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Abstract 
 

The subject of fractional calculus has gained considerable popularity and importance 

during the past three decades or so, mainly due to its demonstrated applications in 

numerous seemingly diverse and widespread fields of science and engineering. It deals 

with derivatives and integrals of arbitrary orders. The fractional derivative has been 

occurring in many physical problems, such as frequency-dependent damping behavior of 

materials, motion of a large thin plate in a Newtonian fluid, creep and relaxation functions 

for viscoelastic materials, the DPI  controller for the control of dynamical systems etc. 

Phenomena in electromagnetics, acoustics, viscoelasticity, electrochemistry, control 

theory, neutron point kinetic model, anomalous diffusion, Brownian motion, signal and 

image processing, fluid dynamics and material science are well described by differential 

equations of fractional order.  

Generally, nonlinear partial differential equations of fractional order are difficult to solve. 

So for the last few decades, a great deal of attention has been directed towards the solution 

(both exact and numerical) of these problems. The aim of this dissertation is to present an 

extensive study of different wavelet methods for obtaining numerical solutions of 

mathematical problems occurring in disciplines of science and engineering. This present 

work also provides a comprehensive foundation of different wavelet methods comprising 

Haar wavelet method, Legendre wavelet method, Legendre multi-wavelet methods, 

Chebyshev wavelet method, Hermite wavelet method and Petrov-Galerkin method. The 

intension is to examine the accuracy of various wavelet methods and their efficiency for 

solving nonlinear fractional differential equations. 

With the widespread applications of wavelet methods for solving difficult problems in 

diverse fields of science and engineering such as wave propagation, data compression, 

image processing, pattern recognition, computer graphics and in medical technology, these 

methods have been implemented to develop accurate and fast algorithms for solving 

integral, differential and integro-differential equations, especially those whose solutions 

are highly localized in position and scale. The main feature of wavelets is its ability to 

convert the given differential and integral equations to a system of linear or nonlinear 

algebraic equations, which can be solved by numerical methods. Therefore, our main 



 

 
 

focus in the present work is to analyze the application of wavelet based transform methods 

for solving the problem of fractional order partial differential equations.  

The introductory concept of wavelet, wavelet transform and multi-resolution analysis 

(MRA) have been discussed in the preliminary chapter. The basic idea of various 

analytical and numerical methods viz. Variational Iteration Method (VIM), Homotopy 

Perturbation Method (HPM), Homotopy Analysis Method (HAM), First Integral Method 

(FIM), Optimal Homotopy Asymptotic Method (OHAM), Haar Wavelet Method, 

Legendre Wavelet Method, Chebyshev Wavelet Method and Hermite Wavelet Method 

have been presented in chapter 1. 

In chapter 2, we have considered both analytical and numerical approach for solving some 

particular nonlinear partial differential equations like Burgers’ equation, modified 

Burgers’ equation, Huxley equation, Burgers-Huxley equation and modified KdV 

equation, which have a wide variety of applications in physical models. Variational 

Iteration Method and Haar wavelet Method are applied to obtain the analytical and 

numerical approximate solution of Huxley and Burgers-Huxley equations. Comparisons 

between analytical solution and numerical solution have been cited in tables and also 

graphically. The Haar wavelet method has also been applied to solve Burgers’, modified 

Burgers’, and modified KdV equations numerically. The results thus obtained are 

compared with exact solutions as well as solutions available in open literature. Error of 

collocation method has been presented in this chapter. 

Methods like Homotopy Perturbation Method (HPM) and Optimal Homotopy Asymptotic 

Method (OHAM) are very powerful and efficient techniques for solving nonlinear PDEs. 

Using these methods, many functional equations such as ordinary, partial differential 

equations and integral equations have been solved. We have implemented HPM and 

OHAM in chapter 3, in order to obtain the analytical approximate solutions of system of 

nonlinear partial differential equation viz. the Boussinesq-Burgers’ equations. Also, the 

Haar wavelet method has been applied to obtain the numerical solution of Boussinesq-

Burgers’ equations. Also, the convergence of HPM and OHAM has been discussed in this 

chapter. 

The mathematical modeling and simulation of systems and processes, based on the 

description of their properties in terms of fractional derivatives, naturally leads to 

differential equations of fractional order and the necessity to solve such equations. The 



 

 
 

mathematical preliminaries of fractional calculus, definitions and theorems have been 

presented in chapter 4. Next, in this chapter, the Haar wavelet method has been analyzed 

for solving fractional differential equations. The time-fractional Burgers-Fisher, 

generalized Fisher type equations, nonlinear time- and space-fractional Fokker-Planck 

equations have been solved by using two-dimensional Haar wavelet method. The obtained 

results are compared with the Optimal Homotopy Asymptotic Method (OHAM), the exact 

solutions and the results available in open literature. Comparison of obtained results with 

OHAM, Adomian Decomposition Method (ADM), VIM and Operational Tau Method 

(OTM) has been demonstrated in order to justify the accuracy and efficiency of the 

proposed schemes. The convergence of two-dimensional Haar wavelet technique has been 

provided at the end of this chapter. 

In chapter 5, the fractional differential equations such as KdV-Burger-Kuramoto (KBK) 

equation, seventh order KdV (sKdV) equation and Kaup-Kupershmidt (KK) equation have 

been solved by using two-dimensional Legendre wavelet and Legendre multi-wavelet 

methods. The main focus of this chapter is the application of two-dimensional Legendre 

wavelet technique for solving nonlinear fractional differential equations like time-

fractional KBK equation, time-fractional sKdV equation in order to demonstrate the 

efficiency and accuracy of the proposed wavelet method. Similarly in chapter 6, two-

dimensional Chebyshev wavelet method has been implemented to obtain the numerical 

solutions of the time-fractional Sawada-Kotera equation, fractional order Camassa-Holm 

equation and Riesz space-fractional sine-Gordon equations. The convergence analysis has 

been done for these wavelet methods.  

In chapter 7, the solitary wave solution of fractional modified Fornberg-Whitham equation 

has been attained by using first integral method and also the approximate solutions 

obtained by optimal homotopy asymptotic method (OHAM) are compared with the exact 

solutions acquired by first integral method. Also, the Hermite wavelet method has been 

implemented to obtain approximate solutions of fractional modified Fornberg-Whitham 

equation. The Hermite wavelet method is implemented to system of nonlinear fractional 

differential equations viz. the fractional Jaulent-Miodek equations. Convergence of this 

wavelet methods has been discussed in this chapter. Chapter 8 emphasizes on the 

application of Petrov-Galerkin method for solving the fractional differential equations 

such as the fractional KdV-Burgers’ (KdVB) equation and the fractional Sharma-Tasso-

Olver equation with a view to exhibit the capabilities of this method in handling nonlinear 



 

 
 

equation. The main objective of this chapter is to establish the efficiency and accuracy of 

Petrov-Galerkin method in solving fractional differential equtaions numerically by 

implementing a linear hat function as the trial function and a quintic B-spline function as 

the test function.  

Various wavelet methods have been successfully employed to numerous partial and 

fractional differential equations in order to demonstrate the validity and accuracy of these 

procedures. Analyzing the numerical results, it can be concluded that the wavelet methods 

provide worthy numerical solutions for both classical and fractional order partial 

differential equations. Finally, it is worthwhile to mention that the proposed wavelet 

methods are promising and powerful methods for solving fractional differential equations 

in mathematical physics. This work also aimed at, to make this subject popular and 

acceptable to engineering and science community to appreciate the universe of wonderful 

mathematics, which is in between classical integer order differentiation and integration, 

which till now is not much acknowledged, and is hidden from scientists and engineers. 

Therefore, our goal is to encourage the reader to appreciate the beauty as well as the 

usefulness of these numerical wavelet based techniques in the study of nonlinear physical 

systems. 
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Mathematical Preliminary 

1. Introduction 

Partial differential equations (PDEs) are of widespread interest because of their connection 

with phenomena in the physical world. These are useful tool for describing the natural 

phenomena of science and engineering models. For instance, in physics, the heat flow and 

the wave propagation phenomena are well described via PDEs. Many engineering 

applications are simulated mathematically as partial differential equations with initial and 

boundary conditions. The diffusion of neutrons in nuclear reactor dynamics, population 

models, the dispersion of a chemically reactive material and many physical phenomena of 

fluid dynamics, quantum mechanics, electricity etc. are governed by PDEs.  

Partial differential equations are originated from the study of solution of a wide variety of 

problems in mechanics. Even though the foundation of nonlinear partial differential 

equations is very ancient, they have undergone remarkable new developments during the 

last half of the twentieth century. Scientists and methematicians have become actively 

involved in the study of countless problems offered by PDEs. The primary reason for this 

research was that it plays a vital role in modern mathematical sciences, mainly in applied 

physics, mathematical modelling and engineering. With the development of PDEs, several 

methods such as the characteristics method, spectral methods and perturbation techniques 

have been employed to evaluate the solution of nonlinear problems. But, there is no 

general method of finding analytical solutions of nonlinear partial differential equations. 

Hence new numerical techniques are required for finding solutions of nonlinear equations. 

Therefore, it becomes increasingly important to be familiar with all traditional and 

recently developed methods for solving PDEs and the implementations of these methods. 

In this context, a relatively new and emerging area in mathematical research with a variety 

of applications in engineering disciplines; viz. wavelets theory have attracted the focus of 

researchers in the field of science and engineering. Wavelets are very successfully used in 

signal analysis for wave form demonstration and segmentations, time frequency analysis, 

medical diagnostics, geophysical signal processing, statistical analysis, pattern 
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recognition, and fast algorithms for easy execution. This work, particularly, deals with the 

development of various wavelet methods for the solution of PDEs.  

2. Wavelets 

The word “wavelet” has been derived from the French word “ondelette”, which means 

“small wave”. An oscillatory function   2)( Lx  with zero mean and compact support 

is a wavelet if it has the following desirable characteristics:  

i. Smoothness: )(x  is n times differentiable and their derivatives are continuous. 

ii. Localization: )(x  is well localized both in time and frequency domains, i.e. )(x

and its derivatives must decay rapidly. For frequency localization )(ˆ   must 

decay sufficiently fast as   and that )(ˆ   becomes flat in the neighborhood 

of .0  The flatness is associated with number of vanishing moments of )(x  

i.e., 

 0)( 




dxxxk or equivalently nk
d

d
k

k

,...,1,0for  0)(ˆ  


 

in the sense that larger the number of vanishing moments more is the flatness when 

  is small. 

iii. The admissibility condition 

 













d

ˆ

 

suggests that  ̂  decay at least as 
1

  or 
1

x  for .0     

Although most of the numerical methods have been successfully applied for many linear 

and nonlinear differential equations, they have also some drawbacks in regions where 

singularities or sharp transitions occur.  In those cases the solutions may be oscillating and 

for accurate representation of the results adaptive numerical schemes must be used which 

complicates the solution. To overcome the above difficulty wavelet transform methods are 

quite useful. 

3. Wavelet Transform [1] 
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Morlet and Grossmann [2, 3] first introduced the concept of wavelets in early 1980s. Since 

then, a lot of researchers were involved in development of wavelets. Some notable 

contributors include Morlet and Grossmann [3] for formulation of continuous wavelet 

transform (CWT), Stromberg [4] for early works on discrete wavelet transform (DWT), 

Meyer [5] and Mallat [6] for multi-resolution analysis using wavelet transform, and 

Daubechies [7] for proposal of orthogonal compactly supported wavelets. Thereafter, a lot 

of work has been done both on development and application of wavelet analysis on a wide 

variety of problems like signal and image processing, data condensation and solution of 

differential equations.  

In 1982, Jean Morlet, a French geophysical engineer, first introduced the concept of 

wavelets as a family of functions constructed from dilation and translation of a single 

function known as the “mother wavelet” ).(t  They are defined by  

   , 
1

)(, 






 


a

bt

a
tba   ,, ba  0a   (1) 

where a is called a scaling parameter which measures the degree of compression or scale, 

and b is a translation or shifting parameter that determines the location of the wavelet. If 

1a , the wavelet (1) is the compressed version of the mother wavelet and corresponds 

mainly to higher frequencies. On the other hand, when 1a , )(, tba  has a larger time 

width than )(t  and corresponds to lower frequencies. Thus, wavelets have time-widths 

adapted to their frequencies, which is the main reason for the success of the Morlet 

wavelets in signal processing and time-frequency signal analysis. It can be noted that the 

resolution of wavelets at different scales varies in the time and frequency domains as 

governed by the Heisenberg uncertainty principle. At large scale, the solution is coarse in 

the time domain and fine in the frequency domain. As the scale a decreases, the resolution 

in the time domain becomes finer while that in the frequency domain becomes coarser. 

The success of Morlet’s numerical algorithms encouraged Grossmann, a French 

theoretical physicist, to make an extensive study of the Morlet wavelet transform which 

led to the recognition that wavelets )(, tba  correspond to a square integrable 

representation of the affine group. Grossmann was concerned with the wavelet transform 

of )(2 Lf  defined by 
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  ,)(
1

,),]([ , dt
a

bt
tf

a
fbaf ba  W 












 
 

   (2) 

where )(, tba  plays the same role as the kernel tie   in the Fourier transform. The 

continuous wavelet transform W  is linear. The inverse wavelet transform can be defined 

so that f can be reconstructed by means of the formula 

dbdaatbafCtf ba ))((),(][)( 2

,

1 











   W     (3) 

provided C  satisfies the so called admissibility condition, that is, 

,
)(ˆ

2

2




 








 dC     (4) 

where )(ˆ   is the Fourier transform of the mother wavelet ).(t  

Grossmann’s ingenious work revealed that certain algorithms that decompose a signal on 

the whole family of scales, can be utilized as an efficient tool for multiscale analysis. In 

practical applications, the continuous wavelet can be computed at discrete grid points. For 

this a general wavelet   can be defined by replacing a with ),1,0( 00 aam  b with 

),0( 000 banb m  where m and n are integers and making  

  )()( 00

2

0, nbtaat mm

nm    .      (5) 

The discrete wavelet transform of  f  is defined as  

dtttffnmfnmf nmnm )()(),(),]([),( ,,  




W    (6) 

where )(, tnm  is given in eq. (5). 

The series  

)(),( ,

,

tnmf nm

nm






     (7) 

is called the wavelet series of f, and the functions { )(, tnm } are called the discrete 

wavelets or simply wavelets. 

In general, the function f belonging to the Hilbert space, )(2 L  can be completely 

determined by its discrete wavelet transform if the wavelets form a complete system in  

)(2 L . In other words, if the wavelets form an orthonormal basis of )(2 L , then they are 
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complete and f can be reconstructed from its discrete wavelet transform 

  
nmfnmf ,,),(   by means of the formula 

     ,)(,)(
,

,,





nm

nmnm tftf       (8) 

provided the wavelets form an orthonormal basis. 

Alternatively, the function f  can be determined by the formula 

  ,)(,)(
,

,,





nm

nmnm tftf      (9) 

provided the wavelets form a basis and { )(, tnm } is the dual basis. 

For some particular choice of   and 00 ,ba , the nm,  constitute an orthonormal basis for 

)(2 L . If 20 a  and ,10 b  then there exists a function   with good time-frequency 

localization properties such that 

   )2(2)( 2

, ntt mm

nm         (10) 

form an orthonormal basis for )(2 L . These { )(, tnm } are known as the Littlewood-Paley 

wavelets. 

Definition of Orthogonal wavelet:  

A wavelet )(2 L  is called an orthogonal wavelet, if the family { nm, }, is an 

orthonormal basis of )(2 L ; that is, 

   njminmji ,,,, ,   ,  Znmji ,,, . 

 

Definition of Semi-orthogonal wavelet [8]:  

A wavelet )(2 L  is called an semi-orthogonal wavelet, if the family { nm, } satisfy 

the following condition,  

   0, ,, nmji  , mi  , Znmji ,,, . 

Obviously, every semi-orthogonal wavelets generates an orthogonal decomposition of  

)(2 L  and every orthonormal wavelet is also an semi-orthogonal wavelet.  

 

Hence the integral wavelet transform (IWT) is defined to be the convolution with respect 

to the dilation of the reflection of some function, called a “basic wavelet”, while the 
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wavelet series (WS) is expressed in terms of a single function, called a “wavelet” by 

means of two very simple operations: binary dilations and integral translations. In wavelet 

analysis, WS and IWT are intimately related. The IWT of a function on the real line 

evaluated at certain points in the time-scale domain gives the coefficients for its wavelet 

series representation. Wavelet techniques enable us to divide a complicated function into 

several simpler ones and study them separately. This property, along with fast wavelet 

algorithm makes these techniques very attractive for analysis and synthesis. Unlike 

Fourier-based analyses that use global (nonlocal) sine and cosine functions as bases, 

wavelet analysis uses bases that are localized in time and frequency to more effectively 

represent nonstationary signals. As a result, a wavelet representation is much more 

compact and easier for implementation. Using the powerful multiresolution analysis, one 

can represent a function by a finite sum of components at different resolutions so that each 

component can be adaptively processed based on the objectives of the application. This 

capability of representing functions compactly and in several levels of resolutions is the 

major strength of the wavelet analysis.  

 

4. Multiresolution analysis (MRA) [8] 

In 1989, Stephane Mallat and Yves Meyer introduced the idea of multiresolution 

analysis (MRA). The fundamental idea of MRA is to represent a function as a limit of 

successive approximations, each of which is a “smoother” version of the original function. 

The successive approximations corresponds to different resolutions, which leads to the 

name multiresolution analysis as a formal approach to construct orthogonal wavelet bases 

utilising a definite set of rules. It also provides the existence of so-called scaling functions 

and scaling filters which are then used for construction of wavelets and fast numerical 

algorithms. In applications, it is an effective mathematical framework for hierarchical 

decomposition of a signal or an image into componenets of different scales represented by 

a sequence of function spaces on  .  

Any wavelet, orthogonal or semi-orthogonal, generates a direct sum decomposition of 

)(2 L . For each Z,j , let us consider the closed subspaces 

   12 . . .   jjj WWV ,   Zj , 



 

7 
 

of )(2 L . A set of subspaces  
ZjjV  is said to be MRA of  2L  if it possess the 

following properties: 

1. 1 jj VV , Zj , 

2. 
Zj

jV  is dense in )(2 L ,   

3. }0{



Zj

jV , 

4. jjj WVV 1 , 

5. 1)2()(  jj VtfVtf , Zj . 

Properties (2)-(5) state that  
ZjjV  is a nested sequence of subspaces that effectively 

covers  2L . That is, every square integrable function can be approximated as closely as 

desired by a function that belongs to at least one of the subspaces jV . A function 

)(2 L  is called a scaling function if it generates the nested sequence of subspaces jV  

and satisfies the dilation equation, namely 

     
k

k katpt )()(  ,    (11) 

with 2lpk   and a being any rational number.  

For each scale j, since 1 jj VV , there exists a unique orthogonal complementary subspace 

jW  of jV  in 1jV . This subspace jW  is called wavelet subspace and is generated by 

)2(, ktj

kj  , where 
2L  is called the wavelet. From the above discussion, these 

results follow easily 

 21221
  , jjVVV jjj  ,      

 2121
 ,0 jjWW jj  , 

 2121
  ,0 jjWV jj  . 

In recent years, there have been many developments and new applications of wavelet 

analysis for describing complex algebraic functions and analyzing empirical continuous 

data obtained from many kinds of signals at different scales of resolurions. The wavelet 

based approximations of ordinary and partial differential equations have been attracting 

the attention, since the contribution of orthonormal bases of compactly supported wavelet 
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by Daubechies and multiresolution analysis based Fast Wavelet transform algorithm by 

Beylkin [9] gained momentum to make wavelet approximations attractive.  

In order to solve partial differential equations by numerical methods, the unknown 

solution can be represented by wavelets of different resolutions, resulting in a multigrid 

representation. The dense matrix resulting from an integral operator can be sparsified 

using wavelet based thresholding techniques to attain an arbitrary degree of solution 

accuracy. The main feature of wavelets is its ability to convert the given differential and 

integral equations to a system of linear or nonlinear algebraic equations that can be solved 

by numerical methods. The goal of this chapter is to convey a general idea about wavelets.  
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CHAPTER 1 

1 Numerous Analytical and Numerical 

Methods 

1.1 Introduction 

The purpose of this chapter is to deliver a brief description of various analytical and 

numerical methods viz. Variational Iteration Method (VIM), First Integral Method (FIM), 

Homotopy Perturbation Method (HPM), Homotopy Analysis Method (HAM), Optimal 

Homotopy Asymptotic Method (OHAM), Haar Wavelet Method, Legendre Wavelet 

Method (LWM), Chebyshev Wavelet Method (CWM), Hermite Wavelet Method (HWM) 

and Petrov-Galerkin method etc.  

The entire chapter can be divided into two parts. In the first part, the basic ideas of some 

well-known analytical techniques such as Variational Iteration Method (VIM), First 

Integral Method (FIM), Homotopy Perturbation Method (HPM), Homotopy Analysis 

Method (HAM), and Optimal Homotopy Asymptotic Method (OHAM) have been 

discussed, whereas the second part is devoted to study the elemental concept of various 

methods based on wavelet functions. The applicability of these proposed methods have 

been examined for solving nonlinear partial differential equations (PDEs) and fractional 

partial differential equations (FPDEs). Our goal is to encourage the reader to appreciate 

the beauty as well as the effectiveness of these analytical and numerical techniques in the 

study of nonlinear physical phenomena. 

Part I 

1.2 Variational Iteration Method (VIM) 

The concept of variational iteration method (VIM) was first developed by Ji-Huan He in 

the year 1997 [10]. The method has been favorably applied to various kinds of nonlinear 

problems by many researchers in a variety of scientific fields. The key advantage of the 
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method is its flexibility and potential to solve nonlinear equations accurately and 

conveniently. The method gives the solution in the form of rapidly convergent successive 

approximations that may give the exact solution if such a solution exists. The method has 

been proved by many authors to be reliable and efficient for a variety of scientific 

applications, linear and nonlinear equations as well. To illustrate the elemental concept of 

variation iteration method [11-13], we consider the general differential equation as follows 

),( txgNuLu       (1.1) 

where L  is a linear operator, N  is a nonlinear operator and ),( txg  is a known analytical 

function. According to the variational iteration method, a correction functional can be 

constructed as follows 

0   ,)),(),(~),((),(),(
0

1   ndxgxuNxLutxutxu

t

nnnn    (1.2) 

where   is a general Lagrange multiplier which can be identified optimally by the 

variational theory, the subscript n denotes the n
th

 order approximation and nu~  is regarded 

as a restricted variation, i.e., 0~ nu . The Lagrange multiplier   can be determined from 

the stationary condition of the correction functional 01 nu . 

The main advantages of this method are as follows: 

i. The correction functions can be constructed easily by the general Lagrange 

multipliers which can be optimally determined by the variational theory. The 

application of restricted variations in correction functional makes it much 

easier to determine the multiplier.  

ii. The initial approximation can be freely selected with possible unknown 

constants which can be identified by various methods.  

iii. The approximations acquired with the aid of this method are valid not only for 

small parameter, but also for very large parameter. 

Being different from the other analytical methods, such as perturbation methods, this 

method does not depend on small or large parameters, it could possibly in finding wide 

application in nonlinear problems without linearization, discretization or small 

perturbations. 
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1.3 First Integral Method 

The first integral method is one of the powerful mathematical techniques for finding exact 

solutions of partial as well as fractional differential equations. This method is based on the 

ring theory of commutative algebra. It was first proposed by Feng [14] and was further 

developed by the same author in [15, 16].  Many authors have used first integral method 

effectively to establish the exact solutions of various nonlinear partial differential 

equations (PDEs) and FPDEs arising in mathematical physics [17-19]. In order to apply 

the first integral method over FPDEs, the fractional differential equations may be 

transformed into classical ordinary differential equations through fractional complex 

transform with the help of local fractional derivative. The section below demonstrates the 

fundamental concept of first integral method via algorithm. 

1.3.1 Algorithm of First Integral Method  

In this section, the fundamental concept of first integral method has been established. The 

main steps of this proposed method are described as follows: 

Step 1: Consider the following general nonlinear fractional order partial differential 

equation 

,0,...),,,,,( xxxxxtxxtx uuDuuDuuF 
 10     (1.3) 

where ),( txuu   is an unknown function, uDt


 is local fractional derivative of u, F  is a 

polynomial in u and its numerous partial derivatives in which the highest order derivatives 

and nonlinear terms are involved. 

Step 2: Using the fractional complex transform [20, 21]: 

)(),( txu ,    
)1( 







t
kx           (1.4) 

where k and   are constants, the FPDE (1.3) is transformed to a nonlinear ordinary 

differential equation (ODE) for )(),( txu  of the following form 

,0,...),,,,,( 322    kkkkF         (1.5) 

Step 3: Suppose eq. (1.5) has a solution of the form 

)()(  X            (1.6) 

and introducing a new variable )()(  Y , leads to a system of ODEs of the form 
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)(
)(





Y

d

dX
 ,   ))(),((

)(





YXH

d

dY
          (1.7) 

In general, it is quite difficult to solve a two-dimensional autonomous planar system of 

ODEs, such as eq. (1.7).   

Step 4: Utilizing the qualitative notion of differential equations [22], if we are able to 

evaluate the integrals to eq. (1.7) under the same conditions, then the general solutions to 

eq. (1.7) may also be derived directly. With the aid of the division theorem for two 

variables in the complex domain C  which is based on the Hilbert-Nullstellensatz theorem 

[23], one can obtain the first integral to eq. (1.7). This first integral can reduce eq. (1.5) to 

a first order integrable ordinary differential equation. Then by solving this equation 

directly, the exact solution to eq. (1.3) is obtained. 

 

Theorem 1.1: (Division theorem)  

Let ),( yxQ  and ),( yxR are polynomials in C [x, y] and ),( yxQ  is irreducible in          

C [x, y]. If ),( yxR vanishes at all zero points of ),( yxQ , then there exists a polynomial 

),( yxH  in C [x, y] such that 

),(),(),( yxHyxQyxR            (1.8) 

 

The division theorem follows immediately from the Hilbert-Nullstellensatz theorem from 

the ring theory of commutative algebra [23, 24]. The elementary idea of this procedure is 

to construct a first integral with polynomial coefficients of an explicit form to an 

equivalent autonomous planar system by utilizing the division theorem.  

1.4 Homotopy Perturbation Method (HPM) 

In the last three decades with the rapid development of nonlinear sciences, there has 

appeared increasing interest of scientists and engineers in the analytical techniques for 

nonlinear problems. Various perturbation methods have been widely applied to solve 

nonlinear problems in science and engineering. But, most of the perturbation techniques 

require the existence of a small parameter in the equation. An unsuitable choice of such 

parameter would lead to very bad results. The solutions obtained through perturbation 

methods can be valid only when a small value of the parameter is used. Hence, it is 

necessary to check validity of the approximations through numerical processes. 
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In contrast to the traditional perturbation methods, the homotopy perturbation method 

(HPM) technique is independent of small or large physical parameters, and provides us a 

simple way to ensure the convergence of solution. 

To illustrate the basic ideas of homotopy perturbation method (HPM) [25] we consider the 

following nonlinear differential equation 

A   rr           ,0)()(  f u    (1.9) 

with the boundary conditions 

Γ
n

u
uB 












r             ,0,     (1.10) 

where A  is a general differential operator, B  is a boundary operator, )(rf  is a known 

analytic function, Γ  is the boundary of the domain Ω . 

The operator A   can be divided into two parts linear L   and nonlinear  N     . Therefore 

eq. (1.9) can be rewritten as follows 

L  )(u N   0)()(  rfu     (1.11) 

We construct a homotopy ),( pv r  of eq. (1.9) as follows  ]1,0[:),( Ωpv r  which 

satisfies [26] 

)[1(),( ppvH  L  )(v L  )]( 0u [p A  ,0)]()(  f v  r  (1.12) 

or  ),( pvH L  )(v L  )( 0u pL  )( 0u [p N    .0)]()(  f v  r  (1.13) 

where ]1,0[p  is an embedding parameter and 0u  is an initial approximation of eq. (1.9), 

which satisfies the boundary conditions. It follows from (1.12) and (1.13) that 

    )0,(vH  L  )(v L  0)( 0 u    (1.14) 

or    )1,(vH A  0)()(  f v  r     (1.15) 

The changing process of p from zero to unity is just that of ),( pv r  from )(0 ru  to )(ru . In 

topology, this is called deformation, and L )(v L )( 0u , A  )()( rf v   are called 

homotopic.  

We assume that the solution of eq. (1.13) can be written as a power series in p 
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...vppvvv  2
2

10      (1.16)  

The approximate solution of eq. (1.9) can be obtained by setting 1p   

...vvvvu
p




210
1

lim     (1.17) 

The series in eq. (1.17) is convergent for most cases and the convergence rate depends 

upon the nonlinear operator A  )(v . 

The nonlinear term  N   )(u  can be expressed in He polynomials [27] as 

N   )(u  





0

10 ,...,,
m

mm

m vvvHp    (1.18) 

where  

  . . . ,2 ,1 ,0  ,
!

1
 , . . . ,

0

10 




























 



mvpN
pm

vvvH
m

k

k
k

m

m

mm
               (1.19) 

1.5 Optimal Homotopy Asymptotic Method (OHAM) 

Unlike perturbation methods, the Optimal Homotopy Asymptotic Method (OHAM) is 

independent of small or large physical parameters, and provides us a simple way to ensure 

the convergence of solution series. The method was first devised by Marinca et al. [28-30]. 

Recently many researchers have successfully applied this method to various nonlinear 

problems in science and engineering.

 

This is an effective and powerful method to find the 

approximate solution of nonlinear problems. The advantage of OHAM is built in 

convergence criteria, which is controllable. In OHAM, the control and adjustment of the 

convergence region are provided in a convenient way.  

In HPM and OHAM, the concept of homotopy from topology and conventional 

perturbation technique were merged to propose a general analytic procedure for the 

solution of nonlinear problems. Thus, these methods are independent of the existence of a 

small parameter in the problem at hand and thereby overcome the limitations of 

conventional perturbation technique. OHAM, however, is the most generalized form of 

HPM as it employs a more general auxiliary function )( pH  in place of HPM's p. 

To illustrate the basic ideas of optimal homotopy asymptotic method [31, 32], we consider 

the following nonlinear differential equation 
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0),()),((  txgtxuA  , Ωx    (1.20)

 
with the boundary conditions 

0, 












t

u
uB , Γx ,     (1.21) 

where A is a differential operator, B is a boundary operator, ),( txu  is an unknown 

function, Γ  is the boundary of the domain Ω  and ),( txg  is a known analytic function. 

The operator A can be decomposed as  

NLA  ,      (1.22)  

where L is a linear operator and N is a nonlinear operator. 

We construct a homotopy  ]1,0[:) ;  ,( Ωptx  which satisfies 

    0),());,(()(),());,(()1()),;,((  txgptxApHtxgptxLppptxH  , (1.23) 

where ]1,0[p  is an embedding parameter, )( pH  is a nonzero auxiliary function for 

0p  and 0)0( H . When 0p  and 1p , we have ),()0;,( 0 txutx   and 

),()1;,( txutx   respectively. 

Thus as p varies from 0 to 1, the solution );,( ptx  approaches from ),(0 txu  to ),( txu .  

Here ),(0 txu  is obtained from eq. (1.23) and eq. (1.21) with 0p  yields 

   0),())0 ;  ,((  txgtxL  , .0 , 0
0 













t

u
uB    (1.24)  

The auxiliary function )( pH  is chosen in the form 

. . .)( 3
3

2
21  pCpCpCpH     (1.25) 

where ,...,, 321 CCC  are convergence control parameters to be determined. To get an 

approximate solution, ,...),,;,(~
321 CCCtx  is expanded in a series about p as 

     





1

3210321 ,...,,,,,,...,,, ;  ,~

i

i
i pCCCtxutxuCCCptx .  (1.26) 

Substituting eq. (1.26) in eq. (1.23) and equating the coefficients of like powers of p, we 

will have the following equations 

        .0 ,    , ,, , 1
10011 














t

u
uBtxuNCtxgtxuL   (1.27) 
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          ,),(),,(),(),(),(),( 1011100212 txutxuNtxuLCtxuNCtxuLtxuL   (1.28) 

     .0 , 2
2 













t

u
uB  

and hence the general governing equations for ),( txu j  is given by 

        

         ,...3,2;  , , . . . , , ,                                       

 , , ,

1

1

10

001














jtxutxuNtxuLC

txuNCtxuLtxuL

j

i

jijiji

jjj

(1.29) 

where     txutxuN jj  , , . . . , ,0  is the coefficient of jp  in the expansion of ));,(( ptxN   

about the embedding parameter p and 

        j

j

jj puuuNtxuNCCCptxN 





1

1000321  , . . . ,, ,,...,,, ;  , .  (1.30) 

It is observed that the convergence of the series (1.26) depends upon the convergence 

control parameters ,...,, 321 CCC  

The approximate solution of eq. (1.20) can be written in the following form  

     





1

1

3210321 ,...,,,,,,...,, ;  ,~
n

j

j CCCtxutxuCCCtxu .  (1.31) 

Substituting eq. (1.31) in eq. (1.20), we get the following expression for the residual 

         txgCCCtxuNCCCtxuLCCCtxRn ,,...,,;  ,~,...,,;  ,~,...,,;  , 321321321   (1.32) 

If   ,0,...,,;  , 321 CCCtxRn  then  ,...,,;  ,~
321 CCCtxu  is the exact solution. Generally such 

case does not arise for nonlinear problems. The nth order approximate solution given by 

eq. (1.31) depends on the convergence control parameters ,...,, 321 CCC  and these 

parameters can be optimally determined by various methods such as weighted residual 

least square method, Galerkin method, collocation method and so on.  

Case I 

According to the collocation method the optimal values of the parameters ,...,, 321 CCC  can 

be obtained by solving the following system of equations.  

 

  0,...,,,;, 2321 
kjin CCCCtxR kjki  , . . . ,2,1 and  , . . . ,2,1for   (1.33) 
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Case II 

According to weighted residual least square method, the optimal values of the 

convergence control parameters ,...,, 321 CCC  can be obtained by solving the following 

functional 

    dtdxCCCCtxRCCCCJ

t

t

k

b

a
nk  

2

1

321
2

321 ,...,,,;,,...,,, ,  (1.34) 

where a and b are two values depending on the given problem. The unknown parameters 

,...,, 321 CCC  can be identified from the conditions 

0 . . . 
21
















kC

J

C

J

C

J
.     (1.35) 

The convergence of the n-th approximate solution depends upon unknown parameters

,...,, 321 CCC . When the convergence control parameters ,...,, 321 CCC  are known by the 

above mentioned method then the approximate solution of (1.20) is well determined. 

1.6 Homotopy Analysis Method (HAM) 

The homotopy analysis method (HAM) was introduced by Liao [33], is an effective and 

powerful method to find the approximate solution of nonlinear problems. To illustrate the 

basic ideas of homotopy analysis method we consider the following nonlinear differential 

equation [34, 35]

 

 N     0),(  txu  ,    (1.36) 

where N    is a nonlinear operator, x and t denote the independent variables and ),( txu  is 

an unknown function. For simplicity, we ignore all boundary or initial conditions, which 

can be treated in the similar way. By means of generalizing homotopy analysis method, 

we first construct the zeroth-order deformation equation as follows 

           p1 L     ),(),();,( 0 txHptxuptx  N     );,( ptx ,   (1.37) 

where ]1,0[p  is the embedding parameter, 0  is an auxiliary parameter, L   is an 

auxiliary linear operator, );,( ptx  is an unknown function, ),(0 txu
 
is an initial guess of 
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),( txu  and ),( txH  is a non-zero auxiliary function. For 0p  and 1p , the zeroth order 

deformation equation given by eq. (1.37) leads to  

),()0;,( 0 txutx   and ),()1;,( txutx  .   (1.38) 

Thus as p increases from 0 to 1, the solution );,( ptx  varies from the initial guess ),(0 txu  

to the solution ),( txu . Expanding );,( ptx  in Taylor’s series with respect to the 

embedding parameter p, we have 
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The convergence of the series (1.39) depends upon the auxiliary parameter  . If it is 

convergent at ,1p  we have 
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which must be one of the solutions of the original nonlinear differential equation. 

Differentiating the zeroth-order deformation eq. (1.37) for m-times with respect to p then 

dividing them by ! m  and finally setting 0p , we obtain the following m-th order 

deformation equation 

L        1101 ,...,,),(,,   mmmmm uuutxHtxutxu  ,  (1.42) 
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and 
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Now, the solution for m-th order deformation eq. (1.42) by applying 1
L  on both sides, 

we get 

      110
1

1 ,...,,),(,, 


  mmmmm uuutxHtxutxu L .  (1.45) 

In this way, it is easy to obtain  txum ,  for 1m  at M -th order, we have 
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When M , we obtain an accurate approximation of the original eq. (1.36). 

 

Part II 

“Wavelets” has been a very popular topic of conversations in many scientific and 

engineering gatherings these days. The subject of wavelet analysis has recently drawn a 

great deal of attention from mathematical scientists in various disciplines. The integral 

wavelet transform (IWT) is defined to be the convolution with respect to the dilation of the 

reflection of some function, called a “basic wavelet”, while the wavelet series is expressed 

in terms of a single function, called a “wavelet” by means of two very simple operations: 

binary dilations and integral translations. Analogous to Fourier analysis, there are wavelet 

series (WS) and integral wavelet transforms (IWT). In wavelet analysis, WS and IWT are 

intimately related. The IWT of a function on the real line evaluated at certain points in the 

time-scale domain gives the coefficients for its wavelet series representation. As the 

polynomial spline functions are the simplest functions for both computational and 

implementation purposes, they are most attractive for analyzing and constructing wavelets.  

