9

Table 2.3

equation (example 2.2) taking a=100,v =0.005 at t =1.

Comparison of L, and L, errors with other numerical methods for Burgers’

40




Rahman [78]

Mittal and Jain [79]

Present method
At =0.01

Present method
At =0.001

Lo

L,

Lo

L,

Lo

L,

Lo

L,

10

8.819E-8

1.246E-7

8.631E-8

1.215E-7

4.266E-9

6.0565E-9

1.9418E-9

2.7999E-9

20

2.403E-8

3.394E-8

2.153E-8

3.062E-8

2.9996E-9

4.2463E-9

6.8086E-10

9.7005E-10

40

7.942E-9

1.125E-8

5.378E-9

7.644E-9

16

2.681E-9

3.7933E-9

3.6323E-10

5.1519E-10

80

3.918E-9

5.549E-9

1.345E-9

7.644E-9

32

2.6013E-9

3.6797E-9

2.8393E-10

4.0182E-10

Figures 2.1-2.4 cite the behavior of numerical solutions obtained for Burgers’ equation at
different time stages taking v =0.01.

)
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0EF

Figure 2.1

0.0

Behavior of numerical solutions for Burgers’ equation (example 2.1) when

v =0.01 and At =0.001 attimes t =0.1,0.2,0.3 0.4and0.5.

Figure 2.2

i,
1.0
o.af )
.-""-'.-. I

osf o
0.4 C _d_,w"’_“\‘.
o2k o — \

.-"'-' -'_'-'_'_‘__o—'--'--'-'- II|

1 1 1 1 1 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

Behavior of numerical solutions for Burgers’ equation (example 2.1) when

v =0.01and At =0.001 attimes t=0.6,0.8,1.0,2.0and3.0.
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Figure 2.3 Behavior of numerical solutions for Burgers’ equation (example 2.2) when

v =0.01 and At =0.001 at times t=0.6, 2.0,4.0and6.0.

u(x,t)
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Figure 2.4 Behavior of numerical solutions for Burgers’ equation (example 2.2) when

v =0.01 and At =0.001 at times t =0.4,1.0,3.0,5.0and7.0.

2.4 Haar Wavelet Based Scheme for Modified Burgers’
Equation

Taking p=2, in eq. (2.2), the generalized modified Burgers’ equation [58] can be

obtained as follows:

u, +u?u, —w,, =0, 0<x<1, (2.25)

where v is a parameter.

The initial condition associated with eq. (2.25) will be

u(x,ty) = f(x), 0<x<1 (2.26)

with boundary conditions

u(0,t)=uLt)=0, t=>t,
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Let us suppose that u”(x,t) can be expanded in terms of Haar wavelets as

Za ) for telt, t,.,] (2.27)
where “.”” and “ ' ” stands for differentiation with respect to t and x respectively.

Now, integrating eq. (2.27) with respect to t from t to t and twice with respect to x from

0 to x the following equations are obtained

uf'(x,t):(t_tsfz“”l;as(i)hi (x)+u"(xt,), (2.28)
W0t) = (t—t)S s ()ps 00+ UGt - u0,t) w0, (2.29)

i=1

2M

u(x,t)=(t—t;)> ag (i) (x)+u(x.t; )+ x[u'(0,t) - (0, t; )]+ u(0,t)-u(0,t, ), (2.30)

i=1

2M

u(x,t)=">"ay (i) (x)+xu'(0,t)+u(0,t). (2.31)

i=1
Using the boundary condition at x =1, from eq. (2.31) we have
2M )
= a,(i)a; (1), (2.32)
i=1
and from eq. (2.30), we obtain
2M
w(0,t)-u(0,t5) =t -t )X a, (i) 0). (2.33)

Substituting eq. (2.32) and (2.33) in egs. (2.29)- (2.31), and discretizing the above results

by assuming X — X, t > 1., , we obtain

U”(X| ’ts+1) = (ts+1 - ts )ZZN:: as (I )hi (XI )+ U”(X| ’ts )’ (2-34)
u ( s+1 s+1 t Za [p XI (1)]+ U'(X| ’ts )’ (2-35)
U( Xps s+1 s+1 t Za =X G ( )]+U(XI ’ts)’ (2-36)
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, s+l Za -X G ( )] (2.37)

Substituting eqs. (2.34)- (2.37) in eq. (2.25), we have

>a, 0 04)-xa 0] | (o -t )35, 0 +u<x.,ts>}—

(a-t)35a, 0 <1>]+u'<x.,ts>]

| (t.,, — Zas qi(l)]+u(x,,ts)}2x (2.38)

From eq. (2.38), the wavelet coefficients &,(I) can be successively calculated. This
process starts with

u(x,to) = f(x),

u'(x,t)=f'(x),

u"(%.t) = £"(x).
To show the efficiency and accuracy of proposed scheme, two test examples have been

considered taking p=2. The numerical solutions thus acquired are compared with the

analytical solutions as well as available numerical results.

Example 2.3 Consider modified Burgers’ equation with the following initial and
boundary conditions [60, 61]

u(xl)=—> (2.39)

X
1+ie4v
Co
u(0,t)=ut)=0, t>1

1
where ¢, =e? .

The exact solution of Eq. (2.25) is given by [60, 61]

u(x,t)=—Lt— , t>1 (2.40)

Example 2.4 In this example, we consider modified Burgers’ equation with initial and

boundary conditions in the following form

44



u(x,0)=sin(zx)  0<x<1 (2.41)
u(0,t)=u(t)=0, t>0
In case of example 2.3, the Haar wavelet numerical solutions have been compared with the
results obtained by Ramadan et al. [61] using the collocation method with quintic splines
and in case of example 2.4, the solutions have been compared with the results obtained by
Duan et al. [63] using 2-bit lattice Boltzmann method (LBM). Tables 2.5 and 2.6 cite the
comparison of Haar wavelet solution with LBM and quintic splines numerical solutions at

t=0.4 and t=2,and hence the numerical solutions at different time stages are shown in

Figure 2.5.

2.4.1 Numerical Results for Modified Burgers’ Equation

The errors for modified Burgers’ equation are measured using two different norms,

namely L,and L_,defined by

1 2M 2
L, =R.M.S. Error = W\/El(]uappmx (%4 ) = Ugyace( X+ t)() (2.42)
Loo = max ‘uapprox (XI J t)_ uexact(xl 1 tx (243)

The following Table 2.4 exhibits the L, and L, error norms for modified Burgers’
equation taking p=2, v=0.001 and different values of t. In Table 2.4, J is taken as 5 i.e.
M =32 and At is taken as 0.001.

Table 2.4 L, and L_ error norm for modified Burgers’ equation (example 2.3) at different

values of t with v =0.001 and At =0.001.

Time Present Method Quintic spline
(sec)

L, x10°° L, x107° L, x107° [61] L, x10°[61]
2 0.0755325 0.289254 0.0670395601 0.2796704002
3 0.0711446 0.256515 0.0689577701 0.2514379353
4 0.065229 0.214577 0.0666974605 0.2185661439
5 0.0604007 0.182222 0.0636023977 0.1923643818
6 0.0565458 0.157428 0.0604622308 0.1717652452
7 0.0534117 0.138249 0.0575085655 0.1553318123
8 0.0508078 0.123651 0.0548010376 0.1418932282
Table 2.5 Comparison of Haar wavelet solutions with the LBM solutions and 5-Splines

solution of modified Burgers’ equation (example 2.4) at t =0.4 and v = 0.01.
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Approximate solution
using Haar wavelet

Approximate solution using
lattice Boltzmann method [63]

Approximate solution using
Quintic spline method [61]

method (uappmx)
0.10 0.221423 0.22177116 0.22033034
0.20 0.396841 0.39414890 0.39460783
0.30 0.531256 0.53134565 0.53244922
0.40 0.64835 0.64627793 0.64763455
0.50 0.744936 0.74511632 0.74643231
0.60 0.831235 0.83048713 0.83133318
0.70 0.902641 0.90235089 0.90195203
0.80 0.95132 0.95495434 0.95119837
0.90 0.825329 0.83737688 0.82794559
0.99 0.0623064 0.06214261 0.04674614
Table 2.6 Comparison of Haar wavelet solutions with the LBM solutions and 5-Splines

solution of modified Burgers’ equation (example 2.4) at t =2.0 and v =0.01.

Approximate solution
using Haar wavelet

Approximate solution using
lattice Boltzmann method [63]

Approximate solution using
Quintic spline method [61]

method (uappmx)
0.10 0.111789 0.11194772 0.11013979
0.20 0.208539 0.20710153 0.20614825
0.30 0.284853 0.28512152 0.28477813
0.40 0.351297 0.35038171 0.35045112
0.50 0.406404 0.40665374 0.40700602
0.60 0.457189 0.45649486 0.45704614
0.70 0.501339 0.50155303 0.50224419
0.80 0.542602 0.54199420 0.54265295
0.90 0.536499 0.53547356 0.53225529
0.99 0.0790367 0.08046491 0.05693884

Figures 2.5-2.8 represent the comparison graphically between the numerical and exact

solutions of modified Burgers’ equation for different values of t and v =0.001. The

behavior of numerical solutions of modified Burgers’ equation is cited in Figures 2.9 and

2.10.
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Figure 2.5 Comparison of Numerical solution and exact solution of modified Burgers’

equation (example 2.3) when t=2.0 and v = 0.001.
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Figure 2.6 Comparison of Numerical solution and exact solution of modified Burgers’

equation (example 2.3) when t=4 and v =0.001.
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Figure 2.7 Comparison of Numerical solution and exact solution of modified Burgers’

equation (example 2.3) when t =6 and v =0.001.
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Figure 2.8 Comparison of Numerical solution and exact solution of modified Burgers’
equation (example 2.3) when t =8 and v =0.001.
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Figure 2.9 Behavior of numerical solutions for modified Burgers’ equation (example 2.3)
when v =0.001and At =0.001 at times t=2,4,6and8.
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Figure 2.10  Behavior of numerical solutions for modified Burgers’ equation (example 2.4)

when v =0.01 and At =0.001 at times t=0.4,0.8,2and 3.
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2.5 Analytical and Numerical Methods for Solving

Burgers-Huxley Equation
The generalized Burgers-Huxley equation [64-66] is a nonlinear partial differential
equation of the form
u, + au’u, —u,, = fud—-u’)u’ -»),0<x<1, t>0, (2.44)

where «, g3, yand ¢ are parameters, >0, 5,5 >0.

The initial condition associated with eq. (2.44) is given by
Y5
u(x,O):(g+%tanh[Alx]j . (2.45)

The exact solution of eq. (2.44) is given by [65, 72]

u(xt)= (g%tanh[/s&(x—AQt)]]%, (2.46)
where

_—ad+o o’ +48(1+06)
th 41+0) &

A, = : ya _(1+5—7/)(—a+1/a2+4,B(1+5))
1

+5) 2(1+5)

where @, f,7 and § are parameters with =0 and § > 0.

This exact solution satisfies the following boundary conditions

u(o,t)

{g + g tanh(— AlAzt)}%, t>0

u(L,t)

120 (2.47)

B+gtanh(A1(1_ Azt))r‘s

In our present study, ¢ =1 has been considered.

2.5.1 Application of Variational Iteration Method for Solving Burgers-
Huxley Equation

Construct a correctional functional for eq. (2.44) as follows:
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U (X, 1) = Uy (X, 1)+ j/{(un)f - (uf)(~un)x— (uNn)XX— u,1-u, Yu, - 0.001)}dr . (2.48)
0

where A is a general Lagrangian multiplier whose optimal value can be found using

variational theory and Un(X,t) Is the restricted variation, i.e. 5Un(x,t)= 0.
t ~ - -

0 00) =100+ 3] 2 1), =)0, 0, -0 o, 000D o 249
0

From the above eg. (2.49) we have

t
5un+1(x,t):5un(x,t)+5j'i[au”jdr, (2.50)

061

since 5[(un5Xun)X] =0, 5( u, ), =0 and &(u, (L—u, Xu, —0.001))=0

Integrating right hand side of eq. (2.50) yields

t

Suy(xt)=u,(xt)L1+4)- J'ﬁ u,(x,7)1dr . (2.51)
0

From stationary condition we know
o un+1(X’ t) =0 !
which yields that

t
8 uy(x, )i+ )~ [ 5 uy(x, 7)Adr =0,
0

This implies 1+4=0 and A'(t)=0
Hence A=-1. (2.52)

Therefore A can be identified as —1, and the following variational iteration formula

can be obtained as

Ung (X, 1) = Uy (X, t)—f{(un), — (Un) (U= (U = Un -, YU, —0-001)}0'7 . (2.53)
0

From the above iteration formula eq. (2.53), we can obtain

u; (x,t)=0.0005 +0.0005 tanh(0.00025 x)—0.000000249938 t sech?(0.00025 x)

with initial condition
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Uo(X,t)=0.0005 +0.0005 tanh(0.00025 x) .

2.5.2 Application of Haar Wavelet Method for Solving Burgers-Huxley
Equation
Haar wavelet solution of u(x,t) is sought by assuming that U"(x,t) can be expanded in

terms of Haar wavelets as

2M
u"(x,t)=> a(in(x) for telty,tg,,]. (2.54)
i=1
Integrating eq. (2.54) with respect to t from {; to t and twice with respect to x from 0 to x

the following equations are obtained

G(x0) = (t—t, )2 A (Dh () +u(x.t, ), (2.55)
u'(x,t)=(t -t )%ZMllaS (i)p; (x)+u'(x,t;)—u’'(0,t, )+ u'(0,1), (2.56)

u(x,t)=(-t,)> a, (i) (x)+u(xt;)—u(0t, )+ x[u’(0,t)-u’(0,t,)]+u(0,t), (2.57)

i=1

2M

u(x,t)=">"ay (i) (x)+xu'(0,t)+u(0,t), (2.58)
i=1
By using the boundary conditions, at x =1, we have
u'(0,t)= —%as (i)g; (@) +u(L,t)-u(o,t). (2.59)

i=1

Discretizing the results by assuming X — X, t > 1,,; we obtain

(XI ' s+1 s+1 Za (I XI )+ u (XI ’ts) (2-60)

2M

u'(XI7ts+1):(ts+1_ts)zas(l)p (XI)+U (XI ) (O t )+u'(0'ts+1)’ (2-61)

i=1

U(Xl ts+l s+l Za XI +Uu XI s) (Ot ) (2 62)
+ XI [ (O’ts+l) ul(07ts )]+ u(o’ts+l )'

s+1 Za XI +Xu (0 ts+1)+u(o’ts+1)' (2'63)

Substituting egs. (2.63) and (2.59) in eq. (2.44), we have
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TZZ:aS ()l (%)= %0 @)] = u"(x,,t, )+ u(x, t R —u(x,. t, )Ju(x,. t, )—0.001]

—u(x,t 04, t)-u(0, 1) = x [u@ t,.,)-u(0, 8, )}

(2.64)

From the above equation the wavelet coefficients a (i) can be successively calculated.

This process started with

u(xl,to):1+tanh(%j,
, 1 X
u (xl,to):Esechz(E'j,

—isec hz(ﬁj tanh(ﬁ) .
2 2 2

2.5.3 Numerical Results for Burgers-Huxley Equation

u"(xl 'to) =

The following Tables show the comparisons of the exact solutions with the approximate
solutions of Burgers-Huxley equation taking =1, =1, y=0.001, § =1 and different
values of t. In Tables 2.7-2.9, Jistakenas 3i.e. M =8 and At is taken as 0.0001.

Table 2.7
wavelet method and one iteration of VIM at various collocation points for x with
t=0.4andy =0.001.

The absolute errors for the solutions of Burgers-Huxley equation using Haar

X Approximate Approximate Exact Absolute Absolute
solutions using solutions solutions Errors using | Errors using
Haar wavelet | using VIM (uexact) Haar VIM
method (uapprox) (uappmx) wavelet
method
0.03125 0.00050006 0.00049994 | 0.000500054 | 6.56610E-9 | 1.49925E-7
0.09375 0.000500121 0.000499912 | 0.000500062 | 5.90949E-8 | 1.49925E-7
0.15625 0.000500234 0.00049992 | 0.000500069 | 1.64153E-7 | 1.49925E-7
0.21875 0.000500399 0.000499927 | 0.000500077 | 3.21739E-7 | 1.49925E-7
0.28125 0.000500617 0.000499935 | 0.000500085 | 5.31854E-7 | 1.49925E-7
0.34375 0.000500887 0.000499943 | 0.000500093 | 7.94498E-7 | 1.49925E-7
0.40625 0.000501210 0.000499951 | 0.000500101 | 1.10967E-6 | 1.49925E-7
0.46875 0.000501586 0.000499959 | 0.000500109 | 1.47737E-6 | 1.49925E-7
0.53125 0.000502014 0.000499966 | 0.000500116 | 1.89760E-6 | 1.49925E-7
0.59375 0.000502495 0.000499974 | 0.000500124 | 2.37036E-6 | 1.49925E-7
0.65625 0.000503028 0.000499982 | 0.000500132 | 2.89565E-6 | 1.49925E-7
0.71875 0.000503613 0.00049999 0.00050014 | 3.47347E-6 | 1.49925E-7
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0.78125 0.000504251 0.000499998 | 0.000500148 | 4.10381E-6 | 1.49925E-7
0.84375 0.000504942 0.000500005 | 0.000500155 | 4.78669E-6 | 1.49925E-7
0.90625 0.000505685 0.000500013 | 0.000500163 | 5.52210E-6 | 1.49925E-7
0.96875 0.000506481 0.000500021 | 0.000500171 | 6.31009E-6 | 1.49925E-7
Table 2.8 The absolute errors for the solutions of Burgers-Huxley equation using Haar

wavelet method and one iteration of VIM at various collocation points for x with
t=0.6andy =0.001.

X Approximate Approximate | Exact solutions Absolute Absolute
solutions using solutions (uexact) Errors using | Errors using
Haar wavelet using VIM Haar wavelet VIM
method (Ugppros) (Usppron) method
0.03125 | 0.000500089 0.000499854 0.000500079 9.84903E-9 | 2.24888E-7
0.09375 | 0.000500175 0.000499862 0.000500087 8.86412E-8 | 2.24888E-7
0.15625 | 0.000500341 0.00049987 0.000500094 2.46226E-7 | 2.24888E-7
0.21875 | 0.000500585 0.000499877 0.000500102 4.82602E-7 | 2.24888E-7
0.28125 | 0.000500908 0.000499885 0.00050011 7.97771E-7 | 2.24888E-7
0.34375 0.00050131 0.000499893 0.000500118 1.19173E-6 | 2.24888E-7
0.40625 0.00050179 0.000499901 0.000500126 1.66400E-6 | 2.24888E-7
0.46875 0.00050235 0.000499909 0.000500134 2.21600E-6 | 2.24888E-7
0.53125 | 0.000502988 0.000499916 0.000500141 2.84700E-6 | 2.24888E-7
0.59375 | 0.000503705 0.000499924 0.000500149 3.55600E-6 | 2.24888E-7
0.65625 0.0005045 0.000499932 0.000500157 4.34300E-6 | 2.24888E-7
0.71875 | 0.000505375 0.00049994 0.000500165 5.21000E-6 | 2.24888E-7
0.78125 | 0.000506328 0.000499948 0.000500173 6.15500E-6 | 2.24888E-7
0.84375 0.00050736 0.000499956 0.00050018 7.18000E-6 | 2.24888E-7
0.90625 | 0.000508471 0.000499963 0.000500188 8.28300E-6 | 2.24888E-7
0.96875 | 0.000509661 0.000499971 0.000500196 9.46500E-6 | 2.24888E-7
Table 2.9 The absolute errors for the solutions of Burgers-Huxley equation using Haar

wavelet method and one iteration of VIM at various collocation points for x with

t=1andy =0.001.

X Approximate Approximate Exact Absolute errors Absolute
solutions using solutions solutions using Haar errors using
Haar wavelet using VIM (uexact) wavelet method VIM
methOd (uapprox) (uapprox)
0.03125 0.000500145 0.000499754 | 0.000500129 1.6414E-8 3.74813E-7
0.09375 0.000500284 0.000499762 | 0.000500137 1.47726E-7 3.74813E-7
0.15625 0.000500555 0.00049977 0.000500144 4.10351E-7 3.74813E-7
0.21875 0.000500957 0.000499777 | 0.000500152 8.04288E-7 3.74813E-7
0.28125 0.00050149 0.000499785 0.00050016 1.32954E-6 3.74813E-7
0.34375 0.000502154 0.000499793 | 0.000500168 1.9861E-6 3.74813E-7
0.40625 0.00050295 0.000499801 | 0.000500176 2.7740E-6 3.74813E-7
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0.46875 0.000503877 0.000499809 | 0.000500183 3.6940E-6 3.74813E-7
0.53125 0.000504935 0.000499816 | 0.000500191 4.7440E-6 3.74813E-7
0.59375 0.000506125 0.000499824 | 0.000500199 5.9260E-6 3.74813E-7
0.65625 0.000507445 0.000499832 | 0.000500207 7.2380E-6 3.74813E-7
0.71875 0.000508898 0.00049984 0.000500215 8.6830E-6 3.74813E-7
0.78125 0.000510481 0.000499848 | 0.000500223 1.02580E-5 3.74813E-7
0.84375 0.000512196 0.000499856 0.00050023 1.19660E-5 3.74813E-7
0.90625 0.000514042 0.000499863 | 0.000500238 1.38040E-5 3.74813E-7
0.96875 0.00051602 0.000499871 | 0.000500246 1.57740E-5 3.74813E-7

In case of » =0.001, the R.M.S. error between the Haar wavelet solutions and the exact

solutions of Burgers-Huxley equations for t=0.4,0.6 and 1 are 3.00204E-6, 4.50295E-6

and 7.50449E-6 respectively and that of the VIM solutions and the exact solutions are
1.49925E-7, 2.24888E-7 and 3.74813E-7 respectively. In case of Burgers-Huxley

equation, Figures 2.11-2.13 cite the comparison graphically between the numerical

solutions obtained by Haar wavelet method, VIM and exact solutions for different values

oftand y.
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Comparison of Haar wavelet solutions and VIM solutions with the exact solution

of Burgers-Huxley equation when t=0.4 and y =0.001.
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Figure 2.12  Comparison of Haar wavelet solutions and VIM solutions with the exact solution
of Burgers-Huxley equation when t =0.6 and y = 0.001.
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Figure 2.13  Comparison of Haar wavelet solutions and VIM solutions with the exact solution

of Burgers-Huxley equation when t =1 and y =0.001.

2.6 Application of Analytical and Numerical Methods for

Solving Huxley equation

Huxley equation is a nonlinear partial differential equation of second order of the form

U, =U, +u(k—u)u-1, k=0, (2.65)
with initial condition
1 X
u(x,0)==|1+tanh) — 2.66
0 2{ (2& ﬂ (@60
The exact solution of eq. (2.65) is given by [68]
1 1 2k -1
u(x,t)==|1+tanh X— tie], k=0 2.67
) 2[ bl JH o0
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Taking k =1, the boundary conditions are

u(0,t)= %[1— tanh(%ﬂ,

u(l,t)zg{lﬂanh{%(l—%jﬂ | (2.68)

2.6.1 Application of Variational Iteration Method for Solving Huxley
Equation

Construct a correctional functional as follows:

u,..(x,t)=u,(x, t)+.t[/1{(un)r —(u, ), —u, (k —u; Xu, —1)}dr , (2.69)

where A is a general Lagrangian multiplier whose optimal value can be found using

variational theory and U, (X,t) is the restricted variation, i.e. 3T, (x,t)=0.

t -~ ~
S0 0)=00,( 040 [4 0,) - 0)ul-u)o, -V, @70
0
From the above eq. (2.70), we have
t
Su_(xt)= 5un(x,t)+5j/1(a“” jdr , (2.71)
5 \ Ot

since 5 (U, ), =0 and 5[un(k ~u, Yu, —l)j =0.

Integrating right hand side of eq. (2.71) yields

Su,,(x,t)=5u_ (x, t)1+ ﬂ)—jé u,(x,t)2dr (2.72)

0
From stationary condition, we know
o l“|n+:L(X’ t) =0 '

t
which yields that & U, (X, tY1+4)- j Su,(x,7)Adz =0
0

This implies 1+4=0 and A'(t)=0
Hence A=-1 (2.73)

Therefore A can be identified as —1, and the following variational iteration formula

can be obtained as
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0 (6 0= (x 1)~ {(un)r (@), —u (k-u o, _1)}”. 2.74)

From the above iteration formula eq. (2.74), we can obtained

O t—

ul(x,t)=0.5+0.5tanh( X J—O.lZStsechz[ X (2.75)

- 245)

Uy (x,t)= %{u tanh[%ﬂ.

2.6.2 Application of Haar Wavelet Method for Solving Huxley Equation

with initial condition

It is assumed that u”(x,t) can be expanded in terms of Haar wavelets as
Za ) for t e[t tg,,] (2.76)
where “.”” and “ ' ” stands for differentiation with respect to t and x respectively.

Now, integrating eq. (2.76) with respect to t from t, to t and twice with respect to x from 0

to x the following equations are obtained

() = (t—t, )2as (Oh ()+u(x.,), 2.77)
W0t)=(t-t,)3 a [)py(x)+ Ut )~ w0t )+ u/0.1), (2.78)

i=1

2M

u(x,t)=(t—t,)> a (i) (x)+u(x, tg)—u(0,t, )+ x[u'(0,t)-u'(0,t, )] +u(0,t),  (2.79)

i=1

2M

u(x,t)=">"ay (i) (x)+xd'(0,t)+u(0,t). (2.80)
i=1
By using the boundary conditions, at x =1, we have
u'(0,t)= —%as (i)g; (1) +u(t)-u(o,1). (2.81)

i=1

Discretizing the results by assuming X — X, t =>1.;, we obtain

U"(X| s+1 s+1 Za (I XI)+U ( ts)’ (2'82)
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2M

U'(Xl ’ts+1)= (ts+1 _ts )z ( )pl (XI )+ u (XI ) (0 t )+ u (O1ts+1) (283)

i=1

U(X| 1ts+1) = (ts+1 _ts)z_ZMas (I)q| (XI ) + U(X| 7ts) - U(O,ts) + X| [U’(O,ts+l) - U’(O,ts)]-i- U(O! ts+1)1

(2.84)
2M
l:I(XI 'ts+1) = zas (I)q (XI )+ XI (O’ts+1)+ u(07ts+1) (2-85)
i=1
Substituting egs. (2.85) and (2.81) in eq. (2.65), we have
Za [q XI —X0; ( )] (XI ’ts) u(XI ’ts )[1_U(XI ’ts )]2 - (286)

u(0,t,,) - x [0 ;.1 )—u(0,t..)]-

From eq. (2.86), the wavelet coefficients a5(i) can be successively calculated. This

process started with

u'(x,t) = 4\1/_sech (2\/_j

u”(x,,to):—%sech ( \/_jtanh[z\/_]

2.6.3 Numerical Results for Huxley Equation

In the following Tables 2.10-2.12, J has been taken as 3 i.e. M =8 and At is taken as
0.0001. Again, the R.M.S. error can be calculated for different values of t. For t =0.4,0.6

and 1, the R.M.S. error between the Haar wavelet solutions and the exact solutions of
Huxley equation are 0.0209303, 0.0354936 and 0.060677 respectively. For t =0.4,0.6 and

1, the R.M.S. error between the VIM solutions and the exact solutions of Huxley equation
are 8.10868E-4, 1.696E-3 and 4.03601E-3 respectively.

Table 2.10 The absolute errors for the solutions of Huxley equation using Haar wavelet

method and one iteration of VIM at various collocation points for x with k =1andt = 0.4.
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X Approximate | Approximate Exact Absolute Absolute

solutions using solutions solutions Errors using | Errors using

Haar wavelet using VIM (uexact) Haar wavelet VIM

method (uappmx) (uappmx)
0.03125 0.455737 0.45553 0.455641 9.55529E-5 | 1.11054E-4
0.09375 0.467153 0.466622 0.466623 5.30592E-4 | 8.87183E-7
0.15625 0.478927 0.477746 0.477636 1.29070E-3 | 1.09283 E-4
0.21875 0.491048 0.488891 0.488672 2.37582E-3 | 2.19028 E-4
0.28125 0.503505 0.500046 0.499718 3.78609E-3 | 3.27923E-4
0.34375 0.516287 0.511201 0.510765 5.52185E-3 | 4.35548E-4
0.40625 0.529385 0.522343 0.521802 7.58360E-3 | 5.41497E-4
0.46875 0.542789 0.533462 0.532817 9.97205E-3 | 6.45376E-4
0.53125 0.556488 0.544547 0.5438 1.26880E-2 | 7.46806E-4
0.59375 0.570474 0.555586 0.554741 1.57326E-2 | 8.45430E-4
0.65625 0.584736 0.56657 0.565629 1.91070E-2 | 9.40912E-4
0.71875 0.599266 0.577487 0.576454 2.28126E-2 | 1.03294E-3
0.78125 0.614057 0.588327 0.587206 2.68510E-2 | 1.12123 E-3
0.84375 0.629099 0.599081 0.597876 3.12230E-2 | 1.20552E-3
0.90625 0.645576 0.609739 0.608453 3.71230E-2 | 1.28559E-3
0.96875 0.668244 0.620291 0.61893 4.93140E-2 | 1.36124E-3

Table 2.11 The absolute errors for the solutions of Huxley equation using Haar wavelet

method and one iteration of VIM at various collocation points for x with k =1andt =0.6.

X Approximate | Approximate Exact Absolute Errors Absolute
solutions using solutions solutions using Haar Errors using
Haar wavelet using VIM (uexact) wavelet VIM
method (uapprox) (uapprox)
0.03125 0.431155 0.430533 0.430968 1.87446E-4 4.34778E-4
0.09375 0.442789 0.441649 0.441837 9.51983E-4 1.88225E-4
0.15625 0.454998 0.452822 0.452763 2.23552E-3 5.90574E-5
0.21875 0.467771 0.46404 0.463734 4.03766E-3 3.06109E-4
0.28125 0.481098 0.475292 0.47474 6.35830E-3 5.51971E-4
0.34375 0.494968 0.486567 0.485771 9.19760E-3 7.95698E-4
0.40625 0.509372 0.497852 0.496816 1.25560E-2 1.03636E-3
0.46875 0.524298 0.509136 0.507863 1.64343E-2 1.27304E-3
0.53125 0.539737 0.520408 0.518904 2.08334E-2 1.50489E-3
0.59375 0.55568 0.531656 0.529925 2.57546E-2 1.73105E-3
0.65625 0.572117 0.542869 0.540918 3.11994E-2 1.95074E-3
0.71875 0.589041 0.554034 0.551871 3.71696E-2 2.16323E-3
0.78125 0.606441 0.565142 0.562774 4.36670E-2 2.36782E-3
0.84375 0.62431 0.57618 0.573616 5.06940E-2 2.56389E-3
0.90625 0.645842 0.58714 0.584389 6.14530E-2 2.75089E-3
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0.96875

0.683829

0.598009

0.595081

8.87480E-2

2.92832E-3

Table 2.12

The absolute errors for the solutions of Huxley equation using Haar wavelet

method and one iteration of VIM at various collocation points for x with k =1andt =1.

X Approximate | Approximate Exact Absolute Absolute
solutions using solutions solutions Errors using Errors using
Haar wavelet using VIM (uexact) Haar wavelet VIM
method (Uspprox)
(uapprox)

0.03125 0.383171 0.380539 0.382747 4.23760E-4 2.20814E-3
0.09375 0.395066 0.391704 0.393241 1.82475E-3 1.53709E-3
0.15625 0.407796 0.402974 0.403834 3.96201E-3 8.60175E-4
0.21875 0.421352 0.414338 0.414518 6.83392E-3 1.79977E-4
0.28125 0.435721 0.425783 0.425282 1.04393E-2 5.00891E-4
0.34375 0.450895 0.437298 0.436118 1.47773E-2 1.17981E-3
0.40625 0.466863 0.448869 0.447015 1.98477E-2 1.85419E-3
0.46875 0.483614 0.460485 0.457964 2.56507E-2 2.52146E-3
0.53125 0.501139 0.472132 0.468953 3.21868E-2 3.17912E-3
0.59375 0.519429 0.483797 0.479972 3.94572E-2 3.82474E-3
0.65625 0.538474 0.495467 0.491011 4.74633E-2 4.45598E-3
0.71875 0.558265 0.507129 0.502058 5.62070E-2 5.07062E-3
0.78125 0.578795 0.51877 0.513104 6.56910E-2 5.66659E-3
0.84375 0.600054 0.530378 0.524137 7.59170E-2 6.24192E-3
0.90625 0.632639 0.541941 0.535146 9.74930E-2 6.79482E-3
0.96875 0.718961 0.553445 0.546121 1.72840E-1 7.32368E-3

In case of Huxley equation, the Figure 2.14 present the comparison graphically between
the numerical results obtained by Haar wavelet method, VIM and exact solutions for

different values of t and k =1.

wx,0.4)
0.Er
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Figure 2.14  Comparison of Haar wavelet solutions and VVIM solutions with the exact solution
of Huxley equations when t =0.4 and k =1.

2.7 Numerical Solution of Generalized Modified KdV

Equation

Consider the generalized modified KdV equation [80-82]
Uy +quu, +rU,,, =0, 0<x<1,t>0 (2.87)
with initial condition

u(x,0)= _%r tanh (x). (2.88)

The exact solution of Eq. (2.87) is given by [80]

u(x,t)= /—Ter tanh(x + 2rt) (2.89)

where g and r are parameters.

This exact solution satisfies the following boundary conditions

u(0,t)= /—TGr tanh (2rt), t>0

u(Lt)= _T6r tanh (1+2rt), t>0 (2.90)

«m

Haar wavelet solution of u(x,t) is sought by assuming that U (x,t) can be expanded in

terms of Haar wavelets as

2M
u"(x,t)="> a,(i)h(x) for telt,t,,;] (2.91)
i=1
Integrating eq. (2.91) with respect to t from t; to t and thrice with respect to x from 0 to X,

the following equations are obtained

(%, t) = (t—t, )ZM a (DR (x)+u"(x . ). (2.92)
U(xt) = (t=t,)3 2 )py (0+ U0t )+ u(0.) - (0.t ), (2.93)

i=1

2M

u'(x,t)=(t—t;)> a,(i)o; (x)+u'(x,tg )+ x[u"(0,t) - u"(0,t, )]+ u'(0,t)-u'(0,t,),  (2.94)

i=1
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()= -3 00 +uee, )+ fr00-ur0)

(2.95)
+x[u'(0.t)-u(0.t,)]+u(0.t)-u(0.t, )
Za X )+ xu’( 0t)+X72u (0,t)+u(0,1). (2.96)

Using finite difference method

oy u(0,t)-u(o,t,)

u(0,t)= -
Equation (2.96) becomes

Za WX {u (0,t)- u”(O,ts)}rX{u’(o,t)—u'(o,ts)}
2 -t L 2.97)
{U(O,t)—u(o,ts)} .
+ - :
By using the boundary condition at x =1, eq. (2.94) becomes
=(t-tg Za 1)+u'(Lt,)-u'(0,t,)+u'(0,1)+[u"(0,t)-u"(0, 1, ).
This implies
u"(0,t)-u —(t—t, Za )+u'@t)-u@t)]-[u'(0,t)-u'(0,t)].  (2.98)
Substituting eq. (2.98) in egs. (2.93) - (2.96), we have
"(x,t)=(t-t, Za "(xt,)+
. (2.99)
[—a—ts>zas<u>qi<1>+[uf(Lt)—u’(l,ts)]—[u'<o,t)—u'<o,ts>]}
u'(x,t)=(t-t,) %a i)g, (x)+u'(x,t,)-u’(0,t,)+u’(0,t)
(2.100)

{ t— tZa 1)+u'(L,t)-u (,ts)—u’(O,t)+u'(O,ts)]

t)z(t—ts)izzl:as(i)r 2[ . tza )+ (Lo -u (l,ts)—u'(O,t)+u’(O,ts)}
+u(x,t, )+ x[u'(0,t)- u(Ot)]+u( ) u(o,t,),

(2.101)
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t)=?2j:as(i)ri(x)+ X { za 1)+ uLt)-u (l,ts)—u'(O,t)+u’(O,tS)}

2(t-t,)
+— X u(0t)-u'o, )]+L[U(0, t)-u(0,t,)}

t—t, t—t,
(2.102)
Discretizing the above results by assuming X — X, t = L., , we obtain
um(xl s+1 s+1 s Za XI +U( t)’
(Xt )=ty — Za p; (% )+u"(x,t )+
(2.103)
{ Lt 3a) 1tsﬂ)—u'(l,ts)]—[u'(o,tsﬂ)—u'(o,ts)]}
U(t)= (6 —t)D 8,000 (6)+ U0 )+ U O.,) v, )+
- (2.104)
{ (t,: —t )Zl a, (i), 1)+ [u(1,ts+1)—u’(1,ts)]—[u'(O,tm)—u’(O.ts)]}
TERMMEORES) SX0 TCORTCRS R ETCIY
+x|[u( ) u(0t)] (2.105)
+X7[ (. _tz“j D+ [WlLe)-u ’(1,ts)]—[u’(0,tM)—u’(O,ts)]}
(RN ¥ X) tsj_ : [u<o,ts+1>—u<o,ts>]+tsj_ts wo.)-vL)
(2.106)

X2 { Za D+u'Lt,,)-u ’(1,ts)—U'(0,ts+l)+U’(0,ts)}

2(t —t)

Substituting the above equations in eg. (2.87), we have

2

sz:as(i)n | 2(tx—t)[ a7 Za ulhta)-ut)-

w(0.8,) O]+ ) -]+

s+1 S S+1 ts

=0.001u"(x,, t,)—6[u(x,, t. ) [u'(x,.t,)].

L@.t.,)-u0t)] (2107

Therefore,
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3.0 ) " 00| - 000 (s, 1) -Gt Pl 1.

2 2

_ ﬁ [U’(l. ts+1)_ u’(l, ts )]+ ﬁ [U’(O, ts+1)_ U’(O, ts )] (2108)
s+1 s ol S
- a1 [0 0,t.1) -0 0,1)] - 1_t [u(0,t.,,)-u(0,t,)] .
s+1 s s+l s

From the above equation, the wavelet coefficients as(i) can be successively
calculated. This process starts with

—6r

x ,t tanh x

1140 q I

u'(x,ty) = —or sech?(
q

2.7.1 Numerical Results of mKdV Equation

The following Tables show the comparisons of the exact solutions with the approximate

solutions of modified KdV equation taking q =6, r =—0.001 and different values of t. In
Tables 2.13-2.16, Jis taken as 3 i.e. M =8 and At is taken as 0.0001.

Table 2.13 The absolute errors for modified KdV equation at various collocation points of x

with t =0.2andr =-0.001.

X Approximate solution Exact solution (uexact) Absolute Error
(uapprox)
0.03125 0.000975289 0.000975254 3.45313E-8
0.09375 0.00294375 0.00294344 3.10577E-7
0.15625 0.00488976 0.00488889 8.63705E-7
0.21875 0.00679886 0.00679716 1.6977E-6
0.28125 0.00865771 0.00865489 2.8188E-6
0.34375 0.0104545 0.0104502 4.23521E-6
0.40625 0.0121789 0.012173 5.95649E-6
0.46875 0.0138229 0.0138149 7.99297E-6
0.53125 0.01538 0.0153696 1.03551E-5
0.59375 0.0168459 0.0168328 1.30530E-5
0.65625 0.018218 0.0182019 1.60958E-5
0.71875 0.0194955 0.019476 1.94918E-5
0.78125 0.0206791 0.0206558 2.32477E-5
0.84375 0.0217706 0.0217432 2.73688E-5
0.90625 0.0227729 0.022741 3.18592E-5
0.96875 0.0236899 0.0236532 3.67252E-5
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Table 2.14 The absolute errors for modified KdV equation at various collocation points of x

with t =0.5andr = —-0.001.

X Approximate solution Exact solution (uexact) Absolute Error
(uapprox)
0.03125 0.000956384 0.000956298 8.64056E-8
0.09375 0.00292541 0.00292463 7.77845E-7
0.15625 0.00487254 0.00487037 2.16512E-6
0.21875 0.00678332 0.00677906 4.25957E-6
0.28125 0.00864442 0.00863734 7.07870E-6
0.34375 0.010444 0.0104333 1.06449E-5
0.40625 0.0121718 0.0121568 1.49840E-5
0.46875 0.0138197 0.0137995 2.01238E-5
0.53125 0.0153812 0.0153552 2.60922E-5
0.59375 0.0168522 0.0168192 3.29164E-5
0.65625 0.0182299 0.0181892 4.06215E-5
0.71875 0.0195135 0.0194643 4.92298E-5
0.78125 0.0207037 0.020645 5.87601E-5
0.84375 0.0218024 0.0217332 6.92277E-5
0.90625 0.0228125 0.0227319 8.06444E-5
0.96875 0.0237378 0.0236448 9.30207E-5

Table 2.15 The absolute errors for modified KdV equation at various collocation points of x

with t =0.8andr =—0.001.

X Approximate solution | £yact solution (uexact) Absolute Error
(uapprox)
0.03125 0.00093748 0.000937341 1.38295E-7
0.09375 0.00290707 0.00290582 1.24525E-6
0.15625 0.00485531 0.00485185 3.46691E-6
0.21875 0.00676778 0.00676095 6.82219E-6
0.28125 0.00863112 0.00861978 1.13399E-5
0.34375 0.0104335 0.0104164 1.70566E-5
0.40625 0.0121647 0.0121406 2.40144E-5
0.46875 0.0138164 0.0137842 3.22585E-5
0.53125 0.0153825 0.0153406 4.18346E-5
0.59375 0.0168584 0.0168056 5.27869E-5
0.65625 0.0182417 0.0181765 6.51565E-5
0.71875 0.0195315 0.0194525 7.89797E-5
0.78125 0.0207283 0.0206341 9.42876E-5
0.84375 0.0218343 0.0217232 1.11105E-4
0.90625 0.0228522 0.0227227 1.29453E-4
0.96875 0.0237858 0.0236364 1.49345E-4
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Table 2.16

with t =1andr =-0.001.

The absolute errors for modified KdV equation at various collocation points of x

X Approximate solution Exact solution Absolute Error
(uapprox) (uexact)
0.03125 0.000924876 0.000924703 1.72895E-7
0.09375 0.00289483 0.00289328 1.55692E-6
0.15625 0.00484383 0.0048395 4.33497E-6
0.21875 0.00675741 0.00674888 8.53102E-6
0.28125 0.00862225 0.00860807 1.41814E-5
0.34375 0.0104265 0.0104051 2.13321E-5
0.40625 0.0121599 0.0121299 3.00363E-5
0.46875 0.0138143 0.0137739 4.03506E-5
0.53125 0.0153833 0.015331 5.23326E-5
0.59375 0.0168626 0.0167965 6.60379E-5
0.65625 0.0182496 0.0181681 8.15183E-5
0.71875 0.0195434 0.0194446 9.88196E-5
0.78125 0.0207448 0.0206268 1.17981E-4
0.84375 0.0218555 0.0217165 1.39034E-4
0.90625 0.0228786 0.0227166 1.62005E-4
0.96875 0.0238178 0.0236309 1.86910E-4

In case of r =-0.001, the R.M.S. error between the numerical solutions and the exact
solutions of modified KdV equations for t=0.20.50.8 and 1 are 1.7137E-5,
4.33416E-5, 6.95581E-5 and 8.70423E-5 respectively and for r=-0.1 and
t=0.2,0.50.8 and 1 the R.M.S. error is found to be 0.00209359, 0.00624177,

0.011631 and 0.0159099 respectively. In the following Tables 2.17-2.20 also J has
been takenas 3i.e. M =8 and At is taken as 0.0001.

Table 2.17
of x with t =0.2andr =—0.1.

The absolute errors for modified KdV equation at various collocation points

X Approximate Exact solution Absolute Error
solution (Ugpprox) (Upiat)
0.03125 -0.00276621 -0.00276692 7.13784E-7
0.09375 0.0169876 0.0169809 6.65888E-6
0.15625 0.0366175 0.0365968 2.07298E-5
0.21875 0.0559793 0.0559313 4.79820E-5
0.28125 0.0749397 0.0748436 9.60655E-5
0.34375 0.09338 0.0932052 1.74756E-4
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0.40625 0.111199 0.110903 2.95389E-4
0.46875 0.128314 0.127843 4.70239E-4
0.53125 0.144661 0.14395 7.11916E-4
0.59375 0.160198 0.159166 1.03281E-3
0.65625 0.174899 0.173455 1.44463E-3
0.71875 0.188756 0.186798 1.95802E-3
0.78125 0.201774 0.199192 2.58235E-3
0.84375 0.213974 0.210648 3.32555E-3
0.90625 0.225384 0.22119 4.19409E-3
0.96875 0.236043 0.23085 5.19293E-3
Table 2.18 The absolute errors for modified KdV equation at various collocation points of x

with t =0.5andr =-0.1.

X Approximate Exact solution Absolute Error
solution (Ugpprex) (Upiat)
0.03125 -0.0217032 -0.0217065 3.31576E-6
0.09375 -0.00194595 -0.0019764 3.04463E-5
0.15625 0.0178593 0.0177691 9.02230E-5
0.21875 0.0375721 0.0373766 1.95531E-4
0.28125 0.057063 0.0566968 3.66140E-4
0.34375 0.0762172 0.0755894 6.27708E-4
0.40625 0.0949371 0.0939266 1.01047E-3
0.46875 0.113144 0.111596 1.54778E-3
0.53125 0.130779 0.128504 2.27451E-3
0.59375 0.147801 0.144576 3.22569E-3
0.65625 0.16419 0.159755 4.43515E-3
0.71875 0.179941 0.174007 5.93453E-3
0.78125 0.195064 0.187312 7.75255E-3
0.84375 0.209583 0.199668 9.91447E-3
0.90625 0.223529 0.211087 1.24419E-2
0.96875 0.236946 0.221593 1.53524E-2
Table 2.19 The absolute errors for modified KdV equation at various collocation points of x

with t =0.8andr =-0.1.

X Approximate Exact solution Absolute Error
solution (Ugpprox) (Upiact)
0.03125 -0.0404827 -0.0404909 8.13685E-6
0.09375 -0.0208453 -0.0209195 7.42051E-5
0.15625 -0.000970764 -0.00118585 2.15085E-4
0.21875 0.0190084 0.018557 4.51366E-4
0.28125 0.0389709 0.0381558 8.15061E-4
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0.34375 0.05881 0.0574616 1.34835E-3
0.40625 0.0784361 0.0763344 2.10172E-3
0.46875 0.0977786 0.0946469 3.13176E-3
0.53125 0.116786 0.112288 4.49874E-3
0.59375 0.135428 0.129163 6.26422E-3
0.65625 0.153689 0.1452 8.48888E-3
0.71875 0.171574 0.160343 1.12307E-2
0.78125 0.189101 0.174557 1.45436E-2
0.84375 0.206301 0.187824 1.84763E-2
0.90625 0.223215 0.200143 2.30719E-2
0.96875 0.239891 0.211525 2.83664E-2
Table 2.20 The absolute errors for modified KdV equation at various collocation points of x

with t =1andr=-0.1.

X Approximate solution Exact solution Absolute Error
(U approx) (uexact)
0.03125 -0.0528499 -0.0528626 1.27575E-5
0.09375 -0.0333573 -0.0334734 1.16031E-4
0.15625 -0.0134928 -0.0138262 3.33334E-4
0.21875 0.00661869 0.00592858 6.90107E-4
0.28125 0.0268634 0.0256371 1.22625E-3
0.34375 0.0471421 0.0451472 1.99484E-3
0.40625 0.0673727 0.0643127 3.06007E-3
0.46875 0.0874922 0.0829976 4.49462E-3
0.53125 0.107457 0.10108 6.37673E-3
0.59375 0.127243 0.118455 8.78725E-3
0.65625 0.146843 0.135037 1.18068E-2
0.71875 0.16627 0.150757 1.55134E-2
0.78125 0.185549 0.165569 1.99805E-2
0.84375 0.204718 0.179443 2.52756E-2
0.90625 0.223827 0.192368 3.14593E-2
0.96875 0.24293 0.204347 3.85831E-2

Similarly, in case of modified KdV equation, the Figures 2.15-2.19 demonstrate the

comparison graphically between the numerical and exact solutions for different values of

tand r.
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Figure 2.15  Comparison of Numerical solution and exact solution of modified KdV equation

when t=0.2 and r =-0.001.
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Figure 2.16  Comparison of Numerical solution and exact solution of modified KdV equation

when t=0.5 and r =—-0.001
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Figure 2.17  Comparison of Numerical solution and exact solution of modified KdV equation

when t=0.8 and r=-0.001.
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Figure 2.18 Comparison of Numerical solution and exact solution of modified KdV equation

when t=1.0 and r =-0.001.
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Figure 2.19  Comparison of Numerical solution and exact solution of modified KdV equation

when t=0.2 and r =-0.1.

2.8 Error of Collocation Method

The Haar wavelet family for x < [0, 1) is defined as follows

1 xel5.8)
h(x)=1-1 xel&,.&) (2.109)
0 elsewhere
where
k k+0.5 k+1
51:5’ $r = ount §3=T-
Consider u(x )= -t;)> u()Q (x)+y(x 1), t et tg,] (2.110)
i=1
Define a projection map
P, L2(Q)—>V,
by the rule
2M
PmU(X,ts+1)= um(xits+l)= hZU(I)Ql (X) (2.111)
i=1
where Q=[0,1)

and V, is a subspace of L*(Q).

Now we have to estimate |u— P,ul for arbitrary u e L*(€2).
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Lemma 2.1 Let u(x,t) be defined on L*(Q) and P, be the projection map defined as

above then

Ju— Py o maxju]
4

Proof: The integral j

- 5 [ﬁ+(1—§3)} .

The error in approximating the ramp by this constant value over the interval [0,1) is

o+ 0-8)| | k-5

Hence, using E(x) as least square of the error on €, we have

[ﬁJr(x—é)} on the interval [0,1)

r(x)= 8IL\J/II

E2(x)= [/ [r(x)F dx

_J(BM [2|1v| +- 53)} vE [2t/| +(X_‘f3)D2dX

N ETRT ST |
16|\/|3 8|\/|2 8M? 4M? 4M?

I(Ué uy U X jzdx
8M?2 8M? 16M°3 4M?
2
Ui Ié 1 x)dx
4M? 2 2 4M

2
S( y j
4M 2

This implies that

E(y <l (2.112)

On the interval ¢, we have
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Ju— Py = max E(x)< ™M (2.113)

2.9 Error Analysis

Let P, : L*(Q)—V, be a projection map and is defined by

2M

Pmu(x’ts+1):um(x7ts+l): hZU(I)QI (X) (2.114)

i=1
Let us consider the generalized modified Burgers’ equation

ou  ,ou ol
vt =y

. 2.115
ot X  ox? ( )

Suppose that u, =P,u be the approximate solution of eq. (2.115) obtained by wavelet

collocation method

u, ,ou, %,
+Uu = +e 2.116
a "o o (2.116)
then |jg|| < ,
=2,
2
where A=max| 2 +vmax—2+maxu26—u+Pmu2maxa—u
ot OX OX OX

Proof: Subtracting eq. (2.115) from eq. (2.116), we have

ezau—m—FUm 1% > +V—2

ot OX OX ot OX OX

ou (o%u, o) ,ou, ,ou
o a e ae) e

20U, &%, ou ,ou &%

" ox OX

:8(um —u)_vaz(um —u)+(u )ZM—(UZ _umz)a_u

ot aXZ m ox o
_Py = (R 2 0(Pp —1u 28U
- mat —y amxz +(P,u) ma—x_('_Pm)“ a
This implies
2
1P ~ ] mex o IRy =t max 2 Ry Py -t ma S
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ou o%u ) , ou
<[P, —1||| max |—|+v max |—|+ (P,u) max |—|+ max u- —
]| 2 o 2 2 o 2
A
< 2
4M
2
where A=max| 22+ max —l2J+(Pmu)2max NI maxuz )
ot OX X OX

2.10 Conclusion

In this chapter, variational iteration method and Haar wavelet method have been
successfully implemented to compute approximate analytical as well as numerical
solutions of nonlinear partial differential equations viz. the generalized Burgers-Huxley
and Huxley equations. The obtained results are then compared with the exact solutions.
The results thus obtained have been cited in Tables and also graphically to demonstrate the
comparison of variational iteration method and Haar wavelet method. Also, the Burgers’
equation, modified Burgers’ equation and modified KdV equation have been solved by
Haar wavelet method. The acquired results are then compared with the exact solutions as
well as solutions available in open literature. These have been reported in Tables and also
have been shown in the graphs in order to demonstrate the accuracy and efficiency of the
proposed scheme based on Haar wavelet method. The present numerical scheme is reliable
and convenient for solving nonlinear partial differential equations. The main advantages of
the proposed scheme are its simplicity, applicability and less computational errors.
Moreover, the error may be reduced significantly if we increase level of resolution which

prompts more number of collocation points.
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CHAPTER 3

3 Numerical Solution of System of

Partial Differential Equations

3.1 Introduction

Numerical solutions of nonlinear differential equations are of great importance in physical
problems since so far there exists no general technique for finding analytical and
numerical solutions of system of nonlinear partial differential equations. It is well known
that many physical, chemical and biological problems are characterized by the interaction
of diffusion and reaction processes. With the development of science and engineering,
nonlinear evolution equations have been used as the models to describe physical
phenomena in fluid mechanics, plasma waves, solid state physics, chemical physics etc.
System of nonlinear partial differential equations has also been noticed to arise in many
chemical and biological applications. So, for the last few decades, a great deal of attention
has been directed towards the solution (both exact and numerical) of these problems.
Various methods are available in the literature for the exact and numerical solution of
these problems. But, nonlinear partial differential equations are not in general easy to
handle.

In this chapter, we apply Homotopy Perturbation Method (HPM), Optimal Homotopy
Asymptotic Method (OHAM) and Haar wavelet method in order to compute the numerical
solutions of nonlinear system of partial differential equations like Boussinesq-Burgers’
equations. Our aim in the present work is to implement homotopy perturbation method
(HPM) and optimal homotopy asymptotic method (OHAM) in order to demonstrate the
capability of these methods in handling system of nonlinear equations, so that one can

apply it to various types of nonlinearity.

In HPM and OHAM, the concept of homotopy from topology and conventional
perturbation technique were merged to propose a general analytic procedure for the
solution of nonlinear problems. Thus, these methods are independent of the existence of a

small parameter in the problem at hand and thereby overcome the limitations of
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conventional perturbation technique. OHAM, however, is the most generalized form of

HPM as it employs a more general auxiliary function H (p) in place of HPM's p.

OHAM provides a simple and easy way to control and adjust the convergence region for
strong nonlinearity and is applicable to highly nonlinear fluid problem like Boussinesg-
Burgers’ equations. In the proposed OHAM procedure, the construction of the homotopy
is quite different. The way to ensure the convergence in OHAM is quite different and
more rigorous. Unlike other homotopy procedures, OHAM ensure a very rapid
convergence since it needs only two or three terms for achieving an accurate solution

instead of an infinite series. This is in fact the true power of the method. The convergence

control parameters C;,C,,C,,... provide us a convenient way to guarantee the

convergence of OHAM series solution. Moreover, the optimal values of convergence
control constants guarantee the certain convergence of OHAM series solution.

3.2 Overview of the Problem

Generalized Boussinesg-Burgers’ equation [83-85] is a nonlinear partial differential

equation of the form

ut—%vx+2uuX =0, (3.1)
1
vt—zuw+2(uv)X:0, 0<x<1. (3.2)
with initial conditions
u(x,0)=$+%tanh (Mj (3.3)
2 2 2
2
v(x,O):%sech2 (kxw;lnbj. (3.4)

The exact solutions of eq. (3.1) and (3.2) is given by [86]

2
u(x,t):%+%tanh((zk t—l;x—lnb} (3.5)

t)=——sech?
v(x,t) g S >

k2 kx—ck?t+Inb
AL (3.6)
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The Boussinesq-Burgers’ equations arise in the study of fluid flow and describe the
propagation of shallow water waves. Here x and t respectively represent the normalized

space and time, u(x,t) is the horizontal velocity field and v(x,t) denotes the height of the

water surface above a horizontal level at the bottom.

Various analytical methods such as Darboux transformation method [87], Lax pair,
Backlund transformation method [86] have been used in attempting to solve Boussinesg-
Burgers’ equations.

These exact solutions given in egs. (3.5) and (3.6) satisfies the following boundary

conditions

2
u(O,t)=%+%tanh (—Ck t—Inbj,

2
u(l,t):%+%tanh (—Ck t_; —Inbj,

2 2
v(O,t):%sech2 [WJ

2 A2
v(Lt)= Yksec h? [%J

3.3 Analytical Solution of System of Nonlinear PDEs

3.3.1 Application of HPM to Boussinesq-Burgers’ equation

Using homotopy perturbation method [25, 26], the homotopy for egs. (3.1) and (3.2) can

be written as

ou ou 1lov ou

=P (5‘@* p(?i&””&} -0 G
v v 10% _ouv))

=) (a“’)* p(a‘zﬁ”w}o- (38)

This implies

(3.9)
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3
% _ p(la_U_ZM] | (3.10)

8
8

_ 2(20 P t)J%[ZO Py t)m (.11
g(g;‘) p"V, ( t)j B p[%aa_;(g p"u, (x t)J 5

Comparing the coefficients of different powers in p for egs. (3.11) and (3.12), we have

the following system of partial differential equations.