Some view wavelets as a new basis for representing functions, some consider it as a 

technique for time-frequency analysis, and others think of it as a new mathematical 

subject. Of course, all of them are right, since “wavelets” is a versatile tool with very rich 

mathematical content and great potential for applications. However, as this subject is still 

in the midst of rapid development, it is definitely too early to give a unified presentation.  

Wavelets are very effectively used in signal analysis for wave form demonstration and 

segmentations, time frequency analysis, medical diagnostics, geophysical signal 

processing, statistical analysis, pattern recognition, and fast algorithms for easy execution. 

The wavelet analysis could be a promising tool for solving various difficulties in physics, 

engineering and image processing [1]. Wavelet method is an exciting method for solving 

difficult problems in mathematics, physics and engineering, with modern applications in 

diverse fields such as wave propagation, data compression, image processing, pattern 

recognition, computer graphics, the detection of aircraft and submarines and improvement 

in CAT scans and other medical technology. Also, wavelet methods have been used to 

develop accurate and fast algorithms for solving integral and differential equations of 
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fractional order, especially those whose solutions are highly localized in position and 

scale. While wavelets have gained popularity in these areas, new applications are 

continually being investigated.  

Wavelet techniques enable us to divide a complicated function into several simpler ones 

and study them separately. This property, along with fast wavelet algorithm makes these 

techniques very attractive for analysis and synthesis. Unlike Fourier - based analyses that 

use global (nonlocal) sine and cosine functions as bases, wavelet analysis uses bases that 

are localized in time and frequency to more effectively represent nonstationary signals. As 

a result, a wavelet representation is much more compact and easier for implementation. 

Using the powerful multiresolution analysis, one can represent a function by a finite sum 

of components at different resolutions so that each component can be adaptively processed 

based on the objectives of the application. This capability of representing functions 

compactly and in several levels of resolutions is the major strength of the wavelet analysis.  

In the case of solving partial differential equations by numerical methods, the unknown 

solution can be represented by wavelets of different resolutions, resulting in a multigrid 

representation. The dense matrix resulting from an integral operator can be sparsified 

using wavelet based thresholding techniques to attain an arbitrary degree of solution 

accuracy. Wavelets allow accurate depiction of a variety of functions and operators. The 

main feature of wavelets is its ability to convert the given differential and integral 

equations to a system of linear or nonlinear algebraic equations that can be solved by 

numerical methods. The goal of this chapter is to convey a general idea about wavelets 

and to describe different wavelet methods in details. 

Orthogonal functions and polynomial series have received considerable attention in 

dealing with various problems of dynamic systems. The main characteristic of this 

technique is that it reduces these problems to those of solving a system of algebraic 

equations, thus greatly simplifying the problem. Special attention has been given to 

applications of Haar wavelets, Legendre wavelets, Chebyshev wavelets, and Hermite 

wavelets. 

In the present chapter, we introduce different wavelet based methods viz. the Haar wavelet 

method, the Legendre wavelet method, the Chebyshev wavelet method and the Hermite 

wavelet method. These methods are studied in details in subsequent chapters.  
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1.7 Haar Wavelets and the Operational Matrices 

Morlet (1982) [8] first introduced the idea of wavelets as a family of functions constructed 

from dilation and translation of a single function called the “mother wavelet”. Haar 

wavelet functions have been used from 1910 and were introduced by the Hungarian 

mathematician Alfred Haar [36]. Haar wavelets (which are Daubechies wavelets of order 

1) consist of piecewise constant functions on the real line that can take only three values 

i.e. 0, 1 and 1  and are therefore the simplest orthonormal wavelets with a compact 

support.  Haar wavelet method to be used due to the following features: simpler and fast, 

flexible, convenient, small computational costs and computationally attractive. The Haar 

functions are a family of switched rectangular wave forms where amplitudes can differ 

from one function to another.  

The Haar wavelet family for  1 ,0x  is defined as follows [37] 
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In these formulae integer 
jm 2 , Jj ,...,2,1,0  indicates the level of the wavelet; 

1,...,2,1,0  mk  is the translation parameter. Maximum level of resolution is J. The index 

i is calculated from the formula 1 kmi ; in the case of minimal values 1m , 0k , 

we have 2i . The maximal value of 
122  JMi . It is assumed that the value 1i  

corresponds to the scaling function for which  
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In the following analysis, integrals of the wavelets are defined as 
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This can be done with the aid of (1.47) 



 

22 
 

 
 

 














elsewhere0

,for 

,for 

323

211





xx

xx

xpi     (1.49)  

 

 

   

   

 























1,for 
4

1

,for 
2

1

4

1

,for 
2

1

,0for 0

32

32
2

32

21
2

1

1









x
m

xx
m

xx

x

xqi

 

 (1.50) 

 

   

     

   






















elsewhere0

1,for 
4

1

,for 
6

1

4

1

 ,for 
6

1

322

32
3

322

21
3

1







xx
m

xxx
m

xx

xri
 (1.51) 

The collocation points are defined as 

Ml
M

l
xl 2 ..., ,2 ,1                ,

2

5.0



  

It is expedient to introduce the MM 22   matrices H, P, Q and R with the elements 

)(),( li xhliH  , )(),( li xpliP  , )(),( li xqliQ   and )(),( li xrliR   respectively. 

In 2012, the generalized Haar wavelet operational matrix of integration has been derived 

by the learned researcher Saha Ray [38]. Usually the Haar wavelets are defined for the 

interval )1,0[t  but in general case ],[ BAt , we divide the interval [A, B] into m equal 

subintervals; each of width mABt /)(  . In this case, the orthogonal set of Haar 

functions are defined in the interval [A, B] by [38] 
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for mi ,,2,1  , 
Jm 2  and J is a positive integer which is called the maximum level of 

resolution. Here  j and k represent the integer decomposition of the index i. i.e. 

12  jki , ij 0  and .121  jk  

1.7.1 Function Approximation 

Any function ))1,0([)( 2Lty   can be expanded into Haar wavelets by [39] 

 )()()()( 221100 thcthcthcty ,        where 
1

0

)()( dtthtyc jj .  (1.54) 

If )(ty  is approximated as piecewise constant in each subinterval, the sum in eq. (1.54) 

may be terminated after m terms and consequently we can write discrete version in the 

matrix form as 
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where Y  and 
T
mC  are the m-dimensional row vectors. 

Here H is the Haar wavelet matrix of order m defined by 
T],,,[ 1m10 hhhH   , i.e. 
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where 1m10 hhh ,,,   are the discrete form of the Haar wavelet bases. 

The collocation points are given by  

  tlAtl  5.0  , ml ,,2,1      (1.57)  
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1.7.2 Operational Matrix of the General Order Integration  

The integration of the  Tmm thththtH )(...,),(),()( 110   can be approximated by [40]  

)()(

0

tQHdH m

t

m  

 

    (1.58) 

where Q is called the Haar wavelet operational matrix of integration which is a square 

matrix of m-dimension. To derive the Haar wavelet operational matrix of the general order 

of integration, we recall the fractional integral of order )0(  which is defined by 

Podlubny [41] 
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where 
  

is the set of positive real numbers. 

The operational metrix for general order was first time derived by learned researcher Saha 

Ray [38]. The Haar wavelet operational matrix 
Q  for integration of the general order   

is given by [38] 
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for mi ,,2,1  , 
Jm 2  and J is a positive integer, called the maximum level of 

resolution. Here j and k represent the integer decomposition of the index i. i.e.

12  jki , ij 0  and .121  jk  

1.8 Legendre Wavelets 

The application of Legendre wavelets for solving differential and integral equations is 

thoroughly considered by many researchers in [42-44] and references therein. Both initial 

and boundary value problems can be solved efficiently by using the Legendre wavelet 

method. Here, the basic idea of Legendre wavelets are introduced, the operational matrix 

of integration is then derived. The derived operational matrix of fractional order 

integration is then applied to solve fractional differential equations. The method reduces 

the fractional initial or boundary value problem to a system of algebraic equations. The 

large systems of algebraic equations may lead to greater computational complexity and 

large storage requirements. However the operational matrix for the Legendre wavelets is 

structurally spare. This reduces the computational complexity of the resulting algebraic 

system.  

Wavelets constitute a family of functions constructed from dilation and translation of 

single function called the mother wavelet ).(t  They are defined by 
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where a is dilation parameter and b is translation parameter. By restricting a, b to discrete 

values as:
jaa  0 , 

jakbb  00 , where 10 a , 00 b  and Nkn , .  

The Legendre polynomials of order m, denoted by )(tLm  are defined on the interval [-1, 1] 

and can be determined with the help of following recurrence formulae [42] 
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Legendre wavelets ),,ˆ,()(, tmnktmn    have four arguments; defined on interval [0,1) 

by 
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where 1,...,1,0  ,2,...,3,2,1  ,12ˆ,...3,2 1   Mmnnnk k
 is the order of the Legendre 

polynomials and M is a fixed positive integer. The set of Legendre wavelets form an 

orthogonal basis of  2L . 

The two-dimensional Legendre wavelets are defined as 
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where 2
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 , 21 ˆ  and ˆ nn  are defined similarly to n̂ , 21   and kk  

are any positive integers, 21   and mm are the orders for Legendre polynomials and 

),(
2,2,1,1

txmnmn  forms a basis for  )1,0[)1,0[2 L . 

1.8.1 Function Approximation  

 

A function ),( txf  defined over )1,0[)1,0[   can be expanded in terms of Legendre wavelet 

as [43] 
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If the infinite series in eq. (1.67) is truncated, then it can be written as  
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where )(x  and )(t  are 12 1
11 


M
k  and 12 2

12 


M
k  matrices respectively, given by 
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Also, C is a 2
12

1
11 22 MM

kk 
  matrix whose elements can be calculated from the 

formula 
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1.8.2 Operational Matrix of the General Order Integration 

The integration of the Legendre wavelet function  t , 
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approximated by 
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where Q is called the Legendre wavelet operational matrix of integration. To derive the 

Legendre wavelet operational matrix of the general order of integration, we recall the 

fractional integral of order )0(  which is defined by Podlubny [41] 
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where 
  

is the set of positive real numbers. 

The Legendre wavelet operational matrix 


Q  for integration of the general order   is 

given by 
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for 1,...,1,0  ,2,...,3,2,1  ,12ˆ,...3,2 1   Mmnnnk k
 is the order of the Legendre 

polynomials and M is a fixed positive integer.  
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1.9 Chebyshev Wavelets 

The Chebyshev wavelets are competent for solving some fractional and integral equations 

[45, 46]. Nowadays, Chebyshev polynomials have become more significant in numerical 

evaluation. Among the four forms of Chebyshev polynomials, the first and second kinds 

are certain cases of the symmetric Jacobi polynomials, whereas the third and fourth kinds 

are unique instances of the non-symmetric Jacobi polynomials. Great attention has been 

focused on first and second kinds of Chebyshev polynomials )(xTn  and )(xUn  and their 

various uses in numerous applications. Nevertheless, there are very few articles that 

concentrate on the wavelets shaped through these two types of Chebyshev polynomials for 

application in fractional partial differential equations. This motivates our curiosity in such 

wavelets. 

There are several advantages of using Chebyshev wavelets approximations based on 

collocation spectral method. First, unlike most numerical methods, it is now conventional 

that they are characterized by the use of exponentially decaying errors. Second, various 

numerical methods do not perform well near singularities, whereas approximations 

through wavelets effectively handle singularities in the problem. In the end, due to their 

fast convergence, Chebyshev wavelets method does not undergo from the instability 

problems related with other numerical methods.  

The Chebyshev wavelets ),,,()(, tmnktmn    have four arguments; defined on interval 

[0, 1) by [45] 
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where  ,2,...,3,2,1 1 kn k is assumed to be any positive integer, m is the degree of the 

second kind Chebyshev polynomials and t is the normalized time. 

Here )( 
2

)( tUtU mm


 , )(tUm , Mm  , . . . 2, 1, ,0  are the second kind Chebyshev 

polynomials of degree m defined on the interval [-1,1] and satisfy the following recursive 

formula 
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The two-dimensional Chebyshev wavelets are defined as 
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where 21  and nn  are defined similarly to n , 21  and kk  are any positive integers, 21  and mm

are the orders for second kind Chebyshev polynomials. 

1.9.1 Function approximation 

A function  defined over  may be expanded in terms of Chebyshev 

wavelets as [46] 
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If the infinite series in eq. (1.76) is truncated, then eq. (1.76) can be written as  
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Also, C is a  matrix whose elements can be calculated from the formula 
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1.9.2 Operational Matrix of the General Order Integration  

The integration of the Chebyshev wavelet function  t , 
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approximated by  

     (1.78) 

where P is called the Chebyshev wavelet operational matrix of integration. To derive the 

Chebyshev wavelet operational matrix of the general order of integration, we recall the 

fractional integral of order which is defined by Podlubny [41] 
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  is the set of positive real numbers. 

The Chebyshev wavelet operational matrix 
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12,...,3,2,1  kn ,  1,...,1,0  Mm  is the order of the Chebyshev polynomials and M is 

a fixed positive integer. 

1.10 Hermite Wavelets 

The Hermite polynomials )(xHm  of order m are defined on the interval    , , and can 

be deduced with the assistance of the following recurrence formulae: 
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   . . . ,3 ,2 ,1),(2)(2)( 11   mxmHxxHxH mmm   (1.80) 

The Hermite polynomials )(xHm  are orthogonal with respect to the weight function 
2xe . 

The Hermite wavelets are defined on interval [0,1) by [47] 
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where  . . . ,2 ,1 k , is the level of resolution, 12ˆ,2 , . . . ,2 ,1 1   nnn k
 is the translation 

parameter, 1 , . . . 2, ,1  Mm  is the order of Hermite polynomials.  

The two-dimensional Hermite wavelets are outlined as 
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 21   and nn  defined similarly to n , 21  and kk  

are any positive integers, 21   and mm  are the orders for Hermite polynomials. 

1.10.1 Function Approximation 

A function  defined over )1,0[)1,0[   can be expanded in terms of Hermite wavelet 

as [48] 
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If the infinite series in eq. (1.83) is truncated, then it can be written as  
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Also, C is a  matrix whose elements can be calculated from the formula 

      

1

0

1

0

,,,,, , dtdxtxft xc jlinjlin  ,    (1.85) 

with   

1.10.2 Operational Matrix of the General Order Integration  

The integration of the Hermite wavelet function  t ,

  T

MkkMM ttttttt )](),...,(),...,(),...,(),(),...,([
1,120,121,20,21,10,1    can be 

approximated by  

,     (1.86) 

where Q is called the Hermite wavelet operational matrix of integration. To derive the 

Hermite wavelet operational matrix of the general order of integration, we recall the 

fractional integral of order which is defined by Podlubny [41] 

,    ,    (1.87) 

where 
 
is the set of positive real numbers. 

The Hermite wavelet operational matrix 


Q  for integration of the general order  is 

given by 
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where , is the level of resolution,  is the translation 

parameter,  is the order of Hermite polynomial.  
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CHAPTER 2 

2 Numerical Solution of Partial 

Differential Equations by Haar 

Wavelet Method 

2.1 Introduction 

Historically, partial differential equations originated from the study of surfaces in 

geometry and for solving a wide variety of problems in mechanics. Although the origin of 

nonlinear partial differential equations is very old, they have undergone remarkable new 

developments during the last half of the twentieth century. A large number of 

mathematicians became actively involved in the investigation of numerous problems 

presented by partial differential equations. The primary reason for this research was that 

partial differential equations both express many fundamental laws of nature and frequently 

arise in the mathematical analysis of diverse problems in science and engineering. The 

PDEs arise frequently in the formulation of fundamental laws of nature and in the 

mathematical analysis of a wide variety of problems in applied mathematics, mathematical 

physics, and engineering sciences including fluid dynamics, nonlinear optics, solid 

mechanics, plasma physics, quantum field theory, and condensed-matter physics. This 

subject plays a central role in modern mathematical sciences, especially in applied 

physics, mathematical modelling and engineering. In fact, partial differential equations 

have been found to be essential to develop the theory of surfaces on the one hand and to 

the solution of physical problems on the other.  

The development of linear partial differential equations is characterized by the efforts to 

develop the general theory and various methods of solutions of linear equations. Several 

methods such as the characteristics method, spectral methods and perturbation techniques 

have been utilized to study these problems. But, as most solution methods for linear 

equations cannot be applied to nonlinear equations, there is no general method of finding 

analytical solutions of nonlinear partial differential equations. New numerical techniques 
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are usually required for finding solutions of nonlinear equations. Methods of solution for 

nonlinear equations represent only one aspect of the theory of nonlinear partial differential 

equations. Like linear equations, questions of existence, uniqueness, and stability of 

solutions of nonlinear partial differential equations are of fundamental importance. These 

and other aspects of nonlinear equations have led the subject into one of the most diverse 

and active areas of modern mathematics.  

Many problems of physical interest are described by partial differential equations with 

appropriate initial and boundary conditions. These problems are usually formulated as 

initial-value problems, boundary-value problems, or initial boundary-value problems. 

Indeed, the theory of nonlinear waves and solitons has experienced a revolution over the 

past three decades. During this revolution, many remarkable and unexpected phenomena 

have also been observed in physical, chemical, and biological systems.  

2.2 Outline of Present Study 

In this chapter, we will focus our study on the nonlinear partial differential equations that 

have particular applications appearing in applied sciences and engineering. We have 

considered both analytical and numerical approach for solving some specific nonlinear 

partial differential equations like Burgers’ equation, modified Burgers’ equation, Huxley 

equation, Burgers-Huxley equation, and modified Korteweg–de Vries (mKdV) equation, 

which have a wide variety of applications in physical models.  

2.2.1 Burgers’ Equation 

The one-dimensional Burgers’ equation [49] 

, 0 xxxt uuuu  10  x     (2.1) 

is a nonlinear homogeneous parabolic partial differential equation. Here  0    can be 

interpreted as viscosity. The Burgers’ equation is considered as a model equation that 

describes the interaction of convection and diffusion. It arises in many physical problems 

including one-dimensional turbulence, sound waves in viscous medium, shock waves in a 

viscous medium, waves in fluid filled viscous elastic tubes and magneto-hydrodynamic 

waves in a medium with finite electrical conductivity.  
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Various mathematical methods such as the Galerkin finite element method [50], spectral 

collocation method [51], quartic B-spline differential quadrature method [52], quartic B-

splines collocation method [53], finite element method [54], fourth order finite difference 

method [55], explicit and exact explicit finite difference method [56] and least-squares 

quadratic B-splines finite element method [57] have been used in attempting to solve 

Burgers’ equations. Our aim in the present work is to implement the Haar wavelet method 

to stress its power in handling nonlinear equations, so that one can apply it to various types 

of nonlinearity. 

2.2.2 Modified Burgers’ Equation  

Modifying the nonlinear term xuu  in eq. (2.1) to x

puu , the generalized modified Burgers’ 

equation [58] can be obtained in the following form 

,0 xxx

p

t uuuu   10  x ,   (2.2) 

where p is a positive constant and   ( 0 ) can be interpreted as viscosity.  

 

The modified Burgers’ equation [59] has the strong nonlinear aspects of the governing 

equation in many practical transport problems such as nonlinear waves in medium with 

low frequency pumping or absorption, ion reflection at quasi perpendicular shocks, 

turbulence transport, wave processes in thermoelastic medium, transport and dispersion of 

pollutants in rivers and sediment transport etc. Numerous mathematical methods such as 

Petrov-Galerkin method [60], Quintic spline method [61], Sextic B-spline collocation 

method [58], local discontinuous Galerkin method [62], and Lattice Boltzmann model [63] 

have been used in attempting to solve modified Burgers’ equations.  

2.2.3 Burgers-Huxley and Huxley Equations 

Generalized Burgers-Huxley equation [64-66] is a nonlinear partial differential equation of 

the form 

))(1(    uuuuuuu xxxt , 10  x , 0t ,  (2.3) 

where  ,  ,   and   are parameters, .0 , 0,    When 0 , 1 , eq. (2.3) 

reduces to the Huxley equation. The Huxley equation [67, 68] is a nonlinear partial 

differential equation of second order of the form 

0  ),1)((  kuukuuu xxt .    (2.4) 
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This equation is an evolution equation that describes nerve pulse propagation in biology 

from which molecular CB properties can be calculated. Generalized Burgers-Huxley 

equation is of high importance for describing the interaction between reaction 

mechanisms, convection effects, and diffusion transport. 

Various powerful mathematical methods such as Adomian decomposition method [64, 

69], spectral collocation method [65], the tanh-coth method [66], homotopy perturbation 

method [67], Exp-Function method [68], variational iteration method [70] and Differential 

Quadrature method [71] have been used in attempting to solve the Burgers-Huxley and the 

Huxley equations. The solitary wave solutions of the generalized Burgers-Huxley equation 

have been studied by the learned researchers Wang et al. [72] and El-Danaf [73]. 

2.2.4 Modified Korteweg-de Vries (mKdV) Equation 

Next, we consider the generalized modified Korteweg-de Vries (KdV) equation, [49] 

which is a nonlinear partial differential equation of the form 

02  xxxxt ruuquu , 10  x , 0t    (2.5) 

where q and r are parameters. 

The modified Korteweg-de Vries (mKdV) equations are most popular soliton equations 

and have been extensively investigated. The modified KdV equation is of important 

significance in many branches of nonlinear science field. The mKdV equation appears in 

many fields such as acoustic waves in certain anharmonic lattices, Alfvén waves in 

collisionless plasma, transmission lines in Schottky barrier, models of traffic congestion, 

ion acoustic soliton, elastic media etc. [74]. 

2.3 Application of Haar Wavelet Method to Obtain 

Numerical Solution of Burgers’ Equation 

Haar wavelet collocation method is used for solving generalized Burgers’ equation. This 

method consists of reducing the problem to a set of algebraic equation by expanding the 

term, which has maximum derivative, given in the equation as Haar functions with 

unknown coefficients. The operational matrix of integration is utilized to evaluate the 

coefficients of Haar functions. This method gives us the implicit form of the approximate 

solutions of the problems.  
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Consider the one-dimensional Burgers’ equation [49] 

, 0 xxxt uuuu  10  x ,    (2.6) 

with the following associated initial and boundary conditions  

10   , )(),( 0  xxftxu  

and      0     , 0),1(),0( tttutu  .    (2.7) 

It is assumed that ),( txu   can be expanded in terms of Haar wavelets as 





M

i

is xhiatxu
2

1

)()(),( ,  for ] ,[ 1 ss ttt    (2.8) 

where “.” and “ ׳ ” stands for differentiation with respect to t and x respectively. 

Integrating eq. (2.8) with respect to t from st  to t and twice with respect to x from 0 to x 

the following equations are obtained 
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i

siss  


, (2.11) 

  ),0(),0()()(),(
2

1

tutuxxqiatxu
M

i

is  


.    (2.12) 

By using the boundary conditions at 1x , and from eqs. (2.12) and (2.11) respectively, 

we have 
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i

is qiatu
2

1

)1()(),0( ,            (2.13) 

and  
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isss qiatttutu
2

1

)1()()(),0(),0( .   (2.14) 

From eq. (1.50), it is obtained that 
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Substituting eqs. (2.13)- (2.15) in eqs. (2.10)- (2.12) and discretizing the results by 

assuming lxx  , , 1 stt  the following equations are obtained 
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2

1

11 ),()()()(),( ,   (2.16) 
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11 ),()1()()()(),( ,  (2.17) 
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Substituting eqs. (2.16)- (2.19) in eq. (2.6), we have 
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     (2.20) 

From eq. (2.20), the wavelet coefficients )(ias  can be successively calculated using 

mathematical software. This process starts with  

)(),( 0 ll xftxu  , 

)(),( 0 ll xftxu  , 

)(),( 0 ll xftxu  . 

To show the effectiveness and accuracy of proposed scheme, we consider two test 

examples. The numerical solutions thus obtained are compared with the analytical 

solutions as well as available numerical results.   

Example 2.1 Consider Burgers’ equation with the following initial and boundary 

conditions [56] 

10          ), sin()0,(  xxxu   

.0         , 0),1(),0(  ttutu    (2.21)

 The exact solution of eq. (2.6) is given by [56] 
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The numerical solutions of the example 2.1 are presented for 0.01  with 001.0t  

taking 64M  in Table 2.1 and Figures 2.1 and 2.2. The results are compared with Refs. 

[56, 57, 75] and consequently it is found that the present method is much better than the 

results presented in [56, 57, 75]. The Figures 2.1 and 2.2 are in good agreement with the 

results obtained by learned researcher Jiwari [76]. 

Example 2.2 In this example, we consider Burgers’ equation with initial condition in the 

following form   

,
) cos(

) sin(2
)0,(

xa

x
xu






  1a     (2.23) 

The exact solution of eq. (2.6) is given by [77] 

1 ,
) cos() exp(

) sin( ) exp( 2
),(

2

2





 a

xta

xt
txu




  (2.24) 

In case of example 2.2, Tables 2.2 and 2.3 show the LL  and 2  errors at different 

values of ,a  and M. Moreover, the results are compared with Refs. [78, 79] and it 

has been observed that the present method is more accurate and efficient than the 

other numerical solutions. The physical behaviors of solutions at different time 

stages are shown in Figures 2.3 and 2.4.   

2.3.1 Numerical Results and Discussion for Burgers’ Equation 

The following Table 2.1 shows the comparison of exact solutions with the approximate 

solutions of different numerical methods for Burgers’ equation. Agreement between 

present numerical results and exact solutions appears very satisfactory through illustration 

in Table 2.1. In the following Table 2.1, J has been taken as 6 i.e. 64M  with 01.0  

and different values of t. Similarly Tables 2.2 and 2.3 show the comparison of 
LL  and 2
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errors with other numerical methods for 01.0  and  005.0  with 100a  and .1t  

From Tables 2.2 and 2.3, it has been observed that the present method is more accurate 

and efficient than the other numerical methods presented in References [78, 79]. 

Table 2.1 Comparison of Haar wavelet solution with other numerical methods for Burgers’ 

equation (example 2.1) at different values of t with 01.0 2,  a  and .001.0t  

Table 2.2 Comparison of LL  and 2  errors with other numerical methods for Burgers’ 

equation (example 2.2) taking 01.0 ,001  a  at .1t  

Table 2.3 Comparison of LL  and 2  errors with other numerical methods for Burgers’ 

equation (example 2.2) taking  005.0 ,001  a at .1t  

 

x t EFDM 

[56] 
001.0t

 

EEFDM  

[56]
001.0t   

Least-square 

quadratic B-
spline FEM 

[57]

0001.0t   

Crank-Nicolson 

method [75]
01.0t   

Present 

Method
001.0t  

Exact 

solution 

0.25 0.4 0.34244 0.34164 0.34244 0.34229 0.34224 0.34191 

0.6 0.26905 0.26890 0.27536 0.26902 0.26924 0.26896 

0.8 0.22145 0.22150 0.22752 --- 0.22170 0.22148 

1.0 0.18813 0.18825 0.19375 0.18817 0.18837 0.18819 

3.0 0.07509 0.07515 0.07754 0.07511 0.07516 0.07511 

0.5 0.4 0.67152 0.65606 0.66543 0.66797 0.66106 0.66071 

0.6 0.53406 0.52658 0.53525 0.53211 0.52984 0.52942 

0.8 0.44143 0.43743 0.44526 --- 0.43953 0.43914 

1.0 0.37568 0.37336 0.38047 0.37500 0.37476 0.37442 

3.0 0.15020 0.15015 0.15362 0.15018 0.15027 0.15018 

0.75 0.4 0.94675 0.90111 0.91201 0.93680 0.90980 0.91026 

0.6 0.78474 0.75862 0.77132 0.77724 0.76745 0.76724 

0.8 0.65659 0.64129 0.65254 --- 0.64778 0.64740 

1.0 0.56135 0.55187 0.56157 0.55833 0.55647 0.55605 

3.0 0.22502 0.22454 0.22874 0.22485 0.22497 0.22481 

 

 

N 

Rahman [78] Mittal and Jain [79]  

 

M 

Present method 

01.0t  
Present method 

001.0t  

2L  L  2L  L  2L  L  2L  L  

10 3.455E-7 4.881E-7 3.284E-7 4.628E-7 4 3.267E-8 4.634E-8 1.498E-8 2.157E-8 

20 1.013E-7 1.431E-7 8.192E-8 1.164E-7 8 2.288E-8 3.239E-8 5.235E-9 7.452E-9 

40 4.003E-8 5.668E-8 2.047E-8 2.907E-8 16 2.042E-8 2.889E-8 2.779E-9 3.939E-9 

80 4.003E-8 3.499E-8 5.119E-9 7.271E-9 32 1.981E-8 2.802E-8 2.165E-9 3.064E-9 
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Figures 2.1-2.4 cite the behavior of numerical solutions obtained for Burgers’ equation at 

different time stages taking 0.01  . 

 

Figure 2.1 Behavior of numerical solutions for Burgers’ equation (example 2.1) when 

01.0  and  001.0t at times .0.5 and 0.4 ,0.3 ,20. ,1.0t  

 

Figure 2.2 Behavior of numerical solutions for Burgers’ equation (example 2.1) when 

01.0  and  001.0t at times .3.0 and 2.0 ,1.0 ,80. ,6.0t  

 

 
 

N 

Rahman [78] Mittal and Jain [79]  
 

M 

Present method 

01.0t  
Present method 

001.0t  

2L  L  2L  L  2L  L  2L  L  

10 8.819E-8 1.246E-7 8.631E-8 1.215E-7 4 4.266E-9 6.0565E-9 1.9418E-9 2.7999E-9 

20 2.403E-8 3.394E-8 2.153E-8 3.062E-8 8 2.9996E-9 4.2463E-9 6.8086E-10 9.7005E-10 

40 7.942E-9 1.125E-8 5.378E-9 7.644E-9 16 2.681E-9 3.7933E-9 3.6323E-10 5.1519E-10 

80 3.918E-9 5.549E-9 1.345E-9 7.644E-9 32 2.6013E-9 3.6797E-9 2.8393E-10 4.0182E-10 
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Figure 2.3 Behavior of numerical solutions for Burgers’ equation (example 2.2) when 

01.0  and  001.0t at times .6.0 and 0.4 ,2.0 ,6.0t  

 

Figure 2.4 Behavior of numerical solutions for Burgers’ equation (example 2.2) when 

01.0  and  001.0t at times .7.0 and 5.0 0,.3 ,1.0 ,4.0t  

2.4 Haar Wavelet Based Scheme for Modified Burgers’ 

Equation  

Taking 2p , in eq. (2.2), the generalized modified Burgers’ equation [58] can be 

obtained as follows: 

, 02  xxxt uuuu  10  x ,   (2.25) 

where   is a parameter. 

The initial condition associated with eq. (2.25) will be   

10   , )(),( 0  xxftxu     (2.26)  

with boundary conditions  

    0     , 0,1,0 tttutu   
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Let us suppose that  txu ,  can be expanded in terms of Haar wavelets as 
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i

is xhiatxu
2

1

,   for ] ,[ 1 ss ttt     (2.27) 

where “.” and “ ׳ ” stands for differentiation with respect to t and x respectively. 

Now, integrating eq. (2.27) with respect to t from st  to t and twice with respect to x from 

0 to x the following equations are obtained 
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.    (2.31) 

Using the boundary condition at 1x , from eq. (2.31) we have 

     



M

i

is qiatu
2

1

1,0 ,    (2.32) 

and from eq. (2.30), we obtain 
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i

isss qiatttutu
2

1

1,0,0 .   (2.33) 

Substituting eq. (2.32) and (2.33) in eqs. (2.29)- (2.31), and discretizing the above results 

by assuming lxx  , , 1 stt  we obtain
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Substituting eqs. (2.34)- (2.37) in eq. (2.25), we have 
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(2.38) 

From eq. (2.38), the wavelet coefficients )(ias  can be successively calculated. This 

process starts with  

)(),( 0 ll xftxu  , 

)(),( 0 ll xftxu  ,  

)(),( 0 ll xftxu  .

 To show the efficiency and accuracy of proposed scheme, two test examples have been 

considered taking .2p  The numerical solutions thus acquired are compared with the 

analytical solutions as well as available numerical results.  

Example 2.3 Consider modified Burgers’ equation with the following initial and 

boundary conditions [60, 61] 
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      (2.39)

 

    1     , 0,1,0  ttutu   

where 8

1

0 ec  .                                                        

The exact solution of Eq. (2.25) is given by [60, 61] 
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1t     (2.40)
 

Example 2.4 In this example, we consider modified Burgers’ equation with initial and 

boundary conditions in the following form
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   xxu  sin0, 

        

,10  x    (2.41)

 
    , 0,1,0  tutu  0t  

In case of example 2.3, the Haar wavelet numerical solutions have been compared with the 

results obtained by Ramadan et al. [61] using the collocation method with quintic splines 

and in case of example 2.4, the solutions have been compared with the results obtained by 

Duan et al. [63] using 2-bit lattice Boltzmann method (LBM). Tables 2.5 and 2.6 cite the 

comparison of Haar wavelet solution with LBM and quintic splines numerical solutions at 

4.0t  and ,2t and hence the numerical solutions at different time stages are shown in 

Figure 2.5.                

2.4.1 Numerical Results for Modified Burgers’ Equation 

The errors for modified Burgers’ equation are measured using two different norms, 

namely 2L and ,L defined by 

    
22

1
2  , ,

2

1
  ...  



M

l
lexactlapprox txutxu

M
ErrorSMRL  (2.42)

 

   txutxuL lexactlapprox  , , max       (2.43)
 

 

The following Table 2.4 exhibits the 2L  and L  error norms for modified Burgers’ 

equation taking ,2p  001.0  and different values of t. In Table 2.4, J is taken as 5 i.e. 

32M  and t   is taken as 0.001. 

Table 2.4 2L  and L  error norm for modified Burgers’ equation (example 2.3) at different 

values of t with 001.0   and .001.0t  

Time 

(sec) 
Present Method Quintic spline 

3
2 10    L  

310     
 L   

3
2 10    L  [61] 

310     
 L [61]  

2 0.0755325 0.289254 0.0670395601 0.2796704002 

3 0.0711446 0.256515 0.0689577701 0.2514379353 

4 0.065229 0.214577 0.0666974605 0.2185661439 

5 0.0604007 0.182222 0.0636023977 0.1923643818 

6 0.0565458 0.157428 0.0604622308 0.1717652452 

7 0.0534117 0.138249 0.0575085655 0.1553318123 

8 0.0508078 0.123651 0.0548010376 0.1418932282 

 

Table 2.5 Comparison of Haar wavelet solutions with the LBM solutions and 5-Splines 

solution of modified Burgers’ equation (example 2.4) at 4.0t  and 01.0 . 
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x Approximate solution 

using Haar wavelet 

method  approxu  

Approximate solution using 

lattice Boltzmann method [63] 

Approximate solution using 

Quintic spline method [61] 

0.10 0.221423 0.22177116 0.22033034 

0.20 0.396841 0.39414890 0.39460783 

0.30 0.531256 0.53134565 0.53244922 

0.40 0.64835 0.64627793 0.64763455 

0.50 0.744936 0.74511632 0.74643231 

0.60 0.831235 0.83048713 0.83133318 

0.70 0.902641 0.90235089 0.90195203 

0.80 0.95132 0.95495434 0.95119837 

0.90 0.825329 0.83737688 0.82794559 

0.99 0.0623064 0.06214261 0.04674614 

 

Table 2.6 Comparison of Haar wavelet solutions with the LBM solutions and 5-Splines 

solution of modified Burgers’ equation (example 2.4) at 0.2t  and 01.0 . 

x Approximate solution 

using Haar wavelet 

method  approxu  

Approximate solution using 

lattice Boltzmann method [63] 

Approximate solution using 

Quintic spline method [61] 

0.10 0.111789 0.11194772 0.11013979 

0.20 0.208539 0.20710153 0.20614825 

0.30 0.284853 0.28512152 0.28477813 

0.40 0.351297 0.35038171 0.35045112 

0.50 0.406404 0.40665374 0.40700602 

0.60 0.457189 0.45649486 0.45704614 

0.70 0.501339 0.50155303 0.50224419 

0.80 0.542602 0.54199420 0.54265295 

0.90 0.536499 0.53547356 0.53225529 

0.99 0.0790367 0.08046491 0.05693884 

 

Figures 2.5-2.8 represent the comparison graphically between the numerical and exact 

solutions of modified Burgers’ equation for different values of t and 0.001  . The 

behavior of numerical solutions of modified Burgers’ equation is cited in Figures 2.9 and 

2.10.  
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Figure 2.5 Comparison of Numerical solution and exact solution of modified Burgers’ 

equation (example 2.3) when 0.2t  and 001.0 . 

 

 

Figure 2.6 Comparison of Numerical solution and exact solution of modified Burgers’ 

equation (example 2.3) when 4t  and 0.001.   

 

 

Figure 2.7 Comparison of Numerical solution and exact solution of modified Burgers’ 

equation (example 2.3) when 6t  and 0.001.   



 

48 
 

 

Figure 2.8 Comparison of Numerical solution and exact solution of modified Burgers’ 

equation (example 2.3) when 8t  and 0.001.   