Coefficients of p°: aatﬁ =0, (3.13)
aVO

—=0. 3.14

" (3.14)

Coefficients of p! :% = 1%—ZU Ny (3.15)

a 2ax  Yox

%=%%—2§(Uo%)- (3.16)
Coefficients of p?: %=%%—Z(uo%+u1 %) (3.17)
%=%%—2£(U0V1+U1Vo)- (3.18)
Coefficients of p*: % :%%—2[uo%+ul%+uz %) (3.19)
%:%?32 —Zg(uov2 + UV, + U,V ). (3.20)
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ou 1ov ou ou ou ou
Coefficients of p*:—2=>"2 -2 Uyg—>+U —2+U, —=+U; —> |, (3.21
oetticients of P+ = 2 (Oax 1o T Ty ) B2

v, 10&% o

E“zaaT;—Z&(uovg + UV, + UnVy + UgVp )- (3.22)
and so on.
By putting u(x,0)=0, and v(x,0)=V, in egs. (3.13)- (3.22) and solving them, we obtain

ulzl%_Ztﬁo%,
2 OX 15)4
t 0°0, O [~
V, =———=—2t—(U,V, ).
1 2 aX3 aX( 0 O)
2 _~
u2:t_ 1%_2 GO%+U1% ,
212 ox OX OX
t?(16%, 0~ -
V2 :? EE—Z&(UOVJ_‘FU]_VO)J.
3 —_~
u3=t_ E%_Z(JO%+U1%+U2%j ’
6\ 2 ox 15)4 OX OX
t3(1 6% o /-~ -
Vo=l 8x32 —2&(u0v2 +u1v1+u2vo)).

4 ~
u :t_ la\/3_2 0‘0%4_[’11%4_”2%4-“3% ,
2 OX OX OX OX

4 3
= t_(% OUs _ 22(60V3 + U Vp + UV + u3\70)]'

Y242 T ox
In general,
t" (1 ov =,
U, =—| =—22 -2/ Y u == ||, 3.23
"n!(Zax (g'axn (3:23)
t"(16% o (<
Vo=—| =—22 21 Yuv,_. || 3.24
" n!(Z ox3 ax(; ! ”_'j] (3.24)
Finally, the approximate solutions for Boussinesq-Burgers’ equations are given by
u=0y(x,t)+u,(x,t)+u,(x,t)+... , (3.25)
v =V (%, 1)+ v, (%, 1)+ v, (x,t)+... . (3.26)
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3.3.2 Application of OHAM to Boussinesq-Burgers’ equation

Using optimal homotopy asymptotic method [88], the homotopy for egs. (3.1) and (3.2)
can be written as

+2¢(x,t; p)

(1-p)2extip) H(p){ﬁco(x,t; p) 1oy(xtp) @)

(X, t; p)}
ot at 2 o ox

. 3
(1—p)M=H(p)[aW(X’t’p) 1opxtp) ax[qo(xtp)w(xtp)]} (3.28)

ot ot 2 o
Here plxt; p>=u0<x,t)+§ui<x,t>pi , (3:29)
w(xt;p)=vy(x,t)+ i (3.30)
H(p)=C,p+C,p° +Csp3+... , (3.31)
H'(p)=D,p+D,p* +D;p%+..., (3.32)
N0t p)= Nolb (6, D)+ 3N, 0y ', (239
N(p(xt; p))= No(vo(x,t))+gNk(vo,vl,...,vk)pk. (3.34)

Substituting egs. (3.29)- (3.34) in egs. (3.27) and (3.28) and equating the coefficients of

different powers in p, we have the following system of partial differential equations.

Coefficients of p°: 6u0(§tx 1) =0, (3.35)
on(xt) _ g (3.36)
ot

Coefficients of p?:
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(x t)aul(x,t)

au,(x,t) _au,(xt) _ {8u1(x,t)_1 ou(xt)
a aa Lo 2 & oo,
(3.39)
+2“1(X,t)au°(x’t)}+C{aUO(X’t)_1avo(x’t)+2u0(x,t)M}
OX ot 2 OX ox

NV, (1) ovi(xt) [ ov(xt) 13%u(xt) o
p . Dl{ p At o (2u, (X, )V, (X, t) + 2ul(x,t)v0(x,t))}

N D{avo(x,o 1o +3(2uo(x,t>vo(x,t))}

ot 2 ox° OX
(3.40)

and so on.
For solving Boussinesg-Burgers’ equation using OHAM we consider the following initial
conditions for Boussinesg-Burgers’ equations (3.1) and (3.2).

-1 1 x—log2 a1
u(x,0)= n 4tanh( > j (3.41)
v(x,0)= _Elsec h? (%IOQZJ . (3.42)

Using the initial conditions and solving egs. (3.35)- (3.40), we obtain

uo(x,t)=_71—%tanh(x"2°92), (3.43)
-1 —Xx+log2

Vo(x,t)= 5 e h? (+ng (3.44)
1 > ( x—log2

t)=— h , 3.45

u, (x,t) gt Cusec ( > j (3.45)

vl(x,t)z_?lt D,cosech® (x—log 2)sinh4[Lzogzj : (3.46)

uz(x,t)zit sech* [ X=1092
128 2

) lac, +ac? —2tc;? + 4c, + 2tC,D, a7

+cosh(x — log 2)[(4 +1)C,% +4C, +C, (4 —tDl)}r tC,” sinh(x — log 2)1
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vz(x,t)=_—1tsech5 X=1092 )| _ 5 cosh( X=1992 D,> +tcosh 3(x—log2) D2
256 2 2 2

—2t(~ 3+ cosh(x —log 2))C, — Dl)Dlsinh( X= |209 2) (3.48)

x—log 2

+ 4cosech( )(Dl +D’+D, )sinhz(x —log 2)}

Using eqgs. (3.43)-(3.48), the second order approximate solution is obtained as follows

u(x,t):_—1—1tanh(x_Iogz}titclsech2 (x—logzj
4 4 2 16 2

+ L tsecht[ X092
128 2

j[4cl +4C2 —2AC2 +4C, + 21C,D, + (3.49)

cosh(x — log 2)[(4 +t)C,”+4C, +C,(4—tD, )]+ tC,” sinh(x — log 2)1

v(xt)= %1390 h? (_XJFTIOQZJ + (%)t D,cosech® (x — log 2)sinh4(—x — Izog 2}

+ (_—1} sech® (X ~log 2] ~3t cosh( x~log Zlez +t cosh(M]Dl2
256 2 2 2

— 2t(- 3+ cosh(x - log 2))C, - Dl)Dlsinh( X— I20g 2)

(3.50)

x—log 2

+ 4cosech( j(Dl +D’+D, )sinhz(x ~log 2)}

The optimal values of the convergence control constants C,,C,,D,and D, can be

obtained using collocation method.

3.4 Convergence of HPM

The series U= Iimlv:vo+v1+v2 +..., given in eq. (1.17) of chapter 1 is convergent for
p—.

most cases. The following suggestions has been made by He [26] to find the convergence

rate on nonlinear operator A(V).

(N The second derivative of N(U) with respect to u must be small because the

parameter may be relatively large, i.e. p —1.

. 10N .
(i) The norm of L 18_u must be smaller than one so that the series converges.

Let us write eq. (1.13) of chapter 1 in the following form

82



L(v) =L(up)+ p[f (r)=N(v)- L(uo)] (3.51)
Applying the inverse operator, L™ to both sides of eq. (3.51), we obtain
V =Uy+ p[LF (r) = LN (v)—u,] (3.52)
Suppose that
v=> py, (3.53)
i=0
Substituting (3.53) into the right-hand side of eq. (3.52), we have
vV =U, + p{L‘lf(r)— (L‘lN){Z pivi}uo} (3.54)
i=0
If p—1, the exact solution may be obtained by using
T _ -1 -1 < :
u= L'Tlv =L (r)—(L N)[%V,}
=L (r)-D (LN, (3.55)
i=0

To study the convergence of the method let us state the following Theorem.

Theorem 3.1 [87]  Suppose that V and W be Banach spaces and N:V —W be a

contraction mapping such that for all v,V oev;
HN (vV)—N (v*)H < g”v—v*H, £e(0)) (3.56)

Then according to Banach’s fixed point theorem N has a unique fixed point u (say) such
that N(u) =u.
The sequence generated by the homotopy perturbation method will be assumed in the

following form as

-1
V, =NV, 1), Voi=) Vi, n=123,...

S

Il
o

and suppose that V, =V, € B, (v) where B, (v) = {v* eV Hv* —VH < r} , then we have

) VARV P Y
(i) Vi, € B, (V)
(iii)) lim V,, =v.

Proof. Part (i) of the above theorem is proved by using method of induction.
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For n=1, |V, —v| =[N (Vp) - N(v)| < &]vo —V] (from eq. (3.56))
Assume that |V, ; —v| < £"*|v, —V| as induction hypothesis, then

Vo V[ INOVog) =N

<éeVpa-v
<e&"Hvo -V (from induction hypothesis)
<&"vo V|-

Hence |V, —v|<&"|vo -V . 0

(i) Using (i), we have

Vo =V <&V —v| <&"r <
This impliesV, € B, (v).
(iii) From (i) we know |V, —v| < &"|v, —V|.

Again since 0<&<1, limg" =0.

n—o
S0 lim V, - =0,
which yields limV, =v. O

n—oo0

3.5 Convergence of OHAM

Theorem 3.2 Let the solution components u,, Uy, U,, ... be defined as given in egs. (1.27)-

m-1
(1.29). The series solution Zuk(x,t) defined in eq. (1.31) converges if there exists o,
k=0

0<& <1 such that |uy,,|<&|u,|, forall k >k, for some k, € N.

Proof: Define the sequence {S |~ as follows

So ZUO,
Sy =Uy+Uy,

S, =ug+Uu; +Uu,,

S, =Ug+U; +U, +...4+U,,
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We have to show {S}” is a Cauchy sequence in the Hilbert space .
Consider ISns1 = Sal =[unsal
< Slun|

< 6% |un

S 5n—k0 +1

Uy

-
Now for every nnme N, n>m> Kk,
”Sn - Sm” = ”(Sn - Sn—l) + (Sn—l - Sn—z) ...+ (Sm+1 - Sm)”
<[Sn = Snal +[Sn-z = Sn-zl|* - +||Smsz — Sl (Triangle inequality)

S 5n—k0

Uy H+§”‘k°‘luuk H+...+5m"‘°+l
0 0

— 1_ §n7m 5m—k0 +1
1-6

This implies lim S, —S,|[=0. (since 0<o<1)

n,m—oo

Uy

0

Ukg H

Therefore, {S,}” , is a Cauchy sequence in the Hilbert space % and hence the series

0

solution iuk (x,t) converges. 0
k=1

3.6 Numerical Results and Discussions

The following Tables 3.1 and 3.2 show the comparisons of the absolute errors of
Boussinesg-Burgers’ equations obtained by wusing two terms and three terms

approximations of HPM and OHAM at different values of c, k, b, x and t. To show the
effectiveness and accuracy of proposed schemes, L,and L, error norms have been

presented in Tables 3.3 and 3.4 respectively.

Table 3.1 The absolute errors in the solutions of Boussinesq-Burgers’ equations using two

terms approximation for HPM and OHAM at various points with c:%, k=-1b=2 and

C, =-1.01653, D; = 0.934599 obtained by eq. (1.33).
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(x.1) |U Exact —UHPM | |VExact —VHPM | |UExact - UOHAM| |VExact - VOHAM|
(0.1,0.2) 4.03765E-5 5.49815E-5 5.43565E-5 5.30293 E-5
(0.1,0.2) 1.57743E-4 2.24577E-4 3.17229E-5 8.55529E-6
(0.1,0.3) 3.46200E-4 5.15476E-4 6.20012E-5 1.91443E-4
(0.1,0.4) 5.99524E-4 9.33935E-4 2.20592E-4 5.01892E-4
(0.1,0.5) 9.11191E-4 1.48572E-3 4.37526E-4 9.45668E-4
(0.2,0.1) 3.45343E-5 6.17326E-5 6.27431E-5 3.12906E-5
(0.2,0.2) 1.33936E-4 2.51026E-4 6.06192E-5 6.49797E-5
(0.2,0.3) 2.91679E-4 5.73647E-4 1.52649E-7 2.94577E-4
(0.2,0.4) 5.00967E-4 1.03482E-3 1.11857E-4 6.62723E-4
(0.2,0.5) 7.54752E-4 1.63915E-3 2.68365E-5 1.17404E-3
(0.3,0.1) 2.80601E-5 6.75811E-5 7.13609E-5 8.76219E-6
(0.3,0.2) 1.07664E-4 2.73710E-4 9.11785E-5 1.21023E-4
(0.3,0.3) 2.31765E-4 6.23007E-4 6.64983E-5 3.93977E-4
(0.3,0.4) 3.93103E-4 1.11945E-3 4,58083E-6 8.14078E-4
(0.3,0.5) 5.84236E-4 1.76633E-3 8.71313E-5 1.38462E-3
(0.4,0.1) 2.10557E-5 7.23025E-5 8.00687E-5 1.40750E-5
(0.4,0.2) 7.93485E-5 2.91751E-4 1.22900E-5 1.75296E-4
(0.4,0.3) 1.67436E-4 6.61637E-4 1.35937E-4 4.86954E-4
(0.4,0.4) 2.77729E-4 1.18453E-3 1.26768E-4 9.51621E-4
(0.4,0.5) 4.02528E-4 1.86226E-3 1.03094E-4 1.57112E-3
(0.5,0.1) 1.36435E-5 7.57082E-5 8.87114E-5 3.67202E-5
(0.5,0.2) 4.94924E-5 3.04426E-4 1.55217E-4 2.26450E-4
(0.5,0.3) 9.98476E-5 6.87978E-4 2.07217E-4 5.71013E-4
(0.5,0.4) 1.56938E-4 1.22742E-3 2.52482E-4 1.07147E-3
(0.5, 0.5) 2.12957E-4 1.92305E-3 2.98817E-4 1.72811E-3

Table 3.2 The absolute errors in the solutions of Boussinesg-Burgers’ equations using three

terms approximation for HPM and OHAM at various points with c=%,k:—1,b=2 and

C, =0.9786175,C, =—3.9162929, D; =1.0514603 , D, =-4.209964 obtained by eq. (1.33).

(x.t) |UExact —UHpm | |VExact —VHPM | |UExact - UOHAM| |VExact - VOHAM|
(0.1,0.1) 9.11428E-7 1.19150E-6 3.15534E-6 5.85344E-7
(0.1,0.2) 7.40859E-6 9.41690E-6 7.33961E-7 2.12165E-6
(0.1,0.3) 2.53911E-5 3.13655E-5 1.36454E-6 1.12982E-5
(0.1, 0.4) 6.10825E-5 7.32950E-5 3.08338E-6 3.43727E-5
(0.1, 0.5) 1.21007E-4 1.40972E-4 2.06021E-5 7.71116E-5
(0.2,0.1) 1.02449E-6 1.06292E-6 3.23055E-6 8.39207E-7
(0.2,0.2) 8.29954E-6 8.34741E-6 1.05314E-6 3.45590E-6
(0.2,0.3) 2.83495E-5 2.76201E-5 7.84907E-9 2.08340E-6
(0.2,0.4) 6.79737E-5 6.41010E-5 6.84685E-6 8.49823E-6
(0.2,0.5) 1.34218E-4 1.22412E-4 2.86627E-5 3.29106E-5
(0.3,0.1) 1.12268E-6 8.94544E-7 3.34664E-6 2.35740E-6
(0.3,0.2 9.06757E-6 6.96343E-6 1.53865E-6 9.48698E-6
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(0.3,0.3) 3.08802E-5 2.28283E-5 1.62153E-6 1.67671E-5
(0.3,0.4) 7.38211E-5 5.24659E-5 1.08559E-5 2.02210E-5
(0.3,0.5) 1.45333E-4 9.91676E-5 3.66844E-5 1.65572E-5
(0.4,0.1) 1.20223E-6 6.91094E-7 3.50880E-6 3.92344E-6
(0.4,0.2) 9.68307E-6 5.30519E-6 2.20317E-6 1.57786E-5
(0.4,0.3) 3.28850E-5 1.71337E-5 3.52562E-6 3.22743E-5
(0.4,0.4) 7.83973E-5 3.87483E-5 1.50654E-5 5.08384E-5
(0.4,0.5) 1.53919E-4 7.19747E-5 4.45217E-5 6.96457E-5
(0.5,0.1) 1.25997E-6 4.59601E-7 3.72005E-6 5.48493E-6
(0.5,0.2) 1.01214E-5 3.43102E-6 3.05227E-6 2.21052E-5
(0.5,0.3) 3.42835E-5 1.07397E-5 5.69591E-6 4.80354E-5
(0.5,0.4) 8.15178E-5 2.34456E-5 1.94224E-5 8.22156E-5
(0.5,0.5) 1.59629E-4 4.18318E-5 5.20368E-5 1.24363E-4
Table 3.3 Lyand L, error norm for Boussinesg-Burgers’ equations using two terms

approximation for HPM and OHAM at various points of x.

X Homotopy Perturbation Method (HPM)

Optimal Homotopy Asymptotic Method (OHAM)

Error in case of two terms
approximation for u(x,t)

Error in case of two terms
approximation for v(x,t)

Error in case of two terms
approximation for u(x,t)

Error in case of two terms
approximation for v(x,t)

L

L,

L

L,

L

L,

L

L,

0.1

5.16927E-4

9.11191E-4

1.48572E-3

1.48572E-3

2.22663E-4

4.37526E-4

4.86974E-4

9.45668E-4

0.2

4.30076E-4

7.54752E-4

9.11434E-4

1.63915E-3

1.35752E-4

1.11857E-4

6.17988E-4

1.17404E-3

0.3

3.35248E-4

5.84236E-4

9.83942E-4

1.76633E-3

7.13313E-5

9.11785E-5

7.41598E-4

1.38462E-3

0.4

2.34067E-4

4.02528E-4

1.03916E-3

1.86226E-3

1.15493E-4

1.35937E-4

8.53470E-4

1.57112E-3

0.5

1.28519E-4

2.12957E-4

1.07484E-3

1.92305E-3

2.13513E-4

2.98817E-4

9.50063E-4

1.72811E-3

Table 3.4

Lyand L, error norm for Boussinesq-Burgers’ equations using three terms

approximation for HPM and OHAM at various points of x.

Homotopy Perturbation Method (HPM)

Optimal Homotopy Asymptotic Method (OHAM)

Error in case of three
terms approximation for

u(x,t)

Error in case of three
terms approximation for
v(x,1)

Error in case of three
terms approximation for
u(x,t)

Error in case of three
terms approximation for
v(x,1)

L

L,

L

L,

L

L,

L

L,

0.1

6.17644E-5

1.21007E-4

7.25523E-5

1.40972E-4

9.44786E-6

2.06021E-5

3.81056E-5

7.71116E-5

0.2

6.85690E-5

1.34218E-4

6.31305E-5

1.22412E-4

1.32663E-5

2.86627E-5

1.53122E-5

3.29106E-5

0.3

7.43079E-5

1.45333E-4

5.12978E-5

9.91676E-5

1.72034E-5

3.66844E-5

1.45583E-5

2.02210E-5

0.4

7.87576E-5

1.53919E-4

3.74272E-5

4.18318E-5

2.11601E-5

4.45217E-5

4.18116E-5

6.96457E-5

0.5

8.17386E-5

1.59629E-4

2.20314E-5

7.19747E-5

2.50625E-5

5.20368E-5

7.07837E-5

1.24363E-4

Graphical representation of results is very useful to demonstrate the efficiency and

accuracy of the proposed methods for the discussed problem. The following Figures 3.1

and 3.2 cite the comparison graphically between the approximate solutions obtained by

five terms HPM, three terms OHAM and exact solutions for different values of x and
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t =0.5. Figures 3.3 and 3.4 respectively show one soliton approximate solutions of u(x,t)

and v(x,t), obtained by OHAM for Boussinesq-Burgers’ equations.

Figure 3.1 Comparison of five terms HPM solution and three terms OHAM solution with the

exact solution of u(x,t) for Boussinesgq-Burgers’ equations when c¢=0.5k=-1,b=2 and

t=0.5.
Figure 3.2 Comparison of five terms HPM solution and three terms OHAM solution with the

exact solution of v(x,t) for Boussinesg-Burgers’ equations when c¢=0.5k=-1,b=2 and

t=0.5.

Figure 3.3 One soliton approximate solution of u(x,t), obtained by OHAM for Boussinesg-

Burgers’ equations with parameters c=0.5,k =—1 and b=2.
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Figure 3.4 One soliton approximate solution of v(x,t), obtained by OHAM for Boussinesq-
Burgers’ equations with parameters ¢ = % k=—-landb=2.

From the above Figures, one can see a very good agreement between the exact solutions
and the solutions obtained by HPM and OHAM. Tables 3.1-3.4 depict the performance of
OHAM in comparison with HPM and clearly witness the reliability and efficiency of
OHAM for the solutions of Boussinesg-Burgers’ equations.

3.7 A Numerical Approach to Boussinesg-Burgers’

Equations

The Haar wavelet solutions of u(x,t) and v(x,t) are sought by assuming that

u"(x,t) and v'(x,t) can be expanded in terms of Haar wavelets as

a"(xt)= 3 2, h (x) (3.57)
V)= hnG).  for teftte,] (3.58)

i=1

where “.” and “ " stands for differentiation with respect to t and x respectively.

Integrating eq. (3.57) with respect to t from t, to t and thrice with respect to x from 0 to x,

the following equations are obtained

2M

u”(x,t)=(t—t,)> a,(i)h;(x)+u"(x,t;), (3.59)

i=1
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"(x,t) = (t -t Za u"(x,t,)—u"(0,t;)+u"(0,t), (3.60)

2M

u'(x,t)=(t—t,)> a,(i)a; (x)+u'(x,tg)—u'(0,t, )+ x[u"(0,t)—u"(0,t, )]+ u'(0,t), (3.61)
i=1
u(x,t)=(t —t, ;a S (x)+u(x,t)—u(0,t, )+—[ "(0,t)-u"(0,t, )]+ (3.62)
x[u'(0,t)—u'(0,t,)]+u(0,t),
Za +?2u (0,0)+ x'(0,1)+ u(0,1). (3.63)
Integrating eq. (3.58) with respect to t from t_ to t and once with respect to x from 0 to X,

the following equations are obtained

Vi(x,t)=(t- th X)+V'(xtg), (3.64)

v(x,t)=(t—t, Zb (x)+v(x,tg)—-v(0,t,)+Vv(0,1), (3.65)
2M

v(x,t)= > by(i)p;(x)+v(0.t). (3.66)

i=1
Discretizing the above results by assuming x — x,, t >t. ,;, from egs. (3.64), (3.65) and

(3.66), we obtain

V’(XI ts+1 s+1 t Zb XI +V' XI t ) (3-67)
V(XI ts+1 s+1 t Zb Pi XI TV XI ) (Ot )+V(O’ts+1)’ (3-68)

s+1 Zb Pi XI +V 0 ts+1)' (3'69)

Using finite difference method

(0.1)=4C Et)::()o’ts).

Equation (3.63) becomes
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(3.70)
. u(0,t)-u(0,t,)
t—t, '
By using the boundary condition at x =1, eq. (3.61) becomes
u'[Lt)=(t-t, Za 1)+u'(Lty)-u'(0,t)+[u"(0,t)—u"(0,t, )]+ u'(0, 1).
This implies
u"(0,t)-u —(t-t, Za 1)+u'@Lt)-u'@ty)-u(0,t)+u'(0,t,). (3.71)

Substituting eq. (3.71) in egs. (3.60), (3.61), (3.62) and (3.70) and discretizing the
resultant equations by assuming x — x;, t > t.,, , we obtain
2M

um(XI ’ts+1) = (ts+l _ts )z a (I )hi (XI )+ U"’(XI ’ts ) | (3-72)

i=1

u (XI s+l s+1 za XI +U XI s s+l Za

(3.73)
W) o) <o,ts>],
U(X| s+1 s+1 Za +U XI s) (Ot )+U(O ts+1)
(3.74)
[ amtSa a0+ 1tm)—u'(l.ts>]—[u'<o,ts+l>—u'<o,ts>]}
0(0.t0)= 6~ )32, 000 0,808 108+ 8108, )-v 0, )
7[ amt5a0) 1tsﬂ)—u'(l,ts)]—[u'<o,ts+1>—u'<o,ts>]}
(3.75)
00.8,) = 220,05 0+ 0, )0 0 e L0 ) -0 )
s+1 H s+1 S (376)

2 2M

d {—am—ts>zas<i>qi(1>+[u'(l,tsﬂ)—u'(l,ts)]—[u'(o,tsﬂ)—u'(o.ts)]}

+
2(t5+1 _ts) i=1

Substituting the above equations in eg. (3.1) and eq. (3.2), we have
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ias(i){n(x.)—i;qi(l)} X2 [W@t,,)-uLt)-u(0t.,)+u'0t,)]

2(t5+1 s)

o) v o) -uEL)]

s+l bs s+l s

%( - Zb ()h (x,) +V'(x,, ts)] [ - Za |){r
—u(0,t,)+u(0t,, )+ x [w(0t,.,)-u(0t, )]+ LE S lut,)-ut s)—U'(O,ts+1)+U'(0,ts)]}

1
+

2

ol sute,t)

{ 13- 00 (6)- 5 0,008 )+ 00,4
W) v v, )+ un )]

(3.77)

Zb X )+v(0,t,,,)= ( L= Za h,(x,)+u (xl,ts)]_
{ L3 a |){r %) X;q(l)}+u(xl )-u0.,)+u(0,t., )+ [o0,t.)-u'0,t )]

2

A et w08 -vl0 ] < - S O+, ts>)

2M

—z(am—ts>zbs<i>pi<x.>+v<x.,ts>—v<o,ts>+v<o,ts+lj { -t )¥a 00 x)-xa 0

i=1 i=

U0, ) - U (0,8)+ U0t )+ X [u'Lts,) - ULty ) - (0,t5+1)+U(0,ts)]]-
(3.78)

From the above two egs. (3.77) and (3.78), the wavelet coefficients a(i) and b, (i) can be

successively calculated using mathematical software. This process starts with

-1 1 —log 2
u(x,ty)=—-=tanh| —— |,
(1) = 5 tann 215292
-1 o X —log 2
u'(x,t,)= —sech’| =—==
(1,1 ol =292,
u"(xhto)zzsechz(x.—_mgzjt h(ﬂj
8 2 2
-1 — % +log2
V(X|,to)=?sech2['ng,
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V(%.t) = %1 sec hz(—x%long tanh(_x%logzj :

3.8 Convergence of Haar Wavelet Approximation

The convergence of the method may be discussed on the same lines as given by learned
researcher Saha Ray, 2012 [38].

Theorem 3.3 Let f(x)e L%(R) be a continuous function defined on [0,1). Then the error

San( ﬁ

i=2M

at J th level may be defined as E,(x)= 3 (x)= ‘ Za hi ( x* =

The error norm for E,(x) is obtained as
IE; (x), < 2 K2 g (3.79)

where [O, 1) and K >0 and M is a positive number related to the J

th level of resolution of the wavelet given by M =2,

Proof: The error at J th level resolution is defined as

£, (=110~ 1, ()= Zahxﬂ—Zahﬂ

i=2M

IE; (X)) = T(iiaihi(x), iashs(x)de: i aa, jh X)dx < Z|a

i=2M s=2M i=2M

Now, & =j‘2% f(x)h(zjx—k)dx,
0

where h(x)=2"%h(2ix—k),k=0,1,2..,2) -1, j=0,1,2..,3

k_ <X<k+0.5

and h(2jx—k)= ~1, /S <x<—=

0, elsewhere
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Hence a; =22| [ f(x)dx— [ f(x)dx
ko k+0.5
5 iy
1 (k+05 k k+1 k+05 .
=22K > _;Jf(é) (?_ j (52)} (applying mean value theorem)
k k+05 k+05 k+1
where < < (21’ 2] j ez < ( 2] 7)

Consequently,

s )

= 2 )]

= é (5-&) (&), where E€(&,5,). (applying mean value theorem)

This implies a2 =27172(&, — & f f(6f <2712 2721 K2 = 27%12K2,

Therefore,
o w 21t14
E,(x)I < Ya® V232K 2 Z K 2731~
J 2 3j-2 12 2 ' 3j-2
i=2M i=2M j=3+1 o]

—K? Y 23%02(pi 121 41)

j=J+1
_K ~2j-1_ p-2j-2
S
_K? Y2227
j=J+1
22 2] :K_ﬂ :K_ZZ—ZJ'
j=J+1 4 (1_1j 12
4

From eq. (3.79), it can be observed that the error bound is inversely proportional to the
level of resolution J. So, more accurate result can be obtained by increasing the level of

resolution in the Haar wavelet method.
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3.9 Numerical Results

The following Tables show the comparisons of the exact solutions with the approximate
solutions of Boussinesg-Burgers’ equations at different collocation points. In the following
Tables 3.5-3.7, J has been taken as 4 i.e. M =16 and At is taken as 0.0001.

The R.M.S. error between the numerical solutions and the exact solutions of u(x,t) for
Boussinesq-Burgers’ equations at t=0.51.0 and 1.5 are 0.000142255, 0.000216937 and

0.000935793 respectively and for v(x,t) the R.M.S. error is found to be 0.0118472,
0.0236667 and 0.0346156 respectively.

The figures 3.5-3.8 cite the comparison graphically between the numerical and exact

solutions for different values of t.

Table 3.5

The absolute errors in the solutions of Boussinesg-Burgers’ equations at various

collocation points of x with t=0.5.

X Approxim | Approxima Exact Exact Absolute Absolute Error
ate te solution | solution solution Error Veac —Vapprod

solution (Vapprox) (Uoraet) (Vegact) ‘uExact _ uAppmx‘

Uappron)
0.015625 | -0.197367 | -0.118653 | -0.197359 | -0.119458 | 8.35980E-6 8.05119E-4
0.046875 | -0.201157 | -0.119271 | -0.201104 | -0.120218 | 5.29589E-5 9.47342E-4
0.078125 | -0.204944 | -0.122098 | -0.204872 | -0.120927 | 7.19897E-5 1.17066E-3
0.109375 | -0.20869 -0.12456 | -0.208662 | -0.121582 | 2.82735E-5 2.97813E-3
0.140625 | -0.212446 | -0.124475 | -0.212471 | -0.122183 | 2.42459E-5 2.29235E-3
0.171875 | -0.216279 | -0.123392 | -0.216297 | -0.122728 | 1.87152E-5 6.63754E-4
0.203125 | -0.220164 | -0.124375 | -0.22014 | -0.123217 | 2.37371E-5 1.15814E-3
0.234375 | -0.224021 | -0.127389 | -0.223998 | -0.123648 | 2.32677E-5 3.74124E-3
0.265625 | -0.227829 | -0.129227 | -0.227868 | -0.12402 3.87521E-5 5.2064E-3
0.296875 | -0.23166 | -0.128271 | -0.231749 | -0.124334 | 8.83945E-5 3.93697E-3
0.328125 | -0.23557 | -0.127024 | -0.235638 | -0.124587 | 6.77895E-5 2.4362E-3
0.359375 | -0.239511 | -0.128457 | -0.239535 | -0.124781 | 2.37165E-5 3.67564E-3
0.390625 | -0.243396 | -0.131492 | -0.243436 | -0.124914 | 4.01933E-5 6.57804E-3
0.421875 | -0.24723 | -0.132477 | -0.247341 | -0.124986 | 1.11453E-4 7.49073E-3
0.453125 | -0.251101 | -0.130649 | -0.251247 | -0.124997 | 1.46677E-4 5.65231E-3
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0.484375 | -0.255048 | -0.129425 | -0.255153 | -0.124947 | 1.04846E-4 4.47776E-3
0.515625 | -0.258996 | -0.131357 | -0.259056 | -0.124836 | 5.93702E-5 6.52131E-3
0.546875 | -0.262864 | -0.134199 | -0.262954 | -0.124664 | 9.07736E-5 9.53507E-3
0.578125 | -0.266683 | -0.134123 | -0.266847 | -0.124432 | 1.63839E-4 9.69100E-3
0.609375 | -0.270555 -0.1315 -0.270731 | -0.12414 1.76238E-4 7.35999E-3
0.640625 | -0.274493 | -0.130521 | -0.274605 | -0.123789 | 1.11967E-4 6.73224E-3
0.671875 | -0.278397 | -0.132961 | -0.278467 | -0.123379 | 6.97724E-5 9.58204E-3
0.703125 | -0.282198 | -0.135353 | -0.282315 | -0.122911 | 1.17448E-4 1.2442E-2
0.734375 | -0.285962 | -0.13405 | -0.286148 | -0.122387 | 1.86803E-4 1.16634E-2
0.765625 | -0.289792 | -0.130795 | -0.289964 | -0.121806 | 1.71833E-4 8.98884E-3
0.796875 | -0.293671 | -0.130309 | -0.293761 | -0.12117 | 8.93953E-5 9.13864E-3
0.828125 | -0.297477 | -0.133207 | -0.297537 | -0.120481 | 5.94947E-5 1.2726E-2
0.859375 | -0.301163 | -0.13486 -0.30129 | -0.119739 | 1.26730E-4 1.51218E-2
0.890625 | -0.304831 | -0.132242 | -0.30502 | -0.118946 | 1.88492E-4 1.32964E-2
0.921875 | -0.308579 | -0.128677 | -0.308724 | -0.118103 | 1.44573E-4 1.05737E-2
0.953125 | -0.312353 | -0.129219 | -0.312401 | -0.117212 | 4.80031E-5 1.20066E-2
0.984375 | -0.316031 | -0.13366 | -0.316049 | -0.116275 | 1.80034E-5 1.73849E-2
Table 3.6 The absolute errors in the solutions of Boussinesqg-Burgers’ equations at various

collocation points of x with t=1.0.

X Approxim | Approxim Exact Exact Absolute Absolute
ate ate solution solution Error Error
solution | solution (Uegact) (Veaot) | [Meact ~Unoprod | Vesact —Vappros
Wapprod | WVappron
0.015625 | -0.227876 | -0.123436 | -0.227868 | -0.12402 8.38233E-6 5.84734E-4
0.046875 | -0.231802 | -0.124054 | -0.231749 | -0.124334 | 5.32620E-5 2.79865E-4
0.078125 | -0.235711 | -0.12688 | -0.235638 | -0.124587 | 7.30976E-5 2.29300E-3
0.109375 | -0.239566 | -0.129343 | -0.239535 | -0.124781 | 3.09406E-5 4.56229E-3
0.140625 | -0.243417 | -0.129258 | -0.243436 | -0.124914 | 1.90610E-5 4.34445E-3
0.171875 | -0.247331 | -0.128175 | -0.247341 | -0.124986 | 9.87667E-6 3.18901E-3
0.203125 | -0.251285 | -0.129158 | -0.251247 | -0.124997 | 3.75151E-5 4.16092E-3
0.234375 | -0.255196 | -0.132172 | -0.255153 | -0.124947 | 4.33927E-5 7.22497E-3
0.265625 | -0.259045 | -0.13401 | -0.259056 | -0.124836 | 1.07795E-5 9.1736E-3
0.296875 | -0.262903 | -0.133054 | -0.262954 | -0.124664 | 5.10099E-5 8.38921E-3
0.328125 | -0.266827 | -0.131807 | -0.266847 | -0.124432 | 1.93935E-5 7.37414E-3
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0.359375 | -0.270768 | -0.133239 | -0.270731 | -0.12414 | 3.72955E-5 9.09897E-3
0.390625 | -0.27464 | -0.136275 | -0.274605 | -0.123789 | 3.50153E-5 1.24855E-2
0.421875 | -0.278446 | -0.137259 | -0.278467 | -0.123379 | 2.05208E-5 1.38802E-2
0.453125 | -0.282277 | -0.135432 | -0.282315 | -0.122911 | 3.85771E-5 1.25206E-2
0.484375 | -0.28617 | -0.134208 | -0.286148 | -0.122387 | 2.17555E-5 1.18209E-2
0.515625 | -0.290051 | -0.13614 | -0.289964 | -0.121806 | 8.69255E-5 1.43344E-2
0.546875 | -0.293837 | -0.138982 | -0.293761 | -0.12117 7.62424E-5 1.78123E-2
0.578125 | -0.297561 | -0.138906 | -0.297537 | -0.120481 | 2.47286E-5 1.84257E-2
0.609375 | -0.301325 | -0.136283 | -0.30129 | -0.119739 | 3.44909E-5 1.65447E-2
0.640625 | -0.305141 | -0.135304 | -0.30502 | -0.118946 | 1.21288E-4 1.63586E-2
0.671875 | -0.30891 | -0.137744 | -0.308724 | -0.118103 | 1.86102E-4 1.96411E-2
0.703125 | -0.312561 | -0.140136 | -0.312401 | -0.117212 | 1.60845E-4 2.2924E-2
0.734375 | -0.316162 | -0.138833 | -0.316049 | -0.116275 1.1339E-4 2.25577E-2
0.765625 | -0.319817 | -0.135577 | -0.319667 | -0.115293 | 149407E-4 2.02845E-2
0.796875 | -0.323506 | -0.135092 | -0.323254 | -0.114268 | 2.51678E-4 2.08239E-2
0.828125 | -0.327108 | -0.137989 | -0.326809 | -0.113201 | 2.99826E-4 2.47885E-2
0.859375 | -0.330578 | -0.139643 | -0.330329 | -0.112095 | 2.48857E-4 2.75487E-2
0.890625 | -0.334015 | -0.137025 | -0.333814 | -0.11095 | 2.00973E-4 2.60745E-2
0.921875 | -0.337519 | -0.13346 | -0.337263 | -0.10977 | 2.55958E-4 2.36893E-2
0.953125 | -0.341035 | -0.134002 | -0.340674 | -0.108556 | 3.6035E-4 2.54455E-2
0.984375 | -0.344442 | -0.138443 | -0.344047 | -0.10731 394479E-4 3.11327E-2
Table 3.7 The absolute errors in the solutions of Boussinesqg-Burgers’ equations at various

collocation points of x with t=1.5.

X Approxima | Approxim Exact Exact Absolute Absolute
te solution ate solution solution Error Error
(Uappros) | SOIULION | (Upee) (Voact) | Meiace ~Usgprod | Vot = Vagpron
(Vaporod

0.015625 | -0.259065 | -0.124493 | -0.259056 | -0.124836 | 8.80296E-6 | 3.42744E-4
0.046875 | -0.263011 | -0.125112 | -0.262954 | -0.124664 | 5.70662E-5 | 4.47176E-4
0.078125 | -0.26693 -0.127938 | -0.266847 | -0.124432 8.3701E-5 3.50573E-3
0.109375 | -0.270783 | -0.130401 | -0.270731 -0.12414 5.17642E-5 | 6.26042E-3
0.140625 | -0.27462 -0.130316 | -0.274605 | -0.123789 | 1.53796E-5 | 6.52672E-3
0.171875 | -0.278509 | -0.129233 | -0.278467 | -0.123379 | 4.15244E-5 | 5.85325E-3
0.203125 | -0.282425 | -0.130215 | -0.282315 | -0.122911 | 1.09137E-4 | 7.30402E-3
0.234375 | -0.286287 -0.13323 | -0.286148 | -0.122387 | 1.38385E-4 | 1.08429E-2

97




0.265625 | -0.290075 | -0.135067 | -0.289964 | -0.121806 | 1.10593E-4 | 1.32615E-2
0.296875 | -0.29386 -0.134111 | -0.293761 -0.12117 9.95855E-5 | 1.29412E-2
0.328125 -0.2977 -0.132864 | -0.297537 | -0.120481 | 1.63072E-4 | 1.23836E-2
0.359375 | -0.301544 | -0.134297 | -0.30129 -0.119739 | 2.54057E-4 | 1.45584E-2
0.390625 | -0.305308 | -0.137332 | -0.30502 | -0.118946 | 2.88254E-4 | 1.83867E-2
0.421875 | -0.308995 | -0.138317 | -0.308724 | -0.118103 | 2.71105E-4 2.0214E-2
0.453125 | -0.312694 | -0.13649 | -0.312401 | -0.117212 2.9305E-4 1.92774E-2
0.484375 | -0.316444 | -0.135265 | -0.316049 | -0.116275 | 3.94684E-4 | 1.89901E-2
0.515625 | -0.320169 | -0.137198 | -0.319667 | -0.115293 | 5.02116E-4 | 2.19049E-2
0.546875 | -0.323789 -0.14004 | -0.323254 | -0.114268 | 5.34300E-4 | 2.57723E-2
0.578125 | -0.327335 | -0.139964 | -0.326809 | -0.113201 | 5.25882E-4 | 2.67630E-2
0.609375 | -0.330908 | -0.137341 | -0.330329 | -0.112095 | 5.78576E-4 | 2.52464E-2
0.640625 | -0.334522 | -0.136362 | -0.333814 | -0.11095 | 7.07734E-4 | 2.54116E-2
0.671875 | -0.338077 | -0.138802 | -0.337263 | -0.10977 | 8.13912E-4 | 2.90315E-2
0.703125 | -0.341503 | -0.141194 | -0.340674 | -0.108556 | 8.28591E-4 | 3.26377E-2
0.734375 | -0.344867 | -0.13989 | -0.344047 | -0.10731 | 8.19196E-4 | 3.25803E-2
0.765625 | -0.348272 | -0.136635 | -0.347381 | -0.106034 | 8.9094E-4 | 3.06012E-2
0.796875 | -0.3517 -0.136149 | -0.350674 | -0.104729 | 1.02614E-3 | 3.14198E-2
0.828125 | -0.35503 | -0.139047 | -0.353926 | -0.103399 | 1.10396E-3 | 3.56484E-2
0.859375 | -0.358215 | -0.140701 | -0.357136 | -0.102044 | 1.07891E-3 | 3.86573E-2
0.890625 | -0.361357 | -0.138083 | -0.360304 | -0.100666 | 1.05272E-3 | 3.74164E-2
0.921875 | -0.364553 | -0.134517 | -0.363428 | -0.0992682 | 1.12470E-3 | 3.52490E-2
0.953125 | -0.367749 | -0.135059 | -0.366508 | -0.0978518 | 1.24090E-3 | 3.72076E-2
0.984375 | -0.370825 -0.1395 | -0.369543 | -0.0964187 | 1.28116E-3 | 4.30817E-2
Figure 3.5 Comparison of numerical solution and exact solution of Boussinesq-Burgers’

equations when t=05,
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Figure 3.6 Comparison of numerical solution and exact solution of Boussinesq-Burgers’

equations when t=1.0.

Figure 3.7 Comparison of numerical solution and exact solution of Boussinesq-Burgers’

equations when t=15.

Figure 3.8 Comparison of numerical solution and exact solution of Boussinesg-Burgers’

equations when t=2.0,

3.10 Conclusion

In this chapter, the Boussinesq-Burgers’ equations have been solved by using optimal
homotopy asymptotic method (OHAM). The obtained results are then compared with

exact solutions as well as homotopy perturbation method (HPM). Also, the Haar wavelet
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method has been implemented to find numerical solution of Boussinesq-Burgers’
equations. These results have been cited in the Tables and also graphically demonstrated
in order to justify the accuracy and efficiency of the proposed schemes.

This present chapter explores the reliability and powerfulness of OHAM over other
perturbation method for system of nonlinear partial differential equations like Boussinesg-
Burgers’ equations. An advantage of OHAM over perturbation methods is that it does not
depend on small parameters. Unlike other analytical method viz. HPM, OHAM allows
fine tuning of convergence region and rate of convergence by suitably identifying

convergence control parameters C;,C,,C;,.... Additionally, we conclude that OHAM

provides a simple and easy way to control and adjust the convergence region for strong
nonlinearity and is applicable to highly nonlinear fluid problem like Boussinesq-Burgers’
equations. Consequently, the present success of these methods for the highly nonlinear
problem verifies that these methods are useful tool for nonlinear problems in science and

engineering.
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CHAPTER 4

4 Numerical Solution of Fractional
Differential Equations by Haar
Wavelet Method

4.1 Introduction to Fractional Calculus

Fractional calculus is 300 years old topic, but not very popular amongst science and
engineering community. The history of fractional calculus used to be started on the end of
the 17th century and the birth of fractional calculus was because of a letter exchange. At
the moment scientific journals didnot exist and scientist were exchange their information
by means of letters. The fractional calculus was first anticipated by Leibnitz, was one of
the founders of standard calculus, in a letter written in 1695. The primary effort to give
logical definition is because of Liouville. Subsequently, many mathematicians such as
Abel, Caputo, Euler, Fourier, Grinwald, Hadamard, Hardy, Heaviside, Holmgren,
Laplace, Leibniz, Letnikov, Riemann, Riesz and Weyl made predominant contributions to

the theory of fractional calculus.

Fractional calculus is a branch of calculus that generalizes the derivative of a function to
arbitrary order. It is often referred to as generalized integral and differential calculus of
arbitrary order [41]. In contemporary years, fractional calculus has become the focus of
curiosity for many researchers in exclusive disciplines of applied science and engineering
because of the fact that a realistic modelling of a physical phenomenon can be efficiently
executed by way of utilizing fractional calculus. Indeed fractional derivatives [90, 91]
provide an excellent instrument for the description of memory and hereditary properties of
various materials and processes. This is the key advantage of fractional derivatives as
compared to classical integer order derivatives in which such effects are abandoned. Many
authors pointed out that the FDEs are inherently multi-disciplinary with its application

across diverse disciplines of applied science and engineering for the description of
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properties of various real physical phenomena. However, a reliable and effective general
technique for solving them cannot be found even in the most useful works on fractional
derivatives and integrals. So, in this chapter, our aim is to implement a reliable,
appropriate and efficient wavelet based technique for the numerical solution of fractional
differential equations.

In this chapter, the brief description for fractional calculus and the numerical solutions for
nonlinear fractional differential equations are discussed. This present work is intended to
make this subject available as popular subject to science and engineering community.

4.2 Fractional Derivative and Integration

Fractional calculus is a field of applied mathematics which deals with derivatives and
integrals of arbitrary orders. Several approaches were used to define the derivatives of
fractional order. The primary effort to give logical definition is because of Liouville. Since
then several definitions of fractional integrals and derivatives have been proposed. This
fractional calculus involves different definitions of the fractional operators such as the
Riemann-Liouville, the Caputo, the Weyl, the Hadamard, the Marchaud, the Riesz, the
Grunwald-Letnikov and the Erdelyi-Kober etc [90-92]. Riemann-Liouville fractional
derivative is mostly used by mathematician but this is not suitable for real world physical
problems as it requires the definition of fractional order initial conditions, which have no
physically significant explanation yet. An alternative definition introduced by Caputo has
the advantage of defining integer order initial conditions for fractional order differential
equations. As a result, on this work we will use the Caputo fractional derivative by means

of Caputo in his work on the theory of viscoelasticity [93].

4.2.1 Riemann-Liouville Integral and Derivative Operator

The definition of first fractional integral was initially given by Liouville, after a rigorous
investigation in a series of papers from 1832-1837. Later on research and further
improvements have been made by many others directed to the development of the integral-
based Riemann-Liouville fractional integral operator, which has been an essential
foundation in fractional calculus ever since. The primal effort of Liouville was later
purified in 1865 by the Swedish mathematician Holmgren [94], who made substantial

contributions to the growing study of fractional calculus. But it was Riemann [95] who
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reconstructed it to fit Abel's integral equation, and hence made it enormously more useful.
Even now there exist numerous forms of fractional integral operators, starting from
divided-difference types to infinite-sum types, however the Riemann-Liouville operator
remains to be probably the most frequently used when fractional integration is carried out.
Probably the most conventionally encountered definition of an integral of fractional order
is the Riemann-Liouville integral [41], in which the fractional integral operator

J“ (a >0), ofafunction f(t), is defined as [41, 90]

1

J“f(t):r(a)

t—z) " f(zdz, a>0,aeR” 4.1)

O'—.'—"

where T°(.) is the well-known gamma function, ™ is the set of positive real numbers .
The gamma function T is outlined by

'(n)= Ie‘tt”‘ldt and for real number n, I'(n) = (n—1)!
0

Some properties of the operator J“ are as follows

J9IPE(t)=3*"P1(t), (@>0,5>0)
avy _ TA+Y)  any _
) ty_l”(1+;/+a)t ' >

The Riemann-Liouville fractional derivative is defined by

D*f (t) = D™ f (f)

m t
_d 1 f(z) cdz |, Mm=-l<a<m, meN. (4.2)
dtm r‘(m_a) 9 (t _T)a—ITH—

The left Riemann-Liouville fractional derivative can be defined by

1 d nt
D f(t) = — | [t=2)"* f(r)dr. 4.3
Iy, Jeey e @3
The right Riemann-Liouville fractional derivative can be defined by
1 d nb L
DS f(t) = —— )" f (r)dr. 4.4
D505 Je-0 e @)

Fractional Riemann-Louville derivatives have various interesting properties. For example

the fractional derivative of a constant is not zero, i.e.
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Ct—-a)™ .

DfC =
at l-e)

(4.5)

Lemma 4.1: The integral formula of Riemann-Liouville fractional derivative

[(oD t )ttt =[ £ (t), DF g(t) i
r r
is valid under the assumption that f,geC(Z") and oD f(t), ,D&gl(t) exist forall te I

and are continuous in t.

4.2.2 Caputo Fractional Derivative

An alternative definition of fractional derivative introduced by M. Caputo in 1967 [93], is
called Caputo fractional derivative. The Caputo fractional derivative ,D,” of a function

f (t) is defined as [41, 93]

D (t) = J™ D" (t)

1 o d" (@)
m-([(t—f) —de, if m-1l<ag<m menN (46)

d™f (t)
dt™

if a=mmen

where the parameter o is the order of the derivative and is allowed to be real or even

complex. For the Caputo’s derivative, we have

D“C =0, (Cisaconstant). 4.7)

Similar to integer order differentiation Caputo derivative is linear.
D*(y f()+59() =D f ()+5D%g(t) . (4.8)

where y and s are constants, and satisfies the so called Leibnitz rule

D*(g(t) f (t))ZE(?Jg(k)(t)D“_k f(t), (4.9)
k=0

if f(z) is continuous in [0, t] and g(z) has continuous derivatives sufficient number of

times in [0, t].
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The following are two basic properties of the Caputo fractional derivative

o i+ u
o D t/ zl“(lgr—ﬂﬁ)a)tﬁ , O<a<p+1p5>-1 (4.10)
n— k
J“D*f Z ( )— n-l<a<nand neXN. (4.11)

4.2.3 Grunwald-Letnikov Fractional Derivative

The Grinwald-Letnikov fractional derivative was first introduced by Anton Karl
Grunwald (1838-1920) from Prague, in 1867, and by Aleksey Vasilievich
Letnikov (1837-1888) from Moscow in  1868. The Griinwald-Letnikov fractional
derivative of order p (> 0) is defined as [41]

JDEf(t)= I|m h- pZa) (t—rh) (4.12)

nhta

r

where o = (_1)r(p}
of =1and o =0-22)?,, r=12..

4.2.4 Riesz Fractional Derivative

Here, we present some significant definitions viz. the Right Riemann—Liouville derivative,
Left Riemann-Liouville derivative, Riesz fractional derivative and Riesz fractional

integral which are to be used subsequently in consequent chapters.

The left and right Riemann-Liouville fractional derivative of a function f(x) of order

a (n—1<a<n), are defined as [41, 90]

. D;‘f(x)— ;x“ [x=¢y e t(¢ne, (4.13)

—00

(-1
F(n

D3 f(x) = —Xx)" £ ()dg (4.14)

The Riesz fractional derivative of a function f(x) is defined as [41, 90]

aa

-1 a a
e f(x)=m@[_w D¢ f (x)+,D%, f(x)] (4.15)
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The fractional Riesz integral of a function f(x) is defined as [41, 90]

RZI"‘f(x)=ﬁ($)[If+ 1J¢ (%)
2

ZWﬁx—ﬂ“f(g)dg, a>0,a#1,3,5,... (4.16)
a _ 1 K _ y\h-a-1
where I+f(x)_r(n_a)£(§ X)" T ($)dS,
nd 19100 =— 1 [ O (Oag
B r'(n-a) '

4.3 Outline of Present Study

In this chapter we have considered both analytical and numerical approach for solving
some particular nonlinear fractional differential equations like fractional Burgers-Fisher
equation, fractional Fisher’s type equation, and time- and space-fractional Fokker-Plank
equation, which have a wide variety of applications in various physical phenomena. These
fractional differential equations have proved particularly beneficial in the context of
anomalous diffusion model, fluid dynamics model, heat conduction, elasticity and

capillary-gravity waves.
Consider the generalized one dimensional Burgers-Fisher equation of fractional order

o%u ou o°u
+EUu" —=u—F+ fu(l-u"), 4.17
P ¢ pvial: Bu( ) (4.17)

where &, u and £ are parameters and O<a <1. This equation has a wide range of

applications in fluid dynamics model, heat conduction, elasticity and capillary-gravity

waves. When & =0 and =1, eq. (4.17) reduces to Fisher type equation.

The generalized time-fractional Fisher’s biological population diffusion equation is given
by
o%u %

P F(u), u(x0)=e(x), (4.18)
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where u(x,t) denotes the population density and t>0, xe®R, F(u) is a continuous
nonlinear function satisfying the following conditions F(0)=F() =0, F'(0)>0>F'(1).
The derivatives in egs. (4.17) and (4.18) are the Caputo derivative of order « .

Next, we consider the time- and space-fractional Fokker-Planck equation (FPE). The
classical Fokker-Planck equation was introduced by Adriaan Fokker and Max Planck,
commonly used to describe the Brownian motion of particles [96]. A FPE describes the
change of probability of a random function in space and time; hence it is naturally used to

describe solute transport. The general FPE for the motion of a concentration field u(x,t) of

one space variable x at time t has the form [97-99]

5_“{% A(x)+%8(x)}u(x,t), (419)

with the initial condition
u(x,0)= f(x), xeR (4.20)
where A(X) and B(X) >0 are referred as the drift and diffusion coefficients. The drift and

diffusion coefficients may also depend on time.
There is a more general form of FPE called nonlinear Fokker-Planck equation which is of
the form [97-99]

2
%:{—& A(x,t,u)+%B(x,t,u)}u(x,t) . (4.21)

The nonlinear Fokker-Planck equation (FPE) has important applications in various fields
such as plasma physics, surface physics, population dynamics, biophysics, engineering,
neuroscience, nonlinear hydrodynamics, polymer physics, laser physics, pattern formation,

psychology and marketing etc. [100].

In recent years there has been a great deal of interest in fractional diffusion equations.
These equations arise in continuous time random walks, modelling of anomalous diffusive
and subdiffusive systems, unification of diffusion and wave propagation phenomenon etc.
[101].

Consider the generalized nonlinear time- and space-fractional Fokker-Planck equation
[102]
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=| ——— A(x,t,u)+ t—op

o [ o o
ox”

B(x,t,u)}u(x,t),bo, x>0 (4.22)
where « and £ are parameters describing the order of the fractional time and space
derivatives respectively. The function u(x,t) is assumed to be a casual function of time

and space, i.e. vanishing for t <0 and x <0. The fractional derivatives are considered in
the Caputo sense.

Various mathematical methods such as the Adomian decomposition method (ADM) [103],
Variational iteration method (VIM) [103], Operational Tau method (OTM) [104] and
homotopy perturbation method (HPM) [105] have been used in attempting to solve
fractional Fokker-Planck equations.

4.4 Application of Analytical and Numerical Techniques to

Fractional Burgers-Fisher Equation

4.4.1 Haar Wavelet Based Scheme for Fractional Burgers-Fisher

Equation

Consider the generalized fractional order Burgers-Fisher equation given in eq. (4.17) with

following initial and boundary conditions

u(x,0)= £ —tanh[z( L )xﬂ; (4.23)

2 2 n+1

L

[ [

u(l,t):(% Etanh{ (577 [—( ¢ +ﬂ(77+1)jt | t>0  (4.25)

2(7+1) n+1 £

When «a =1, the exact solution of eq. (4.17) is given by [106]

RN -

| =
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Let us divide both space and time interval [0,1] into m equal subintervals; each of width

A= % Here we have taken =1, z=1 and &= =0.01. Therefore, eq. (4.17) reduces to

o%u o au
+0.01ju—+u(u-1)(=0. 4.27
e [ 5 Hul )j (4.27)
: : , d%u(x,t) :
Haar wavelet solution of u(x,t) is sought by assuming that pve can be expanded in
X
terms of Haar wavelets as
2 m m
ZZc., h, (0h; (©) (4.28)
i=1 j=1
Integrating eq. (4.28) with respect to x from 0 to x we get
ou(x, t AL
aulxt) )= c;Qh (h; (1) . (4.29)

OX i=1j=1

Again, integrating eq. (4.29) with respect to x from 0 to x we get

u(t)= 3360 (N, O+ a(t)+ xpl). (4.30)
i=1 j=1
Putting x=0, ineq. (4.30) we get
q(t)=u(0.t). (4.31)
Putting x=1, ineq. (4.30) we get
plt) =u(t t)-u(0.)- 3> e RN 0]y . 432
i=1j=1

Again q(t)+ Xp(t) can be approximated using Haar wavelet function as

)+ x0(t)= 3> 1 00N, 0. .33
i=1 j=1
This implies
u(0,t)+x u@,t)-u(0,t)->>"c; [Q h (x)]x Lhi) | = ,Jh,(x)h (t). (4.34)
i=1j=1 i 1 j=1

Substituting eq. (4.33) in eq. (4.30) we get

iichzhi (x)h; () +izrij h, (Oh; (t) . (4.35)

i=1 j=1 i=1 j=1
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The nonlinear term presented in eq. (4.27) can be approximated using Haar wavelet
function as
au m m
u— ZZd hi (X)h; (1) . (4.36)
aX i=1 j=1
Therefore from eq. (4.29), (4.32) and (4.35) we have

(iic.,@zhi(x)h,-(t)+iiruhi<x>h,-(t)] {iic.@hﬁ(x)h,-(t)+u(1,t)—u(o,t)

i=1 j= i=1j=1 i=1j=1

|

Substituting eq. (4.28) and eq. (4.36) in eq. (4.27) we will have

[

MB
MB

;[ (0], ih ,(t)} [iic.,@ R 00Ny @)+ 33 1k (0, (t)} (4.37)

i=1 j=1 i=1 j=1

I
—

i 1

j

ichzmx)h,-(t)&injhi(x)hj(t)—l} 53" 4y 00n;

j=1 i=1j=1 i=1j=1

M3

Il
N

a

iiclj I(X)h (t) 001ZZdu |(X)h (t) (4.38)

i=1 j=1 i=1j=1

Now applying J“ to both sides of eq. (4.38) yields

u(x,t)-u (iicu h, ()h; (t)J o.ou“[iidu h, (0h; (t)] (4.39)

i=1 j=1 i=1 j=1

Substituting eq. (4.23) and eq. (4.35) in eq. (4.39) we get

iiCquhi(X)hj(t)‘i'iiruh(X)h (t)- [—+Etanh( — ¢t Hz

i=1j=1 i=1 j=1 2(17+1)
(4.40)

m m m m

ZZCU |(X)Qt h; (t) OOl(ZZdIJ I(X)Qt h. ('[)J

i=1j=1 i=1j=1

I-0.5 k-0.5

Now substituting the collocation points X, = and t, = for Lk=12,...,m
in egs. (4.34), (4.37) and (4.40), we have 3m® equations in 3m”unknowns in c;, r; and

d; . By solving these system of equations using mathematical software, the Haar wavelet

coefficients ¢;, r; and dj can be obtained.
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4.4.2 Application of OHAM to time-fractional Burgers-Fisher Equation

Using optimal homotopy asymptotic method, the homotopy for eq. (4.27) can be written
as

(1 p) ZOER) _ oyl %p(xtip)  Op(xtip)

o o o (4.41)
00t PEER) gt p)a- ot ) |
Here
ot )= tolxt)+ 2 )p' @.42)
H(p)=C,p+C,p° +Csp%+..., (4.43)
N(p(x,t; p))=No(uo(x,1)) +§Nk Ug, Uy, ..., U )P~ (4.44)

Substituting eqs. (4.42)- (4.44) in eq. (4.41) and equating the coefficients of like powers of

p, we have the following system of partial differential equations.

Uy (x,1)

a

Coefficients of pO :

=0, (4.45)

Coefficients of p':

0%u(x,t)  0%up(x.t) _ c 0“up(x,t)  d°ug(x.t)
ot ot Nooate ox?

+ 0.0l[uo(x,t) O (x.1) +(up (%, 1)) —ug(x, t)ﬂ , (4.46)

OX

Coefficients of p?:

0%Uy(x,t)  a“uy(xt) _ Cl{a"‘ul(x,t) _QPuy(x.t) N 0.0l[uo(x,t)aul(x’t)

ot ot ot ox? OX

+ 2Uq (X, t)uy (X, t - uy (%, 1) 5Uo§;' t)_ uy (x, t)ﬂ + (4.47)
cz{aauo(x’t) _Puylxt) 0.0l{uo(x,t)au(’(x’t) () - uo(x,t)ﬂ,

ot” OX OX

and so on.
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For solving fractional order Burgers-Fisher equation using OHAM, we consider the initial
condition eq. (4.23) and solving eq. (4.45) to eq. (4.47), we obtain

Up(x,t)= E+%tanh(_(201 xﬂ (4.48)

—0.00250625C; sec h?(0.0025x t*

i d) , (4.49)

Ul(x’t):

C,(sech®(0.0025x)— 2sech?(0.0025x)tanh?(0.0025x)) 12
r(1+2a)

Uy (x,t)=u,(x,t)+ Cl[ul(x,t)—

00 J{Clsechz(O.OOZSX)(—l+tanh(0.0025x))tanh(0.0025x)t2“ .\

r(1+2a)
C, sech*(0.0025x )t > . 0.00250625C, sec h?(0.0025x )(—1+ tanh(0.0025x )t **
[(1+2a) r(d+2a)
~ 0.00250625C, sech?(0.0025x Jt** .
r(1+2a)

OX X

CZ[_azuo(zx,t)+o_01{u0(x,t)w+(uo(xit»2_uo(x’t)ﬂ .

and so on.

Using eq. (4.48), (4.49) and (4.50), the second order approximate solution is obtained as

follows

u(x,t) =g (X, t)+uy (X, t)+uy(x,t)

2 a

1.1 tanh(— 0.01 Xj ~ 0.00250625C, sech?(0.0025x u(xt)

2 2 Il+a)
. C{ul(X, ) C,(sech*(0.0025x)— 2sech?(0.0025x)tanh?(0.0025x))t>

r(l+2a)
C, sech?(0.0025x )(—1+ tanh(0.0025x ))tanh(0.0025x ) t**
+0.0 N
r(l+2a)

C, sech®(0.0025x)t* . 0.00250625C, sec h?(0.0025x -1+ tanh(0.0025x ))t**
[(1+2a) r(1+2a)
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~ 0.00250625C, sech?(0.0025x)t*“ ﬂ N

r(1+2a) (4.51)

0%u,(x,t Ou,(x,t t*
CZ[—% + 0.0l{uo(x,t)% + (U (x, 1)) - uo(x,t)}}m
The optimal values of the convergence control constants C, and C, can be obtained by

using collocation method from eq. (1.33) of chapter 1.

4.5 Numerical Results for Fractional Burgers-Fisher

Equation

The following Table 4.1 shows the comparison of the absolute errors of Burgers-Fisher
equation obtained by using Haar wavelet method and OHAM at different values of x and t
taking o =1. Similarly, Tables 4.2-4.4 exhibit the comparison of approximate solutions
obtained by Haar wavelet method and OHAM for fractional order Burgers-Fisher equation

taking ¢ =0.75,0.5 and 0.25 respectively. In the following Tables 4.1 -4.4, m has been

taken as 16. The obtained results in Tables 4.1-4.4 demonstrate that these methods are well
suited for solving fractional Burgers-Fisher equation. Both the methods are quite efficient

and effective.

Table 4.1 The absolute errors in the solution of fractional order Burgers-Fisher equation
given in eq. (4.27) using Haar wavelet method and three terms for second order OHAM with
convergence control parameters C; =0, C, =-0.99999 at various points of x and t for « =1.

|uExact - uHaar| |uExact —UoHaMm |

t=0.2 t=0.4 t=0.6 t=0.8 t=0.2 t=0.4 t=0.6 t=0.8
0.1 | 5.4804E-5 | 2.3476E-5 | 7.85260E-6 | 3.9181E-5 | 4.229E-11 | 8.408E-10 | 3.403E-9 | 8.7368E-9
0.2 | 2.3553E-5 | 7.7785E-6 | 3.91080E-5 | 7.0440E-5 | 8.333E-11 | 3.384E-10 | 2.273E-9 | 6.7268E-9
0.3 | 7.0426E-5 | 3.9091E-5 | 7.75940E-6 | 2.3578E-5 | 2.089E-10 | 1.642E-10 | 1.142E-9 | 4.7168E-9
0.4 | 3.9169E-5 | 7.8222E-6 | 2.35157E-5 | 5.4870E-5 | 3.346E-10 | 6.667E-10 | 1.13E-11 | 2.7068E-9
0.5 | 7.9054E-6 | 2.3463E-5 | 5.48121E-5 | 8.6199E-6 | 4.602E-10 | 1.1692E-9 | 1.119E-9 | 6.968E-10
0.6 | 5.4768E-5 | 2.3384E-5 | 7.97308E-6 | 3.9384E-5 | 5.858E-10 | 1.6717E-9 | 2.249E-9 | 1.3132E-9
0.7 | 2.3489E-5 | 7.9370E-6 | 3.93167E-5 | 7.0791E-5 | 7.115E-10 | 2.1742E-9 | 3.381E-9 | 3.3232E-9
0.8 | 7.0337E-5 | 3.8884E-5 | 7.48940E-6 | 2.4026E-5 | 8.371E-10 | 2.6767E-9 | 4.511E-9 | 5.3332E-9
0.9 | 3.9031E-5 | 7.5074E-6 | 2.39232E-5 | 5.5543E-5 | 9.627E-10 | 3.1792E-9 | 5.642E-9 | 7.3432E-9
1.0 | 8.5852E-5 | 5.4286E-5 | 2.28326E-5 | 8.8514E-6 | 1.0883E-9 | 3.6817E-9 | 6.772E-9 | 9.3532E-9

Table 4.2 Comparison between the approximate solutions of fractional order Burgers-Fisher

equation given in eq. (4.27) using Haar wavelet method and three terms for second order OHAM
with convergence control parameters C; =—-0.000104528, C, =—0.99979 at various points of x and t

for & =0.75.
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X t=0.2 t=04 t=0.6 t=0.8
Unaar UoHam Unaar | UoHaM Unaar UoHam Upaar UoHAm
0.1 | 0.50043 | 0.500691 0.5009 | 0.501247 | 0.501369 0.501734 0.501839 0.502182
0.2 | 0.500271 | 0.500566 | 0.50074 | 0.501122 | 0.501207 0.501609 0.501674 0.502057
0.3 | 0.500187 | 0.500441 | 0.500656 | 0.500997 | 0.501119 0.501484 0.501584 0.501932
0.4 | 0.500028 | 0.500316 | 0.500495 | 0.500872 | 0.500944 0.501359 0.5014 0.501807
0.5 | 0.499873 | 0.500191 | 0.500335 | 0.500747 | 0.500758 0.501234 0.501197 0.501682
0.6 | 0.499789 | 0.500066 | 0.500248 | 0.500622 | 0.500653 0.501109 0.50108 0.501557
0.7 | 0.499641 | 0.499941 | 0.500092 | 0.500497 | 0.500446 0.500984 0.500839 0.501432
0.8 | 0.499559 | 0.499816 | 0.500005 | 0.500372 | 0.500326 0.500859 0.500697 0.501307
0.9 | 0.499423 | 0.499691 | 0.499855 | 0.500247 | 0.500092 0.500734 0.500409 0.501182
1.0 | 0.499345 | 0.499566 | 0.499767 | 0.500122 | 0.499953 0.500609 0.500236 0.501057
Table 4.3 Comparison between the approximate solutions of fractional order Burgers-Fisher

equation given in eq. (4.27) using Haar wavelet method and three terms for second order OHAM
with convergence control parameters C; =0.000163239, C, =-1.00032796 at various points of x and

t fora=0.5.
X t=0.2 t=04 t=0.6 t=0.8
Upaar | UYoHam Upaar UoHam Upaar UoHam Upaar UoHam
0.1 | 0.500429 | 0.50114 | 0.500898 | 0.501664 | 0.501368 | 0.502066 | 0.501837 | 0.502404
0.2 | 0.500273 | 0.501015 | 0.500736 | 0.501539 | 0.501201 | 0.501941 | 0.501666 | 0.502279
0.3 | 0.50019 | 0.50089 | 0.500646 | 0.501414 | 0.501105 | 0.501816 | 0.501566 | 0.502154
0.4 | 0.500056 | 0.500765 | 0.500484 | 0.501289 | 0.500921 | 0.501691 | 0.501363 | 0.502029
0.5 | 0.499953 | 0.50064 | 0.500329 | 0.501164 | 0.500725 | 0.501566 | 0.501132 | 0.501904
0.6 | 0.499898 | 0.500515 | 0.500238 | 0.501039 | 0.500605 | 0.501441 | 0.500986 | 0.501779
0.7 | 0.49986 | 0.50039 | 0.500098 | 0.500914 | 0.500386 | 0.501316 | 0.500698 | 0.501654
0.8 | 0.499838 | 0.500265 | 0.50001 | 0.500789 | 0.500246 | 0.501191 | 0.500513 | 0.501529
0.9 | 0.499889 | 0.50014 | 0.499894 | 0.500664 | 0.499999 | 0.501066 | 0.500153 | 0.501404
1.0 | 0.499912 | 0.500015 | 0.499814 | 0.500539 | 0.499838 | 0.500941 | 0.499922 | 0.501279
Table 4.4 Comparison between the approximate solutions of fractional order Burgers-Fisher

equation given in eq. (4.27) using Haar wavelet method and three terms for second order OHAM
with convergence control parameters C; =-0.00019986, C, =-0.999602 at various points of x and t

for o =0.25.
X t=0.2 t=04 t=0.6 t=0.8
Uhaar UoHAM Uhaar UoHAM Uhaar UoHAM Uhaar UoHAM
0.1 | 0.500427 | 0.501724 | 0.500897 | 0.502074 | 0.501366 0.502309 0.501836 0.50249
0.2 | 0.50027 | 0.501599 | 0.500733 | 0.501949 | 0.501196 0.502184 0.50166 0.502365
0.3 | 0.500184 | 0.501474 | 0.500639 | 0.501824 | 0.501095 0.502059 0.501552 0.50224
0.4 | 0.500056 | 0.501349 | 0.50048 | 0.501699 | 0.500909 0.501934 0.50134 0.502115
0.5 | 0.49997 | 0.501224 | 0.500339 | 0.501574 | 0.500717 | 0.501809 | 0.501099 | 0.50199
0.6 | 0.49992 | 0.501099 | 0.500248 | 0.501449 | 0.500591 | 0.501684 | 0.500937 | 0.501865
0.7 | 0.499923 | 0.500974 | 0.500142 | 0.501324 | 0.500385 | 0.501559 | 0.500637 | 0.50174
0.8 | 0.499916 | 0.500849 | 0.500064 | 0.501199 | 0.500243 | 0.501434 | 0.500432 | 0.501615

114




0.9

0.500043

0.500724

0.500011

0.501074
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0.501184

0.499805

0.501365

The following Figures 4.1 and 4.2 cite the comparison graphically between the numerical

solutions obtained by Haar wavelet method, optimal homotopy asymptotic method

(OHAM) and exact solutions for different values of t and x.
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Figure 4.1
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Comparison of Haar wavelet solution and OHAM solution with the exact solution

of Burgers-Fisher equation when t=0.2.
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Comparison of Haar wavelet solution and OHAM solution with the exact solution

of Burgers-Fisher equation when t=0.4.

115




4.6 Application of Analytical and Numerical Methods to

Fractional Fisher’s type Equation

4.6.1 Haar Wavelet Based Scheme for Generalized Fisher’s Equation

Consider the generalized Fisher’s equation [107] of fractional order

a 2
Ztg=%+u(1—u6), O<a<1,0<x<1, (4.52)
X

with the initial condition

u(x,0)=;l . (4.53)

3.3
[1+e2 J

When «a =1, the exact solution of eq. (4.52) is given by [108]

1
_ 3
u(x,t)= L Liann =3 k=24 (4.54)
2 2 4 2
Let us divide both space and time interval [0, 1] into m equal subintervals; each of width
A=t
m

2
The Haar wavelet solution of u(x,t) is sought by assuming that % can be expanded
X

in terms of Haar wavelets as

2 m m
0 u(x,t):ZZ ;b (0h. (V). (4.55)

2
OoX i=1j=1

Integrating eq. (4.55) twice with respect to x from 0 to x, we get

u(t)= > e, Q% 00n; 0+ (1) + xpL). (4.56)

i=1 j=1
Putting x=0, ineq. (4.56), we get
q(t)=u(0,t). (4.57)
Putting x=1, in eq. (4.56), we get
m

plt) =ult)-u(0.)- 3 ;R 0Ly 0. (4.58)

i=1 j=1
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Substituting eq. (4.57) and (4.58) in eq. (4.56), we have

iic Q2h, (x)h; (t) +u(0,t)+

i=1 j=1

(4.59)
m m )
0-2 >R 0] n 0]
i=1 j=1
The nonlinear term presented in eq. (4.52) can be approximated using Haar wavelet
function as
m m
( ) D> dih (0h; (1), (4.60)
i=1 j=1
which implies

ii ¢;Q2h, ()h, (1) +u(0,t) + x{u Lt)- iicu lon (x)]lehj(t)D

i=1 j=1 i=1j=1

6
1- [ZZCUQ h, (30h; (t) +u(0,t)+ x{u(lt -3¢ [thi (x)]lehj(t)D ] (4.61)
i=1j=1 i=1j=1
iiduhi (h; (1)
i=1j=1
Substituting eq. (4.55) and eq. (4.60) in eq. (4.52), we have
O 3 S (0n; O+ 3 >y (0 (1) (4.62

i=l j=1 i=1 j=1

Now applying J¢ to both sides of eq. (4.62) yields

u(x,t)-u O{iicu h, (x)hj(t)J+ J“{iidu h; (X)h; (t)} : (4.63)

i=1j=1 i=1j=1

Substituting eq. (4.53) and eq. (4.59) in eq. (4.63) we get

Ma

S>>l (x)Llh,-a)}

=1

iich by OOh; (£) +u(0,t)+ x[u(lt

i=1 j=1

Il
N

i i Cihy (X)Qtahj (t)+ Z Z dihy (X)Qtahj (t) (4.64)

3X 2 i=1 j=1 i=1 j=1
{1+e2 J
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I-0.5 k—-0.5

for ,Lk=212,...,m in

Now substituting the collocation points x, = and t, =

eqs. (4.64) and (4.61), we have 2m? equations in 2m? unknowns in c;jand d;. By

solving these system of equations using mathematical software, the Haar wavelet

coefficients ¢; and d; can be obtained.

4.6.2 Application of OHAM to Generalized Fisher’s Equation

Using optimal homotopy asymptotic method, the homotopy for eq. (4.52) can be written

as
(L- p)% = H(p)[aa¢gt(;t p)_ azg”g(’zt .P) —plx,t; P (px t: p)f° ]} (4.65)
Here co(X,t:p)=uo(xvt)+iui(x,t)pi, (4.66)
H(p)=C,p+C,p° +Csp°+..., (4.67)
N{g(x,t; p))=No(ug(x,t) +§1Nk Ugs Uy, o, U P (4.68)

Substituting egs. (4.66), (4.67) and (4.68) in eq. (4.65) and equating the coefficients of like
powers of p, we have the following system of partial differential equations.

0.0 Up(x,t)

=0 4.69
e (4.69)

Coefficients of p

Coefficients of p*:

+<uo<x,t>>7—uo<x,t>}. @10

ouy(xt) 8%up(x.t) _ c 0“up(x,t)  °uylx.t)
ot ot oa ox?

Coefficients of p?:

aauz(x,o_aau1<x,t>:c{a““l(x’t)‘82”*“)+7<u0<x,t»6u1<x,t>—u1<x,t>}

ot® ote ote ox?

(4.71)

ot® ox°?

+c{a““°(x’”—az“o(x'th(uo(x,t»?—uo<x,t>}

and so on.
We consider the initial condition given in eq. (4.53) and solving above equations, we

obtain
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Up(x,t)= = (4.72)
3.3
1+e?
3x
— 2t
0 (x,t)= 5C1§/t , (4.73)
3x)/3
41+e? | T(l+a)

and so on.

The fourth order approximate solution can be obtained by using the formula
U(X, 1) = Ug (X, )4+ Uy (X, )+ Uy (%, )+ ug(x, )+ Uy (x, 1)
The optimal values of the convergence control constants C,,C,,C; and C, can be

obtained using collocation method from eq. (1.33) of chapter 1.

4.7 Numerical Results for Fractional Fisher’s Equation

Tables 4.5-4.8 present the comparison of approximate solutions obtained by Haar wavelet
method and OHAM for fractional order generalized Fisher’s equation given in eq. (4.52).
The obtained results in Tables demonstrate that these methods are well suited for solving
fractional order generalized Fisher’s equation. Both the methods are quite efficient and

effective.

Table 4.5 The absolute errors in the solution of generalized Fisher’s equation (4.52) using
Haar wavelet method and five terms for fourth order OHAM with convergence control parameters
C; =-0.637012, C, =-0.151156, C3 = 0.023432,C, =—-0.0012788 at various points of x and t for

a=1.

Ugxact — UHaar |u Exact ~— UOHAM |

t=0.2 t=04 t=0.6 t=0.8 t=0.2 t=04 t=0.6 t=0.8

0.1

0.0051104

0.0054849 | 0.0042629

0.0027556

6.67439E-5

0.0040747 | 0.023752 | 0.0740709

0.2

0.0096957

0.0106181 | 0.0085377

0.0058225

1.99503E-4

0.0023417 | 0.019345 | 0.0678136

0.3

0.013553

0.0151142 | 0.0125286

0.0089272

4.65337E-4

4.3112E-4 | 0.013810 | 0.0581267

0.4

0.0163976

0.018593 | 0.0158324

0.0116856

7.18406E-4

0.0015578 | 0.007399 | 0.0453319

0.5

0.0179265

0.0206477 | 0.0180051

0.0136684

9.47663E-4

0.0035178 | 4.521E-4 | 0.030035

0.6

0.017924

0.0209528 | 0.0186691

0.0145062

0.0011444

0.0053436 | 0.006645 | 0.013062

0.7

0.0163414

0.01935 0.0175984

0.013973

0.0013029

0.0069445 | 0.013494 | 0.0046328

0.8

0.0133823

0.015939 | 0.0148102

0.0120755

0.0014207

0.0082540 | 0.019736 | 0.0220718
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0.9 | 0.0095361 | 0.0111158 | 0.0106057 | 0.0090918 | 0.0014982 | 0.009231 | 0.025078 | 0.0383517
1.0 | 0.0055837 | 0.0055837 | 0.0055837 | 0.0055837 | 0.0015382 | 0.0098632 | 0.029315 | 0.0527218
Table 4.6 The approximate solutions of generalized Fisher equation (4.52) using Haar

wavelet method and five terms for fourth order OHAM with convergence control parameters
C; =-0.649458, C, =0.053658, C5 =—0.1822726,C, =0.0894301 at various points of x and t for

a=0.75.

X t=0.2 t=04 t=0.6 t=0.8
Upaar UoHAMm Upaar UoHAM Upaar UoHAMm Upaar UoHAM
0.1 | 0.859185 | 0.899389 | 0.920547 | 0.931947 | 0.957952 | 0.927394 | 0.978665 | 0.902524
0.2 | 0.838644 | 0.888856 | 0.905313 | 0.930017 | 0.948042 | 0.930519 | 0.972681 | 0.905646
0.3 | 0.817612 | 0.877253 | 0.889588 | 0.927859 | 0.93764 | 0.934718 | 0.966206 | 0.91116
0.4 | 0.796431 | 0.864492 | 0.873714 | 0.92523 | 0.927088 | 0.939825 | 0.959581 | 0.919341
0.5 | 0.775484 | 0.850503 | 0.858074 | 0.921857 | 0.916772 | 0.945568 | 0.953191 | 0.930278
0.6 | 0.755093 | 0.835244 | 0.84299 | 0.917456 | 0.90701 | 0.951569 | 0.947357 | 0.943809
0.7 | 0.735424 | 0.818704 | 0.828628 | 0.911753 | 0.897971 | 0.957356 | 0.942244 | 0.959482
0.8 | 0.716399 | 0.800908 | 0.81491 | 0.904497 | 0.889575 | 0.962388 | 0.937776 | 0.976567
0.9 | 0.697656 | 0.781918 | 0.801474 | 0.895481 | 0.881463 | 0.966095 | 0.933591 | 0.994112
1.0 | 0.678526 | 0.761827 | 0.787651 | 0.884559 | 0.872963 | 0.967927 | 0.929017 | 1.01104
Table 4.7 The approximate solutions of generalized Fisher equation (4.52) using Haar

wavelet method and five terms for fourth order OHAM with convergence control parameters
C, =-0.5059152, C, =-0.0211535, C3 = -0.05081612 and C, =0.0574318 at various points of x and t

for ¢ =0.5.

X t=0.2 t=04 t=0.6 t=0.8
Upaar UoHAM Upaar UoHAM Upaar UoHAM Upaar UoHAM
0.1 | 0.859121 | 0.927731 | 0.920482 | 0.943924 | 0.957888 | 0.943779 0.9786 0.939948
0.2 | 0.838402 | 0.921616 | 0.905071 | 0.943123 | 0.947799 0.94491 | 0.972438 | 0.940694
0.3 | 0.817123 | 0.914826 | 0.889099 | 0.942438 | 0.937151 | 0.946615 | 0.965717 | 0.941956
0.4 | 0.795694 | 0.907206 | 0.872977 | 0.941713 | 0.926351 | 0.948908 | 0.958844 | 0.944068
0.5 | 0.774576 | 0.898605 | 0.857166 | 0.940787 | 0.915864 | 0.951841 | 0.952284 | 0.947508
0.6 | 0.754149 | 0.888882 | 0.842046 | 0.93948 | 0.906066 | 0.955446 | 0.946413 | 0.952761
0.7 | 0.734584 | 0.877915 | 0.827789 | 0.937586 | 0.897131 | 0.959662 | 0.941405 | 0.96016
0.8 | 0.715744 | 0.865607 | 0.814255 | 0.934862 | 0.888921 | 0.964283 | 0.937121 | 0.969739
0.9 | 0.697156 | 0.851889 | 0.800975 | 0.931031 | 0.880963 | 0.968937 | 0.933091 | 0.98117
1.0 | 0.678052 | 0.83673 | 0.787178 | 0.925803 | 0.872489 | 0.973109 | 0.928543 | 0.993777
Table 4.8 The approximate solutions of generalized Fisher equation (4.52) using Haar

wavelet method and five terms for fourth order OHAM with convergence control parameters
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C; =-0.33833012, C, =—0.04303056, C3 =0.1230816 and C, =—0.0545852 at various points of x and t

for o =0.25.
X t=0.2 t=04 t=0.6 t=0.8

Upaar UoHAM Upaar UoHAM Upaar UoHAM Upaar UoHAM
0.1 | 0.859016 | 0.949105 | 0.920377 | 0.959635 | 0.957783 | 0.964066 | 0.978495 | 0.966453
0.2 | 0.837987 | 0.943681 | 0.904655 | 0.955839 | 0.947384 | 0.960802 | 0.972023 | 0.963262
0.3 | 0.816234 | 0.937961 | 0.88821 0.9522 0.936261 | 0.957955 | 0.964827 | 0.960634
0.4 | 0.79426 | 0.93184 | 0.871543 | 0.948657 | 0.924917 | 0.95553 | 0.95741 | 0.958645
0.5 | 0.772676 | 0.925203 | 0.855266 | 0.945143 | 0.913963 | 0.953545 | 0.950383 | 0.957415
0.6 | 0.752001 | 0.917922 | 0.839899 | 0.941569 | 0.903919 | 0.951996 | 0.944265 | 0.957051
0.7 | 0.732474 | 0.909857 | 0.825678 | 0.937799 | 0.895021 | 0.950809 | 0.939295 | 0.957571
0.8 | 0.713871 | 0.900851 | 0.812383 | 0.933634 | 0.887048 | 0.949804 | 0.935249 | 0.958845
0.9 | 0.695534 | 0.890742 | 0.799352 | 0.928815 | 0.87934 | 0.948678 | 0.931468 | 0.96056
1.0 | 0.676507 | 0.87937 | 0.785633 | 0.923035 | 0.870944 | 0.947027 | 0.926998 | 0.96224

In case of generalized Fisher’s equation, the Figures 4.3 and 4.4 present the comparison

graphically between the numerical results obtained by Haar wavelet method, OHAM and

exact solutions for different values of t and x.

Figure 4.3
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of generalized Fisher’s equation when t=0.2.
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Figure 4.4 Comparison of Haar wavelet solution and OHAM solution with the exact solution

of generalized Fisher’s equation when t=0.4.

4.8 Solution of Fractional Fokker-Planck Equation

4.8.1 Application of Haar Wavelets to Time-Fractional Fokker-Planck

Equation
Consider the nonlinear time-fractional Fokker-Planck equation [103, 105]
a 2
ou _ _ﬁ(ﬂ_ijﬁ_‘; u(x,t), t>0,x>0,0 < <1, (4.74)
ot” ox\x 3) ox

subject to the initial condition

u(x,0)=x>. (4.75)
When o =1, the exact solution of eq. (4.74) is given by [103, 105]

u(x,t)= x%". (4.76)
Let us divide both space and time interval [0, 1] into m equal subintervals; each of width

d%u(x,t)

A:%. Haar wavelet solution of u(x,t) is sought by assuming that o, can be
X
expanded in terms of Haar wavelets as
82 m m
ZZC. by (30h; (1) (4.77)
i=1j=1
Integrating eq. (4.77) with respect to x from 0 to x, we get
ou xt LU
ax)_ oy )= QR (xh; (). (4.78)

OX i=1j=1

Again, integrating eq. (4.78) with respect to x from 0 to x, we get
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u(x,t) :iic”thi (x)h; (©) +q(t)+ xp(t). (4.79)

i=1 j=1

Putting x =0, ineq. (4.79), we get

q(t)=u(0,t)=0. (4.80)
Putting x =1, ineq. (4.79), we get
p(0)=uL)-u(0.)- > ¢; [ 0] 4,
i=1 j=1
-2 gl n . @s1)
i=1 j=1

Putting eq. (4.81) in egs. (4.78) and (4.79), we have

iichh (O, (1) + u(L.t) iicu Q2 (0] h, @, (4.82)

i=1j=1 i=1j=1

u(x,t) =iic Q2h, (x)h, (t)+x|:u Lt) iicu el | @83

i=1j=1 i=1 j=1

The nonlinear term presented in eq. (4.74) can be approximated using Haar wavelet

function as
ou? o) &
- —|= d;; hy ()h; (t
axz ax(j 55 om0
This implies
o%u  2u (auj( j m m
U —+— [+ — | —— d;i by (X)h; (t 4.84
(282 SSanomo.  ao

Therefore substituting eqs. (4.77), (4.82) and (4.83) in eq. (4.84), we have
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Z[iichzhi(x)h [+ x{u 1t) iicu Q% (0]_h, (t)Dx

i=1j=1 i=1j=1

[iic NN, O+ [iic Q%h, (h, (t)+x{u Lt) iicu [thi(x)]xlhj(t):m

i=1j=1 i=1 j=1 i=1 j=1

[iic Qh (0h; () +u(Lt) iicu Q% (X)]lehj(t)]x

=1 j=1 i=1j=1

i=1j=1 i=1 j=1

Hiicu% (0h; (1) +u(L,t)- iicu [thi (X)]leh j (t)]

; 3>, Q%h, (0, (t)+x{u L)->3c [thi(x)]xlhj(t)m

i=1 j=1
=22 dyhi (0h; ()
i=1j=1
(4.85)
Substituting eq. (4.84) in eq. (4.74), we have

P XNICICEE R

(4.86)

Now applying J¢ to both sides of eq. (4.86) yields

u(x,t)- a(iid h, (h, (t)+5‘;—;‘( £ J (4.87)

i=1j=1 3

Substituting eqs. (4.75), (4.82) and (4.83) in eq. (4.87), we get

i=1 j=1 i=1j=1

:

{iich h(X)Qt hj(t)+X{J Ult

i=1l j=1

iic Q2h, (x)h, (t)+x{u Lt) Zm:icu [thi(x)]xlhj(t)}x2 -

2.2 dihi 00Q “h; () +

i=1 j=1

(4.88)

Ma

icUth(x)Qt“h ) +J°u(Lt) iicu [thi(x)]let“hj(t)]Jr

j=1 i=1 j=1

w | =
]
R

M3

icu [thi (X)]X=1Qtahj (t)D

i=1

Wl

1]
—
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0.5 k-0.5

N : : |-
Now substituting the collocation points X, =——— and t, = for Lk=12,...,m
m

in egs. (4.85) and (4.88), we have 2m? equations in 2m? unknowns in c;and d;. By

solving these system of equations using mathematical software, the Haar wavelet

coefficients ¢; and d; can be obtained.

4.8.2 Application of two Dimensional Haar Wavelet for Solving Time-

and Space-Fractional Fokker-Planck Equation

Consider the time- and space-fractional Fokker-Planck equation [103, 105]

o“u o’ (x), &% (x?
== Z A 1), t>0,x>0, 4.89
a” { Gxﬁ(6]+ax2/’ (12}}”0( ) (4.89)

where 0< «a, # <1, subject to the initial condition

u(x,0)= x. (4.90)
When « =1and =1, the exact solution of eq. (4.89) is given by [103, 105]

t

u(x,t)=x%2. (4.91)

- . . : . 1
Let us divide space interval [0, 1] into m equal subintervals; each of width A = P~

Haar wavelet solution of u(x,t) is sought by assuming that 0 u(;(’t) can be expanded in

terms of Haar wavelets as

U_ 33 an00n, ). .92

i=1j=1

Applying J¢ both sides of eq. (4.92), we get

x,t)=x? +iiaij h (x)Q%h; (1). (4.93)
i=1j=1
Now & —(xu(x,t))= ( )+ izm:a (xh; () R“h; (1), (4.94)
onF Cxf =o '
82,3 aZﬂ m m
and 77 (x u(xt) t) 77 (x4)+ ééa (x h (x)b h; (t). (4.95)

Substituting egs. (4.92), (4.94) and (4.95) in eq. (4.89), we get
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(x3)+iia

i=1j=1

m -1 &*
>y h(x)hj(t)ZE[gx—ﬁ

i=1j=1

(xh; () RN (t)]
(4.96)

2
OX p i=1j=1

2 [ O S, e ok (t>]

—05 =12

Now substituting the collocation points x, = m in eq. (4.96), we

have m® equations in m® unknowns a;. By solving this system of equations using

mathematical software, the Haar wavelet coefficients a; can be obtained.

4.9 Numerical Results for Fractional Fokker-Planck

Equation

The following Table 4.9 shows the comparison of exact solutions with the approximate
solutions of different numerical methods for time-fractional Fokker-Planck equation.
Agreement between present numerical results with other approximate solutions and exact
solutions appear very satisfactory through illustrations in Tables 4.9 and 4.10. Table 4.10
shows the comparison of approximate solutions of fractional order time-fractional Fokker-
Planck equation obtained by using two dimensional Haar wavelet method with the
solutions of Adomian decomposition method (ADM) and Variational iteration method
(VIM) presented in Ref. [103]. Similarly Tables 4.11 and 4.12 show the comparison of
approximate solutions obtained by different numerical methods for time- and space-
fractional Fokker-Planck equation. It is found that the solutions obtain by using present
method are in good agreement with the results presented by Odibat et al. [103] and even
better than the results obtained by Operational Tau method (OTM) presented by Vanani et
al. [104]. However, the errors may be reduced significantly if we increase level of

resolution which prompts more number of collocation points.

Table 4.9 Comparison of present method solution with other numerical methods for classical
order time fractional Fokker-Planck equation (4.74) at various points of x and t for o =1.

t X Upom [103] Uy [103] Uyact Unaar
0.2 0.25 0.076333 0.076333 0.076338 0.0756165
0.5 0.305333 0.305333 0.305351 0.304392
0.75 0.687000 0.687000 0.687039 0.686321
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1.0 1.221333 1.221333 1.221403 1.2214
0.4 0.25 0.093167 0.093167 0.093239 0.0958469
0.5 0.372667 0.372667 0.372956 0.376435
0.75 0.838500 0.838500 0.839151 0.841761
1.0 1.490667 1.490667 1.491825 1.49182
0.6 0.25 0.113500 0.113500 0.113882 0.110663
0.5 0.454000 0.454000 0.455530 0.451238
0.75 1.021500 1.021500 1.024942 1.02172
1.0 1.816000 1.816000 1.822119 1.82212
Table 4.10 Comparison of present method solution with other numerical methods for time

fractional Fokker-Planck equation (4.74) at various points of x and t taking « =0.5 and « =0.75.

t X a=05 a=0.75
uapm [103] | uyym [103] UHaar UADM Uyim UHaar
[103] [103]

0.2 0.25 0.110744 0.091795 | 0.0900792 | 0.087699 | 0.084593 | 0.0714745
0.5 0.442978 0.367179 | 0.421013 | 0.350796 | 0.338372 | 0.329117

0.75 0.996699 0.826154 | 0.990531 | 0.789291 | 0.761337 | 0.773339

1.0 1.771910 1.468717 1.79902 1.403180 | 1.353488 | 1.40468
0.4 0.25 0.143997 0.118678 0.13581 0.111718 | 0.106178 | 0.0973803
0.5 0.575909 0.474712 | 0.587481 | 0.446872 | 0.424712 | 0.431178

0.75 1.295980 1.068102 1.35217 1.005460 | 0.955602 | 0.998822

1.0 2.303960 1.898849 2.43004 1.787490 | 1.698849 | 1.80046

0.6 0.25 0.176478 0.146209 | 0.167654 | 0.138479 | 0.129926 | 0.116878
0.5 0.705914 0.584835 | 0.749162 | 0.553918 | 0.519702 | 0.534521

0.75 1.588310 1.315878 1.742 1.246320 | 1.169330 | 1.24986

1.0 2.823650 2.339338 3.14621 2.215670 | 2.078809 | 2.26291
Table 4.11 Comparison of approximate solutions obtained by using VIM, ADM and Haar

wavelet method for time- and space-fractional Fokker-Planck equation (4.89) at various points of x
and t taking o =1 and g =1.

t X uapm [103] uyim [103] UExact UHaar
0.2 0.25 0.069062 0.069062 0.069073 0.0689468
0.5 0.276259 0.276250 0.276293 0.274611
0.75 0.621563 0.621563 0.621659 0.619337
04 0.25 0.076250 0.076250 0.076338 0.0753937
0.5 0.305000 0.305000 0.305351 0.299222
0.75 0.686250 0.686250 0.687039 0.676175
0.6 0.25 0.084062 0.084063 0.084366 0.0818405
0.5 0.336250 0.336250 0.337465 0.323833
0.75 0.756562 0.756562 0.759296 0.733012
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Table 4.12

Comparison of approximate solutions of fractional order time- and space-
fractional Fokker-Planck equation (4.89) obtained by using VIM, ADM, OTM and Haar wavelet
method at various points of x and t taking = £ =0.5 and a = =0.75.

t| x a=05and =05 a=0.75and $=0.75
UaDM Uyim UoTt™m UHaar Uapm Uyim Uotwm UHaar
[103] [103] [104] [103] [103] [104]
0.2 | 0.25 | 0.060440 | 0.06111 | 0.061929 | 0.0601168 | 0.063002 | 0.062922 | 0.062920 | 0.0633685
0.5 | 0.244329 | 0.24618 | 0.248365 | 0.244247 | 0.258161 | 0.256856 | 0.256782 | 0.256326
0.75 | 0.559866 | 0.56056 | 0.562348 | 0.559936 | 0.592855 | 0.587790 | 0.588104 | 0.595415
0.4 | 0.25 | 0.059620 | 0.05996 | 0.061392 | 0.0591215 | 0.063371 | 0.063291 | 0.063305 | 0.063968
0.5 | 0.242066 | 0.24303 | 0.246833 | 0.241821 | 0.264157 | 0.262868 | 0.262916 | 0.260722
0.75 | 0.558992 | 0.55902 | 0.562276 | 0.558771 | 0.615589 | 0.610213 | 0.611786 | 0.618446
0.6 | 0.25 | 0.059004 | 0.05898 | 0.060883 | 0.0583544 | 0.063713 | 0.063642 | 0.063669 | 0.0644986
0.5 | 0.240363 | 0.24033 | 0.245395 | 0.239941 | 0.269702 | 0.268564 | 0.268707 | 0.264632
0.75 | 0.558407 | 0.55777 | 0.562273 | 0.557834 | 0.636878 | 0.631709 | 0.634637 | 0.639038
4.10 Convergence Analysis of Two-dimensional Haar

Wavelet Method

In this section, we have introduced the error analysis for the two-dimensional Haar

wavelet method.

We assume that, f(x,y) e C?([a,b]x[a,b]) and there exist M >0; for which

Next, we may proceed as follows, suppose f,, (X, y) =

0% f (%, Y)
oxoy

[N

—

where, n=2%", ¢=012,... and m=2*"', p=012,....

Then,

F(0Y) — Fon () = 3 5 (0 (y) +

i=n j=m

From Parseval’s formula, we have

o m-1
=N

i=n j=0
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Zcijhi (x)h;(y),

=0

<M, forall X,y €[a,b]x[a,b].

1

n-1 o

i=0 j=m

¢ ()h; (y) +Z zcij h; (X)h; (y).




b b
[£060Y) = Fan O Y™ = [ [ (F 06 ) = o (%, ¥))*dxdly

=SS5 S cich [ h0on, Gadk [y (y)dy

=Ns=mi=n J=m

©
—

[N

m-1

S5 5 it [ 00n, 00a (1), (y)dy

p=ns=0i=n j=0

m-—

+

n-1 o n-1 «

£33 S cichs [ hh, (9ax [ hy (Yh(y)dy

p=0s=mi=0 j=m

) ) oo m-1 ) n-1 oo )
! / ’
:ZZCU +Z Gy + Zcu ’
i=n j=m i=n j=0 i=0 j=m
2
ci(b—a)
where, cf® :”ZT and

m'—.r_r

( [RIESOL (y)dyjh (x)dx

) el

=T [foaondy - [FCoy)dy hy(xdx.
a aﬂ{bz—ia) [k 7j[b2Ia)

Using the Mean value theorem of Integral calculus, we have

a+k (bZIa)< y,<a+ [k +1j(b;a) [k+ Zj(b_a)g Yz £a+(k+1)(b;a).

2 2!
Hence, we obtain

b .
65 = (b-a)[(F (X, y)27™ = F(x, y2)2* "y (x)x .

a

Again by using the Mean value theorem,
b
c;=2""(b- a)f (f (% y1) = £(x, y2))h; (x)dx
a

Using Lagrange’s Mean value theorem,
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b *
¢ =2""(b- a)f((yl - Yz)af ((;’ly )]hj (x)dx where y, <y <y,

w35

oteeay -y | S0Y)g - A0y gy
O o
a+k[b—_) a+(k+£](b j

21 2\ 2]

a+(k+1)[b;_"‘j

21

=27 b-a)(y; - y,)| 27 (b~ a)%(xl, y)-2"" (b~ a)%(xz, y*)] :

Now, we use the mean value theorem of Integral calculus

a+kM£xl£a+ L (b;a), a+|k+l —(b_.a)£x2£a+(k+1)—(b_.a)
2} 2) 2! 2) 2} 2!

. . 2 * *
Cj < 2772 (b-a)? (Y, — ¥,) (X% — Xz)%&;y) :

But for x, <x*<x,, (y;—¥,)<(b—a) and (x, —x,)<(b—a),

We obtain,
o2t (x",y")

03
OXay

<> 7 <
CIJ - 2i+j+2 <M '

- 2(b_a)2 (b—a)10 2
Therefore, Cij” =GCjj i ] S23i+3j+4 M

0 © 0 0 b— 0
ZZC’”?“ < Z Z . (23i+332rl4 MZ J a,ﬁ:O,l,Z,...

. 2i+1 1

S(b—a)lOMZ i Z Zz—3i—3j—4

n=2%*i=f+1 m=2

S(b—a)lOMz z 2—3]—4 Z(2i+l_1_2i+1)2—3i

n=2+ i=g+1
< (b _ a)lO M 2 Z 2—3]—4 22—2i
n:2a+l i=,3+l

<(b- a)lO M 2 i2—3j—4 2-2(8+1) 1

_na+l l
(1‘22]
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10 w 21
_4(b a) M 242 Z -3]

3' j=a+l p=21

4b-a)° \12ha > 52
<T M2t Y 27

3' j=a+l
. 4(b _ a)lO M 2 2_4(&) 2—2(a+l)
312 3
S(lGj(b a)10M22’4
9 ) 1%k?
10
:(Ej_(b‘a) M2 .65
144 ) 1%k?
o 1-1 o -1 10pp2 1052 f 271
, (b-a)"M (b—a)" M _3i
Next, ZZC ZZ 3I+3]+4 Z 23]+4 Z Z 2
n=k m=0 n=km=0 n=24*1 i=0 m=2
2 (b-a)’mM?&
<y 8IS eniad
n:2a+1 2 i=0
52 10 2t 3j
274(b-a)’M? Z 22
21 j=a+l n=21

10 2j
(336j(b a)'m? Zz j

j=a+l

-2(a+l)
( J(b )10M2 2
336 (1_7)
22
_52(b-a)’M?
252k
k-1 o 10 2
. o 52(b—a)" M
Similarly, we have > > ¢2 < ( )2 .
e 2521
Then
i ic'z + i I_lcﬁfn + k_licﬁfn < (Ej (b—a)lo M2+ 52(b—2)"M* + 52(b—a)"M’* .
n=km=I " n=k m=0 n=0m=I 144 |2k2 252k2 252|2

Hence, we obtain | f (X, y)— (X, y)| <

(b-a)°’M?( 1 13 13
21,2 + 2 + 2
3 31%k?  21k? 21
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As | > oand k — o0, we canget |f(x y)— fy(x,y)|—0.

4.11 Conclusion

The numerical solutions of fractional order Burgers-Fisher equation, generalized Fisher’s
type equation and the time- and space-fractional Fokker-Planck equations have been
analyzed in this chapter by utilizing two-dimensional Haar wavelet method. The obtained
results are then compared with optimal homotopy asymptotic method (OHAM) solutions,
exact solutions and with results available in literature. The Haar wavelet technique
provides quite satisfactory results for the fractional order Burgers-Fisher (4.27) and
generalized Fisher equations (4.52). The main advantage of this Haar wavelet method is
that they transfer the whole scheme into a system of algebraic equations for which the
computation is easy and simple. OHAM allows fine tuning of convergence region and rate

of convergence by suitably identifying convergence control parameters C;,C,,Cs,,.... It

has been observed that for Burgers-Fisher equation OHAM provides more accurate results
than the Haar wavelet method as presented in Tables. But in case of generalized Fisher’s
equation both the methods are competitive. The results obtained by OHAM are slightly

more accurate than the results obtained by Haar wavelet method.

The solutions of time- and space-fractional Fokker-Planck equations have been compared
with exact solutions as well as results obtained by Adomian decomposition method
(ADM), Variational iteration method (VIM) and Operational Tau method (OTM) which
are available in open literature. These results have been cited in the tables in order to
justify the accuracy and efficiency of the proposed scheme based on two-dimensional
Haar wavelet method. It can be noticed that the Haar wavelet technique provides quite
satisfactory results in comparison to results obtained by ADM, VIM and OTM [103-105]

for the fractional order Fokker-Planck equations as demonstrated in Tables.
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CHAPTER 5

5 Application of Legendre Wavelet
Methods for Numerical Solution of

Fractional Differential Equations

5.1 Introduction

In contemporary years, fractional calculus has become the focus of curiosity for many
researchers in exclusive disciplines of applied science and engineering because of the fact
that a realistic modelling of a physical phenomenon can be efficiently executed by way of
utilizing fractional calculus. For the intent of this chapter, the Caputo’s definition of
fractional derivative will be used. The advantage of Caputo’s approach is that the initial
conditions for fractional differential equations with Caputo’s derivatives tackle the normal

kind as for integer-order differential equations.

The investigation of traveling wave solutions for nonlinear fractional order partial
differential equations plays an important role in the study of nonlinear physical
phenomena. It is significant to find new solutions, since either new exact solutions or
numerical approximate solutions may provide more information for understanding the
physical phenomena. In this chapter, the numerical solutions of fractional order partial
differential equations comprising Caputo fractional derivative are discussed. The
fractional differential equations such as KdV-Burger-Kuramoto (KBK) equation, seventh
order KdV (sKdV) equation and Kaup-Kupershmidt (KK) equation have been solved

using two-dimensional Legendre wavelet and Legendre multi-wavelet methods.

The main focus of the present chapter is the application of two-dimensional Legendre
wavelet technique for solving nonlinear fractional differential equations like time-
fractional KBK equation, time-fractional sKdV equation in order to demonstrate the

efficiency and accuracy of the proposed wavelet method. Also, the time-fractional Kaup-
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Kupershmidt equation has been solved by using two-dimensional Legendre multi-wavelet
method. The obtained numerical approximate results of the proposed Legendre wavelet
methods are then compared with the exact solutions and those available in literature.

5.2 Outline of Present Study

Consider a nonlinear time-fractional parabolic partial differential equation of the form

o%u a(zu ] o%u
=-U X [+U

= ? ,

t>0, x>0 (5.1)
ot” OX X

with Dirichlet boundary conditions
u(0,t)=0 and u(t)=E, (t%),

where « is the parameter describing the order of the fractional time derivative and E, is
the Mittag-Leffler function. Fractional diffusion equations like eq. (5.1) arise in
continuous time random walks, modelling of anomalous diffusive and sub-diffusive
systems, unification of diffusion and wave propagation phenomenon etc. The motivation
of the present work is the application of two dimensional Legendre wavelets technique for
solving the problem of fractional partial differential equations with Dirichlet boundary
conditions. To exhibit the effectiveness, the obtained numerical approximate results of 2D
Legendre wavelet technique are compared with that of Haar wavelet method as well as

with the exact solution derived by using HPM.

Next, we consider the following time-fractional KdV-Burgers-Kuramoto (KBK) equation
[109]

o%u o*u
+ = f(x,1t), t>0, x>0 5.2
2 3 A3 PV (x,t) (5.2)

where « is the order of the fractional time derivative and 4, 4,,1; >0 are parameters

o°u  éau o%u
+U—— + A
ot*  ox A ox?

characterizing instability, dispersion and dissipation respectively [110]. The classical KBK
equation is an important mathematical model arising in many different physical contexts
to describe some physical processes in motion of turbulence and other unstable process
systems. It can be also used to describe long waves on a viscous fluid flowing down along
an inclined plane [111], unstable drift waves in plasma [112] and turbulent cascade model

in a barotropic atmosphere [113].
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There are a lot of studies available for the classical KBK equation and some profound
results have been established. But according to the best possible information of the
authors, the detailed study of the nonlinear fractional order KBK equation is only
beginning. Very few mathematical methods such as homotopy analysis method [114],
He’s variational iteration method and Adomian’s decomposition method [115] are

available open in literature for the numerical solution of fractional KBK equation.

The KdV type of equations, which were first derived by Korteweg and de Vries (1895)
and used to describe weakly nonlinear shallow water waves, have emerged as an important
class of nonlinear evolution equation and are often used in practical applications. In
reality, the next state of a physical phenomenon might depend not only on its current state
but also on its historical states (non-local property), which can be successfully modeled by
using the theory of derivatives and integrals of fractional order. The seventh-order KdV
(sKdV) equation was first introduced by Pomeau et al. [116] in order to discuss the
structural stability of the KdV equation under singular perturbation.

The time-fractional generalized sKdV equation is given by [117]

o°u o u &u  d'u
+—(g(u))+ — +0 =f(xt), t>0, x>0 5.3
e ax(@J( ) o’ (x,1) (5.3)

where o is a constant, @ (O<a <1) is the parameter describing the order of the

fractional time derivative and f(x,t) is the forcing term. The sKdV equation arises in fluid

flow through porous media, fluid dynamics, plasma physics, optical fibers, elasticity,
economics, optimization, hydrodynamic, hydro-magnetic stability, structural, medical

imaging, pure and applied sciences [118-120].

Next we consider fractional order Kaup-Kupershmidt equation. Here we compare two
different methods, one numerical technique viz. Legendre multiwavelet method and the
other analytical technique viz. optimal homotopy asymptotic method (OHAM) for solving
fractional order Kaup-Kupershmidt (KK) equation. Two-dimensional Legendre
multiwavelet expansion together with operational matrices of fractional integration and
derivative of wavelet functions is used to compute the numerical solution of nonlinear
time-fractional Kaup-Kupershmidt (KK) equation. The approximate solutions of time
fractional Kaup-Kupershmidt equation thus obtained by Legendre multiwavelet method
are compared with the exact solutions as well as with optimal homotopy asymptotic
method (OHAM).
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Consider the following time-fractional Kaup-Kupershmidt equation [121]

o 2 3 5
OU 452 M _5p MY 15y OU,OU g 50, x>0 (5.4)
ot” OX OX OX ox®  OX

Eq. (5.4) is a variation of the following Kaup-Kupershmidt equation [122-125]:

u, +45u°u, —15pu,u,, —15ul,,, +U 0,

XXXXX —

Here 0 < <1, is the parameter describing the order of the fractional time derivative. The

classical Kaup-Kupershmidt equation is an important dispersive equation proposed first by
Kaup in 1980 [122] and is developed by Kupershmidt in 1994 [123]. This equation arises
in the study of capillary gravity waves. The classical Kaup-Kupershmidt equation is

known to be integrable [124] for p =§ and to have bilinear representations [125], but the

explicit form of its N-soliton solution is apparently not known. A great deal of research
work has been invested in recent years for the study of classical Kaup-Kupershmidt
equations. Various methods have been developed independently by which soliton and
solitary wave solutions may be obtained for nonlinear evolution equations. Our aim in the
present work is to implement two-dimensional Legendre multiwavelet and optimal
homotopy asymptotic method in order to exhibit the capabilities of these methods in

handling nonlinear equation like fractional order Kaup-Kupershmidt equation.

5.3 Solution of Time-Fractional Parabolic Partial

Differential Equation

5.3.1 Application of HPM to Find the Exact Solution of Fractional order
Parabolic PDE

Consider a nonlinear time-fractional partial differential equation of the form

o 2
o"u =—ui(2—u—xj+ua—g, t>0, x>0.
ot OX\_ X OX
o 2 2
This implies 04 24" 20U\ OU o0, x>0, (5.5)
ot X X OX

where 0 <o <1, subject to the initial condition
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u(x,0) = x2. (5.6)
To solve eq. (5.5) by homotopy perturbation method [25, 26], we construct the following

homotopy:
o%u o%u  2u® 2udu d%u
1- e e B TR R ' 5.7
( ) [&“ x> X OX 8x2J &7
This implies
a 2 2
) 59
x> X O X

By substituting u(x,t) =" p"u,(x,t) ineq. (5.8), we get
n=0

ata[Zpu xtJ [ (Zpu(xt)] ——(ZpU(Xt)] (ZDU(Xt)j
+ZPU(Xt)+[ZpU(Xt)j [ZDU(Xt)H

Collecting the coefficients of different powers of p for eq. (5.9), we have the following

(5.9)

equations.

Coefficients of p°: 0 uo =0. (5.10)
a 2

Coefficients of p*: 2 :1 %ug —%uo % +Ug + U 0 u20 (5.11)

Coefficients of p2 X

o%u, 2 2(  éu au d%u d%u
== (2Uply) —=| Ug —= +U —°j+u +| —2u +uy—3 |. (512
ot x2( oth) x(o X tox ) ot (ax ! Oaxj (512

and so on.

By putting u(x,0) =u, in egs. (5.10) to (5.12) and solving them, we obtain

2:a

Uy (X, t) = r();i 5 (5.13)
tha

Uy (X,t) = Fi2a)’ (5.14)

and so on.
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Finally, the approximate solution for eq. (5.5) is given by

U =Uy(X,t)+u (X, t) +u,(x,t) +... (5.15)

Thus, we have

u(x,t) =x°+ + +
Ml+a) Tl+2a)
= X°E,, (t), (5.16)

where E, is the Mittag-Leffler function.

Taking a =1 ineq. (5.16), we reproduce the solution of the problem as follows

2{ t 2 8 }
u(x,t) =x°| 1+ + + +... -
re rE ra@

The solution is equivalent to the exact solution in a closed form

u(xt) = x%".
It is clear that a closed form of solution is obtainable by adding more terms to the

homotopy perturbation series.