 

 

Figure 2.9 Behavior of numerical solutions for modified Burgers’ equation (example 2.3) 

when 0.001   and 001.0t  at times 8. and 6 ,4 ,2t  

 

 

Figure 2.10 Behavior of numerical solutions for modified Burgers’ equation (example 2.4) 

when 01.0  and 001.0t  at times 3. and 2 0.8, ,4.0t  
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2.5 Analytical and Numerical Methods for Solving 

Burgers-Huxley Equation 

The generalized Burgers-Huxley equation [64-66] is a nonlinear partial differential 

equation of the form 

, ))(1(    uuuuuuu xxxt 10  x , 0t ,       (2.44) 

where   , , and   are parameters, .0 , 0,    

The initial condition associated with eq. (2.44) is given by     

      


1

1tanh
22

0, 







 xAxu .     (2.45)  

The exact solution of eq. (2.44) is given by [65, 72] 
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(2.46) 

where  
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where  ,,  and   are parameters with 0  and .0  

This exact solution satisfies the following boundary conditions 
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 ttAAtu



   
(2.47) 

In our present study, 1  has been considered. 

2.5.1 Application of Variational Iteration Method for Solving Burgers-

Huxley Equation 

 

Construct a correctional functional for eq. (2.44) as follows: 
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where   is a general Lagrangian multiplier whose optimal value can be found using 

variational theory and  txun  ,~
 is the restricted variation, i.e.   0 ,~ txun . 
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From the above eq. (2.49) we have  

     













t

n
nn d

u
txutxu

0

1   ,  , 


 ,   (2.50) 
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Integrating right hand side of eq. (2.50) yields 

       

t

nnn dxutxutxu

0

1  ,  1 ,  ,  .  (2.51)

 

From stationary condition we know  

  0 , 1  txun , 

which yields that  

     

t

nn dxutxu

0

0 ,  1 ,  . 

This implies   01     and     0)(  t    

Hence    1 .                       (2.52) 

Therefore   can be identified as 1 , and the following variational iteration formula 

can be obtained as 

         









t

nnnxxnxnnnnn duuuuuuutxutxu

0

~~~

1 001.01)())(( , , 
 . (2.53) 

From the above iteration formula eq. (2.53), we can obtain   

      x.h t . x...txu 000250sec3800000024990000250tanh0005000050, 2
1    

with initial condition 
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  ) 00025.0tanh( 0005.00005.0,0 xtxu  . 

2.5.2 Application of Haar Wavelet Method for Solving Burgers-Huxley 

Equation 

Haar wavelet solution of  txu ,  is sought by assuming that  txu ,  can be expanded in 

terms of Haar wavelets as 

        



M

i

is xhiatxu
2

1

,   for ],[ 1 ss ttt .   (2.54) 

Integrating eq. (2.54) with respect to t from st  to t and twice with respect to x from 0 to x 

the following equations are obtained 
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By using the boundary conditions, at 1x , we have 
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Discretizing the results by assuming lxx  , 1 stt  we obtain 
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Substituting eqs. (2.63) and (2.59) in eq. (2.44), we have   
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        (2.64) 

From the above equation the wavelet coefficients )(ias  can be successively calculated. 

This process started with  
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2.5.3 Numerical Results for Burgers-Huxley Equation 

The following Tables show the comparisons of the exact solutions with the approximate 

solutions of Burgers-Huxley equation taking 1 , 1 , 001.0 , 1  and different 

values of .t  In Tables 2.7-2.9, J is taken as 3 i.e. 8M  and t   is taken as 0.0001.  

Table 2.7 The absolute errors for the solutions of Burgers-Huxley equation using Haar 

wavelet method and one iteration of VIM at various collocation points for x with 

0.001. and 4.0  t   

 

x Approximate 

solutions using 

Haar wavelet 

method  approxu  

Approximate 

solutions 

using VIM 

 approxu  

Exact 

solutions 

 exactu  

Absolute 

Errors using 

Haar 

wavelet 

method 

Absolute 

Errors using 

VIM 

0.03125 0.00050006 0.00049994 0.000500054 6.56610E-9 1.49925E-7 

0.09375 0.000500121 0.000499912 0.000500062 5.90949E-8 1.49925E-7 

0.15625 0.000500234 0.00049992 0.000500069 1.64153E-7 1.49925E-7 

0.21875 0.000500399 0.000499927 0.000500077 3.21739E-7 1.49925E-7 

0.28125 0.000500617 0.000499935 0.000500085 5.31854E-7 1.49925E-7 

0.34375 0.000500887 0.000499943 0.000500093 7.94498E-7 1.49925E-7 

0.40625 0.000501210 0.000499951 0.000500101 1.10967E-6 1.49925E-7 

0.46875 0.000501586 0.000499959 0.000500109 1.47737E-6 1.49925E-7 

0.53125 0.000502014 0.000499966 0.000500116 1.89760E-6 1.49925E-7 

0.59375 0.000502495 0.000499974 0.000500124 2.37036E-6 1.49925E-7 

0.65625 0.000503028 0.000499982 0.000500132 2.89565E-6 1.49925E-7 

0.71875 0.000503613 0.00049999 0.00050014 3.47347E-6 1.49925E-7 
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0.78125 0.000504251 0.000499998 0.000500148 4.10381E-6 1.49925E-7 

0.84375 0.000504942 0.000500005 0.000500155 4.78669E-6 1.49925E-7 

0.90625 0.000505685 0.000500013 0.000500163 5.52210E-6 1.49925E-7 

0.96875 0.000506481 0.000500021 0.000500171 6.31009E-6 1.49925E-7 

Table 2.8 The absolute errors for the solutions of Burgers-Huxley equation using Haar 

wavelet method and one iteration of VIM at various collocation points for x with 

0.001. and 6.0  t   

x Approximate 

solutions using 

Haar wavelet 

method  approxu  

Approximate 

solutions 

using VIM

 approxu  

Exact solutions 

 exactu  

Absolute 

Errors using 

Haar wavelet 

method 

Absolute 

Errors using 

VIM 

0.03125 0.000500089 0.000499854 0.000500079 9.84903E-9 2.24888E-7 

0.09375 0.000500175 0.000499862 0.000500087 8.86412E-8 2.24888E-7 

0.15625 0.000500341 0.00049987 0.000500094 2.46226E-7 2.24888E-7 

0.21875 0.000500585 0.000499877 0.000500102 4.82602E-7 2.24888E-7 

0.28125 0.000500908 0.000499885 0.00050011 7.97771E-7 2.24888E-7 

0.34375 0.00050131 0.000499893 0.000500118 1.19173E-6 2.24888E-7 

0.40625 0.00050179 0.000499901 0.000500126 1.66400E-6 2.24888E-7 

0.46875 0.00050235 0.000499909 0.000500134 2.21600E-6 2.24888E-7 

0.53125 0.000502988 0.000499916 0.000500141 2.84700E-6 2.24888E-7 

0.59375 0.000503705 0.000499924 0.000500149 3.55600E-6 2.24888E-7 

0.65625 0.0005045 0.000499932 0.000500157 4.34300E-6 2.24888E-7 

0.71875 0.000505375 0.00049994 0.000500165 5.21000E-6 2.24888E-7 

0.78125 0.000506328 0.000499948 0.000500173 6.15500E-6 2.24888E-7 

0.84375 0.00050736 0.000499956 0.00050018 7.18000E-6 2.24888E-7 

0.90625 0.000508471 0.000499963 0.000500188 8.28300E-6 2.24888E-7 

0.96875 0.000509661 0.000499971 0.000500196 9.46500E-6 2.24888E-7 

Table 2.9 The absolute errors for the solutions of Burgers-Huxley equation using Haar 

wavelet method and one iteration of VIM at various collocation points for x with 

0.001. and 1  t   

x Approximate 

solutions using 

Haar wavelet 

method  approxu  

Approximate 

solutions 

using VIM 

 approxu  

Exact 

solutions 

 exactu  

Absolute errors 

using Haar 

wavelet method 

Absolute 

errors using 

VIM 

0.03125 0.000500145 0.000499754 0.000500129 1.6414E-8 3.74813E-7 

0.09375 0.000500284 0.000499762 0.000500137 1.47726E-7 3.74813E-7 

0.15625 0.000500555 0.00049977 0.000500144 4.10351E-7 3.74813E-7 

0.21875 0.000500957 0.000499777 0.000500152 8.04288E-7 3.74813E-7 

0.28125 0.00050149 0.000499785 0.00050016 1.32954E-6 3.74813E-7 

0.34375 0.000502154 0.000499793 0.000500168 1.9861E-6 3.74813E-7 

0.40625 0.00050295 0.000499801 0.000500176 2.7740E-6 3.74813E-7 
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0.46875 0.000503877 0.000499809 0.000500183 3.6940E-6 3.74813E-7 

0.53125 0.000504935 0.000499816 0.000500191 4.7440E-6 3.74813E-7 

0.59375 0.000506125 0.000499824 0.000500199 5.9260E-6 3.74813E-7 

0.65625 0.000507445 0.000499832 0.000500207 7.2380E-6 3.74813E-7 

0.71875 0.000508898 0.00049984 0.000500215 8.6830E-6 3.74813E-7 

0.78125 0.000510481 0.000499848 0.000500223 1.02580E-5 3.74813E-7 

0.84375 0.000512196 0.000499856 0.00050023 1.19660E-5 3.74813E-7 

0.90625 0.000514042 0.000499863 0.000500238 1.38040E-5 3.74813E-7 

0.96875 0.00051602 0.000499871 0.000500246 1.57740E-5 3.74813E-7 

 

In case of 0.001 , the R.M.S. error between the Haar wavelet solutions and the exact 

solutions of Burgers-Huxley equations for 6.0 ,4.0t  and 1 are 3.00204E-6, 4.50295E-6 

and 7.50449E-6 respectively and that of the VIM solutions and the exact solutions are 

1.49925E-7, 2.24888E-7 and 3.74813E-7 respectively. In case of Burgers-Huxley 

equation, Figures 2.11-2.13 cite the comparison graphically between the numerical 

solutions obtained by Haar wavelet method, VIM and exact solutions for different values 

of t and .  

 

Figure 2.11 Comparison of Haar wavelet solutions and VIM solutions with the exact solution 

of Burgers-Huxley equation when 4.0t  and . 0.001   
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Figure 2.12 Comparison of Haar wavelet solutions and VIM solutions with the exact solution 

of Burgers-Huxley equation when 6.0t  and . 0.001   

 

Figure 2.13 Comparison of Haar wavelet solutions and VIM solutions with the exact solution 

of Burgers-Huxley equation when 1t  and . 0.001 
 

2.6 Application of Analytical and Numerical Methods for 

Solving Huxley equation 

Huxley equation is a nonlinear partial differential equation of second order of the form 

    )1)((  uukuuu xxt ,  0k ,    (2.65) 

with initial condition 
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The exact solution of eq. (2.65) is given by [68] 
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Taking , 1k  the boundary conditions are 
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2.6.1 Application of Variational Iteration Method for Solving Huxley 

Equation 

Construct a correctional functional as follows: 
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where   is a general Lagrangian multiplier whose optimal value can be found using 

variational theory and  txun  ,~
 is the restricted variation, i.e.   0 ,~ txun . 
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From the above eq. (2.70), we have  
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Integrating right hand side of eq. (2.71) yields 

         

t

nnn dtxutxutxu
0

1  ,  1 ,  ,        (2.72) 

From stationary condition, we know 

  0 , 1  txun , 

which yields that      

t

nn dxutxu

0

0 ,  1 ,   

This implies           01       and     0)(  t
  

Hence           1                                      (2.73) 

Therefore   can be identified as 1 , and the following variational iteration formula 

can be obtained as 



 

57 
 

             







t

nnnxxnnnn duukuuutxutxu
0

~

1 1~ , , 
 .  (2.74) 

From the above iteration formula eq. (2.74), we can obtained   
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with initial condition 
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2.6.2 Application of Haar Wavelet Method for Solving Huxley Equation 

It is assumed that  txu ,  can be expanded in terms of Haar wavelets as 
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,   for ],[ 1 ss ttt     (2.76)            

where “.” and “ ׳ ” stands for differentiation with respect to t and x respectively. 

Now, integrating eq. (2.76) with respect to t from st  to t and twice with respect to x from 0 

to x the following equations are obtained 

            



M

i

siss txuxhiatttxu
2

1

,, ,   (2.77) 

                     tututxuxpiatttxu s

M

i

siss ,0,0,,
2

1

 


,    (2.78) 

                       tututuxtutxuxqiatttxu ss

M

i

siss ,0,0,0,0,,
2

1

 


, (2.79) 

            tutuxxqiatxu
M

i

is ,0,0,
2

1

 


.

   

(2.80) 

By using the boundary conditions, at 1x , we have 
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Discretizing the results by assuming lxx  , , 1 stt  we obtain 
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Substituting eqs. (2.85) and (2.81) in eq. (2.65), we have  
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From eq. (2.86), the wavelet coefficients )(ias  can be successively calculated. This 

process started with  
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2.6.3 Numerical Results for Huxley Equation 

In the following Tables 2.10-2.12, J has been taken as 3 i.e. 8M  and t   is taken as 

0.0001. Again, the R.M.S. error can be calculated for different values of t. For 6.0,4.0t  

and 1, the R.M.S. error between the Haar wavelet solutions and the exact solutions of 

Huxley equation are 0.0209303, 0.0354936 and 0.060677 respectively. For 6.0,4.0t  and 

1, the R.M.S. error between the VIM solutions and the exact solutions of Huxley equation 

are 8.10868E-4, 1.696E-3 and 4.03601E-3 respectively. 

Table 2.10 The absolute errors for the solutions of Huxley equation using Haar wavelet 

method and one iteration of VIM at various collocation points for x with .4.0 and 1  tk  
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x Approximate 

solutions using 

Haar wavelet 

method  approxu  

Approximate 

solutions 

using VIM 

 approxu  

Exact 

solutions
 

 exactu  

Absolute 

Errors using 

Haar wavelet 

Absolute 

Errors using 

VIM 

0.03125 0.455737 0.45553 0.455641 9.55529E-5 1.11054E-4 

0.09375 0.467153 0.466622 0.466623 5.30592E-4 8.87183E-7  

0.15625 0.478927 0.477746 0.477636 1.29070E-3 1.09283 E-4 

0.21875 0.491048 0.488891 0.488672 2.37582E-3 2.19028 E-4 

0.28125 0.503505 0.500046 0.499718 3.78609E-3 3.27923E-4 

0.34375 0.516287 0.511201 0.510765 5.52185E-3 4.35548E-4 

0.40625 0.529385 0.522343 0.521802 7.58360E-3 5.41497E-4 

0.46875 0.542789 0.533462 0.532817 9.97205E-3 6.45376E-4 

0.53125 0.556488 0.544547 0.5438 1.26880E-2 7.46806E-4 

0.59375 0.570474 0.555586 0.554741 1.57326E-2 8.45430E-4 

0.65625 0.584736 0.56657 0.565629 1.91070E-2 9.40912E-4 

0.71875 0.599266 0.577487 0.576454 2.28126E-2 1.03294E-3 

0.78125 0.614057 0.588327 0.587206 2.68510E-2 1.12123 E-3 

0.84375 0.629099 0.599081 0.597876 3.12230E-2 1.20552E-3 

0.90625 0.645576 0.609739 0.608453 3.71230E-2 1.28559E-3 

0.96875 0.668244 0.620291 0.61893 4.93140E-2 1.36124E-3 

Table 2.11 The absolute errors for the solutions of Huxley equation using Haar wavelet 

method and one iteration of VIM at various collocation points for x with .6.0 and 1  tk  

 

x Approximate 

solutions using 

Haar wavelet 

method  approxu  

Approximate 

solutions 

using VIM 

 approxu  

Exact 

solutions 

 exactu  

Absolute Errors 

using Haar 

wavelet 

Absolute 

Errors using 

VIM 

0.03125 0.431155 0.430533 0.430968 1.87446E-4 4.34778E-4 

0.09375 0.442789 0.441649 0.441837 9.51983E-4 1.88225E-4 

0.15625 0.454998 0.452822 0.452763 2.23552E-3 5.90574E-5 

0.21875 0.467771 0.46404 0.463734 4.03766E-3 3.06109E-4 

0.28125 0.481098 0.475292 0.47474 6.35830E-3 5.51971E-4 

0.34375 0.494968 0.486567 0.485771 9.19760E-3 7.95698E-4 

0.40625 0.509372 0.497852 0.496816 1.25560E-2 1.03636E-3 

0.46875 0.524298 0.509136 0.507863 1.64343E-2 1.27304E-3 

0.53125 0.539737 0.520408 0.518904 2.08334E-2 1.50489E-3 

0.59375 0.55568 0.531656 0.529925 2.57546E-2 1.73105E-3 

0.65625 0.572117 0.542869 0.540918 3.11994E-2 1.95074E-3 

0.71875 0.589041 0.554034 0.551871 3.71696E-2 2.16323E-3 

0.78125 0.606441 0.565142 0.562774 4.36670E-2 2.36782E-3 

0.84375 0.62431 0.57618 0.573616 5.06940E-2 2.56389E-3 

0.90625 0.645842 0.58714 0.584389 6.14530E-2 2.75089E-3 
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0.96875 0.683829 0.598009 0.595081 8.87480E-2 2.92832E-3 

Table 2.12 The absolute errors for the solutions of Huxley equation using Haar wavelet 

method and one iteration of VIM at various collocation points for x with .1 and 1  tk  

 

x Approximate 

solutions using 

Haar wavelet 

method 

 approxu  

Approximate 

solutions 

using VIM 

 approxu  

Exact 

solutions 

 exactu  

Absolute 

Errors using 

Haar wavelet 

Absolute 

Errors using 

VIM 

0.03125 0.383171 0.380539 0.382747 4.23760E-4 2.20814E-3 

0.09375 0.395066 0.391704 0.393241 1.82475E-3 1.53709E-3 

0.15625 0.407796 0.402974 0.403834 3.96201E-3 8.60175E-4 

0.21875 0.421352 0.414338 0.414518 6.83392E-3 1.79977E-4 

0.28125 0.435721 0.425783 0.425282 1.04393E-2 5.00891E-4 

0.34375 0.450895 0.437298 0.436118 1.47773E-2 1.17981E-3 

0.40625 0.466863 0.448869 0.447015 1.98477E-2 1.85419E-3 

0.46875 0.483614 0.460485 0.457964 2.56507E-2 2.52146E-3 

0.53125 0.501139 0.472132 0.468953 3.21868E-2 3.17912E-3 

0.59375 0.519429 0.483797 0.479972 3.94572E-2 3.82474E-3 

0.65625 0.538474 0.495467 0.491011 4.74633E-2 4.45598E-3 

0.71875 0.558265 0.507129 0.502058 5.62070E-2 5.07062E-3 

0.78125 0.578795 0.51877 0.513104 6.56910E-2 5.66659E-3 

0.84375 0.600054 0.530378 0.524137 7.59170E-2 6.24192E-3 

0.90625 0.632639 0.541941 0.535146 9.74930E-2 6.79482E-3 

0.96875 0.718961 0.553445 0.546121 1.72840E-1 7.32368E-3 

 

In case of Huxley equation, the Figure 2.14 present the comparison graphically between 

the numerical results obtained by Haar wavelet method, VIM and exact solutions for 

different values of t and . 1k  
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Figure 2.14 Comparison of Haar wavelet solutions and VIM solutions with the exact solution 

of Huxley equations when 4.0t  and .1 k  

2.7 Numerical Solution of Generalized Modified KdV 

Equation 

Consider the generalized modified KdV equation [80-82] 

   02  xxxxt ruuquu , 10  x , 0t    (2.87)                 

with initial condition 

   x
q

r
xu  tanh

6
0,


 .

     
(2.88)    

The exact solution of Eq. (2.87) is given by [80] 
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r
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(2.89) 

where q and r are parameters.  

This exact solution satisfies the following boundary conditions 
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Haar wavelet solution of  txu ,  is sought by assuming that  txu ,  can be expanded in 

terms of Haar wavelets as 
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Integrating eq. (2.91) with respect to t from st  to t and thrice with respect to x from 0 to x, 

the following equations are obtained 
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Using finite difference method 
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By using the boundary condition at 1x , eq. (2.94) becomes 
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 Substituting eq. (2.98) in eqs. (2.93) - (2.96), we have    
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Discretizing the above results by assuming lxx  , , 1 stt  we obtain
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Substituting the above equations in eq. (2.87), we have  
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Therefore, 
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From the above equation, the wavelet coefficients  ias  can be successively 

calculated. This process starts with 
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r
txu tanh 
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q

r
txu 2
0 sec  

6
,


 . 

2.7.1 Numerical Results of mKdV Equation 

The following Tables show the comparisons of the exact solutions with the approximate 

solutions of modified KdV equation taking 100.0 ,6  rq  and different values of t . In 

Tables 2.13-2.16, J is taken as 3 i.e. 8M  and t   is taken as 0.0001.  

Table 2.13 The absolute errors for modified KdV equation at various collocation points of x 

with 0.001. and 2.0  rt  

x Approximate solution

 approxu  
Exact solution  exactu  Absolute Error 

0.03125 0.000975289 0.000975254 3.45313E-8 

0.09375 0.00294375 0.00294344 3.10577E-7 

0.15625 0.00488976 0.00488889 8.63705E-7 

0.21875 0.00679886 0.00679716 1.6977E-6 

0.28125 0.00865771 0.00865489 2.8188E-6 

0.34375 0.0104545 0.0104502 4.23521E-6 

0.40625 0.0121789 0.012173 5.95649E-6 

0.46875 0.0138229 0.0138149 7.99297E-6 

0.53125 0.01538 0.0153696 1.03551E-5 

0.59375 0.0168459 0.0168328 1.30530E-5 

0.65625 0.018218 0.0182019 1.60958E-5 

0.71875 0.0194955 0.019476 1.94918E-5 

0.78125 0.0206791 0.0206558 2.32477E-5 

0.84375 0.0217706 0.0217432 2.73688E-5 

0.90625 0.0227729 0.022741 3.18592E-5 

0.96875 0.0236899 0.0236532 3.67252E-5 
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Table 2.14 The absolute errors for modified KdV equation at various collocation points of x 

with 0.001. and 5.0  rt  

 

x Approximate solution
 

 approxu  

Exact solution
 
 exactu  Absolute Error 

0.03125 0.000956384 0.000956298 8.64056E-8 

0.09375 0.00292541 0.00292463 7.77845E-7 

0.15625 0.00487254 0.00487037 2.16512E-6 

0.21875 0.00678332 0.00677906 4.25957E-6 

0.28125 0.00864442 0.00863734 7.07870E-6 

0.34375 0.010444 0.0104333 1.06449E-5 

0.40625 0.0121718 0.0121568 1.49840E-5 

0.46875 0.0138197 0.0137995 2.01238E-5 

0.53125 0.0153812 0.0153552 2.60922E-5 

0.59375 0.0168522 0.0168192 3.29164E-5 

0.65625 0.0182299 0.0181892 4.06215E-5 

0.71875 0.0195135 0.0194643 4.92298E-5 

0.78125 0.0207037 0.020645 5.87601E-5 

0.84375 0.0218024 0.0217332 6.92277E-5 

0.90625 0.0228125 0.0227319 8.06444E-5 

0.96875 0.0237378 0.0236448 9.30207E-5 

Table 2.15 The absolute errors for modified KdV equation at various collocation points of x 

with 0.001.  and 8.0  rt  

 

x Approximate solution

 approxu  
Exact solution

 
 exactu  Absolute Error 

0.03125 0.00093748 0.000937341 1.38295E-7 

0.09375 0.00290707 0.00290582 1.24525E-6 

0.15625 0.00485531 0.00485185 3.46691E-6 

0.21875 0.00676778 0.00676095 6.82219E-6 

0.28125 0.00863112 0.00861978 1.13399E-5 

0.34375 0.0104335 0.0104164 1.70566E-5 

0.40625 0.0121647 0.0121406 2.40144E-5 

0.46875 0.0138164 0.0137842 3.22585E-5 

0.53125 0.0153825 0.0153406 4.18346E-5 

0.59375 0.0168584 0.0168056 5.27869E-5 

0.65625 0.0182417 0.0181765 6.51565E-5 

0.71875 0.0195315 0.0194525 7.89797E-5 

0.78125 0.0207283 0.0206341 9.42876E-5 

0.84375 0.0218343 0.0217232 1.11105E-4 

0.90625 0.0228522 0.0227227 1.29453E-4 

0.96875 0.0237858 0.0236364 1.49345E-4 
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Table 2.16 The absolute errors for modified KdV equation at various collocation points of x 

with 0.001.  and 1  rt  

 

x Approximate solution
 

 approxu  

Exact solution
 

 exactu  

Absolute Error 

0.03125 0.000924876 0.000924703 1.72895E-7 

0.09375 0.00289483 0.00289328 1.55692E-6 

0.15625 0.00484383 0.0048395 4.33497E-6 

0.21875 0.00675741 0.00674888 8.53102E-6 

0.28125 0.00862225 0.00860807 1.41814E-5 

0.34375 0.0104265 0.0104051 2.13321E-5 

0.40625 0.0121599 0.0121299 3.00363E-5 

0.46875 0.0138143 0.0137739 4.03506E-5 

0.53125 0.0153833 0.015331 5.23326E-5 

0.59375 0.0168626 0.0167965 6.60379E-5 

0.65625 0.0182496 0.0181681 8.15183E-5 

0.71875 0.0195434 0.0194446 9.88196E-5 

0.78125 0.0207448 0.0206268 1.17981E-4 

0.84375 0.0218555 0.0217165 1.39034E-4 

0.90625 0.0228786 0.0227166 1.62005E-4 

0.96875 0.0238178 0.0236309 1.86910E-4 

 

In case of 0.001r , the R.M.S. error between the numerical solutions and the exact 

solutions of modified KdV equations for 8.0,5.0,2.0t  and 1 are 1.7137E-5, 

4.33416E-5, 6.95581E-5 and 8.70423E-5 respectively and for 1.0  r  and 

8.0,5.0,2.0t  and 1 the R.M.S. error is found to be 0.00209359, 0.00624177, 

0.011631 and 0.0159099 respectively. In the following Tables 2.17-2.20 also J has 

been taken as 3 i.e. 8M  and t   is taken as 0.0001.   

Table 2.17 The absolute errors for modified KdV equation at various collocation points 

of x with 0.1.  and 2.0  rt  

x Approximate 

solution  approxu  

Exact solution

 exactu  

Absolute Error 

0.03125 -0.00276621 -0.00276692 7.13784E-7 

0.09375 0.0169876 0.0169809 6.65888E-6 

0.15625 0.0366175 0.0365968 2.07298E-5 

0.21875 0.0559793 0.0559313 4.79820E-5 

0.28125 0.0749397 0.0748436 9.60655E-5 

0.34375 0.09338 0.0932052 1.74756E-4 
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0.40625 0.111199 0.110903 2.95389E-4 

0.46875 0.128314 0.127843 4.70239E-4 

0.53125 0.144661 0.14395 7.11916E-4 

0.59375 0.160198 0.159166 1.03281E-3 

0.65625 0.174899 0.173455 1.44463E-3 

0.71875 0.188756 0.186798 1.95802E-3 

0.78125 0.201774 0.199192 2.58235E-3 

0.84375 0.213974 0.210648 3.32555E-3 

0.90625 0.225384 0.22119 4.19409E-3 

0.96875 0.236043 0.23085 5.19293E-3 

Table 2.18 The absolute errors for modified KdV equation at various collocation points of x 

with 0.1.  and 5.0  rt  

 

x Approximate 

solution
 
 approxu  

Exact solution
 

 exactu  

Absolute Error 

0.03125 -0.0217032 -0.0217065 3.31576E-6 

0.09375 -0.00194595 -0.0019764 3.04463E-5 

0.15625 0.0178593 0.0177691 9.02230E-5 

0.21875 0.0375721 0.0373766 1.95531E-4 

0.28125 0.057063 0.0566968 3.66140E-4 

0.34375 0.0762172 0.0755894 6.27708E-4 

0.40625 0.0949371 0.0939266 1.01047E-3 

0.46875 0.113144 0.111596 1.54778E-3 

0.53125 0.130779 0.128504 2.27451E-3 

0.59375 0.147801 0.144576 3.22569E-3 

0.65625 0.16419 0.159755 4.43515E-3 

0.71875 0.179941 0.174007 5.93453E-3 

0.78125 0.195064 0.187312 7.75255E-3 

0.84375 0.209583 0.199668 9.91447E-3 

0.90625 0.223529 0.211087 1.24419E-2 

0.96875 0.236946 0.221593 1.53524E-2 

Table 2.19 The absolute errors for modified KdV equation at various collocation points of x 

with 0.1. and 8.0  rt  

 

x Approximate 

solution
 
 approxu  

Exact solution
 

 exactu  

Absolute Error 

0.03125 -0.0404827 -0.0404909 8.13685E-6 

0.09375 -0.0208453 -0.0209195 7.42051E-5 

0.15625 -0.000970764 -0.00118585 2.15085E-4 

0.21875 0.0190084 0.018557 4.51366E-4 

0.28125 0.0389709 0.0381558 8.15061E-4 
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0.34375 0.05881 0.0574616 1.34835E-3 

0.40625 0.0784361 0.0763344 2.10172E-3 

0.46875 0.0977786 0.0946469 3.13176E-3 

0.53125 0.116786 0.112288 4.49874E-3 

0.59375 0.135428 0.129163 6.26422E-3 

0.65625 0.153689 0.1452 8.48888E-3 

0.71875 0.171574 0.160343 1.12307E-2 

0.78125 0.189101 0.174557 1.45436E-2 

0.84375 0.206301 0.187824 1.84763E-2 

0.90625 0.223215 0.200143 2.30719E-2 

0.96875 0.239891 0.211525 2.83664E-2 

Table 2.20 The absolute errors for modified KdV equation at various collocation points of x 

with 0.1.  and 1  rt  

 

x Approximate solution
 

 approxu  

Exact solution
 

 exactu  

Absolute Error 

0.03125 -0.0528499 -0.0528626 1.27575E-5 

0.09375 -0.0333573 -0.0334734 1.16031E-4 

0.15625 -0.0134928 -0.0138262 3.33334E-4 

0.21875 0.00661869 0.00592858 6.90107E-4 

0.28125 0.0268634 0.0256371 1.22625E-3 

0.34375 0.0471421 0.0451472 1.99484E-3 

0.40625 0.0673727 0.0643127 3.06007E-3 

0.46875 0.0874922 0.0829976 4.49462E-3 

0.53125 0.107457 0.10108 6.37673E-3 

0.59375 0.127243 0.118455 8.78725E-3 

0.65625 0.146843 0.135037 1.18068E-2 

0.71875 0.16627 0.150757 1.55134E-2 

0.78125 0.185549 0.165569 1.99805E-2 

0.84375 0.204718 0.179443 2.52756E-2 

0.90625 0.223827 0.192368 3.14593E-2 

0.96875 0.24293 0.204347 3.85831E-2 

 

Similarly, in case of modified KdV equation, the Figures 2.15-2.19 demonstrate the 

comparison graphically between the numerical and exact solutions for different values of 

rt   and .      
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Figure 2.15 Comparison of Numerical solution and exact solution of modified KdV equation 

when 2.0t  and . 0.001 r  

 

Figure 2.16 Comparison of Numerical solution and exact solution of modified KdV equation 

when 5.0t  and . 0.001 r  

 

Figure 2.17 Comparison of Numerical solution and exact solution of modified KdV equation 

when 8.0t  and . 0.001 r  
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Figure 2.18  Comparison of Numerical solution and exact solution of modified KdV equation 

when 0.1t  and . 0.001 r  

 

Figure 2.19 Comparison of Numerical solution and exact solution of modified KdV equation 

when 2.0t  and 0.1. r  

2.8 Error of Collocation Method 

The Haar wavelet family for  1 ,0x  is defined as follows  
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Define a projection map 

  Jm VLP 2:  

by the rule 
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where  1 ,0  

and JV  is a subspace of  2L . 

Now we have to estimate uPu m  for arbitrary   2Lu . 
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Lemma 2.1 Let  txu ,  be defined on  2L  and mP  be the projection map defined as 

above then  

24
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Proof: The integral  
1

0
, dxtxum

 is a ramp  







 32 2

1

4
x

MM

ui  on the interval  1,0  

with average value  







 32

1
2

1

8


MM

ui . 

The error in approximating the ramp by this constant value over the interval  1,0  is 
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Hence, using  xE  as least square of the error on  , we have  
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On the interval  , we have 
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2.9 Error Analysis 

Let   Jm VLP 2:  be a projection map and is defined by  
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Let us consider the generalized modified Burgers’ equation 
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Suppose that uPu mm   be the approximate solution of eq. (2.115) obtained by wavelet 

collocation method  
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Proof: Subtracting eq. (2.115) from eq. (2.116), we have 
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2.10 Conclusion 

In this chapter, variational iteration method and Haar wavelet method have been 

successfully implemented to compute approximate analytical as well as numerical 

solutions of nonlinear partial differential equations viz. the generalized Burgers-Huxley 

and Huxley equations. The obtained results are then compared with the exact solutions. 

The results thus obtained have been cited in Tables and also graphically to demonstrate the 

comparison of variational iteration method and Haar wavelet method. Also, the Burgers’ 

equation, modified Burgers’ equation and modified KdV equation have been solved by 

Haar wavelet method. The acquired results are then compared with the exact solutions as 

well as solutions available in open literature. These have been reported in Tables and also 

have been shown in the graphs in order to demonstrate the accuracy and efficiency of the 

proposed scheme based on Haar wavelet method. The present numerical scheme is reliable 

and convenient for solving nonlinear partial differential equations. The main advantages of 

the proposed scheme are its simplicity, applicability and less computational errors.  

Moreover, the error may be reduced significantly if we increase level of resolution which 

prompts more number of collocation points.    
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CHAPTER 3 

3 Numerical Solution of System of 

Partial Differential Equations  

3.1 Introduction 

Numerical solutions of nonlinear differential equations are of great importance in physical 

problems since so far there exists no general technique for finding analytical and 

numerical solutions of system of nonlinear partial differential equations. It is well known 

that many physical, chemical and biological problems are characterized by the interaction 

of diffusion and reaction processes. With the development of science and engineering, 

nonlinear evolution equations have been used as the models to describe physical 

phenomena in fluid mechanics, plasma waves, solid state physics, chemical physics etc. 

System of nonlinear partial differential equations has also been noticed to arise in many 

chemical and biological applications. So, for the last few decades, a great deal of attention 

has been directed towards the solution (both exact and numerical) of these problems. 

Various methods are available in the literature for the exact and numerical solution of 

these problems. But, nonlinear partial differential equations are not in general easy to 

handle. 

In this chapter, we apply Homotopy Perturbation Method (HPM), Optimal Homotopy 

Asymptotic Method (OHAM) and Haar wavelet method in order to compute the numerical 

solutions of nonlinear system of partial differential equations like Boussinesq-Burgers’ 

equations. Our aim in the present work is to implement homotopy perturbation method 

(HPM) and optimal homotopy asymptotic method (OHAM) in order to demonstrate the 

capability of these methods in handling system of nonlinear equations, so that one can 

apply it to various types of nonlinearity.  

In HPM and OHAM, the concept of homotopy from topology and conventional 

perturbation technique were merged to propose a general analytic procedure for the 

solution of nonlinear problems. Thus, these methods are independent of the existence of a 

small parameter in the problem at hand and thereby overcome the limitations of 
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conventional perturbation technique. OHAM, however, is the most generalized form of 

HPM as it employs a more general auxiliary function  pH  in place of HPM's p.  

OHAM provides a simple and easy way to control and adjust the convergence region for 

strong nonlinearity and is applicable to highly nonlinear fluid problem like Boussinesq-

Burgers’ equations. In the proposed OHAM procedure, the construction of the homotopy 

is quite different. The way to ensure the convergence in OHAM is quite different and 

more rigorous. Unlike other homotopy procedures, OHAM ensure a very rapid 

convergence since it needs only two or three terms for achieving an accurate solution 

instead of an infinite series. This is in fact the true power of the method. The convergence 

control parameters ,...,, 321 CCC  provide us a convenient way to guarantee the 

convergence of OHAM series solution. Moreover, the optimal values of convergence 

control constants guarantee the certain convergence of OHAM series solution. 

3.2 Overview of the Problem 

Generalized Boussinesq-Burgers’ equation [83-85] is a nonlinear partial differential 

equation of the form
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 The exact solutions of eq. (3.1) and (3.2) is given by [86] 

  











 


2

ln
 tanh

22
 ,

2 bkxtckckck
txu ,

  
(3.5) 

   











 


2

ln
 sec

8
,

2
2

2 btckkx
h

k
txv .  (3.6) 



 

77 
 

The Boussinesq-Burgers’ equations arise in the study of fluid flow and describe the 

propagation of shallow water waves. Here x and t respectively represent the normalized 

space and time,  txu ,  is the horizontal velocity field and  txv ,  denotes the height of the 

water surface above a horizontal level at the bottom.  

Various analytical methods such as Darboux transformation method [87], Lax pair, 

Bäcklund transformation method [86] have been used in attempting to solve Boussinesq-

Burgers’ equations.  

These exact solutions given in eqs. (3.5) and (3.6) satisfies the following boundary 

conditions 
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3.3 Analytical Solution of System of Nonlinear PDEs 

3.3.1 Application of HPM to Boussinesq-Burgers’ equation 

Using homotopy perturbation method [25, 26], the homotopy for eqs. (3.1) and (3.2) can 

be written as 
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Comparing the coefficients of different powers in p  for eqs. (3.11) and (3.12), we have 

the following system of partial differential equations. 
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and so on. 

By putting   0
~0, uxu   and   0

~0, vxv   in eqs. (3.13)- (3.22) and solving them, we obtain 
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Finally, the approximate solutions for Boussinesq-Burgers’ equations are given by 
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3.3.2 Application of OHAM to Boussinesq-Burgers’ equation  

Using optimal homotopy asymptotic method [88], the homotopy for eqs. (3.1) and (3.2) 

can be written as 
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Substituting eqs. (3.29)- (3.34) in eqs. (3.27) and (3.28) and equating the coefficients of 

different powers in p , we have the following system of partial differential equations. 
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and so on. 

For solving Boussinesq-Burgers’ equation using OHAM we consider the following initial 

conditions for Boussinesq-Burgers’ equations (3.1) and (3.2). 
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Using the initial conditions and solving eqs. (3.35)- (3.40), we obtain 
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Using eqs. (3.43)-(3.48), the second order approximate solution is obtained as follows 
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The optimal values of the convergence control constants 2121   and  , , DDCC  can be 

obtained using collocation method.  

3.4 Convergence of HPM  

The series ...vvvvu
p




210
1

lim , given in eq. (1.17) of chapter 1 is convergent for 

most cases. The following suggestions has been made by He [26] to find the convergence 

rate on nonlinear operator ).(vA  

(i) The second derivative of )(uN  with respect to u must be small because the 

parameter may be relatively large, i.e. 1p . 

(ii) The norm of 
u

N
L



1
 must be smaller than one so that the series converges. 

Let us write eq. (1.13) of chapter 1 in the following form 
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          00 uLvNrfpu =LvL     (3.51) 

Applying the inverse operator, 1L  to both sides of eq. (3.51), we obtain 
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Substituting (3.53) into the right-hand side of eq. (3.52), we have  
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To study the convergence of the method let us state the following Theorem. 

 

Theorem 3.1 [87] Suppose that V and W be Banach spaces and WVN :  be a 

contraction mapping such that for all Vvv *, ;  

**)()( vvvNvN   ,  )1,0(     (3.56) 

Then according to Banach’s fixed point theorem N has a unique fixed point u (say) such 

that .)( uuN   

The sequence generated by the homotopy perturbation method will be assumed in the 

following form as 

)( 1 nn VNV ,  
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Proof. Part (i) of the above theorem is proved by using method of induction. 
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For ,1n  vvvNVNvV  001 )()(     (from eq. (3.56))  

Assume that vvvV n
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1
1   as induction hypothesis, then 
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3.5 Convergence of OHAM 

Theorem 3.2 Let the solution components  . . . , , , 210 uuu be defined as given in eqs. (1.27)- 

(1.29). The series solution 
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We have to show  
0nnS  is a Cauchy sequence in the Hilbert space  .  

Consider    11   nnn uSS  
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Therefore,  
0nnS  is a Cauchy sequence in the Hilbert space   and hence the series 

solution  


1

,
k

k txu  converges.      □ 

3.6 Numerical Results and Discussions 

The following Tables 3.1 and 3.2 show the comparisons of the absolute errors of 

Boussinesq-Burgers’ equations obtained by using two terms and three terms 

approximations of HPM and OHAM at different values of c, k, b, x and t. To show the 

effectiveness and accuracy of proposed schemes, LL   and 2  error norms have been 

presented in Tables 3.3 and 3.4 respectively.  

Table 3.1 The absolute errors in the solutions of Boussinesq-Burgers’ equations using two 

terms approximation for HPM and OHAM at various points with  ,
2

1
c ,1k  2b and 

,01653.11 C 934599.01 D  obtained by eq. (1.33).  
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 tx  ,  
HPMExact uu   HPMExact vv   OHAMExact uu   OHAMExact vv   

(0.1, 0.1) 4.03765E-5 5.49815E-5 5.43565E-5 5.30293 E-5 

(0.1, 0.2) 1.57743E-4 2.24577E-4 3.17229E-5 8.55529E-6 

(0.1, 0.3) 3.46200E-4 5.15476E-4 6.20012E-5 1.91443E-4 

(0.1, 0.4) 5.99524E-4 9.33935E-4 2.20592E-4 5.01892E-4 

(0.1, 0.5) 9.11191E-4 1.48572E-3 4.37526E-4 9.45668E-4 

(0.2, 0.1) 3.45343E-5 6.17326E-5 6.27431E-5 3.12906E-5 

(0.2, 0.2) 1.33936E-4 2.51026E-4 6.06192E-5 6.49797E-5 

(0.2, 0.3) 2.91679E-4 5.73647E-4 1.52649E-7 2.94577E-4 

(0.2, 0.4) 5.00967E-4 1.03482E-3 1.11857E-4 6.62723E-4 

(0.2, 0.5) 7.54752E-4 1.63915E-3 2.68365E-5 1.17404E-3 

(0.3, 0.1) 2.80601E-5 6.75811E-5 7.13609E-5 8.76219E-6 

(0.3, 0.2) 1.07664E-4 2.73710E-4 9.11785E-5 1.21023E-4 

(0.3, 0.3) 2.31765E-4 6.23007E-4 6.64983E-5 3.93977E-4 

(0.3, 0.4) 3.93103E-4 1.11945E-3 4.58083E-6 8.14078E-4 

(0.3, 0.5) 5.84236E-4 1.76633E-3 8.71313E-5 1.38462E-3 

(0.4, 0.1) 2.10557E-5 7.23025E-5 8.00687E-5 1.40750E-5 

(0.4, 0.2) 7.93485E-5 2.91751E-4 1.22900E-5 1.75296E-4 

(0.4, 0.3) 1.67436E-4 6.61637E-4 1.35937E-4 4.86954E-4 

(0.4, 0.4) 2.77729E-4 1.18453E-3 1.26768E-4 9.51621E-4 

(0.4, 0.5) 4.02528E-4 1.86226E-3 1.03094E-4 1.57112E-3 

(0.5, 0.1) 1.36435E-5 7.57082E-5 8.87114E-5 3.67202E-5 

(0.5, 0.2) 4.94924E-5 3.04426E-4 1.55217E-4 2.26450E-4 

(0.5, 0.3) 9.98476E-5 6.87978E-4 2.07217E-4 5.71013E-4 

(0.5, 0.4) 1.56938E-4 1.22742E-3 2.52482E-4 1.07147E-3 

(0.5, 0.5) 2.12957E-4 1.92305E-3 2.98817E-4 1.72811E-3 

 
Table 3.2 The absolute errors in the solutions of Boussinesq-Burgers’ equations using three 

terms approximation for HPM and OHAM at various points with 2 ,1 ,
2

1
 bkc  and 

, 9162929.3 , 9786175.0 21  CC  0514603.11 D 209964.4 , 2 D  obtained by eq. (1.33). 

 

 tx  ,  
HPMExact uu   HPMExact vv   OHAMExact uu   OHAMExact vv   

(0.1, 0.1) 9.11428E-7 1.19150E-6 3.15534E-6 5.85344E-7 

(0.1, 0.2) 7.40859E-6 9.41690E-6 7.33961E-7 2.12165E-6 

(0.1, 0.3) 2.53911E-5 3.13655E-5 1.36454E-6 1.12982E-5 