5.3.2 Application of two-dimensional Haar Wavelet for Numerical

Solution of Fractional PDE
To solve the nonlinear fractional PDE considered in egs. (5.5) and (5.6). Let us divide both

1
space and time interval [0, 1] into m equal subintervals; each of width A = o

o%u(x,t)
2

Haar wavelet solution of u(x,t) is sought by assuming that 5
X

can be expanded in

terms of Haar wavelets as

2
TUCY _ S S e (0h (1) (5.17)

a i=1 j=1

Integrating eq. (5.17) with respect to x from 0 to x, we get

WY ity =33 ¢, Qh (0N (). (5.18)

X i=1j=1

Again, integrating eq. (5.18) with respect to x from 0 to x, we get

uet) =3¢ Q%N 0N, (B + (0 + (D). (5.19)

i=1 j=1

138



Putting x =0, ineq. (5.19), we get
g(t)=u(0,t)=0. (5.20)
Putting x =1, ineg. (5.19), we get

P =u@t-u©.)-> 3 ¢l 0] h

i-1 -1
—uw) - XY e[ ]y . 5.21)
i-1 j=1

Putting eg. (5.21) in egs. (5.18) and (5.19), we have

au((;; 1) ch,,Qh (0h; (H) +u(L.t) - ZZCU [Q%h (%] _h h (1), (5.22)

i=1 j=1 i=1j=1

u(xt) =iicijthi (X)hj(t)+x{u(1,t)—iicij Rl (5.23)

i=1 j=1 i=1 j=1

The nonlinear term presented in eq. (5.5) can be approximated using Haar wavelet

function as
ou (2w L&
Uu— —-u— d;ih (x)h (t
-l (%)- 350 0omy 0.
which yields
o%u 2ufu m
U—s+—| ——— d:h. ()h. (t 5.24
5X2 X (X ] 2112; ij |() () ( )

Therefore substituting egs. (5.17), (5.22) and (5.23) in eq. (5.24), we have

{iic@zm (N, 1)+ x{ua, D-2 > e RN () ,(t)D[iic., hOon, (t)J
j=1

i=1 j=1 i=1 j=1 [

=1
i[iic Q2h, (h, (t)+x|:u1t iicu [Q%h, (0], J(t)D

- (5.25)
%{ZZ%Q% (0h; (©) + x{u(l,t)—ZZci,- [Q2h (0] b ’(t)D
i=l j=1 i=1 j=1
33" ¢, Qh (9h (1) + u(L 1) iicu lQ2h(x)] h ](t)ﬂiid“h,(x)hj(t).
i=l j= i=1 j=1 i=1 j=1

Substituting eq. (5.24) in eq. (5.5), we will have

139



a

Zm:idu hy (X)h; (t) +u. (5.26)

i=1 j=1

Now applying J“ to both sides of eq. (5.26) yields
u(x,t) —u(x,0) :J“[ZZd h, ()h; (t)+u]. (5.27)
i=1 j=1

Substituting egs. (5.6) and (5.23) in eq. (5.27), we get

3" 3¢,Qh (x)h, (1) + x{u(l,t)— 33, [t 0], (t)} —x?=

i=1 = i=1l j=1

3 3d,h (x)Qﬁh,—(t){iicu@zn(x)@ﬁhj ® (5.28)

i=1 j=1 i=1 j=1

i=l j=1

+x[J u(Lt) izm:cij[thi(x)]x_thahj(t)D.

1-0.5 k—0.5

and t, = for Lk=12,...,m in

Now substituting the collocation points X, =

egs. (5.25) and (5.28), we have 2m? equations in 2m? unknowns in ¢; and d;. By

solving these system of equations using mathematical software, the Haar wavelet

coefficients c; and d; can be obtained.

5.3.3 Application of two-dimensional Legendre Wavelet for Solving
Fractional PDE

The Legendre wavelet solution of u(x,t) for the nonlinear fractional PDE considered in
egs. (5.5) and (5.6) is sought by assuming that u(x,t) can be expanded in terms of

Legendre wavelets as

k]_ lMl 12k2 -1 M2—1

u(Xt)_ZZ Z ZCnH]l/lnllj(Xt) (529)

n=l i=0 I=1 j=0
where n=1,...,2%i=0,.,M; -11=1,..,.2%" j=0,..,M, - 1.

Applying J{* on both sides of eq. (5.5), we have

u(x,t) —u(x,0) = J; [— E(z—u—x)+u@]
OX

This implies
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1
U(X’t) (X'O): Ji |- Z Cn ilLi¥nil J(X t)
n=1li=0 I=1 j=0
a 2 2k1—1M1_12k2—1 M2 -1
|z z zcn,i,l,j‘/jn,i,l,j(x’t) —X |+ (5.30)
OX| X n=1l i=0 I=1 j=0
2k1—1M1_12k2—1 M, -1 Zkl lMl 12k2’l M, -1
Z chll J‘//nll J(X t) X_ Z Z z ch,i,l,jWn,i,l,j(X’t)
n=1 i=0 I=1 j=0 n=l i=0 I=1 j=0
. . . | -0. r-o0.
Now substituting the collocation points X, ZW% and t, =# for
2" M, 272°M,

1=1,2,....,2%"M; and r=12,..2"M, in eq. (5.30), we have (2k1‘1M1X2k2‘1M2)

equations in (2k1‘1M1X2k2‘1M2) unknowns involving c By solving this system of

nil,j"*

equations using mathematical software, the Legendre wavelet coefficients c can be

nil,j

obtained.

5.4 Numerical Results of Fractional Order PDE

The following Tables 5.1-5.3 show the comparison of the absolute errors for fractional
order partial differential equation obtained by using Haar wavelet method and Legendre
wavelet method at different values of x, t and « . Tables 5.4 and 5.5 respectively show the
approximate solutions of fractional order partial differential equation (5.5) obtained by
using Haar wavelet method, Legendre wavelet method and Homotopy perturbation
method at various points of x and t taking « =0.5and 0.75. The results thus obtained have
been cited in the Tables in order to justify the accuracy and efficiency of the proposed

schemes.

Table 5.1
wavelet method for classical order partial differential equation (5.5) at various points of x and
tfora =1

Comparison of absolute errors obtained by Haar wavelet method and Legendre

X t=0.2 t=04 t=0.6 t=0.8

|uExact - uHaarl |uExact _uLwl |uExact _uHaarl |uExact _ULW| |uExact _uHaarl |U Exact _uLwl |uExact - uHaarl |U Exact ~ULw

0 0 0 0 0 0 0 0 0

0.1 | 2.14328E-3 | 3.92494E-8 9.25684E-4 | 1.09313E-7 | 9.10577E-4 | 1.33628E-7 | 3.57450E-3 | 1.27536E-7
0.2 | 3.81027E-3 | 1.56998E-7 1.64566E-3 | 4.37251E-7 | 1.61880E-3 | 5.34510E-7 | 6.35467E-3 | 5.10146E-7
0.3 | 5.00098E-3 | 3.53244E-7 | 2.15993E-3 | 9.83815E-7 | 2.12468E-3 | 1.20265E-6 | 8.34051E-3 | 1.14783E-6
0.4 | 5.71541E-3 | 6.27990E-7 | 2.46849E-3 | 1.74900E-6 | 2.42821E-3 | 2.13804E-6 | 9.53201E-3 | 2.04058E-6
0.5 | 5.95355E-3 | 9.81235E-7 | 2.57135E-3 | 2.73282E-6 | 2.52938E-3 | 3.34069E-6 | 9.92917E-3 | 3.18841E-6
0.6 | 5.71541E-3 | 1.41298E-6 | 2.46849E-3 | 3.93526E-6 | 2.42821E-3 | 4.81059E-6 | 9.53201E-3 | 4.59131E-6
0.7 | 5.00098E-3 | 1.92322E-6 | 2.15993E-3 | 5.35632E-6 | 2.12468E-3 | 6.54775E-6 | 8.34051E-3 | 6.24929E-6
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0.8 | 3.81027E-3 | 2.51196E-6 | 1.64566E-3 | 6.99601E-6 | 1.61880E-3 | 8.55216E-6 | 6.35467E-3 | 8.16234E-6
0.9 | 2.14328E-3 | 3.17920E-6 | 9.25684E-4 | 8.85433E-6 | 9.10577E-4 | 1.08238E-5 | 3.57450E-3 | 1.03305E-5
1.0 0 6.16414E-6 0 2.46565E-5 0 5.54772E-5 0 9.86262E-5
Table 5.2 Comparison of absolute errors obtained by Haar wavelet method and Legendre
wavelet method for fractional order partial differential equation (5.5) at various points of x and t
for ¢ =0.75.
X t=0.2 t=04 t=0.6 t=0.8
|uExact_uHaar| |uExact_uLW| |UExact_uHaar| |uExact_uLW| |UExact_uHaar| |uExact_uLW| |UExact_uHaar| |uExact_ULW
0 0 0 0 0 0 0 0 0
0.1 | 3.24200E-4 | 8.05544E-6 | 1.64793E-3 | 4.26508E-6 | 3.90569E-3 | 1.02880E-5 | 6.80080E-3 | 1.20536E-5
0.2 | 2.90100E-3 | 3.22218E-5 | 6.85948E-3 | 1.70603E-5 | 1.06992E-2 | 4.11520E-5 | 1.53909E-2 | 4.82144E-5
0.3 | 8.26860E-3 | 7.24990E-5 | 1.34063E-2 | 3.83857E-5 | 1.79335E-2 | 9.25921E-5 | 2.34600E-2 | 1.08482E-4
0.4 | 1.43532E-2 | 1.28887E-4 | 1.97217E-2 | 6.82413E-5 | 2.41796E-2 | 1.64608E-4 | 2.97960E-2 | 1.92858E-4
0.5 | 1.97971E-2 | 2.01386E-4 | 2.45854E-2 | 1.06627E-4 | 2.84360E-2 | 2.57200E-4 | 3.36037E-2 | 3.01340E-4
0.6 | 2.34026E-2 | 2.89996E-4 | 2.70595E-2 | 1.53543E-4 | 2.99891E-2 | 3.70368E-4 | 3.43426E-2 | 4.33929E-4
0.7 | 2.41057E-2 | 3.94717E-4 | 2.63927E-2 | 2.08989E-4 | 2.82977E-2 | 5.04113E-4 | 3.16167E-2 | 5.90626E-4
0.8 | 2.09565E-2 | 5.15548E-4 | 2.19721E-2 | 2.72965E-4 | 2.29403E-2 | 6.58433E-4 | 2.51261E-2 | 7.71430E-4
0.9 | 1.31498E-2 | 6.52491E-4 | 1.33111E-2 | 3.45472E-4 | 1.35947E-2 | 8.33329E-4 | 1.46467E-2 | 9.76341E-4
1.0 0 8.05544E-4 0 4.26508E-4 0 0.00102880 0 0.00120536
Table 5.3 Comparison of absolute errors obtained by Haar wavelet method and Legendre

wavelet method for fractional order partial differential equation (5.5) at various points of x and

tfora=0.5.

X t=0.2 t=04 t=0.6 t=0.8
|uExact ~ Ujaar | |uExact —Upw | |uExact ~ Upjaar | |U Exact ~ULw | |uExact ~ Uhjaar | |U Exact ~Uiw | |uE><act ~ Upjaa | |U Exact —Uiw

0 0 0 0 0 0 0 0 0
0.1 | 2.50310E-3 | 4.50884E-5 | 4.78710E-3 | 3.56336E-5 | 7.30539E-3 | 5.72330E-5 | 1.05971E-2 | 6.74305E-5
0.2 | 1.15518E-2 | 1.80354E-4 | 1.55024E-2 | 1.42534E-4 | 1.92456E-2 | 2.28932E-4 | 2.41756E-2 | 2.69722E-4
0.3 | 2.34904E-2 | 4.05796E-4 | 2.80273E-2 | 3.20702E-4 | 3.18941E-2 | 5.15097E-4 | 3.72663E-2 | 6.06875E-4
0.4 | 3.55962E-2 | 7.21415E-4 | 3.97116E-2 | 5.70137E-4 | 4.29010E-2 | 9.15729E-4 | 4.78790E-2 | 1.07889E-3
0.5 | 4.55434E-2 | 1.12721E-3 | 4.85005E-2 | 8.90839E-4 | 5.05414E-2 | 1.43083E-3 | 5.46027E-2 | 1.68576E-3
0.6 | 5.13466E-2 | 1.62318E-3 | 5.27682E-2 | 1.28281E-3 | 5.35106E-2 | 2.06039E-3 | 5.64007E-2 | 2.42750E-3
0.7 | 5.12355E-2 | 2.20933E-3 | 5.11514E-2 | 1.74604E-3 | 5.07538E-2 | 2.80442E-3 | 5.24535E-2 | 3.30410E-3
0.8 | 4.35902E-2 | 2.88566E-3 | 4.24697E-2 | 2.28055E-3 | 4.13874E-2 | 3.66291E-3 | 4.20889E-2 | 4.31555E-3
0.9 | 2.69659E-2 | 3.65216E-3 | 2.57206E-2 | 2.88632E-3 | 2.46829E-2 | 4.63588E-3 | 2.47617E-2 | 5.46187E-3
1.0 0 4.50884E-3 0 3.56336E-3 0 5.72330E-3 0 6.74305E-3

Table 5.4 The approximate solutions of fractional order partial differential equation (5.5)

using Haar wavelet method, homotopy perturbation method (HPM) and Legendre wavelet method

at various points of x and t fora =0.5.
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X t=0.2 t=04 t=0.6 t=0.8
UHaar uLegenc rUnpm | Unaar uLegenc rUnpm | Unaar uLegenc rUnpm | UHaar uLegendre Unpm
0 0 0 0 0 0 0 0 0 0 0 0 0
0.1 | 0.0147 | 0.0180 | 0.0179 | 0.0197 | 0.0243 | 0.0243 | 0.0255 | 0.0315 | 0.0314 | 0.0328 | 0.03999 | 0.0399
17 35 90 05 36 00 27 19 6 53 6 2
0.2 | 0.0604 | 0.0721 | 0.0719 | 0.0751 | 0.0973 | 0.0972 | 0.0921 | 0.1260 | 0.1258 | 0.1131 | 0.15998 | 0.1597
08 41 61 75 44 02 30 77 5 97 3 1
0.3 | 0.1334 | 0.1623 | 0.1619 | 0.1622 | 0.2190 | 0.2187 | 0.1958 | 0.2836 | 0.2831 | 0.2375 | 0.35996 | 0.3593
17 17 1 91 25 0 85 74 6 65 2 5
0.4 | 0.2310 | 0.2885 | 0.2878 | 0.2784 | 0.3893 | 0.3888 | 0.3344 | 0.5043 | 0.5033 | 0.4039 | 0.63993 | 0.6388
21 64 4 04 77 1 40 10 9 66 3 5
0.5 | 0.3508 | 0.4508 | 0.4497 | 0.4214 | 0.6084 | 0.6075 | 0.5060 | 0.7879 | 0.7865 | 0.6109 | 0.99989 | 0.9982
94 82 5 57 02 1 71 84 5 88 5 1
0.6 | 0.4910 | 0.6492 | 0.6476 | 0.5898 | 0.8760 | 0.8748 | 0.7094 | 1.1347 | 1.1326 | 0.8575 | 1.43985 | 1.4374
52 69 5 25 98 2 73 00 4 95 0 2
0.7 | 0.6497 | 0.8837 | 0.8815 | 0.7821 | 1.1924 | 1.1907 | 0.9435 | 1.5444 | 1.5416 | 1.1429 | 1.95979 | 1.9564
23 28 2 46 70 2 92 50 4 70 0 9
0.8 | 0.8252 | 1.1542 | 1.1513 | 0.9972 | 1.5575 | 1.5552 | 1.2075 | 2.0172 | 2.0135 | 1.4664 | 2.55973 | 2.5554
88 60 7 38 10 3 40 40 8 40 0 1
0.9 | 1.0163 | 1.4608 | 1.4572 | 1.2341 | 1.9712 | 1.9683 | 1.5006 | 2.5530 | 2.5484 | 1.8274 | 3.23966 | 3.2342
00 60 0 00 20 3 00 70 3 50 0 0
1.0 | 1.2214 | 1.8035 | 1.7990 | 1.4918 | 2.4336 | 2.4300 | 1.8221 | 3.1519 | 3.1462 | 2.2255 | 3.99958 | 3.9928
0 30 2 2 10 4 2 40 1 4 0 4
Table 5.5 The approximate solutions of fractional order partial differential equation (5.5)

using Haar wavelet method, homotopy perturbation method (HPM) and Legendre wavelet method

at various points of x and t fora =0.75.

x =02 =04 =06 =038
Uhaar | ULegendreUnpm | UHaar | Uiegendre Unpm | UHaar | Yiegendre UnpM | UHaar | ULegendre Unpm

0 0 0 0 0 0 0 0 0 0 0 0

01 | 00118 | 0.01406 | 0.0140 | 0.01656 | 0.01800 | 0.01800 | 0.02212 | 0.02263 | 0.02262 | 0.0290 | 0.02817 | 0.02816
9 5 6 9 7 9 9 6 9 6

02 | 0.0517 | 0.05622 | 0.0561 | 0.06653 | 0.07203 | 0.07201 | 0.08358 | 0.09055 | 0.09051 | 0.1044 | 0.11271 | 0.11266
6 9 3 5 4 8 6 1 5 7

03 | 01181 | 0.12649 | 0.1264 | 0.14767 | 0.16207 | 0.16204 | 0.18192 | 0.20375 | 0.20366 | 0.2237 | 0.25360 | 0.25350
9 2 0 9 4 5 2 6 8 0

04 | 0.2097 | 0.22488 | 0.2247 | 025841 | 0.28814 | 0.28807 | 0.31571 | 0.36223 | 0.36206 | 0.3858 | 0.45085 | 0.45066
8 5 4 1 9 1 6 8 9 6

05 | 0.3251 | 0.35137 | 0.3511 | 0.39754 | 045022 | 045011 | 0.48396 | 0.56598 | 0.56572 | 0.5899 | 0.70446 | 0.70416
5 7 2 1 6 6 9 9 8 6

06 | 0.463L | 050507 | 05056 | 056411 | 0.6483L | 0.64816 | 0.68595 | 0.81502 | 0.81464 | 0.8355 | 1.01443 | 1.01400
1 8 6 8 2 0 9 4 0 0

07 | 0.6225 | 0.68869 | 0.6882 | 0.75738 | 0.88243 | 0.88222 | 0.92113 | 1.10933 | 1.10883 | 1.1221 | 138076 | 1.38017
9 9 7 2 6 0 0 3 0 0

08 | 0.8026 | 0.89951 | 0.8980 | 007674 | 1.15256 | 115229 | 1.18010 | 1.44892 | 1.44827 | 1.4494 | 180344 | 1.80267
5 9 0 0 0 0 0 7 0 0

00 | 1.0024 | 1.13844 | 1.1377 | 122169 | 145871 | 145837 | 148951 | 1.83379 | 1.83296 | 1.8173 | 228247 | 2.28150
9 9 0 0 0 0 0 3 0 0

10 | 12214 | 140548 | 14046 | 149182 | 180088 | 1.80046 | 1.82212 | 2.26394 | 2.26201 | 2.2255 | 2.81787 | 2.81666
0 8 0 0 0 0 0 4 0 0
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5.5 Implementation of Legendre Wavelets for Solving
Fractional KBK Equation
Consider the nonlinear time-fractional KBK equation [107]
a 2 3 4
Ztg”%u_ﬂigxg”?gxg”ﬁgxl::f(x’t)’ t>0, x>0 (5.31)

where 0 < a <1, subject to the initial condition u(x,0) =0 and f(x,t) is the forcing term.

To show the effectiveness and accuracy of proposed scheme, two test examples have been
considered. The numerical solutions thus obtained are compared with the exact solutions.

The Legendre wavelet solution of u(x,t) is sought by assuming that u(x,t) can be

expanded in terms of Legendre wavelets as

kl_lMl -1 2k2—l szl

u(xt)—zl; ; Zocn.uwn..,(xt) (5.32)
n 1 ]

where n=1,...2%?i=0,.,M; -1, 1=1,..,2 %, j=0,..,M, —1.

The nonlinear term presented in eq. (5.31) can be approximated using Legendre wavelet

function as
au kM, -1 ket M, -1
ua_zzz anl|Jl//nl|j(Xt) (5.33)
X n=1 i=0 I=1 j=0
This implies
1m0k my—1 Myt my—1 Ow, iy (X1)
ZZZ chuljl//mlet) n,i,l,jﬂa—yj
=L i=0 I=1 j=0 n=l i=0 I=1 j=0 X (5.34)
2K my—12k2 1M, '
:ZZ anlIJWnllj(Xt)
n=l i=0 I=1 j=0
Again applying J* on both sides of eq. (5.31) we have
u . o4 o%u . dlu
u(x,t) —u(x,0)=J37 f(x,t)—u—+ -1 - . 5.35
( ) ( ) t |: ( ) ox Al axz 2 aX3 AS a)(4:| ( )

Putting eq. (5.32) and (5.33) in eq. (5.35), we have
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MIm-12k2 My

u(x,t)-u(x,0)= Jt“[f(x,t) DD Y A Ve (xt)

n=l i=0 I=1 j=0

—

K1 My 19k M,-1 o ni t
+21[Z Z Z chllj z IZJ(X )J

n=l i=0 I=1 j=0 OX (5 36)
Zklel S 1M2*1 0w (X, t) |
e I R
n=l i=0 I=l j=0 i ox®
24 My12k2 T Myt !//n.u(xt)
_23 Cn i a4 .
n=L i=0 I=1 j=0 ox*
Now substituting the collocation points X, :—Ik__?'S and t = E—_105 for
2" "M, 227t M,

1=12,..2%M, and r=12..2%"'M, in egs. (5.34) and (5.36), we have
2(2"1‘1M1X2k2‘1M2) equations in 2(2k1‘1M1X2k2‘1M2) unknowns in a,;,; and Cy;y ;-

By solving this system of equations using mathematical software, the Legendre wavelet

coefficients a,;, ; and c,;, ; can be obtained.

Example 5.1 Consider the time-fractional KBK equation (5.31) with the following

forcing term

a Ao .
f(x t)— t“cosx  t" cos(x) sin(x)

t%* cos(x) %% sin(x) 2% cos(x)
CTl+a)  (TA+2a)) e " 23 (537)

AT 20) TP T 200 TP T 200)

The exact solution of eq. (5.31) is given by

_ t%* cos ()
u(x,t)= Tar2a) (5.38)

In case of example 5.1, Table 5.6 shows the comparison of absolute errors obtained by
Legendre wavelet method for eq. (5.31) taking 4, =4, =4;=1 and a=1. Similarly
Table 5.7 shows the comparison of absolute errors for eq. (5.31) taking « =0.75. Table
5.8 shows the L, and L, errors at different values of o and x. Consequently, it is observed

from Tables 5.6-5.8 that the solutions obtained by the present method are in good

agreement with the exact results.

Example 5.2 Consider the time-fractional KBK equation (5.31) with the following

forcing term
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_t¥sin(x) | t* cos(x)sin(x) |, t**sin(x) , t*“cos(x) t2* sin(x)
flxt)= Mlra) | (CQs20)f  'TA+20) 2TQ+2a)  *T+20) (5.39)

The exact solution of eq. (5.31) is given by

_ t*sin (x)
u(x,t)= Tz (5.40)

In case of example 5.2, Table 5.9 shows the comparison of absolute errors obtained by

Legendre wavelet method for eq. (5.31) taking 4, =4, =4;=1 and a=1. Similarly

Table 5.10 shows the comparison of absolute errors for eq. (5.31) taking « =0.75.
Consequently, it is observed from Tables 5.9 and 5.10 that the solutions obtained by the
present method are in good agreement with the exact results.

5.6 Numerical Results and Discussion of Time-Fractional
KBK Equation

In order to measure the accuracy of the numerical scheme, L, and L, error norms are

calculated using the following formulae

1N ’
L, =R.M.S.Error = N \/Elq%ppmx (x,t,)— uexact(x,tk)‘) : (5.41)
L. = max‘uapprox (X, ) = Ugyact (X, by )‘ ' (5.42)

The comparison of absolute errors for time-fractional KBK equation (5.31) given in
example 5.1 have been exhibited in Tables 5.6 and 5.7 which are constructed using the
results obtained by Legendre wavelet method at different values of x and t taking
a=1and0.75 respectively. Similarly Tables 5.9 and 5.10 show absolute errors of

fractional order KBK equation (5.31) for example 5.2, at various points of x and t taking
a=1and0.75 respectively. To show the accuracy of proposed method, L, and L, error

norms for fractional order nonlinear KBK equation given in example 5.1 has been
presented in Table 5.8. From Tables 5.6-5.10, one can see a pretty good agreement
between the exact solutions and the solutions acquired by two-dimensional Legendre

wavelet method.

Table 5.6 Comparison of absolute errors obtained by Legendre wavelet method for KBK

equation (5.31) given in example 5.1 at various points of x and t taking o =1.
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Ugxact —U Legendre

t=0

t=0.1

t=0.2

t=0.3

t=04

t=0.5

0.1

6.95349E-6

1.84959E-4

2.90830E-4

9.67277E-5

7.19605E-4

2.50855E-3

0.2

3.73063E-4

2.97674E-4

4.23930E-4

2.76159E-4

5.99905E-4

2.64995E-3

0.3

8.23433E-4

4.25867E-4

5.67587E-4

4.61419E-4

4.94075E-4

2.83828E-3

0.4

1.34267E-3

5.68389E-4

7.19135E-4

6.46241E-4

4.14924E-4

3.09695E-3

0.5

1.92911E-3

7.24113E-4

8.76214E-4

8.25379E-4

3.72850E-4

3.44474E-3

0.6

2.58055E-3

8.91885E-4

1.03672E-3

9.94495E-4

3.75989E-4

3.89591E-3

0.7

3.29387E-3

1.07048E-3

1.19879E-3

1.15008E-3

4.30298E-4

4.46022E-3

0.8

4.06469E-3

1.25857E-3

1.36074E-3

1.28944E-3

5.39558E-4

5.14289E-3

0.9

4.88696E-3

1.45468E-3

1.52113E-3

1.41067E-3

7.05318E-4

5.94439E-3

1.0

5.75262E-3

1.65715E-3

1.67872E-3

1.5127E-3

9.26776E-4

6.86019E-3

Table 5.7

Comparison of absolute errors obtained by Legendre wavelet method

for

fractional order KBK equation (5.31) given in example 5.1 at various points of x and t taking

a=0.75.

‘U Exact —U Legendre

t=0

t=0.1

t=0.2

t=0.3

t=04

t=0.5

t=0.6

t=0.7

0.1

9.99667E-4

2.12737E-4

2.28422E-4

7.56638E-3

1.76708E-2

9.57606E-2

2.20683E-2

1.05767E-2

0.2

9.08162E-4

2.41145E-4

2.65580E-3

9.06168E-3

2.18543E-2

5.85324E-2

2.74249E-2

1.98501E-2

0.3

7.96724E-4

2.86820E-4

3.10412E-3

1.07513E-2

2.64650E-2

1.30486E-2

3.19023E-2

2.75266E-2

0.4

6.65884E-4

3.51375E-4

3.63645E-3

1.26528E-2

3.15340E-2

4.06402E-2

3.56728E-2

3.38164E-2

0.5

8.39996E-4

3.19966E-4

2.78217E-3

8.89023E-3

2.04192E-2

3.80953E-2

7.45291E-3

8.48950E-3

0.6

7.41453E-4

3.22493E-4

2.93705E-3

9.67846E-3

2.29045E-2

6.76929E-2

8.91490E-3

4.26215E-3

0.7

6.31244E-4

3.35989E-4

3.12840E-3

1.05325E-2

2.54926E-2

1.00724E-1

9.53959E-3

1.40098E-3

0.8

5.10374E-4

3.61167E-4

3.36005E-3

1.14623E-2

2.82012E-2

1.36832E-1

9.45691E-3

2.80664E-4

0.9

3.80015E-4

3.98257E-4

3.63348E-3

1.24718E-2

3.10362E-2

1.75597E-1

8.77358E-3

9.43238E-4

1.0

2.41511E-4

4.47018E-4

3.94789E-3

1.35589E-2

3.39907E-2

2.16518E-1

7.57357E-3

7.23009E-4

Table 5.8

L, and L, error norms for nonlinear time-fractional KBK equation (5.31) given in

example 5.1 using two-dimensional Legendre wavelet method at various points of x.

X a=1 a=0.75
L, L, L, L,
0.1 1.07540E-3 2.50855E-3 3.56012E-2 9.57606E-2
0.2 1.14498E-3 2.64995E-3 2.53472E-2 5.85324E-2
0.3 1.27112E-3 2.83828E-3 1.86148E-2 3.19023E-2
0.4 1.46195E-3 3.09695E-3 2.55832E-2 4.06402E-2
0.5 1.71756E-3 3.44474E-3 1.61377E-2 3.80953E-2
0.6 2.03462E-3 3.89591E-3 2.75358E-2 6.76929E-2
0.7 2.40950E-3 4.46022E-3 3.70968E-2 1.00724E-1
0.8 2.83903E-3 5.14289E-3 4.96876E-2 1.36832E-1
0.9 3.32003E-3 5.94439E-3 6.32895E-2 1.75597E-1
1.0 3.84851E-3 6.86019E-3 7.76957E-2 2.16518E-1
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Table 5.9
fractional order KBK equation (5.31) given in example 5.2 at various points of x and t taking

a=1.

Comparison of absolute errors obtained by Legendre wavelet method for

|LI Exact —U Legendre

t=0

t=0.1

t=0.2

t=0.3

t=04

t=0.5

t=0.6

0.1

4.98657E-5

5.68684E-5

1.28221E-4

4.93990E-4

1.48989E-3

3.49306E-3

6.95761E-3

0.2

1.04370E-4

5.39855E-5

1.19191E-4

4.39997E-4

1.31699E-3

3.07391E-3

6.12894E-3

0.3

1.69932E-4

4.85989E-5

1.04660E-4

3.69101E-4

1.10257E-3

2.56670E-3

5.13534E-3

0.4

2.46500E-4

4.05274E-5

8.31235E-5

2.76311E-4

8.35246E-4

1.95025E-3

3.94182E-3

0.5

3.34173E-4

2.95642E-5

5.30284E-5

1.56464E-4

5.03251E-4

1.20250E-3

2.51167E-3

0.6

4.33146E-4

1.54809E-5

1.27887E-5

4.30468E-6

9.45733E-5

3.00882E-4

8.06986E-4

0.7

5.43658E-4

1.96621E-6

3.91878E-5

1.85428E-4

4.02820E-4

7.77358E-4

1.21073E-3

0.8

6.65935E-4

2.30271E-5

1.04464E-4

4.17885E-4

1.00074E-3

2.05467E-3

3.57988E-3

0.9

8.00141E-4

4.79469E-5

1.84526E-4

6.97968E-4

1.71050E-3

3.55273E-3

6.33795E-3

1.0

9.46323E-4

7.69510E-5

2.80724E-4

1.03017E-3

2.54254E-3

5.29182E-3

9.52067E-3

Table 5.10

Comparison of absolute errors obtained by Legendre wavelet method for

fractional order KBK equation (5.31) given in example 5.2 at various points of x and t taking

a=0.75.

‘U Exact — U Legendre

t=0.05

t=0.1

t=0.15

t=0.2

t=0.25

t=0.3

t=0.35

t=04

0.1

2.27075E-5

2.46815E-4

7.82738E-4

1.72484E-3

3.10534E-3

4.90591E-3

7.05637E-3

9.42941E-3

0.2

2.61128E-5

2.14264E-4

6.52493E-4

1.40683E-3

2.46587E-3

3.76612E-3

5.19167E-3

6.56591E-3

0.3

2.80289E-5

1.72666E-4

4.94899E-4

1.02750E-3

1.71007E-3

2.42812E-3

3.01363E-3

3.23418E-3

0.4

2.78829E-5

1.19612E-4

3.04250E-4

5.76276E-4

8.21037E-4

8.67143E-4

4.88257E-4

6.10355E-4

0.5

3.15224E-5

1.14364E-4

3.08178E-4

6.41627E-4

1.04190E-3

1.40877E-3

1.62634E-3

1.55604E-3

0.6

3.54238E-5

8.08914E-5

1.61045E-4

2.66399E-4

2.74380E-4

3.61691E-4

6.09843E-4

1.84669E-3

0.7

3.64308E-5

3.35835E-5

2.33063E-5

1.85579E-4

6.28651E-4

1.55294E-3

3.16851E-3

5.70490E-3

0.8

3.38764E-5

3.04752E-5

2.51819E-4

7.27157E-4

1.68784E-3

3.38895E-3

6.09183E-3

1.00748E-2

0.9

2.71227E-5

1.14065E-4

5.31069E-4

1.37042E-3

2.92247E-3

5.49997E-3

9.41849E-3

1.50075E-2

1.0

1.55712E-5

2.19782E-4

8.67153E-4

2.12648E-3

4.35005E-3

7.91130E-3

1.31829E-2

2.05479E-2
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5.7 Application of Analytical and Numerical Methods for

Solving Time-Fractional sKdV Equation

5.7.1 Implementation of Legendre Wavelet Method for Numerical

Solution of Fractional sKdV Equation

To show the effectiveness and accuracy of proposed scheme, we consider two test
examples. The numerical solutions thus obtained are compared with the exact solutions
and solutions obtained by HAM.

Consider the nonlinear time-fractional generalized sKdV equation [117]

o ou &% é°u  d'u
U=+ — + = f(x,t), O<a<l 5.43
o ox o o ox (0 (64)

with initial condition u(x,ty)=g(x) .

The Legendre wavelet solution of u(x,t) is sought by assuming that u(x,t) can be

expanded in terms of Legendre wavelet as

2k171 Ml—l 2k2 -1 M2

-1
chlljl/jnﬂj Xt) (5-44)
n=1 i=0 I=1 j=0

where n=1,...,24%i=0,.,M; -1,1=1,..,2%27 j=0,..,M, —1.

The nonlinear term presented in eq. (5.43) can be approximated using Legendre wavelet

function as
3 2Ky —1 2k M, 1
u o Z Zan,i,l,j l//n,i,l,j(x’t)' (5.45)
X nai0 14 j=0
This implies
okl 1M1—12k2 1|V|2—1 ok1 lMl _19ko-1 Moy—1 81// o (X t)
Al J
ZZ Z zcnlljl//nllj(Xt)JI:z Cn,i,l,jma—J
n=l i=0 I=1 =0 n=l i=0 I=1 j=0 X

(5.46)

1m0k my—1

- Z zan,i,l,j Wainj (X 1)

n=L i=0 I=1 j=0

Again applying J{ on both sides of eq. (5.43) we have
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L, o%u a5u o'u
u(x,t)—ulx,0 f(x,t)—u—-— — ) 5.47
(xt)-u(x0)=9 {( ) X e o Jaﬂ} (5.47)

Putting eqs. (5.44) and (5.45) in eq. (5.47), we have

N
=
R
<
=
I
AN
N
=~
N
N
<

-1

22 2 2 Cnin Wain i (k) —u(x0) =3¢ [f (x.1) -
n=li=0 I=1 j=0
2k1—1M1 —19ke 1M,-1 oki= M, lsz_le -1 3
anlIJWnllj(Xt) ZZZ chllj 3Wn|IJ(Xt)+ (5-48)
n=l i=0 I=1 j=0 n=li=0 I=1 j=0 OX
2k1 1|\/|1 12k2 -1 M, -1 65 2k1 1M1 12k2 1M, -1 7

2
Cn,i,l,j%‘//n,i,l,j(x’t)_a Z Cn|| i ox 7 —Wnil, j(X t)

n=1 i=0 I=1 j=0 n=l i=0 I1=1 j=0
Now substituting the collocation points x,:—lk_?'5 and t = £—10-5 for
2" M 2%2=1\m
1 2

1=1,2,....2%"M, and r=12..2%'M, in egs. (546) and (5.48), we have
2(2kl‘1M1X2k2‘1M2)equations in 2(2k1‘1M1X2k2‘1M2) unknowns in a,;; ; and ¢,;, ;. By

solving this system of equations using mathematical software, the Legendre wavelet

coefficients a,;, j and c,;, ; can be obtained.

5.7.2 Comparison with HAM for Solution of Time Fractional sKdV
Equation

Consider the nonlinear time-fractional generalized sKdV equation [117]

ou  ou % ou  d'u
+

u—-+ g +o =0, O<a<l, (5.49)
a* o ox ox® ox ox’
subject to the initial condition [120]
u(x,0)= a, + a5 sech® (kx),
where k = L, apg=C— 180020 , Qg= 519730 and c is an arbitrary parameter.
V1538 769 769

To obtain the approximate solution of the time-fractional sKdV equation (5.49), we

choose the linear operator

7 [g(x.t; p)]= Dfglx.t; p)- (5.50)

Let us construct the m- th order deformation equation for eq. (5.49) as follows
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S un (%)= 2l 2 (%, 0)] = 2R, (Ug, Uy v ) s (5.51)

1 o™ [g(xt;p)]
m-1)! op™

, (5.52)
p=0
0)00xtip)  Oxtip) Sg(xtip), o'dlxtip)
X S x° o'

where ﬂ%m(uo,ul,...,umfl)z(

1 g(xt p)]= D glx.t; p)+ B,

auxiliary function H(x,t) =1,

o0

and #(x.t; p)=uo(x,t)+> p"up(x.t),
m=1

o (x,t)= L "etip)
m - op"

p=0
Now, the solution of the first deformation equation of eq. (5.51) is given by

a 3 5 7
u,(x,t)=rJ37 {aatlio +Uq My Oy Oy 0 uo] (5.53)

x o x o ox ox’
Similarly, the solutions of second and third order deformation equations are

a 3 5 7
U, (x,t)=uy (x,t)+7 J& {aatul jtufj%+u1 My Oy Oy, 0 ul} : (5.54)
X

a 3 5 7
uz(x,t)=u,(x,t)+ 7 I [aatuz +u0%+u1%+u My , Ol O, +Gaau72} (5.55)
X X X

By putting the initial condition uy =u(x,0) in egs. (5.53)- (5.55) and solving them, we
obtain the expressions for uy, U,, Us.

Finally, the approximate solution for time fractional seventh order KdV equation is given
by

u=u, (X,t)+u,(x,t) +us(x,t) +... (5.56)
Example 5.3 Consider nonlinear time-fractional generalized sKdV equation (5.49)

subject to the following initial condition u(x,0) =0 and the forcing term

F(x,t)= t“ cos(x) % sin(x) cos(x)  3t** sin(x)

I'l+a) (C@+2a)) rd+2a)’ (5:57)

The exact solution of eq. (5.49) is given by

“ cos (x)
u(x, )_ rl+2a)

151



The numerical solutions of the example 5.3 are presented for o =1 in Tables 5.11 and
5.12. The results are compared with the exact solutions. It has been observed from Tables
5.11 and 5.12 that the solutions obtained by present method are in good agreement with
that of exact solutions.

Example 5.4 Consider nonlinear homogeneous time-fractional sKdV equation (5.49)
subject to the following initial condition [120]

u(x,0) = a, +ag sech®(kx), (5.58)

5 18000 519750
where k =——, a,=c¢ ag= .
769

J1538 7692

The numerical solutions of the example 5.4 are presented for o =0.01 in Table 5.13 and

and c is an arbitrary parameter.

5.14. The results are compared with the exact solutions as well as solutions obtained by
HAM. It has been observed from Tables 5.13 and 5.14 that the solutions obtained by
present method are in good agreement with the exact solutions and the solutions obtained
by HAM.

5.8 Numerical Results and Discussion of Time-Fractional
sKdV Equation

The comparison of the L, and L, error norms for time-fractional sKdV equation (5.49)
given in example 5.3 and 5.4 have been exhibited in Tables 5.11 and 5.14 which are
constructed using the results obtained by Legendre wavelet method at different values of t
taking M =6,8 and 4 when « =1. Tables 5.12 and 5.13 show the absolute errors of time-
fractional sKdV equation (5.49) for example 5.3 at various points of x and t taking
a =0.75,0.9and 0.85 respectively. Similarly Tables 5.15 illustrates the absolute errors of
fractional order sKdV equation (5.49) for example 5.4, at various points of x and t taking
a =0.75. Agreement between present numerical results and exact solutions appears very
satisfactory through illustration in Tables 5.11 to 5.15. To show the accuracy of proposed
method, L, and L, error norms for classical order nonlinear sKdV equation given in
examples 5.3 and 5.4, have been presented in Tables 5.16. Again to examine the accuracy
and reliability of the Legendre wavelets for solving fractional order sKdV equation, we
compare the approximate solution of Legendre wavelet with the 4™ order approximate
solution obtained by HAM taking 7 =-1.45. As pointed out by Liao [33] in general, by
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means of the so-called 7 -curve, it is straight forward to choose a proper value of 7 which
ensures the convergence of series solution. To investigate the influence of # on the
solution series, we plot 7 -curve of partial derivatives of u(x,t) obtained from the 4™ order

HAM solution as shown in Figure 5.1.

L1500 T T T T

1000 - \ 1

! 1, (0.5,0.1)
Ly(0.5,0.1)
, L (0.5,0.1)

" wyep{0.5,0.1)

500 — T peyy(0.5,0.1)

|".|:|‘II 1l

Figure 5.1 The n-curve for partial derivatives of u(x,t) for the 4™ order HAM solution
taking x=0.5,t =0.1and & = 0.75.

Table 5.11 Comparison of L,andL, error norms obtained by two-dimensional Legendre
wavelet method for nonlinear sKdV equation (5.49) given in example 5.3 at various points t taking

M =6 and 8 when « =1.

t M =8k =2 M =6k =2
L, L, L, L.,
0.05 9.16437E-6 5.3919E-6 4.18475E-5 2.13437E-5
0.10 1.01505E-4 5.5779E-5 3.62294E-4 1.82466E-4
0.15 4.68588E-4 2.3893E-4 1.31216E-3 6.41485E-4
0.20 1.43992E-3 6.9125E-4 3.34637E-3 1.58899E-3
0.25 3.50308E-3 1.6015E-3 7.00733E-3 3.23727E-3
0.30 7.34409E-3 3.2189E-3 1.29496E-2 5.83178E-3
0.35 1.39175E-2 5.8669E-3 2.19626E-2 9.66262E-3
0.40 2.45602E-2 9.9599E-3 3.49928E-2 1.50760E-2
0.45 4.11652E-2 1.6021E-2 5.31644E-2 2.24858E-2
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0.50 4.86290E-2 2.6175E-2 8.00433E-2 3.34444E-2

Table 5.12
wavelet method for fractional order nonlinear sKdV equation (5.49) given in example 5.3 at

Comparison of approximate solutions obtained by two-dimensional Legendre

various points of x and t taking « =0.75.

X |uExact - uLW|
t=0.05 t=0.1 t=0.15 t=0.2 t=0.25 t=0.3

0.1 1.48844E-3 | 1.02439E-3 1.34522E-3 6.84404E-3 1.65336E-2 3.16301E-2
0.2 1.44428E-3 | 8.04932E-4 1.87684E-3 7.87671E-3 1.83517E-2 3.47030E-2
0.3 | 1.38657E-3 | 5.78750E-4 2.38982E-3 8.83756E-3 2.00105E-2 0.37488E-2
0.4 1.31595E-3 | 3.49808E-4 2.87396E-3 9.70634E-3 2.14745E-2 3.99294E-2
0.5 3.14870E-3 | 5.32314E-3 8.43096E-3 1.46331E-2 2.77386E-2 5.23307E-2
0.6 3.56192E-3 | 5.91560E-3 9.27444E-3 1.57778E-2 2.93468E-2 5.46608E-2
0.7 3.94745E-3 | 6.45309E-3 1.00217E-2 1.67499E-2 3.06354E-2 5.64109E-2
0.8 4.30041E-3 | 6.92704E-3 1.06584E-2 1.75272E-2 3.15695E-2 5.75265E-2
0.9 4.61606E-3 | 7.32937E-3 1.11714E-2 1.80894E-2 3.21175E-2 5.79590E-2

1 4.88988E-3 | 7.65262E-3 1.15487E-2 1.84184E-2 3.22520E-2 5.76668E-2

Table 5.13 Absolute errors obtained by two-dimensional Legendre wavelet method for

fractional order nonlinear sKdV equation (5.49) given in example 5.3 at various points of x and t

taking ¢« =0.9:and 0.85.

Uggact —Urw

a=0.9

a =0.85

t=0.05

t=0.1

t=0.15

t=0.2

t=0.25

t=0.05

t=0.1

t=0.15

t=0.2

t=0.25

0.1

1.9246E-2

1.3604E-2

4.4142E-3

3.8954E-2

7.4497E-2

6.9542E-4

7.6950E-3

1.5974E-2

2.5318E-2

3.8521E-2

0.2

1.7746E-2

1.2199E-2

5.2290E-3

3.9733E-2

7.7033E-2

7.1046E-5

1.0510E-2

1.8741E-2

2.8015E-2

4.4560E-2

0.3

1.6012E-2

1.0617E-2

6.0247E-3

4.0160E-2

7.8958E-2

5.7288E-4

1.3190E-2

2.1255E-2

3.0330E-2

5.0048E-2

0.4

1.4047E-2

8.8587E-3

6.7945E-3

4.0212E-2

8.0217E-2

1.2304E-3

1.5746E-2

2.3537E-2

3.2285E-2

5.5001E-2

0.5

1.1856E-2

6.9277E-3

7.5331E-3

3.9867E-2

8.0759E-2

2.1161E-3

6.6038E-3

2.9885E-3

2.1245E-2

3.8269E-2

0.6

9.4467E-3

4.8277E-3

8.2358E-3

3.9110E-2

8.0539E-2

3.1420E-4

6.6306E-5

1.1018E-2

2.9948E-2

5.0558E-2

0.7

6.8278E-3

2.5638E-3

8.8993E-3

3.7927E-2

7.9514E-2

1.4167E-3

6.3441E-3

1.8809E-2

3.8240E-2

6.2237E-2

0.8

4.0113E-3

1.4338E-4

9.5203E-3

3.6306E-2

7.7648E-2

3.1190E-3

1.2661E-2

2.6382E-2

4.6132E-2

7.3303E-2

0.9

1.0121E-3

2.4241E-3

1.0096E-2

3.4243E-2

7.4911E-2

4.7975E-3

1.8884E-2

3.3728E-2

5.3601E-2

8.3721E-2

2.1510E-3

5.1261E-3

1.0624E-2

3.1738E-2

7.1281E-2

6.4193E-3

2.4976E-2

4.0805E-2

6.0597E-2

9.3426E-2

154




Table 5.14

Comparison of L, andL, error norms obtained by two-dimensional Legendre

wavelet method for nonlinear sKdV equation (5.49) given in example 5.4 at various points t taking
M =4 and8 when « =1.

t M=8k=1 M=4k=1
L, L, L, L,
0 1.13870E-5 4.68205E-6 6.44281E-5 3.33213E-5
0.1 5.72636E-3 2.66655E-3 9.28479E-3 5.07039E-3
0.2 1.27713E-2 5.63322E-3 1.78148E-2 9.90263E-3
0.3 2.15239E-2 9.08072E-3 2.55958E-2 1.44389E-2
0.4 3.23356E-2 1.32161E-2 3.26941E-2 1.86549E-2
0.5 4.55238E-2 1.82721E-2 3.91898E-2 2.25262E-2
0.6 6.13666E-2 2.45038E-2 4.51782E-2 2.60282E-2
0.7 8.35997E-2 3.85932E-2 5.07729E-2 2.91367E-2
Table 5.15 Comparison of approximate solutions obtained by two-dimensional Legendre

wavelet method and homotopy analysis method for fractional order nonlinear sKdV equation

(5.49) given in example 5.4 at various points of x and t taking 7z =-1.45 and a =0.75.

X t=01

t=02

t=0.3

t=

0.4

t=

0.5

u Legendre

Upam

uLegend re

Upam

uLegend re

Upam

uLegend re

Upam

uLegend re

Upam

0.1 | 0.875221

0.878962

0.877833

0.878771

0.880844

0.877951

0.884388

0.876460

0.888389

0.874258

0.2 | 0.872626

0.878151

0.874683

0.877764

0.877135

0.876133

0.880292

0.873178

0.884275

0.868821

0.3 | 0.869184

0.876495

0.870688

0.875954

0.872539

0.873596

0.875166

0.869306

0.878919

0.862975

0.4 | 0.864923

0.874003

0.865885

0.873369

0.867102

0.870405

0.869065

0.864971

0.872379

0.856928

0.5 | 0.859870

0.870687

0.860309

0.870036

0.860870

0.866623

0.862047

0.860286

0.864719

0.850864

0.6 | 0.854057

0.866560

0.854000

0.865984

0.853892

0.862302

0.854172

0.855343

0.856005

0.844932

0.7 | 0.847514

0.861637

0.846994

0.861234

0.846217

0.857483

0.845500

0.850213

0.846308

0.839240

0.8 | 0.840276

0.855935

0.839334

0.855810

0.837896

0.852198

0.836095

0.844940

0.835701

0.833856

0.9 | 0.832376

0.849472

0.831059

0.849727

0.828980

0.846463

0.826023

0.839545

0.824260

0.828801

1.0 | 0.823849

0.842268

0.822212

0.842999

0.819522

0.840286

0.815349

0.834021

0.812067

0.824053

Table 5.16

Ly,and L, error norm for nonlinear time-fractional sKdV equation using two-

dimensional Legendre wavelet methods at various points t taking « =1.
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t Example 5.3 Example 5.4
L L Lo Lo
0.1 3.20987E-5 5.5779E-5 1.81083E-3 2.66655E-3
0.2 4.55341E-4 6.9125E-4 4.03863E-3 5.63322E-3
0.3 2.32241E-3 3.2189E-3 6.80646E-3 9.08072E-3
0.4 7.76660E-3 9.1236E-3 1.02254E-2 1.32161E-2
0.5 1.53778E-2 2.6175E-2 1.43959E-2 1.82721E-2

The percentage errors of sKdV equation (5.49) for example 5.4 has been shown in Table
5.17 at various points of x and t. Comparison of approximate solutions obtained by two-
dimensional Legendre wavelet method, homotopy analysis method and optimal homotopy
analysis method for fractional order nonlinear sKdV equation (5.49) have been
demonstrated in Table 5.18 taking « =0.75. Agreement between present numerical results

and exact solutions appears very satisfactory through illustration in Tables 5.11-5.18.

Table 5.17 Percentage errors obtained by two-dimensional Legendre wavelet method for
classical nonlinear sKdV equation (5.49) given in example 5.4 at various points of x and t for
a=1

X |uExact _ULW|

t=0 t=0.1 t=02 t=0.3

0.1 3.60870E-4 6.36455E-2 1.88943E-1 3.73007E-1

0.2 4.48452E-4 9.41269E-2 2.50788E-1 4.70472E-1

0.3 5.07751E-4 1.24566E-1 3.11652E-1 5.64999E-1

0.4 5.36868E-4 1.54740E-1 3.71078E-1 6.55872E-1

0.5 5.33951E-4 1.84430E-1 4.28610E-1 7.42358E-1

0.6 4.97215E-4 2.13419E-1 4.83794E-1 8.23722E-1

0.7 4.24966E-4 2.41502E-1 5.36188E-1 8.99238E-1

0.8 3.15643E-4 2.68483E-1 5.85363E-1 9.68192E-1

0.9 1.67864E-4 2.94177E-1 6.30919E-1 1.02990

1.0 1.94903E-4 3.18421E-1 6.72482E-1 1.08372
Table 5.18 Comparison of approximate solutions obtained by two-dimensional Legendre

wavelet method, homotopy analysis method and optimal homotopy analysis method for fractional

order nonlinear sKdV equation (5.49) given in example 5.4 at various points of x and t taking

a=0.75.
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Rl

X t=0.1 t=0.2 t=0.3 t=04 t=05
u Legendi Unam qutimaIHA Vi uLeger d UHam qutimaI uLegend € Unam qutimaI u Legend! Unam qutimaI u Legengi Unam qutim
0.1 | 0.875 | 0.878 | 0.879025 0.877 | 0.8787 | 0.879 | 0.8808 | 0.877 | 0.879 | 0.884 | 0.876 | 0.880 | 0.888 | 0.874 | 0.880
221 962 833 71 4 44 951 728 388 460 029 389 258 313
0.2 | 0.872 | 0.878 | 0.878288 0.874 | 0.8777 | 0.879 | 0.8771 | 0.876 | 0.879 | 0.880 | 0.873 | 0.880 | 0.884 | 0.868 | 0.880
626 151 683 64 035 35 133 689 202 178 291 275 821 855
0.3 | 0.869 | 0.876 | 0.876693 0.870 | 0.8759 | 0.877 | 0.8725 | 0.873 | 0.878 | 0.875 | 0.869 | 0.879 | 0.878 | 0.862 | 0.880
184 495 688 54 809 39 596 788 166 306 686 919 975 53
04 | 0.864 | 0.874 | 0.874247 0.865 | 0.8733 | 0.875 | 0.8671 | 0.870 | 0.877 | 0.869 | 0.864 | 0.878 | 0.872 | 0.856 | 0.879
923 003 885 69 727 02 405 024 065 971 216 379 928 334
0.5 | 0.859 | 0.870 | 0.870956 0.860 | 0.8700 | 0.872 | 0.8608 | 0.866 | 0.874 | 0.862 | 0.860 | 0.875 | 0.864 | 0.850 | 0.877
870 687 309 36 793 70 623 403 047 286 882 719 864 27
0.6 | 0.854 | 0.866 | 0.86683 0.854 | 0.8659 | 0.869 | 0.8538 | 0.862 | 0.870 | 0.854 | 0.855 | 0.872 | 0.856 | 0.844 | 0.874
057 560 000 84 015 92 302 931 172 343 691 005 932 342
0.7 | 0.847 | 0.861 | 0.861882 0.846 | 0.8612 | 0.864 | 0.8462 | 0.857 | 0.866 | 0.845 | 0.850 | 0.868 | 0.846 | 0.839 | 0.870
514 637 994 34 406 17 483 619 500 213 651 308 240 558
0.8 | 0.840 | 0.855 | 0.856127 0.839 | 0.8558 | 0.858 | 0.8378 | 0.852 | 0.861 | 0.836 | 0.844 | 0.863 | 0.835 | 0.833 | 0.865
276 935 334 10 978 96 198 478 095 940 774 701 856 929
0.9 | 0.832 | 0.849 | 0.849583 0.831 | 0.8497 | 0.852 | 0.8289 | 0.846 | 0.855 | 0.826 | 0.839 | 0.858 | 0.824 | 0.828 | 0.860
376 472 059 27 749 80 463 525 023 545 074 260 801 467
1.0 | 0.823 | 0.842 | 0.84227 0.822 | 0.8429 | 0.845 | 0.8195 | 0.840 | 0.848 | 0.815 | 0.834 | 0.851 | 0.812 | 0.824 | 0.854
849 268 212 99 738 22 286 778 349 021 57 067 053 19

5.9 Convergence of Legendre wavelet

Theorem 5.1 (Convergence Theorem)

If a continuous function u(x,t) e L>(RxR) defined on [O,l)x[O,l) has bounded mixed

fourth partial derivative

converges uniformly to it.