(0.1, 0.4) 6.10825E-5 7.32950E-5 3.08338E-6 3.43727E-5 

(0.1, 0.5) 1.21007E-4 1.40972E-4 2.06021E-5 7.71116E-5 

(0.2, 0.1) 1.02449E-6 1.06292E-6 3.23055E-6 8.39207E-7 

(0.2, 0.2) 8.29954E-6 8.34741E-6 1.05314E-6 3.45590E-6 

(0.2, 0.3) 2.83495E-5 2.76201E-5 7.84907E-9 2.08340E-6 

(0.2, 0.4) 6.79737E-5 6.41010E-5 6.84685E-6 8.49823E-6 

(0.2, 0.5) 1.34218E-4 1.22412E-4 2.86627E-5 3.29106E-5 

(0.3, 0.1) 1.12268E-6 8.94544E-7 3.34664E-6 2.35740E-6 

(0.3, 0.2) 9.06757E-6 6.96343E-6 1.53865E-6 9.48698E-6 
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(0.3, 0.3) 3.08802E-5 2.28283E-5 1.62153E-6 1.67671E-5 

(0.3, 0.4) 7.38211E-5 5.24659E-5 1.08559E-5 2.02210E-5 

(0.3, 0.5) 1.45333E-4 9.91676E-5 3.66844E-5 1.65572E-5 

(0.4, 0.1) 1.20223E-6 6.91094E-7 3.50880E-6 3.92344E-6 

(0.4, 0.2) 9.68307E-6 5.30519E-6 2.20317E-6 1.57786E-5 

(0.4, 0.3) 3.28850E-5 1.71337E-5 3.52562E-6 3.22743E-5 

(0.4, 0.4) 7.83973E-5 3.87483E-5 1.50654E-5 5.08384E-5 

(0.4, 0.5) 1.53919E-4 7.19747E-5 4.45217E-5 6.96457E-5 

(0.5, 0.1) 1.25997E-6 4.59601E-7 3.72005E-6 5.48493E-6 

(0.5, 0.2) 1.01214E-5 3.43102E-6 3.05227E-6 2.21052E-5 

(0.5, 0.3) 3.42835E-5 1.07397E-5 5.69591E-6 4.80354E-5 

(0.5, 0.4) 8.15178E-5 2.34456E-5 1.94224E-5 8.22156E-5 

(0.5, 0.5) 1.59629E-4 4.18318E-5 5.20368E-5 1.24363E-4 

Table 3.3 LL  and 2  error norm for Boussinesq-Burgers’ equations using two terms 

approximation for HPM and OHAM at various points of x. 

x Homotopy Perturbation Method (HPM) Optimal Homotopy Asymptotic Method (OHAM) 

Error in case of two terms 

approximation for ),( txu  

Error in case of two terms 

approximation for ),( txv  

Error in case of two terms 

approximation for ),( txu  

Error in case of two terms 

approximation for ),( txv  

2    L  L       2    L
 L     

 
2    L

 L     
 

2    L  L      

0.1 5.16927E-4 9.11191E-4 1.48572E-3 1.48572E-3 2.22663E-4 4.37526E-4 4.86974E-4 9.45668E-4 

0.2 4.30076E-4 7.54752E-4 9.11434E-4 1.63915E-3 1.35752E-4 1.11857E-4 6.17988E-4 1.17404E-3 

0.3 3.35248E-4 5.84236E-4 9.83942E-4 1.76633E-3 7.13313E-5 9.11785E-5 7.41598E-4 1.38462E-3 

0.4 2.34067E-4 4.02528E-4 1.03916E-3 1.86226E-3 1.15493E-4 1.35937E-4 8.53470E-4 1.57112E-3 

0.5 1.28519E-4 2.12957E-4 1.07484E-3 1.92305E-3 2.13513E-4 2.98817E-4 9.50063E-4 1.72811E-3 

Table 3.4 LL  and 2  error norm for Boussinesq-Burgers’ equations using three terms 

approximation for HPM and OHAM at various points of x. 

x Homotopy Perturbation Method (HPM) Optimal Homotopy Asymptotic Method (OHAM) 

Error in case of three 

terms approximation for 

),( txu  

Error in case of three 

terms approximation for 

),( txv  

Error in case of three 

terms approximation for 

),( txu  

Error in case of three 

terms approximation for 

),( txv  

2    L  
L       2    L

 L     
 

2    L
 L     

 
2    L  L      

0.1 6.17644E-5 1.21007E-4 7.25523E-5 1.40972E-4 9.44786E-6 2.06021E-5 3.81056E-5 7.71116E-5 

0.2 6.85690E-5 1.34218E-4 6.31305E-5 1.22412E-4 1.32663E-5 2.86627E-5 1.53122E-5 3.29106E-5 

0.3 7.43079E-5 1.45333E-4 5.12978E-5 9.91676E-5 1.72034E-5 3.66844E-5 1.45583E-5 2.02210E-5 

0.4 7.87576E-5 1.53919E-4 3.74272E-5 4.18318E-5 2.11601E-5 4.45217E-5 4.18116E-5 6.96457E-5 

0.5 8.17386E-5 1.59629E-4 2.20314E-5 7.19747E-5 2.50625E-5 5.20368E-5 7.07837E-5 1.24363E-4 

 

Graphical representation of results is very useful to demonstrate the efficiency and 

accuracy of the proposed methods for the discussed problem. The following Figures 3.1 

and 3.2 cite the comparison graphically between the approximate solutions obtained by 

five terms HPM, three terms OHAM and exact solutions for different values of x and 
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.5.0t  Figures 3.3 and 3.4 respectively show one soliton approximate solutions of ),( txu  

and ),( txv , obtained by OHAM for Boussinesq-Burgers’ equations.  

 

Figure 3.1 Comparison of five terms HPM solution and three terms OHAM solution with the 

exact solution of ),( txu  for Boussinesq-Burgers’ equations when  2,1,5.0  bkc  and 

.5.0t  

 

Figure 3.2 Comparison of five terms HPM solution and three terms OHAM solution with the 

exact solution of ),( txv  for Boussinesq-Burgers’ equations when  2,1,5.0  bkc  and 

.5.0t  

 

Figure 3.3 One soliton approximate solution of ),( txu , obtained by OHAM for Boussinesq-

Burgers’ equations with parameters 1,5.0  kc  and 2b . 
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Figure 3.4 One soliton approximate solution of ),( txv , obtained by OHAM for Boussinesq-

Burgers’ equations with parameters ,
2

1
c .2 and 1  bk  

 

From the above Figures, one can see a very good agreement between the exact solutions 

and the solutions obtained by HPM and OHAM. Tables 3.1-3.4 depict the performance of 

OHAM in comparison with HPM and clearly witness the reliability and efficiency of 

OHAM for the solutions of Boussinesq-Burgers’ equations.  

3.7 A Numerical Approach to Boussinesq-Burgers’ 

Equations   

The Haar wavelet solutions of ),( txu  and ),( txv  are sought by assuming that 

   txvtxu , and  ,    can be expanded in terms of Haar wavelets as 

        



M

i

is xhiatxu
2

1

, ,     (3.57) 

        



M

i

is xhibtxv
2

1

, ,       1 ,for   ss ttt    (3.58) 

where “.” and “ ׳” stands for differentiation with respect to t and x respectively. 

Integrating eq. (3.57) with respect to t from st  to t and thrice with respect to x from 0 to x, 

the following equations are obtained 

         



M

i

siss txuxhiatttxu
2

1

,, ,   (3.59)
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             tututxuxpiatttxu s

M

i

siss ,0,0,,
2

1

 


,  (3.60) 

                      tututuxtutxuxqiatttxu ss

M

i

siss ,0,0,0,0,,
2

1

 


,   (3.61) 
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 (3.62)

 

  

           tutuxtu
x

xriatxu
M

i

is  ,0,0,0
2

,
2

1

2

 


.   (3.63)

 

Integrating eq. (3.58) with respect to t from st  to t and once with respect to x from 0 to x, 

the following equations are obtained 

         



M

i

siss txvxhibtttxv
2

1

,, ,    (3.64)

             tvtvtxvxpibtttxv s

M

i

siss ,0,0,,
2

1

 


,  (3.65)

       tvxpibtxv
M

i

is ,0,
2

1

 


.      (3.66) 

Discretizing the above results by assuming lxx  , 1 stt , from eqs. (3.64), (3.65) and 

(3.66), we obtain  

         





M

i

sllissssl txvxhibtttxv
2

1

11 ,, ,   (3.67)

             1

2

1

11 ,0,0,, 



   ss

M

i

sllissssl tvtvtxvxpibtttxv , (3.68)

       1

2

1

1 ,0, 



  s

M

i

lissl tvxpibtxv  .     (3.69) 

Using finite difference method 

   
   

 s

s

tt

tutu
tu






 ,0 ,0
 ,0 . 

Equation (3.63) becomes 
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 (3.70) 

By using the boundary condition at 1x , eq. (3.61) becomes  

                   tututututuqiatttu s

M

i

ssiss  ,0,0,0,0,11,1
2

1

 


. 

This implies  

                 



M

i

ssisss tutututuqiatttutu
2

1

,0 ,0,1,11,0,0 .  (3.71) 

Substituting eq. (3.71) in eqs. (3.60), (3.61), (3.62) and (3.70) and discretizing the 

resultant equations by assuming lxx  , , 1 stt we obtain 
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Substituting the above equations in eq. (3.1) and eq. (3.2), we have 
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From the above two eqs. (3.77) and (3.78), the wavelet coefficients    ibia ss  and   can be 

successively calculated using mathematical software. This process starts with  
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3.8 Convergence of Haar Wavelet Approximation 

The convergence of the method may be discussed on the same lines as given by learned 

researcher Saha Ray, 2012 [38]. 

Theorem 3.3 Let    RLxf 2  be a continuous function defined on  1 ,0 . Then the error 

at J th level may be defined as            
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The error norm for  xEJ  is obtained as  
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where    ,Kxf  for all  1 ,0x  and 0K  and M is a positive number related to the J 

th level of resolution of the wavelet given by .2JM    

Proof: The error at J th level resolution is defined as  
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Hence    
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From eq. (3.79), it can be observed that the error bound is inversely proportional to the 

level of resolution J. So, more accurate result can be obtained by increasing the level of 

resolution in the Haar wavelet method. 
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3.9 Numerical Results  

The following Tables show the comparisons of the exact solutions with the approximate 

solutions of Boussinesq-Burgers’ equations at different collocation points. In the following 

Tables 3.5-3.7, J has been taken as 4 i.e. 16M  and t  is taken as 0.0001.  

The R.M.S. error between the numerical solutions and the exact solutions of  for 

Boussinesq-Burgers’ equations at 0.1,5.0t  and 1.5 are 0.000142255, 0.000216937 and 

0.000935793 respectively and for  the R.M.S. error is found to be 0.0118472, 

0.0236667 and 0.0346156 respectively.  

The figures 3.5-3.8 cite the comparison graphically between the numerical and exact 

solutions for different values of t. 

Table 3.5 The absolute errors in the solutions of Boussinesq-Burgers’ equations at various 

collocation points of x with  

 

x 
Approxim

ate 

solution

 

Approxima

te solution

 

Exact 

solution

 

Exact 

solution

 

Absolute 

Error 

 

Absolute Error 

 

0.015625 -0.197367 -0.118653 -0.197359 -0.119458 8.35980E-6 8.05119E-4 

0.046875 -0.201157 -0.119271 -0.201104 -0.120218 5.29589E-5 9.47342E-4 

0.078125 -0.204944 -0.122098 -0.204872 -0.120927 7.19897E-5 1.17066E-3 

0.109375 -0.20869 -0.12456 -0.208662 -0.121582 2.82735E-5 2.97813E-3 

0.140625 -0.212446 -0.124475 -0.212471 -0.122183 2.42459E-5 2.29235E-3 

0.171875 -0.216279 -0.123392 -0.216297 -0.122728 1.87152E-5 6.63754E-4 

0.203125 -0.220164 -0.124375 -0.22014 -0.123217 2.37371E-5 1.15814E-3 

0.234375 -0.224021 -0.127389 -0.223998 -0.123648 2.32677E-5 3.74124E-3 

0.265625 -0.227829 -0.129227 -0.227868 -0.12402 3.87521E-5 5.2064E-3 

0.296875 -0.23166 -0.128271 -0.231749 -0.124334 8.83945E-5 3.93697E-3 

0.328125 -0.23557 -0.127024 -0.235638 -0.124587 6.77895E-5 2.4362E-3 

0.359375 -0.239511 -0.128457 -0.239535 -0.124781 2.37165E-5 3.67564E-3 

0.390625 -0.243396 -0.131492 -0.243436 -0.124914 4.01933E-5 6.57804E-3 

0.421875 -0.24723 -0.132477 -0.247341 -0.124986 1.11453E-4 7.49073E-3 

0.453125 -0.251101 -0.130649 -0.251247 -0.124997 1.46677E-4 5.65231E-3 

 txu ,

 txv ,

.5.0t

 approxu

 approxv  exactu  exactv
ApproxExact uu 

ApproxExact vv 
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0.484375 -0.255048 -0.129425 -0.255153 -0.124947 1.04846E-4 4.47776E-3 

0.515625 -0.258996 -0.131357 -0.259056 -0.124836 5.93702E-5 6.52131E-3 

0.546875 -0.262864 -0.134199 -0.262954 -0.124664 9.07736E-5 9.53507E-3 

0.578125 -0.266683 -0.134123 -0.266847 -0.124432 1.63839E-4 9.69100E-3 

0.609375 -0.270555 -0.1315 -0.270731 -0.12414 1.76238E-4 7.35999E-3 

0.640625 -0.274493 -0.130521 -0.274605 -0.123789 1.11967E-4 6.73224E-3 

0.671875 -0.278397 -0.132961 -0.278467 -0.123379 6.97724E-5 9.58204E-3 

0.703125 -0.282198 -0.135353 -0.282315 -0.122911 1.17448E-4 1.2442E-2 

0.734375 -0.285962 -0.13405 -0.286148 -0.122387 1.86803E-4 1.16634E-2 

0.765625 -0.289792 -0.130795 -0.289964 -0.121806 1.71833E-4 8.98884E-3 

0.796875 -0.293671 -0.130309 -0.293761 -0.12117 8.93953E-5 9.13864E-3 

0.828125 -0.297477 -0.133207 -0.297537 -0.120481 5.94947E-5 1.2726E-2 

0.859375 -0.301163 -0.13486 -0.30129 -0.119739 1.26730E-4 1.51218E-2 

0.890625 -0.304831 -0.132242 -0.30502 -0.118946 1.88492E-4 1.32964E-2 

0.921875 -0.308579 -0.128677 -0.308724 -0.118103 1.44573E-4 1.05737E-2 

0.953125 -0.312353 -0.129219 -0.312401 -0.117212 4.80031E-5 1.20066E-2 

0.984375 -0.316031 -0.13366 -0.316049 -0.116275 1.80034E-5 1.73849E-2 

Table 3.6 The absolute errors in the solutions of Boussinesq-Burgers’ equations at various 

collocation points of x with  

 

x 
Approxim

ate 

solution

 

Approxim

ate 

solution

 

Exact 

solution

 

Exact 

solution

 

Absolute 

Error 

 

Absolute 

Error 

 

0.015625 -0.227876 -0.123436 -0.227868 -0.12402 8.38233E-6 5.84734E-4 

0.046875 -0.231802 -0.124054 -0.231749 -0.124334 5.32620E-5 2.79865E-4 

0.078125 -0.235711 -0.12688 -0.235638 -0.124587 7.30976E-5 2.29300E-3 

0.109375 -0.239566 -0.129343 -0.239535 -0.124781 3.09406E-5 4.56229E-3 

0.140625 -0.243417 -0.129258 -0.243436 -0.124914 1.90610E-5 4.34445E-3 

0.171875 -0.247331 -0.128175 -0.247341 -0.124986 9.87667E-6 3.18901E-3 

0.203125 -0.251285 -0.129158 -0.251247 -0.124997 3.75151E-5 4.16092E-3 

0.234375 -0.255196 -0.132172 -0.255153 -0.124947 4.33927E-5 7.22497E-3 

0.265625 -0.259045 -0.13401 -0.259056 -0.124836 1.07795E-5 9.1736E-3 

0.296875 -0.262903 -0.133054 -0.262954 -0.124664 5.10099E-5 8.38921E-3 

0.328125 -0.266827 -0.131807 -0.266847 -0.124432 1.93935E-5 7.37414E-3 

.0.1t

 approxu  approxv

 exactu  exactv
ApproxExact uu  ApproxExact vv 
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0.359375 -0.270768 -0.133239 -0.270731 -0.12414 3.72955E-5 9.09897E-3 

0.390625 -0.27464 -0.136275 -0.274605 -0.123789 3.50153E-5 1.24855E-2 

0.421875 -0.278446 -0.137259 -0.278467 -0.123379 2.05208E-5 1.38802E-2 

0.453125 -0.282277 -0.135432 -0.282315 -0.122911 3.85771E-5 1.25206E-2 

0.484375 -0.28617 -0.134208 -0.286148 -0.122387 2.17555E-5 1.18209E-2 

0.515625 -0.290051 -0.13614 -0.289964 -0.121806 8.69255E-5 1.43344E-2 

0.546875 -0.293837 -0.138982 -0.293761 -0.12117 7.62424E-5 1.78123E-2 

0.578125 -0.297561 -0.138906 -0.297537 -0.120481 2.47286E-5 1.84257E-2 

0.609375 -0.301325 -0.136283 -0.30129 -0.119739 3.44909E-5 1.65447E-2 

0.640625 -0.305141 -0.135304 -0.30502 -0.118946 1.21288E-4 1.63586E-2 

0.671875 -0.30891 -0.137744 -0.308724 -0.118103 1.86102E-4 1.96411E-2 

0.703125 -0.312561 -0.140136 -0.312401 -0.117212 1.60845E-4 2.2924E-2 

0.734375 -0.316162 -0.138833 -0.316049 -0.116275 1.1339E-4 2.25577E-2 

0.765625 -0.319817 -0.135577 -0.319667 -0.115293 149407E-4 2.02845E-2 

0.796875 -0.323506 -0.135092 -0.323254 -0.114268 2.51678E-4 2.08239E-2 

0.828125 -0.327108 -0.137989 -0.326809 -0.113201 2.99826E-4 2.47885E-2 

0.859375 -0.330578 -0.139643 -0.330329 -0.112095 2.48857E-4 2.75487E-2 

0.890625 -0.334015 -0.137025 -0.333814 -0.11095 2.00973E-4 2.60745E-2 

0.921875 -0.337519 -0.13346 -0.337263 -0.10977 2.55958E-4 2.36893E-2 

0.953125 -0.341035 -0.134002 -0.340674 -0.108556 3.6035E-4 2.54455E-2 

0.984375 -0.344442 -0.138443 -0.344047 -0.10731 394479E-4 3.11327E-2 

Table 3.7 The absolute errors in the solutions of Boussinesq-Burgers’ equations at various 

collocation points of x with  .5.1t

x 
Approxima

te solution

 

Approxim

ate 

solution

 

Exact 

solution

 

Exact 

solution

 

Absolute 

Error 

 

Absolute 

Error 

 

0.015625 -0.259065 -0.124493 -0.259056 -0.124836 8.80296E-6 3.42744E-4 

0.046875 -0.263011 -0.125112 -0.262954 -0.124664 5.70662E-5 4.47176E-4 

0.078125 -0.26693 -0.127938 -0.266847 -0.124432 8.3701E-5 3.50573E-3 

0.109375 -0.270783 -0.130401 -0.270731 -0.12414 5.17642E-5 6.26042E-3 

0.140625 -0.27462 -0.130316 -0.274605 -0.123789 1.53796E-5 6.52672E-3 

0.171875 -0.278509 -0.129233 -0.278467 -0.123379 4.15244E-5 5.85325E-3 

0.203125 -0.282425 -0.130215 -0.282315 -0.122911 1.09137E-4 7.30402E-3 

0.234375 -0.286287 -0.13323 -0.286148 -0.122387 1.38385E-4 1.08429E-2 

 approxu

 approxv

 exactu  exactv
ApproxExact uu  ApproxExact vv 
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Figure 3.5 Comparison of numerical solution and exact solution of Boussinesq-Burgers’ 

equations when . 5.0t

0.265625 -0.290075 -0.135067 -0.289964 -0.121806 1.10593E-4 1.32615E-2 

0.296875 -0.29386 -0.134111 -0.293761 -0.12117 9.95855E-5 1.29412E-2 

0.328125 -0.2977 -0.132864 -0.297537 -0.120481 1.63072E-4 1.23836E-2 

0.359375 -0.301544 -0.134297 -0.30129 -0.119739 2.54057E-4 1.45584E-2 

0.390625 -0.305308 -0.137332 -0.30502 -0.118946 2.88254E-4 1.83867E-2 

0.421875 -0.308995 -0.138317 -0.308724 -0.118103 2.71105E-4 2.0214E-2 

0.453125 -0.312694 -0.13649 -0.312401 -0.117212 2.9305E-4 1.92774E-2 

0.484375 -0.316444 -0.135265 -0.316049 -0.116275 3.94684E-4 1.89901E-2 

0.515625 -0.320169 -0.137198 -0.319667 -0.115293 5.02116E-4 2.19049E-2 

0.546875 -0.323789 -0.14004 -0.323254 -0.114268 5.34300E-4 2.57723E-2 

0.578125 -0.327335 -0.139964 -0.326809 -0.113201 5.25882E-4 2.67630E-2 

0.609375 -0.330908 -0.137341 -0.330329 -0.112095 5.78576E-4 2.52464E-2 

0.640625 -0.334522 -0.136362 -0.333814 -0.11095 7.07734E-4 2.54116E-2 

0.671875 -0.338077 -0.138802 -0.337263 -0.10977 8.13912E-4 2.90315E-2 

0.703125 -0.341503 -0.141194 -0.340674 -0.108556 8.28591E-4 3.26377E-2 

0.734375 -0.344867 -0.13989 -0.344047 -0.10731 8.19196E-4 3.25803E-2 

0.765625 -0.348272 -0.136635 -0.347381 -0.106034 8.9094E-4 3.06012E-2 

0.796875 -0.3517 -0.136149 -0.350674 -0.104729 1.02614E-3 3.14198E-2 

0.828125 -0.35503 -0.139047 -0.353926 -0.103399 1.10396E-3 3.56484E-2 

0.859375 -0.358215 -0.140701 -0.357136 -0.102044 1.07891E-3 3.86573E-2 

0.890625 -0.361357 -0.138083 -0.360304 -0.100666 1.05272E-3 3.74164E-2 

0.921875 -0.364553 -0.134517 -0.363428 -0.0992682 1.12470E-3 3.52490E-2 

0.953125 -0.367749 -0.135059 -0.366508 -0.0978518 1.24090E-3 3.72076E-2 

0.984375 -0.370825 -0.1395 -0.369543 -0.0964187 1.28116E-3 4.30817E-2 
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Figure 3.6 Comparison of numerical solution and exact solution of Boussinesq-Burgers’ 

equations when .   

 

Figure 3.7 Comparison of numerical solution and exact solution of Boussinesq-Burgers’ 

equations when . 

  

Figure 3.8  Comparison of numerical solution and exact solution of Boussinesq-Burgers’ 

equations when . 

3.10 Conclusion 

In this chapter, the Boussinesq-Burgers’ equations have been solved by using optimal 

homotopy asymptotic method (OHAM). The obtained results are then compared with 

exact solutions as well as homotopy perturbation method (HPM). Also, the Haar wavelet 

0.1t

5.1t

0.2t
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method has been implemented to find numerical solution of Boussinesq-Burgers’ 

equations. These results have been cited in the Tables and also graphically demonstrated 

in order to justify the accuracy and efficiency of the proposed schemes.  

This present chapter explores the reliability and powerfulness of OHAM over other 

perturbation method for system of nonlinear partial differential equations like Boussinesq-

Burgers’ equations. An advantage of OHAM over perturbation methods is that it does not 

depend on small parameters. Unlike other analytical method viz. HPM, OHAM allows 

fine tuning of convergence region and rate of convergence by suitably identifying 

convergence control parameters . Additionally, we conclude that OHAM 

provides a simple and easy way to control and adjust the convergence region for strong 

nonlinearity and is applicable to highly nonlinear fluid problem like Boussinesq-Burgers’ 

equations. Consequently, the present success of these methods for the highly nonlinear 

problem verifies that these methods are useful tool for nonlinear problems in science and 

engineering.  

,...,, 321 CCC
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CHAPTER 4 

4 Numerical Solution of Fractional 

Differential Equations by Haar 

Wavelet Method 

4.1 Introduction to Fractional Calculus 

Fractional calculus is 300 years old topic, but not very popular amongst science and 

engineering community. The history of fractional calculus used to be started on the end of 

the 17th century and the birth of fractional calculus was because of a letter exchange. At 

the moment scientific journals didnot exist and scientist were exchange their information 

by means of letters. The fractional calculus was first anticipated by Leibnitz, was one of 

the founders of standard calculus, in a letter written in 1695. The primary effort to give 

logical definition is because of Liouville. Subsequently, many mathematicians such as 

Abel, Caputo, Euler, Fourier, Grünwald, Hadamard, Hardy, Heaviside, Holmgren, 

Laplace, Leibniz, Letnikov, Riemann, Riesz and Weyl made predominant contributions to 

the theory of fractional calculus.  

Fractional calculus is a branch of calculus that generalizes the derivative of a function to 

arbitrary order. It is often referred to as generalized integral and differential calculus of 

arbitrary order [41]. In contemporary years, fractional calculus has become the focus of 

curiosity for many researchers in exclusive disciplines of applied science and engineering 

because of the fact that a realistic modelling of a physical phenomenon can be efficiently 

executed by way of utilizing fractional calculus. Indeed fractional derivatives [90, 91] 

provide an excellent instrument for the description of memory and hereditary properties of 

various materials and processes. This is the key advantage of fractional derivatives as 

compared to classical integer order derivatives in which such effects are abandoned. Many 

authors pointed out that the FDEs are inherently multi-disciplinary with its application 

across diverse disciplines of applied science and engineering for the description of 

https://www.google.co.in/search?sa=X&biw=1366&bih=667&q=define+abandoned&ved=0ahUKEwj9t6uTouDLAhWCSo4KHZg5BroQ_SoIITAA
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properties of various real physical phenomena. However, a reliable and effective general 

technique for solving them cannot be found even in the most useful works on fractional 

derivatives and integrals. So, in this chapter, our aim is to implement a reliable, 

appropriate and efficient wavelet based technique for the numerical solution of fractional 

differential equations. 

In this chapter, the brief description for fractional calculus and the numerical solutions for 

nonlinear fractional differential equations are discussed. This present work is intended to 

make this subject available as popular subject to science and engineering community. 

4.2 Fractional Derivative and Integration 

Fractional calculus is a field of applied mathematics which deals with derivatives and 

integrals of arbitrary orders. Several approaches were used to define the derivatives of 

fractional order. The primary effort to give logical definition is because of Liouville. Since 

then several definitions of fractional integrals and derivatives have been proposed. This 

fractional calculus involves different definitions of the fractional operators such as the 

Riemann–Liouville, the Caputo, the Weyl, the Hadamard, the Marchaud, the Riesz, the 

Grünwald-Letnikov and the Erdelyi–Kober etc [90-92]. Riemann-Liouville fractional 

derivative is mostly used by mathematician but this is not suitable for real world physical 

problems as it requires the definition of fractional order initial conditions, which have no 

physically significant explanation yet. An alternative definition introduced by Caputo has 

the advantage of defining integer order initial conditions for fractional order differential 

equations. As a result, on this work we will use the Caputo fractional derivative by means 

of Caputo in his work on the theory of viscoelasticity [93].  

4.2.1 Riemann-Liouville Integral and Derivative Operator 

 

The definition of first fractional integral was initially given by Liouville, after a rigorous 

investigation in a series of papers from 1832-1837. Later on research and further 

improvements have been made by many others directed to the development of the integral-

based Riemann-Liouville fractional integral operator, which has been an essential 

foundation in fractional calculus ever since. The primal effort of Liouville was later 

purified in 1865 by the Swedish mathematician Holmgren [94], who made substantial 

contributions to the growing study of fractional calculus. But it was Riemann [95] who 
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reconstructed it to fit Abel's integral equation, and hence made it enormously more useful. 

Even now there exist numerous forms of fractional integral operators, starting from 

divided-difference types to infinite-sum types, however the Riemann-Liouville operator 

remains to be probably the most frequently used when fractional integration is carried out. 

Probably the most conventionally encountered definition of an integral of fractional order 

is the Riemann-Liouville integral [41], in which the fractional integral operator 

),0( J  of a function )(tf ,  is defined as [41, 90] 

 (4.1) 

where  is the well-known gamma function,  is the set of positive real numbers . 

The gamma function  is outlined by  

  and for real number n,  

Some properties of the operator  are as follows  
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The right Riemann-Liouville fractional derivative can be defined by 
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Fractional Riemann-Louville derivatives have various interesting properties. For example 

the fractional derivative of a constant is not zero, i.e. 
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Lemma 4.1: The integral formula of Riemann-Liouville fractional derivative  

         

is valid under the assumption that )(, ΓCgf    and ,  exist for all Γt  

and are continuous in t. 

4.2.2 Caputo Fractional Derivative 

An alternative definition of fractional derivative introduced by M. Caputo in 1967 [93], is 

called Caputo fractional derivative. The Caputo fractional derivative  of a function 

)(tf  is defined as [41, 93]  

     (4.6) 

where the parameter α is the order of the derivative and is allowed to be real or even 

complex. For the Caputo’s derivative, we have 

            ,       (C is a constant) .          (4.7) 

Similar to integer order differentiation Caputo derivative is linear. 

        .      (4.8) 

where  and  are constants, and satisfies the so called Leibnitz rule 

       ,                 (4.9) 

if  is continuous in [0, t] and  has continuous derivatives sufficient number of 

times in [0, t]. 
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The following are two basic properties of the Caputo fractional derivative  

     (4.10) 

 ,   nn  1  and n N .   (4.11)  

4.2.3 Grünwald-Letnikov Fractional Derivative 

The Grünwald-Letnikov fractional derivative was first introduced by Anton Karl 

Grünwald (1838–1920) from Prague, in 1867, and by Aleksey Vasilievich 

Letnikov (1837-1888) from Moscow in 1868. The Grünwald-Letnikov fractional 

derivative of order p )0(  is defined as [41]  

        (4.12) 

where . 

 

4.2.4 Riesz Fractional Derivative 

Here, we present some significant definitions viz. the Right Riemann–Liouville derivative, 

Left Riemann–Liouville derivative, Riesz fractional derivative and Riesz fractional 

integral which are to be used subsequently in consequent chapters. 

The left and right Riemann-Liouville fractional derivative of a function  of order

, are defined as [41, 90] 
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The Riesz fractional derivative of a function  is defined as [41, 90] 
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http://en.wikipedia.org/w/index.php?title=Anton_Karl_Gr%C3%BCnwald&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Anton_Karl_Gr%C3%BCnwald&action=edit&redlink=1
http://en.wikipedia.org/wiki/Prague
http://en.wikipedia.org/wiki/Aleksey_Letnikov
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The fractional Riesz integral of a function  is defined as [41, 90] 
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4.3 Outline of Present Study 

In this chapter we have considered both analytical and numerical approach for solving 

some particular nonlinear fractional differential equations like fractional Burgers-Fisher 

equation, fractional Fisher’s type equation, and time- and space-fractional Fokker-Plank 

equation, which have a wide variety of applications in various physical phenomena. These 

fractional differential equations have proved particularly beneficial in the context of 

anomalous diffusion model, fluid dynamics model, heat conduction, elasticity and 

capillary-gravity waves. 

Consider the generalized one dimensional Burgers-Fisher equation of fractional order 

)1( 
2

2






 uu
x

u

x

u
u

t

u















,    (4.17) 

where  ,  and   are parameters and 10  . This equation has a wide range of 

applications in fluid dynamics model, heat conduction, elasticity and capillary-gravity 

waves. When 0  and 1 , eq. (4.17) reduces to Fisher type equation.  

The generalized time-fractional Fisher’s biological population diffusion equation is given 

by   
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where ),( txu  denotes the population density and 0t , x , )(uF  is a continuous 

nonlinear function satisfying the following conditions 0)1()0(  FF , )1(0)0( FF  . 

The derivatives in eqs. (4.17) and (4.18) are the Caputo derivative of order  . 

Next, we consider the time- and space-fractional Fokker-Planck equation (FPE). The 

classical Fokker-Planck equation was introduced by Adriaan Fokker and Max Planck, 

commonly used to describe the Brownian motion of particles [96]. A FPE describes the 

change of probability of a random function in space and time; hence it is naturally used to 

describe solute transport. The general FPE for the motion of a concentration field  of 

one space variable x at time t has the form [97-99]  

 (4.19) 

with the initial condition  

                   (4.20) 

where )(xA  and 0)( xB  are referred as the drift and diffusion coefficients. The drift and 

diffusion coefficients may also depend on time.  

There is a more general form of FPE called nonlinear Fokker-Planck equation which is of 

the form [97-99] 

.   (4.21) 

The nonlinear Fokker-Planck equation (FPE) has important applications in various fields 

such as plasma physics, surface physics, population dynamics, biophysics, engineering, 

neuroscience, nonlinear hydrodynamics, polymer physics, laser physics, pattern formation, 

psychology and marketing etc. [100]. 

In recent years there has been a great deal of interest in fractional diffusion equations. 

These equations arise in continuous time random walks, modelling of anomalous diffusive 

and subdiffusive systems, unification of diffusion and wave propagation phenomenon etc. 

[101].  

Consider the generalized nonlinear time- and space-fractional Fokker-Planck equation 

[102]  
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        (4.22) 

where   and   are parameters describing the order of the fractional time and space 

derivatives respectively. The function ),( txu  is assumed to be a casual function of time 

and space, i.e. vanishing for 0t  and 0x . The fractional derivatives are considered in 

the Caputo sense.  

Various mathematical methods such as the Adomian decomposition method (ADM) [103], 

Variational iteration method (VIM) [103], Operational Tau method (OTM) [104] and 

homotopy perturbation method (HPM) [105] have been used in attempting to solve 

fractional Fokker-Planck equations. 

4.4 Application of Analytical and Numerical Techniques to 

Fractional Burgers-Fisher Equation  

4.4.1 Haar Wavelet Based Scheme for Fractional Burgers-Fisher 

Equation 

Consider the generalized fractional order Burgers-Fisher equation given in eq. (4.17) with 

following initial and boundary conditions 

,     (4.23) 

, 0t  (4.24) 

, 0t  (4.25) 

When  the exact solution of eq. (4.17) is given by [106] 

  .  (4.26) 
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Let us divide both space and time interval [0,1] into m equal subintervals; each of width 

. Here we have taken 1,1    and 01.0  . Therefore, eq. (4.17) reduces to 

.   (4.27) 

Haar wavelet solution of  is sought by assuming that  can be expanded in 

terms of Haar wavelets as 

.    (4.28) 

Integrating eq. (4.28) with respect to x from 0 to x we get 

   .    (4.29) 

Again, integrating eq. (4.29) with respect to x from 0 to x we get 

.   (4.30) 

Putting  in eq. (4.30) we get  

    .      (4.31) 

Putting  in eq. (4.30) we get  

  .   (4.32) 

Again  can be approximated using Haar wavelet function as  

   .    (4.33) 

This implies 

 .  (4.34) 

Substituting eq. (4.33) in eq. (4.30) we get 

  .   (4.35) 
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The nonlinear term presented in eq. (4.27) can be approximated using Haar wavelet 

function as 

   .    (4.36) 

Therefore from eq. (4.29), (4.32) and (4.35) we have 

  (4.37) 

 

Substituting eq. (4.28) and eq. (4.36) in eq. (4.27) we will have 

.   (4.38) 

Now applying  to both sides of eq. (4.38) yields 

 . (4.39) 

Substituting eq. (4.23) and eq. (4.35) in eq. (4.39) we get 

 (4.40) 

Now substituting the collocation points  and  for  

in eqs. (4.34), (4.37) and (4.40), we have  equations in unknowns in , and 

.  By solving these system of equations using mathematical software, the Haar wavelet 

coefficients   and  can be obtained.  
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4.4.2 Application of OHAM to time-fractional Burgers-Fisher Equation 

Using optimal homotopy asymptotic method, the homotopy for eq. (4.27) can be written 

as 
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Here  

  ,      (4.42) 

  . . . 3
3

2
21  pCpCpCpH ,      (4.43) 

.   (4.44) 

Substituting eqs. (4.42)- (4.44) in eq. (4.41) and equating the coefficients of like powers of 

p , we have the following system of partial differential equations. 
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and so on. 
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For solving fractional order Burgers-Fisher equation using OHAM, we consider the initial 

condition eq. (4.23) and solving eq. (4.45) to eq. (4.47), we obtain 

,     (4.48) 

,   (4.49) 
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 (4.50) 

and so on. 

Using eq. (4.48), (4.49) and (4.50), the second order approximate solution is obtained as 

follows    
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 (4.51) 

The optimal values of the convergence control constants  can be obtained by 

using collocation method from eq. (1.33) of chapter 1. 

4.5 Numerical Results for Fractional Burgers-Fisher 

Equation 

The following Table 4.1 shows the comparison of the absolute errors of Burgers-Fisher 

equation obtained by using Haar wavelet method and OHAM at different values of x and t 

taking . Similarly, Tables 4.2-4.4 exhibit the comparison of approximate solutions 

obtained by Haar wavelet method and OHAM for fractional order Burgers-Fisher equation 

taking  and 0.25 respectively. In the following Tables 4.1 -4.4, m has been 

taken as 16. The obtained results in Tables 4.1-4.4 demonstrate that these methods are well 

suited for solving fractional Burgers-Fisher equation. Both the methods are quite efficient 

and effective. 

Table 4.1 The absolute errors in the solution of fractional order Burgers-Fisher equation 

given in eq. (4.27) using Haar wavelet method and three terms for second order OHAM with 

convergence control parameters  at various points of x and t for .1  

x 
  

        

0.1 5.4804E-5 2.3476E-5 7.85260E-6 3.9181E-5 4.229E-11 8.408E-10 3.403E-9 8.7368E-9 

0.2 2.3553E-5 7.7785E-6 3.91080E-5 7.0440E-5 8.333E-11 3.384E-10 2.273E-9 6.7268E-9 

0.3 7.0426E-5 3.9091E-5 7.75940E-6 2.3578E-5 2.089E-10 1.642E-10 1.142E-9 4.7168E-9 

0.4 3.9169E-5 7.8222E-6 2.35157E-5 5.4870E-5 3.346E-10 6.667E-10 1.13E-11 2.7068E-9 

0.5 7.9054E-6 2.3463E-5 5.48121E-5 8.6199E-6 4.602E-10 1.1692E-9 1.119E-9 6.968E-10 

0.6 5.4768E-5 2.3384E-5 7.97308E-6 3.9384E-5 5.858E-10 1.6717E-9 2.249E-9 1.3132E-9 

0.7 2.3489E-5 7.9370E-6 3.93167E-5 7.0791E-5 7.115E-10 2.1742E-9 3.381E-9 3.3232E-9 

0.8 7.0337E-5 3.8884E-5 7.48940E-6 2.4026E-5 8.371E-10 2.6767E-9 4.511E-9 5.3332E-9 

0.9 3.9031E-5 7.5074E-6 2.39232E-5 5.5543E-5 9.627E-10 3.1792E-9 5.642E-9 7.3432E-9 

1.0 8.5852E-5 5.4286E-5 2.28326E-5 8.8514E-6 1.0883E-9 3.6817E-9 6.772E-9 9.3532E-9 

 

Table 4.2 Comparison between the approximate solutions of fractional order Burgers-Fisher 

equation given in eq. (4.27) using Haar wavelet method and three terms for second order OHAM 

with convergence control parameters  at various points of x and t 

for .75.0  

21    and CC

1

5.0 ,75.0

99999.0 ,0 21  CC

HaarExact uu  OHAMExact uu 

2.0t 4.0t 6.0t 8.0t 2.0t 4.0t 6.0t 8.0t

99979.0 ,000104528.0 21  CC
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x 2.0t  4.0t  6.0t  8.0t  

        

0.1 0.50043 0.500691 0.5009 0.501247 0.501369 0.501734 0.501839 0.502182 

0.2 0.500271 0.500566 0.50074 0.501122 0.501207 0.501609 0.501674 0.502057 

0.3 0.500187 0.500441 0.500656 0.500997 0.501119 0.501484 0.501584 0.501932 

0.4 0.500028 0.500316 0.500495 0.500872 0.500944 0.501359 0.5014 0.501807 

0.5 0.499873 0.500191 0.500335 0.500747 0.500758 0.501234 0.501197 0.501682 

0.6 0.499789 0.500066 0.500248 0.500622 0.500653 0.501109 0.50108 0.501557 

0.7 0.499641 0.499941 0.500092 0.500497 0.500446 0.500984 0.500839 0.501432 

0.8 0.499559 0.499816 0.500005 0.500372 0.500326 0.500859 0.500697 0.501307 

0.9 0.499423 0.499691 0.499855 0.500247 0.500092 0.500734 0.500409 0.501182 

1.0 0.499345 0.499566 0.499767 0.500122 0.499953 0.500609 0.500236 0.501057 

 

Table 4.3 Comparison between the approximate solutions of fractional order Burgers-Fisher 

equation given in eq. (4.27) using Haar wavelet method and three terms for second order OHAM 

with convergence control parameters  at various points of x and 

t for .5.0  

x 2.0t  4.0t  6.0t  8.0t  

        

0.1 0.500429 0.50114 0.500898 0.501664 0.501368 0.502066 0.501837 0.502404 

0.2 0.500273 0.501015 0.500736 0.501539 0.501201 0.501941 0.501666 0.502279 

0.3 0.50019 0.50089 0.500646 0.501414 0.501105 0.501816 0.501566 0.502154 

0.4 0.500056 0.500765 0.500484 0.501289 0.500921 0.501691 0.501363 0.502029 

0.5 0.499953 0.50064 0.500329 0.501164 0.500725 0.501566 0.501132 0.501904 

0.6 0.499898 0.500515 0.500238 0.501039 0.500605 0.501441 0.500986 0.501779 

0.7 0.49986 0.50039 0.500098 0.500914 0.500386 0.501316 0.500698 0.501654 

0.8 0.499838 0.500265 0.50001 0.500789 0.500246 0.501191 0.500513 0.501529 

0.9 0.499889 0.50014 0.499894 0.500664 0.499999 0.501066 0.500153 0.501404 

1.0 0.499912 0.500015 0.499814 0.500539 0.499838 0.500941 0.499922 0.501279 

 

Table 4.4 Comparison between the approximate solutions of fractional order Burgers-Fisher 

equation given in eq. (4.27) using Haar wavelet method and three terms for second order OHAM 

with convergence control parameters  at various points of x and t 

for .25.0  

 x 2.0t  4.0t  6.0t  8.0t  

        

0.1 0.500427 0.501724 0.500897 0.502074 0.501366 0.502309 0.501836 0.50249 

0.2 0.50027 0.501599 0.500733 0.501949 0.501196 0.502184 0.50166 0.502365 

0.3 0.500184 0.501474 0.500639 0.501824 0.501095 0.502059 0.501552 0.50224 

0.4 0.500056 0.501349 0.50048 0.501699 0.500909 0.501934 0.50134 0.502115 

0.5 0.49997 0.501224 0.500339 0.501574 0.500717 0.501809 0.501099 0.50199 

0.6 0.49992 0.501099 0.500248 0.501449 0.500591 0.501684 0.500937 0.501865 

0.7 0.499923 0.500974 0.500142 0.501324 0.500385 0.501559 0.500637 0.50174 

0.8 0.499916 0.500849 0.500064 0.501199 0.500243 0.501434 0.500432 0.501615 

Haaru OHAMu Haaru OHAMu Haaru OHAMu Haaru OHAMu

00032796.1 ,000163239.0 21  CC

Haaru OHAMu Haaru OHAMu Haaru OHAMu Haaru OHAMu

999602.0 ,00019986.0 21  CC