Proof:

Let U(X,t) be a function defined on [0,1)x[01) and

constant.

o*u(x,t)

oxot

<K, then the Legendre wavelets expansion of U(X,t)

o*u(x,t)

oxot? |

The Legendre wavelet coefficients of continuous functions U(X,t) are defined as

11
Cormongny = | JUOCOW i, 0V Wy, (©)lxlt
00

o1y

= ”u(x,t) [ml +%)(m2 +%j 2
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<K, K is a positive



where |1_[ 1 n1+1j and Iz_{ , —1 n?—ﬂ)

oki—1 ' ok -1 oko -1 ko1

Now by change of variable 2 x—n, =y, we obtain

kl+k2

~ 1 1)2 2
Cnlvrn]_anva —_ ml +E m2 +§ 2k1

ﬁ2+1 (559)

1 A 1
+y B 1 n+y
{5 0= g [ )t

since (2m, +1)R,, (y) =Py ,1(y)— Py 1(y)

-1

sy | 2 0)-R by
t o[ P (¥)-P(y) Py (¥)-Po(y)
:(2m1+1>£¥{ em+3 (2m-1) M (5.60)

Substituting eq. (5.60) in eq. (5.59), we have

k1+k2

cnl,m1’n2’m2:\/(ml+%j(m2+;j = 2m ) J._ (2"2t )dt
JLEOR ) Pl

(2m, +3) (2m, -

-_.._\

S (y)}dy (5.61)

Similarly,
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i +1

2kt o

[ 8—2sz (2t -1, kit
oY

2k2—1

S T L X LS TR

T a(omy+1) awty?| (m,+3)  (2m,-1)

where w = 2%z t—n, .
Substituting eq. (5.62) in eq. (5.61), we have

~ 1 1 1 AT
Copmyng.my = 4[| M +§ m, +E ketko -[-[awzayz
2 2 (2m,+1)2m, +1)**

[Pl ) Pale)-Po)) o)) PP )

(2m, +3) (2m, -1)

(2m, +3) (2m, -1)
Now suppose
Ru(y)=(2m ~1)R,, .o (y)~(2m, ~1)R,, (v)~(2m, +3)R,, (v)+(2m; +3)R,, (y)
= (2m ~ 1R, (y) - 2(2m; +1)R,, (y)+(2m, +3)R, ,(y),
and
Ro(w)=(2m, ~1)Py, o (W)~ (2m, 1)y, (W)~ (2m, +3)R,, (w)+(2m, +3)R,, (W)

=(2m, _1)Pm2 12(W)—2(2m, +1)Pm2 (W)+ (2m, + 3)Pm2 -2 (W)

11 4
K, K o'u

Therefore, (o o, m, | < A2 :[1 :[1 oy IR (y)|R, (wJdwdy

11

< Ante K [ [|R(y)|Ry(w)dwdy (5.63)
‘1
1 1 1

where ﬂﬁl’ﬁﬁz =\/(m1 +Ej(m2 +Ej oh

2 2 (2m +1f(2m, —3)2m, +1)(2m, —3)

Now using Cauchy-Schwarz inequality
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[T e

%P2 ., (y)+ PZ () + P2 ,(y) by

< 2[(2m1 1) +(4m, +2) +(2m; + 3)2] [(Zmlz+ 5) " (2m12+1) " (2m12— 3) }

j.|R1(y)|dys2\/[(2m1—1)2+(4ml+2)2+(2ml+3)2]{( ! ! ! }

om +5) " (2m +1) " (2m,—3)
(5.64)

Similarly,

j|R2(w)|dwsz\/[(2m2—1)2+(4m2+2)2+(2m2+3)2]L I S }

° 2m, +5) (2m, +1) (2m,-3)

(5.65)
Putting egs. (5.64) and (5.65) in eq. (5.63), we have
Coy my gy | < AR 00 0 (5.66)
where
_ Jlem,—17 + (am, + 27 + (2m, +37] | - L L
Ty mg \/[( My 1)+ (4m, +2)+ (2m, + )'_(2m1+5)+(2m1+1)+(2m1—3)
11 1 1 1
2m, —1)* +(4m, + 2 + (2m, + 3)°
XJ[( M, ~1)" + (4m, + 2]+ (2m, + )-_(2m2+5)+(2m2+1)+(2m2—3)}

0 0 0 0
Therefore " D" > D Cy mn,m, is absolutely convergent.
n=0 m;=0 n,=0 m,=0

Hence according to Ref. [44], the Legendre series expansion of u(x,t) converges

uniformly. o

Theorem 5.2 (Error Estimate)

If a continuous function u(x,t) e L>(RxRN) defined on [O,l)x[O,) be bounded viz.

u(x,t) < K, then
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1
2

i S4KI: Z Z Z Z(ilf%1kr$‘2nml m2)2] .
L3 [[0.1)x0,1)]

n =241 m=M; n,=22 141 my=M,

ok 1 1 1
B e

2 2 (2m +1f(2m, —3)2m, +1)(2m, —3)

ng,kl,lvll,kz,lvl2

and 77mmz:\/[(2m1—1)2+(4m1+2)2+(2m1+3)2]{( r 1 1 }

2m, +5) (2m, +1) (2m, -3)

2 2 2 1 ! L
><\/[(2m2 ~1)* + (4m, + 2)° +(2m, +3) ]{(Zmz+5)+(2m2+1)+(2m2—3)}

Proof:
2
“ukMake M2 12 o140
11 2k1M; -1 2ke i M, -1 2
S IIICHEDIDIDS Z s Wm0 Wa, m, (0] @(X)@(t)dxdt
00 n;=1m;=0 n,=1m,=0
2

OO 0 o0

> Z > Copmengm, W W, m, (©)

n kl +1M =My n, =2kt m, =M,

dxdt

11
00
0 0 0 0 2

z D IDY

1 m=M, n2=2k2’1+1 m,=M,

(5.67)

My, My, Nz, My

Substituting eq. (5.66) of theorem 5.1, in eq. (5.67) we obtain

2 © 0 ©
2 [0x0) 2 2 Zk: Z(4Kﬂ’lé1llkrr21277m1,m2)2 (5.68)

n =2K141m =My n, =221 11 my=M,

K 1 1 1
where ﬂ,ﬁ ™, :\/(ml +Ej(m2 +Ej k7Kg

2 2 (2m +1f(2m, —3)2m, +1)(2m, —3)

gu,kl,Ml,kz,Mz

and 77mmz:\/[(2m1—1)2+(4m1+2)2+(2m1+3)2]{( r 1 1 }

2m, +5) (2m, +1) (2m, -3)
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«|l(2m, ~1F + (@m, + 2P + (2m, + 3P || ot L
(

2m, +5) (2m, +1) (2m, -3)

Eqg. (5.68) implies

s[ DD z()ﬂ :

n =241t am =My n, =2k 141 my=M,

ng,kl,lvll,kz,lvl2
12,[10.0x{0.1)]

5.10 Solution of Fractional Kaup-Kupershmidt Equation

Using Legendre Multiwavelets

5.10.1Introduction of Legendre Multiwavelets

Legendre multiwavelets v, . (x) =w(k,n,m,x) have four arguments; n= 012,...,2" -1,
keZ", mis the order of Legendre polynomials and x is normalized time. They are defined

on the interval [0,1) as [126]

K Ky n n+1
Wn‘m(x)_{\/2m+12 Lm(2 X n), o <X< ,

2k
0, elsewhere

where m=0.1,..,M -1, n=012,...,2* -1.
Here, L,(X) are the well-known shifted Legendre polynomials of order m, which are

defined on the interval [0,1], and can be determined with the aid of the following

recurrence formulae:

L) =1,
L (x) =2x-1,
L 1(X) = (Zr;“:llj(zx “DL(x) —(mlﬂj L, (x), m=123,.. .

The two-dimensional Legendre multiwavelets are defined as

n1<X<n1+1 N, <n2+1

ALml (2k1 X= nl)Lmz (2k2 t- nz)’ 2k1 N Zkl , 2k2 B 2k2

Yni.m.ny my (X,t)=

0, elsewhere
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k1+k2
where A=./(2m, +1)2m, +1) 2 2 , n andn, are defined similarly to n; k; and k, are

any positive integers, m,and m, are the orders for shifted Legendre polynomials and

Woymi.ngm, (X:t) forms a basis for L*([0,1)x[0,1)).
5.10.2Function Approximation

A function f(x,t) defined over [0,1)x[0,1) can be expanded in terms of Legendre

multiwavelet as [126]

()= 2303 s Wi (00). (5.69)

If the infinite series in eq. (5.69) is truncated, then it can be written as
k

1M1 221
i=0 |

f(x,t);klz

n=0

ZZ:Cn il Wn il, j(X t) T(X)C lIl(t)v (5-70)
j=0

=0

\P(t) = [‘//o,o (t), l//O,l(t)f"'f Yo,Ma (t)' l/jl,O(t)""’ Yim, (t)’---' V/(zkz 71)’0(0'---’ '/’(Zkz )My (t)T-

Also, Cis a 2k1(|\/|1 +1) x 2¥2 (M, +1) matrix whose elements can be calculated from the

formula
n il j J.J"//nl i, J X t)dth ) (571)
with n=01,...,2 -1,i =0,...,M,;,1=01,...,2°2 -1, j =0,...,M,,.

5.10.30perational Matrix of the General Order Integration [127]

The integration of

W)= oo O Wom O W1o®.sting Ot ey (Ot O can e

approximated by
t
[®(@)dr=Qw(t), (5.72)
0
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where Q is called the Legendre multiwavelet operational matrix of integration. To derive
the Legendre multiwavelet operational matrix of the general order of integration, let us

recall the fractional integral of order (> 0), defined by Podlubny [41]

J”’f(t)=$_’.(t—r)“lf(r)dr, a>0, aeR’ (5.73)

where R™ is the set of positive real numbers.

The Legendre multiwavelet operational matrix Q“ for integration of the general order «
is given by

QUW(t) = J*W(t)

]
O3V i, (t)},

(2% 1,0 2k 1),m
where
1
. om+1l22k23e (kt_p] L<cp DED
I, n(t)= (1) ol ) ok ok
0, elsewhere

for n=0,1,2,...,2¥-1, m=0,1,2,...,M is the order of the Legendre polynomials and

M is a fixed positive integer.

5.11 Application of Analytical and Numerical Methods for

Solving Time-Fractional Kaup-Kupershmidt Equation

5.11.1Solution of Fractional Kaup-Kupershmidt Equation Using

Legendre Multiwavelets

To exhibit the effectiveness and accuracy of proposed numerical scheme, we consider the
time-fractional Kaup-Kupershmidt equation. The numerical solutions thus obtained are

compared with the exact solutions as well as with the solutions obtained by OHAM.

Consider the nonlinear time-fractional generalized Kaup-Kupershmidt equation [121]

a 2 3 5
OU g2 M _g5p MO _4g, O, TU_g (5.74)
ot” OX OX OX oXx®  OX

with initial condition
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2 12
u(x,0)= %WZ/”L2 sec hz( ATWXJ + le : (5.75)

The exact solution of eq. (5.74) is given by [121]

2 4 212
u(x,t):lw 2sech? 2| —W "B+ 164" A o L WA (5.76)
4 2 16T (1+a) 12

where A, zzand w are constant with w = 0.

The Legendre multiwavelet solution of u(x,t) is sought by assuming that u(x,t) can be

expanded in terms of Legendre multiwavelet as

kl M

0=

where n=0.,...,2% —-1,i=0,...,M;,1 =0,...,.2*2 -1, j =0,..., M,..

ok g
0

M2
Zdn,i,l,j V/n,i,l,j(x’t)’ (5.77)
=0

1
0i=0 I=

The nonlinear terms presented in eq. (5.74) can be approximated using Legendre
multiwavelet function as

u —= z anlljl//n”j(Xt) (5.78)

__:Z_ bnlljl/jnllj(Xt) (5.79)

o MMM %21 M,

and iy = 22 20 2 Coin Vain(xt). (5.80)

3
OX* 130 i0 10 j=0

This implies
2
Mam; 22 awm, 241 My 2k271M2d al//nll j(X t)
nl|jl//nI|th) nil,j P
n=0 i=0 1=0 j=0 n=0 i=0 1=0 j=0 X (581)
K1 My 2¥2 1 My
n|| N l//nll J(X t)
n=0 i=0 1=0 j=0
MMy 22 g M, 5‘//n|| ](x t) || 221y 22aM, %W pin (1)
dn Al Z dn L] 8)(—2
n=0 i=0 1=0 j=0 n=0 i=0 1=0 j=0 (582)

= . bnlljl/lnllj(Xt)

and
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2K -1 My 221 My oK1 My 2K2_1 M, (
4 il X t)
. dnl|j‘//nl|thJ|: Z n"Jan}
n=0 i=0 1=0 j=0 n=0 i=0 1=0 j=0 (583)
2_1 My 2%2 M,
= Chil,j l//n,i,l,j(xit)'
n=0 i=0 1=0 j=0
Again applying J on both sides of eq. (5.74) we have
u(x,t)—u(x,0) = 3¢| — 4507 X 15pa—ui 5, U _ 0 (5.84)
’ ’ ox X Ox? o x| '

Putting egs. (5.77), (5.78), (5.79) and (5.80) in eq. (5.84), we have

M_1 My 2%2 M

N

n=0 i=0 1=0 j=0 n=0 i=0 1=0 j=0

2K_1 My 2521 M, 241 My 2K
+15p bn,i,l,jl//n,i,l,j(x’t) +15 Z
n=0 i=0 |

n=0 i=0 I1=0 j=0

dnini%nit (Xat)_ U(X1O) =Jy {— 45(2%1%2%1% Anili¥nil (th)J

-1

||MI\J

T
o

My
Cn,i,l,j'//n,i,l,j(xvt) (5.85)
=0

k-1 ko-1
20 M -1227 Mp-1
L 2 ‘//nllj(Xt)

OIS

n=l i=0 I=l j=0

1-0.5 ¢ __r-05

———— and t,=————— for
2k (M, +1) 2k2 (M, +1)

Now substituting the collocation points x, =

=1 2,...,2k1(M1+1) and r=12,...,2%2(M, +1) inegs. (5.81), (5.82), (5.83) and (5.85),
we have 4(2"1(M1+1)X2k2 (M, +1)) equations in 4(2'<1(Ml +1)X2k2 (M, +1)) unknowns in
a and d,;, ;- By solving this system of equations using mathematical

n,i,l,j° bn,i,l,j’ n,il,j

software, the Legendre multiwavelet coefficients a, ;| i, b,;, ;s Cy;,.; @nd d,;, ; canbe

obtained.

5.11.2Comparison with OHAM for Solution of Time-Fractional Kaup-
Kupershmidt Equation

Using optimal homotopy asymptotic method [128], the homotopy for eq. (5.74) can be

written as
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- p)Llolxt: )= H (p{%ﬁhmx, g 2etitio)

, (5.86)
_15p 2P tR)STNER) gy 1. ) 20X D) Dlxtip)|
OX ox? OX OX
where @(x,t; p)=u(xt)+ > u(x,t)p', (5.87)
i=1
H(p)=C,p+C,p° +Csp%+..., (5.88)
N(@(x, t; p))=Ng(ug(x, 1))+ > N (ug, Uy, ..., u, Jp*. (5.89)
k=1

Substituting egs. (5.87) to (5.89) in eq. (5.86) and equating the coefficients of different

powers in p, we have the following system of partial differential equations.

0. 0%Up(x,t)

Coefficients of p~: T:o. (5.90)
Coefficients of p*: 2 w(xt) 2 uo(X’t):cl[auo—(x’t)+45(u0(x,t))2%X’t)
ot ot ot OX
AU, (x,t) 62Uy (x,1) Uy (x,t)  8°up(x,t)
-15 0 0 -15 't 0 0 . 5.91
P ox x? ol t) o ad (1)

Coefficients of p2 :

Uy (x,t)  0%uy(x,t) 0“u, (x,t) ( AU, (x,1)
- =C)|————=+45 2 t t
ot ot i R + Uo (%, t)uy (x,t) 5 +

(x.t))° M}—15p[8“0()('t)‘32“1(X’t)+aul(X,t)@zuo(x,t)J

(Uo X,

x ox x> ox ox*
0%u,(x,t) *uy(x,t)) 2%u,(x,t)
—15(u0(x,t)?+u1(x,t) 80X3 + ale’ (5.92)

0%U, (x,t ou, (x,t ou, (x,t) 0%u, (x,t
R

*uy(x,t)  0%ug(x,t)
— 15U (x,t)—2 o,
Uxt) PYCRRPS

and so on.

For solving fractional Kaup-Kupershmidt equation using OHAM, we consider the
following initial condition for equation (5.74)
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212
u(x,0)= %Wzlz sec hz( M)+ WA

2 12
Using the initial condition u, =u(x,0) and solving eqg. (5.90) to eq. (5.92), we obtain the

expressions for uy,u; and u,.

Finally, the second order approximate solution for time-fractional Kaup-Kupershmidt
equation is given by

U =Uy (X t)+u, (X, t)+u,(xt). (5.93)

The optimal values of the convergence control parameters C, andC, can be obtained using

collocation method given in eq. (1.33) of chapter 1.

5.12 Numerical Results of Fractional Kaup-Kupershmidt

Equation

The comparison of the absolute errors for time-fractional Kaup-Kupershmidt equation
(5.74) has been exhibited in Tables 5.19 and 5.22 which are constructed using the results
obtained by two-dimensional Legendre multiwavelet method and OHAM at different
values of x and t taking e =1. In the present analysis, to examine the accuracy and
reliability of the Legendre multi-wavelets for solving fractional order Kaup-Kupershmidt
equation, we compare the approximate solution of Legendre multiwavelets with the exact
solution as well as with second order approximate solution obtained by OHAM. Tables
5.20, 5.21 and 5.23, 5.24 show the comparison of absolute errors of fractional order Kaup-
Kupershmidt equation (5.74) at various points of x and t taking «=0.5 and 0.75.
Agreement between present numerical results obtained by Legendre multiwavelets and
exact solutions appears very satisfactory through illustrations in Tables 5.19, 5.20 and
5.21.

Table 5.19

multiwavelet method for nonlinear Kaup-Kupershmidt equation given in eg. (5.74) at various

Comparison of absolute errors obtained by two-dimensional Legendre

points of x and t taking 4 =0.1,#=0,w=1and a =1.

X
u Exact — u LegendreMultiwavekt
t=0.1 t=0.2 t=0.3 t=04 t=05 |t=06 t=0.7 t=0.8 t=0.9
0.1 | 3.5268E-10 | 7.0333E-10 | 1.0519E-9 | 1.3985E-9 | 1.7430E-9 | 2.0855E-9 | 2.4259E-9 | 2.7643E-9 | 3.1007E-9
0.2 | 7.0308E-10 | 1.4041E-9 | 2.1031E-9 | 2.8001E-9 | 3.4950E-9 | 4.1879E-9 | 4.8788E-9 | 5.5676E-9 | 6.2544E-9
0.3 | 1.0532E-9 2.1043E-9 | 3.1535E-9 | 4.2006E-9 | 5.2456E-9 | 6.2887E-9 | 7.3297E-9 | 8.3687E-9 | 9.4057E-9
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0.4 | 1.4028E-9 | 2.8037E-9 | 4.2025E-9 | 5.5994E-9 | 6.9942E-9 | 8.3869E-9 | 9.7777E-9 | 1.1166E-8 | 1.2553E-8
0.5 | 1.7520E-9 | 3.5020E-9 | 5.2500E-9 | 6.9959E-9 | 8.7399E-9 | 1.0482E-8 | 1.2222E-8 | 1.3959E-8 | 1.5695E-8
0.6 | 2.1004E-9 | 4.1988E-9 | 6.2953E-9 | 8.3897E-9 | 1.0482E-8 | 1.2572E-8 | 1.4661E-8 | 1.6747E-8 | 1.8832E-8
0.7 | 2.4480E-9 | 4.8941E-9 | 7.3381E-9 | 9.7802E-9 | 1.2220E-8 | 1.4658E-8 | 1.7094E-8 | 1.9528E-8 | 2.1960E-8
0.8 | 2.7946E-9 | 5.5873E-9 | 8.3780E-9 | 1.1166E-8 | 1.3953E-8 | 1.6738E-8 | 1.9521E-8 | 2.2302E-8 | 2.5081E-8
0.9 | 3.1402E-9 | 6.2783E-9 | 9.4146E-9 | 1.2548E-8 | 1.5881E-8 | 1.8811E-8 | 2.1939E-8 | 2.5066E-8 | 2.8191E-8
Table 5.20 Comparison of absolute errors obtained by two-dimensional Legendre

multiwavelet method for fractional order nonlinear Kaup-Kupershmidt equation given in eq. (5.74)

at various points of x and t taking 4 =0.1,4=0,w=1and a =0.75.

X u Exact — u LegendreMultiwavekt
t=0.1 t=02 t=03 t=04 t=05 |t=06 t=0.7 t=0.8 t=09
0.1 | 6.7734E-10 | 1.1369E-9 | 1.5349E-9 | 1.8967E-9 | 2.2340E-9 | 2.5523E-9 | 2.8551E-9 | 3.1456E-9 | 3.4253E-9
0.2 | 1.3533E-9 | 2.2769E-9 | 3.0806E-9 | 3.8142E-9 | 4.5010E-9 | 5.1516E-9 | 5.7729E-9 | 6.3709E-9 | 6.9489E-9
0.3 | 2.0287E-9 | 3.4161E-9 | 4.6251E-9 | 5.7303E-9 | 6.7663E-9 | 7.7489E-9 | 8.6884E-9 | 9.5937E-9 | 1.0469E-8
0.4 | 2.7033E-9 | 4.5538E-9 | 6.1677E-9 | 7.6441E-9 | 9.0289E-9 | 1.0343E-8 | 1.1600E-8 | 1.2812E-8 | 1.3986E-8
0.5 | 3.3768E-9 | 5.6898E-9 | 7.7079E-9 | 9.5548E-9 | 1.1287E-8 | 1.2933E-8 | 1.4507E-8 | 1.6026E-8 | 1.7497E-8
0.6 | 4.0490E-9 | 6.8234E-9 | 9.2450E-9 | 1.1462E-8 | 1.3542E-8 | 1.5518E-8 | 1.7409E-8 | 1.9234E-8 | 2.1001E-8
0.7 | 4.7196E-9 | 7.9544E-9 | 1.0778E-8 | 1.3364E-8 | 1.5791E-8 | 1.8096E-8 | 2.0304E-8 | 2.2434E-8 | 2.4497E-8
0.8 | 5.3883E-9 | 9.0822E-9 | 1.2307E-8 | 1.5261E-8 | 1.8034E-8 | 2.0668E-8 | 2.3191E-8 | 2.5624E-8 | 2.7983E-8
0.9 | 6.0548E-9 | 1.0206E-8 | 1.3832E-8 | 1.7152E-8 | 2.0269E-8 | 2.3232E-8 | 2.6068E-8 | 2.8805E-8 | 3.1458E-8
Table 5.21 Comparison of absolute errors obtained by two-dimensional Legendre

multiwavelet method for fractional order nonlinear Kaup-Kupershmidt equation given in eq. (5.74)

at various points of x and t taking 2 =0.1,2=0,w=1and « =0.5.

Uggaet — U LegendreMultiwavekt

t=0.1

t=0.2

t=03

t=04

t=05

t=0.6

t=0.7

t=08

t=09

0.1

1.2348E-9

1.7431E-9

2.1251E-9

2.4420E-9

2.7198E-9

2.9690E-9

3.1958E-9

3.4065E-9

3.6035E-9

0.2

2.4789E-9

3.5107E-9

4.2915E-9

4.9425E-9

5.5158E-9

6.0321E-9

6.5038E-9

6.9435E-9

7.3559E-9

0.3

3.7221E-9

5.2770E-9

6.4561E-9

7.4411E-9

8.3096E-9

9.0928E-9

9.8093E-9

1.0477E-8

1.1105E-8

0.4

4.9638E-9

7.0412E-9

8.6182E-9

9.9366E-9

1.1100E-8

1.2149E-8

1.3111E-8

1.4007E-8

1.4850E-8

0.5

6.2035E-9

8.8026E-9

1.0776E-8

1.2428E-8

1.3886E-8

1.5202E-8

1.6407E-8

1.7532E-8

1.8589E-8

0.6

7.4407E-9

1.0560E-8

1.2931E-8

1.4915E-8

1.6667E-8

1.8248E-8

1.9697E-8

2.1049E-8

2.2321E-8

0.7

8.6750E-9

1.2314E-8

1.5080E-8

1.7395E-8

1.9440E-8

2.1287E-8

2.2979E-8

2.4558E-8

2.6044E-8

0.8

9.9058E-9

1.4063E-8

1.7223E-8

1.9869E-8

2.2209E-8

2.4317E-8

2.6251E-8

2.8058E-8

2.9756E-8

0.9

1.1132E-8

1.5806E-8

1.9359E-8

2.2335E-8

2.4964E-8

2.7338E-8

2.9514E-8

3.1546E-8

3.3457E-8

Table 5.22

(OHAM) for nonlinear Kaup-Kupershmidt equation given in eq. (5.74) at various points of x and t

Comparison of absolute errors obtained by optimal homotopy asymptotic method

taking 1=0.1,z=0,w=1and o =1.

|uExact — UonHam |

t=0.1 t=02 |t=03 |t=04 |t=05 |t=06 |t=07 |t=08 |t=09
0.1 | 3.4968E-10 | 3.6511E-9 | 6.5846E-9 | 9.1501E-9 | 1.1377E-8 | 1.3177E-8 | 1.4638E-8 | 1.5732E-8 | 1.6457E-8
0.2 | 7.2934E-6 | 7.2553E-6 | 7.2176E-6 | 7.1802E-6 | 7.1432E-6 | 7.1065E-6 | 7.0701E-6 | 7.0341E-6 | 6.9983E-6
0.3 | 2.6793E5 | 2.6721E-5 | 2.6651E-5 | 2.6581E-5 | 2.6511E-5 | 2.6442E-5 | 2.6372E-5 | 2.6303E-5 | 2.6235E-5

169




0.4 | 5.8103E-5 | 5.8005E-5 [ 5.7906E-5 | 5.7807E-5 | 5.7709E-5 | 5.7611E-5 | 5.7513E-5 | 5.7426E-5 | 5.7330E-5
0.5 | 1.0061E-4 | 1.0049E-4 | 1.0037E-4 | 1.0024E-4 | 1.0013E-4 | 1.0001E-4 | 9.9885E-5 | 9.9976E-5 | 9.9643E-5
0.6 | 1.5350E-4 | 1.5336E-4 | 1.5323E-4 | 1.5309E-4 | 1.5295E-4 | 1.5281E-4 | 1.5268E-4 | 1.5254E-4 | 1.5240E-4
0.7 | 2.1579E-4 | 2.1564E-4 | 2.1549E-4 | 2.1535E-4 | 2.1520E-4 | 2.1506E-4 | 2.1491E-4 | 2.1476E-4 | 2.1461E-4
0.8 | 2.8635E-4 | 2.8621E-4 | 2.8606E-4 | 2.8591E-4 | 2.8576E-4 | 2.8561E-4 | 2.8546E-4 | 2.8531E-4 | 2.8516E-4
0.9 | 3.6399E-4 | 3.6384E-4 | 3.6370E-4 | 3.6355E-4 | 3.6341E-4 | 3.6326E-4 | 3.6312E-4 | 3.6297E-4 | 3.6282E-4
Table 5.23 Comparison of absolute errors obtained by optimal homotopy asymptotic method

(OHAM) for fractional order nonlinear Kaup-Kupershmidt equation given in eq. (5.74) at various

points of x and t taking 4 =0.1,#=0,w=1and « =0.75.

X |uExact — UonHam |
t=0.1 t=0.2 t=03 t=04 t=05 |t=06 t=0.7 t=0.8 t=09
0.1 | 6.7141E-10 | 3.7954E-9 | 5.8412E-9 | 7.4404E-9 | 8.7416E-9 | 9.8151E-9 | 1.0702E-8 | 1.1428E-8 | 1.2015E-8
0.2 | 7.2899E-6 | 7.2528E-6 | 7.2254E-6 | 7.2014E-6 | 7.1794E-6 | 7.1589E-6 | 7.1395E-6 | 7.1209E-6 | 7.1032E-6
0.3 | 2.6785E-5 | 2.6716E-5 | 2.6665E-5 | 2.6620E-5 | 2.6578E-5 | 2.6540E-5 | 2.6503E-5 | 2.6467E-5 | 2.6434E-5
0.4 | 5.8094E-5 | 5.7998E-5 | 5.7926E-5 | 5.7862E-5 | 5.7804E-5 | 5.7749E-5 | 5.7697E-5 | 5.7647E-5 | 5.7599E-5
0.5 | 1.0060E-4 | 1.0048E-4 | 1.0039E-4 | 1.0031E-4 | 1.0024E-4 | 1.0017E-4 | 1.0011E-4 | 1.0005E-4 | 9.9992E-5
0.6 | 1.5349E-4 | 1.5335E-4 | 1.5326E-4 | 1.5317E-4 | 1.5308E-4 | 1.5301E-4 | 1.5293E-4 | 1.5286E-4 | 1.5279E-4
0.7 | 2.1577E-4 | 2.1563E-4 | 2.1552E-4 | 2.1543E-4 | 2.1534E-4 | 2.1526E-4 | 2.1518E-4 | 2.1511E-4 | 2.1503E-4
0.8 | 2.8634E-4 | 2.8619E-4 | 2.8608E-4 | 2.8599E-4 | 2.8590E-4 | 2.8582E-4 | 2.8574E-4 | 2.8566E-4 | 2.8559E-4
0.9 | 3.6397E-4 | 3.6384E-4 | 3.6373E-4 | 3.6364E-4 | 3.6355E-4 | 3.6347E-4 | 3.6339E-4 | 3.6331E-4 | 3.6324E-4
Table 5.24 Comparison of absolute errors obtained by optimal homotopy asymptotic method

(OHAM) for fractional order nonlinear Kaup-Kupershmidt equation given in eq. (5.74) at various

points of x and t taking 4=0.1,x#=0,w=1and « =0.5.

|uExact — UoHam |

t=0.1

t=0.2

t=03

t=04

t=05

t=0.6

t=0.7

t=0.8 t=09

0.1

1.2175E-9

3.7606E-9

4.9831E-9

5.8529E-9

6.5343E-9

7.0939E-9

7.5661E-8

7.9718E-9 | 8.3247E-9

0.2

7.2836E-6

7.2523E-6

7.2354E-6

7.2223E-6

7.2112E-6

7.2015E-6

7.1927E-6

7.1846E-6 | 7.1771E-6

0.3

2.6773E-5

2.6715E-5

2.6683E-5

2.6659E-5

2.6638E-5

2.6620E-5

2.6603E-5

2.6588E-5 | 2.6573E-5

0.4

5.8078E-5

5.7996E-5

5.7952E-5

5.7917E-5

5.7888E-5

5.7862E-5

5.7839E-5

5.7817E-5 | 5.7797E-5

0.5

1.0058E-4

1.0048E-4

1.0042E-4

1.0038E-4

1.0034E-4

1.0031E-4

1.0028E-4

1.0026E-4 | 1.0023E-4

0.6

1.5346E-4

1.5335E-4

1.5329E-4

1.5324E-4

1.5320E-4

1.5316E-4

1.5313E-4

1.5310E-4 | 1.5307E-4

0.7

2.1575E-4

2.1563E-4

2.1556E-4

2.1551E-4

2.1547E-4

2.1543E-4

2.1539E-4

2.1536E-4 | 2.1533E-4

0.8

2.8631E-4

2.8619E-4

2.8612E-4

2.8607E-4

2.8603E-4

2.8599E-4

2.8595E-4

2.8592E-4 | 2.8589E-4

0.9

3.6395E-4

3.6383E-4

3.6376E-4

3.6371E-4

3.6367E-4

3.6363E-4

3.6360E-4

3.6356E-4 | 3.6354E-4

Table 5.25

L, and L error norms for nonlinear time-fractional Kaup-Kupershmidt equation

using two-dimensional Legendre multiwavelet methods and OHAM at various points x taking
a =0.5,0.75and1.

X Error analysis with regard to Legendre multiwavelet Error analysis with regard to OHAM
a=1 a=0.75 a=05 a=1 a=0.75 a=05
Lo L Lo Lo Lo L Lo Lo Lo L Lo L
0.1 | 5.8488 | 3.1007 | 6.9992 | 3.4253 | 8.1275 | 3.6035 | 3.4295 | 1.6457 | 2.5818 | 7.2899 | 7.7622 | 8.3247
E-9 E-9 E-9 E-9 E-9 E-9 E-8 E-8 E-8 E-6 E-8 E-9
0.2 | 1.1764 | 6.2544 | 1.4079 | 6.9489 | 1.6515 | 7.3559 | 2.1434 | 7.2934 | 2.1557 | 1.2015 | 2.1653 | 7.2836
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E-8 E-9 E-8 E-9 E-8 E-9 E-5 E-6 E-5 E-8 E-5 E-6
0.3 [1.7675 | 9.4057 | 2.1283 | 1.0469 | 2.4895 | 1.1105 | 7.9538 | 2.6793 | 7.9770 | 2.6785 | 7.9951 | 2.6773
E-8 E-9 E-8 E-8 E-8 E-8 E-5 E-5 E-5 E-5 E-5 E-5
0.4 [ 23578 | 1.2553 | 2.8413 | 1.3986 | 3.3266 | 1.4850 | 1.7313 | 5.8103 | 1.7345 [ 5.8094 | 1.7372 | 5.8078
E-8 E-8 E-8 E-8 E-8 E-8 E-4 E-5 E-4 E-5 E-4 E-5
05 [ 29473 | 1.5695 | 35532 | 1.7497 | 4.1624 | 1.8589 | 3.0045 | 1.0061 | 3.0045 | 1.0060 | 3.0109 | 1.0058
E-8 E-8 E-8 E-8 E-8 E-8 E-4 E-4 E-4 E-4 E-4 E-4
0.6 |[3.2498 | 1.8832 | 4.2638 | 2.1001 | 4.9965 | 2.2321 | 45885 | 1.5350 | 4.5931 | 1.5349 | 4.5967 | 1.5346
E-8 E-8 E-8 E-8 E-8 E-8 E-4 E-4 E-4 E-4 E-4 E-4
0.7 [4.1224 | 21960 | 4.9727 | 2.4497 | 5.8286 | 2.6044 | 6.4560 | 2.1579 | 6.4609 | 2.1577 | 6.4647 | 2.1575
E-8 E-8 E-8 E-8 E-8 E-8 E-4 E-4 E-4 E-4 E-4 E-4
0.8 [ 4.7077 | 25081 | 56795 | 2.7983 | 6.6585 | 2.9756 | 8.5727 | 2.8635 | 8.5777 | 2.8634 | 8.5815 | 2.8631
E-8 E-8 E-8 E-8 E-8 E-8 E-4 E-4 E-4 E-4 E-4 E-4
0.9 [5.2969 |2.8191 |6.3842 | 3.1458 | 7.6494 | 3.3457 | 1.0902 | 3.6399 | 1.0907 | 3.6397 | 1.0911 | 3.6395
E-8 E-8 E-8 E-8 E-8 E-8 E-3 E-4 E-3 E-4 E-3 E-4

It may be observed from Tables 5.19-5.24, absolute errors for Legendre multiwavelet

method are lesser than that of OHAM. Moreover, L, andL, error norms confirm that

Legendre multiwavelet method provides more accurate and better solution than OHAM.

5.13 Conclusion

In this chapter, two dimensional Legendre wavelet method has been successfully
implemented to obtain the numerical solution of fractional order parabolic partial
differential equation subject to Dirichlet boundary conditions, fractional KBK equation
and fractional sKdV equation. In case of fractional order PDE with Dirichlet boundary
conditions, the acquired numerical results of Legendre wavelet methods are compared
with exact solutions obtained by HPM as well as with numerical solution of Haar wavelet
method. These results have been cited in the Tables in order to justify the accuracy and
efficiency of the proposed schemes. For fractional order parabolic partial differential
equation, Legendre wavelet method provides more accurate results than the Haar wavelet
method as shown in Tables 5.1-5.5. In case of fractional KBK equation, the obtained
results are compared with exact solutions. Agreement between present numerical results
and exact solutions appear very satisfactory through illustrations in Tables 5.6-5.10. The
obtained results demonstrate the efficiency, accuracy and reliability of the proposed
algorithm based on two-dimensional Legendre wavelet method and its applicability to

nonlinear time fractional KBK equation.

The fractional order sKdV equation has been solved by using two-dimensional Legendre

wavelet method. The results are compared with exact solutions and also with homotopy
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analysis method (HAM) and optimal HAM solutions. Tables 5.11-5.18 illustrate a pretty
good agreement between present numerical results obtained by Legendre wavelet method
with homotopy analysis method and exact solutions. The present scheme is very simple,
effective and convenient for obtaining numerical solutions of nonlinear time-fractional

seventh order KdV equation.

Next, the fractional Kaup-Kupershmidt equation has been solved numerically by using
two-dimensional Legendre multiwavelet method and optimal homotopy asymptotic
method (OHAM). The results obtained by Legendre multiwavelet method are then
compared with exact solutions as well as with optimal homotopy asymptotic method
(OHAM). One can observe a pretty good agreement between present numerical results
obtained by Legendre multiwavelet method with optimal homotopy asymptotic method
and exact solutions through illustrated results in Tables 5.19-5.25. The obtained results
demonstrate the accuracy, efficiency and reliability of the proposed algorithm based on
two-dimensional Legendre multiwavelet method and its applicability to nonlinear time-
fractional Kaup-Kupershmidt equation. It may be observed from Tables 5.19-5.25,

absolute errors for Legendre multiwavelet method are lesser than that of OHAM.
Moreover, L, and L error norms confirm that Legendre multiwavelet method provides

more accurate and better solution than OHAM. Thus, Legendre multiwavelet method
provides more accurate and better solution in comparison to OHAM. The application of
the proposed numerical method based on two-dimensional Legendre multiwavelet method
for the solutions of time-fractional Kaup-Kupershmidt equation satisfactorily justifies its
simplicity, efficiency and applicability. The present numerical scheme is quite simple,
effective and expedient for obtaining numerical solution of fractional Kaup-Kupershmidt

(KK) equation in comparison to analytical approach of OHAM.
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CHAPTER 6

6 Application of Chebyshev Wavelet
Methods for Numerical Simulation of

Fractional Differential Equations

6.1 Introduction

Nowadays, Chebyshev polynomials have become more significant in numerical
evaluation. Among the four forms of Chebyshev polynomials, the first and second kinds
are certain cases of the symmetric Jacobi polynomials, whereas the third and fourth kinds
are unique instances of the non-symmetric Jacobi polynomials. Great attention has been

focused on first and second kinds of Chebyshev polynomials T,(x) and U,(x) and their

various uses in numerous applications. Nevertheless, there are very few articles that
concentrate on the wavelets shaped through these two types of Chebyshev polynomials for
application in fractional partial differential equations. This motivates our curiosity in such
wavelets. In this chapter our aim is to study application of Chebyshev wavelets for the
solution of fractional order differential equations. Moreover, the Chebyshev wavelets are

competent for solving some fractional and integral equations [45, 46].

There are several advantages of using Chebyshev wavelets approximations based on
collocation spectral method. First, unlike most numerical methods, it is now conventional
that they are characterized by the use of exponentially decaying errors. Second, various
numerical methods do not perform well near singularities, whereas approximations
through wavelets effectively handle singularities in the problem. Also, due to their fast
convergence, Chebyshev wavelets method does not undergo from the instability problems

related with other numerical methods.
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In this chapter, fractional order partial differential equations comprising Caputo fractional
derivative and Riesz fractional derivative are considered. This chapter is devoted to study
the application of Chebyshev wavelets for numerical solution of fractional differential
equations involving Caputo and Riesz fractional derivative. The prime focus of the present
chapter is to implement two-dimensional Chebyshev wavelet technique for solving
nonlinear fractional differential equations like time-fractional Sawada-Kotera (SK)
equation, Riesz fractional Camassa-Holm (CH) equation and Riesz fractional Sine-Gordon

(SG) equation in order to demonstrate the efficiency and accuracy of the proposed method.

6.2 Outline of Present Study

Consider the following time-fractional generalized fifth-order Sawada-Kotera equation
[129]

a 2 3 5
OU 452 M 5M0 121+158 l;u+8g:0, t>0, x>0 (6.1)
ot OX OX OX OX OX

which is the variation of the fifth-order Sawada-Kotera equation [49, 130-132]. Here

O<a<1, is the parameter describing the order of the fractional time derivative. The

fractional derivative is considered in the Caputo sense.

The classical Sawada-Kotera equation is an important mathematical model arising in many
different physical contexts to describe motion of long waves in shallow water under
gravity and in a one dimensional nonlinear lattice and has wide applications in quantum
mechanics and nonlinear optics. It is well known that wave phenomena of plasma media
and fluid dynamics are modelled by kink shaped tanh solution or by bell shaped sech
solutions. This equation also used in modeling waves that propagate in opposite directions.
There are a lot of studies for the classical Sawada-Kotera equation and some profound
results have been established. But according to the best possible information of the
authors, the detailed study of the nonlinear fractional order Sawada-Kotera equation is

only beginning.

Consider the following Camassa-Holm equation with Riesz time-fractional derivative
[133]

EDZU(X,t) + 2Ku, (X, ) — U, (X, 1) + 3u(X, t)u, (X,t) — 2u, (X, )u, (X, 1) —

u(x, t)u,,,(x,t) =0 (62
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where k=0 is a constant, and u(x,t) is the unknown function depending on temporal
variable t and spatial variable x. §D is the Riesz fractional derivative.

The Camassa-Holm equation is used to describe physical model for the unidirectional
propagation of waves in shallow water [134, 135]. This equation is widely used in fluid
dynamics, continuum mechanics, aerodynamics, and models for shock wave formation,
solitons, turbulence, mass transport, and the solution representing the water’s free surface
above a flat bottom [136, 137]. The Camassa—Holm equation has been obtained by Fokas
and Fuchssteiner [138] and Lenells [139]. Camassa and Holm [140] put forward the
derivation of the solution as a model for dispersive shallow water waves and revealed that
it is formally integrable finite dimensional Hamiltonian system and its solitary waves are
solitons. The classical Camassa-Holm equation has attracted much research interest in
recent years both from analytical and numerical point of view and some exhaustive results
have been established. The intension of the present work is to perform two-dimensional
Chebyshev wavelet technique in order to exhibit the competency of this method for the
numerical solution of nonlinear Camassa-Holm equations with the Riesz time-fractional

derivative.

Next, a numerical process involving Chebyshev wavelet method has been implemented for
computing the approximate solution of Riesz space fractional sine-Gordon equation
(SGE). The fractional sine-Gordon equation is considered as an interpolation between the
classical Sine-Gordon equation equation (corresponding to «=2) and nonlocal sine-

Gordon equation (corresponding to a =1).

Consider the Riesz space fractional sine-Gordon equation proposed in [141, 142] as

follows:

U, —Dfu+sinu=0, l<a<2, (6.3)

where D¢ denotes the Riesz fractional derivative. Eq. (6.3) is the variation of the sine-

Gordon equation. The classical sine-Gordon equation, an elementary equation of modern
nonlinear wave theory has accomplished great repute primarily due to its substantiated
applications in diverse fields of science and engineering. It arises in various disciplines of
physics, such as propagation of magnetic flux on Josephson junctions, propagation of
optical pulses in resonant laser media, field theory, sound propagation in a crystal lattice,

in ferromagnetism and ferroelectric substances and in nonlinear optics etc. [132, 143]. In
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these applications, the sine-Gordon equation provides the simplest nonlinear description of
physical phenomena in different configurations. The more adequate modelling can be
prevailed corresponding to generalization of classical sine-Gordon equation. In particular,
taking into account of nonlinear effects, corresponding to long-rang interactions of
particles, complex law of medium dispersion or curvilinear geometry of the initial
boundary problem, classical sine-Gordon equation results in nonlocal generalization of
SGE.

Various methods such as the homotopy analysis method [144], modified decomposition
method [145], variational iteration method [146], and tanh method [147] have been
implemented to evaluate approximate analytical solution of the classical sine-Gordon
equation. Using numerical experiments, Ablowitz et al. [148] examined the numerical
behaviour of a double-discrete, completely integrable discretization of the sine-Gordon
equation. Herbst and Ablowitz [149] provided the numerical results of the sine-Gordon
equation acquired by use of the explicit symplectic method. However the comprehensive
study of the fractional sine-Gordon equation is only the beginning. In this work, we will
consider fractional sine-Gordon equation with a number of initial values. The motivation
of the present work is to establish that the Chebyshev wavelet method as a powerful tool

for solving the Riesz factional sine-Gordon equation.

6.3 Formulation of Time-Fractional Sawada-Kotera
Equation

Consider the following generalized Sawada-Kotera equation

2 3 5
M yauz M p MY, T g2l o, (6.4)
o o xad o o

where a, b, ¢ and d are constants, u(x,t) is a field variable, x € Q is a space coordinate in
the propagation direction of the field, and te " is the time. Employing a potential
function v(x,t) on the field variable and setting u(x,t) =v,(X,t) yields the potential
equation of the Sawada-Kotera equation (6.4) in the form

Vi (X, 1) + avf (X, D)V (X, 1) + BV (X, DV (X, 1) + OV (X, D)V, (X, 1) + dVg, (X, ) =0 .(6.5)

The functional of the potential equation (6.5) can be represented as
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J(v) = Idx_[ VX, B)[CyV, (X, 1) + Cpavz (X, )V, (X, 1) + CabV i (X, )V, (X, 1)
Q I (6.6)
+ C4CVxxxx(Xl t)Vx (X, t) + CSdV6x (Xr t)]]dt
where ¢;,C,,C5,C, and Cs are unknown constants to be determined. Integrating eq. (6.6)

by parts and taking v, |, =

=Viul, =V =Vs,|, =0 yield

XXX|Q |_Q

xx|_Q

JW) = j dxj eV, (X, D)V, (x, 1) — 222 2a Vit + (C“C bc3jv (X, V2, (X, 1)
2 (6.7)

C4OVE (X, 1V, (X, 1) + C5 0V, (X, 1)V, (X, t)]dt.

The constants ¢;,C,,C3,C,, and Cs can be determined taking the variation of the functional

(6.7) to make it optimal. Integrating each term by parts and using the variation optimum
condition of the functional J(v), the following expression can be obtained:
201V, (X, 1) + 46,2V, (X, )V, (X, 1) + C5bVi (X, )V, (X, 1)
(6.8)
— 2C, 0V (X, D)V, (X, 1) — 2CsdVg, (X,1) =0 .

Comparing the obtained result in eq. (6.8) with the equivalent eq. (6.5), we get

1 1
==, ¢c,==, =1 c,=—=,and c. =—-=
2" 2Ty B YT 572

The functional expression given by eq. (6.7) obtains directly the Lagrangian form of the

Sawada-Kotera equation:

2b+c

L(Vt'v VXX’VXXX'V5X):_ Vt(x t)V (X t) _V4(X t) ( JVX(X,t)V)%X(X,t)

©9)
# 2V O V() — S (X Vg (D).

Similarly, the Lagrangian of the time-fractional Sawada-Kotera equation can be written as

7 UX T TXXT T XXX

F( DV, Vy, Vi, V VSX):—% 0D{)‘v(x,t)vx(x,t)—iv)‘(‘(x,t)
(6.10)

_(2b+cjv (6 V2 (% t)+ V2tV (x,1) — 2 V(X DV (X, 1).

Then the functional of the time-fractional Sawada-Kotera equation will be

J(v):_[dx.[ ( D“v,vx,vxx,vxxx,vg,x)it.
Q r

The variation of above functional w.r.t v(x,t) leads to
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AW = [ o[ = 5(, DIV )+ L 0, (0 1)+ 0 Sy (1) +
o T 80DtaV an 8Vxx
(6.11)
F s oty F &/SX(x,t)}dt.
XXX 5x
By Lemma 4.1, upon integrating the right-hand side of eq. (6.11), we have
oF o(oF ) o°( oF
AWV)=|dx||Df| —— |-— +
N 3[ l{t T(athaVJ GXLGVXJ ox? (a\/xx}

(6.12)

3 5
_03 oF _65 OF ) lsux, et
OX avxxx OX aVSx

Optimizing the variation of the functional J(v), i.e. & (v) =0, yields the Euler-Lagrange

equation for the time-fractional Sawada-Kotera equation in the following expression:

2 3 5
D oF | Of0cF +82 oF _83 oF _85 oF 0 (6.13)
0DV ) OX\OVy ) OX“\ OVyy ) OX*\ OVyyy ) OX° | OVsy

Substituting the Lagrangian of the time-fractional Sawada-Kotera equation (6.10) into

Euler—Lagrange formula (6.13) yields

— DZV, (X, t)+,DV, (X, 1) + 2av2 (X, t)V,, (X, t) — (4b +10C)V, . (X, D)V, (X, 1) —
(2b + 3C)V, (X, 1)V, (X, 1) + 204, (X, 1) = 0.

45, -105 15

Substituting the potential function V, (X,t) =u(x,t) and taking a = > — ST
1 .
and d == yields
2
— DEU(X, 1)+, DFu(X, t) +45u% (X, t)u, (X, t) + 15U, (X,t)u,, (X, t) (6.14)

+15u,,, (X, t)u(x,t) +us, (x,t) =0.

The right-hand side Riemann-Liouville fractional derivative is interpreted as a future state
of the process in physics. So the right-derivative is generally neglected in applications,
when the present state of the process does not depend on the results of the future
development, and so the right-derivative in eq. (6.14) can be neglected. Hence the time-

fractional Sawada-Kotera equation can be represented by

o DY u(x,t) + 450 (X, t)u, (X, ) + 15U, (X, 1)U, (X, 1) + 15U, (X, Du(x,t) + Us, (X,t) =0. (6.15)
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6.4 Application of Analytical and Numerical Methods for

Solving Fractional Sawada-Kotera Equation

6.4.1 Implementation of Chebyshev Wavelet on Time-Fractional

Sawada-Kotera Equation

To show the effectiveness and accuracy of proposed scheme, we consider the time-
fractional Sawada-Kotera equation. The numerical solutions thus obtained are compared
with the exact solutions for classical case and also solutions obtained by HAM in
fractional order case.

Consider the nonlinear time-fractional generalized Sawada-Kotera equation [150]

o 2 3 5
A - KA T A TICAC ) (6.16)
X ox? OX OX

with initial condition u(x,t, )= g(x).
The Chebyshev wavelet solution of u(x,t) is sought by assuming that u(x,t) can be

expanded in terms of Chebyshev wavelet as
2kl—l Ml 1 2k2 le
(Xt z Z Z ch|IJV/n|IJXt) (6-17)
n=l i=0 I=l j=0
where n=1,...,247%i=0,.,M, -11 =1...,2%" j=0,..,M, —1.

The nonlinear terms presented in eg. (6.16) can be approximated using Chebyshev wavelet

function as
2 au zkl—l lel 2k2—l szl
u-—= Z z zan,i,l,j V/n,i,l,j(x’t)' (6.18)
X 30 13 i
1M1 22t Myl
au 82u ' 2
and Ao ~AL2 z Z z anﬂjl//nﬂj Xt) (6-19)
OX Ox> n=1 i=0 1=l j=0
This implies
2alm 12k my—1 2T Imp-12k2 1M, oy (X t)
[
35S Shonten]| 553 T, s
n=l i=0 1=l j=0 n=l i=0 I=1 j=0 OX

(6.20)

MMy -12K2 T Mp-1

a‘nlljv/nllj Xt)
n=l =0 I=1 j=0
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Again applying J on both sides of eq. (6.16), we have
u(x,t)=u(x,0) = 3¢| 450> X _15 6—”i A (6.22)
’ ’ ox x ox® X ' '

Putting egs. (6.17), (6.18) and (6.19) in eq. (6.22), we have

M1 m-12k2 1M,

DD Coin iWnin i () —u(x,0)

n=l i=0 I=l j=0
24110k M,
=J{|—45 z Zan,i,l,jl//n,i,l,j(xit)

n=l i=0 I=1 j=0

(6.23)
21 vy —10ke 1 Myt
-15 bn|IJWn|I](Xt)
n=l i=0 I=1 j=0
RIMIIIMED By ()
-2 > Coidi ™~ 5 :
n=l i=0 I=1 j=0 OX
. : . I-05 r—0.5
Now substituting the collocation points X =——— and t =——— for
2787 M, 227°M,

=1 2,...,2"1*1M1 and r=12,..2"M, in egs. (6.20), (6.21) and (6.23), we have
3(2k1‘1M1X2"2‘1M2) equations in 3(2k1‘1M1X2k2‘1M2) unknowns in a,;, ;, by;,; and

c By solving this system of equations using mathematical software, the Chebyshev

nil,j*

wavelet coefficients a b and c can be obtained.

nil,j* ¥nil,j nil,j

6.4.2 Comparison with HAM for Solution of Time-Fractional Sawada-

Kotera Equation
Consider the nonlinear time-fractional generalized Sawada-Kotera equation [150]
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o 2 3 5
0 u+45u28—u+15u8l;+156l;u+al;:0, (6.24)
ot” OX OX OX OX

subject to the initial condition [131]

u(x,0)=2k?sech?(k(x— 1)),
where k (= 0) and 4 are arbitrary constants and 0 < o <1.

To obtain the approximate solution of the time-fractional Sawada-Kotera equation (6.24),

we choose the linear operator
L{g(x.t; p)]=Df¢(x.t; p). (6.25)

Now, we construct the m th order deformation equation for eq. (6.24) as follows [34 ,151-
153]

Lty (%)= ZanUn2 (6 )] = 29, (Ug U U ), (6.26)
__ 1 a™Ng(xtp)]
where R, (Ug,Uy,..., Uy, )= ) o1 pzo. (6.27)

N e L 08Xt p) L L 0B(X,t; p) D2B(X,t; p)
N[g(x,t; p)]= DEB(x.t; p) +45(4(x,t; p)) S 15T v
O2h(x,t; O B(X,t;

+15—¢(8)>(<3 P) o(X,t; p)+—¢(8))((5 p),

0

and ¢(x.t; p)=uo(x,t)+ > p"uy(x.t),

m=1

T

p=0
Now the solution of the first deformation equation in eq. (6.26) is given by

o%u au du, 0%u o3u
u,(x,t)=nJ¢ [ 0 4450,° —2 41520 115- -0
ot” OX

OX  ox2 ox®

5
Ug + aaxuso } (6.28)

Similarly, the solutions of second, third and fourth order deformation equations are

OX OX ox>  Ox ox?

o%u o%u o°u
+15 —2uy +—2u; [+—= |,
[6x3 O s J ox° }

a 2 2
U, (,t) = Uy (x,t)+ 72 Jf‘{%wwoul%wsuoz%+15£%ﬂ+%5 “OJ
(6.29)
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US(X,t) _ UZ(X,t)+ h Jta|:86t_li2 n 45([]12 % + 2UOU2 % + 2U0u1 % + U02 %j +
(6.30)

2 2 2 3 3 3 5
15 QOUg 0 u22+%8 Lil+8u28 u20 415 au32u0+ali1u1+a u30uz +8 u52 ’
OX Ox OX OX OX OX OX OX OX X

U, (x,t) = Us(x,t)+7 Jt“[aatlf’ +45(2u1u2 %?+ 2UqUg %Jr u,” %+ 2U U, —

2UoU, —=+Uu," —=
™ oox  ° ox ox2  ox ox2  ox axt  ox oxl

2 2 2 2
ou 2 6;13)”5[8% 0°u3 | Ouy 07U, | OU, OUy +%%]+ (6.31)
X

o%u o%u o%u o%u o°u
15 S Ug+—2 U +—2 Uy +—2 U, [+—2 |,
L o T ad T ad ) e

and so on.
By putting the initial condition Uy, =u(x,0) in egs. (6.28)-(6.31) and solving them, we
obtain the expressions for u;, U,, Uz, U, and so on.
Finally, the approximate solution for time fractional fifth-order Sawada-Kotera equation is
given by

U= (X,t) + U, (X, 1) + Uy (X, t) +u, (X, 1) +... (6.32)

6.5 Numerical Results of Fractional Sawada-Kotera

Equation

The comparison of the absolute errors for time-fractional fifth-order Sawada-Kotera
equation (6.16) has been exhibited in Table 6.1 which is constructed using the results
obtained by Chebyshev wavelet method at different values of x and t taking a=1.
Similarly Table 6.2 shows the comparison of approximate solutions of fractional order
Sawada-Kotera equation (6.16) at various points of x and t taking a =05. Agreement

between present numerical results and exact solutions appears very satisfactory through
illustrations in Tables 6.1 and 6.2. To show the accuracy of proposed method L, and L

error norms for classical order nonlinear Sawada-Kotera equation have been presented in
Table 6.3. In the present analysis, to examine the accuracy and reliability of the
Chebyshev wavelets for solving fractional order Sawada-Kotera equation, we compare the

approximate solution of Chebyshev wavelet with the fifth-order approximate solution
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obtained by HAM taking 7 =-1. As pointed out by Liao [33], in general, by means of the
so-called 7 -curve, it is straight forward to choose a proper value of 7% which ensures the
convergence of series solution. To investigate the influence of 7 on the solution series, we

plot 7 -curve of partial derivatives of u(x,t) obtained from the fifth order HAM solution as

shown in Figure 6.1.

100

=100

=300

Figure 6.

1
B

1 The #-curve for partial derivatives of u(x,t) for the 5™ order HAM solution

taking x=0.1,t=0.1 and « =0.5.

up(0.1,0.1)
up(0.1,0.1)
wpp(0.1,0.1)

upptt(0.1.0.1)
Lppppt(0.1.0.1

Table 6.1 Comparison of absolute errors obtained by two-dimensional Chebyshev wavelet

method for classical nonlinear Sawada-Kotera equation given in eg. (6.16) at various points of x

and t taking « =1.

Ukact

—Ucwm

t=0

t=0.1

t=0.2

t=0.3

t=0.4

t=0.5

t=0.6

t=0.7

t=0.8

t=0.9

0.1

2.3394E-3

1.3646E-3

2.3696E-3

2.9815E-3

3.8367E-3

4.6925E-3

5.2186E-3

5.7875E-3

8.2658E-3

1.6805E-2

0.2

2.6097E-3

1.0767E-3

1.9063E-3

2.3403E-3

3.0586E-3

3.7661E-3

3.9981E-3

3.9267E-3

5.1666E-3

1.1581E-3

0.3

2.8468E-3

8.7155E-4

1.5326E-3

1.7868E-3

2.3576E-3

2.8825E-3

2.7549E-3

1.9657E-3

1.9447E-3

6.4023E-3

0.4

3.0282E-3

7.5225E-4

1.2490E-3

1.3226E-3

1.7342E-3

2.0403E-3

1.4875E-3

9.2722E-5

1.3891E-3

1.2842E-3

0.5

3.1322E-3

7.2105E-4

1.0555E-3

9.4823E-4

1.1879E-3

1.2373E-3

1.9461E-4

2.2433E-3

4.8194E-3

3.7539E-3

0.6

3.1383E-3

7.7914E-4

9.5098E-4

6.6340E-4

7.1781E-4

4.7117E-4

1.1238E-3

4.4781E-3

8.3267E-3

8.6876E-3

0.7

3.0277E-3

9.2665E-4

9.3356E-4

4.6693E-4

3.2177E-4

2.6046E-4

2.4666E-3

6.7864E-3

1.1887E-2

1.3488E-2

0.8

2.7843E-3

1.1626E-3

1.0005E-3

3.5681E-4

2.6502E-6

9.5989E-4

3.8313E-3

9.1541E-3

1.5473E-2

1.8125E-2

0.9

2.3953E-3

1.4847E-3

1.1484E-3

3.3029E-4

2.5848E-4

1.6291E-3

5.2136E-3

1.1564E-2

1.9051E-2

2.2563E-2

Table 6.2

Comparison of approximate solutions obtained by two-dimensional
wavelet method and homotopy analysis method for fractional order nonlinear Sawada-Kotera
equation given in eq. (6.16) at various points of x and t taking z#=-1 and « =0.5.

183

Chebyshev




X t=0.05 t=0.1 t=0.15 t=0.2 t=0.25 t=03 t=0.35 t=04
Ucwml Ynam | Ucwm| Yeam | Ucwm| Yram | Ucwm| YHam | Ucwml Ynam | Ucwml YHam | Ucwml Ynam | Ucwm| YHam

0.1 | 0166 | 0178 | 0.171 | 0.178 | 0.174 | 0.177 | 0.176 | 0.177 | 0177 | 0.177 | 0.178 | 0.177 | 0.180 | 0.177 | 0.182 | 0.1775
651 21 782 058 807 938 61 836 852 748 998 669 348 598 066 34

02 ] 0169 | 0179 [ 0173 | 0179 | 0175 | 0178 [ 0177 | 0178 [ 0178 | 0178 | 0179 | 0.178 | 0.181 | 0.178 | 0.182 | 0.1786
437 118 314 009 723 924 294 853 503 792 687 74 07 696 778 57

03] 0172 | 0179 [ 0174 | 0179 | 0176 | 0179 [ 0177 | 0179 [ 0178 | 0179 [ 0180 | 0179 | 0181 | 0179 | 0.183 | 0.1794
229 707 756 643 499 592 818 552 99 518 218 492 640 471 341 57

04 | 0175 | 0179 [ 0176 | 0179 | 0177 | 0179 [ 0178 | 0179 [ 0179 | 0179 [ 0180 | 0179 | 0182 | 0179 | 0.183 | 0.1799
030 975 107 954 132 938 179 927 311 92 586 917 052 919 749 25

05 | 0177 | 0179 [ 0177 | 0179 | 0177 | 0179 [ 0178 | 0179 [ 0179 | 0179 [ 0180 | 0.180 | 0.182 | 0.180 | 0.183 | 0.1800
842 919 367 942 622 959 374 976 461 993 786 012 301 034 996 58

06 | 0180 | 0179 [ 0178 | 0179 | 0177 | 0179 [ 0178 | 0179 [ 0179 | 0179 [ 0180 | 0179 | 0182 | 0179 | 0.184 | 0.1798
668 54 538 606 968 655 402 698 439 738 816 77 382 816 077 55

07 | 0183 | 0178 [ 0179 | 0178 | 0178 | 0179 [ 0.178 | 0179 [ 0179 | 0179 [ 0180 | 0179 | 0182 | 0179 | 0.183 | 0.1793
505 839 62 948 172 029 264 097 244 158 673 214 292 268 986 2

08 | 0186 | 0177 [ 0.180 | 0.177 [ 0178 | 0.178 | 0.177 | 0178 [ 0178 | 0178 | 0.180 | 0.178 | 0.182 | 0.178 | 0.183 | 0.1784
351 824 614 973 235 084 961 176 875 256 356 329 029 396 721 6

09 0189 | 0176 [ 0.181 | 0176 | 0178 | 0.176 | 0.177 | 0176 | 0178 | 0177 | 0179 | 0177 | 0181 | 0177 | 0.183 | 0.1772
198 50 52 689 161 629 496 944 335 043 865 13 591 21 278 83

Table 6.3 L, and L, error norms for nonlinear time-fractional Sawada-Kotera equation using

two-dimensional Chebyshev wavelet method at various points of t taking a =1.

t L, L,

0 2.82595E-3 3.1383E-3
0.1 1.04820E-3 1.4847E-3
0.2 1.42858E-3 2.3696E-3
0.3 1.53123E-3 2.9815E-3
0.4 1.96462E-3 3.8367E-3
0.5 2.45110E-3 4.6925E-3
0.6 3.37089E-3 5.2186E-3
0.7 6.15247E-3 1.1564E-2
0.8 1.02032E-2 1.9051E-2
0.9 1.26293E-2 2.2563E-2

6.6 Application of Two-Dimensional Chebyshev Wavelet

Method on Time-Fractional Camassa-Holm Equation

Consider the nonlinear Camassa-Holm equations with the Riesz time-fractional derivative

[133]

th“u(x, t) + 2ku, (x,t) — % Uyt (X, ) +3u(X, t)u, (X, t) +u, (X, t)uy, (X, t)

with initial condition [133]

u(x,0)= —k +ksinh(x) .
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+ % u(X, t)u,, (X, t) =0,

(6.33)

(6.34)




The Chebyshev wavelet solution of u(x,t) is sought by assuming that u(x,t) can be

expanded in terms of Chebyshev wavelet as

241 m-1 k2 my-1

u(x.t)= Z Z ch,l,l,j V/n,i,l,j(x’t)’ (6.35)
n=l i= =1 j=0

where n=1,...,24?i=0,..,M; -1, I =1,...,2%™?, j=0,..,M, —1.

Substituting eq. (6.35) in eq. (6.33), we will have

n=l i=0 I=1 j=0

2L my-12k2 1 My oMtk My v, i1 i(xt)

n
KA mp—12k2 A Mmy—1 02w . ( i 2t my-12k2 1 my1
Wais (6] 1 \ 2
X Z Cn,i,lj nlzj E ZZ chlle/n|IJXt)
n=l i=0 I=l j=0 OX n=l i=0 1=l j=0
k-1 ko1 1 (6.36)
24Ut My -12%21 M1 631// | (x,t)
TS S, Pl o
n=L i=0 1=l j=0 OX
Now substituting the collocation points x =# and t, :%0.5 for
2kIM, 2k M,

1=12,...,2%*M, and r=1,2,...,2%"M, in eq. (6.34) and (6.36), we have (Zkl’lMlXZ"Z’le)

equations in (Zkl’lMlXZ"Z’lMZ) unknowns in ¢ By solving this system of equations

nil,j-*

using mathematical software, the Chebyshev wavelet coefficients ¢ can be obtained.

nilj

6.7 Numerical Results and Discussion

The comparison of the absolute errors for Riesz time-fractional Camassa-Holm equation
(6.33) has been exhibited in Table 6.4 which is constructed using the results obtained by
Chebyshev wavelet method at different values of x and t taking « =0.5. Similarly Table
6.5 shows the comparison of the absolute errors for time-fractional Camassa-Holm
equation (6.33) at various points of x and t taking a =0.75. Again in order to examine the

accuracy and reliability of the Chebyshev wavelets for solving fractional order Camassa-
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Holm equation, we compare the approximate numerical solutions of Chebyshev wavelet

with the approximate solutions obtained by HAM and VIM. Agreement between present

numerical solutions with analytical solutions like VIM and HAM appear very satisfactory

through the illustration in Tables 6.4 and 6.5. To show the accuracy of proposed method

L,and L, error norms for fractional order nonlinear Camassa-Holm equation have been

presented in Table 6.6.

Table 6.4

Comparison of absolute errors obtained by two-dimensional Chebyshev wavelet

method for fractional nonlinear Camassa-Holm equation given in eq. (6.33) at various points of X

and t taking « =0.5.

X Comparison with different Analytical methods
t=01 t=02 t=03 t=04 t=05
Juowm —Uuma || Mow —Una]| [Hom —Uvina| [Uewn —Unsaa] Howm —Uvina| Mow —Unsa]| [Wom —Uvina| [Uow —Unsau]| Mo —Uvina| Mowm —Uniam
0.1 | 2.1329E-3 | 2.1361E-3 | 7.8868E-4 | 7.8402E-4 | 5.4917E-3 | 5.4858E-3 | 8.4921E-3 | 8.4852E-3 | 9.3582E-3 | 9.3504E-3
0.2 | 4.0685E-4 | 4.0868E-4 | 1.5069E-3 | 1.5042E-3 | 4.8677E-3 | 4.8643E-3 | 7.0508E-3 | 7.0468E-3 | 7.7726E-3 | 7.7680E-3
0.3 | 1.3197E-3 | 1.3192E-3 | 2.2497E-3 | 2.2491E-3 | 4.2747E-3 | 4.2739E-3 | 5.6335E-3 | 5.6326E-3 | 6.1955E-3 | 6.1945E-3
0.4 | 3.0276E-3 | 3.0287E-3 | 2.9895E-3 | 2.9912E-3 | 3.6831E-3 | 3.6852E-3 | 4.2131E-3 | 4.2155E-3 | 4.6052E-3 | 4.6080E-3
0.5 | 4.6974E-3 | 4.7003E-3 | 3.6982E-3 | 3.7024E-3 | 3.0627E-3 | 3.0681E-3 | 2.7621E-3 | 2.7684E-3 | 2.9790E-3 | 2.9862E-3
0.6 | 6.3093E-3 | 6.3142E-3 | 4.3472E-3 | 4.3545E-3 | 2.3829E-3 | 2.3921E-3 | 1.2524E-3 | 1.2634E-3 | 1.2937E-3 | 1.3062E-3
0.7 | 7.8429E-3 | 7.8503E-3 | 4.9074E-3 | 4.9184E-3 | 1.6122E-3 | 1.6261E-3 | 3.4466E-4 | 3.2816E-4 | 4.7449E-4 | 4.5561E-4
0.8 | 9.2769E-3 | 9.2874E-3 | 5.3489E-3 | 5.3644E-3 | 7.1856E-4 | 7.3824E-4 | 2.0588E-3 | 2.0354E-3 | 2.3504E-3 | 2.3236E-3
0.9 | 1.0589E-2 | 1.0603E-2 | 5.6408E-3 | 5.6619E-3 | 3.3100E-4 | 3.0414E-4 | 3.9205E-3 | 3.8884E-3 | 4.3597E-3 | 4.3229E-3
Table 6.5 Comparison of absolute errors obtained by two-dimensional Chebyshev wavelet
method for fractional nonlinear Camassa-Holm equation given in eq. (6.33) at various points of x
and t taking  =0.75.
X Comparison with different Analytical methods
t=01 t=0.2 t=03 t=04 t=05 t=06
Ucuns — | s o] s~ || o~V e | Torms — | Torms ~ e | s | s~ || R~ mn| s e[| s~
0.16.3182 |6.3150 | 6.4241 [ 6.4194 | 7.3466 | 7.3408 | 9.1567 | 9.1498 | 1.0373 | 1.0365 | 9.1687 | 9.1599
E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-2 E-2 E-3 E-3
0.2 [ 6.2304 | 6.2285 | 6.4316 | 6.4290 | 6.9095 | 6.9062 | 7.9849 | 7.9809 | 8.7183 | 8.7137 | 7.8194 | 7.8144
E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3
0.3 | 6.1456 | 6.1451 [ 6.4473 | 6.4466 | 6.4856 | 6.4848 | 6.8251 | 6.8242 | 7.0637 | 7.0627 | 6.4553 | 6.4542
E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3
0.4 | 6.0535 | 6.0547 | 6.4548 | 6.4565 | 6.0540 | 6.0561 | 5.6571 | 5.6596 | 5.3955 | 5.3983 | 5.0703 | 5.0735
E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3
0.5 59436 |5.9465 | 6.4379 | 6.4421 [55938 |55991 | 4.4598 | 4.4661 | 3.6984 | 3.7056 | 3.6578 | 3.6659
E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3
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0.6 [ 5.8047 [5.8097 |[6.3792 [ 6.3865 | 5.0829 [50922 | 3.2114 [ 32223 [ 1.9567 [ 1.9692 | 2.2104 [ 2.2243
E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3
0.7 [ 56251 [ 56325 | 6.2610 | 6.2720 | 4.4990 | 45130 | 1.8896 | 1.9061 | 1.5382 [ 1.7269 | 7.1993 | 7.4103
E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-4 E-4 E-4 E-4
0.8 [ 53923 [5.4028 | 6.0645 | 6.0800 | 3.8186 | 3.8383 | 4.7116 | 4.9455 | 1.7276 [ 1.7008 | 8.2260 | 7.9259
E-3 E-3 E-3 E-3 E-3 E-3 E-4 E-4 E-3 E-3 E-4 E-4
0.9 [ 50929 [5.1071 |[5.7699 [ 57910 |[3.0173 |[3.0441 | 1.0680 | 1.0360 | 3.7057 [ 3.6689 | 2.4271 | 2.3859
E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3
Table 6.6 L,and L, error norms for nonlinear time-fractional Camassa-Holm equation
using two-dimensional Chebyshev wavelet methods at various points x takinga =0.5 and 0.75.
X Error analysis with regard to VIM Error analysis with regard to HAM
a=05 a=0.75 a=05 a=0.75
L L Ly L Lo Lo Ly L
0.1 | 6.38694E-3 | 9.3582E-3 | 7.11978E-3 | 1.0373E-2 | 6.38112E-3 | 9.3504E-3 | 7.11421E-3 | 1.0365E-2
0.2 | 5.40607E-3 | 7.7726E-3 | 7.40310E-3 | 8.7183E-3 | 5.39997E-3 | 7.7680E-3 | 7.39944E-3 | 8.7137E-3
0.3 | 4.55570E-3 | 6.1955E-3 | 6.57708E-3 | 7.0637E-3 | 4.55487E-3 | 6.1945E-3 | 6.57624E-3 | 7.0627E-3
0.4 | 3.90422E-3 | 4.6052E-3 | 5.79917E-3 | 6.4548E-3 | 3.90650E-3 | 4.6080E-3 | 5.80137E-3 | 6.4565E-3
0.5 | 3.53718E-3 | 4.6974E-3 | 5.08283E-3 | 6.4379E-3 | 3.54257E-3 | 4.7003E-3 | 5.08802E-3 | 6.4421E-3
0.6 | 3.53417E-3 | 6.3093E-3 | 4.45818E-3 | 6.3792E-3 | 3.54135E-3 | 6.3142E-3 | 4.46615E-3 | 6.3865E-3
0.7 | 3.90066E-3 | 7.8429E-3 | 3.98320E-3 | 6.2610E-3 | 3.90730E-3 | 7.8503E-3 | 3.99254E-3 | 6.2720E-3
0.8 | 4.56822E-3 | 9.2769E-3 | 3.74878E-3 | 6.0645E-3 | 4.57187E-3 | 9.2874E-3 | 3.75621E-3 | 6.0800E-3
0.9 | 5.46221E-3 | 1.0589E-2 | 3.85351E-3 | 5.7699E-3 | 5.46048E-3 | 1.0603E-2 | 3.85381E-3 | 5.7910E-3

The following Figures

6.2-6.4 demonstrate the graphical comparison of the numerical

solutions obtained by two-dimensional Chebyshev wavelet approximation with regard to
VIM and HAM taking ¢ =0.75 and a =0.5 respectively.

0lr

-0.1F

Figure 6.2

Comparison of numerical solutions of u(0.2,t) obtained by two-dimensional

Chebyshev wavelet method with regard to VIM and HAM for « =0.75.
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Figure 6.3 Comparison of numerical solutions of u(0.4,t) obtained by two-dimensional

Chebyshev wavelet method with regard to VIM and HAM for o =0.75.

UiD.a.1)
0.10

—e— Llhebyshev

= 1.

——  LpTAN

—g.10L

Figure 6.4 Comparison of numerical solutions of u(0.4,t) obtained by two-dimensional

Chebyshev wavelet method with regard to VIM and HAM for « =0.5.

6.8 Implementation of Two-Dimensional Chebyshev
Wavelet Method for Approximate Solution of Riesz

Space Fractional Sine-Gordon Equation

In this section, two test examples have been considered with a purpose to exhibit the
effectiveness and accuracy of proposed Chebyshev wavelet method for numerical solution
of Riesz fractional sine-Gordon equation given in eqg. (6.3). The numerical solutions
acquired are compared with the exact solutions for classical case and also solutions
obtained by modified homotopy analysis method with Fourier transform (MHAM-FT) in

fractional order case [141].
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Consider the nonlinear Riesz space fractional sine-Gordon equation [141, 142]
—RD%u+sinu=0, l<a<?2 (6.37)

with initial conditions u(x,0)= f(x) and u,(x,0)=g(x). (6.38)

The Chebyshev wavelet solution of u(x,t) is sought through assuming that u(x,t) can be

expanded in terms of Chebyshev wavelet as

2k]_ 1Ml 12k2 1M2 -1

u(x,t)= > > > ch,|an,|JXt) (6.39)

n=l i=0 I=1 j=0
where n=1,...,247i=0,..,M,-11=1..,227" j=0,..,M, -1.
Now applying eq. (6.39) in eq. (6.37), we have

M1 m—1ketM,-1 24t M1k My-1
Cn|| Whil, Xt RD)? ZZZ Cn|| Vhil, Xt)
SIS S, Wi
0

n=l i=0 I=1 j=0 n=l i=0 =1l j=

(6.40)

21 my-10k2 1 my—1
+sin Z Z Z ch,i,l,j'//n,i,l,j(xat) =0.

n=l i=0 I=l j=0

I-0.5

2kIMm

and t=r—_0.5 for

Now substituting the collocation points x = = Sy
2

1=12,...,2%'M, and r=12,...,2%"M, in eq. (6.40), we have (Zkl’lMlXZ"fle) equations
in (Zkl’lMlXZ"Z’lMZ) unknowns in c,;, ;. By solving this system of equations using

mathematical software, the Chebyshev wavelet coefficients ¢ can be obtained.

nil,j

Example 6.1 Consider nonlinear Riesz fractional SGE equation (6.37) subject to the
following initial conditions [145, 146]

u(x,0)=0, u,(x,0)=4sech(x). (6.41)
The numerical solutions of example 6.1 are presented in Tables 6.7-6.9. The results are
compared with the exact solutions and also with solutions obtained by MHAM-FT [141].
It has been noticed from Tables 6.7-6.9 that the solutions obtained by present method are

in good agreement with the exact solutions and those with MHAM-FT [141].

Example 6.2 In this case, we shall find approximate solution of the nonlinear Riesz
fractional SGE equation (6.37) with given initial conditions [145, 146]

u(x,0) = 7 + & cos(ux) , u, (x,0)=0. (6.42)
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where ¢ and u are parameters. The numerical solutions of the example 6.2 are presented

for ,u=§,5=0.001 in Tables 6.10-6.12. The results are compared with the exact

solutions as well as solutions obtained by MHAM-FT, which is discussed in following
section. It has been observed from Tables 6.10-6.12 that the solutions attained by present
method are in pretty good agreement with the exact solutions and those obtained by
MHAM-FT [141].

6.9 Numerical Results and Discussion

In the present numerical investigation, in order to examine the accuracy and reliability of
the proposed Chebyshev wavelet technique for solving fractional order sine-Gordon
equation, the absolute errors have been compared with the exact solutions and those
obtained by MHAM-FT for different values of x and t taking 7% =-1. In case of a =2,

using the results of Chebyshev wavelet method, the numerical solutions of classical SGE
equation (6.37) given in examples 6.1 and 6.2 have been exhibited in Tables 6.7 and 6.10.
Similarly the absolute errors for fractional SGE eq. (6.37) given in examples 6.1 and 6.2
have been demonstrated in Tables 6.9-6.12 which are devised using the results attained by
Chebyshev wavelet method and MHAM-FT at different values of x and t taking « =1.75
and 1.5 respectively. We observe that the proposed numerical simulation results are in
good agreement with the exact solutions and those obtained by MHAM-FT [141] through
illustrations in Tables 6.7-6.12.

Table 6.7 The absolute errors obtained by two-dimensional Chebyshev wavelet method with
regard to exact solutions for classical SGE eq. (6.37) given in example 6.1 at various points of x

and t taking o =2.

Ucwm — Ueact

t=0.01

t=0.02

t=0.03

t=0.04

t=0.05

t=0.06

t=0.07

t=0.08

t=0.09

t=0.10

0.01

6.7054E-6

2.5570E-5

5.5014E-5

9.3603E-5

1.4004E-4

1.9318E-4

2.5198E-4

3.1551E-4

3.8298E-4

4.5367E-4

0.02

6.6806E-6

2.5524E-5

5.4947E-5

9.3514E-5

1.3992E-4

1.9303E-4

2.5177E-4

3.1524E-4

3.8263E-4

4.5321E-4

0.03

6.6617E-6

2.5485E-5

5.4885E-5

9.3423E-5

1.3980E-4

1.9285E-4

2.5154E-4

3.1494E-4

3.8224E-4

4.5271E-4

0.04

6.6468E-6

2.5449E-5

5.4820E-5

9.3322E-5

1.3965E-4

1.9265E-4

2.5127E-4

3.1459E-4

3.8179E-4

4.5214E-4

0.05

6.6341E-6

2.5412E-5

5.4749E-5

9.3205E-5

1.3948E-4

1.9241E-4

2.5095E-4

3.1417E-4

3.8126E-4

4.5149E-4

0.06

6.6222E-6

2.5372E-5

5.4666E-5

9.3066E-5

1.3927E-4

1.9212E-4

2.5056E-4

3.1367E-4

3.8063E-4

4.5072E-4

0.07

6.6101E-6

2.5327E-5

5.4569E-5

9.2900E-5

1.3902E-4

1.9177E-4

2.5010E-4

3.1308E-4

3.7990E-4

4.4984E-4

0.08

6.5969E-6

2.5275E-5

5.4455E-5

9.2703E-5

1.3872E-4

1.9135E-4

2.4955E-4

3.1240E-4

3.7906E-4

4.4882E-4

0.09

6.5819E-6

2.5214E-5

5.4322E-5

9.2474E-5

1.3838E-4

1.9087E-4

2.4892E-4

3.1160E-4

3.7808E-4

4.4765E-4

0.10

6.5642E-6

2.5144E-5

5.4168E-5

9.2210E-5

1.3798E-4

1.9032E-4

2.4820E-4

3.1069E-4

3.7698E-4

4.4633E-4
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Table 6.8

The absolute errors obtained by two-dimensional Chebyshev wavelet method with

regard to MHAM solutions for fractional SGE eq. (6.37) given in example 6.1 at various points of

x and t taking o =1.75.

X Ucwm ~ UmHam
t=0.01 | t=0.02 | t=0.03 | t=0.04 | t=0.05 | t=0.06 | t=0.07 | t=0.08 | t=0.09 | t=0.10

0.01 | 8.9761E-4 | 3.5234E-3 | 7.7847E-3 | 1.3593E-2 | 2.0864E-2 | 2.9519E-2 | 3.9482E-2 | 5.0680E-2 | 6.3047E-2 | 7.6517E-2
0.02 | 8.7243E-4 | 3.4244E-3 | 7.5651E-3 | 1.3207E-2 | 2.0270E-2 | 2.8673E-2 | 3.8343E-2 | 4.9210E-2 | 6.1206E-2 | 7.4270E-2
0.03 | 8.4432E-4 | 3.3142E-3 | 7.3209E-3 | 1.2780E-2 | 1.9611E-2 | 2.7738E-2 | 3.7088E-2 | 4.7592E-2 | 5.9187E-2 | 7.1809E-2
0.04 | 8.1361E-4 | 3.1937E-3 | 7.0545E-3 | 1.2314E-2 | 1.8895E-2 | 2.6722E-2 | 3.5727E-2 | 4.5843E-2 | 5.7006E-2 | 6.9159E-2
0.05 | 7.8057E-4 | 3.0642E-3 | 6.7684E-3 | 1.1814E-2 | 1.8127E-2 | 2.5636E-2 | 3.4274E-2 | 4.3977E-2 | 5.4684E-2 | 6.6339E-2
0.06 | 7.4549E-4 | 2.9268E-3 | 6.4651E-3 | 1.1285E-2 | 1.7315E-2 | 2.4489E-2 | 3.2740E-2 | 4.2009E-2 | 5.2238E-2 | 6.3373E-2
0.07 | 7.0863E-4 | 2.7825E-3 | 6.1467E-3 | 1.0730E-2 | 1.6465E-2 | 2.3287E-2 | 3.1136E-2 | 3.9953E-2 | 4.9685E-2 | 6.0281E-2
0.08 | 6.7026E-4 | 2.6322E-3 | 5.8156E-3 | 1.0153E-2 | 1.5581E-2 | 2.2040E-2 | 2.9472E-2 | 3.7822E-2 | 4.7042E-2 | 5.7081E-2
0.09 | 6.3062E-4 | 2.4771E-3 | 5.4737E-3 [ 9.5579E-2 | 1.4670E-2 | 2.0755E-2 | 2.7758E-2 | 3.5630E-2 | 4.4323E-2 | 5.3793E-2
0.10 | 5.8994E-4 | 2.3179E-3 | 5.1231E-3 [ 8.9478E-2 | 1.3737E-2 | 1.9439E-2 | 2.6004E-2 | 3.3388E-2 | 4.1545E-2 | 5.0435E-2

Table 6.9 The absolute errors obtained by two-dimensional Chebyshev wavelet method with

regard to MHAM solutions for fractional SGE eq. (6.37) given in example 6.1 at various points of

x and t taking o =1.5.
X Ucwm ~ UnmHaw

t=001 | t=0.02 | t=0.03 | t=0.04 | t=0.05 | t=0.06 | t=0.07 | t=0.08 | t=0.09 | t=0.10

0.01 | 4.1180E-4 | 1.6331E-3 | 3.6485E-3 | 6.4435E-3 | 1.0005E-2 | 1.4321E-2 | 1.9381E-2 | 2.5175E-2 | 3.1695E-2 | 3.8932E-2
0.02 | 4.5144E-4 | 1.7862E-3 | 3.9798E-3 | 7.0093E-3 | 1.0853E-2 | 1.5491E-2 | 2.0905E-2 | 2.7077E-2 | 3.3992E-2 | 4.1636E-2
0.03 | 4.8403E-4 | 1.9118E-3 | 4.2512E-3 | 7.4718E-3 | 1.1544E-2 | 1.6443E-2 | 2.2142E-2 | 2.8617E-2 | 3.5847E-2 | 4.3810E-2
0.04 | 5.1000E-4 [ 2.0117E-3 | 4.4665E-3 | 7.8376E-3 | 1.2090E-2 | 1.7191E-2 | 2.3110E-2 | 2.9818E-2 | 3.7286E-2 | 4.5490E-2
0.05 | 5.2980E-4 | 2.0877E-3 | 4.6295E-3 | 8.1133E-3 | 1.2499E-2 | 1.7749E-2 | 2.3828E-2 | 3.0702E-2 | 3.8339E-2 | 4.6708E-2
0.06 | 5.4386E-4 | 2.1413E-3 | 4.7438E-3 | 8.3051E-3 | 1.2781E-2 | 1.8130E-2 | 2.4313E-2 | 3.1292E-2 | 3.9031E-2 | 4.7498E-2
0.07 | 5.5260E-4 | 2.1742E-3 | 4.8128E-3 | 8.4189E-3 | 1.2045E-2 | 1.8347E-2 | 2.4582E-2 | 3.1609E-2 | 3.9390E-2 | 4.7890E-2
0.08 | 5.5640E-4 | 2.1879E-3 | 4.8400E-3 | 8.4608E-3 | 1.3000E-2 | 1.8412E-2 | 2.4651E-2 | 3.1674E-2 | 3.9441E-2 | 4.7915E-2
0.09 | 5.5565E-4 | 2.1839E-3 | 4.8287E-3 | 8.4363E-3 | 1.2955E-2 | 1.8337E-2 | 2.4536E-2 | 3.1507E-2 | 3.9208E-2 | 4.7601E-2
0.10 | 5.5073E-4 | 2.1638E-3 | 4.7821E-3 | 8.3510E-3 | 1.2818E-2 | 1.8134E-2 | 2.4252E-2 | 3.1127E-2 | 3.8715E-2 | 4.6978E-2

Table 6.10 Comparison of absolute errors obtained by two-dimensional Chebyshev wavelet

method with regard to exact solutions and MHAM for classical SGE eq. (6.37) given in example

6.2 at various points of x and t taking « = 2.

Ucwm — UnmHawm

t=0.01

t=0.02

t=0.03

t=0.04

t=0.05| t=0.06

t=0.07

t=0.08

t=0.09

t=0.10

0.01 | 3.359E-10

9.694E-12

5.667E-10

1.320E-9

2.255E-9 | 3.360E-9

4.619E-9

6.021E-9

7.553E-9

9.204E-9

0.02 | 2.329E-10

1.131E-10

6.708E-10

1.425E-9

2.363E-9 | 3.469E-9

4.732E-9

6.139E-9

7.676E-9

9.334E-9

0.03 | 1.456E-10

2.005E-10

7.588E-10

1.514E-9

2.453E-9 | 3.562E-9

4.827E-9

6.237E-9

7.779E-9

9.442E-9

0.04 | 7.237E-11

2.738E-10

8.323E-10

1.588E-9

2.528E-9 | 3.638E-9

4.905E-9

6.318E-9

7.863E-9

9.531E-9

0.05 | 1.161E-11

3.345E-10

8.930E-10

1.649E-9

2.589E-9 | 3.700E-9

4.969E-9

6.383E-9

7.931E-9

9.602E-9

0.06 | 3.809E-11

3.840E-10

9.423E-10

1.698E-9

2.638E-9 | 3.749E-9

5.019E-9

6.434E-9

7.984E-9

9.658E-9

0.07 | 7.807E-11

4.237E-10

9.814E-10

1.737E-9

2.677E-9 | 3.788E-9

5.057E-9

6.473E-9

8.025E-9

9.699E-9

0.08 | 1.095E-10

4.547E-10

1.012E-9

1.767E-9

2.706E-9 | 3.816E-9

5.085E-9

6.501E-9

8.053E-9

9.728E-9
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0.09 | 1.336E-10 | 4.782E-10 [ 1.034E-9 | 1.788E-9 | 2.726E-9 | 3.836E-9 | 5.104E-9 | 6.519E-9 | 8.071E-9 | 9.746E-9
0.10 | 1.514E-10 | 4.953E-10 | 1.051E-9 | 1.803E-9 | 2.740E-9 | 3.848E-9 | 5.114E-9 | 6.529E-9 | 8.079E-9 | 9.754E-9
Table 6.11 The absolute errors obtained by two-dimensional Chebyshev wavelet method with

regard to MHAM solutions for fractional SGE eq. (6.37) given in example 6.2 at various points of

x and t taking o =1.75.

X |UCWM_UMHAM|

t=0.01 t=0.02 t=0.03 t=0.04 t=0.05 t=0.06 t=0.07 t=0.08
0.01 | 7.80306E-4 | 3.12057E-3 | 7.02163E-3 | 1.24867E-2 | 1.95210E-2 | 2.81321E-2 | 3.83293E-2 | 5.01238E-2
0.02 | 9.25929E-4 | 3.67903E-3 | 8.22523E-3 | 1.45343E-2 | 2.25797E-2 | 3.23383E-2 | 4.37906E-2 | 5.69199E-2
0.03 | 1.05489E-3 | 4.17342E-3 | 9.29032E-3 | 1.63455E-2 | 2.52839E-2 | 3.60551E-2 | 4.86136E-2 | 6.29182E-2
0.04 | 1.16806E-3 | 4.60703E-3 | 1.02240E-2 | 1.79324E-2 | 2.76518E-2 | 3.93077E-2 | 5.28314E-2 | 6.81597E-2
0.05 | 1.26625E-3 | 4.98308E-3 | 1.10333E-2 | 1.93069E-2 | 2.97013E-2 | 4.21207E-2 | 5.64760E-2 | 7.26847E-2
0.06 | 1.35029E-3 | 5.30471E-3 | 1.17249E-2 | 2.04806E-2 | 3.14498E-2 | 4.45181E-2 | 5.95788E-2 | 7.65325E-2
0.07 | 1.42099E-3 | 5.57500E-3 | 1.23055E-2 | 2.14649E-2 | 3.29144E-2 | 4.65237E-2 | 6.21708E-2 | 7.97417E-2
0.08 | 1.47911E-3 | 5.79696E-3 | 1.27817E-2 | 2.22709E-2 | 3.41118E-2 | 4.81604E-2 | 6.42819E-2 | 8.23499E-2
0.09 | 1.52543E-3 | 5.97352E-3 | 1.31597E-2 | 2.29095E-2 | 3.50582E-2 | 4.94507E-2 | 6.59415E-2 | 8.43939E-2
0.10 | 1.56068E-3 | 6.10756E-3 | 1.34458E-2 | 2.33912E-2 | 3.57696E-2 | 5.04168E-2 | 6.71784E-2 | 8.59096E-2

Table 6.12 The absolute errors obtained by two-dimensional Chebyshev wavelet method with

regard to MHAM solutions for fractional SGE eq. (6.37) given in example 2 at various points of x

and t taking « =1.5.
X Ucwm ~ UnmHaw

t=001 | t=0.02 | t=0.03 | t=0.04 | t=0.05 | t=0.06 | t=0.07 | t=0.08 | t=0.09 | t=0.10
0.01 | 1.0416E-3 [ 3.9097E-3 | 8.2311E-3 | 1.3648E-2 | 1.9820E-2 | 2.6420E-2 | 3.3137E-2 | 3.9675E-2 | 4.5752E-2 | 5.1101E-2
0.02 | 8.0050E-4 | 2.9839E-3 | 6.2331E-3 | 1.0244E-2 | 1.4727E-2 | 1.9403E-2 | 2.4008E-2 | 2.8289E-2 | 3.2006E-2 | 3.4932E-2
0.03 | 5.7955E-4 | 2.1356E-3 | 4.4026E-3 | 7.1261E-2 | 1.0062E-2 | 1.2977E-2 | 1.5650E-2 | 1.7867E-2 | 1.9427E-2 | 2.0138E-2
0.04 | 3.7779E-4 | 1.3611E-3 | 2.7317E-3 | 4.2801E-3 | 5.8053E-3 | 7.1154E-3 | 8.0265E-3 | 8.3635E-3 | 7.9594E-3 | 6.6553E-3
0.05 | 1.9432E-4 | 6.5698E-4 | 1.2127E-3 | 1.6933E-3 | 1.9371E-3 | 1.7893E-3 | 1.1019E-3 | 2.6672E-4 | 2.4516E-3 | 5.5813E-3
0.06 | 2.8208E-5 | 1.9564E-5 | 1.6195E-4 | 6.4725E-4 | 1.5621E-3 | 3.0273E-3 | 5.1587E-3 | 8.0671E-3 | 1.1858E-2 | 1.6634E-2
0.07 | 1.2142E-4 | 5.5452E-4 | 1.3997E-3 | 2.7541E-3 | 4.7112E-3 | 7.3608E-3 | 1.0789E-2 | 1.5080E-2 | 2.0312E-2 | 2.6563E-2
0.08 | 2.5546E-4 | 1.0685E-3 | 2.5078E-3 | 4.6397E-3 | 7.5286E-3 | 1.1236E-2 | 1.5823E-2 | 2.1348E-2 | 2.7865E-2 | 3.5429E-2
0.09 | 3.7472E-4 | 1.5258E-3 | 3.4933E-3 | 6.3162E-3 | 1.0032E-2 | 1.4679E-2 | 2.0294E-2 | 2.6911E-2 | 3.4565E-2 | 4.3289E-2
0.10 | 4.8006E-4 | 1.9296E-3 | 4.3631E-3 | 7.7951E-3 | 1.2240E-2 | 1.7714E-2 | 2.4232E-2 | 3.1808E-2 | 4.0460E-2 | 5.0202E-2

6.10 Convergence Analysis of Chebyshev Wavelet

Theorem 6.1 (Convergence Theorem)

If a continuous function u(x,t) e L?(RxR) defined on [O,l)x[O,) be bounded viz.

|u(x,t) < K, then the Chebyshev wavelets expansion of u(x,t) converges uniformly to it.
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Proof:

Let U(X,t) be a function defined on [0,1)x[0,1) and |u(x,t) <K, K is a positive constant.

The Chebyshev wavelet coefficients of continuous functions U(X,t) are defined as

11
Conmngmy = | | UG oy 0 W,y (D)t
00

h L. k n-1 n
:jfu(x,t) 22 Uml(z 1x—2n1+1)wn2,m2(t) dx dt, where I, :|:21k1—1 ’2k11—1J
01lq

_ kl(jju(xt)u (2x—2n, +1)y,, o (D)X .

01l

Now by change of variable 24 x - 2n, +1=y, we obtain

Comrzimy = kl\fj nzmza{ (“2“1 ,tjuml(y)ddet.

Applying mean value theorem of integral calculus, we have

1
Crp g my = \/7 I Wnpmy () (%rllltj[_[ Uml(y)dy] dt, where &e(-11)

22 =

§+2n1 Trya (Y) '
\/7.[ Y gy (0) ( ,tJ( M +1 J_ldt

1 2 (1-(-1 m+1 ) 1 on -1
:—kl\/; (ﬁ} J Vi © u(“z—[},tj dt

k2
1 2 (1-(-pm* E+on -1 )\, F~ (o
- /;(W Ij a2 0,,, (22t - 2n, + 1)t
2
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k2 +
_ 12,3 (1-()" E+on -1 .
I [W J o[ SVl 2 2l

Again by change of variable 2kt — 2n, +1=w, we get

ko mp+1) 1
1 2.5 1 (1-(-D™ +2n, -1 w+2n, -1
Cry,my,nz.mp = T 22 ( D) J u[f 1 2

2'%1 77 22 m+1 2k ok2 )Umz (w)dw

1 2 (1-(-p™*) ¢ (E+2n, -1 w+2n,-1
T ke g [ m, +1 W T e ) Um AW
2 2 . B

Applying mean value theorem of integral calculus, we have

1 2 (1-(=)™*) (£+2n -1 p+2n,-1) ¢
Crumnzme = T ( m, +1 TR T ok Iumz (w)dw,
2 2 ‘1

where 77 € (—1,1)

1 2 [1—(—1)”‘1“} (§+2n1—1 7+2n, —1) (Tmzﬂ(W)Jl
ki+ko ; u !

2k 2k2 m, +1

-1

1 2 (1-(¢pmH (1= (=pm2* u(§+2n1—1 77+2n2—1j
k1+2k2 n m, +1 m, +1 2k T ke '

2

Therefore,

1 2 (1-(=pm™t)(1-(-pm2+t E+2n -1 p+2n,-1
Cnl,ml,nz,mz T kp+ko ; m +1 m. +1 u 2k1 ! 2k2

272 1 2
o 1ym+1 _(_1\m2+1
< klk 2L ) 1-(=1) K (6.43)
5 1*2 2 m +1 m, +1

0 0 0 0
Therefore D > > > Cp m o, IS absolutely convergent.
m=0 m=0 np=0 mp=0

194



Hence the Chebyshev series expansion of u(x,t) converges uniformly. O

Theorem 6.2 (Error Estimate)

If a continuous function u(x,t)e L2(RxR) defined on [0,1)x[01) be bounded viz.
u(x,t) <K, then

1
202
w w o 1 1 m+1 1_ _1 my+1
gu,kl,Ml,kz,Mz < Z Z z Z{ ki +kp ( ( ) J( ( ) ]K}
2

3 [10.)x[0,1)] =201 MM, 1,27 141 m=M, > m, +1 m, +1

Proof:

2

&
Uk Muke M2 12 [10,1)40,1)]

24t M -1 22t M, -1

U(X t) Z Z Z chl My, Ny, My l/lnl m )l/lnzvmz (t* a)”l (X)a)nz (t)dth

m=1m=0 ny=1m,=0

1l

2

0 (), (DXt

o0 o0

; Z Z chllmlynzlmz Y m (X)an,mz (t

m=2K1"141 m=M1 p,_oka-1 g mp=Mp

I

i i i Z‘Cnl m,n2, mz‘ J.ﬂwnl m V/ng my 1 a)nl (X)wnz (t)dth

m=2K1"141 M=M1 p,—pk2-1,3 mp=Mp

o0 00 o0 o0

= > Y Y D fwmmm] - (6.44)

m=2K"141 m=M1 p,_ok2-1,3 mp=M;

Substituting eq. (6.43) of theorem 6.1, in eq. (6.44) we obtain

=2k =M1, ok2 -1, mp=M> 2 m, +1 m, +1

2
" w © o 1 2(1- (-1 my+1 1— (-1 mp+1
gU,klleka’MZHLZ[[Ol)x[Ol)< Z Z Z Z[ ke ;( o j( o jKJ
2

This implies

2
o0 0 ) 0 1 2 1— (-1 m+1 1— (=1 m,+1
Eula Myl M, = Z Z Z Z[ k1+kz;[ &) ][ D) JKJ O
2

Blooo0] | =2 L1 m =M, 1,2 L1 m,=M, > m +1 m, +1
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6.11 Conclusion

The time fractional fifth-order Sawada-Kotera equation has been solved by using two-
dimensional Chebyshev wavelet method. The obtained results are then compared with
exact solutions as well as with homotopy analysis method in fractional order case. The
obtained results demonstrate the accuracy, efficiency and reliability of the proposed
algorithm based on two-dimensional Chebyshev wavelet method and its applicability to
nonlinear time fractional Sawada-Kotera equation. Agreement between present numerical
results obtained by Chebyshev wavelet method with homotopy analysis method and exact
solutions appear very satisfactory through illustrative results in Tables 6.1-6.3.

In case of nonlinear Camassa-Holm equation with Riesz time-fractional derivative, the
results obtained by two-dimensional Chebyshev wavelet method are compared with the
solutions obtained by homotopy analysis method and variational iteration method. The
results demonstrated in Tables 6.4-6.6 show the accuracy, efficiency and plausibility of the
proposed algorithm based on two-dimensional Chebyshev wavelet method and its
applicability to nonlinear Camassa-Holm equation with Riesz time-fractional derivative.
One can observe a pretty good agreement between the present numerical results obtained
by Chebyshev wavelet method with homotopy analysis method and variational iteration

method solutions through illustrations in Tables 6.4-6.6.

Next, the Chebyshev wavelet method (CWM) has been successfully employed to
demonstrate the approximate numerical solutions of the Riesz fractional sine-Gordon
equation. The proposed wavelet method has been implemented for the first time to solve
the fractional sine-Gordon equation numerically. Two test examples are given in order to
show the validity and accuracy of this procedure. Also, the acquired results are compared
with the exact solutions as well as with MHAM-FT [141], which reveals the efficiency
and plausibility of the proposed Chebyshev wavelet method. The results exhibited in
Tables 6.7-6.12 illustrate a pretty good agreement between the present numerical method
with MHAM-FT and exact solution.

In this work, we consider fractional order Sawada-Kotera equation, fractional Camassa-
Holm equation and fractional sine-Gordon equations. The motivation of the present work
is to illustrate that the two-dimensional Chebyshev wavelet method as a powerful tool for

solving the fractional Sawada-Kotera equation, Riesz fractional Camassa-Holm equation
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and Riesz fractional sine-Gordon equation. Finally, it is worthwhile to mention that the
proposed method is a promising and powerful method for solving fractional differential
equations in mathematical physics. Also, the present scheme is very simple, effective and
appropriate for obtaining numerical solutions of fractional differential equations.
Analyzing the numerical results, it can be concluded that the two-dimensional Chebyshev

wavelet method provides accurate numerical solutions for fractional differential equations.
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CHAPTER 7

7 Application of Hermite Wavelet
Method for Numerical Simulation of

Fractional Differential Equations

7.1 Introduction

In this chapter, a new wavelet method based on the Hermite wavelet expansion together
with operational matrices of fractional integration and derivative of wavelet functions is
proposed to solve time-fractional modified Fornberg-Whitham (mFW) equation. The
technique is also implemented for finding the numerical solution to a coupled system of
nonlinear time-fractional Jaulent-Miodek (JM) equations. Consequently, the approximate
solutions of time-fractional modified Fornberg-Whitham equation and fractional Jaulent-
Miodek equations acquired by using Hermite wavelet technique were compared with those

derived by using optimal homotopy asymptotic method (OHAM) and exact solutions.

Again as the exact solution of fractional Fornberg-Whitham equation is unknown, we
employ first integral method to determine exact solutions. The solitary wave solution of
fractional modified Fornberg-Whitham equation has been attained by using first integral
method. Analytical techniques such as First Integral Method (FIM) and OHAM are
applied in order to determine the exact solutions of fractional order modified Fornberg-

Whitham equation.

The Fornberg-Whitham equation is given by [154]

ou 8 ou  Aeu _oudiu Al
s+ —+U—=3_""S+u—, (7.1)
ot ox°ot ox OX OX OX OX

which was first proposed by Whitham in 1967 for studying the qualitative behavior of
wave breaking [155]. In 1978, Fornberg and Whitham [156] obtained a peaked solution
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consisting of an arbitrary constant. Modifying the nonlinear term u Z—u in (7.1) to u? g_u
X X

He et al. proposed in [154] the modified Fornberg-Whitham equation as follows

3 2 3
U _OU U2 g OU g, x>0 (7.2)
ot oxot  ox OX OX OX OX

Consider the following time-fractional modified Fornberg-Whitham equation

o°u &% ou  L,ou .ouddu  du
+U°—=3——~+

= U— . 7.3
ot*  oxlot  ox ox  oxox? o ox® (7.3)

Here 0 <a <1, is the parameter representing the order of the fractional time derivative.

The fractional derivative is considered in the Caputo sense. A great deal of research work
has been invested in recent years for the study of classical order modified Fornberg-
Whitham equations. Various methods such as the bifurcation theory and the method of
phase portraits analysis [154], reduced differential transform method [157], and variational
iteration method [158] have been developed independently for the solution of modified
Fornberg-Whitham equation. But according to the best possible information of the authors,
the detailed study of the nonlinear fractional order modified Fornberg-Whitham equation

is only beginning.

In contemporary years, significant research has been done to study the classical Jaulent-
Miodek equations. Various methods such as unified algebraic method [124], Adomian
decomposition method [159], tanh-sech method [160], homotopy perturbation method
[161], exp-function method [162], and homotopy analysis method [163] had been
implemented for solving of coupled Jaulent-Miodek equations. But in keeping with the
available information, the comprehensive analysis of the nonlinear fractional order

coupled Jaulent-Miodek equation is only an initiation.

Consider the following time-fractional coupled Jaulent-Miodek (JM) equations

6“u+63u 3 &% 9ovoiv ou N 30u_,

stV - ——— —Bu——6uv————Vv’ =0, (7.4)
ot  ox® 2 ox° 20X ox OX OX 20X
a 3
OV OV _ g, g,V _ 15N 2 (7.5)
o ox® OX OXx 2 oX

which is associated with energy-dependent Schrédinger potential [164-166]. Here
0 <a <1, is the parameter representing the order of the fractional derivative, deemed in

the Caputo sense. This present chapter emphasizes on the implementation of two-
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dimensional Hermite wavelet method to solve the problem of fractional differential
equations. With a view to exhibit the capabilities of the proposed wavelet method, we
employ the method to deal with fractional modified Fornberg-Whitham equation and
fractional order coupled Jaulent-Miodek equations. The approximate solutions attained via

Hermite wavelet technique were compared with exact solutions and those derived by using
OHAM in case of fractional order.

7.2 Algorithm of Hermite Wavelet Method

The proposed numerical algorithm implemented in our numerical experiment is simple,

very easy to implement and it does not depend upon mesh of discretized time and space.
Furthermore, it is also efficient in computation.

Input: Consider the following general differential equation of the form
-/ u(xt) =0, (7.6)
which can be writtenas ~ u(x,t)+. 7/ ‘u(x,t) = g(x,t), (7.7)
where /" is the linear operator,
-/ "is the nonlinear operator,
g(x,t) is the known function.
Output: The approximate solution of U(X,t).

Initial Step: Enter the values of M (order of Hermite polynomial) and k (level of

resolution).
Step I: Construct the Hermite wavelet using the following formula
AH,, (24 %1 H,, (22t -1, ) X<
Yng,m.np,mop (Xit): n, -1 <t< n, +1 (7.8)
k2 = Qe
0, elsewhere

1 1 k1+ko
where A= 2 2
\/nllznlx/n\/ n, 12" \Jr

m, and m, are order of Hermite polynomials,
n, and n, are translation parameters,

k, and k, are positive integers specifying level of resolution.
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Step I11:

kl 1|\/|1—1 2k2 le—l

Set u(x,t)= Z > D D, mlnzmz1//,11mln2m2(xt) (7.9)

m=1 m=0 ny=1 my=0

M1 2k My

and nonlinear term . / Z Z D b e m W mmnm, (X t). (7.10)

Step I11:

Step IV:

Step V:

Step VI:

Step VII:

Step VIII:

m=1m=0 ny=1 my=0

-1

Compute ~ ‘[~ u(x,)+. /7 u(x,t)]= ~ g(x,1)] (7.11)

For i =1())M, 2" do
mtx—£ llocation points for spatial variabl
compute X; = VRS (collocation points for spatial variable)

end
For j=11)M,2"* do

2j— . . :
calculate t; = J (collocation points for temporal variable)
oM

end

Substituting the collocation points x; and t; obtained in Step IV in eq.

(7.11) and obtain the system of algebraic equations in a, n n m, and

bnl|mlan21m2 '

By solving the system of equations obtained in Step V using Newton’s

method, the Hermite wavelet coefficients a, ., ,, m,and b, . o . can be

obtained.

Substituting the value of a in eq. (7.9), obtain the approximate

™,My,N2,M2
solution for u(x,t).

Stop.
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7.3 Application of Analytical and Numerical Methods for
Solving Time-Fractional Modified Fornberg-Whitham
Equation

7.3.1 Two-Dimensional Hermite Wavelet Method for Solving Nonlinear

Time-Fractional Modified Fornberg-Whitham Equation

To exhibit the effectiveness and accuracy of proposed numerical scheme, we consider the
time-fractional modified Fornberg-Whitham equation. The numerical solutions thus
obtained are compared with the exact solutions in case of classical order and with the
solutions obtained by OHAM in case of fractional order respectively.

Consider the nonlinear time-fractional modified Fornberg-Whitham equation

oy ou  au 2au ouou o
- +—+Uu U—s

5 ——3——+ 5, 1>0, x>0, (7.12)
ot  ox‘ot  ox OX X Ox> OX
with initial condition
u(x,0)= (J_ 5)sech? ( 106615 jx. (7.13)

The exact solution of eq. (7.12) is given by [154]

u(x,t)= (J_ 5)sech[0\/10i5 J_si(x—(s—JE)t)}. (7.14)

The Hermite wavelet solution of u(x,t) is sought by assuming that u(x,t) can be expanded

in terms of Hermite wavelet as
-1
U(X’t): _ dnl|j l//n|lj(x t) (7.15)
where n=1...,24%i=0,.,M, -11=1...,2%* j=0,.,M, 1.

The nonlinear terms presented in eq. (7.12) can be approximated using Hermite wavelet

function as

1
u _:z z anlljl//n“](Xt) (7.16)
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“ITMy-12

ok1 k2-1my-1
—=Z Z z Zbl|]l//nl|]Xt) (717)
I=1  j=0

n=l i=0

P VP

and Zz Z Zn|IJV/n|IJXt) (7-18)

n=l i=0 I=1 j=0

This implies

ML m-12k2 1 m,-1 2 KA m—12k2 1M, OWnir (X t)
22 2 i Waini () | x| X DX D dpyy

n=l =0 I=1 j=0 n=l i=0 I=1 j=0 OX (719)
21 My —10ke 1M,
= zanllehllj(Xt)
n=l i=0 I=1 j=0
dalm10keImy—1 oy (X t) dalmy10keImy—1 P ( t)
1,j\X Whil,j\(X
2 i 2 2 2 X i 5
n=L i=0 I=1 j=0 X n=1 i=0 I=1 j=0 OoX (7.20)
2k1*1|v|1 —12k2 1M, '
Z zbn il,j Wn il, J )
n=l i=0 I=1
and
M Mmy-122 1Myt MIMm-122 1 Mmy-1 3wy (x,1)
AN
ZZ Z Zdnlljl//nllj)(t) Zdn,i,l,j—m;
n=l i=0 I=l j=0 n=l i=0 I=l j=0 OX (7.21)
2"1*l Mi-12k2 1 M,-1 '
z zcnll ]l//nllj Xt)
n=l i=0 1=l j=0
Again applying J; on both sides of eq. (7.12) we have
u(x,t)—u(x,0)= 37 o Ju MU U o +u@ (7.22)
’ ’ %t x  x  xoxt o '

Putting egs. (7.15), (7.16), (7.17) and (7.18) in eq. (7.22), we have
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83 2k1_1 lelzkz_l M 2*1 ( )
J di, ¥ Xt
"l axat n=1 i=0 I1-1 j=0 ML
(7. 23)
P K1 m—12k2 1M, M1 m-12k2 1M,
- dnir JV/mlJ(X t) n,i,|,jV/n,i,|,j(X1t)+
X\ n3 i 13 n=l i=0 I=L j=0
K m—12k2 1M, Mt m—12ke 1M,
3 an|Jl//nI|j(Xt)+ Cn|IJWn|IJ(Xt)
n=l i=0 I=1 j=0 n=l i=0 I=1 j=0
Now substituting the collocation points x, = Ik_# and t, = 1_—105 for
25 M 27°M
1 2

1=1,2,....2%"M, and r=1,2,..2"M, in egs. (7.19), (7.20), (7.21) and (7.23), we
have 4(2"1‘1M1X2"2‘1M2) equations in 4(2"1‘1M1X2k2‘1M2) unknowns in a,; ;. by

Cnisj @nd dg;, ;. By solving this system of equations using Newton’s method, the

Hermite wavelet coefficients a b and d can be obtained.

nid i Bnit, o Cnij nil,j

7.3.2 To Compare with OHAM for Solution of Time-Fractional
Modified Fornberg-Whitham Equation

Using optimal homotopy asymptotic method [30-32], the homotopy for egs. (7.12) can be

written as
- p)Llo(xt: )= H(p) 22Xt & 0142 it p)
ot ox2ot OX
oot p) ,dplt: p) Polut:p) Fobetip)]

oppdelatin)_soe(xtip) Pelxtip) . Pe(xtip)]|
+olxtpf =20 ox o e
where go(x,t;p):uo(x,t)+iui(x,t)pi, (7.25)

i=1
H(p)=C,p+C,p* +Cyp°+.... (7.26)

Substituting egs. (7.25) and (7.26) in eq. (7.24) and equating the coefficients of different

powers in p, we have the following system of partial differential equations.

0. 0" Up(x,1)

a

Coefficients of p =0. (7.27)
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a a a 3
Coefficients of pl_a u(x,t) @ uo(x,t)zcl{a U(x,t) o uO(x,t)+8uo(x,t)

at” at” ot” ox>ot X
AUy (x,t) Uy (x,t) 62uy(x,t) d%uy(x,t)
) =t 320 > up(x, 1) =—=2 . 7.28
+ (U (x,1)) o o o Uo(x, t) o (7.28)

Coefficients of p?:

Uy (x,t)  0%uy(x,t) o“uy(x,t) d%u(x,t) ou(xt)
o - a = Cl a - 2 + +
ot ot ot ox“ot OX

(ZUO(x,t)ul(x,t)—au(g;’t)+(u0(x,t))2 aul(x,t)]

OX
3 AUy (x,t) &u,(x,t) . au, (x,t) 8%uy(x,t)
OX ox? ox Ox?
ou, (x,t) duy(x,t) Uy (x,t)  %up(x,t)
- 't 1\ t)— C o\At) O UglA,
(UO(X ) ox® +u(xt) o )Y ae ox2ot
(x) (0) o)) dult)]
Ou,(x,t OU,(X,t OUq(X,t) 0%u,(X,t 0°Uq (X, t
" Oax + (U, 1)) Oax -3 oax 62(2 () 60x3

Coefficients of p3 :

0“Ug(x,t)  a%up(x.t) _ C{a“uz(x,t) o%u,(x,t) .\ aUZ(X’t)+((ul(x,t))z Auy(x,t)

+

ot ot o oxlet ox ox

15) OX

3 AUy (x,1) 2%u,(x,1) . au, (x,t) 82u1(x,t)+ au, (x,1) 8%uy(x,t)
X ox* ox ox* ox ox?

x

+ 2u0(x,t)u2(x,t)% + 2uo(x,t)u1(x,t)a”1(x’t) +(ug ()P auz(x,t)J ~

ox® x> ox® ot*

&u,(x, d%uy(x, duy(x, %uy (x,
—Luo(x,t)&+u1(x,t)%+u2(x,t)Jj]+C2[—( t)

Buy(xt) . au, (x,t) . (ZUO(x,t)ul(x,t)aUO(X't) (U (x 1) 6u1(x,t)j

ox2ot ox ox ox
2 2 3 3
3 au,(x,1) @ ul(;(’t)+ au, (x,1) 0 u0(2><,t) ~ uo(x,t)8 ul(;(’t)+u1(x,t)a uo(;gt)
OX OX OX OX OX OX

au,(x,1)
t))? =2/
at” ox2ot ox +Up(x ) ox
2 3
_36u0(x,t)8 UO(ZX’t)—uo(X,t)a Uo(;(’t) ’
15)4 OX OX

a 3
+C{a Ug(x,t) @ uo(x,t)Jr AUy (x,1)

(7.30)
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and so on.

For solving fractional order modified Fornberg-Whitham equation using OHAM, we
consider the following initial condition for equation (7.12)

u(x,O)zg(\/E—S)sechz( 2% 10(5—+/15 jx.
Using the initial condition u, =u(x,0) and solving eq. (7.27) to eq. (7.30), we obtain the

expressions for ug, u;, U,, u; and so on.

Finally, the third order approximate solution for time-fractional modified Fornberg-
Whitham equation is given by
U =Ugy(X,t) +u, (X, ) +u,(X1)+us(X,t). (7.31)

The optimal values of the convergence control constants C;, C, and C; can be obtained

using weighted residual least square method given in egs. (1.34) and (1.35) of chapter 1.