Haaru OHAMu Haaru OHAMu Haaru OHAMu Haaru OHAMu
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0.9 0.500043 0.500724 0.500011 0.501074 0.500027 0.501309 0.500059 0.50149 

1.0 0.500097 0.500599 0.499954 0.500949 0.499869 0.501184 0.499805 0.501365 

 

The following Figures 4.1 and 4.2 cite the comparison graphically between the numerical 

solutions obtained by Haar wavelet method, optimal homotopy asymptotic method 

(OHAM) and exact solutions for different values of t and x.  

 

Figure 4.1 Comparison of Haar wavelet solution and OHAM solution with the exact solution 

of Burgers-Fisher equation when . 

 

Figure 4.2 Comparison of Haar wavelet solution and OHAM solution with the exact solution 

of Burgers-Fisher equation when . 

2.0t

4.0t
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4.6 Application of Analytical and Numerical Methods to 

Fractional Fisher’s type Equation 

4.6.1 Haar Wavelet Based Scheme for Generalized Fisher’s Equation 

Consider the generalized Fisher’s equation [107] of fractional order 

 10  , ,   (4.52) 

with the initial condition 

  .      (4.53) 

When  the exact solution of eq. (4.52) is given by [108] 

       (4.54) 

Let us divide both space and time interval [0, 1] into m equal subintervals; each of width 

.  

The Haar wavelet solution of  is sought by assuming that  can be expanded 

in terms of Haar wavelets as 

.     (4.55) 

Integrating eq. (4.55) twice with respect to x from 0 to x, we get 

   .    (4.56) 

Putting  in eq. (4.56), we get  

   .       (4.57) 

Putting  in eq. (4.56), we get  

  .   (4.58) 
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Substituting eq. (4.57) and (4.58) in eq. (4.56), we have 
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 (4.59) 

The nonlinear term presented in eq. (4.52) can be approximated using Haar wavelet 

function as    

,   (4.60) 

which implies 
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Substituting eq. (4.55) and eq. (4.60) in eq. (4.52), we have 
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Now applying  to both sides of eq. (4.62) yields 

  . (4.63) 

Substituting eq. (4.53) and eq. (4.59) in eq. (4.63) we get 

 (4.64) 
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Now substituting the collocation points  and  for  in 

eqs. (4.64)  and (4.61), we have  equations in  unknowns in and .  By 

solving these system of equations using mathematical software, the Haar wavelet 

coefficients  and  can be obtained. 

4.6.2 Application of OHAM to Generalized Fisher’s Equation 

 

Using optimal homotopy asymptotic method, the homotopy for eq. (4.52) can be written 

as 

.(4.65) 

Here   ,      (4.66) 

  . . . 3
3

2
21  pCpCpCpH ,      (4.67) 

.   (4.68) 

Substituting eqs. (4.66), (4.67) and (4.68) in eq. (4.65) and equating the coefficients of like 

powers of p , we have the following system of partial differential equations. 

Coefficients of        (4.69) 

Coefficients of  

. (4.70) 

Coefficients of  

 (4.71) 

and so on. 

We consider the initial condition given in eq. (4.53) and solving above equations, we 

obtain 
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,      (4.72) 

,    (4.73) 

and so on. 

The fourth order approximate solution can be obtained by using the formula 

. 

The optimal values of the convergence control constants 321 ,, CCC  and 4C  can be 

obtained using collocation method from eq. (1.33) of chapter 1. 

4.7 Numerical Results for Fractional Fisher’s Equation 

Tables 4.5-4.8 present the comparison of approximate solutions obtained by Haar wavelet 

method and OHAM for fractional order generalized Fisher’s equation given in eq. (4.52). 

The obtained results in Tables demonstrate that these methods are well suited for solving 

fractional order generalized Fisher’s equation. Both the methods are quite efficient and 

effective. 

Table 4.5 The absolute errors in the solution of generalized Fisher’s equation (4.52) using 

Haar wavelet method and five terms for fourth order OHAM with convergence control parameters 

 at various points of x and t for 

.1  

x   

        

0.1 0.0051104 0.0054849 0.0042629 0.0027556 6.67439E-5 0.0040747 0.023752 0.0740709 

0.2 0.0096957 0.0106181 0.0085377 0.0058225 1.99503E-4 0.0023417 0.019345 0.0678136 

0.3 0.013553 0.0151142 0.0125286 0.0089272 4.65337E-4 4.3112E-4 0.013810 0.0581267 

0.4 0.0163976 0.018593 0.0158324 0.0116856 7.18406E-4 0.0015578 0.007399 0.0453319 

0.5 0.0179265 0.0206477 0.0180051 0.0136684 9.47663E-4 0.0035178 4.521E-4 0.030035 

0.6 0.017924 0.0209528 0.0186691 0.0145062 0.0011444 0.0053436 0.006645 0.013062 

0.7 0.0163414 0.01935 0.0175984 0.013973 0.0013029 0.0069445 0.013494 0.0046328 

0.8 0.0133823 0.015939 0.0148102 0.0120755 0.0014207 0.0082540 0.019736 0.0220718 
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0.9 0.0095361 0.0111158 0.0106057 0.0090918 0.0014982 0.009231 0.025078 0.0383517 

1.0 0.0055837 0.0055837 0.0055837 0.0055837 0.0015382 0.0098632 0.029315 0.0527218 

 

Table 4.6 The approximate solutions of generalized Fisher equation (4.52) using Haar 

wavelet method and five terms for fourth order OHAM with convergence control parameters 

 at various points of x and t for 

.75.0   

x 2.0t  4.0t  6.0t  8.0t  

        

0.1 0.859185 0.899389 0.920547 0.931947 0.957952 0.927394 0.978665 0.902524 

0.2 0.838644 0.888856 0.905313 0.930017 0.948042 0.930519 0.972681 0.905646 

0.3 0.817612 0.877253 0.889588 0.927859 0.93764 0.934718 0.966206 0.91116 

0.4 0.796431 0.864492 0.873714 0.92523 0.927088 0.939825 0.959581 0.919341 

0.5 0.775484 0.850503 0.858074 0.921857 0.916772 0.945568 0.953191 0.930278 

0.6 0.755093 0.835244 0.84299 0.917456 0.90701 0.951569 0.947357 0.943809 

0.7 0.735424 0.818704 0.828628 0.911753 0.897971 0.957356 0.942244 0.959482 

0.8 0.716399 0.800908 0.81491 0.904497 0.889575 0.962388 0.937776 0.976567 

0.9 0.697656 0.781918 0.801474 0.895481 0.881463 0.966095 0.933591 0.994112 

1.0 0.678526 0.761827 0.787651 0.884559 0.872963 0.967927 0.929017 1.01104 

 

Table 4.7 The approximate solutions of generalized Fisher equation (4.52) using Haar 

wavelet method and five terms for fourth order OHAM with convergence control parameters 

 at various points of x and t 

for .5.0    

x 2.0t  4.0t  6.0t  8.0t  

        

0.1 0.859121 0.927731 0.920482 0.943924 0.957888 0.943779 0.9786 0.939948 

0.2 0.838402 0.921616 0.905071 0.943123 0.947799 0.94491 0.972438 0.940694 

0.3 0.817123 0.914826 0.889099 0.942438 0.937151 0.946615 0.965717 0.941956 

0.4 0.795694 0.907206 0.872977 0.941713 0.926351 0.948908 0.958844 0.944068 

0.5 0.774576 0.898605 0.857166 0.940787 0.915864 0.951841 0.952284 0.947508 

0.6 0.754149 0.888882 0.842046 0.93948 0.906066 0.955446 0.946413 0.952761 

0.7 0.734584 0.877915 0.827789 0.937586 0.897131 0.959662 0.941405 0.96016 

0.8 0.715744 0.865607 0.814255 0.934862 0.888921 0.964283 0.937121 0.969739 

0.9 0.697156 0.851889 0.800975 0.931031 0.880963 0.968937 0.933091 0.98117 

1.0 0.678052 0.83673 0.787178 0.925803 0.872489 0.973109 0.928543 0.993777 

 

Table 4.8 The approximate solutions of generalized Fisher equation (4.52) using Haar 

wavelet method and five terms for fourth order OHAM with convergence control parameters 

0894301.0 ,1822726.0 ,053658.0 ,649458.0 4321  CCCC

Haaru OHAMu
Haaru OHAMu

Haaru OHAMu
Haaru OHAMu

0574318.0 and 05081612.0 ,0211535.0 ,5059152.0 4321  CCCC

Haaru OHAMu
Haaru OHAMu

Haaru OHAMu
Haaru OHAMu



 

121 
 

 at various points of x and t 

for .25.0    

x 2.0t  4.0t  6.0t  8.0t  

        

0.1 0.859016 0.949105 0.920377 0.959635 0.957783 0.964066 0.978495 0.966453 

0.2 0.837987 0.943681 0.904655 0.955839 0.947384 0.960802 0.972023 0.963262 

0.3 0.816234 0.937961 0.88821 0.9522 0.936261 0.957955 0.964827 0.960634 

0.4 0.79426 0.93184 0.871543 0.948657 0.924917 0.95553 0.95741 0.958645 

0.5 0.772676 0.925203 0.855266 0.945143 0.913963 0.953545 0.950383 0.957415 

0.6 0.752001 0.917922 0.839899 0.941569 0.903919 0.951996 0.944265 0.957051 

0.7 0.732474 0.909857 0.825678 0.937799 0.895021 0.950809 0.939295 0.957571 

0.8 0.713871 0.900851 0.812383 0.933634 0.887048 0.949804 0.935249 0.958845 

0.9 0.695534 0.890742 0.799352 0.928815 0.87934 0.948678 0.931468 0.96056 

1.0 0.676507 0.87937 0.785633 0.923035 0.870944 0.947027 0.926998 0.96224 

 

In case of generalized Fisher’s equation, the Figures 4.3 and 4.4 present the comparison 

graphically between the numerical results obtained by Haar wavelet method, OHAM and 

exact solutions for different values of t and x. 

 

Figure 4.3 Comparison of Haar wavelet solution and OHAM solution with the exact solution 

of generalized Fisher’s equation when . 

0545852.0 and  1230816.0 ,04303056.0 ,33833012.0 4321  CCCC

Haaru OHAMu
Haaru OHAMu

Haaru OHAMu
Haaru OHAMu

2.0t
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Figure 4.4 Comparison of Haar wavelet solution and OHAM solution with the exact solution 

of generalized Fisher’s equation when . 

4.8 Solution of Fractional Fokker-Planck Equation 

4.8.1 Application of Haar Wavelets to Time-Fractional Fokker-Planck 

Equation 

Consider the nonlinear time-fractional Fokker-Planck equation [103, 105] 
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0 ,0  xt , 10  ,  (4.74) 

subject to the initial condition 

.      (4.75) 

When  the exact solution of eq. (4.74) is given by [103, 105] 

.      (4.76) 

Let us divide both space and time interval [0, 1] into m equal subintervals; each of width 

 Haar wavelet solution of  is sought by assuming that  can be 

expanded in terms of Haar wavelets as 

.   (4.77) 

Integrating eq. (4.77) with respect to x from 0 to x, we get 

    .   (4.78) 

Again, integrating eq. (4.78) with respect to x from 0 to x, we get 
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.   (4.79) 

Putting  in eq. (4.79), we get  

    .     (4.80) 

Putting  in eq. (4.79), we get  

    

        .    (4.81) 

Putting eq. (4.81) in eqs. (4.78) and (4.79), we have 

 ,  (4.82) 

. (4.83) 

The nonlinear term presented in eq. (4.74) can be approximated using Haar wavelet 

function as 

   .   

This implies    

  .  (4.84) 

Therefore substituting eqs. (4.77), (4.82) and (4.83) in eq. (4.84), we have 
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(4.85) 

Substituting eq. (4.84) in eq. (4.74), we have 

.   (4.86) 

Now applying  to both sides of eq. (4.86) yields 

  .  (4.87) 

Substituting eqs. (4.75), (4.82) and (4.83) in eq. (4.87), we get 

 (4.88) 
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Now substituting the collocation points  and  for  

in eqs. (4.85) and (4.88), we have  equations in  unknowns in and .  By 

solving these system of equations using mathematical software, the Haar wavelet 

coefficients  and  can be obtained.  

4.8.2 Application of two Dimensional Haar Wavelet for Solving Time- 

and Space-Fractional Fokker-Planck Equation 

 

Consider the time- and space-fractional Fokker-Planck equation [103, 105] 
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0 ,0  xt ,  (4.89) 

where subject to the initial condition 

.      (4.90) 

When , the exact solution of eq. (4.89) is given by [103, 105] 

.      (4.91) 

Let us divide space interval [0, 1] into m equal subintervals; each of width .  

Haar wavelet solution of  is sought by assuming that  can be expanded in 

terms of Haar wavelets as 

.    (4.92) 

Applying  both sides of eq. (4.92), we get 

   .    (4.93) 

Now      ,  (4.94) 

and   . (4.95) 

Substituting eqs. (4.92), (4.94) and (4.95) in eq. (4.89), we get 
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Now substituting the collocation points  for  in eq. (4.96), we 

have  equations in  unknowns . By solving this system of equations using 

mathematical software, the Haar wavelet coefficients  can be obtained.  

4.9 Numerical Results for Fractional Fokker-Planck 

Equation 

The following Table 4.9 shows the comparison of exact solutions with the approximate 

solutions of different numerical methods for time-fractional Fokker-Planck equation. 

Agreement between present numerical results with other approximate solutions and exact 

solutions appear very satisfactory through illustrations in Tables 4.9 and 4.10. Table 4.10 

shows the comparison of approximate solutions of fractional order time-fractional Fokker-

Planck equation obtained by using two dimensional Haar wavelet method with the 

solutions of Adomian decomposition method (ADM) and Variational iteration method 

(VIM) presented in Ref. [103]. Similarly Tables 4.11 and 4.12 show the comparison of 

approximate solutions obtained by different numerical methods for time- and space-

fractional Fokker-Planck equation. It is found that the solutions obtain by using present 

method are in good agreement with the results presented by Odibat et al. [103] and even 

better than the results obtained by Operational Tau method (OTM) presented by Vanani et 

al. [104]. However, the errors may be reduced significantly if we increase level of 

resolution which prompts more number of collocation points.    

 

Table 4.9 Comparison of present method solution with other numerical methods for classical 

order time fractional Fokker-Planck equation (4.74) at various points of x and t for .1   
 

t x [103] [103]    

0.2 0.25 0.076333 0.076333 0.076338 0.0756165 

0.5 0.305333 0.305333 0.305351 0.304392 

0.75 0.687000 0.687000 0.687039 0.686321 

m
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1.0 1.221333 1.221333 1.221403 1.2214 

0.4 0.25 0.093167 0.093167 0.093239 0.0958469 

0.5 0.372667 0.372667 0.372956 0.376435 

0.75 0.838500 0.838500 0.839151 0.841761 

1.0 1.490667 1.490667 1.491825 1.49182 

0.6 0.25 0.113500 0.113500 0.113882 0.110663 

0.5 0.454000 0.454000 0.455530 0.451238 

0.75 1.021500 1.021500 1.024942 1.02172 

1.0 1.816000 1.816000 1.822119 1.82212 

 

Table 4.10 Comparison of present method solution with other numerical methods for time 

fractional Fokker-Planck equation (4.74) at various points of x and t taking 5.0  and .75.0    

t x   
[103] [103]  

[103] [103] 

 

0.2 0.25 0.110744 0.091795 0.0900792 0.087699 0.084593 0.0714745 

0.5 0.442978 0.367179 0.421013 0.350796 0.338372 0.329117 

0.75 0.996699 0.826154 0.990531 0.789291 0.761337 0.773339 

1.0 1.771910 1.468717 1.79902 1.403180 1.353488 1.40468 

0.4 0.25 0.143997 0.118678 0.13581 0.111718 0.106178 0.0973803 

0.5 0.575909 0.474712 0.587481 0.446872 0.424712 0.431178 

0.75 1.295980 1.068102 1.35217 1.005460 0.955602 0.998822 

1.0 2.303960 1.898849 2.43004 1.787490 1.698849 1.80046 

0.6 0.25 0.176478 0.146209 0.167654 0.138479 0.129926 0.116878 

0.5 0.705914 0.584835 0.749162 0.553918 0.519702 0.534521 

0.75 1.588310 1.315878 1.742 1.246320 1.169330 1.24986 

1.0 2.823650 2.339338 3.14621 2.215670 2.078809 2.26291 

 

Table 4.11 Comparison of approximate solutions obtained by using VIM, ADM and Haar 

wavelet method for time- and space-fractional Fokker-Planck equation (4.89) at various points of x 

and t taking 1  and .1  

  

t x [103] [103]    

0.2 0.25 0.069062 0.069062 0.069073 0.0689468 

0.5 0.276259 0.276250 0.276293 0.274611 

0.75 0.621563 0.621563 0.621659 0.619337 

0.4 0.25 0.076250 0.076250 0.076338 0.0753937 

0.5 0.305000 0.305000 0.305351 0.299222 

0.75 0.686250 0.686250 0.687039 0.676175 

0.6 0.25 0.084062 0.084063 0.084366 0.0818405 

0.5 0.336250 0.336250 0.337465 0.323833 

0.75 0.756562 0.756562 0.759296 0.733012 

 

5.0  75.0 

ADMu VIMu Haaru ADMu VIMu Haaru

ADMu VIMu Exactu Haaru
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Table 4.12 Comparison of approximate solutions of fractional order time- and space-

fractional Fokker-Planck equation (4.89) obtained by using VIM, ADM, OTM and Haar wavelet 

method at various points of x and t taking 5.0   and .75.0      

 t x 5.0  and 5.0  75.0  and 75.0  

[103] [103] [104] 

 

[103] [103] [104] 

 

0.2 0.25 0.060440 0.06111 0.061929 0.0601168 0.063002 0.062922 0.062920 0.0633685 

0.5 0.244329 0.24618 0.248365 0.244247 0.258161 0.256856 0.256782 0.256326 

0.75 0.559866 0.56056 0.562348 0.559936 0.592855 0.587790 0.588104 0.595415 

0.4 0.25 0.059620 0.05996 0.061392 0.0591215 0.063371 0.063291 0.063305 0.063968 

0.5 0.242066 0.24303 0.246833 0.241821 0.264157 0.262868 0.262916 0.260722 

0.75 0.558992 0.55902 0.562276 0.558771 0.615589 0.610213 0.611786 0.618446 

0.6 0.25 0.059004 0.05898 0.060883 0.0583544 0.063713 0.063642 0.063669 0.0644986 

0.5 0.240363 0.24033 0.245395 0.239941 0.269702 0.268564 0.268707 0.264632 

0.75 0.558407 0.55777 0.562273 0.557834 0.636878 0.631709 0.634637 0.639038 

4.10 Convergence Analysis of Two-dimensional Haar 

Wavelet Method 

In this section, we have introduced the error analysis for the two-dimensional Haar 

wavelet method. 

We assume that,  and there exist ; for which  

, for all ],[],[, babayx  . 

Next, we may proceed as follows, suppose ,  

where, ,  and ,  . 

Then,  

. 

From Parseval’s formula, we have 

ADMu VIMu OTMu Haaru ADMu VIMu OTMu Haaru
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                               , 

where,    and   

                   

                                . 

Using the Mean value theorem of Integral calculus, we have 

        . 

Hence, we obtain 

                       . 

Again by using the Mean value theorem, 

                      

 

Using Lagrange’s Mean value theorem, 
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ijc      where   

                       

.

 

Now, we use the mean value theorem of Integral calculus
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                                             .65 

      Next,   

                                                                     

                                                                    

                                                                    

                                                                   

                                                                 . 

Similarly, we have       . 

Then 

 + + . 

    Hence, we obtain . 
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   As and , we can get  . 

4.11 Conclusion 

The numerical solutions of fractional order Burgers-Fisher equation, generalized Fisher’s 

type equation and the time- and space-fractional Fokker-Planck equations have been 

analyzed in this chapter by utilizing two-dimensional Haar wavelet method. The obtained 

results are then compared with optimal homotopy asymptotic method (OHAM) solutions, 

exact solutions and with results available in literature. The Haar wavelet technique 

provides quite satisfactory results for the fractional order Burgers-Fisher (4.27) and 

generalized Fisher equations (4.52). The main advantage of this Haar wavelet method is 

that they transfer the whole scheme into a system of algebraic equations for which the 

computation is easy and simple. OHAM allows fine tuning of convergence region and rate 

of convergence by suitably identifying convergence control parameters . It 

has been observed that for Burgers-Fisher equation OHAM provides more accurate results 

than the Haar wavelet method as presented in Tables. But in case of generalized Fisher’s 

equation both the methods are competitive. The results obtained by OHAM are slightly 

more accurate than the results obtained by Haar wavelet method.  

 

The solutions of time- and space-fractional Fokker-Planck equations have been compared 

with exact solutions as well as results obtained by Adomian decomposition method 

(ADM), Variational iteration method (VIM) and Operational Tau method (OTM) which 

are available in open literature. These results have been cited in the tables in order to 

justify the accuracy and efficiency of the proposed scheme based on two-dimensional 

Haar wavelet method. It can be noticed that the Haar wavelet technique provides quite 

satisfactory results in comparison to results obtained by ADM, VIM and OTM [103-105] 

for the fractional order Fokker-Planck equations as demonstrated in Tables.  

  

 

 

 

 

l k 0),(),(  yxfyxf kl
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CHAPTER 5 

5 Application of Legendre Wavelet 

Methods for Numerical Solution of 

Fractional Differential Equations  

5.1 Introduction 

In contemporary years, fractional calculus has become the focus of curiosity for many 

researchers in exclusive disciplines of applied science and engineering because of the fact 

that a realistic modelling of a physical phenomenon can be efficiently executed by way of 

utilizing fractional calculus. For the intent of this chapter, the Caputo’s definition of 

fractional derivative will be used. The advantage of Caputo’s approach is that the initial 

conditions for fractional differential equations with Caputo’s derivatives tackle the normal 

kind as for integer-order differential equations.  

The investigation of traveling wave solutions for nonlinear fractional order partial 

differential equations plays an important role in the study of nonlinear physical 

phenomena. It is significant to find new solutions, since either new exact solutions or 

numerical approximate solutions may provide more information for understanding the 

physical phenomena. In this chapter, the numerical solutions of fractional order partial 

differential equations comprising Caputo fractional derivative are discussed. The 

fractional differential equations such as KdV-Burger-Kuramoto (KBK) equation, seventh 

order KdV (sKdV) equation and Kaup-Kupershmidt (KK) equation have been solved 

using two-dimensional Legendre wavelet and Legendre multi-wavelet methods.  

The main focus of the present chapter is the application of two-dimensional Legendre 

wavelet technique for solving nonlinear fractional differential equations like time-

fractional KBK equation, time-fractional sKdV equation in order to demonstrate the 

efficiency and accuracy of the proposed wavelet method. Also, the time-fractional Kaup-
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Kupershmidt equation has been solved by using two-dimensional Legendre multi-wavelet 

method. The obtained numerical approximate results of the proposed Legendre wavelet 

methods are then compared with the exact solutions and those available in literature.  

5.2 Outline of Present Study 

Consider a nonlinear time-fractional parabolic partial differential equation of the form 
 

   (5.1) 

with Dirichlet boundary conditions 

  and , 

where  is the parameter describing the order of the fractional time derivative and  is 

the Mittag-Leffler function. Fractional diffusion equations like eq. (5.1) arise in 

continuous time random walks, modelling of anomalous diffusive and sub-diffusive 

systems, unification of diffusion and wave propagation phenomenon etc. The motivation 

of the present work is the application of two dimensional Legendre wavelets technique for 

solving the problem of fractional partial differential equations with Dirichlet boundary 

conditions. To exhibit the effectiveness, the obtained numerical approximate results of 2D 

Legendre wavelet technique are compared with that of Haar wavelet method as well as 

with the exact solution derived by using HPM. 

Next, we consider the following time-fractional KdV-Burgers-Kuramoto (KBK) equation 

[109]
 

  (5.2) 

where   is the order of the fractional time derivative and  are parameters 

characterizing instability, dispersion and dissipation respectively [110]. The classical KBK 

equation is an important mathematical model arising in many different physical contexts 

to describe some physical processes in motion of turbulence and other unstable process 

systems. It can be also used to describe long waves on a viscous fluid flowing down along 

an inclined plane [111], unstable drift waves in plasma [112] and turbulent cascade model 

in a barotropic atmosphere [113]. 
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There are a lot of studies available for the classical KBK equation and some profound 

results have been established. But according to the best possible information of the 

authors, the detailed study of the nonlinear fractional order KBK equation is only 

beginning. Very few mathematical methods such as homotopy analysis method [114], 

He’s variational iteration method and Adomian’s decomposition method [115] are 

available open in literature for the numerical solution of fractional KBK equation. 

The KdV type of equations, which were first derived by Korteweg and de Vries (1895) 

and used to describe weakly nonlinear shallow water waves, have emerged as an important 

class of nonlinear evolution equation and are often used in practical applications. In 

reality, the next state of a physical phenomenon might depend not only on its current state 

but also on its historical states (non-local property), which can be successfully modeled by 

using the theory of derivatives and integrals of fractional order. The seventh-order KdV 

(sKdV) equation was first introduced by Pomeau et al. [116] in order to discuss the 

structural stability of the KdV equation under singular perturbation.  

The time-fractional generalized sKdV equation is given by [117] 

   (5.3) 

where  is a constant,   ( 10  ) is the parameter describing the order of the 

fractional time derivative and  is the forcing term. The sKdV equation arises in fluid 

flow through porous media, fluid dynamics, plasma physics, optical fibers, elasticity, 

economics, optimization, hydrodynamic, hydro-magnetic stability, structural, medical 

imaging, pure and applied sciences [118-120].  

Next we consider fractional order Kaup-Kupershmidt equation. Here we compare two 

different methods, one numerical technique viz. Legendre multiwavelet method and the 

other analytical technique viz. optimal homotopy asymptotic method (OHAM) for solving 

fractional order Kaup-Kupershmidt (KK) equation. Two-dimensional Legendre 

multiwavelet expansion together with operational matrices of fractional integration and 

derivative of wavelet functions is used to compute the numerical solution of nonlinear 

time-fractional Kaup-Kupershmidt (KK) equation. The approximate solutions of time 

fractional Kaup-Kupershmidt equation thus obtained by Legendre multiwavelet method 

are compared with the exact solutions as well as with optimal homotopy asymptotic 

method (OHAM).  
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Consider the following time-fractional Kaup-Kupershmidt equation [121] 

  (5.4) 

Eq. (5.4) is a variation of the following Kaup-Kupershmidt equation [122-125]: 

 

Here  is the parameter describing the order of the fractional time derivative. The 

classical Kaup-Kupershmidt equation is an important dispersive equation proposed first by 

Kaup in 1980 [122] and is developed by Kupershmidt in 1994 [123]. This equation arises 

in the study of capillary gravity waves. The classical Kaup-Kupershmidt equation is 

known to be integrable [124] for  and to have bilinear representations [125], but the 

explicit form of its N-soliton solution is apparently not known. A great deal of research 

work has been invested in recent years for the study of classical Kaup-Kupershmidt 

equations. Various methods have been developed independently by which soliton and 

solitary wave solutions may be obtained for nonlinear evolution equations. Our aim in the 

present work is to implement two-dimensional Legendre multiwavelet and optimal 

homotopy asymptotic method in order to exhibit the capabilities of these methods in 

handling nonlinear equation like fractional order Kaup-Kupershmidt equation. 

5.3 Solution of Time-Fractional Parabolic Partial 

Differential Equation 

5.3.1 Application of HPM to Find the Exact Solution of Fractional order 

Parabolic PDE 

Consider a nonlinear time-fractional partial differential equation of the form
 

. 

This implies ,   0t ,  ,0x    (5.5) 

where subject to the initial condition
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.       (5.6)     

To solve eq. (5.5) by homotopy perturbation method [25, 26], we construct the following 

homotopy: 

.   (5.7) 

This implies 

     .     (5.8) 

By substituting   in eq. (5.8), we get 
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  (5.9) 

Collecting the coefficients of different powers of  for eq. (5.9), we have the following 

equations. 

Coefficients of  .       (5.10) 

Coefficients of  .   (5.11) 

Coefficients of  

.   (5.12) 

and so on. 

By putting  in eqs. (5.10) to (5.12) and solving them, we obtain 

,      (5.13)

,      (5.14) 

and so on. 
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Finally, the approximate solution for eq. (5.5) is given by 

      (5.15)            

Thus, we have 

 

            ,        (5.16) 

where  is the Mittag-Leffler function.  

Taking  in eq. (5.16), we reproduce the solution of the problem as follows 

. 

The solution is equivalent to the exact solution in a closed form  

. 

It is clear that a closed form of solution is obtainable by adding more terms to the 

homotopy perturbation series.          

5.3.2 Application of two-dimensional Haar Wavelet for Numerical 

Solution of Fractional PDE 

To solve the nonlinear fractional PDE considered in eqs. (5.5) and (5.6). Let us divide both 

space and time interval [0, 1] into m equal subintervals; each of width . 

Haar wavelet solution of  is sought by assuming that  can be expanded in 

terms of Haar wavelets as 

.     (5.17) 

Integrating eq. (5.17) with respect to x from 0 to x, we get 

   .    (5.18) 

Again, integrating eq. (5.18) with respect to x from 0 to x, we get 

.   (5.19) 
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Putting  in eq. (5.19), we get  

.     (5.20) 

Putting  in eq. (5.19), we get  

   

 .     (5.21) 

Putting eq. (5.21) in eqs. (5.18) and (5.19), we have 

 .  (5.22) 

. (5.23) 

The nonlinear term presented in eq. (5.5) can be approximated using Haar wavelet 

function as 

  ,  

which yields     

  .    (5.24) 

Therefore substituting eqs. (5.17), (5.22) and (5.23) in eq. (5.24), we have 
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Substituting eq. (5.24) in eq. (5.5), we will have 
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.     (5.26) 

Now applying  to both sides of eq. (5.26) yields 

  .   (5.27) 

Substituting eqs. (5.6) and (5.23) in eq. (5.27), we get 
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  (5.28) 

Now substituting the collocation points 
m

l
xl

5.0
  and 

m

k
tk

5.0
  for  in 

eqs. (5.25) and (5.28), we have  equations in  unknowns in  and . By 

solving these system of equations using mathematical software, the Haar wavelet 

coefficients  and  can be obtained.  

5.3.3 Application of two-dimensional Legendre Wavelet for Solving 

Fractional PDE 

The Legendre wavelet solution of  for the nonlinear fractional PDE considered in 

eqs. (5.5) and (5.6) is sought by assuming that  can be expanded in terms of 

Legendre wavelets as 

 ,      (5.29) 

where   

Applying on both sides of eq. (5.5), we have 

. 

This implies 
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 (5.30) 

Now substituting the collocation points 
1

112

5.0

M

l
x

kl 


  and 

2
122

5.0

M

r
t

kr 


  for 

1
112,...,2,1 M    l

k 
  and 2

122,...,2,1 M    r
k 

  in eq. (5.30), we have   2
1

1
1 21 22 MM

kk   

equations in   2
1

1
1 21 22 MM

kk   unknowns involving . By solving this system of 

equations using mathematical software, the Legendre wavelet coefficients  can be 

obtained.  

5.4 Numerical Results of Fractional Order PDE 

The following Tables 5.1-5.3 show the comparison of the absolute errors for fractional 

order partial differential equation obtained by using Haar wavelet method and Legendre 

wavelet method at different values of x, t and . Tables 5.4 and 5.5 respectively show the 

approximate solutions of fractional order partial differential equation (5.5) obtained by 

using Haar wavelet method, Legendre wavelet method and Homotopy perturbation 

method at various points of x and t taking  The results thus obtained have 

been cited in the Tables in order to justify the accuracy and efficiency of the proposed 

schemes.  

Table 5.1 Comparison of absolute errors obtained by Haar wavelet method and Legendre 

wavelet method for classical order partial differential equation (5.5) at various points of x and 

 

jlinc ,,,

jlinc ,,,



0.75. and 5.0

.1for  t

x 2.0t  4.0t  6.0t  8.0t  

        

0 0 0 0 0 0 0 0 0 

0.1 2.14328E-3 3.92494E-8 9.25684E-4 1.09313E-7 9.10577E-4 1.33628E-7 3.57450E-3 1.27536E-7 

0.2 3.81027E-3 1.56998E-7 1.64566E-3 4.37251E-7 1.61880E-3 5.34510E-7 6.35467E-3 5.10146E-7 

0.3 5.00098E-3 3.53244E-7 2.15993E-3 9.83815E-7 2.12468E-3 1.20265E-6 8.34051E-3 1.14783E-6 

0.4 5.71541E-3 6.27990E-7 2.46849E-3 1.74900E-6 2.42821E-3 2.13804E-6 9.53201E-3 2.04058E-6 

0.5 5.95355E-3 9.81235E-7 2.57135E-3 2.73282E-6 2.52938E-3 3.34069E-6 9.92917E-3 3.18841E-6 

0.6 5.71541E-3 1.41298E-6 2.46849E-3 3.93526E-6 2.42821E-3 4.81059E-6 9.53201E-3 4.59131E-6 

0.7 5.00098E-3 1.92322E-6 2.15993E-3 5.35632E-6 2.12468E-3 6.54775E-6 8.34051E-3 6.24929E-6 

HaarExact uu  LWExact uu  HaarExact uu  LWExact uu  HaarExact uu  LWExact uu  HaarExact uu  LWExact uu 
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Table 5.2 Comparison of absolute errors obtained by Haar wavelet method and Legendre 

wavelet method for fractional order partial differential equation (5.5) at various points of x and t 

for   

 

Table 5.3 Comparison of absolute errors obtained by Haar wavelet method and Legendre 

wavelet method for fractional order partial differential equation (5.5) at various points of x and 

 

 

Table 5.4 The approximate solutions of fractional order partial differential equation (5.5) 

using Haar wavelet method, homotopy perturbation method (HPM) and Legendre wavelet method 

at various points of x and  

 

 

 

.75.0

.5.0for  t

.5.0for  t

0.8 3.81027E-3 2.51196E-6 1.64566E-3 6.99601E-6 1.61880E-3 8.55216E-6 6.35467E-3 8.16234E-6 

0.9 2.14328E-3 3.17920E-6 9.25684E-4 8.85433E-6 9.10577E-4 1.08238E-5 3.57450E-3 1.03305E-5 

1.0 0 6.16414E-6 0 2.46565E-5 0 5.54772E-5 0 9.86262E-5 

x 2.0t  4.0t  6.0t  8.0t  

        

0 0 0 0 0 0 0 0 0 

0.1 3.24200E-4 8.05544E-6 1.64793E-3 4.26508E-6 3.90569E-3 1.02880E-5 6.80080E-3 1.20536E-5 

0.2 2.90100E-3 3.22218E-5 6.85948E-3 1.70603E-5 1.06992E-2 4.11520E-5 1.53909E-2 4.82144E-5 

0.3 8.26860E-3 7.24990E-5 1.34063E-2 3.83857E-5 1.79335E-2 9.25921E-5 2.34600E-2 1.08482E-4 

0.4 1.43532E-2 1.28887E-4 1.97217E-2 6.82413E-5 2.41796E-2 1.64608E-4 2.97960E-2 1.92858E-4 

0.5 1.97971E-2 2.01386E-4 2.45854E-2 1.06627E-4 2.84360E-2 2.57200E-4 3.36037E-2 3.01340E-4 

0.6 2.34026E-2 2.89996E-4 2.70595E-2 1.53543E-4 2.99891E-2 3.70368E-4 3.43426E-2 4.33929E-4 

0.7 2.41057E-2 3.94717E-4 2.63927E-2 2.08989E-4 2.82977E-2 5.04113E-4 3.16167E-2 5.90626E-4 

0.8 2.09565E-2 5.15548E-4 2.19721E-2 2.72965E-4 2.29403E-2 6.58433E-4 2.51261E-2 7.71430E-4 

0.9 1.31498E-2 6.52491E-4 1.33111E-2 3.45472E-4 1.35947E-2 8.33329E-4 1.46467E-2 9.76341E-4 

1.0 0 8.05544E-4 0 4.26508E-4 0 0.00102880 0 0.00120536 

x 2.0t  4.0t  6.0t  8.0t  

        

0 0 0 0 0 0 0 0 0 

0.1 2.50310E-3 4.50884E-5 4.78710E-3 3.56336E-5 7.30539E-3 5.72330E-5 1.05971E-2 6.74305E-5 

0.2 1.15518E-2 1.80354E-4 1.55024E-2 1.42534E-4 1.92456E-2 2.28932E-4 2.41756E-2 2.69722E-4 

0.3 2.34904E-2 4.05796E-4 2.80273E-2 3.20702E-4 3.18941E-2 5.15097E-4 3.72663E-2 6.06875E-4 

0.4 3.55962E-2 7.21415E-4 3.97116E-2 5.70137E-4 4.29010E-2 9.15729E-4 4.78790E-2 1.07889E-3 

0.5 4.55434E-2 1.12721E-3 4.85005E-2 8.90839E-4 5.05414E-2 1.43083E-3 5.46027E-2 1.68576E-3 

0.6 5.13466E-2 1.62318E-3 5.27682E-2 1.28281E-3 5.35106E-2 2.06039E-3 5.64007E-2 2.42750E-3 

0.7 5.12355E-2 2.20933E-3 5.11514E-2 1.74604E-3 5.07538E-2 2.80442E-3 5.24535E-2 3.30410E-3 

0.8 4.35902E-2 2.88566E-3 4.24697E-2 2.28055E-3 4.13874E-2 3.66291E-3 4.20889E-2 4.31555E-3 

0.9 2.69659E-2 3.65216E-3 2.57206E-2 2.88632E-3 2.46829E-2 4.63588E-3 2.47617E-2 5.46187E-3 

1.0 0 4.50884E-3 0 3.56336E-3 0 5.72330E-3 0 6.74305E-3 

HaarExact uu  LWExact uu  HaarExact uu  LWExact uu  HaarExact uu  LWExact uu  HaarExact uu  LWExact uu 

HaarExact uu  LWExact uu  HaarExact uu  LWExact uu  HaarExact uu  LWExact uu  HaarExact uu  LWExact uu 
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Table 5.5 The approximate solutions of fractional order partial differential equation (5.5) 

using Haar wavelet method, homotopy perturbation method (HPM) and Legendre wavelet method 

at various points of x and  .75.0for  t

x 2.0t  4.0t  6.0t  8.0t  

            

0 0 0 0 0 0 0 0 0 0 0 0 0 

0.1 0.0147

17 

0.0180

35 

0.0179

90 

0.0197

05 

0.0243

36 

0.0243

00 

0.0255

27 

0.0315

19 

0.0314

6 

0.0328

53 

0.03999

6 

0.0399

2 

0.2 0.0604

08 

0.0721

41 

0.0719

61 

0.0751

75 

0.0973

44 

0.0972

02 

0.0921

30 

0.1260

77 

0.1258

5 

0.1131

97 

0.15998

3 

0.1597

1 

0.3 0.1334

17 

0.1623

17 

0.1619

1 

0.1622

91 

0.2190

25 

0.2187

0 

0.1958

85 

0.2836

74 

0.2831

6 

0.2375

65 

0.35996

2 

0.3593

5 

0.4 0.2310

21 

0.2885

64 

0.2878

4 

0.2784

04 

0.3893

77 

0.3888

1 

0.3344

40 

0.5043

10 

0.5033

9 

0.4039

66 

0.63993

3 

0.6388

5 

0.5 0.3508

94 

0.4508

82 

0.4497

5 

0.4214

57 

0.6084

02 

0.6075

1 

0.5060

71 

0.7879

84 

0.7865

5 

0.6109

88 

0.99989

5 

0.9982

1 

0.6 0.4910

52 

0.6492

69 

0.6476

5 

0.5898

25 

0.8760

98 

0.8748

2 

0.7094

73 

1.1347

00 

1.1326

4 

0.8575

95 

1.43985

0 

1.4374

2 

0.7 0.6497

23 

0.8837

28 

0.8815

2 

0.7821

46 

1.1924

70 

1.1907

2 

0.9435

92 

1.5444

50 

1.5416

4 

1.1429

70 

1.95979

0 

1.9564

9 

0.8 0.8252

88 

1.1542

60 

1.1513

7 

0.9972

38 

1.5575

10 

1.5552

3 

1.2075

40 

2.0172

40 

2.0135

8 

1.4664

40 

2.55973

0 

2.5554

1 

0.9 1.0163

00 

1.4608

60 

1.4572

0 

1.2341

00 

1.9712

20 

1.9683

3 

1.5006

00 

2.5530

70 

2.5484

3 

1.8274

50 

3.23966

0 

3.2342

0 

1.0 1.2214

0 

1.8035

30 

1.7990

2 

1.4918

2 

2.4336

10 

2.4300

4 

1.8221

2 

3.1519

40 

3.1462

1 

2.2255

4 

3.99958

0 

3.9928

4 

x 
    

 

 

  

 

  

 

  

 

 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0.1 0.0118

9 

0.01406 0.0140

5 

0.01656

6 

0.01800

9 

0.01800

4 

0.02212

7 

0.02263

9 

0.02262

9 

0.0290

6 

0.02817

9 

0.02816

6 

0.2 0.0517

6 

0.05622 0.0561

9 

0.06653

3 

0.07203

5 

0.07201

8 

0.08358

4 

0.09055

8 

0.09051

6 

0.1044

1 

0.11271

5 

0.11266

7 

0.3 0.1181

9 

0.12649 0.1264

2 

0.14767

0 

0.16207

9 

0.16204

1 

0.18192

4 

0.20375

5 

0.20366

2 

0.2237

6 

0.25360

8 

0.25350

0 

0.4 0.2097

8 

0.22488 0.2247

5 

0.25841

4 

0.28814

1 

0.28807

3 

0.31571

9 

0.36223

1 

0.36206

6 

0.3858

8 

0.45085

9 

0.45066

6 

0.5 0.3251

5 

0.35137 0.3511

7 

0.39754

2 

0.45022

1 

0.45011

4 

0.48396

6 

0.56598

6 

0.56572

9 

0.5899

9 

0.70446

8 

0.70416

6 

0.6 0.4631

1 

0.50597 0.5056

8 

0.56411

6 

0.64831

8 

0.64816

4 

0.68595

2 

0.81502

0 

0.81464

9 

0.8355

4 

1.01443

0 

1.01400

0 

0.7 0.6225

9 

0.68869 0.6882

9 

0.75738

7 

0.88243

2 

0.88222

3 

0.92113

6 

1.10933

0 

1.10883

0 

1.1221

3 

1.38076

0 

1.38017

0 

0.8 0.8026

5 

0.89951 0.8989

9 

0.97674

0 

1.15256

0 

1.15229

0 

1.18910

0 

1.44892

0 

1.44827

0 

1.4494

7 

1.80344