7.4 Numerical Results and Discussion

The comparison of the absolute errors for time-fractional modified Fornberg-Whitham
equation (7.12) have been exhibited in Tables 7.1 and 7.2 which are generated using the
results obtained by two-dimensional Hermite wavelet method and OHAM at different
values of x and t taking a=1. In the present analysis, to examine the accuracy and
reliability of the Hermite wavelets for solving fractional order modified Fornberg-
Whitham equation, we compare the approximate solution of Hermite wavelets with the
third order approximate solution obtained by OHAM. Tables 7.3 and 7.4 show the
absolute errors of fractional order modified Fornberg-Whitham equation (7.12) at various
points of x and t taking a=0.75and 0.5 respectively. Agreement between present
numerical results for time-fractional modified Fornberg-Whitham equation obtained by
Hermite wavelets and OHAM appears very satisfactory through illustrations in Tables 7.5

and 7.6. Table 7.7 shows the L, and L, error norms for fractional modified Fornberg-

Whitham equation using two-dimensional Hermite wavelet methods and OHAM at

various points of t taking « =0.75 and 0.5.
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Table 7.1

The absolute errors obtained by two-dimensional Hermite wavelet method for

nonlinear modified Fornberg-Whitham equation given in eq. (7.12) at various points of x and t

taking o =1.
X |U Exact — uHermitewavelet|
t=0.1 t=0.2 t=0.3 t=04 t=0.5 t=0.6 t=0.7 t=0.8 t=09
0.1 | 3.7564E-4 | 5.5722E-4 | 5.1447E-4 | 2.1718E-4 | 3.6388E-4 | 1.2543E-3 | 2.4734E-3 | 4.0313E-3 | 5.9263E-3
0.2 | 3.6817E-4 | 5.4379E-4 | 5.0090E-4 | 2.1372E-4 | 3.4281E-4 | 1.1905E-3 | 2.3457E-3 | 3.8163E-3 | 5.6007E-3
0.3 | 3.6433E-4 | 5.3561E-4 | 4.9206E-4 | 2.1218E-4 | 3.2489E-4 | 1.1373E-3 | 2.2382E-3 | 3.6336E-3 | 5.3201E-3
0.4 | 3.6412E-4 | 5.3275E-4 | 4.8812E-4 | 2.1292E-4 | 3.0961E-4 | 1.0938E-3 | 2.1497E-3 | 3.4808E-3 | 5.0827E-3
0.5 | 3.6757E-4 | 5.3531E-4 | 4.8929E-4 | 2.1630E-4 | 2.9639E-4 | 1.0593E-3 | 2.0792E-3 | 3.3572E-3 | 4.8871E-3
0.6 | 3.7478E-4 | 5.4349E-4 | 4.9589E-4 | 2.2274E-4 | 2.8468E-4 | 1.0331E-3 | 2.0259E-3 | 3.2615E-3 | 4.7320E-3
0.7 | 3.8584E-4 | 5.5751E-4 | 5.0827E-4 | 2.3274E-4 | 2.7383E-4 | 1.0144E-3 | 1.9888E-3 | 3.1928E-3 | 4.6163E-3
0.8 | 4.0091E-4 | 5.7767E-4 | 5.2688E-4 | 2.4690E-4 | 2.6312E-4 | 1.0023E-3 | 1.9670E-3 | 3.1500E-3 | 4.5391E-3
0.9 | 4.2025E-4 | 6.0441E-4 | 5.5231E-4 | 2.6594E-4 | 2.5171E-4 | 9.9595E-4 | 1.9595E-3 | 3.1322E-3 | 4.4992E-3
Table 7.2 The absolute errors obtained by optimal homotopy asymptotic method (OHAM)
for modified Fornberg-Whitham equation given in eq. (7.12) at various points of x and t taking
a=1.
X Ugsact ~ UoHam
t=0.1 t=0.2 t=0.3 t=04 t=0.5 t=0.6 t=0.7 t=0.8 t=09
0.1 | 6.4610E-6 | 1.2928E-5 | 5.7106E-5 | 1.2329E-4 | 2.0699E-4 | 3.0203E-4 | 4.0061E-4 | 4.9330E-4 | 5.6917E-4
0.2 | 2.5099E-5 | 2.2342E-5 | 8.7492E-6 | 6.6918E-5 | 1.4918E-4 | 2.5087E-4 | 3.6563E-4 | 4.8544E-4 | 6.0074E-4
0.3 | 4.3236E-5 | 5.6305E-5 | 3.7197E-5 | 1.4365E-5 | 9.6935E-5 | 2.0734E-4 | 3.4071E-4 | 4.9050E-4 | 6.4853E-4
0.4 | 6.0707E-5 | 8.8650E-5 | 8.0295E-5 | 3.3830E-5 | 5.0831E-5 | 1.7204E-4 | 3.2644E-4 | 5.0897E-4 | 7.1289E-4
0.5 | 7.7360E-5 | 1.1908E-4 | 1.2014E-4 | 7.7185E-5 | 1.1402E-5 | 1.4551E-4 | 3.2329E-4 | 5.4121E-4 | 7.9400E-4
0.6 | 9.3052E-5 | 1.4735E-4 | 1.5637E-4 | 1.1527E-4 | 2.0905E-5 | 1.2816E-4 | 3.3161E-4 | 5.8741E-4 | 8.9183E-4
0.7 | 1.0765E-4 | 1.7320E-4 | 1.8867E-4 | 1.4773E-4 | 4.5730E-5 | 1.2029E-4 | 3.5157E-4 | 6.4760E-4 | 1.0061E-3
0.8 | 1.2105E-4 | 1.9644E-4 | 2.1678E-4 | 1.7429E-4 | 6.2814E-5 | 1.2211E-4 | 3.8324E-4 | 7.2163E-4 | 1.1365E-3
0.9 | 1.3314E-4 | 2.1689E-4 | 2.4049E-4 | 1.9473E-4 | 7.1997E-5 | 1.3366E-4 | 4.2653E-4 | 8.0916E-4 | 1.2824E-3
Table 7.3 The absolute errors obtained by two-dimensional Hermite wavelet method and
third order OHAM solution for fractional order nonlinear modified Fornberg-Whitham equation
given in eq. (7.12) at various points of x and t taking « =0.75.
X [Ugiast —Uorau |
t=0.1 t=0.2 t=0.3 t=04 t=05 t=0.6 t=0.7 t=0.8 t=0.9
0.1 | 4.7565E-4 | 3.5641E-3 | 8.0016E-3 | 1.3396E-2 | 1.9495E-2 | 2.6133E-2 | 3.3182E-2 | 4.0509E-2 | 4.7923E-2
0.2 | 8.8635E-4 | 1.2693E-3 | 4.8602E-3 | 9.4511E-3 | 1.4770E-2 | 2.0648E-2 | 2.6963E-2 | 3.3585E-2 | 4.0320E-2
0.3 | 2.2468E-3 | 1.0167E-3 | 1.7374E-3 | 5.5349E-3 | 1.0084E-2 | 1.5214E-2 | 2.0804E-2 | 2.6727E-2 | 3.2788E-2
0.4 | 3.6037E-3 | 3.2904E-3 | 1.3619E-3 | 1.6542E-3 | 5.4468E-3 | 9.8382E-3 | 1.4712E-2 | 1.9946E-2 | 2.5339E-2
0.5 | 4.9553E-3 | 5.5482E-3 | 4.4327E-3 | 2.1843E-3 | 8.6443E-4 | 4.5308E-3 | 8.7013E-3 | 1.3255E-2 | 1.7987E-2
0.6 | 6.2997E-3 | 7.7868E-3 | 7.4700E-3 | 5.9744E-3 | 3.6545E-3 | 6.9903E-4 | 2.7806E-3 | 6.6656E-3 | 1.0747E-2
0.7 | 7.6352E-3 | 1.0003E-2 | 1.0469E-2 | 9.7098E-3 | 8.1023E-3 | 5.8419E-3 | 3.0385E-3 | 1.9102E-4 | 3.6320E-3
0.8 | 8.9603E-3 | 1.2193E-2 | 1.3425E-2 | 1.3384E-2 | 1.2471E-2 | 1.0888E-2 | 8.7451E-3 | 6.1561E-3 | 3.3425E-3
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| 0.9 | 1.0273E-2 | 1.4356E-2 | 1.6335E-2 | 1.6992E-2 | 1.6754E-2 | 1.5830E-2 | 1.4328E-2 | 1.2363E-2 | 1.0162E-2

Table 7.4

The absolute errors obtained by two-dimensional Hermite wavelet method and

third order OHAM solution for fractional order nonlinear modified Fornberg-Whitham equation

given in eq. (7.12) at various points of x and t taking « =0.5.

X |uOHAM ~ Ubiermite wavelet
t=0.1 t=0.2 t=0.3 t=04 t=05 t=0.6 t=0.7 t=0.8 t=0.9
0.1 | 1.2334E-2 | 4.0688E-3 | 1.4027E-2 | 1.6573E-2 | 1.5687E-2 | 1.5562E-2 | 1.5805E-2 | 6.6256E-3 | 3.5980E-2
0.2 | 1.5565E-2 | 3.8814E-4 | 1.0784E-2 | 1.3953E-2 | 1.3347E-2 | 1.3079E-2 | 1.3374E-2 | 6.0014E-3 | 3.0299E-2
0.3 | 1.8769E-2 | 3.2892E-3 | 7.5422E-3 | 1.1332E-2 | 1.0998E-2 | 1.0573E-2 | 1.0901E-2 | 5.3094E-3 | 2.4724E-2
0.4 | 2.1934E-2 | 6.9543E-3 | 4.3072E-3 | 8.7171E-3 | 8.6477E-3 | 8.0497E-3 | 8.3899E-3 | 4.5590E-3 | 1.9229E-2
0.5 | 2.5043E-2 | 1.0597E-2 | 1.0867E-3 | 6.1147E-3 | 6.3028E-3 | 5.5169E-3 | 5.8492E-3 | 3.7602E-3 | 1.3790E-2
0.6 | 2.8082E-2 | 1.4209E-2 | 2.1116E-3 | 3.5329E-3 | 3.9725E-3 | 2.9834E-3 | 3.2865E-3 | 2.9235E-3 | 8.3783E-3
0.7 | 3.1037E-2 | 1.7780E-2 | 5.2800E-3 | 9.8022E-4 | 1.6663E-3 | 4.5848E-4 | 7.1012E-4 | 2.0604E-3 | 2.9665E-3
0.8 | 3.3892E-2 | 2.1298E-2 | 8.4099E-3 | 1.5347E-3 | 6.0631E-4 | 2.0482E-3 | 1.8707E-3 | 1.1828E-3 | 2.4738E-3
0.9 | 3.6632E-2 | 2.4754E-2 | 1.1492E-2 | 4.0027E-3 | 2.8348E-3 | 4.5263E-3 | 4.4464E-3 | 3.0333E-4 | 7.9720E-3
Table 7.5 Comparison of approximate solutions obtained by two-dimensional Hermite
wavelet method and optimal homotopy asymptotic method for fractional order nonlinear modified
Fornberg-Whitham equation given in eq. (7.12) at various points of x and t taking « =0.75.
X t=0.1 t=0.2 t=0.3 t=04 t=0.5 t=0.6 t=0.7 t=0.8 t=0.9
UHW UOHAM UHW UOHAM UHW UOHAM UHW uOHAM uHW uOHAM UHW UOHAM UHW uOHAM UHW uOHAM uHW UOHA
0.1 -0.84 -0.84 | -0.84 -0.84 -0.83 -0.84 -0.83 -0.83 -0.82 -0.83 -0.8 -0.83 -0.8 -0.82 -0.80 -0.82 -0.7 -0.8
414 495 068 367 584 165 002 905 346 594 1635 238 0879 840 095 404 9298 1933
0.2 -0.84 -0.84 | -0.84 -0.84 -0.83 -0.84 -0.83 -0.84 -0.82 -0.83 -0.8 -0.83 -0.8 -0.83 -0.80 -0.82 -0.7 -0.8
449 509 175 444 759 298 241 090 649 828 1999 518 1304 164 576 770 9836 2338
0.3 -0.84 -0.84 | -0.84 -0.84 -0.83 -0.84 -0.83 -0.84 -0.82 -0.84 -0.8 -0.83 -0.8 -0.83 -0.81 -0.83 -0.8 -0.8
435 476 235 473 885 385 431 229 901 016 2312 753 1677 444 006 093 0321 2703
0.4 -0.84 -0.84 | -0.84 -0.84 -0.83 -0.84 -0.83 -0.84 -0.83 -0.84 -0.8 -0.83 -0.8 -0.83 -0.81 -0.83 -0.8 -0.8
375 395 247 455 963 423 571 320 103 157 2574 942 1997 679 383 372 0752 3024
0.5 -0.84 -0.84 | -0.84 -0.84 -0.83 -0.84 -0.83 -0.84 -0.83 -0.84 -0.8 -0.84 -0.8 -0.83 -0.8 -0.83 -0.8 -0.8
268 266 211 389 991 415 661 365 253 253 2783 085 2264 869 1705 606 1129 3302
0.6 -0.84 -0.84 | -0.84 -0.84 -0.83 -0.84 -0.83 -0.84 -0.83 -0.84 -0.8 -0.84 -0.8 -0.84 -0.81 -0.83 -0.8 -0.8
115 091 128 277 971 358 702 362 352 301 2941 182 2478 013 975 796 1452 3535
0.7 -0.83 -0.83 | -0.83 -0.84 -0.83 -0.84 -0.83 -0.84 -0.83 -0.843 -0.8 -0.84 -0.8 -0.84 -0.82 -0.83 -0.8 -0.8
915 868 998 117 903 255 693 312 401 02 3046 233 2639 110 189 939 1719 3724
0.8 -0.83 -0.83 | -0.83 -0.83 -0.83 -0.84 -0.83 -0.84 -0.83 -0.84 -0.8 -0.84 -0.8 -0.84 -0.82 -0.84 -0.8 -0.8
669 600 821 910 787 105 634 215 399 256 3099 236 2746 162 349 038 1932 3867
0.9 -0.83 -0.83 | -0.83 -0.83 -0.83 -0.83 -0.83 -0.84 -0.83 -0.84 -0.8 -0.84 -0.8 -0.84 -0.82 -0.84 -0.8 -0.8
379 286 598 657 624 908 527 072 346 163 3101 193 2800 167 455 090 2088 3966
Table 7.6 Comparison of approximate solutions obtained by two-dimensional Hermite
wavelet method and optimal homotopy asymptotic method for fractional order nonlinear modified
Fornberg-Whitham equation given in eq. (7.12) at various points of x and t taking « =0.5.
x t=0.1 t=0.2 t=0.3 t=04 t=0.5 t=0.6 t=0.7 t=0.8 t=0.9
UHW uOHAM UHW uOHAM UHW uOHAM uHW uOHAM UHW uOHAM un uOHAM un uOHAM uHW uOHAM un UOHAM
0.1 -0.85 -0.84 -0.83 -0.84 -0.82 -0.83 -0.81 -0.83 -0.81 -0.83 -0.8 -0.82 -0.8 -0.82 -0.81 -0.81 -0.8 -0.8
594 360 668 073 344 747 743 401 471 040 1114 671 0713 294 248 911 5122 1524
0.2 -0.85 -0.84 -0.84 -0.84 -0.82 -0.83 -0.82 -0.83 -0.81 -0.83 -0.8 -0.82 -0.8 -0.82 -0.81 -0.82 -0.8 -0.8
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929 372 118 157 807 885 188 584 928 263 1620 928 1246 583 629 230 4899 1869
0.3 -0.86 -0.84 -0.84 -0.84 -0.83 -0.83 -0.82 -0.83 -0.82 -0.83 -0.8 -0.83 -0.8 -0.82 -0.81 -0.82 -0.8 -0.8
214 337 523 195 223 977 589 722 342 442 2086 143 1740 831 976 507 4646 2174
0.4 -0.86 -0.84 -0.84 -0.84 -0.83 -0.84 -0.82 -0.83 -0.82 -0.83 -0.8 -0.83 -0.8 -0.83 -0.82 -0.82 -0.8 -0.8
449 256 881 185 593 024 944 815 711 576 2509 314 2196 035 286 742 4361 2438
0.5 -0.86 | -084 | -085 | -084 | -0.83 | -0.84 -0.83 | 083 | -0.83 | -0.83 | -0.8 -0.83 | -0.8 -0.83 -0.82 | -0.82 -0.8 -0.8
632 127 189 130 916 025 252 863 035 665 2889 441 2611 196 559 935 4039 2660
0.6 -0.86 | -0.83 | -085 | -084 | -0.84 | -0.83 -0.83 | 083 | -0.83 | -0.83 | -0.8 -0.83 | -0.8 -0.83 -0.82 | -0.83 -0.8 -0.8
762 954 449 028 191 979 513 866 313 710 3225 523 2985 314 793 085 3678 2841
0.7 -0.86 | -0.83 | -085 | -0.83 | -0.84 | -0.83 -0.83 | 083 | -0.83 | -0.83 | -0.8 -0.83 | -0.8 -0.83 -0.82 | -0.83 -0.8 -0.8
838 735 659 882 2417 889 725 823 543 710 3516 562 3317 388 986 192 3276 2979
0.8 -0.86 | -0.83 | -085 | -0.83 | -0.84 | -0.83 -0.83 | 083 | -0.83 | -0.83 | -0.8 -0.8 -0.8 -0.8 -0.83 | -0.83 -0.8 -0.8
860 471 819 689 594 753 889 736 726 665 3761 3556 3605 3418 138 256 2827 3075
0.9 -0.86 | -0.83 | -085 | -0.83 | -0.84 | -0.83 -0.84 | 083 | -0.83 | -0.83 | -0.8 -0.83 | -0.8 -0.83 -0.83 | -0.83 -0.8 -0.8
826 163 929 453 722 573 004 604 859 576 3959 506 3849 405 246 277 2330 3127
Table 7.7 L, and L, error norms for fractional order nonlinear modified Fornberg-Whitham

equation using two-dimensional Hermite wavelet methods at various points of t taking

a=0.75and 0.5.

t a=0.75 a=05
Lo Ly Lo Ly
0.1 1.80944E-2 3.6632E-2 7.80858E-2 1.0273E-2
0.2 2.39252E-2 2.4754E-2 4,21019E-2 1.4356E-2
0.3 2.69190E-2 1.4027E-2 2.49960E-2 1.6335E-2
0.4 3.00791E-2 1.6573E-2 2.72568E-2 1.6992E-2
0.5 3.52921E-2 1.5687E-2 2.62040E-2 1.9495E-2
0.6 4.31487E-2 1.5562E-2 2.55744E-2 2.6133E-2
0.7 5.34017E-2 1.5805E-2 2.62044E-2 3.3182E-2
0.8 6.55134E-2 6.6256E-3 1.29004E-2 4.0509E-2
0.9 7.87788E-2 3.5980E-2 5.94344E-2 4.7923E-2

The following Figures 7.1 and 7.2 demonstrate the graphical comparison of the numerical
solutions obtained by two-dimensional Hermite wavelet approximation with regard to
OHAM for ¢ =0.75 and 0.5 respectively.

Figure 7.1

regard to two-dimensional Hermite wavelet approximation for o =0.75.

wil.6.1)
—0.70 :
-0.7
—0.80
s ————3
A
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Figure 7.2 Comparison of the numerical solutions of u(0.7,t) obtained by OHAM with

regard to two-dimensional Hermite wavelet approximation for « =0.5.

7.5 Application of Analytical Methods to Determine the
Exact Solutions of Time-Fractional Modified

Fornberg-Whitham Equation

7.5.1 Implementation of the First Integral Method for Solving
Fractional Modified Fornberg-Whitham Equation

Let us consider the following time-fractional modified Fornberg-Whitham equation

a a 2 2 3
o°u 8 (au}ra_quuz@_u_ga_u@u L& (7.3

B 2 S a2 TUoa
ot” ot | ox OX OX  OX OX OX
Here 0 <a <1, is the parameter representing the order of the fractional time derivative. In

this present section, new exact solution of fractional modified Fornberg-Whitham equation
has been derived using the first integral method. The first integral method has been
implemented for finding exact solution of fractional modified Fornberg-Whitham equation
given in eqg. (7.32) with an intention to demonstrate the efficacy and accuracy of the
proposed method. The exact solutions devised are compared with the numerical solution
obtained by OHAM.

Let us introduce the following fractional complex transform in eq. (7.32):

_ .
u(x,t)=¥(S), &=kx @D’ (7.33)

where k and 2 are constants.
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By applying the fractional complex transform (7.33), eq. (7.32) can be transformed to the

following nonlinear ordinary differential equation

— AP (E) + AR () + K, (&) + K(P () P (&) = 3K3F: (&) ¥ (&)

(7.34)
+KPP(E) Yz (£).
Integrating eq. (7.34) once with respect to &, we obtain
&~ AW(E) + AW () +RF(@) + 5 (PO = SK(#. (O
(7.35)

where &, is an integration constant.

Using egs. (1.6) and (1.7) of chapter 1, eq. (7.35) can be written as the following two-

dimensional autonomous system

(&)
e,
(i -X) T2 =2 X @ - S (X@P KX@O KV OF -5 739)

According to the first integral method, we suppose that X(¢) and Y (&) are the nontrivial

solutions of eq. (7.36) and
QX Y) =2ai(><)v‘
is an irreducible polynomial in the complex domain € [X, Y] such that
Q[X(«:),Y(ﬁ)]=gai(xm)vi(é) ~o, (7:37)

where a,(X(&)), i=012,...,m are polynomials in X and a,(X)#0. Eq. (7.37) is called

the first integral to eq. (7.36). Applying the division theorem 1.1 of chapter 1, there exists
a polynomial g(X)-+h(X)Y inthe complex domain € [X, Y] such that

j—gz(g(X)Jrh(X)Y)Zai(X)Yi . (7.38)
i=0
Considering m=1 ineq. (7.38), we obtain
aQdX aQdy
de o a (9(X) +h(X)Y Nag(X) +ay(X)Y). (7.39)

212



Equating the coefficients of Y! , 1=0,1 on both sides of eq. (7.39), we have
v 00 X (O~ S (XEF ~kX(@) - | =aoX)g00(aC X, (7.40)

Y1 ag(X)AK2 —k°X )= (3o (X)(X) +a, (X)a (X)) Ak2 —k°X ). (7.41)

Y20 &, (X)AK2 —k3X )= a, (X)h(X) (k2 —k3X )—a (X )K. (7.42)
Since a;(X), =01 are polynomials in X, from eq. (7.42) we infer that a,(X) is a

constant and h(X)=ﬁ. For simplicity, we take & (X)=1. Then balancing the

degrees of a,(X) and g(X), eq. (7.41) indicates that deg(g(X)) <deg(a,(X)), thus
from eq. (7.41), we conclude that deg(g(X))=1.

Now suppose that

9(X) = b X +b, aO(X)z%X2+A1X+A0, (b, #0,A, 20), (7.43)
where b, by, A,, A and A, are all constants to be determined later. Using eq. (7.41), we
find that

by = —kTA), (7.44)
b1=Az—”‘7k—kz—f°- (7.45)

Next, substituting a,(X) and Q(X) in eq. (7.40) and consequently equating the

coefficients of X', 1=012,34 to zero, we obtain the following system of nonlinear

algebraic equations:

X% byA Ak +&,=0. (7.46)
X' by AK® +b A AK? —by Ak® = 1K . (7.47)
X2: %+blﬁiﬂk2—boﬁﬁk3—ﬁbblk3:0. (7.48)
X3 blAZZ’lkz _ bogzkg B AK® = _—3k (7.49)
X4 —b1A2Tk3:o. (7.50)
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Solving the above system of eqgs. (7.46)-(7.50) simultaneously, we get the following

family of nontrivial solutions

AP -3k i _ —2iIk el
& 3Kk (k - 1) A 3k (k- 2) e 3k (k-4) (751
i (2% — 37K +3k?) ia? 2i/ 7k
and = ! A = , = . 7.52
. 3Kk (k= 1) 3k (k-4) & 3k (k-4) (7:52
Case I: Substituting the values of A,, A and A,, obtained in eq. (7.51) into eq. (7.37), we
get
3
2iVik o 12 iV (22 -3k +3k?)
Y(&) = X X
© 3k (k- 4) +3\/|<4(|<—/1) ' 3Kk (k - 4)
3 .
o XE_ 2iv/ Ak w2, 22 X+|\/I(/12—3zk+3k2)_ (753)
d&  3fk*k-4)  3Jk*k-4) 3Kk (k- 1)
Solving eg. (7.53), we obtain the exact solution to eq. (7.32) as
u(x,t) =¥ ($)
= X (&) = —{m i\/§(/12k)tanh[(’12k)(ﬂ\/ ke (k=2)¢ +fi”k5’71 3"<6771)]] , (7.54)
2k 24/3(A-k)k

where 7, is an arbitrary constant.

Case |1: Substituting the values of Ay, A and A, fromeq. (7.52) into eq. (7.37), we get

3
2iNak o, iA2 iV (2%2 -3k +3k?)
Y(&)=- X2 - X —

© 3k4k-4)  3Jk(k-2) 3Kk (k - 2)
o XE@_ 2ak o 2 y _ WA ~32k +3K7) (7.55)

d¢  3k*(k-4) 3k k-4) 3Kk (k - A) |
Solving eg. (7.55), we obtain the exact solution to eq. (7.32) as
u(x,t) =" (%)
=X(§)=L 2 +430 - 2K) tanh (/1—2k)(\/zw/k4(k—ﬂ,)<§+3i/1k5772—3ik6772) (7.56)

2k 2/3(4 - k)k*

where 77, is an arbitrary constant.

The established solutions in egs. (7.54) and (7.56) have been checked by putting them into
the eq. (7.34). Thus the new exact solutions given in egs. (7.54) and (7.56) for time-
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fractional modified Fornberg-Whitham equation have been first time obtained in this

present section.

7.5.2 Implementation of OHAM for Approximate Solution of Fractional
Modified Fornberg-Whitham Equation

To exhibit the effectiveness and accuracy of proposed scheme, we consider the fractional
modified Fornberg-Whitham equation with an initial condition. The solutions thus
obtained are compared with the exact solutions obtained by first integral method.

Using optimal homotopy asymptotic method [30-32], the homotopy for eq. (7.32) can be

written as
(- p)Llp(xt; p)= H(p){aaq’gf; D)_ s; {8240(8’;2“ p)} 65”();;; P)
. T — (7.57)
L o(xt: p)? aco(i;,xt, p)_36¢(>gxt, p)o (pgi(,zt, p)_q)(x’t; p)a (p(a);?’t’ )|
where ¢(X,t; p) = Uo (X, 1) +§jui (xtp', (7.58)
i=1
H(p)=C,p+C,p* +Cp° +... . (7.59)

Substituting egs. (7.58) and (7.59) in eq. (7.57) and equating the coefficients of different

powers in p, we have the following system of partial differential equations.

Coefficients of p°: T (Y . (7.60)

a

o a a a 2
Coefficients of pl:a Uy(x,1) _ 0%Up(x.1) -C, Up(x,t) 0% [0 UO(ZX,t)
ata ata 8t“ 6t“ o

AUy (Xt AUy (X,1) AUy (X,t) 02Uy (x,t AUy (x,t
+—u°a(;( )+(u0(x,t))2 an(;( )—3 an(; ) U;X(ZX )—uo(x,t)—ugx(;( )}. (7.61)

Coefficients of p?:
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a“uz(x,t)_(’a“ul(x,t)_C o"uy(x,t) 8" [ %u (1) +8ul(x,t)
ot ot et att ox? X

+[2uo<x,t>ul<x,t>% uy () (XX t>j (auo(x,t)aumx,t)+

OX Ox?
au, (x,t) azuo(f,t)j ( ) o%u (x t)+u1( X1 o°u, (X, t)ﬂ
OX OX ox®
N C{a"‘uo(x,t) e [82u0(2x,t)j+8uo(x,t) () ) au, (x,1)
ot ot OX OX OX
(7.62)
_38u0(x,t) 82u0(2><,t) 0, (x, 1) LYo (3 8) o%u (x t)

OX
and so on.
For solving fractional order modified Fornberg-Whitham equation using OHAM, we
consider the following initial condition for equation (7.32)

u(x,0)= ;—E[m i\/§(/12k)tanh{(/1_2k)(ﬂ k4;5%(/1/1) Skii(;l;3iﬂ,k5771 _3"(6771)}] .(7.63)

Using the initial condition u, =u(x,0) and solving eq. (7.60) to eq. (7.62), we obtain the
expressions for ug, u;, u, and so on.

Finally, the third order approximate solution for fractional modified Fornberg-Whitham
equation is given by

U =Uq(X,t)+u (X, t) +u,(x,t). (7.64)
The optimal values of the convergence control parameters C, and C, can be obtained

using weighted residual least square method given in egs. (1.34) and (1.35) of chapter 1.

7.6  Numerical Results and Discussion

The comparison of the absolute errors for fractional modified Fornberg-Whitham equation
(7.32) have been exhibited in Tables 7.8-7.10 which are generated by using the results
obtained by first integral method and OHAM at different values of «. In order to examine
the accuracy and reliability of first integral method for solving fractional order nonlinear
modified Fornberg-Whitham equation, we compare the exact solution obtained by using
first integral method with the third order approximate OHAM solutions. Table 7.11

illustrates the L, and L, error norms for fractional modified Fornberg-Whitham equation

given in eq. (7.32) at various points of t taking «=0.5 and 0.75. Figures 7.3-7.6
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demonstrate the comparison of approximate solutions obtained by OHAM with first
integral method for modified Fornberg-Whitham equation. It can be observed that the
derived numerical simulation results are in good agreement with the exact solutions

obtained by first integral method through illustrations in Tables and figures.

Table 7.8 The absolute errors obtained by OHAM for nonlinear modified Fornberg-
Whitham equation given in eq. (7.32) at various points of x and t taking k =1, 1=2.5, n; =1, and

a=1.

Ugact — UoHawm

t=0.1 t=0.2 t=03 t=04 t=0.5 t=0.6 t=0.7 t=0.8 t=0.9

t=1.0

0.1

9.3908E-4 | 8.9819E-4 | 2.8677E-5 | 1.5351E-3 | 3.6724E-3 | 6.2730E-3 | 9.2349E-3 | 1.2462E-2 | 1.5864E-2

1.9351E-2

0.2

1.1574E-3 | 1.2728E-3 | 5.0544E-4 | 1.0041E-3 | 3.1298E-3 | 5.7577E-3 | 8.7828E-3 | 1.2107E-2 | 1.5637E-2

1.9284E-2

0.3

1.3864E-3 | 1.6646E-3 | 1.0025E-3 | 4.5210E-4 | 2.5680E-3 | 5.2267E-3 | 8.3199E-3 | 1.1746E-2 | 1.5413E-2

1.9227E-2

0.4

16274E-3 | 2.0759E-3 | 1.5231E-3 | 1.2413E-4 | 1.9834E-3 | 4.6765E-3 | 7.8428E-3 | 1.1379E-2 | 1.5188E-2

1.9178E-2

0.5

1.8818E-3 | 2.5092E-3 | 2.0703E-3 | 7.2846E-4 | 1.3721E-3 | 4.1029E-3 | 7.3478E-3 | 1.1000E-2 | 1.4960E-2

1.9135E-2

0.6

2.1514E-3 | 2.9676E-3 | 2.6480E-3 | 1.3652E-3 | 7.2944E-4 | 3.5016E-3 | 6.8304E-3 | 1.0605E-2 | 1.4725E-2

1.9094E-2

0.7

2.4381E-3 | 3.4543E-3 | 3.2605E-3 | 2.0392E-3 | 5.0184E-5 | 2.8671E-3 | 6.2856E-3 | 1.0191E-2 | 1.4480E-2

1.9053E-2

0.8

2.7441E-3 | 3.9732E-3 | 3.9127E-3 | 2.7562E-3 | 6.7161E-4 | 2.1934E-3 | 5.7074E-3 | 9.7520E-3 | 1.4218E-2

1.9007E-2

0.9

3.0720E-3 | 4.5286E-3 | 4.6103E-3 | 3.5225E-3 | 1.4428E-3 | 1.4734E-3 | 5.0890E-3 | 9.2805E-3 | 1.3936E-2

1.8951E-2

1.0

3.4245E-3 | 5.1254E-3 | 5.3596E-3 | 4.3457E-3 | 2.2716E-3 | 6.9904E-4 | 4.4222E-3 | 8.7694E-3 | 1.3624E-2

1.8880E-2

Table 7.9 The absolute errors obtained by third order OHAM for nonlinear modified
Fornberg-Whitham equation given in eq. (7.32) at various points of x and t taking k=1, 1 =2.5,

n =1,and a=0.75.

Ugxact —UoHam

t=0.1 t=0.2 t=0.3 t=04 t=0.5 t=0.6 t=0.7 t=0.8 t=0.9 t=1.0
0.1 | 1.5780E-3 | 8.3963E-4 | 7.3067E-4 | 2.7686E-3 | 5.0835E-3 | 7.5542E-3 | 1.0094E-2 | 1.2641E-2 | 1.5139E-2 | 1.7548E-2
0.2 | 1.9515E-3 | 1.3377E-3 | 1.9635E-4 | 2.2546E-3 | 4.6313E-3 | 7.1966E-3 | 9.8595E-3 | 1.2551E-2 | 1.5217E-2 | 1.7813E-2
0.3 | 2.3436E-3 | 1.8601E-3 | 3.6403E-4 | 1.1749E-3 | 4.1550E-3 | 6.8173E-3 | 9.6052E-3 | 1.2446E-2 | 1.5283E-2 | 1.8069E-2
0.4 | 2.7562E-3 | 2.4098E-3 | 9.5402E-4 | 1.1456E-3 | 3.6507E-3 | 6.4126E-3 | 9.3285E-3 | 1.2321E-2 | 1.5333E-2 | 1.8312E-2
0.5 | 3.1920E-3 | 2.9902E-3 | 1.5775E-3 | 5.4267E-4 | 3.1141E-3 | 5.9781E-3 | 9.0252E-3 | 1.2174E-2 | 1.5363E-2 | 1.8541E-2
0.6 | 3.6537E-3 | 3.6052E-3 | 2.2390E-3 | 9.8730E-5 | 2.5405E-3 | 5.5091E-3 | 8.6907E-3 | 1.2000E-2 | 1.5370E-2 | 1.8749E-2
0.7 | 4.1442E-3 | 4.2590E-3 | 2.9435E-3 | 7.8394E-4 | 1.9243E-3 | 5.0001E-3 | 8.3195E-3 | 1.1792E-2 | 1.5349E-2 | 1.8934E-2
0.8 | 4.6671E-3 | 4.9566E-3 | 3.6966E-3 | 1.5190E-3 | 1.2590E-3 | 4.4443E-3 | 7.9051E-3 | 1.1546E-2 | 1.5293E-2 | 1.9089E-2
0.9 | 5.2262E-3 | 5.7034E-3 | 4.5047E-3 | 2.3111E-3 | 5.3754E-4 | 3.8345E-3 | 7.4401E-3 | 1.1252E-2 | 1.5195E-2 | 1.9207E-2
1.0 | 5.8260E-3 | 6.5056E-3 | 5.3752E-3 | 3.1681E-3 | 2.4874E-3 | 3.1621E-3 | 6.9156E-3 | 1.0904E-2 | 1.5047E-2 | 1.9279E-2

Table 7.10 The absolute errors obtained by third order OHAM for nonlinear modified
Fornberg-Whitham equation given in eq. (7.32) at various points of x and t taking k =1, 1 =25,

n,=1,and o =0.5.
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Ugxact —UoHam

t=0.1

t=02

t=03

t=04 t=0.5

t=0.6

t=0.7

t=0.8

t=0.9

t=1.0

0.1

2.2513E-3

7.4423E-4

1.0160E-3

2.7858E-3 | 4.4912E-3

6.1032E-3

7.6093E-3

9.0044E-3

1.0286E-2

1.1455E-2

0.2

2.7556E-3

1.2335E-3

6.1201E-4

2.5001E-3 | 4.3430E-3

6.1056E-3

7.7717E-3

9.3342E-3

1.0789E-2

1.2136E-2

0.3

3.2903E-3

1.7588E-3

1.6932E-4

2.1737E-3 | 4.1529E-3

6.0647E-3

7.8897E-3

9.6181E-3

1.1245E-2

1.2769E-2

0.4

3.8590E-3

2.3241E-3

3.1646E-4

1.8023E-3 | 3.9160E-3

5.9757E-3

7.9580E-3

9.8510E-3

1.1648E-2

1.3347E-2

0.5

4.4652E-3

2.9338E-3

8.5036E-4

1.3803E-3 | 3.6268E-3

5.8327E-3

7.9708E-3

1.0026E-2

1.1993E-2

1.3865E-2

0.6

5.1131E-3

3.5931E-3

1.4381E-3

9.0172E-4 | 3.2786E-3

5.6289E-3

7.9209E-3

1.0138E-2

1.2271E-2

1.4314E-2

0.7

5.8072E-3

4.3078E-3

2.0862E-3

3.5928E-4 | 2.8640E-3

5.3561E-3

7.7998E-3

1.0175E-2

1.2473E-2

1.4685E-2

0.8

6.5529E-3

5.0845E-3

2.8021E-3

2.5513E-4 | 2.3740E-3

5.0051E-3

7.5977E-3

1.0129E-2

1.2588E-2

1.4967E-2

0.9

7.3558E-3

5.9304E-3

3.5944E-3

9.5096E-4 | 1.7984E-3

4.5648E-3

7.3028E-3

9.9877E-3

1.2604E-2

1.5145E-2

1.0

8.2226E-3

6.8540E-3

4.4727E-3

1.7391E-3 | 1.1254E-3

4.0224E-3

6.9015E-3

9.7347E-3

1.2506E-2

1.5205E-2

Table 7.11

L, andL,, error norms for time-fractional nonlinear modified Fornberg-Whitham

equation given in eq. (7.32) at various points of t taking & =0.75 and 0.5.

t a=0.75 a=0.5
L2 Loo L2 Loc
0.1 1.19640E-2 5.8260E-3 1.68180E-2 8.2226E-3
0.2 1.22987E-2 6.5056E-3 1.46109E-2 6.8540E-3
0.3 8.97947E-3 5.3752E-3 7.03247E-3 4.4727E-3
0.4 5.83484E-3 3.1681E-3 5.36896E-3 2.7858E-3
0.5 1.02858E-2 5.0835E-3 1.06703E-2 4.4912E-3
0.6 1.82208E-2 7.5542E-3 1.74206E-2 6.1056E-3
0.7 2.77533E-2 1.0094E-2 2.42832E-2 7.9708E-3
0.8 3.78696E-2 1.2641E-2 3.10113E-2 1.0175E-2
0.9 4.82540E-2 1.5370E-2 3.75238E-2 1.2604E-2
1.0 5.87011E-2 1.9279E-2 4.37840E-2 1.5205E-2
w(x.0.1)
-080
—e— UM
—0.85
. ’;._--,"::::' —a— UOHAM
-100} ) __;_.;_-.-::;::}:--
s
ctosf -
—

Figure 7.3 Comparison of approximate solution obtained by OHAM with the exact solution
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obtained by FIM for fractional modified Fornberg-Whitham equation at t =0.1taking « =1.
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Figure 7.4  Comparison of approximate solution obtained by OHAM with the exact solution
obtained by FIM for fractional modified Fornberg-Whitham equation at t =0.5taking a =1.
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Figure 7.5 Comparison of approximate solution obtained by OHAM with the exact solution
obtained by FIM for fractional modified Fornberg-Whitham equation at t =0.2 taking e =0.75.
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Figure 7.6 Comparison of approximate solution obtained by OHAM with the exact solution
obtained by FIM for fractional modified Fornberg-Whitham equation t=0.4 taking & =0.5.
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7.7 Application of Analytical and Numerical Methods for
Solving Time-Fractional Coupled Jaulent-Miodek

Equation

7.7.1 Two-Dimensional Hermite Wavelet Method for Solving Nonlinear

Time-Fractional Coupled Jaulent-Miodek Equations

To demonstrate the accuracy and efficiency of the proposed numerical technique, we
consider time-fractional coupled Jaulent-Miodek equation. The numerical approximate
solutions thus achieved are compared with the exact solutions in case of classical order
and with the solutions obtained by OHAM in case of fractional order respectively.

Consider the nonlinear time-fractional coupled Jaulent-Miodek equations

a 3 3 2
o"u @ g+§V6\;+g@8_\2/_6u8_u_6w@_§6_uv2:0’ (7.65)
%  ox® 2 ox° 20X ox OX OX 20X

+——-6—V-6Uu————V" =0, (7.66)

with initial conditions [163]
u(x,O):%iz[l—%echz( %ﬂ (7.67)

v(x,0)= Zsech(%j, (7.68)
where 2 is an arbitrary constant.

For a =1, the exact solutions of egs. (7.65) and (7.66) are given by [163]

u(X,t)=%}L{l—%echz{%ﬂ(x+%ftjﬂ, (7.69)

v(x,t)=Asec h[%ﬁ(x+%/ﬁﬂ- (7.70)

The Hermite wavelet solutions of u(x,t) and v(x,t) are sought by assuming that u(x,t) and

v(x,t) can be expanded in terms of Hermite wavelets as
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u(x,t)= _ Zz:an,i,l,j Wn,i,l,j(x1t)’ (7.71)

A A VP

V( z Z anll j V/nllj X t) (7-72)

i=0 1=l j=0
where n=1,...,24%i=0,.,M, -11=1...,2%* j=0,.,M, 1.
The nonlinear terms appeared in eqs. (7.65) and (7.66) can be approximated using Hermite

wavelet function as

o3 k-1m 1 okelm,

-1
V=3 = Z Z ZCnIIJV/nHJ Xt) (7.73)

3
X n=l i=0 1=l j=0

av 62 oM lM]_ -1 Zkz_le

ZZ Z ZanIJV/mIJXt) (7-74)

x o =L i=0 1=l j=0

-1 m-1 ke my—1

=22, 2 2 nini Vaini(xt), (7.75)

n=l i=0 I=1 j=0

v AV I R LR V|

w= = DD e Vain (1), (7.76)

n=l i=0 I=1 j=0

21 M1 ke im,

a_uvz_zz Z Zgn|IJWn|IJXt) (7-77)

n=l i=0 I=1

-1 m—1 ke 1my—1

—v—zz > > i Wainj (1), (7.78)

n=l i=0 I=1 j=0

8V M-l m—1 2keIm,—1

=2 2 ZzpnnJ‘//nuJXt) (7.79)

n=l i=0 I=1 j=0

A VI LR V |

—v 2= D i Wi, (1), (7.80)

n=l i=0 I=l j=0

This implies

kp-1 ko1 k11 ko1
2t M-12%2t M1 2t My -12%2 "t My-1 3
\ 2 )]x{ 0 l//n,i,l,j(xlt) B

DI an”Jl//n"J Xt

3
n=l i=0 I=1 j=0 n=l i=0 I=1 j=0 OX (7.81)
I Mmy-12k2 T Myt '
ZZ Cnll]l//nllj)(t)
n=l =0 I=1
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} (7.82)

0%, (X,t)
ox*

=0

0 1=l j

22 2 2 b

=1 i

M1 m—12k2 v,
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a'//n,i,l,j
OX

0

1 i

Z ZO E JZ bn,i,l,j

M1 m-12k2 v,
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|
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1

=0 |

1

2K m—12k2 1M,
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n

~—~
™
S
N~
N—r
1
—~
=
x
N—"
=l
= Q
=
S
«Q
=
©
JYN i
AT
nl
| —
g AT
-
| o
o\l
T —
2 NI
X
—~
ra)
<
N
=
>
=
< ©
o
N Il
AT
el
| —
L\l
—
| o
AT
7 —
2T
N—

0

0 1= j

Z Z Z zen,i,l,j V/n,i,l,j(xit),

=1 i

2K m—12k2 1M,
n

—~
<
@
N~
~
)
=3
N
5
>
= =
1_W/_o %
o ] =
s —
421
o i
N - —
A
-
1.M - —
7 —
= NI
N—
X
)
3
N
5
>
=
o @©
| o
o~ .__
s -
T —
= [NT
o~
7 o
! Il
s A
.
N—

fn,i,l,jV/n,i,I,j(X1t)’

2
ic0

|

x{

—~
L0
o
N~
N—r
(V]
)
=
SN
=
>
=
SR
o Il
AT
T —
B\
AL
NI
LT
= NI
I |
X
7 N\
—~
)
>
N—"
=
—=| ©Q
c
S
@
=
©
A
o~
SNL
T —
2 NI
AL
—
M - —
LT
2 AL
N—

1
bn,i,l,j'//n,i,l,j(x’t):|

0

Zl Zgn,i,l,jV/n,i,l,j(X1t)'

-IM, -1k M, -1

(7.86)

1
hn,i,l,jWn,i,l,j(th)v

-
j=0

M

1
=1

i=0

1-1M, —1 pk2-
1

2k
n=

(7.87)

0

=]_j

D D Pain Wi (1)

2k1—1M1_12k2—1 Mz—l
i=0

n=1

and
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M, —

2k2—l

2kIM, -1

(7.88)

) 2
bn,i,l,jl//n,i,l,j(xit):|

0

2
j:

1=1
1

i=0

n=1

qn,i,l,jl//n,i,l,j(x’t)'

1

0

2
j=

M

=1

i=0

2k1—1M1_12k2—
=1

n

on both sides of egs. (7.65) and (7.66) we have

(24

t

Again employing J

(7.90)

0

0 1=l j

=1 i

Putting egs. (7.73)- (7.80) in egs. (7.89) and (7.90), we have
n

Z Z z zan,i,l,jl//n,i,l,j(X’t)_u(x’o):

21 m12k2 T my-1
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2Kt m—12k2 1M,
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e
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0
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(7.92)
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Now substituting the collocation points X':z_—

1=12,...,2% M, and r=1,2,...,22M, in egs. (7.81)-(7.88), and in (7.91), (7.92), we
have 10(2"1‘1M1X2"2‘1M2) equations in 10(2"1‘1M1X2"2‘1M2) unknowns. By solving these
systems of equations using Newton’s method, the Hermite wavelet coefficients can be

acquired.

7.72 To Compare with OHAM for Solution of Nonlinear Time-

Fractional Coupled Jaulent-Miodek Equation

Implementing optimal homotopy asymptotic method [30], the homotopy for egs. (7.65)
and (7.66) can be written as

(- p)Llp(x.t; p))= H(p){a%(x’t; Py O ot p)+ Syt p) WLt P)

ot” OX 2 OX
. 2 . .
N % aW(g;( t;p)o wg(,zt, P) (.t p)6¢(>;, It p) (7.99
_ . v tip) 3dp(xt;p) . 2}
6o(x,t; P (Xt p)=—— == - o ===kt p)) |
- a . 3 .
4Bt )= A(p| “EL ()6 g
(7.94)
_ Cyow(xt;p) 158y(xt;p) Y
6p(x,t: )= > o wtp)f
where go(x,t;p):uo(x,t)+iui(x,t)pi, (7.95)
i=1
wx,t; ) =vo(x )+ Su(xt)p' (7.96)
i=1
H(p)=Cip+Cyp? +Cyp°+..., (7.97)
H(p)=C,p+C,p> +Cyp’+..... (7.98)

Substituting eqgs. (7.95)-(7.98) in egs. (7.93) and (7.94) and then comparing the

coefficients of identical powers in p, we have the following system of equations.
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Coefficients of p”: 9"ug(x.t) =0, (7.99)

a

0"Vy(x,1)

=0. 7.100
P (7.100)

Coefficients of p':

- + =V, (X
ot” ot ot ox3 20 ox°

Uy (x,t) aauo(x,t)zc{aauo(x,th63u0(x,t) 3 ( ,t)63v0(x,t)

2
L9 Ny(x,1) @ vo(;(,t) - 6u0(x,t)au°(x’t)
20X OX OX

—6u0(x,t)vo(x,t)av‘g(xX 0.3 auoa(xx ’t)(VO(X’t))Z}’

2

(7.101)

oV (x,t) 0%vy(x,t) =] o%v,(x,t) &° ou, (x,t
61t(‘" ) 6Otg‘ )=Cl{ 6(1& )+8X3vo(x,t)—6—°;x )vo(x,t)

—euo<x,t>avoa(j’t)—%”ogj")(vo(x,t»ﬂ.

(7.102)

Coefficients of p?:

0%uy(x,t)  8“uy(x,t)
ot” ot”

o*uy(x,t) &y (x.t) 3 v, (x,t
C, 81t“ )+ 61>S3 )+ (vo(x,t) 5)53 )

83v0(x,t)] 9 (Gvo(x,t) O*wy(xt)  aw(xt) azvo(x,t)J

+vy(x, 1)

+_
ox® 2| o Ox? OX Ox?

- G(Uo(x’t)% + ul(x,t)Mj - 6(u1(x,t)\/0(x,t)M

X OX OX

+ U (X, thvy (x,1) avoa(;(, ) +Ug (X, vy (X, 1) avl(g:’ t)J (7.103)

- g(Zvo(x, thv, (x,t) Qo (%, t)+ (Vo (x,1))° Mﬂ +

OX OX

c, Uy (x,1) .\ 83u0(;<,t) . §vo(x,t)63V°(;(’t) L9 v (x,t) 62v0(2><,t)
ot Ox 2 Ox 2 OX Ox

-6 22 h ) 20 XX |
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0V, (%) 0"wy(xt) _ 61{aavl(x,t) .\ a3v1(;<,t) _G[GUO(X,t)Vl(X,t)+
ot ot ot? OX OX
5U18())((, t)Vo (X, t)j 3 6£u1(X, t) aVoa())((, t) 4 UO(X, t) 8V16())((, t)j (7.104)
_%(2v0(x,t)vl(x,t)évoa()):’t)+(vo(X,t))2 avla(:’t)ﬂ

~ | 8%vy(x,t) &° AU (x, t
+C{ ;tg‘ )+ax3v0(x,t)—6 Oa(x )vo(x,t)

-l 202

and so on.
For solving fractional order coupled Jaulent-Miodek equations using OHAM, the
following initial conditions for equations (7.65) and (7.66) are considered

u(x,0)= %12{1—43% hz( %ﬂ :
v(x,0) = Asec h( %) :

Using the initial conditions u, =u(x,0) and v, =V(x,0) and solving egs. (7.99) to (7.104),

we obtain the expressions for ug, Vy; Uy, Vy; U,,V, and so on.

Finally, the third order approximate solutions for time-fractional nonlinear coupled

Jaulent-Miodek equations are given by
U =Uq(X,t)+u, (X, t)+u,(Xt), (7.105)
V= Vo (X, 1) + vy (X, 1) + Vv, (X,1) . (7.106)

The optimal values of the convergence control parameters C,, C, and 61, 62 can be

obtained using weighted residual least square method given in egs. (1.34) and (1.35) of

chapter 1.

7.8 Numerical Results and Discussion

The comparison of the absolute errors for nonlinear time-fractional coupled Jaulent-
Miodek equations (7.65) and (7.66) have been illustrated in Tables 7.12 and 7.13 that are

generated through the results attained by two-dimensional Hermite wavelet method and
OHAM at various points of x and t taking a =1 . In the present study, in order to inspect
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the accuracy and reliability of Hermite wavelets for solving fractional order nonlinear
coupled system of Jaulent-Miodek equations, we compare the numerical approximate
solutions obtained by using Hermite wavelets with the third order approximate OHAM
solutions. Tables 7.14-7.17 illustrate the comparison of absolute errors of fractional order
Jaulent-Miodek equations (7.65) and (7.66) at various points of x and t taking
a=075and 0.5 respectively. Agreements between present numerical results for time-
fractional Jaulent-Miodek (JM) equation obtained by Hermite wavelets and OHAM appear

very satisfactory through illustrations in Tables 7.12-7.18, which also confirm the validity
of the accurate solution by Hermite wavelets.

Table 7.12 The absolute errors with regard to u(x,t) obtained by Hermite wavelet method for

nonlinear system of coupled Jaulent-Miodek equations given in egs. (7.65) and (7.66) at various

points of x and t taking o =1 and 1 =0.5.

|U Exact — Unemite Wavelet|

t=0.1 t=0.2 t=03 t=04 t=05 t=0.6 t=07 t=08 t=09
0.1 | 2.0553E-6 | 4.6970E-6 | 2.0543E-5 | 4.5657E-5 | 9.0317E-5 | 1.3421E-4 | 1.8769E-4 | 2.5054E-4 | 3.2257E-4
0.2 | 2.2375E-6 | 1.3360E-5 | 3.3614E-5 | 6.3236E-5 | 1.1255E-4 | 1.6141E-4 | 2.2021E-4 | 2.8892E-4 | 3.6751E-4
0.3 | 6.2475E-6 | 2.1113E-5 | 4.4884E-5 | 7.7842E-5 | 1.3034E-4 | 1.8239E-4 | 2.4438E-4 | 3.1645E-4 | 3.9868E-4
0.4 | 1.0252E-5 | 2.8524E-5 | 5.5227E-5 | 9.0679E-5 | 1.4527E-5 | 1.9909E-4 | 2.6257E-4 | 3.3593E-4 | 4.1938E-4
0.5 | 6.7072E-6 | 2.7007E-5 | 6.1236E-5 | 1.1011E-4 | 1.8039E-4 | 2.6055E-4 | 3.5746E-4 | 4.7156E-4 | 6.0328E-4
0.6 | 7.1378E-6 | 2.7087E-5 | 6.0652E-5 | 1.0857E-4 | 1.7763E-4 | 2.5639E-4 | 3.5173E-4 | 4.6421E-4 | 5.9434E-4
0.7 | 6.3626E-6 | 2.5083E-5 | 5.6901E-5 | 1.0257E-4 | 1.6888E-4 | 2.4445E-4 | 3.3619E-4 | 4.4468E-4 | 5.7054E-4
0.8 | 5.1634E-6 | 2.1991E-5 | 5.1218E-5 | 9.3599E-5 | 1.5592E-4 | 2.2684E-4 | 3.1326E-4 | 4.1581E-4 | 5.3510E-4
0.9 | 3.7368E-6 | 1.8227E-5 | 4.4262E-5 | 8.2587E-5 | 1.3998E-4 | 2.0510E-4 | 2.8485E-4 | 3.7985E-4 | 4.9074E-4
Table 7.13 The absolute errors with regard to v(x,t) obtained by Hermite wavelet method for

nonlinear system of coupled Jaulent-Miodek equations given in egs. (7.65) and (7.66) at various

points of x and t taking o =1 and 1 =0.5.

|VE><act ~Viermite wavelet|

t=01 t=02 t=0.3 t=04 t=05 t=0.6 t=0.7 t=0.8 t=09
0.1 | 1.0266E-4 | 1.2531E-4 | 7.4403E-5 | 4.2725E-5 | 2.2305E-4 | 4.4542E-4 | 7.0631E-4 | 9.9217E-4 | 1.2894E-3
0.2 | 6.8598E-6 | 6.3948E-5 | 2.0545E-4 | 4.0998E-4 | 6.7411E-4 | 9.7665E-4 | 1.3136E-3 | 1.6714E-3 | 2.0365E-3
0.3 | 8.6641E-5 | 2.4761E-4 | 4.7556E-4 | 7.6247E-4 | 1.1045E-3 | 1.4804E-3 | 1.8858E-3 | 2.3069E-3 | 2.7302E-3
0.4 | 1.7814E-4 | 4.2632E-4 | 7.3694E-4 | 1.1016E-3 | 1.5161E-3 | 1.9591E-3 | 2.4257E-3 | 2.9022E-3 | 3.3748E-3
0.5 | 1.6264E-4 | 2.3867E-4 | 2.4153E-4 | 1.8420E-4 | 8.2495E-5 | 5.6018E-5 | 2.1508E-4 | 3.8165E-4 | 5.4268E-4
0.6 | 7.7242E-5 | 7.4979E-5 | 6.0988E-6 | 1.1639E-4 | 2.7664E-4 | 4.6748E-4 | 6.7260E-4 | 8.7936E-4 | 1.0751E-3
0.7 | 1.9921E-6 | 7.6519E-5 | 2.1056E-4 | 3.9113E-4 | 6.0232E-4 | 8.3738E-4 | 1.0799E-3 | 1.3178E-3 | 1.5387E-3
0.8 | 7.6073E-5 | 2.1710E-4 | 4.1005E-4 | 6.4194E-4 | 8.9692E-4 | 1.1685E-3 | 1.4405E-3 | 1.7010E-3 | 1.9382E-3
0.9 | 1.4522E-4 | 3.4725E-4 | 5.9317E-4 | 8.7004E-4 | 1.1620E-3 | 1.4631E-3 | 1.7569E-3 | 2.0321E-3 | 2.2773E-3
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Table 7.14

wavelet method and third order OHAM solution for fractional order nonlinear coupled Jaulent-
Miodek equations given in egs. (7.65) and (7.66) at various points of x and t taking

The absolute errors with regard to u(x,t) obtained by two-dimensional Hermite

0=0.75 and A =0.5.