0 

1.80267

0 

0.9 1.0024

9 

1.13844 1.1377

9 

1.22169

0 

1.45871

0 

1.45837

0 

1.48951

0 

1.83379

0 

1.83296

0 

1.8173

3 

2.28247

0 

2.28150

0 

1.0 1.2214

0 

1.40548 1.4046

8 

1.49182

0 

1.80088

0 

1.80046

0 

1.82212

0 

2.26394

0 

2.26291

0 

2.2255

4 

2.81787

0 

2.81666

0 

Haaru Legendreu HPMu Haaru Legendreu HPMu Haaru Legendreu HPMu Haaru Legendreu HPMu

2.0t 4.0t 6.0t 8.0t

Haaru Legendreu HPMu Haaru Legendreu HPMu Haaru Legendreu HPMu Haaru Legendreu HPMu
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5.5 Implementation of Legendre Wavelets for Solving 

Fractional KBK Equation 

Consider the nonlinear time-fractional KBK equation [107] 

   (5.31) 

where subject to the initial condition  and  is the forcing term. 

To show the effectiveness and accuracy of proposed scheme, two test examples have been 

considered. The numerical solutions thus obtained are compared with the exact solutions.  

The Legendre wavelet solution of  is sought by assuming that  can be 

expanded in terms of Legendre wavelets as 

 ,   (5.32) 

where   

The nonlinear term presented in eq. (5.31) can be approximated using Legendre wavelet 

function as 

.   (5.33) 

This implies 
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  (5.34) 

Again applying  on both sides of eq. (5.31) we have 

.  (5.35) 

Putting eq. (5.32) and (5.33) in eq. (5.35), we have 
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  (5.36) 

Now substituting the collocation points  and  for 

 and  in eqs. (5.34) and (5.36), we have 

 equations in  unknowns in  and . 

By solving this system of equations using mathematical software, the Legendre wavelet 

coefficients  and  can be obtained.  

Example 5.1 Consider the time-fractional KBK equation (5.31) with the following 

forcing term 

. (5.37) 

The exact solution of eq. (5.31) is given by  

.    (5.38)
 

  

In case of example 5.1, Table 5.6 shows the comparison of absolute errors obtained by 

Legendre wavelet method for eq. (5.31) taking  and . Similarly 

Table 5.7 shows the comparison of absolute errors for eq. (5.31) taking  Table 

5.8 shows the  errors at different values of  Consequently, it is observed 

from Tables 5.6-5.8 that the solutions obtained by the present method are in good 

agreement with the exact results. 

Example 5.2 Consider the time-fractional KBK equation (5.31) with the following 

forcing term 

1
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. (5.39) 

The exact solution of eq. (5.31) is given by  

.     (5.40)
 

  

In case of example 5.2, Table 5.9 shows the comparison of absolute errors obtained by 

Legendre wavelet method for eq. (5.31) taking  and .1  Similarly 

Table 5.10 shows the comparison of absolute errors for eq. (5.31) taking .75.0  

Consequently, it is observed from Tables 5.9 and 5.10 that the solutions obtained by the 

present method are in good agreement with the exact results. 

5.6 Numerical Results and Discussion of Time-Fractional 

KBK Equation 

In order to measure the accuracy of the numerical scheme,  error norms are 

calculated using the following formulae  

,  (5.41) 

),(),(max kexactkapprox txutxuL  .     (5.42)
 

 

The comparison of absolute errors for time-fractional KBK equation (5.31) given in 

example 5.1 have been exhibited in Tables 5.6 and 5.7 which are constructed using the 

results obtained by Legendre wavelet method at different values of x and t taking 

 respectively. Similarly Tables 5.9 and 5.10 show absolute errors of 

fractional order KBK equation (5.31) for example 5.2, at various points of x and  taking 

 respectively. To show the accuracy of proposed method,  error 

norms for fractional order nonlinear KBK equation given in example 5.1 has been 

presented in Table 5.8. From Tables 5.6-5.10, one can see a pretty good agreement 

between the exact solutions and the solutions acquired by two-dimensional Legendre 

wavelet method.  

Table 5.6 Comparison of absolute errors obtained by Legendre wavelet method for KBK 

equation (5.31) given in example 5.1 at various points of x and t taking   
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x 
 

      

0.1 6.95349E-6 1.84959E-4 2.90830E-4 9.67277E-5 7.19605E-4 2.50855E-3 

0.2 3.73063E-4 2.97674E-4 4.23930E-4 2.76159E-4 5.99905E-4 2.64995E-3 

0.3 8.23433E-4 4.25867E-4 5.67587E-4 4.61419E-4 4.94075E-4 2.83828E-3 

0.4 1.34267E-3 5.68389E-4 7.19135E-4 6.46241E-4 4.14924E-4 3.09695E-3 

0.5 1.92911E-3 7.24113E-4 8.76214E-4 8.25379E-4 3.72850E-4 3.44474E-3 

0.6 2.58055E-3 8.91885E-4 1.03672E-3 9.94495E-4 3.75989E-4 3.89591E-3 

0.7 3.29387E-3 1.07048E-3 1.19879E-3 1.15008E-3 4.30298E-4 4.46022E-3 

0.8 4.06469E-3 1.25857E-3 1.36074E-3 1.28944E-3 5.39558E-4 5.14289E-3 

0.9 4.88696E-3 1.45468E-3 1.52113E-3 1.41067E-3 7.05318E-4 5.94439E-3 

1.0 5.75262E-3 1.65715E-3 1.67872E-3 1.5127E-3 9.26776E-4 6.86019E-3 

 

Table 5.7 Comparison of absolute errors obtained by Legendre wavelet method for 

fractional order KBK equation (5.31) given in example 5.1 at various points of x and t taking 

  

 

x 
 

        

0.1 9.99667E-4 2.12737E-4 2.28422E-4 7.56638E-3 1.76708E-2 9.57606E-2 2.20683E-2 1.05767E-2 

0.2 9.08162E-4 2.41145E-4 2.65580E-3 9.06168E-3 2.18543E-2 5.85324E-2 2.74249E-2 1.98501E-2 

0.3 7.96724E-4 2.86820E-4 3.10412E-3 1.07513E-2 2.64650E-2 1.30486E-2 3.19023E-2 2.75266E-2 

0.4 6.65884E-4 3.51375E-4 3.63645E-3 1.26528E-2 3.15340E-2 4.06402E-2 3.56728E-2 3.38164E-2 

0.5 8.39996E-4 3.19966E-4 2.78217E-3 8.89023E-3 2.04192E-2 3.80953E-2 7.45291E-3 8.48950E-3 

0.6 7.41453E-4 3.22493E-4 2.93705E-3 9.67846E-3 2.29045E-2 6.76929E-2 8.91490E-3 4.26215E-3 

0.7 6.31244E-4 3.35989E-4 3.12840E-3 1.05325E-2 2.54926E-2 1.00724E-1 9.53959E-3 1.40098E-3 

0.8 5.10374E-4 3.61167E-4 3.36005E-3 1.14623E-2 2.82012E-2 1.36832E-1 9.45691E-3 2.80664E-4 

0.9 3.80015E-4 3.98257E-4 3.63348E-3 1.24718E-2 3.10362E-2 1.75597E-1 8.77358E-3 9.43238E-4 

1.0 2.41511E-4 4.47018E-4 3.94789E-3 1.35589E-2 3.39907E-2 2.16518E-1 7.57357E-3 7.23009E-4 

 

Table 5.8  error norms for nonlinear time-fractional KBK equation (5.31) given in 

example 5.1 using two-dimensional Legendre wavelet method at various points of x.  

 

x 1  75.0  

 

 

 

 

0.1 1.07540E-3 2.50855E-3 3.56012E-2 9.57606E-2 

0.2 1.14498E-3 2.64995E-3 2.53472E-2 5.85324E-2 

0.3 1.27112E-3 2.83828E-3 1.86148E-2 3.19023E-2 

0.4 1.46195E-3 3.09695E-3 2.55832E-2 4.06402E-2 

0.5 1.71756E-3 3.44474E-3 1.61377E-2 3.80953E-2 

0.6 2.03462E-3 3.89591E-3 2.75358E-2 6.76929E-2 

0.7 2.40950E-3 4.46022E-3 3.70968E-2 1.00724E-1 

0.8 2.83903E-3 5.14289E-3 4.96876E-2 1.36832E-1 

0.9 3.32003E-3 5.94439E-3 6.32895E-2 1.75597E-1 

1.0 3.84851E-3 6.86019E-3 7.76957E-2 2.16518E-1 

LegendreExact uu  

0t 1.0t 2.0t 3.0t 4.0t 5.0t

.75.0

LegendreExact uu  

0t 1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t
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Table 5.9 Comparison of absolute errors obtained by Legendre wavelet method for 

fractional order KBK equation (5.31) given in example 5.2 at various points of x and t taking 

  

 

x 
 

       

0.1 4.98657E-5 5.68684E-5 1.28221E-4 4.93990E-4 1.48989E-3 3.49306E-3 6.95761E-3 

0.2 1.04370E-4 5.39855E-5 1.19191E-4 4.39997E-4 1.31699E-3 3.07391E-3 6.12894E-3 

0.3 1.69932E-4 4.85989E-5 1.04660E-4 3.69101E-4 1.10257E-3 2.56670E-3 5.13534E-3 

0.4 2.46500E-4 4.05274E-5 8.31235E-5 2.76311E-4 8.35246E-4 1.95025E-3 3.94182E-3 

0.5 3.34173E-4 2.95642E-5 5.30284E-5 1.56464E-4 5.03251E-4 1.20250E-3 2.51167E-3 

0.6 4.33146E-4 1.54809E-5 1.27887E-5 4.30468E-6 9.45733E-5 3.00882E-4 8.06986E-4 

0.7 5.43658E-4 1.96621E-6 3.91878E-5 1.85428E-4 4.02820E-4 7.77358E-4 1.21073E-3 

0.8 6.65935E-4 2.30271E-5 1.04464E-4 4.17885E-4 1.00074E-3 2.05467E-3 3.57988E-3 

0.9 8.00141E-4 4.79469E-5 1.84526E-4 6.97968E-4 1.71050E-3 3.55273E-3 6.33795E-3 

1.0 9.46323E-4 7.69510E-5 2.80724E-4 1.03017E-3 2.54254E-3 5.29182E-3 9.52067E-3 

 

Table 5.10 Comparison of absolute errors obtained by Legendre wavelet method for 

fractional order KBK equation (5.31) given in example 5.2 at various points of x and t taking 

  

 

x 
 

        

0.1 2.27075E-5 2.46815E-4 7.82738E-4 1.72484E-3 3.10534E-3 4.90591E-3 7.05637E-3 9.42941E-3 

0.2 2.61128E-5 2.14264E-4 6.52493E-4 1.40683E-3 2.46587E-3 3.76612E-3 5.19167E-3 6.56591E-3 

0.3 2.80289E-5 1.72666E-4 4.94899E-4 1.02750E-3 1.71007E-3 2.42812E-3 3.01363E-3 3.23418E-3 

0.4 2.78829E-5 1.19612E-4 3.04250E-4 5.76276E-4 8.21037E-4 8.67143E-4 4.88257E-4 6.10355E-4 

0.5 3.15224E-5 1.14364E-4 3.08178E-4 6.41627E-4 1.04190E-3 1.40877E-3 1.62634E-3 1.55604E-3 

0.6 3.54238E-5 8.08914E-5 1.61045E-4 2.66399E-4 2.74380E-4 3.61691E-4 6.09843E-4 1.84669E-3 

0.7 3.64308E-5 3.35835E-5 2.33063E-5 1.85579E-4 6.28651E-4 1.55294E-3 3.16851E-3 5.70490E-3 

0.8 3.38764E-5 3.04752E-5 2.51819E-4 7.27157E-4 1.68784E-3 3.38895E-3 6.09183E-3 1.00748E-2 

0.9 2.71227E-5 1.14065E-4 5.31069E-4 1.37042E-3 2.92247E-3 5.49997E-3 9.41849E-3 1.50075E-2 

1.0 1.55712E-5 2.19782E-4 8.67153E-4 2.12648E-3 4.35005E-3 7.91130E-3 1.31829E-2 2.05479E-2 

.1

LegendreExact uu  

0t 1.0t 2.0t 3.0t 4.0t 5.0t 6.0t

.75.0

LegendreExact uu  

05.0t 1.0t 15.0t 2.0t 25.0t 3.0t 35.0t 4.0t
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5.7 Application of Analytical and Numerical Methods for 

Solving Time-Fractional sKdV Equation 

5.7.1 Implementation of Legendre Wavelet Method for Numerical 

Solution of Fractional sKdV Equation 

To show the effectiveness and accuracy of proposed scheme, we consider two test 

examples. The numerical solutions thus obtained are compared with the exact solutions 

and solutions obtained by HAM. 

Consider the nonlinear time-fractional generalized sKdV equation [117] 

    (5.43) 

with initial condition .        

The Legendre wavelet solution of ),( txu  is sought by assuming that ),( txu  can be 

expanded in terms of Legendre wavelet as 

   ,  (5.44) 

where   

The nonlinear term presented in eq. (5.43) can be approximated using Legendre wavelet 

function as 

.   (5.45) 

This implies 
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   (5.46) 

Again applying  on both sides of eq. (5.43) we have  
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Putting eqs. (5.44) and (5.45) in eq. (5.47), we have 
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(5.48) 

Now substituting the collocation points  and  for 

 and  in eqs. (5.46) and (5.48), we have 

 equations in  unknowns in  and . By 

solving this system of equations using mathematical software, the Legendre wavelet 

coefficients  and  can be obtained. 

5.7.2 Comparison with HAM for Solution of Time Fractional sKdV 

Equation 

Consider the nonlinear time-fractional generalized sKdV equation [117] 

  , 10  ,    (5.49) 

subject to the initial condition [120] 

     ),(sec0, 6
60 kxhaaxu     

where , ,  and c is an arbitrary parameter. 

To obtain the approximate solution of the time-fractional sKdV equation (5.49), we 

choose the linear operator 

   .     (5.50) 

Let us construct the m- th order deformation equation for eq. (5.49) as follows 
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            ,   (5.51) 

where     (5.52) 
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Now, the solution of the first deformation equation of eq. (5.51) is given by    
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Similarly, the solutions of second and third order deformation equations are   
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By putting the initial condition )0,(0 xuu   in eqs. (5.53)- (5.55) and solving them, we 

obtain the expressions for   

Finally, the approximate solution for time fractional seventh order KdV equation is given 

by 

...),(),(),( 321  txu txu txuu       (5.56) 

Example 5.3 Consider nonlinear time-fractional generalized sKdV equation (5.49) 

subject to the following initial condition 0)0,( xu  and the forcing term  

    (5.57) 

The exact solution of eq. (5.49) is given by  
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The numerical solutions of the example 5.3 are presented for 1  in Tables 5.11 and 

5.12. The results are compared with the exact solutions. It has been observed from Tables 

5.11 and 5.12 that the solutions obtained by present method are in good agreement with 

that of exact solutions. 

Example 5.4 Consider nonlinear homogeneous time-fractional sKdV equation (5.49) 

subject to the following initial condition [120]  

,    (5.58) 

where , ,  and c is an arbitrary parameter.  

The numerical solutions of the example 5.4 are presented for  in Table 5.13 and 

5.14. The results are compared with the exact solutions as well as solutions obtained by 

HAM. It has been observed from Tables 5.13 and 5.14 that the solutions obtained by 

present method are in good agreement with the exact solutions and the solutions obtained 

by HAM. 

5.8 Numerical Results and Discussion of Time-Fractional 

sKdV Equation 

The comparison of the LL  and 2  error norms for time-fractional sKdV equation (5.49) 

given in example 5.3 and 5.4 have been exhibited in Tables 5.11 and 5.14 which are 

constructed using the results obtained by Legendre wavelet method at different values of t 

taking 8 ,6M  and 4 when 1 . Tables 5.12 and 5.13 show the absolute errors of time-

fractional sKdV equation (5.49) for example 5.3 at various points of x and t taking 

0.85 and 9.0 ,75.0  respectively. Similarly Tables 5.15 illustrates the absolute errors of 

fractional order sKdV equation (5.49) for example 5.4, at various points of x and t taking 

75.0 . Agreement between present numerical results and exact solutions appears very 

satisfactory through illustration in Tables 5.11 to 5.15. To show the accuracy of proposed 

method,  error norms for classical order nonlinear sKdV equation given in 

examples 5.3 and 5.4, have been presented in Tables 5.16. Again to examine the accuracy 

and reliability of the Legendre wavelets for solving fractional order sKdV equation, we 

compare the approximate solution of Legendre wavelet with the 4
th

 order approximate 

solution obtained by HAM taking  As pointed out by Liao [33] in general, by 

  )(sec0, 6
60 kxhaaxu 

1538

5
k

20
769

18000
 ca

26
769

519750
a

10.0 

LL  and 2

.45.1



 

153 
 

means of the so-called  -curve, it is straight forward to choose a proper value of  which 

ensures the convergence of series solution. To investigate the influence of  on the 

solution series, we plot -curve of partial derivatives of  txu ,  obtained from the 4
th

 order 

HAM solution as shown in Figure 5.1. 

 

Figure 5.1 The  -curve for partial derivatives of  txu ,  for the 4
th
 order HAM solution 

taking 1.0,5.0  tx and .75.0  

Table 5.11 Comparison of LL  and 2  error norms obtained by two-dimensional Legendre 

wavelet method for nonlinear sKdV equation (5.49) given in example 5.3 at various points t taking 

6M  and 8 when 1 . 

t 2,8  kM  2,6  kM  

2L  L  2L  L  

0.05 9.16437E-6 5.3919E-6 4.18475E-5 2.13437E-5 

0.10 1.01505E-4 5.5779E-5 3.62294E-4 1.82466E-4 

0.15 4.68588E-4 2.3893E-4 1.31216E-3 6.41485E-4 

0.20 1.43992E-3 6.9125E-4 3.34637E-3 1.58899E-3 

0.25 3.50308E-3 1.6015E-3 7.00733E-3 3.23727E-3 

0.30 7.34409E-3 3.2189E-3 1.29496E-2 5.83178E-3 

0.35 1.39175E-2 5.8669E-3 2.19626E-2 9.66262E-3 

0.40 2.45602E-2 9.9599E-3 3.49928E-2 1.50760E-2 

0.45 4.11652E-2 1.6021E-2 5.31644E-2 2.24858E-2 
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0.50 4.86290E-2 2.6175E-2 8.00433E-2 3.34444E-2 

 

Table 5.12 Comparison of approximate solutions obtained by two-dimensional Legendre 

wavelet method for fractional order nonlinear sKdV equation (5.49) given in example 5.3 at 

various points of x and t taking   

 

x  

      

0.1 1.48844E-3 1.02439E-3 1.34522E-3 6.84404E-3 1.65336E-2 3.16301E-2 

0.2 1.44428E-3 8.04932E-4 1.87684E-3 7.87671E-3 1.83517E-2 3.47030E-2 

0.3 1.38657E-3 5.78750E-4 2.38982E-3 8.83756E-3 2.00105E-2 0.37488E-2 

0.4 1.31595E-3 3.49808E-4 2.87396E-3 9.70634E-3 2.14745E-2 3.99294E-2 

0.5 3.14870E-3 5.32314E-3 8.43096E-3 1.46331E-2 2.77386E-2 5.23307E-2 

0.6 3.56192E-3 5.91560E-3 9.27444E-3 1.57778E-2 2.93468E-2 5.46608E-2 

0.7 3.94745E-3 6.45309E-3 1.00217E-2 1.67499E-2 3.06354E-2 5.64109E-2 

0.8 4.30041E-3 6.92704E-3 1.06584E-2 1.75272E-2 3.15695E-2 5.75265E-2 

0.9 4.61606E-3 7.32937E-3 1.11714E-2 1.80894E-2 3.21175E-2 5.79590E-2 

1 4.88988E-3 7.65262E-3 1.15487E-2 1.84184E-2 3.22520E-2 5.76668E-2 

 

Table 5.13 Absolute errors obtained by two-dimensional Legendre wavelet method for 

fractional order nonlinear sKdV equation (5.49) given in example 5.3 at various points of x and t 

taking .0.85 and 9.0  

.75.0

LWExact uu 

05.0t 1.0t 15.0t 2.0t 25.0t 3.0t

x 
LWExact uu   

9.0  85.0  

05.0t  1.0t  15.0t  2.0t  25.0t  05.0t  1.0t  15.0t  2.0t  25.0t  

0.1 1.9246E-2 1.3604E-2 4.4142E-3 3.8954E-2 7.4497E-2 6.9542E-4 7.6950E-3 1.5974E-2 2.5318E-2 3.8521E-2 

0.2 1.7746E-2 1.2199E-2 5.2290E-3 3.9733E-2 7.7033E-2 7.1046E-5 1.0510E-2 1.8741E-2 2.8015E-2 4.4560E-2 

0.3 1.6012E-2 1.0617E-2 6.0247E-3 4.0160E-2 7.8958E-2 5.7288E-4 1.3190E-2 2.1255E-2 3.0330E-2 5.0048E-2 

0.4 1.4047E-2 8.8587E-3 6.7945E-3 4.0212E-2 8.0217E-2 1.2304E-3 1.5746E-2 2.3537E-2 3.2285E-2 5.5001E-2 

0.5 1.1856E-2 6.9277E-3 7.5331E-3 3.9867E-2 8.0759E-2 2.1161E-3 6.6038E-3 2.9885E-3 2.1245E-2 3.8269E-2 

0.6 9.4467E-3 4.8277E-3 8.2358E-3 3.9110E-2 8.0539E-2 3.1420E-4 6.6306E-5 1.1018E-2 2.9948E-2 5.0558E-2 

0.7 6.8278E-3 2.5638E-3 8.8993E-3 3.7927E-2 7.9514E-2 1.4167E-3 6.3441E-3 1.8809E-2 3.8240E-2 6.2237E-2 

0.8 4.0113E-3 1.4338E-4 9.5203E-3 3.6306E-2 7.7648E-2 3.1190E-3 1.2661E-2 2.6382E-2 4.6132E-2 7.3303E-2 

0.9 1.0121E-3 2.4241E-3 1.0096E-2 3.4243E-2 7.4911E-2 4.7975E-3 1.8884E-2 3.3728E-2 5.3601E-2 8.3721E-2 

1 2.1510E-3 5.1261E-3 1.0624E-2 3.1738E-2 7.1281E-2 6.4193E-3 2.4976E-2 4.0805E-2 6.0597E-2 9.3426E-2 
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Table 5.14 Comparison of LL  and 2  error norms obtained by two-dimensional Legendre 

wavelet method for nonlinear sKdV equation (5.49) given in example 5.4 at various points t taking 

8 and  4M  when 1 . 

 

t 1,8  kM  1,4  kM  

2L  L  2L  L  

0 1.13870E-5 4.68205E-6 6.44281E-5 3.33213E-5 

0.1 5.72636E-3 2.66655E-3 9.28479E-3 5.07039E-3 

0.2 1.27713E-2 5.63322E-3 1.78148E-2 9.90263E-3 

0.3 2.15239E-2 9.08072E-3 2.55958E-2 1.44389E-2 

0.4 3.23356E-2 1.32161E-2 3.26941E-2 1.86549E-2 

0.5 4.55238E-2 1.82721E-2 3.91898E-2 2.25262E-2 

0.6 6.13666E-2 2.45038E-2 4.51782E-2 2.60282E-2 

0.7 8.35997E-2 3.85932E-2 5.07729E-2 2.91367E-2 

 

Table 5.15 Comparison of approximate solutions obtained by two-dimensional Legendre 

wavelet method and homotopy analysis method for fractional order nonlinear sKdV equation 

(5.49) given in example 5.4 at various points of x and t taking  and  

 

Table 5.16  error norm for nonlinear time-fractional sKdV equation using two-

dimensional Legendre wavelet methods at various points t taking .1  

 

45.1 .75.0

LL  and 2

x   

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

0.1 0.875221 0.878962 0.877833 0.878771 0.880844 0.877951 0.884388 0.876460 0.888389 0.874258 

0.2 0.872626 0.878151 0.874683 0.877764 0.877135 0.876133 0.880292 0.873178 0.884275 0.868821 

0.3 0.869184 0.876495 0.870688 0.875954 0.872539 0.873596 0.875166 0.869306 0.878919 0.862975 

0.4 0.864923 0.874003 0.865885 0.873369 0.867102 0.870405 0.869065 0.864971 0.872379 0.856928 

0.5 0.859870 0.870687 0.860309 0.870036 0.860870 0.866623 0.862047 0.860286 0.864719 0.850864 

0.6 0.854057 0.866560 0.854000 0.865984 0.853892 0.862302 0.854172 0.855343 0.856005 0.844932 

0.7 0.847514 0.861637 0.846994 0.861234 0.846217 0.857483 0.845500 0.850213 0.846308 0.839240 

0.8 0.840276 0.855935 0.839334 0.855810 0.837896 0.852198 0.836095 0.844940 0.835701 0.833856 

0.9 0.832376 0.849472 0.831059 0.849727 0.828980 0.846463 0.826023 0.839545 0.824260 0.828801 

1.0 0.823849 0.842268 0.822212 0.842999 0.819522 0.840286 0.815349 0.834021 0.812067 0.824053 

1.0t 2.0t 3.0t 4.0t 5.0t

Legendreu HAMu Legendreu HAMu Legendreu HAMu Legendreu HAMu Legendreu HAMu
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t Example 5.3 Example 5.4 

    

0.1 3.20987E-5 5.5779E-5 1.81083E-3 2.66655E-3 

0.2 4.55341E-4 6.9125E-4 4.03863E-3 5.63322E-3 

0.3 2.32241E-3 3.2189E-3 6.80646E-3 9.08072E-3 

0.4 7.76660E-3 9.1236E-3 1.02254E-2 1.32161E-2 

0.5 1.53778E-2 2.6175E-2 1.43959E-2 1.82721E-2 

 

The percentage errors of sKdV equation (5.49) for example 5.4 has been shown in Table 

5.17 at various points of x and t. Comparison of approximate solutions obtained by two-

dimensional Legendre wavelet method, homotopy analysis method and optimal homotopy 

analysis method for fractional order nonlinear sKdV equation (5.49) have been 

demonstrated in Table 5.18 taking  Agreement between present numerical results 

and exact solutions appears very satisfactory through illustration in Tables 5.11-5.18.  

Table 5.17 Percentage errors obtained by two-dimensional Legendre wavelet method for 

classical nonlinear sKdV equation (5.49) given in example 5.4 at various points of x and t for 

  

x  

    

0.1 3.60870E-4 6.36455E-2 1.88943E-1 3.73007E-1 

0.2 4.48452E-4 9.41269E-2 2.50788E-1 4.70472E-1 

0.3 5.07751E-4 1.24566E-1 3.11652E-1 5.64999E-1 

0.4 5.36868E-4 1.54740E-1 3.71078E-1 6.55872E-1 

0.5 5.33951E-4 1.84430E-1 4.28610E-1 7.42358E-1 

0.6 4.97215E-4 2.13419E-1 4.83794E-1 8.23722E-1 

0.7 4.24966E-4 2.41502E-1 5.36188E-1 8.99238E-1 

0.8 3.15643E-4 2.68483E-1 5.85363E-1 9.68192E-1 

0.9 1.67864E-4 2.94177E-1 6.30919E-1 1.02990 

1.0 1.94903E-4 3.18421E-1 6.72482E-1 1.08372 

 

Table 5.18 Comparison of approximate solutions obtained by two-dimensional Legendre 

wavelet method, homotopy analysis method and optimal homotopy analysis method for fractional 

order nonlinear sKdV equation (5.49) given in example 5.4 at various points of x and t taking 

 

 

 

2    L L      2    L L      

.75.0

.1

LWExact uu 

0t 1.0t 2.0t 3.0t

.75.0
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5.9 Convergence of Legendre wavelet 

Theorem 5.1 (Convergence Theorem) 

If a continuous function   2),( Ltxu  defined on    1,01,0   has bounded mixed 

fourth partial derivative 
 

K
tx

txu





22

4 ,
, then the Legendre wavelets expansion of ),( txu  

converges uniformly to it.  

Proof: 

Let ),( txu  be a function defined on    1,01,0   and 
 

K
tx

txu





22

4 ,
, K  is a positive 

constant. 

The Legendre wavelet coefficients of continuous functions ),( txu  are defined as  

 )( )(),(

1

0

1

0

,,,,, 22112211   dxdttxtxuc mnmnmnmn   

                 dxdtntPnxPmmtxu
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0.1 0.875

221 

0.878

962 

0.879025 0.877

833 

0.8787

71 

0.879

4 

0.8808

44 

0.877

951 

0.879

728 

0.884

388 

0.876

460 

0.880

029 

0.888

389 

0.874

258 

0.880

313 

0.2 0.872

626 

0.878

151 

0.878288 0.874

683 

0.8777

64 

0.879

035 

0.8771

35 

0.876

133 

0.879

689 

0.880

292 

0.873

178 

0.880

291 

0.884

275 

0.868

821 

0.880

855 

0.3 0.869

184 

0.876

495 

0.876693 0.870

688 

0.8759

54 

0.877

809 

0.8725

39 

0.873

596 

0.878

788 

0.875

166 

0.869

306 

0.879

686 

0.878

919 

0.862

975 

0.880

53 

0.4 0.864

923 

0.874

003 

0.874247 0.865

885 

0.8733

69 

0.875

727 

0.8671

02 

0.870

405 

0.877

024 

0.869

065 

0.864

971 

0.878

216 

0.872

379 

0.856

928 

0.879

334 

0.5 0.859

870 

0.870

687 

0.870956 0.860

309 

0.8700

36 

0.872

793 

0.8608

70 

0.866

623 

0.874

403 

0.862

047 

0.860

286 

0.875

882 

0.864

719 

0.850

864 

0.877

27 

0.6 0.854

057 

0.866

560 

0.86683 0.854

000 

0.8659

84 

0.869

015 

0.8538

92 

0.862

302 

0.870

931 

0.854

172 

0.855

343 

0.872

691 

0.856

005 

0.844

932 

0.874

342 

0.7 0.847

514 

0.861

637 

0.861882 0.846

994 

0.8612

34 

0.864

406 

0.8462

17 

0.857

483 

0.866

619 

0.845

500 

0.850

213 

0.868

651 

0.846

308 

0.839

240 

0.870

558 

0.8 0.840

276 

0.855

935 

0.856127 0.839

334 

0.8558

10 

0.858

978 

0.8378

96 

0.852

198 

0.861

478 

0.836

095 

0.844

940 

0.863

774 

0.835

701 

0.833

856 

0.865

929 

0.9 0.832

376 

0.849

472 

0.849583 0.831

059 

0.8497

27 

0.852

749 

0.8289

80 

0.846

463 

0.855

525 

0.826

023 

0.839

545 

0.858

074 

0.824

260 

0.828

801 

0.860

467 

1.0 0.823

849 

0.842

268 

0.84227 0.822

212 

0.8429

99 

0.845

738 

0.8195

22 

0.840

286 

0.848

778 

0.815

349 

0.834

021 

0.851

57 

0.812

067 

0.824

053 

0.854

19 

1.0t 2.0t 3.0t 4.0t 5.0t

Legendreu HAMu
OptimalHAMu Legendreu HAMu

OptimalHAMu Legendreu HAMu
OptimalHAMu Legendreu HAMu

OptimalHAMu Legendreu HAMu
OptimalHAMu
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where 
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Substituting eq. (5.60) in eq. (5.59), we have 
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Similarly, 
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where 2ˆ2 2 ntw
k

  . 

Substituting eq. (5.62) in eq. (5.61), we have 
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Similarly,  
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Putting eqs. (5.64) and (5.65) in eq. (5.63), we have 
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mnmnc is absolutely convergent. 

Hence according to Ref. [44], the Legendre series expansion of  txu ,  converges 

uniformly.  □ 

Theorem 5.2 (Error Estimate) 

If a continuous function   2),( Ltxu  defined on    1,01,0   be bounded viz. 

  Ktxu , , then 
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Substituting eq. (5.66) of theorem 5.1, in eq. (5.67) we obtain  
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Eq. (5.68) implies 
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     □  

5.10 Solution of Fractional Kaup-Kupershmidt Equation 

Using Legendre Multiwavelets 

5.10.1 Introduction of Legendre Multiwavelets 

Legendre multiwavelets ),,,()(, xmnkxmn    have four arguments; ,12,...,2,1,0  kn

k +
, m is the order of Legendre polynomials and x is normalized time. They are defined 

on the interval )1,0[ as [126] 
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where . 

Here,  are the well-known shifted Legendre polynomials of order m, which are 

defined on the interval [0,1], and can be determined with the aid of the following 

recurrence formulae: 

, 
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The two-dimensional Legendre multiwavelets are defined as 
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where   are defined similarly to n;  are 

any positive integers,  are the orders for shifted Legendre polynomials and 

 forms a basis for . 

5.10.2 Function Approximation 

A function  defined over  can be expanded in terms of Legendre 

multiwavelet as [126] 

  .    (5.69) 

If the infinite series in eq. (5.69) is truncated, then it can be written as  

   (5.70) 

where  and  are  and  matrices, respectively. 
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Also, C is a  matrix whose elements can be calculated from the 

formula 

,      (5.71) 

with   

5.10.3 Operational Matrix of the General Order Integration [127] 

The integration of 

 can be 

approximated by  

,     (5.72) 
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where Q is called the Legendre multiwavelet operational matrix of integration. To derive 

the Legendre multiwavelet operational matrix of the general order of integration, let us 

recall the fractional integral of order , defined by Podlubny [41] 

,    ,     (5.73) 

where 
 
is the set of positive real numbers. 

The Legendre multiwavelet operational matrix  for integration of the general order  

is given by 
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where 

   

for  is the order of the Legendre polynomials and 

M is a fixed positive integer.  

5.11 Application of Analytical and Numerical Methods for 

Solving Time-Fractional Kaup-Kupershmidt Equation 

5.11.1 Solution of Fractional Kaup-Kupershmidt Equation Using 

Legendre Multiwavelets 

To exhibit the effectiveness and accuracy of proposed numerical scheme, we consider the 

time-fractional Kaup-Kupershmidt equation. The numerical solutions thus obtained are 

compared with the exact solutions as well as with the solutions obtained by OHAM. 

Consider the nonlinear time-fractional generalized Kaup-Kupershmidt equation [121] 
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.    (5.75) 

The exact solution of eq. (5.74) is given by [121] 

, (5.76) 

where and w are constant with   

The Legendre multiwavelet solution of  is sought by assuming that  can be 

expanded in terms of Legendre multiwavelet as 

  ,    (5.77) 

where   

The nonlinear terms presented in eq. (5.74) can be approximated using Legendre 

multiwavelet function as 

,   (5.78) 

   ,   (5.79) 

and    .   (5.80) 

This implies  

 
 

  . ,                                                                               

,
 ,  

12

0 0

12

0 0

,,,,,,

12

0 0

12

0 0

,,,

,,,

2
12

0 0

12

0 0

,,,,,,

1
1

2
2

1
1

2
2

1
1

2
2

   

      



 



 



 



 



 



 


































k k

k kk k

n

M

i l

M

j

jlinjlin

n

M

i l

M

j

jlin

jlin

n

M

i l

M

j

jlinjlin

txa

x

tx
dtxd






 (5.81) 

 ,,                                                                             

 
),(

 
),(

  

12

0 0

12

0 0

,,,,,,

12

0 0

12

0 0
2

,,,
2

,,,

12

0 0

12

0 0

,,,

,,,

1
1

2
2

1
1

2
2

1
1

2
2

   

      



 



 



 



 



 



 







































k k

k kk k

n

M

i l

M

j

jlinjlin

n

M

i l

M

j

jlin

jlin

n

M

i l

M

j

jlin

jlin

txb

x

tx
d

x

tx
d





  (5.82) 

and 

 
122

 sec
4

1
0,

22
222 


wwx

hwxu 









 
12)1( 16

)168(

2
sec

4

1
,

224225
222 




  w

wxt
w

hwtxu 
































  , .0w

 txu ,  txu ,

      


 



 


12

0 0

12

0 0

,,,,,,

1 1 2 2

,  ,

k k

n

M

i l

M

j

jlinjlin txdtxu 

.,...,0,12,...,0,,...,0,12,...,0 21
21 MjlMin

kk


    


 



 




 12

0 0

12

0 0

,,,,,,
2

1 1 2 2

,  

k k

n

M

i l

M

j

jlinjlin txa
x

u
u 

    


 



 








 12

0 0

12

0 0

,,,,,,2

2 1
1

2
2

,  

k k

n

M

i l

M

j

jlinjlin txb
x

u

x

u


    


 



 




 12

0 0

12

0 0

,,,,,,3

3 1
1

2
2

,  

k k

n

M

i l

M

j

jlinjlin txc
x

u
u 



 

166 
 

 
 

  . ,                                                                       

 
,

,  

12

0 0

12

0 0

,,,,,,

12

0 0

12

0 0
3

,,,
3

,,,

12

0 0

12

0 0

,,,,,,

1
1

2
2

1
1

2
2

1
1

2
2

   

      



 



 



 



 



 



 



































k k

k kk k

n

M

i l

M

j

jlinjlin

n

M

i l

M

j

jlin

jlin

n

M

i l

M

j

jlinjlin

txc

x

tx
dtxd






 (5.83) 

Again applying  on both sides of eq. (5.74) we have 

.  (5.84) 

Putting eqs. (5.77), (5.78), (5.79) and (5.80) in eq. (5.84), we have 
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Now substituting the collocation points  and  for 

 and  in eqs. (5.81), (5.82), (5.83) and (5.85), 

we have  equations in  unknowns in 

, ,
 

 and . By solving this system of equations using mathematical 

software, the Legendre multiwavelet coefficients , ,  and 
 
can be 

obtained.   

5.11.2 Comparison with OHAM for Solution of Time-Fractional Kaup-

Kupershmidt Equation 

Using optimal homotopy asymptotic method [128], the homotopy for eq. (5.74) can be 

written as 
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      (5.86) 

where   ,      (5.87) 

  . . . 3
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2
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.   (5.89) 

Substituting eqs. (5.87) to (5.89) in eq. (5.86) and equating the coefficients of different 

powers in  we have the following system of partial differential equations. 

Coefficients of .       (5.90) 

Coefficients of   

  .           (5.91) 

Coefficients of  

     
   

 

  
         

 
 

 
   

 
  

     

 
   

, 
,,

,15                                                     

,,
15 

,
,45

,

,,
,

,
,15                       

,,,,
15

,
,              

,
,,245

,,,

5

0
5

3

0
3

0

2

0
2

002
0

0
2

5

1
5

3

0
3

13

1
3

0

2

0
2

1

2

1
2

012
0

0
10

1
1

12












































































































































x

txu

x

txu
txu

x

txu

x

txu
p

x

txu
txu

t

txu
C

x

txu

x

txu
txu

x

txu
txu

x

txu

x

txu

x

txu

x

txu
p

x

txu
txu

x

txu
txutxu

t

txu
C

t

txu

t

txu

















 (5.92) 

and so on. 

For solving fractional Kaup-Kupershmidt equation using OHAM, we consider the 

following initial condition for equation (5.74)  
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Using the initial condition )0,(0 xuu   and solving eq. (5.90) to eq. (5.92), we obtain the 

expressions for 210   and  , uuu . 

Finally, the second order approximate solution for time-fractional Kaup-Kupershmidt 

equation is given by 

),( ),( ),( 210 txutxutxuu  .      (5.93) 

The optimal values of the convergence control parameters 21  and CC  can be obtained using 

collocation method given in eq. (1.33) of chapter 1. 

5.12 Numerical Results of Fractional Kaup-Kupershmidt 

Equation 

The comparison of the absolute errors for time-fractional Kaup-Kupershmidt equation 

(5.74) has been exhibited in Tables 5.19 and 5.22 which are constructed using the results 

obtained by two-dimensional Legendre multiwavelet method and OHAM at different 

values of x and t taking . In the present analysis, to examine the accuracy and 

reliability of the Legendre multi-wavelets for solving fractional order Kaup-Kupershmidt 

equation, we compare the approximate solution of Legendre multiwavelets with the exact 

solution as well as with second order approximate solution obtained by OHAM. Tables 

5.20, 5.21 and 5.23, 5.24 show the comparison of absolute errors of fractional order Kaup-

Kupershmidt equation (5.74) at various points of x and  taking 5.0  and 0.75. 

Agreement between present numerical results obtained by Legendre multiwavelets and 

exact solutions appears very satisfactory through illustrations in Tables 5.19, 5.20 and 

5.21.  

Table 5.19 Comparison of absolute errors obtained by two-dimensional Legendre 

multiwavelet method for nonlinear Kaup-Kupershmidt equation given in eq. (5.74) at various 

points of x and t taking .1  and 1 0, 0.1,   w  

x 
etMultiwavelLegendreExact uu    

         

0.1 3.5268E-10 7.0333E-10 1.0519E-9 1.3985E-9 1.7430E-9 2.0855E-9 2.4259E-9 2.7643E-9 3.1007E-9 

0.2 7.0308E-10 1.4041E-9 2.1031E-9 2.8001E-9 3.4950E-9 4.1879E-9 4.8788E-9 5.5676E-9 6.2544E-9 

0.3 1.0532E-9 2.1043E-9 3.1535E-9 4.2006E-9 5.2456E-9 6.2887E-9 7.3297E-9 8.3687E-9 9.4057E-9 

 1

t

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t
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0.4 1.4028E-9 2.8037E-9 4.2025E-9 5.5994E-9 6.9942E-9 8.3869E-9 9.7777E-9 1.1166E-8 1.2553E-8 

0.5 1.7520E-9 3.5020E-9 5.2500E-9 6.9959E-9 8.7399E-9 1.0482E-8 1.2222E-8 1.3959E-8 1.5695E-8 

0.6 2.1004E-9 4.1988E-9 6.2953E-9 8.3897E-9 1.0482E-8 1.2572E-8 1.4661E-8 1.6747E-8 1.8832E-8 

0.7 2.4480E-9 4.8941E-9 7.3381E-9 9.7802E-9 1.2220E-8 1.4658E-8 1.7094E-8 1.9528E-8 2.1960E-8 

0.8 2.7946E-9 5.5873E-9 8.3780E-9 1.1166E-8 1.3953E-8 1.6738E-8 1.9521E-8 2.2302E-8 2.5081E-8 

0.9 3.1402E-9 6.2783E-9 9.4146E-9 1.2548E-8 1.5881E-8 1.8811E-8 2.1939E-8 2.5066E-8 2.8191E-8 

Table 5.20 Comparison of absolute errors obtained by two-dimensional Legendre 

multiwavelet method for fractional order nonlinear Kaup-Kupershmidt equation given in eq. (5.74) 

at various points of x and t taking .75.0  and 1 0, 0.1,   w   

x 
etMultiwavelLegendreExact uu    

         

0.1 6.7734E-10 1.1369E-9 1.5349E-9 1.8967E-9 2.2340E-9 2.5523E-9 2.8551E-9 3.1456E-9 3.4253E-9 

0.2 1.3533E-9 2.2769E-9 3.0806E-9 3.8142E-9 4.5010E-9 5.1516E-9 5.7729E-9 6.3709E-9 6.9489E-9 

0.3 2.0287E-9 3.4161E-9 4.6251E-9 5.7303E-9 6.7663E-9 7.7489E-9 8.6884E-9 9.5937E-9 1.0469E-8 

0.4 2.7033E-9 4.5538E-9 6.1677E-9 7.6441E-9 9.0289E-9 1.0343E-8 1.1600E-8 1.2812E-8 1.3986E-8 

0.5 3.3768E-9 5.6898E-9 7.7079E-9 9.5548E-9 1.1287E-8 1.2933E-8 1.4507E-8 1.6026E-8 1.7497E-8 

0.6 4.0490E-9 6.8234E-9 9.2450E-9 1.1462E-8 1.3542E-8 1.5518E-8 1.7409E-8 1.9234E-8 2.1001E-8 

0.7 4.7196E-9 7.9544E-9 1.0778E-8 1.3364E-8 1.5791E-8 1.8096E-8 2.0304E-8 2.2434E-8 2.4497E-8 

0.8 5.3883E-9 9.0822E-9 1.2307E-8 1.5261E-8 1.8034E-8 2.0668E-8 2.3191E-8 2.5624E-8 2.7983E-8 

0.9 6.0548E-9 1.0206E-8 1.3832E-8 1.7152E-8 2.0269E-8 2.3232E-8 2.6068E-8 2.8805E-8 3.1458E-8 

Table 5.21 Comparison of absolute errors obtained by two-dimensional Legendre 

multiwavelet method for fractional order nonlinear Kaup-Kupershmidt equation given in eq. (5.74) 

at various points of x and t taking .5.0  and 1 0, 0.1,   w   

x 
etMultiwavelLegendreExact uu    

         

0.1 1.2348E-9 1.7431E-9 2.1251E-9 2.4420E-9 2.7198E-9 2.9690E-9 3.1958E-9 3.4065E-9 3.6035E-9 

0.2 2.4789E-9 3.5107E-9 4.2915E-9 4.9425E-9 5.5158E-9 6.0321E-9 6.5038E-9 6.9435E-9 7.3559E-9 

0.3 3.7221E-9 5.2770E-9 6.4561E-9 7.4411E-9 8.3096E-9 9.0928E-9 9.8093E-9 1.0477E-8 1.1105E-8 

0.4 4.9638E-9 7.0412E-9 8.6182E-9 9.9366E-9 1.1100E-8 1.2149E-8 1.3111E-8 1.4007E-8 1.4850E-8 

0.5 6.2035E-9 8.8026E-9 1.0776E-8 1.2428E-8 1.3886E-8 1.5202E-8 1.6407E-8 1.7532E-8 1.8589E-8 

0.6 7.4407E-9 1.0560E-8 1.2931E-8 1.4915E-8 1.6667E-8 1.8248E-8 1.9697E-8 2.1049E-8 2.2321E-8 

0.7 8.6750E-9 1.2314E-8 1.5080E-8 1.7395E-8 1.9440E-8 2.1287E-8 2.2979E-8 2.4558E-8 2.6044E-8 

0.8 9.9058E-9 1.4063E-8 1.7223E-8 1.9869E-8 2.2209E-8 2.4317E-8 2.6251E-8 2.8058E-8 2.9756E-8 

0.9 1.1132E-8 1.5806E-8 1.9359E-8 2.2335E-8 2.4964E-8 2.7338E-8 2.9514E-8 3.1546E-8 3.3457E-8 

Table 5.22 Comparison of absolute errors obtained by optimal homotopy asymptotic method 

(OHAM) for nonlinear Kaup-Kupershmidt equation given in eq. (5.74) at various points of x and t 

taking .1  and 1 0, 0.1,   w   

x 
OHAMExact uu   

         

0.1 3.4968E-10 3.6511E-9 6.5846E-9 9.1501E-9 1.1377E-8 1.3177E-8 1.4638E-8 1.5732E-8 1.6457E-8 

0.2 7.2934E-6 7.2553E-6 7.2176E-6 7.1802E-6 7.1432E-6 7.1065E-6 7.0701E-6 7.0341E-6 6.9983E-6 

0.3 2.6793E-5 2.6721E-5 2.6651E-5 2.6581E-5 2.6511E-5 2.6442E-5 2.6372E-5 2.6303E-5 2.6235E-5 

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t
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0.4 5.8103E-5 5.8005E-5 5.7906E-5 5.7807E-5 5.7709E-5 5.7611E-5 5.7513E-5 5.7426E-5 5.7330E-5 

0.5 1.0061E-4 1.0049E-4 1.0037E-4 1.0024E-4 1.0013E-4 1.0001E-4 9.9885E-5 9.9976E-5 9.9643E-5 

0.6 1.5350E-4 1.5336E-4 1.5323E-4 1.5309E-4 1.5295E-4 1.5281E-4 1.5268E-4 1.5254E-4 1.5240E-4 

0.7 2.1579E-4 2.1564E-4 2.1549E-4 2.1535E-4 2.1520E-4 2.1506E-4 2.1491E-4 2.1476E-4 2.1461E-4 

0.8 2.8635E-4 2.8621E-4 2.8606E-4 2.8591E-4 2.8576E-4 2.8561E-4 2.8546E-4 2.8531E-4 2.8516E-4 

0.9 3.6399E-4 3.6384E-4 3.6370E-4 3.6355E-4 3.6341E-4 3.6326E-4 3.6312E-4 3.6297E-4 3.6282E-4 

Table 5.23 Comparison of absolute errors obtained by optimal homotopy asymptotic method 

(OHAM) for fractional order nonlinear Kaup-Kupershmidt equation given in eq. (5.74) at various 

points of x and t taking .75.0  and 1 0, 0.1,   w   

x 
OHAMExact uu   

         

0.1 6.7141E-10 3.7954E-9 5.8412E-9 7.4404E-9 8.7416E-9 9.8151E-9 1.0702E-8 1.1428E-8 1.2015E-8 

0.2 7.2899E-6 7.2528E-6 7.2254E-6 7.2014E-6 7.1794E-6 7.1589E-6 7.1395E-6 7.1209E-6 7.1032E-6 