X |uOHAM - uHem'litew.a\velet|
t=0.1 t=02 t=0.3 t=04 t=05 t=0.6 t=07 t=08 t=09
0.1 | 7.4968E-6 | 3.0040E-5 | 6.3702E-5 | 1.0598E-4 | 1.5534E-4 | 2.0969E-4 | 2.6883E-4 | 3.3038E-4 | 3.9195E-4
0.2 | 1.9727E-5 | 5.0514E-5 | 9.1979E-5 | 1.4208E-4 | 1.9931E-4 | 2.6235E-4 | 3.3101E-4 | 4.0334E-4 | 4.7734E-4
0.3 | 3.0934E-5 | 6.8532E-5 | 1.1601E-4 | 1.7181E-4 | 2.3442E-4 | 3.0327E-4 | 3.7815E-4 | 4.5748E-4 | 5.3958E-4
0.4 | 4.1653E-5 | 8.5048E-5 | 1.3716E-4 | 1.9693E-4 | 2.6291E-4 | 3.3516E-4 | 4.1348E-4 | 4.9660E-4 | 5.8308E-4
0.5 | 4.7032E-5 | 1.0898E-4 | 1.8956E-4 | 2.8591E-4 | 3.9484E-4 | 5.1702E-4 | 6.5070E-4 | 7.9455E-4 | 9.4703E-4
0.6 | 5.0687E-5 | 1.1373E-4 | 1.9513E-4 | 2.9216E-4 | 4.0149E-4 | 5.2437E-4 | 6.5901E-4 | 8.0432E-4 | 9.5894E-4
0.7 | 5.2128E-5 | 1.1459E-4 | 1.9494E-4 | 2.9053E-4 | 3.9790E-4 | 5.1884E-4 | 6.5148E-4 | 7.9493E-4 | 9.4801E-4
0.8 | 5.2327E-5 | 1.1287E-4 | 1.9061E-4 | 2.8301E-4 | 3.8642E-4 | 5.0316E-4 | 6.3127E-4 | 7.7000E-4 | 9.1831E-4
0.9 | 5.1682E-5 | 1.0929E-4 | 1.8321E-4 | 2.7101E-4 | 3.6885E-4 | 4.7954E-4 | 6.0099E-4 | 7.3260E-4 | 8.7341E-4
Table 7.15 The absolute errors with regard to v(x,t) obtained by two-dimensional Hermite

wavelet method and third order OHAM solution for fractional order nonlinear coupled Jaulent-

Miodek equations given in egs. (7.65) and (7.66) at various points of x and t taking

a=0.75and 1 =0.5.

|VOHAM ~ Viermite wavelet|

t=0.1 t=0.2 t=03 t=04 t=05 t=0.6 t=07 t=08 t=09
0.1 | 8.9842E-5 | 1.1334E-5 | 1.9121E-4 | 4.0028E-4 | 6.0268E-4 | 7.8294E-4 | 9.1713E-4 | 9.8878E-4 | 9.8134E-4
0.2 | 9.1969E-5 | 3.1053E-4 | 5.8586E-4 | 8.7629E-4 | 1.1504E-3 | 1.3940E-3 | 1.5852E-3 | 1.7089E-3 | 1.7502E-3
0.3 | 2.6796E-4 | 5.9763E-4 | 9.6132E-4 | 1.3253E-3 | 1.6626E-3 | 1.9604E-3 | 2.1985E-3 | 2.3636E-3 | 2.4420E-3
0.4 | 4.3878E-4 | 8.7377E-4 | 1.3192E-3 | 1.7495E-3 | 2.1422E-3 | 2.4855E-3 | 2.7614E-3 | 2.9580E-3 | 3.0627E-3
0.5 | 1.9169E-4 | 1.7339E-4 | 8.2319E-5 | 2.5428E-5 | 1.1164E-4 | 1.7211E-4 | 1.8761E-4 | 1.5108E-4 | 5.5148E-5
0.6 | 3.6408E-4 | 7.1595E-4 | 2.2882E-4 | 3.8801E-4 | 5.1629E-4 | 6.1082E-4 | 6.5499E-4 | 6.4337E-4 | 5.7004E-4
0.7 | 1.0684E-4 | 2.9537E-4 | 5.0987E-4 | 7.1171E-4 | 8.7304E-4 | 9.9249E-4 | 1.0560E-3 | 1.0596E-3 | 9.9889E-4
0.8 | 2.3933E-4 | 4.9968E-4 | 7.6306E-4 | 9.9920E-4 | 1.1852E-3 | 1.3211E-3 | 1.3953E-3 | 1.4052E-3 | 1.3476E-3
0.9 | 3.6156E-4 | 6.8549E-4 | 9.8986E-4 | 1.2525E-3 | 1.4554E-3 | 1.5998E-3 | 1.6766E-3 | 1.6845E-3 | 1.6216E-3
Table 7.16 The absolute errors with regard to u(x,t) obtained by two-dimensional Hermite

wavelet method and third order OHAM solution for fractional order nonlinear coupled Jaulent-

Miodek equations given in egs. (7.65) and (7.66) at various points of x and t taking

a=05 and 1 =0.5.

|uOHAM - uHermitewaveIet|

t=01

t=0.2

t=03

t=04

t=05

t=06

t=07

t=08

t=09

0.1

2.1552E-5

8.1878E-5

1.4911E-4

2.1501E-4

2.7542E-4

3.2160E-4

3.5273E-4

3.6046E-4

3.3639E-4
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0.2 | 1.0292E-5 | 7.7946E-5 | 1.5643E-4 | 2.3633E-4 | 3.1247E-4 | 3.7782E-4 | 4.3104E-4 | 4.6468E-4 | 4.7123E-4
0.3 | 4.1238E-6 | 6.7652E-5 | 1.5385E-4 | 2.4384E-4 | 3.3140E-4 | 4.1103E-4 | 4.8085E-4 | 5.3418E-4 | 5.6425E-4
0.4 | 2.0429E-5 | 5.2912E-5 | 1.4387E-4 | 2.4062E-4 | 3.3588E-4 | 4.2555E-4 | 5.0718E-4 | 5.7474E-4 | 6.2205E-4
0.5 | 8.1331E-6 | 1.1511E-4 | 2.6479E-4 | 4.2458E-4 | 5.8491E-4 | 7.4584E-4 | 9.0415E-4 | 1.0570E-3 | 1.2014E-3
0.6 | 3.5413E-5 | 8.4721E-5 | 2.3575E-4 | 3.9943E-4 | 5.6478E-4 | 7.3306E-4 | 9.0046E-4 | 1.0645E-3 | 1.2226E-3
0.7 | 6.6534E-5 | 4.7447E-5 | 1.9658E-4 | 3.6070E-4 | 5.2736E-4 | 6.9890E-4 | 8.7092E-4 | 1.0413E-3 | 1.2076E-3
0.8 | 9.9929E-5 | 5.3824E-6 | 1.4987E-4 | 3.1142E-4 | 4.7612E-4 | 6.4732E-4 | 8.1999E-4 | 9.9225E-4 | 1.1618E-3
0.9 | 1.3460E-4 | 3.9949E-5 | 9.7606E-5 | 2.5404E-4 | 4.1400E-4 | 5.8175E-4 | 7.5163E-4 | 9.2194E-4 | 1.0905E-3
Table 7.17 The absolute errors with regard to v(x,t) obtained by two-dimensional Hermite

wavelet method and third order OHAM solution for fractional order nonlinear coupled Jaulent-
Miodek equations given in egs. (7.65) and (7.66) at various points of x and t taking

a=05 and 1 =0.5.

|VOHAM ~ Viermite wavelet|

t=0.1 t=0.2 t=03 t=04 t=0.5 t=0.6 t=0.7 t=0.8 t=0.9
0.1 | 8.3521E-5 | 2.9312E-4 | 4.2261E-4 | 4.3707E-4 | 3.3456E-4 | 1.0091E-4 | 2.5336E-4 | 7.3818E-4 | 1.3635E-3
0.2 | 3.3416E-4 | 6.5094E-4 | 8.5761E-4 | 9.3554E-4 | 8.9197E-4 | 7.1374E-4 | 4.1479E-4 | 1.2595E-5 | 5.7631E-4
0.3 | 5.6957E-4 | 9.8211E-4 | 1.2548E-3 | 1.3850E-3 | 1.3888E-3 | 1.2538E-3 | 9.9728E-4 | 6.1325E-4 | 9.5719E-5
0.4 | 7.9133E-4 | 1.2891E-3 | 1.6175E-3 | 1.7897E-3 | 1.8301E-3 | 1.7270E-3 | 1.5006E-3 | 1.1468E-3 | 6.6099E-4
0.5 | 3.9482E-4 | 3.6236E-4 | 3.4634E-4 | 3.9120E-4 | 5.0371E-4 | 6.8476E-4 | 9.2508E-4 | 1.2283E-3 | 1.5984E-3
0.6 | 2.0871E-4 | 1.0875E-4 | 4.8599E-5 | 5.8024E-5 | 1.3694E-4 | 2.8552E-4 | 4.9242E-4 | 7.5994E-4 | 1.0908E-3
0.7 | 4.4730E-5 | 1.0899E-4 | 2.0229E-4 | 2.1800E-4 | 1.6237E-4 | 3.5946E-5 | 1.4821E-4 | 3.9122E-4 | 6.9475E-4
0.8 | 9.7652E-5 | 2.9380E-4 | 4.0997E-4 | 4.4120E-4 | 3.9923E-4 | 2.8531E-4 | 1.1391E-4 | 1.1510E-4 | 4.0251E-4
0.9 | 2.2031E-4 | 4.4782E-4 | 5.7730E-4 | 6.1511E-4 | 5.7787E-4 | 4.6746E-4 | 2.9953E-4 | 7.4704E-5 | 2.0705E-4
Table 7.18 L,andL, error norms for fractional order nonlinear coupled Jaulent-Miodek

equation using two-dimensional Hermite wavelet method and OHAM at various points t taking

a =0.5,0.75 and 1.

t Error analysis of u(x,t) with regard to Hermite Error analysis of v(x,t) with regard to Hermite
wavelet wavelet
a=1 a=0.75 a=05 a=1 a=0.75 a=05

Lo L Lo L Lo L, Lo Ly Lo L Lo Lo

0.1 | 1.8177 | 2.8524 | 1.2666 | 5.2327 | 1.8669 | 4.387 | 3.3034 | 1.7814 | 1.2194 | 4.387 | 1.152 | 7.913
E-5 E-5 E-4 E-5 E-4 8E-4 | E-4 E-4 E-3 8E-4 | 7E-3 | 3E-4

0.2 | 6.4740 | 1.0252 | 2.7930 | 1.1459 | 2.1085 | 8.737 | 7.0640 | 4.2632 | 1.6021 | 8.737 | 1.891 | 1.289
E-5 E-5 E-4 E-4 E-4 TE-4 | E-4 E-4 E-3 7E-4 | 5g-3 | 1E-3

0.3 | 1.4786 | 6.1236 | 4.7612 | 1.9513 | 5.3609 | 1.319 | 1.1998 | 7.3694 | 2.2193 | 1.319 | 2.401 | 1.617
E-4 E-5 E-4 E-4 E-4 2E-3 | E-3 E-4 E-3 2E-3 | 9g-3 | 5E-3

0.4 | 2.6529 | 1.1011 | 7.1047 | 2.9216 | 9.2243 | 1.749 | 1.8260 | 1.1016 | 2.9950 | 1.749 | 2.639 | 1.789
E-4 E-4 E-4 E-4 E-4 5E-3 | E-3 E-3 E-3 5E-3 | oE-3 | 7E-3

0.5 | 4.1778 | 1.8039 | 9.7402 | 4.0149 | 1.3166 | 2.142 | 2.5736 | 1.5161 | 3.6883 | 2.142 | 3.688 | 1.830
E-4 E-4 E-4 E-4 E-3 2E-3 | E-3 E-3 E-3 2E-3 | 3e-3 | 1E-3

0.6 | 6.3551 | 2.6055 | 1.2522 | 5.2437 | 1.7134 | 2.485 | 3.4075 | 1.9591 | 4.2743 | 2.485 | 2.434 | 1.727
E-4 E-4 E-3 E-4 E-3 5E-3 | E-3 E-3 E-3 5E-3 | 3e-3 | OE-3

0.7 | 8.6958 | 3.5746 | 1.5929 | 6.5901 | 2.1030 | 2.761 | 4.3001 | 2.4257 | 4.7064 | 2.761 | 2.169 | 1.500
E-4 E-4 E-3 E-4 E-3 4E-3 | E-3 E-3 E-3 4E-3 | 2E-3 | 6E-3
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0.8 | 1.1454 | 4.7156 | 1.9410 | 8.0432 | 2.4760 | 2.958 | 5.1364 | 2.9022 | 4.9604 | 2.958 | 2.120 | 1.228
E-3 E-4 E-3 E-4 E-3 OE-3 | E-3 E-3 E-3 OE-3 | OE-3 | 3E-3
0.9 | 1.4642 | 6.0328 | 2.3095 | 9.5894 | 2.8242 | 3.062 | 6.1166 | 3.3748 | 5.0141 | 3.062 | 2.658 | 1.598
E-3 E-4 E-3 E-4 E-3 7E-3 | E-3 E-3 E-3 7E-3 | 8E-83 | 4E-3

7.9 Convergence of Hermite wavelet
Theorem 7.1 (Convergence Theorem)

If a continuous function u(x,t)e L>(%xR) defined on [01)x[0,1) be bounded, i.e.,

lu(x,t) < K, then the Hermite wavelets expansion of U(X,t) converges uniformly to it.
Proof:

Let U(x,t) be a function defined on [01)x[0.1) and [u(x,t) < K , where K is a positive

constant.

The Hermite wavelet coefficients of continuous functions U(X,t) are defined as
11
= [ Ju )y (9 v (1) dxa
00

k1 1 A N

1 K R n-1n+1
=22 | - 1y — _ =1 -1
=2 n1!2”1\/; !I{u(x,t)Hm1<2 X nl) w;(t)dxdt, where I [2‘(1 o j

Now by change of variable 2“*x—n, =y, we get

k1
2
Cij = ;1 \'n |2n1 IWJ(t)[I (%,thml(y)ddet.

Using the mean value theorem of integral calculus, we will have

1
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since Hzy 1(y) = 20m, +DHy, (v)
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where 7 e (-1,1)

_ 1 1 1 Hm1+1(1)_ Hm1+1(_1)
- 2k1+k2 n!2" 7z \ ny12"2r 2(m, +1)

E+2n -1 p+2n,-1) o, W)
U k1 ' ko .[ w
2 2 _1 2(m, +1)

since H,’nz+1(w) =2(m, +)H,, (w)

1 1 1 Hp 1@ = Hpy 1 (51)
k1+kz n!2nyJz |\ n,12"2 {7 2(my +1)

1
y (§+2n1 -1 77+2n2—1) Hpp 1 (W)
v S LY: 2(m, +1) ),

B 1 1 1 Hml+1(1)_Hm1+l(_1) %
= 2k1+k2 n, |2n1\/_ n,!2 2\/_ 2(m, +1)
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Therefore,

‘ 1 Hm1+1(l) - Hm1+1(_1)
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9 Hm2+1(1)_Hm2+1(_1) u(§+2n1—1 77+2n2 —1)
2(m, +1) 2k T gk

1 1 1 H m+1 (1) —-H my+1 (_1) H mo+1 (1) -H my+1 (_1) K
ke \ny12n i \ n,t2% 2(my +1) 2(m, +1) |

since U(X,t) is bounded.

2

Therefore Z Z Cjj is absolutely convergent.
i=0 j=0

Hence from [44], the Hermite series expansion of u(x,t) converges uniformly. o

232



7.10 Conclusion

In this chapter, the numerical solution of time-fractional modified Fornberg-Whitham
equation has been determined by using two-dimensional Hermite wavelet method. The
results thus obtained are then compared with exact solutions as well as with optimal
homotopy asymptotic method (OHAM). The obtained results demonstrate the accuracy,
efficiency and reliability of the proposed algorithm based on two-dimensional Hermite
wavelet method and its applicability to nonlinear time-fractional modified Fornberg-
Whitham equation. Agreement between present numerical results obtained by Hermite
wavelet method with optimal homotopy asymptotic method and exact solutions appear
very satisfactory through illustrative results in Tables 7.1-7.7.

The solitary wave solution of fractional modified Fornberg-Whitham equation has been
obtained for the first time by using first integral method. The fractional order modified
Fornberg-Whitham equation has also been solved by using the optimal homotopy
asymptotic method. The acquired numerical approximate results are compared with the
exact solutions obtained through first integral method, which reveals that the efficiency
and plausibility of the proposed OHAM technique. The results exhibited in Tables 7.8-
7.10 demonstrate a pretty good agreement between the present numerical methods with the
exact solution. Finally, it is worthwhile to mention that the first integral method is
promising and powerful for solving nonlinear fractional differential equations in

mathematical physics.

Next, the two-dimensional Hermite wavelet method has been implemented to coupled
fractional differential equation viz. fractional Jaulent-Miodek equation. The results thus
obtained are then compared with exact solutions as well as with optimal homotopy
asymptotic method (OHAM). The evaluated outcomes demonstrate the efficiency,
accuracy and reliability of the proposed algorithm based on two-dimensional Hermite
wavelet approach and its applicability to nonlinear time-fractional coupled Jaulent-Miodek
equations. It can be observed that the agreement between proposed numerical results
attained by Hermite wavelet technique with optimal homotopy asymptotic method and
exact solutions appear very satisfactory by means of illustrative results in Tables 7.12-
7.18. The present scheme is easy to implement, effective and suitable for acquiring

numerical solutions of nonlinear time-fractional coupled Jaulent-Miodek equations.
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The application of the proposed numerical approach based on two-dimensional Hermite
wavelet method for the solutions of time-fractional modified Fornberg-Whitham equation
and fractional coupled Jaulent-Miodek equations quite satisfactorily justifies its simplicity,
effectivity and applicability.
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CHAPTER 8

8 Implementation of Petrov-Galerkin
Method for Solving FPDEs

8.1 Introduction

In the present chapter, Petrov-Galerkin method has been utilized for the numerical solution
of fractional KdV-Burgers (KdVB) equation and fractional Sharma-Tasso-Olver (STO)
equation. In past few years, tremendous effort has been anticipated by the researchers on
the study of nonlinear evolution equations appeared in mathematical physics. The
nonlinear fractional differential equations have been solved numerically through the
Petrov-Galerkin approach by utilizing a linear hat function as the trial function and a

quintic B-spline function as the test function.

In the present study, we consider one of the well-known equations namely the Korteweg-
de Vries—Burgers (KdVB) which play an essential role in both applied mathematics and
physics. Especially Korteweg—de Vries (KdV) type equations had been paid of more
attention due to its various applications in plasma physics, solid-state physics and quantum

field theory.

The Korteweg-de Vries-Burgers equation is a nonlinear partial differential equation of the
form
U +&Uly, — Wy + =0, (8.1)

which was first derived by Su and Gardner [167]. It arises in quite a lot of contexts as a
model equation incorporating a few foremost physical phenomena viz. dispersion,
viscosity and nonlinear advection. This equation arises within the description of long wave
propagation in shallow water [168], propagation of waves in elastic tube stuffed with a
viscous fluid [169] and weakly nonlinear plasma waves with certain dissipative effects
[170]. It additionally represents long wavelength approximations where the effect of the

nonlinear advection uu, is counterbalanced by means of the dispersion u,,,.
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The KdVB equation given in eq. (8.1) is a combination of the Burgers’ (when 4 =0) and

the KdV equations (when v =0). In the year 1939, Burger proposed an equation (known
as Burgers’ equation) for the study of turbulence and approximate theory of flow through
a shock wave traveling in a viscous fluid [49, 171]. The KdV equation was first suggested
by Korteweg and de Vries [172]. This equation was used to study the change in shape of
long waves moving in a rectangular channel [132, 172]. When diffusion dominates
dispersion, the numerical solutions of eq. (8.1) tend to behave like Burgers’ equation
solutions and hence the steady-state solutions of the KdVB equation are monotonic
shocks. However, when dispersion dominates, the KdV behavior is observed and the
shocks are oscillatory.

A number of theoretical issues associated to the KdVB equation have received substantial
attention. Many analytical and numerical methods have been proposed in recent past for
the study of classical KdV-Burgers equation. Various methods such as the decomposition
method [173], tanh method [174], hyperbolic tangent method and exponential rational
function approach [175], Septic B-spline method [176], Radial basis functions [177],
Quartic B-spline Galerkin approach [178] and quintic B-spline finite elements [179] had
been developed independently and had been used to acquire exact as well as numerical
solutions of KdVB equation. However so far as we know that no numerical works has
been reported to solve the fractional KdVB equation. Methods such as Adomian
decomposition method [180], and homotopy perturbation method [181] were used to

obtain the approximate solution of fractional KdVB equation.

Let us consider the time-fractional KdV-Burgers equation [181-183] as follows

Dfu +euu, —wi,, + sy, =0, (8.2)

where ¢, v and 4 are constants and « denotes the order of fractional derivative whose
range is O <« <1.

In the present numerical scheme, fractional derivative has been discretized by Grinwald-
Letnikov derivative and the fractional KdVB equation has been converted directly into
finite difference equation. Then it has been adjusted in the form of implicit finite

difference scheme.

Next, the Sharma-Tasso-Olver equation has been considered, which plays an essential role

both in physics and applied mathematics. Remarkable effort has been anticipated by the

236



researchers for studying nonlinear equations arising in mathematical physics. In recent
years, Sharma-Tasso-Olver equations [184, 185] had been paid of more attention due to its

numerous implementations in mathematical physics.

Let us consider the time-fractional Sharma-Tasso-Olver equation [186] as follows
DZu + 3au? + 3au’u, +3auu,, +au,,, =0, (8.3)
where u(x,t) is the unknown function depending on the spatial variable x and the

temporal variable t and a is a real parameter. Here « denotes the order of fractional

derivative whose range is 0 < <1.

Eqg. (8.3) can also be written as [185]
Dfu +ga(u2)xx+a(u3)X +aUy, =0. (8.4)

This equation contains both linear dispersive term au,,, and the double nonlinear terms

XXX
(u?),, and (u®), . The equation was first derived by Tasso [187] in 1976 as an example of

odd members of the Burgers hierarchy by extending the linearization achieved through the
Cole-Hopf ansatz to equations containing as highest derivatives odd space derivatives. In a
subsequent report [188], the properties of the wave envelope solutions of this equation are

investigated.

The Sharma-Tasso—Olver equation appears in many scientific applications such as
quantum field theory, plasma physics, dispersive wave phenomena, relativistic physics,
nonlinear optics and physical sciences [184]. It also arises as an evolution equation that
possesses an infinitely many symmetries [189]. Many analytical and numerical methods
have been proposed in recent past for the study of classical Sharma-Tasso-Olver equation.
Various methods such as the Cole—Hopf transformations method [190], the Adomian
decomposition method [186], the variational iteration method (VIM) [186], the homotopy
perturbation method [186], Béacklund transform method [185], Exp-solution method [191],

improved G'/G -expansion method [192], tanh and extended tanh method [193] had been

used to acquire exact as well as numerical solutions of Sharma-Tasso-Olver equation.

According to the best possible information of the authors, so far no numerical works has
been reported to solve the fractional Sharma-Tasso-Olver equation. The approximate
analytical solution of fractional Sharma—Tasso—Olver equation has been obtained by using

the homotopy analysis method [194], improved generalized tanh-coth method [195], the

237



Adomian decomposition method [186], the variational iteration method (VIM) [186], and
homotopy perturbation method [186]. In the present numerical scheme fractional
derivative has been discretized by Grinwald-Letnikov derivative and the fractional
Sharma-Tasso-Olver equation has been converted directly into finite difference equation.
Then it has been adjusted in the form of implicit finite difference scheme.

The present chapter emphasizes on the application of Petrov-Galerkin method for solving
the fractional differential equations such as the fractional KdVB equation and the
fractional Sharma-Tasso-Olver equation with a view to exhibit the capabilities of this
method in handling nonlinear equation. The main objective of this chapter is to
establish the efficiency and accuracy of Petrov-Galerkin method in solving fractional
differential equtaions numerically by implementing a linear hat function as the trial

function and a quintic B-spline function as the test function.

8.2 Implementation of Petrov-Galerkin Method for
Numerical Solution of Time-Fractional Kdv-Burgers

Equation

Let us consider the time-fractional KdV-Burgers equation [181-183] as
DU + euu, — Wy, + iy, =0, (8.5)

with initial condition [196]

u(x,0) = 50‘_1{2501;12 613 sec h{%)(—u sinh(sﬁm . (86)
vt u u

Eqg. (8.5) implies
Dtau +§(u2)x W+ My = 0,

where £, v and n are constants, « denotes the order of fractional derivative whose

range is O <a <1.

The exact solution of eq. (8.5) is given by [196]

u(x,t):_—1 2504u” +6v° sech? L, A _1asinhl X4 A _
50&vu 2\ 5u T'(a+]) 5u T'(a+l)

(8.7)
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The space interval a < x <D, is discretized with (N+1) uniform grid points X; =g+ jh,
]=012,...,N and the grid spacing is given by h:%. Let U;(t) denotes the

approximation to the exact solution u(x;,t). We sought the approximate solution of eq.

(8.5) as

N
u(x,t)=>U;t)e;(x), (8.8)
j=0

where ¢;(x), J=012,..,N are trial functions.
In order to deal with the nonlinear term uu, , the product approximation technique [191] is

utilised as follows:

N
u?(x,t) =Y UZ(t)p;(x), (8.9)
j=0

where ¢;(x); j=012,..,N are the usual piecewise linear hat functions given by

1. X2 dh xe[Xj_1,%;)
X—jh
9i(x)= 1—TJ, xe[Xj,X.1) (8.10)
0, elsewhere.
The unknown functions U (t) are determined from the variational formulation
o &
<Dt U'Wj>+5<(u2)xvl//j>_V<uxx'l//j>+ﬂ<uxxx1Wj> =0, (811)

where ;(x), J=0L12,..,N are quintic B-spline functions taken as the test functions and

are given by
X—Xi_3)”; Xe[X:_g,Xi_
( j 3)5 [ j=3'%j 2)
(X=X} 3)° =6(x=X; 5)"; X €[X} 2%} 1)
(x—xj_3)5—6(x—xj_2)5+15(x—xj_1)5; xe[Xja.X;)
y/j(x)zi (X—Xj_3)° —6(X—X_5)° +15(x — X 1)° — 20(x— X;)°; X €[X],Xj,1)
h® (x—xj_3)5—6(x—xj_2)5+15(x—xj_1)5—20(x—xj)5+15(x—xj+1)5; X € [Xj41:Xj12)

(X—Xj_3)° —6(X—X_5)° +15(x — Xj_1)° — 20(x — X;)°

+15(x — Xj+1)5 —6(x— xj+2)5;
0
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X €[Xj12:Xj13)

elsewhere



Integrating by parts the above eq. (8.11), we obtain
<Dt“u.l//,->+g<(u2)x,l//,->—V<ux,(l//j)x>+ﬂ<ux,(v1j)xx> =0. (8.12)

Each linear hat function covers two elements so that each subinterval [x;,x;,] is covered

by two linear hat functions. On the other hand each quantic B-spline covers six elements

so that each subinterval [x;,X;,;] is covered by six splines. In terms of local co-ordinate
system given by

E=x-x;, 0<&<h,
Both the linear hat functions, ¢; and the quantic B-spline functions, v/ ; over the element

[X;,;.1] can be defined as follows:

o v ) o) (5]

S
iR
I
[N)
o
|
a1
o
TN
[re
N————
+
[N)
o
TN
(O
—
N
+
N
o
TN
=l A
N————
w
|
)
o
TN
[r
N
o
+
Ul
7 N\
[r
—
(63}

From eg. (8.12), we have

XN N XN N
LO D> DU (e (D (x)dX+§ IXO > U0 (X ; ()dx —
1=0 i=0 (8.13)

XN N XN N
vl 220500 00y 09dx+ w3 U (00 (9w (x)dx =0.
j=0 j=0
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Xy N
Next we set |, :J N D DU (H)e; (X (X)dx,
X0 ]:O
XN N 2 ,
B LO 2 U5 (0 (w; (x)dx,
j=0
XN N
I3 = .[xo ;)U i (De; ' (x)dx,
J=

N
X
1= [ 20500 (9w} (),
j=0
where D{U(t) is defined by

DU . (t)— I|m (At)™ Za)“u (t—Atr).

Atn—t —a r=0

N
Now |, = jxo“ 3 DU (De; (X (X)dx
=0

= I:j:z(At)_“Za)“U” 10 (0 3(x)o|x+j ’ 2(At) Za)“U” 202 ()W s (X)dx +
+ j (A Zco“U” 5012 (w1 ()dx+ J (A Za;“u "o (O o (X)dx

A0 30U oy (1000 [ ()73 00} 0, (w1000
= r=0

+ j (At)-“zw“U” "9; (yr; ()dx+ j (Athwau 1 @32 (7 (X)X
+ j " (At Zw“U,+1¢,+1(X)V/,+1(X)dX+ j " (At Zw“U,+2<oJ+2<x)w,+1<x)dx

+ J+3(At) Zwau]+2¢J+2(X)W1+2(X)dx+j J+3(At) Za)auj+3¢1+3(x)V/j+3(X)dX

Xj+2

j+1

=(A) ) wf —Un_r—k120Un r+1191Un r—1—2416Un "+1101U" 7
0y r[42( 4 +120U] B 81

+1200"5 +U )]

j+2 j+3

Similarly,

1
I, = g[— (U 4)2 —B6(U",)2 —245(U",)% +245(U",1)% +56(U",,)% + (U ?+3)2:|, (8.15)
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I :_Tl[uj“_3 +24U7 ,+15U 7, —80U] +15U 1, + 24U, +U] ] (8.16)

j+l j+3

l, = h—12 [sun,—4007,+950", —95U", +40U" , +50",]. (8.17)

Substituting egs. (8.14)-(8.17) in eq. (8.13), we have

n
(At)—“Za);"L—hZ(U}“;ﬂzouj“‘;+1191U?‘{+2416U}”+1191 " +120U070 + ;‘;g)}
r=0

&
v U 4)2 —56(UT ;)2 —245(U" ;)2 +245(UT,,)2 +56(UT. )2 + (U ",5)?]

+%[u N +24U7 ,+1507 , 80U +150", +24U" , +U "]

+%[—5U N —40U" ,+950", ~95U",, +40U",, +5U" ;] =0,
(8.18)

where j=12,.,N. Now to solve the above system, we assume U] to be a discrete

approximation to the exact solution u(x;,t,). U] =0 for j=-2-10,N+LN+2 and

N+3. The system (8.18) is three time level scheme, so we require two initial time levels
and for the computation, the exact value at time equals zero and time equals At are used

for the required initial conditions. This nonlinear system (8.18) can be solved by Newton’s

method in order to compute the unknown approximate solutions U} . Hence the required

solution of the time-fractional KdVB equation can be found.

8.3 Numerical Results and Discussion

The comparison of the absolute errors for time-fractional KdVB equation (8.5) have been
exhibited in Tables 8.1 and 8.2 which are generated using the results acquired by means of
Petrov-Galerkin method and the new method proposed in Ref. [196] at different values of
x and t taking « =0.75 and 0.5 respectively. In this present analysis, in order to evaluate

the accuracy and reliability of the Petrov-Galerkin for solving fractional order KdVB

equation, we compare L,andL, error norms at various points of t taking

a=1075 and 0.5 as illustrated in Tables 8.3-8.6. Agreement between present numerical
results for time-fractional KdVB equation obtained by Petrov-Galerkin method appears
very satisfactory through illustrations in Tables 8.1-8.6. The computed outcomes exhibit
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that this proposed procedure can also be comfortably applied to such variety of nonlinear

equations and good accuracy can also be also attained. With the aid of conducting a

comparison between the absolute error for the obtained numerical results and the analytic

solution of the KdVB equation we will test the accuracy of the proposed procedure.

Table 8.1
obtained by new method in ref [196] for time-fractional KdV-Burgers equation given in (8.5) at

The absolute errors obtained by Petrov-Galerkin method with regard to solution

various points of x and t taking ¢ =0.75,4=1,¢=6,v=1and u=2.

|UPGM -

u Exact|

t=02

t=0.3

t=04

t=05

t=0.6

t=07

t=0.8

t=09

0.1

1.46833E-3

2.79680E-3

4.03999E-3

5.21834E-3

6.34158E-3

7.41499E-3

8.44173E-3

9.42393E-3

0.2

1.47268E-3

2.80387E-3

4.04863E-3

5.22763E-3

6.35075E-3

7.42339E-3

8.44882E-3

9.42925E-3

0.3

1.47692E-3

2.81075E-3

4.0570E-3

5.23656E-3

6.35949E-3

7.43129E-3

8.45536E-3

9.43397E-3

0.4

1.48107E-3

2.81745E-3

4.06509E-3

5.24514E-3

6.36780E-3

7.43871E-3

8.46143E-3

9.43807E-3

0.5

1.48512E-3

2.82396E-3

4.07291E-3

5.25337E-3

6.37568E-3

7.44562E-3

8.46676E-3

9.44157E-3

0.6

1.48908E-3

2.83028E-3

4.08045E-3

5.26124E-3

6.38314E-3

7.45204E-3

8.47164E-3

9.44446E-3

0.7

1.49293E-3

2.83640E-3

4.08772E-3

5.26875E-3

6.39017E-3

7.45797E-3

8.47595E-3

9.44674E-3

0.8

1.49669E-3

2.84234E-3

4.09472E-3

5.27591E-3

6.39676E-3

7.46341E-3

8.47972E-3

9.44842E-3

0.9

1.50034E-3

2.84809E-3

4.10143E-3

5.28272E-3

6.40293E-3

7.46834E-3

8.48293E-3

9.44949E-3

1.0

1.50390E-3

2.85364E-3

4.10787E-3

5.28916E-3

6.40867E-3

7.47279E-3

8.48559E-3

9.44996E-3

Table 8.2

obtained by new method in ref [196] for time-fractional KdV-Burgers equation given in (8.5) at

The absolute errors obtained by Petrov-Galerkin method with regard to solution

various points of x and t taking & =0.5,4=10,6 =6,v=0.05 and #=0.1.

lUpem —Ugxact]
t=01 t=0.2 t=03 |[t=04 |t=05 |t=06 |t=07 t=08 |t=09
0.1 | 1.7701E-4 | 2.5821E-4 | 2.7527E-4 | 2.8030E-4 | 2.8209E-4 | 2.8281E-4 | 2.8313E-4 | 2.8328E-4 | 2.8335E-4
0.2 | 1.7476E-4 | 2.5504E-4 | 2.7284E-4 | 2.7781E-4 | 2.7958E-4 | 2.8030E-4 | 2.8062E-4 | 2.8076E-4 | 2.8084E-4
0.3 | 1.7328E-4 | 2.5369E-4 | 2.7042E-4 | 2.7535E-4 | 2.7710E-4 | 2.7781E-4 | 2.7812E-4 | 2.7827E-4 | 2.7834E-4
0.4 | 1.7181E-4 | 2.5146E-4 | 2.6802E-4 | 2.7290E-4 | 2.7464E-4 | 2.7534E-4 | 2.7565E-4 | 2.7579E-4 | 2.7587E-4
0.5 | 1.7035E-4 | 2.4924E-4 | 2.6565E-4 | 2.7047E-4 | 2.7219E-4 | 2.7289E-4 | 2.7319E-4 | 2.7334E-4 | 2.7341E-4
0.6 | 1.6890E-4 | 2.4704E-4 | 2.6329E-4 | 2.6806E-4 | 2.6977E-4 | 2.7046E-4 | 2.7076E-4 | 2.7090E-4 | 2.7097E-4
0.7 | 1.6746E-4 | 2.4486E-4 | 2.6094E-4 | 2.6568E-4 | 2.6736E-4 | 2.6804E-4 | 2.6834E-4 | 2.6848E-4 | 2.6856E-4
0.8 | 1.6603E-4 | 2.4269E-4 | 2.5862E-4 | 2.6331E-4 | 2.6497E-4 | 2.6565E-4 | 2.6595E-4 | 2.6609E-4 | 2.6616E-4
0.9 | 1.6460E-4 | 2.4055E-4 | 2.5632E-4 | 2.6096E-4 | 2.6261E-4 | 2.6327E-4 | 2.6357E-4 | 2.6371E-4 | 2.6378E-4
1.0 | 1.6319E-4 | 2.3842E-4 | 2.5403E-4 | 2.5862E-4 | 2.6026E-4 | 2.6092E-4 | 2.6121E-4 | 2.6135E-4 | 2.6142E-4
Table 8.3 L, and L, error norms for nonlinear KdV-Burgers equation using Petrov-

Galerkin method at various points of t taking « =1,&=6,v=0.0005 and x=0.1.

t

L

L,

0.1

1.29814E-10

8.90530E-11
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0.2 3.24729E-10 2.22708E-10
0.3 4.55738E-10 3.12239E-10
0.4 6.51429E-10 4.46194E-10
0.5 7.83639E-10 5.36188E-10
0.6 9.80090E-10 6.70419E-10
0.7 1.11351E-9 7.60861E-10
0.8 1.31070E-9 8.95346E-10
0.9 1.44534E-9 9.86221E-10
1.0 1.61436E-9 9.16034E-10

Table 8.4 L, and L, error norms for nonlinear fractional KdV-Burgers equation using

Petrov-Galerkin method at various points of t taking 2 =1, =6,+r=1 and u=2.

t a=1 a=0.75 a=05
L, Lo L, L Lo Lo
0.1 | 9.40227E-5 | 6.92880E-5 2.70831E-3 | 8.69312E-4 | 3.76753E-3 1.20338E-3
0.2 | 2.33997E-4 | 1.72421E-4 7.40982E-3 | 2.37321E-3 | 9.22147E-3 2.93842E-3
0.3 | 3.21139E-4 | 2.36466E-4 1.16462E-2 | 3.72295E-3 | 1.34609E-2 4.28162E-3
0.4 | 456772E-4 | 3.36334E-4 1.55966E-2 | 4.97718E-3 | 1.70414E-2 5.41254E-3
0.5 | 5.37234E-4 | 3.95255E-4 1.93290E-2 | 6.15847E-3 | 2.01827E-2 6.40209E-3
0.6 | 6.68680E-4 | 4.92039E-4 2.28764E-2 | 7.27798E-3 | 2.29996E-2 7.28747E-3
0.7 | 7.42556E-4 | 5.45962E-4 2.62573E-2 | 8.34210E-3 | 2.55619E-2 8.09123E-3
0.8 | 8.70077E-4 | 6.39846E-4 2.94832E-2 | 9.35489E-3 | 2.79162E-2 8.83089E-3
0.9 | 9.37568E-4 | 6.88894E-4 3.25620E-2 | 1.03192E-2 | 3.00956E-2 9.51990E-3
Table 8.5 L, and L, error norms for nonlinear fractional KdV-Burgers equation using

Petrov-Galerkin method at various points of t taking 4=0.5,6=6,y=0.05 and #=0.1.

t a=1 a=0.75 a=05
L L Lo L Ly L,
0.1 | 1.47277E-6 | 1.08060E-6 6.58012E-5 2.11747E-5 | 9.01591E-5 2.89412E-5
0.2 | 3.67927E-6 | 2.69904E-6 1.78696E-4 5.74413E-5 | 2.20265E-4 7.06189E-5
0.3 | 5.13661E-6 | 3.76477E-6 2.79767E-4 8.98432E-5 | 3.21907E-4 1.03109E-4
0.4 | 7.33184E-6 | 5.37326E-6 3.74120E-4 1.20036E-4 | 4.08641E-4 1.30788E-4
0.5 | 8.77274E-6 | 6.42404E-6 4.63866E-4 1.48708E-4 | 4.85733E-4 1.55354E-4
0.6 | 1.09575E-5 | 8.02246E-6 5.50119E-4 1.76221E-4 | 5.55895E-4 1.77683E-4
0.7 | 1.23825E-5 | 9.05825E-6 6.33550E-4 2.02793E-4 | 6.20744E-4 1.98298E-4
0.8 | 1.45561E-5 | 1.06465E-6 7.14595E-4 2.28570E-4 | 6.81337E-4 2.17540E-4
0.9 | 1.59651E-5 | 1.16672E-5 7.93554E-4 2.53649E-4 | 7.38412E-4 2.35646E-4
Table 8.6 L, and L, error norms for nonlinear fractional KdV-Burgers equation using

Petrov-Galerkin method at various points of t taking 4=0.1,6=6,v=5 and x=6.

t a=1 a=0.75 a=05
L Lo Ly L Ly L
0.1 | 3.47775E-3 | 2.43860E-3 2.17042E-3 7.07133E-4 | 2.90983E-3 9.47258E-3
0.2 | 8.56125E-3 | 6.00577E-3 5.83656E-3 1.90089E-3 | 7.04589E-3 2.29277E-3
0.3 | 1.08264E-2 | 7.56579E-3 9.06678E-3 2.95199E-3 | 1.02359E-2 3.32980E-3
0.4 | 1.53527E-2 1.07535E-2 1.20464E-2 3.92097E-3 | 1.29361E-2 4.20707E-3
0.5 | 1.65410E-2 1.15427E-2 1.48546E-2 4.83370E-3 | 1.53231E-2 4.98221E-3
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0.6 | 2.07597E-2 | 1.45268E-2 1.75348E-2 | 5.70435E-3 | 1.74875E-2 | 5.68476E-3
0.7 | 2.09164E-2 | 1.46238E-2 | 2.01140E-2 | 6.54177E-3 | 1.94832E-2 | 6.33230E-3
0.8 | 2.52064E-2 | 1.75783E-2 | 2.26106E-2 | 7.35196E-3 | 2.13452E-2 | 6.93626E-3
0.9 | 2.41525E-2 | 1.69991E-2 2.50377E-2 | 8.13924E-3 | 2.30980E-2 | 7.50459E-3

8.4 Implementation of Petrov-Galerkin Method for
Numerical Solution of Time-Fractional Sharma-Tasso-

Olver Equation

This section involves the numerical simulations by means of proposed Petrov-Galerkin
method for time-fractional Sharma-Tasso-Olver equation.

Let us consider the time-fractional Sharma-Tasso-Olver equation [186] as
Dfu +3au? + 3au’u, +3auu,, +au,,, =0, (8.19)
with initial condition [186]

22w + tanh(Ax)]

u(x,0) =
(x0) 1+ wtanh(Ax)

(8.20)

where A and w are constants.
Eq. (8.19) implies

DZu + 3?a(uz)XX +a(u®), +au,,, =0,
where « denotes the order of fractional derivative whose range is 0 < o <1.
For a =1, the exact solution of eq. (8.19) is given by [186]

2[w + tanh(A(x — 4a4*t))]
1+ wtanh(A(x — 4a?t))

u(x,t) = (8.21)
The space interval a < x <D, is discretized with (N+1) uniform grid points Xj =&+ jh,

]=012,.,N and the grid spacing is given by h:%. Let U;(t) denotes the

approximation to the exact solution u(x;,t). We sought the approximate solution of eq.

(8.19) as
N
u(xt) =D U;0)e;(x), (8.22)
j=0

where ¢;(x), J=012,..,N are trial functions.
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In order to deal with the nonlinear terms u? and u?, the product approximation technique

[197] is utilised as follows:

N
uf(x,t) =2 Ui Me; (0,
j=0

N
w(xt) = Ujte;(x),
j=0

(8.23)

where ¢;(x), J=012,..,N are the usual piecewise linear hat functions given by

1+X_—.Jh, xe[Xj_1,Xj)
J
X— jh
0 (%)= 1—T’, xelXj,Xj,1)
0, elsewnhere.

The unknown functions U (t) are determined from the variational formulation

(0700 (6, a6, ) 0

(8.24)

(8.25)

where w;(X); ]=012,...,N are quintic B-spline functions taken as the test functions and

are given by
(X—Xj_s)s?
(X=X} _3)° = B(x = Xj_2)°;
(x=Xj_3)° —6(x—Xj_2)° +15(x — Xj 1)°;
00 1 (x=Xj_3)°> —6(x—Xj_3)° +15(x — X} 4)° = 20(x — X;)°;
! h® [(x—Xj_3)° = 6(X —Xj_5)° +15(x = Xj_4)° — 20(x — X;)° +15(x — X,1)°;

(x=Xj_3)° —6(x—Xj_5)° +15(x — X; 4)° — 20(x — X;)°

+15(x — X,1)° = 6(X — Xj,2);
0

Integrating by parts the above eg. (8.25), we obtain

(DU ) =22 (D) ) + (0 ) + 8 (7)) = -

Xe[Xj 3 Xj_2)
Xe[Xj_2,Xj_1)
xe[Xj_1,Xj)
xe[Xj,Xj1)
X €[Xji1,Xj42)

XE[Xj+2,Xj+3)

elsewhere.

(8.26)

Each linear hat function covers two elements so that each subinterval [x;,x;,,] is covered

by two linear hat functions. On the other hand each quantic B-spline covers six elements
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so that each subinterval [x;,X;,;] is covered by six splines. In terms of local co-ordinate
system given by

érzrx—-Xj, 0<:é:gl1.

Both the linear hat functions, ¢; and the quantic B-spline functions, v ; over the element

[X;,X;.1] can be defined as follows:
S
P = h

S
Pin :1_F’

o] 44

From eg. (8.26), we have

X N X N
[, 2.D8U;0; (v (k-2 [ U200 (9w ()dx
X0 i—0 2 Jxo 2
o N o N (8.27)
+an0” > U 0)e; ()w (x)dx +a LON >U; 0} (v ()dx=0.
j:0 j:0

N
Next we set |, = JZ;N Y DU (De; () ()dx,
=0

XN N
1= [ 22U T (9w} (x)dx,
j=0
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N
:j > U0, (w; (x)dx,
0 S

N
X
=] 22U 00; (9 (dx,
j=0
where DU (t) is defined by

DU . (t)— I|m (At)™ Za)“U (t—Atr).

Atn—t —a r=0

X N
Now I, = LON > DPU; (D)o (N (x)dx
j=0

= Ay Zw“U”é(p, Sy s ()dx+ | NG Zw“U“2¢, 2 (3 () dx+

+ j L@ Zw“ 2052 (9o (9dk+ [ 1 (a0 Za)“Un{(p, 00w 5 (X)X
(a0 Zw“un 101209 (0ax [ (At)‘“zwfu 15 (X (X)dx

+ j 7 (at)” zofU” "5 () ()dx+ j (At Za)aUleHl(x)z//j(x)dx

[ iy zw“U,+1¢,+1(x)wJ+1(x)dx+ [ iy zwaUJ+2¢J+2(X)l//J+1(X)dX

[y Zw“UHz«sz(x)sz(x)dm [ Za)aUJ+3(pJ+3(X)t//J—+3(X)dx

n

Z(At)—aza)g[ﬁ(u;‘_—gﬂzo N 1119107 + 24160 +119107F +12007% +U"E ||
r=0

(8.28)
Similarly,

-1
== [(u M a)?+24U10 5% +15(U] 1)? —80(U)% +15(U1,1)% + 24U, ) + U j“+3)2],

(8.29)
1
3= g[— (U7 5)* —56(U" )% - 245U" 1) +245U",1)*+56U", )% + (U, )%, (8.30)
1
4= h_z[_SU j-3 —40U§ ,+98U7, —95U 7, +40U ], +8U 7 3]. (8.31)

Substituting egs. (8.28)-(8.31) in eq. (8.27), we have
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n
A) > of [%(U 173 +1200 777 +1190 ] + 24160 ] +1190 [, +120U7 5 +U' 3 )}
r=0

3a
+ E[(U 1 3)7+24(U% ,)% +15U 1 1)* -80(UT)? +15(U ] ;)% + 24T, ,)% + (U j”+3)2]
+ 21 U] 00 56U )7 - 245U] 1)7 + 245U7.0) 56U )7 + U)']

a
+h_2[_ 5U" 4~ 4007 ,+980", ~95U",, +40U",, +50" 5]=0,

(8.32)

where j=12,34,..,N. Now to solve the above system, we assume U] to be a discrete

approximation to the exact solution u(x;.t,). U} =0 for j=-2,-10,N+LN+2 and
N+3. The system (8.32) is three time level scheme, so we require two initial time levels
and for the computation, the exact value at time equals zero and time equals At are used
for the required initial conditions. This nonlinear system (8.32) can be solved by Newton’s

method in order to compute the unknown approximate solutions U? . Hence the required

solution of the time-fractional Sharma-Tasso-Olver equation can be found.

8.5 Numerical Results and Discussion

In this present analysis, the absolute errors for Sharma-Tasso-Olver equation (8.19) have
been exhibited in Table 8.7 in case of integer order o =1. In order to evaluate the
accuracy and reliability of the Petrov-Galerkin for solving fractional order Sharma-Tasso-
Olver equation, the absolute errors obtained by Petrov-Galerkin and VIM have been

presented in Tables 8.8 and 8.9 for various points of x and t taking a=0.75 and 0.5

respectively. The comparison of L, and L, error norms at various points of t taking

a=0.75 and 0.5 has been illustrated in Table 8.10. Agreement between present numerical

results for time-fractional Sharma-Tasso-Olver equation obtained by Petrov-Galerkin
method appears very satisfactory through illustrations in Tables 8.7-8.10. The computed
outcomes exhibit that this proposed procedure can also be comfortably applied to such
variety of nonlinear equations and good accuracy can also be attained. The accuracy of the
proposed procedure can be examined with the aid of conducting a comparison between the
absolute errors obtained by proposed numerical results and the VIM solutions of the

fractional Sharma-Tasso-Olver equation. A comprehensible inference can be drawn from
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the numerical results that the proposed Petrov-Galerkin method imparts highly accurate

numerical solutions for nonlinear fractional differential equations.

Table 8.7

The absolute errors obtained by Petrov-Galerkin method with regard to exact

solution for time-fractional Sharma-Tasso-Olver equation given in (8.19) at various points of x and
ttaking ¢ =1, 1=0.01, w=0.05, and a=1.

Upem ~ Ueact
t=0.01 t=0.02 t=0.03 t=0.04 t=0.05 t=0.06 t=0.07 t=0.08 t=0.09 t=01
1 2.23959E-5 4.42244E-5 | 6.54935E-5 | 8.62037E-5 | 1.06349E-4 | 1.25918E-4 | 1.44892E-4 | 1.63248E-4 | 1.80957E-4 | 1.9799E-4
2 2.58227E-5 5.16002E-5 | 7.73625E-5 | 1.03126E-4 | 1.28891E-4 | 1.54645E-4 | 1.80359E-4 | 2.05993E-4 | 2.31490E-4 | 2.5678E-4
3 | 155609E-5 | 3.15260E5 | 4.80049E-5 | 6.50892E-5 | 8.28516E5 | 1.01344E-4 | 1.20597E-4 | 1.40617E-4 | 1.61390E-4 | 1.8287E-4
4 | 107875E5 | 2.15582E5 | 3.25306E-5 | 4.39120E-5 | 5.58949E5 | 6.86546E5 | 8.23457E-5 | 9.71000E5 | 1.13024E-4 | 1.3019E-4
5 | 1.02880E-5 | 1.94437E5 | 2.77437E5 | 354742E-5 | 4.29222E5 | 5.03723E5 | 5.81029E-5 | 6.63819E-5 | 7.54633E5 | 8.5583E5
6 | 1.39288E-5 | 252770E5 | 3.42716E-5 | 4.11663E5 | 4.62383E5 | 4.97847E-5 | 5.21189E-5 | 5.35662E5 | 5.44601E-5 | 55137E-5
7 2.31580E-5 4.24684E-5 | 5.79771E-5 | 6.97697E-5 | 7.79699E-5 | 8.27384E-5 | 8.42708E-5 | 8.27945E-5 | 7.85668E-5 | 7.1871E-5
8 4.14883E-5 7.91986E-5 | 1.12952E-4 | 1.42603E-4 | 1.68044E-4 | 1.89204E-4 | 2.06047E-4 | 2.18575E-4 | 2.26826E-4 | 2.3087E-4
9 7.40691E-5 1.46667E-4 | 2.17516E-4 | 2.86355E-4 | 3.52940E-4 | 4.17049E-4 | 4.78481E-4 | 5.37061E-4 | 5.92634E-4 | 6.4507E-4
Table 8.8 The absolute errors obtained by Petrov-Galerkin method with regard to solution

obtained by VIM for time-fractional Sharma-Tasso-Olver equation given in (8.19) at various

points of x and t taking a=1,4=0.0,w=0.05 and & =0.75.

Upem —Uuim
t=0.1 t=0.2 t=0.3 t=04 t=05 t=0.6 t=0.7 t=0.8 t=09

1 | 1.0614E-8 | 2.1103E-8 | 3.0835E-8 | 4.0017E-8 | 4.8760E-8 | 5.7131E-8 | 6.5178E-8 | 7.2937E-8 | 8.0437E-8
2 | 1.0601E-8 | 2.1075E-8 | 3.0795E-8 | 3.9965E-8 | 4.8696E-8 | 5.7056E-8 | 6.5093E-8 | 7.2843E-8 | 8.0332E-8
3 | 1.0584E-8 | 2.1044E-8 | 3.0749E-8 | 3.9905E-8 | 4.8623E-8 | 5.6971E-8 | 6.4996E-8 | 7.2734E-8 | 8.0212E-8
4 | 1.0566E-8 | 2.1008E-8 | 3.0696E-8 | 3.9838E-8 | 4.8541E-8 | 5.6874E-8 | 6.4886E-8 | 7.2610E-8 | 8.0076E-8
5 | 1.0546E-8 | 2.0968E-8 | 3.0638E-8 | 3.9762E-8 | 4.8449E-8 | 5.6767E-8 | 6.4763E-8 | 7.2473E-8 | 7.9924E-8
6 | 1.0524E-8 | 2.0925E-8 | 3.0574E-8 | 3.9679E-8 | 4.8348E-8 | 5.6648E-8 | 6.4627E-8 | 7.2321E-8 | 7.9757E-8
7 | 1.0501E-8 | 2.0877E-8 | 3.0504E-8 | 3.9588E-8 | 4.8237E-8 | 5.6518E-8 | 6.4480E-8 | 7.2156E-8 | 7.9575E-8
8 | 1.0474E-8 | 2.0825E-8 | 3.0428E-8 | 3.9490E-8 | 4.8117E-8 | 5.6378E-8 | 6.4319E-8 | 7.1977E-8 | 7.9377E-8
9 | 1.0446E-8 | 2.0769E-8 | 3.0347E-8 | 3.9384E-8 | 4.7988E-8 | 5.6227E-8 | 6.4147E-8 | 7.1784E-8 | 7.9164E-8
10 | 1.0416E-8 | 2.0709E-8 | 3.0260E-8 | 3.9271E-8 | 4.7850E-8 | 5.6065E-8 | 6.3962E-8 | 7.1577E-8 | 7.8937E-8
Table 8.9 The absolute errors obtained by Petrov-Galerkin method with regard to solution

obtained by VIM for time-fractional Sharma-Tasso-Olver equation given in (8.19) at various

points of x and t taking a=1,4=0.0,w=0.05 and « =0.5.

Upem — Uyim

t=0.1

t=0.2

t=0.3

t=04

t=05

t=0.6

t=0.7

t=0.8

t=0.9

1.2512E-8

2.4987E-8

3.6440E-8

4.7065E-8

5.6977E-8

6.6251E-8

7.4944E-8

8.3098E-8

9.0749E-8

1.2495E-8

2.4954E-8

3.6392E-8

4.7004E-8

5.6903E-8

6.6165E-8

7.4847E-8

8.2990E-8

9.0632E-8

1.2477E-8

2.4917E-8

3.6338E-8

4.6934E-8

5.6818E-8

6.6066E-8

7.4735E-8

8.2866E-8

9.0496E-8

1.2456E-8

2.4875E-8

3.6276E-8

4.6854E-8

5.6722E-8

6.5954E-8

7.4608E-8

8.2726E-8

9.0343E-8

O W N -

1.2432E-8

2.4828E-8

3.6208E-8

4.6766E-8

5.6614E-8

6.5829E-8

7.4467E-8

7.2569E-8

9.0171E-8
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6 | 1.2406E-8 | 2.4776E-8 | 3.6132E-8 | 4.6668E-8 | 5.6496E-8 | 6.5692E-8 | 7.4311E-8 | 7.2396E-8 | 8.9983E-8
7 | 1.2378E-8 | 2.4719E-8 | 3.6049E-8 | 4.6561E-8 | 5.6367E-8 | 6.5541E-8 | 7.4141E-8 | 7.2208E-8 | 8.9777E-8
8 | 1.2347E-8 | 2.4658E-8 | 3.5960E-8 | 4.6445E-8 | 5.6227E-8 | 6.5379E-8 | 7.3957E-8 | 7.2004E-8 | 8.9554E-8
9 | 1.2314E-8 | 2.4592E-8 | 3.5863E-8 | 4.6321E-8 | 5.6076E-8 | 6.5204E-8 | 7.3758E-8 | 7.1784E-8 | 8.9314E-8
10 | 1.2278E-8 | 2.4521E-8 | 3.5760E-8 | 4.6188E-8 | 5.5915E-8 | 6.5016E-8 | 7.3546E-8 | 7.1549E-8 | 8.9057E-8
Table 8.10 L, and L, error norms for time-fractional Sharma-Tasso-Olver equation using

Petrov-Galerkin method at various points of t taking 1 =a=1, andw=0.5.

t a=0.75 a=05
L, L, L, L,

0.1 3.32917E-8 1.06143E-8 3.92436E-8 1.25119E-8
0.2 6.61903E-8 2.11033E-8 7.83723E-8 2.49873E-8
0.3 9.67138E-8 3.08351E-8 1.14294E-7 3.64403E-8
0.4 1.25515E-7 4.00176E-8 1.47621E-7 4.70657E-8
0.5 1.52935E-7 4.87599E-8 1.78709E-7 5.69776E-8
0.6 1.79190E-7 5.71309E-8 2.07798E-7 6.62518E-8
0.7 2.04431E-7 6.51783E-8 2.23007E-7 7.49444E-8
0.8 2.28769E-7 7.29378E-8 2.60638E-7 8.30987E-8
0.9 2.52290E-7 8.04370E-8 2.84636E-7 9.07498E-8

8.6 Conclusion

In the present chapter, we have presented the Petrov-Galerkin method for solving time-

fractional KdV-Burgers equation and time-fractional Sharma-Tasso-Olver equation

numerically by implementing a linear hat function as the trial function and a quintic B-

spline function as the test function. This numerical method seems to be competent of

producing numerical solutions of high accuracy for the fractional differential equations. A

comparison between the numerical results is carried out to illustrate the pertinent feature

of the proposed algorithm. The acquired numerical approximate solutions preserve good

accuracy when compared with the exact solutions. The accuracy of the method is assessed

in terms of L, andL_ error norms. A comprehensible inference can be drawn from the

numerical results that the proposed Petrov-Galerkin method imparts highly accurate

numerical solutions for nonlinear fractional differential equations.
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