0.3 2.6785E-5 2.6716E-5 2.6665E-5 2.6620E-5 2.6578E-5 2.6540E-5 2.6503E-5 2.6467E-5 2.6434E-5 

0.4 5.8094E-5 5.7998E-5 5.7926E-5 5.7862E-5 5.7804E-5 5.7749E-5 5.7697E-5 5.7647E-5 5.7599E-5 

0.5 1.0060E-4 1.0048E-4 1.0039E-4 1.0031E-4 1.0024E-4 1.0017E-4 1.0011E-4 1.0005E-4 9.9992E-5 

0.6 1.5349E-4 1.5335E-4 1.5326E-4 1.5317E-4 1.5308E-4 1.5301E-4 1.5293E-4 1.5286E-4 1.5279E-4 

0.7 2.1577E-4 2.1563E-4 2.1552E-4 2.1543E-4 2.1534E-4 2.1526E-4 2.1518E-4 2.1511E-4 2.1503E-4 

0.8 2.8634E-4 2.8619E-4 2.8608E-4 2.8599E-4 2.8590E-4 2.8582E-4 2.8574E-4 2.8566E-4 2.8559E-4 

0.9 3.6397E-4 3.6384E-4 3.6373E-4 3.6364E-4 3.6355E-4 3.6347E-4 3.6339E-4 3.6331E-4 3.6324E-4 

Table 5.24 Comparison of absolute errors obtained by optimal homotopy asymptotic method 

(OHAM) for fractional order nonlinear Kaup-Kupershmidt equation given in eq. (5.74) at various 

points of x and t taking .5.0  and 1 0, 0.1,   w  

 x 
OHAMExact uu   

         

0.1 1.2175E-9 3.7606E-9 4.9831E-9 5.8529E-9 6.5343E-9 7.0939E-9 7.5661E-8 7.9718E-9 8.3247E-9 

0.2 7.2836E-6 7.2523E-6 7.2354E-6 7.2223E-6 7.2112E-6 7.2015E-6 7.1927E-6 7.1846E-6 7.1771E-6 

0.3 2.6773E-5 2.6715E-5 2.6683E-5 2.6659E-5 2.6638E-5 2.6620E-5 2.6603E-5 2.6588E-5 2.6573E-5 

0.4 5.8078E-5 5.7996E-5 5.7952E-5 5.7917E-5 5.7888E-5 5.7862E-5 5.7839E-5 5.7817E-5 5.7797E-5 

0.5 1.0058E-4 1.0048E-4 1.0042E-4 1.0038E-4 1.0034E-4 1.0031E-4 1.0028E-4 1.0026E-4 1.0023E-4 

0.6 1.5346E-4 1.5335E-4 1.5329E-4 1.5324E-4 1.5320E-4 1.5316E-4 1.5313E-4 1.5310E-4 1.5307E-4 

0.7 2.1575E-4 2.1563E-4 2.1556E-4 2.1551E-4 2.1547E-4 2.1543E-4 2.1539E-4 2.1536E-4 2.1533E-4 

0.8 2.8631E-4 2.8619E-4 2.8612E-4 2.8607E-4 2.8603E-4 2.8599E-4 2.8595E-4 2.8592E-4 2.8589E-4 

0.9 3.6395E-4 3.6383E-4 3.6376E-4 3.6371E-4 3.6367E-4 3.6363E-4 3.6360E-4 3.6356E-4 3.6354E-4 

Table 5.25 LL  and  2 error norms for nonlinear time-fractional Kaup-Kupershmidt equation 

using two-dimensional Legendre multiwavelet methods and OHAM at various points x taking 

.1 and 75.0,5.0  

x Error analysis with regard to Legendre multiwavelet Error analysis with regard to OHAM  

      
    

  
    

  
0.1 5.8488

E-9 
3.1007
E-9 

6.9992
E-9 

3.4253
E-9 

8.1275
E-9 

3.6035

E-9 

3.4295
E-8 

1.6457
E-8 

2.5818
E-8 

7.2899
E-6 

7.7622
E-8 

8.3247
E-9 

0.2 1.1764 6.2544 1.4079 6.9489 1.6515 7.3559 2.1434 7.2934 2.1557 1.2015 2.1653 7.2836

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t

 

1  75.0 5.0  1  75.0 5.0 

2    L L     2    L L     2    L L     2    L L     2    L L     2    L L     
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E-8 E-9 E-8 E-9 E-8 E-9 E-5 E-6 E-5 E-8 E-5 E-6 

0.3 1.7675

E-8 

9.4057

E-9 

2.1283

E-8 

1.0469

E-8 

2.4895

E-8 

1.1105

E-8 

7.9538

E-5 

2.6793

E-5 

7.9770

E-5 

2.6785

E-5 

7.9951

E-5 

2.6773

E-5 

0.4 2.3578

E-8 

1.2553

E-8 

2.8413

E-8 

1.3986

E-8 

3.3266

E-8 

1.4850

E-8 

1.7313

E-4 

5.8103

E-5 

1.7345

E-4 

5.8094

E-5 

1.7372

E-4 

5.8078

E-5 

0.5 2.9473

E-8 

1.5695

E-8 

3.5532

E-8 

1.7497

E-8 

4.1624

E-8 

1.8589

E-8 

3.0045

E-4 

1.0061

E-4 

3.0045

E-4 

1.0060

E-4 

3.0109

E-4 

1.0058

E-4 

0.6 3.2498

E-8 

1.8832
E-8 

4.2638

E-8 

2.1001
E-8 

4.9965

E-8 

2.2321

E-8 

4.5885

E-4 

1.5350
E-4 

4.5931

E-4 

1.5349
E-4 

4.5967

E-4 

1.5346
E-4 

0.7 4.1224
E-8 

2.1960
E-8 

4.9727
E-8 

2.4497
E-8 

5.8286
E-8 

2.6044

E-8 

6.4560
E-4 

2.1579
E-4 

6.4609
E-4 

2.1577
E-4 

6.4647
E-4 

2.1575
E-4 

0.8 4.7077

E-8 

2.5081

E-8 

5.6795

E-8 

2.7983

E-8 

6.6585

E-8 

2.9756

E-8 

8.5727

E-4 

2.8635

E-4 

8.5777

E-4 

2.8634

E-4 

8.5815

E-4 

2.8631

E-4 

0.9 5.2969

E-8 

2.8191

E-8 

6.3842

E-8 

3.1458

E-8 

7.6494

E-8 

3.3457

E-8 

1.0902

E-3 

3.6399

E-4 

1.0907

E-3 

3.6397

E-4 

1.0911

E-3 

3.6395

E-4 

 

It may be observed from Tables 5.19-5.24, absolute errors for Legendre multiwavelet 

method are lesser than that of OHAM. Moreover, LL  and  2  error norms confirm that 

Legendre multiwavelet method provides more accurate and better solution than OHAM.  

5.13 Conclusion 

In this chapter, two dimensional Legendre wavelet method has been successfully 

implemented to obtain the numerical solution of fractional order parabolic partial 

differential equation subject to Dirichlet boundary conditions, fractional KBK equation 

and fractional sKdV equation. In case of fractional order PDE with Dirichlet boundary 

conditions, the acquired numerical results of Legendre wavelet methods are compared 

with exact solutions obtained by HPM as well as with numerical solution of Haar wavelet 

method. These results have been cited in the Tables in order to justify the accuracy and 

efficiency of the proposed schemes. For fractional order parabolic partial differential 

equation, Legendre wavelet method provides more accurate results than the Haar wavelet 

method as shown in Tables 5.1-5.5. In case of fractional KBK equation, the obtained 

results are compared with exact solutions. Agreement between present numerical results 

and exact solutions appear very satisfactory through illustrations in Tables 5.6-5.10. The 

obtained results demonstrate the efficiency, accuracy and reliability of the proposed 

algorithm based on two-dimensional Legendre wavelet method and its applicability to 

nonlinear time fractional KBK equation.  

The fractional order sKdV equation has been solved by using two-dimensional Legendre 

wavelet method. The results are compared with exact solutions and also with homotopy 



 

172 
 

analysis method (HAM) and optimal HAM solutions. Tables 5.11-5.18 illustrate a pretty 

good agreement between present numerical results obtained by Legendre wavelet method 

with homotopy analysis method and exact solutions. The present scheme is very simple, 

effective and convenient for obtaining numerical solutions of nonlinear time-fractional 

seventh order KdV equation.  

Next, the fractional Kaup-Kupershmidt equation has been solved numerically by using 

two-dimensional Legendre multiwavelet method and optimal homotopy asymptotic 

method (OHAM). The results obtained by Legendre multiwavelet method are then 

compared with exact solutions as well as with optimal homotopy asymptotic method 

(OHAM). One can observe a pretty good agreement between present numerical results 

obtained by Legendre multiwavelet method with optimal homotopy asymptotic method 

and exact solutions through illustrated results in Tables 5.19-5.25. The obtained results 

demonstrate the accuracy, efficiency and reliability of the proposed algorithm based on 

two-dimensional Legendre multiwavelet method and its applicability to nonlinear time-

fractional Kaup-Kupershmidt equation. It may be observed from Tables 5.19-5.25, 

absolute errors for Legendre multiwavelet method are lesser than that of OHAM. 

Moreover, LL  and 2  error norms confirm that Legendre multiwavelet method provides 

more accurate and better solution than OHAM. Thus, Legendre multiwavelet method 

provides more accurate and better solution in comparison to OHAM. The application of 

the proposed numerical method based on two-dimensional Legendre multiwavelet method 

for the solutions of time-fractional Kaup-Kupershmidt equation satisfactorily justifies its 

simplicity, efficiency and applicability. The present numerical scheme is quite simple, 

effective and expedient for obtaining numerical solution of fractional Kaup-Kupershmidt 

(KK) equation in comparison to analytical approach of OHAM.  
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CHAPTER 6 

6 Application of Chebyshev Wavelet 

Methods for Numerical Simulation of 

Fractional Differential Equations 

6.1 Introduction 

Nowadays, Chebyshev polynomials have become more significant in numerical 

evaluation. Among the four forms of Chebyshev polynomials, the first and second kinds 

are certain cases of the symmetric Jacobi polynomials, whereas the third and fourth kinds 

are unique instances of the non-symmetric Jacobi polynomials. Great attention has been 

focused on first and second kinds of Chebyshev polynomials  and  and their 

various uses in numerous applications. Nevertheless, there are very few articles that 

concentrate on the wavelets shaped through these two types of Chebyshev polynomials for 

application in fractional partial differential equations. This motivates our curiosity in such 

wavelets. In this chapter our aim is to study application of Chebyshev wavelets for the 

solution of fractional order differential equations. Moreover, the Chebyshev wavelets are 

competent for solving some fractional and integral equations [45, 46]. 

There are several advantages of using Chebyshev wavelets approximations based on 

collocation spectral method. First, unlike most numerical methods, it is now conventional 

that they are characterized by the use of exponentially decaying errors. Second, various 

numerical methods do not perform well near singularities, whereas approximations 

through wavelets effectively handle singularities in the problem. Also, due to their fast 

convergence, Chebyshev wavelets method does not undergo from the instability problems 

related with other numerical methods.  

)(xTn )(xUn
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In this chapter, fractional order partial differential equations comprising Caputo fractional 

derivative and Riesz fractional derivative are considered. This chapter is devoted to study 

the application of Chebyshev wavelets for numerical solution of fractional differential 

equations involving Caputo and Riesz fractional derivative. The prime focus of the present 

chapter is to implement two-dimensional Chebyshev wavelet technique for solving 

nonlinear fractional differential equations like time-fractional Sawada-Kotera (SK) 

equation, Riesz fractional Camassa-Holm (CH) equation and Riesz fractional Sine-Gordon 

(SG) equation in order to demonstrate the efficiency and accuracy of the proposed method. 

6.2 Outline of Present Study 

Consider the following time-fractional generalized fifth-order Sawada-Kotera equation 

[129] 

   (6.1) 

which is the variation of the fifth-order Sawada-Kotera equation [49, 130-132]. Here 

 is the parameter describing the order of the fractional time derivative. The 

fractional derivative is considered in the Caputo sense. 

The classical Sawada-Kotera equation is an important mathematical model arising in many 

different physical contexts to describe motion of long waves in shallow water under 

gravity and in a one dimensional nonlinear lattice and has wide applications in quantum 

mechanics and nonlinear optics. It is well known that wave phenomena of plasma media 

and fluid dynamics are modelled by kink shaped tanh solution or by bell shaped sech 

solutions. This equation also used in modeling waves that propagate in opposite directions. 

There are a lot of studies for the classical Sawada-Kotera equation and some profound 

results have been established. But according to the best possible information of the 

authors, the detailed study of the nonlinear fractional order Sawada-Kotera equation is 

only beginning.  

Consider the following Camassa-Holm equation with Riesz time-fractional derivative 

[133] 

 (6.2) 
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where  is a constant, and  is the unknown function depending on temporal 

variable t and spatial variable x. 
t

RD0
 is the Riesz fractional derivative. 

The Camassa-Holm equation is used to describe physical model for the unidirectional 

propagation of waves in shallow water [134, 135]. This equation is widely used in fluid 

dynamics, continuum mechanics, aerodynamics, and models for shock wave formation, 

solitons, turbulence, mass transport, and the solution representing the water’s free surface 

above a flat bottom [136, 137]. The Camassa–Holm equation has been obtained by Fokas 

and Fuchssteiner [138] and Lenells [139]. Camassa and Holm [140] put forward the 

derivation of the solution as a model for dispersive shallow water waves and revealed that 

it is formally integrable finite dimensional Hamiltonian system and its solitary waves are 

solitons. The classical Camassa-Holm equation has attracted much research interest in 

recent years both from analytical and numerical point of view and some exhaustive results 

have been established. The intension of the present work is to perform two-dimensional 

Chebyshev wavelet technique in order to exhibit the competency of this method for the 

numerical solution of nonlinear Camassa-Holm equations with the Riesz time-fractional 

derivative. 

Next, a numerical process involving Chebyshev wavelet method has been implemented for 

computing the approximate solution of Riesz space fractional sine-Gordon equation 

(SGE). The fractional sine-Gordon equation is considered as an interpolation between the 

classical Sine-Gordon equation equation (corresponding to ) and nonlocal sine-

Gordon equation (corresponding to ).   

Consider the Riesz space fractional sine-Gordon equation proposed in [141, 142] as 

follows: 

                                                  ,      (6.3) 

where  denotes the Riesz fractional derivative. Eq. (6.3) is the variation of the sine-

Gordon equation. The classical sine-Gordon equation, an elementary equation of modern 

nonlinear wave theory has accomplished great repute primarily due to its substantiated 

applications in diverse fields of science and engineering. It arises in various disciplines of 

physics, such as propagation of magnetic flux on Josephson junctions, propagation of 

optical pulses in resonant laser media, field theory, sound propagation in a crystal lattice, 

in ferromagnetism and ferroelectric substances and in nonlinear optics etc. [132, 143]. In 

0k ),( txu
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these applications, the sine-Gordon equation provides the simplest nonlinear description of 

physical phenomena in different configurations. The more adequate modelling can be 

prevailed corresponding to generalization of classical sine-Gordon equation. In particular, 

taking into account of nonlinear effects, corresponding to long-rang interactions of 

particles, complex law of medium dispersion or curvilinear geometry of the initial 

boundary problem, classical sine-Gordon equation results in nonlocal generalization of 

SGE.  

Various methods such as the homotopy analysis method [144], modified decomposition 

method [145], variational iteration method [146], and tanh method [147] have been 

implemented to evaluate approximate analytical solution of the classical sine-Gordon 

equation. Using numerical experiments, Ablowitz et al. [148] examined the numerical 

behaviour of a double-discrete, completely integrable discretization of the sine-Gordon 

equation. Herbst and Ablowitz [149] provided the numerical results of the sine-Gordon 

equation acquired by use of the explicit symplectic method. However the comprehensive 

study of the fractional sine-Gordon equation is only the beginning. In this work, we will 

consider fractional sine-Gordon equation with a number of initial values. The motivation 

of the present work is to establish that the Chebyshev wavelet method as a powerful tool 

for solving the Riesz factional sine-Gordon equation. 

6.3 Formulation of Time-Fractional Sawada-Kotera 

Equation 

Consider the following generalized Sawada-Kotera equation  

,  (6.4) 

where a, b, c and d are constants,  is a field variable, Ωx  is a space coordinate in 

the propagation direction of the field, and Γt  is the time. Employing a potential 

function  on the field variable and setting  yields the potential 

equation of the Sawada-Kotera equation (6.4) in the form 

.(6.5) 

The functional of the potential equation (6.5) can be represented as 

0
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where  are unknown constants to be determined. Integrating eq. (6.6) 

by parts and taking 05 
ΩxΩxxxΩxx

Ω
xΩt vvvvv  yield 
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 (6.7) 

The constants  can be determined taking the variation of the functional 

(6.7) to make it optimal. Integrating each term by parts and using the variation optimum 

condition of the functional  the following expression can be obtained: 

    (6.8) 

Comparing the obtained result in eq. (6.8) with the equivalent eq. (6.5), we get 

    and . 

The functional expression given by eq. (6.7) obtains directly the Lagrangian form of the 

Sawada-Kotera equation: 

  (6.9) 

Similarly, the Lagrangian of the time-fractional Sawada-Kotera equation can be written as 

   (6.10) 

Then the functional of the time-fractional Sawada-Kotera equation will be 
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 (6.11) 

By Lemma 4.1, upon integrating the right-hand side of eq. (6.11), we have 
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  (6.12) 

Optimizing the variation of the functional , i.e. , yields the Euler–Lagrange 

equation for the time-fractional Sawada-Kotera equation in the following expression: 

  (6.13) 

Substituting the Lagrangian of the time-fractional Sawada-Kotera equation (6.10) into 

Euler–Lagrange formula (6.13) yields 

 

Substituting the potential function  and taking 

and  yields 

 (6.14) 

The right-hand side Riemann–Liouville fractional derivative is interpreted as a future state 

of the process in physics. So the right-derivative is generally neglected in applications, 

when the present state of the process does not depend on the results of the future 

development, and so the right-derivative in eq. (6.14) can be neglected. Hence the time-

fractional Sawada-Kotera equation can be represented by 

 (6.15) 
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6.4 Application of Analytical and Numerical Methods for 

Solving Fractional Sawada-Kotera Equation 

6.4.1 Implementation of Chebyshev Wavelet on Time-Fractional 

Sawada-Kotera Equation 

To show the effectiveness and accuracy of proposed scheme, we consider the time-

fractional Sawada-Kotera equation. The numerical solutions thus obtained are compared 

with the exact solutions for classical case and also solutions obtained by HAM in 

fractional order case. 

Consider the nonlinear time-fractional generalized Sawada-Kotera equation [150] 

  (6.16) 

with initial condition .        

The Chebyshev wavelet solution of  is sought by assuming that  can be 

expanded in terms of Chebyshev wavelet as 

  ,   (6.17) 

where   

The nonlinear terms presented in eq. (6.16) can be approximated using Chebyshev wavelet 

function as 

,   (6.18) 

and   .  (6.19) 

This implies 
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and 
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Again applying  on both sides of eq. (6.16), we have 

. (6.22) 

Putting eqs. (6.17), (6.18) and (6.19) in eq. (6.22), we have 
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  (6.23) 

Now substituting the collocation points  and  for 

 and  in eqs. (6.20), (6.21) and (6.23), we have 

 equations in  unknowns in , 
 
and 

. By solving this system of equations using mathematical software, the Chebyshev 

wavelet coefficients , 
 
and 

 
can be obtained. 

6.4.2 Comparison with HAM for Solution of Time-Fractional Sawada-

Kotera Equation 

Consider the nonlinear time-fractional generalized Sawada-Kotera equation [150] 
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    (6.24) 

subject to the initial condition [131] 

      , )(sec20, 22  xkhkxu   

where  and   are arbitrary constants and . 

To obtain the approximate solution of the time-fractional Sawada-Kotera equation (6.24), 

we choose the linear operator 

   .     (6.25) 

Now, we construct the m th order deformation equation for eq. (6.24) as follows [34 ,151-

153] 

           ,     (6.26) 

where .    (6.27) 
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Now the solution of the first deformation equation in eq. (6.26) is given by    

. (6.28) 

Similarly, the solutions of second, third and fourth order deformation equations are   

   

, 15                                                                             

154590 ,,

5
1

5

13
0

3

03
1

3

2
0

2
1

2
1

2
012

0
0

10
1

12























































































x

u
u

x

u
u

x

u

x

u

x

u

x

u

x

u

x

u
u

x

u
uu

t

u
Jtxutxu t 




  (6.29) 

      ,0151545
5

5

3

3

2

2
2 

























x

u
u

x

u

x

u
u

x

u
u

t

u
 





)0( k  10 

    ptxDptxL t ;, ;,  

      1101 ,...,,,,   mmmmm uuutxutxuL 

 
 

  

0

1

1

110

;,

! 1

1
,...,,















p

m

m

mm
p

ptxN

m
uuu



     txuptxuptx m

m

m ,,;,
1

0 






 









































5

0
5

03

0
3

2

0
2

002
0

0
1 151545  ,

x

u
u

x

u

x

u

x

u

x

u
u

t

u
Jtxu t 






 

182 
 

   

,1515     

2245 ,,

5
2

5

23
0

3

13
1

3

03
2

3

2
0

2
2

2
1

2
1

2
2

2
0

22
0

1
10

0
20

02
1

2
23




















































































































x

u
u

x

u
u

x

u
u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u
u

x

u
uu

x

u
uu

x

u
u

t

u
Jtxutxu t 




 (6.30) 

   

,15                

152               

22245 ,,

5
3

5

33
0

3

23
1

3

13
2

3

03
3

3

2
0

2
3

2
1

2
2

2
2

2
1

2
3

2
032

0
2

10

1
20

12
1

0
30

0
21

3
34












































































































































x

u
u

x

u
u

x

u
u

x

u
u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u

x

u
u

x

u
uu

x

u
uu

x

u
u

x

u
uu

x

u
uu

t

u
Jtxutxu t 




 (6.31) 

and so on. 

By putting the initial condition  in eqs. (6.28)-(6.31) and solving them, we 

obtain the expressions for  and so on. 

Finally, the approximate solution for time fractional fifth-order Sawada-Kotera equation is 

given by 

     (6.32) 

6.5 Numerical Results of Fractional Sawada-Kotera 

Equation  

The comparison of the absolute errors for time-fractional fifth-order Sawada-Kotera 

equation (6.16) has been exhibited in Table 6.1 which is constructed using the results 

obtained by Chebyshev wavelet method at different values of x and t taking . 

Similarly Table 6.2 shows the comparison of approximate solutions of fractional order 

Sawada-Kotera equation (6.16) at various points of x and  taking . Agreement 

between present numerical results and exact solutions appears very satisfactory through 

illustrations in Tables 6.1 and 6.2. To show the accuracy of proposed method  

error norms for classical order nonlinear Sawada-Kotera equation have been presented in 

Table 6.3. In the present analysis, to examine the accuracy and reliability of the 

Chebyshev wavelets for solving fractional order Sawada-Kotera equation, we compare the 

approximate solution of Chebyshev wavelet with the fifth-order approximate solution 

)0,(0 xuu 
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obtained by HAM taking  As pointed out by Liao [33], in general, by means of the 

so-called -curve, it is straight forward to choose a proper value of  which ensures the 

convergence of series solution. To investigate the influence of  on the solution series, we 

plot -curve of partial derivatives of  obtained from the fifth order HAM solution as 

shown in Figure 6.1. 

 

Figure 6.1 The  -curve for partial derivatives of  for the 5
th
 order HAM solution 

taking 1.0,1.0  tx  and .5.0  

Table 6.1 Comparison of absolute errors obtained by two-dimensional Chebyshev wavelet 

method for classical nonlinear Sawada-Kotera equation given in eq. (6.16) at various points of x 

and t taking .1   

x 
 

0t  1.0t  2.0t  3.0t  4.0t  5.0t  6.0t  7.0t  8.0t  9.0t  

0.1 2.3394E-3 1.3646E-3 2.3696E-3 2.9815E-3 3.8367E-3 4.6925E-3 5.2186E-3 5.7875E-3 8.2658E-3 1.6805E-2 

0.2 2.6097E-3 1.0767E-3 1.9063E-3 2.3403E-3 3.0586E-3 3.7661E-3 3.9981E-3 3.9267E-3 5.1666E-3 1.1581E-3 

0.3 2.8468E-3 8.7155E-4 1.5326E-3 1.7868E-3 2.3576E-3 2.8825E-3 2.7549E-3 1.9657E-3 1.9447E-3 6.4023E-3 

0.4 3.0282E-3 7.5225E-4 1.2490E-3 1.3226E-3 1.7342E-3 2.0403E-3 1.4875E-3 9.2722E-5 1.3891E-3 1.2842E-3 

0.5 3.1322E-3 7.2105E-4 1.0555E-3 9.4823E-4 1.1879E-3 1.2373E-3 1.9461E-4 2.2433E-3 4.8194E-3 3.7539E-3 

0.6 3.1383E-3 7.7914E-4 9.5098E-4 6.6340E-4 7.1781E-4 4.7117E-4 1.1238E-3 4.4781E-3 8.3267E-3 8.6876E-3 

0.7 3.0277E-3 9.2665E-4 9.3356E-4 4.6693E-4 3.2177E-4 2.6046E-4 2.4666E-3 6.7864E-3 1.1887E-2 1.3488E-2 

0.8 2.7843E-3 1.1626E-3 1.0005E-3 3.5681E-4 2.6502E-6 9.5989E-4 3.8313E-3 9.1541E-3 1.5473E-2 1.8125E-2 

0.9 2.3953E-3 1.4847E-3 1.1484E-3 3.3029E-4 2.5848E-4 1.6291E-3 5.2136E-3 1.1564E-2 1.9051E-2 2.2563E-2 

 

Table 6.2 Comparison of approximate solutions obtained by two-dimensional Chebyshev 

wavelet method and homotopy analysis method for fractional order nonlinear Sawada-Kotera 

equation given in eq. (6.16) at various points of x and t taking 1  and .5.0   

.1
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x 
        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1 0.166

651 

0.178

21 

0.171

782 

0.178

058 

0.174

807 

0.177

938 

0.176

61 

0.177

836 

0.177

852 

0.177

748 

0.178

998 

0.177

669 

0.180

348 

0.177

598 

0.182

066 

0.1775

34 

0.2 0.169

437 

0.179

118 

0.173

314 

0.179

009 

0.175

723 

0.178

924 

0.177

294 

0.178

853 

0.178

503 

0.178

792 

0.179

687 

0.178

74 

0.181

07 

0.178

696 

0.182

778 

0.1786

57 

0.3 0.172

229 

0.179

707 

0.174

756 

0.179

643 

0.176

499 

0.179

592 

0.177

818 

0.179

552 

0.178

99 

0.179

518 

0.180

218 

0.179

492 

0.181

640 

0.179

471 

0.183

341 

0.1794

57 

0.4 0.175

030 

0.179

975 

0.176

107 

0.179

954 

0.177

132 

0.179

938 

0.178

179 

0.179

927 

0.179

311 

0.179

92 

0.180

586 

0.179

917 

0.182

052 

0.179

919 

0.183

749 

0.1799

25 

0.5 0.177

842 

0.179

919 

0.177

367 

0.179

942 

0.177

622 

0.179

959 

0.178

374 

0.179

976 

0.179

461 

0.179

993 

0.180

786 

0.180

012 

0.182

301 

0.180

034 

0.183

996 

0.1800

58 

0.6 0.180

668 

0.179

54 

0.178

538 

0.179

606 

0.177

968 

0.179

655 

0.178

402 

0.179

698 

0.179

439 

0.179

738 

0.180

816 

0.179

777 

0.182

382 

0.179

816 

0.184

077 

0.1798

55 

0.7 0.183

505 

0.178

839 

0.179

62 

0.178

948 

0.178

172 

0.179

029 

0.178

264 

0.179

097 

0.179

244 

0.179

158 

0.180

673 

0.179

214 

0.182

292 

0.179

268 

0.183

986 

0.1793

2 

0.8 0.186

351 

0.177

824 

0.180

614 

0.177

973 

0.178

235 

0.178

084 

0.177

961 

0.178

176 

0.178

875 

0.178

256 

0.180

356 

0.178

329 

0.182

029 

0.178

396 

0.183

721 

0.1784

6 

0.9 0.189

198 

0.176

50 

0.181

52 

0.176

689 

0.178

161 

0.176

629 

0.177

496 

0.176

944 

0.178

335 

0.177

043 

0.179

865 

0.177

13 

0.181

591 

0.177

21 

0.183

278 

0.1772

83 

Table 6.3  error norms for nonlinear time-fractional Sawada-Kotera equation using 

two-dimensional Chebyshev wavelet method at various points of t taking . 

 

t 
 

 

0 2.82595E-3 3.1383E-3 

0.1 1.04820E-3 1.4847E-3 

0.2 1.42858E-3 2.3696E-3 

0.3 1.53123E-3 2.9815E-3 

0.4 1.96462E-3 3.8367E-3 

0.5 2.45110E-3 4.6925E-3 

0.6 3.37089E-3 5.2186E-3 

0.7 6.15247E-3 1.1564E-2 

0.8 1.02032E-2 1.9051E-2 

0.9 1.26293E-2 2.2563E-2 

6.6 Application of Two-Dimensional Chebyshev Wavelet 

Method on Time-Fractional Camassa-Holm Equation 

Consider the nonlinear Camassa-Holm equations with the Riesz time-fractional derivative 

[133] 
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with initial condition [133] 

   .     (6.34)  
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The Chebyshev wavelet solution of  is sought by assuming that  can be 

expanded in terms of Chebyshev wavelet as 

 ,  (6.35) 

where   

Substituting eq. (6.35) in eq. (6.33), we will have 
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Now substituting the collocation points 
1

112
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  and 
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  for 
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  and 2
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  in eq. (6.34) and (6.36), we have   2
1

1
1 21 22 MM

kk   

equations in   2
1

1
1 21 22 MM

kk   unknowns in . By solving this system of equations 

using mathematical software, the Chebyshev wavelet coefficients 
 
can be obtained.   

6.7 Numerical Results and Discussion 

The comparison of the absolute errors for Riesz time-fractional Camassa-Holm equation 

(6.33) has been exhibited in Table 6.4 which is constructed using the results obtained by 

Chebyshev wavelet method at different values of x and t taking 5.0 . Similarly Table 

6.5 shows the comparison of the absolute errors for time-fractional Camassa-Holm 

equation (6.33) at various points of x and  taking . Again in order to examine the 

accuracy and reliability of the Chebyshev wavelets for solving fractional order Camassa-
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Holm equation, we compare the approximate numerical solutions of Chebyshev wavelet 

with the approximate solutions obtained by HAM and VIM. Agreement between present 

numerical solutions with analytical solutions like VIM and HAM appear very satisfactory 

through the illustration in Tables 6.4 and 6.5. To show the accuracy of proposed method 

LL   and 2  error norms for fractional order nonlinear Camassa-Holm equation have been 

presented in Table 6.6.  

Table 6.4 Comparison of absolute errors obtained by two-dimensional Chebyshev wavelet 

method for fractional nonlinear Camassa-Holm equation given in eq. (6.33) at various points of x 

and t taking  

 

x Comparison with different Analytical methods 

     

          

0.1 2.1329E-3 2.1361E-3 7.8868E-4 7.8402E-4 5.4917E-3 5.4858E-3 8.4921E-3 8.4852E-3 9.3582E-3 9.3504E-3 

0.2 4.0685E-4 4.0868E-4 1.5069E-3 1.5042E-3 4.8677E-3 4.8643E-3 7.0508E-3 7.0468E-3 7.7726E-3 7.7680E-3 

0.3 1.3197E-3 1.3192E-3 2.2497E-3 2.2491E-3 4.2747E-3 4.2739E-3 5.6335E-3 5.6326E-3 6.1955E-3 6.1945E-3 

0.4 3.0276E-3 3.0287E-3 2.9895E-3 2.9912E-3 3.6831E-3 3.6852E-3 4.2131E-3 4.2155E-3 4.6052E-3 4.6080E-3 

0.5 4.6974E-3 4.7003E-3 3.6982E-3 3.7024E-3 3.0627E-3 3.0681E-3 2.7621E-3 2.7684E-3 2.9790E-3 2.9862E-3 

0.6 6.3093E-3 6.3142E-3 4.3472E-3 4.3545E-3 2.3829E-3 2.3921E-3 1.2524E-3 1.2634E-3 1.2937E-3 1.3062E-3 

0.7 7.8429E-3 7.8503E-3 4.9074E-3 4.9184E-3 1.6122E-3 1.6261E-3 3.4466E-4 3.2816E-4 4.7449E-4 4.5561E-4 

0.8 9.2769E-3 9.2874E-3 5.3489E-3 5.3644E-3 7.1856E-4 7.3824E-4 2.0588E-3 2.0354E-3 2.3504E-3 2.3236E-3 

0.9 1.0589E-2 1.0603E-2 5.6408E-3 5.6619E-3 3.3100E-4 3.0414E-4 3.9205E-3 3.8884E-3 4.3597E-3 4.3229E-3 

 

Table 6.5 Comparison of absolute errors obtained by two-dimensional Chebyshev wavelet 

method for fractional nonlinear Camassa-Holm equation given in eq. (6.33) at various points of x 

and t taking  

x Comparison with different Analytical methods 

      

VIMCWM uu   

HAMCWM uu   

VIMCWM uu   

HAMCWM uu   

VIMCWM uu   

HAMCWM uu   

VIMCWM uu   

HAMCWM uu   

VIMCWM uu   

HAMCWM uu   

VIMCWM uu   

HAMCWM uu   

0.1 6.3182

E-3 

6.3150

E-3 

6.4241

E-3 

6.4194

E-3 

7.3466

E-3 

7.3408

E-3 

9.1567

E-3 

9.1498

E-3 

1.0373

E-2 

1.0365

E-2 

9.1687

E-3 

9.1599

E-3 

0.2 6.2304

E-3 

6.2285

E-3 

6.4316

E-3 

6.4290

E-3 

6.9095

E-3 

6.9062

E-3 

7.9849

E-3 

7.9809

E-3 

8.7183

E-3 

8.7137

E-3 

7.8194

E-3 

7.8144

E-3 

0.3 6.1456

E-3 

6.1451

E-3 

6.4473

E-3 

6.4466

E-3 

6.4856

E-3 

6.4848

E-3 

6.8251

E-3 

6.8242

E-3 

7.0637

E-3 

7.0627

E-3 

6.4553

E-3 

6.4542

E-3 

0.4 6.0535

E-3 

6.0547

E-3 

6.4548

E-3 

6.4565

E-3 

6.0540

E-3 

6.0561

E-3 

5.6571

E-3 

5.6596

E-3 

5.3955

E-3 

5.3983

E-3 

5.0703

E-3 

5.0735

E-3 

0.5 5.9436

E-3 

5.9465

E-3 

6.4379

E-3 

6.4421

E-3 

5.5938

E-3 

5.5991

E-3 

4.4598

E-3 

4.4661

E-3 

3.6984

E-3 

3.7056

E-3 

3.6578

E-3 

3.6659

E-3 

.5.0

1.0t 2.0t 3.0t 4.0t 5.0t

VIMCWM uu  HAMCWM uu  VIMCWM uu  HAMCWM uu  VIMCWM uu  HAMCWM uu  VIMCWM uu  HAMCWM uu  VIMCWM uu  HAMCWM uu 

.75.0

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t
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0.6 5.8047

E-3 

5.8097

E-3 

6.3792

E-3 

6.3865

E-3 

5.0829

E-3 

5.0922

E-3 

3.2114

E-3 

3.2223

E-3 

1.9567

E-3 

1.9692

E-3 

2.2104

E-3 

2.2243

E-3 

0.7 5.6251

E-3 

5.6325

E-3 

6.2610

E-3 

6.2720

E-3 

4.4990

E-3 

4.5130

E-3 

1.8896

E-3 

1.9061

E-3 

1.5382

E-4 

1.7269

E-4 

7.1993

E-4 

7.4103

E-4 

0.8 5.3923

E-3 

5.4028

E-3 

6.0645

E-3 

6.0800

E-3 

3.8186

E-3 

3.8383

E-3 

4.7116

E-4 

4.9455

E-4 

1.7276

E-3 

1.7008

E-3 

8.2260

E-4 

7.9259

E-4 

0.9 5.0929

E-3 

5.1071

E-3 

5.7699

E-3 

5.7910

E-3 

3.0173

E-3 

3.0441

E-3 

1.0680

E-3 

1.0360

E-3 

3.7057

E-3 

3.6689

E-3 

2.4271

E-3 

2.3859

E-3 

 

Table 6.6 LL   and 2  error norms for nonlinear time-fractional Camassa-Holm equation 

using two-dimensional Chebyshev wavelet methods at various points x taking  

 

x Error analysis with regard to VIM  Error analysis with regard to HAM  

    

        

0.1 6.38694E-3 9.3582E-3 7.11978E-3 1.0373E-2 6.38112E-3 9.3504E-3 7.11421E-3 1.0365E-2 

0.2 5.40607E-3 7.7726E-3 7.40310E-3 8.7183E-3 5.39997E-3 7.7680E-3 7.39944E-3 8.7137E-3 

0.3 4.55570E-3 6.1955E-3 6.57708E-3 7.0637E-3 4.55487E-3 6.1945E-3 6.57624E-3 7.0627E-3 

0.4 3.90422E-3 4.6052E-3 5.79917E-3 6.4548E-3 3.90650E-3 4.6080E-3 5.80137E-3 6.4565E-3 

0.5 3.53718E-3 4.6974E-3 5.08283E-3 6.4379E-3 3.54257E-3 4.7003E-3 5.08802E-3 6.4421E-3 

0.6 3.53417E-3 6.3093E-3 4.45818E-3 6.3792E-3 3.54135E-3 6.3142E-3 4.46615E-3 6.3865E-3 

0.7 3.90066E-3 7.8429E-3 3.98320E-3 6.2610E-3 3.90730E-3 7.8503E-3 3.99254E-3 6.2720E-3 

0.8 4.56822E-3 9.2769E-3 3.74878E-3 6.0645E-3 4.57187E-3 9.2874E-3 3.75621E-3 6.0800E-3 

0.9 5.46221E-3 1.0589E-2 3.85351E-3 5.7699E-3 5.46048E-3 1.0603E-2 3.85381E-3 5.7910E-3 

 

The following Figures 6.2-6.4 demonstrate the graphical comparison of the numerical 

solutions obtained by two-dimensional Chebyshev wavelet approximation with regard to 

VIM and HAM taking  and  respectively. 

 

 

Figure 6.2 Comparison of numerical solutions of  obtained by two-dimensional 

Chebyshev wavelet method with regard to VIM and HAM for . 

0.75.   and  5.0

 

5.0  75.0 5.0  75.0

2    L L     2    L L     2    L L     2    L L     

75.0 5.0

),2.0( tu

75.0
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Figure 6.3 Comparison of numerical solutions of  obtained by two-dimensional 

Chebyshev wavelet method with regard to VIM and HAM for . 

 

 

Figure 6.4 Comparison of numerical solutions of  obtained by two-dimensional 

Chebyshev wavelet method with regard to VIM and HAM for . 

6.8 Implementation of Two-Dimensional Chebyshev 

Wavelet Method for Approximate Solution of Riesz 

Space Fractional Sine-Gordon Equation 

In this section, two test examples have been considered with a purpose to exhibit the 

effectiveness and accuracy of proposed Chebyshev wavelet method for numerical solution 

of Riesz fractional sine-Gordon equation given in eq. (6.3). The numerical solutions 

acquired are compared with the exact solutions for classical case and also solutions 

obtained by modified homotopy analysis method with Fourier transform (MHAM-FT) in 

fractional order case [141]. 

),4.0( tu

75.0

),4.0( tu

5.0
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Consider the nonlinear Riesz space fractional sine-Gordon equation [141, 142] 

   ,  21     (6.37) 

with initial conditions  and .    (6.38)  

The Chebyshev wavelet solution of  is sought through assuming that  can be 

expanded in terms of Chebyshev wavelet as 

 ,  (6.39) 

where   

Now applying eq. (6.39) in eq. (6.37), we have 
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(6.40) 

Now substituting the collocation points 
1

112

5.0

M

l
x

kl 


  and 

2
122

5.0

M

r
t

kr 


  for 

1
112, . .. ,2 ,1 Ml

k 
  and 2

122, . .. ,2 ,1 Mr
k 

  in eq. (6.40), we have   2
1

1
1 21 22 MM

kk   equations 

in   2
1

1
1 21 22 MM

kk   unknowns in . By solving this system of equations using 

mathematical software, the Chebyshev wavelet coefficients 
 
can be obtained.   

Example 6.1 Consider nonlinear Riesz fractional SGE equation (6.37) subject to the 

following initial conditions [145, 146] 

                       ,     .    (6.41) 

The numerical solutions of example 6.1 are presented in Tables 6.7-6.9. The results are 

compared with the exact solutions and also with solutions obtained by MHAM-FT [141]. 

It has been noticed from Tables 6.7-6.9 that the solutions obtained by present method are 

in good agreement with the exact solutions and those with MHAM-FT [141]. 

Example 6.2 In this case, we shall find approximate solution of the nonlinear Riesz 

fractional SGE equation (6.37) with given initial conditions [145, 146] 

                     ,         .   (6.42) 
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where  and  are parameters. The numerical solutions of the example 6.2 are presented 

for 001.0,
2

2
   in Tables 6.10-6.12. The results are compared with the exact 

solutions as well as solutions obtained by MHAM-FT, which is discussed in following 

section. It has been observed from Tables 6.10-6.12 that the solutions attained by present 

method are in pretty good agreement with the exact solutions and those obtained by 

MHAM-FT [141]. 

6.9 Numerical Results and Discussion 

In the present numerical investigation, in order to examine the accuracy and reliability of 

the proposed Chebyshev wavelet technique for solving fractional order sine-Gordon 

equation, the absolute errors have been compared with the exact solutions and those 

obtained by MHAM-FT for different values of x and t taking  In case of  

using the results of Chebyshev wavelet method, the numerical solutions of classical SGE 

equation (6.37) given in examples 6.1 and 6.2 have been exhibited in Tables 6.7 and 6.10. 

Similarly the absolute errors for fractional SGE eq. (6.37) given in examples 6.1 and 6.2 

have been demonstrated in Tables 6.9-6.12 which are devised using the results attained by 

Chebyshev wavelet method and MHAM-FT at different values of x and t taking 75.1  

and 1.5 respectively. We observe that the proposed numerical simulation results are in 

good agreement with the exact solutions and those obtained by MHAM-FT [141] through 

illustrations in Tables 6.7-6.12. 

Table 6.7 The absolute errors obtained by two-dimensional Chebyshev wavelet method with 

regard to exact solutions for classical SGE eq. (6.37) given in example 6.1 at various points of x 

and t taking .2  

 

.1 ,2

x 
 

          

0.01 6.7054E-6 2.5570E-5 5.5014E-5 9.3603E-5 1.4004E-4 1.9318E-4 2.5198E-4 3.1551E-4 3.8298E-4 4.5367E-4 

0.02 6.6806E-6 2.5524E-5 5.4947E-5 9.3514E-5 1.3992E-4 1.9303E-4 2.5177E-4 3.1524E-4 3.8263E-4 4.5321E-4 

0.03 6.6617E-6 2.5485E-5 5.4885E-5 9.3423E-5 1.3980E-4 1.9285E-4 2.5154E-4 3.1494E-4 3.8224E-4 4.5271E-4 

0.04 6.6468E-6 2.5449E-5 5.4820E-5 9.3322E-5 1.3965E-4 1.9265E-4 2.5127E-4 3.1459E-4 3.8179E-4 4.5214E-4 

0.05 6.6341E-6 2.5412E-5 5.4749E-5 9.3205E-5 1.3948E-4 1.9241E-4 2.5095E-4 3.1417E-4 3.8126E-4 4.5149E-4 

0.06 6.6222E-6 2.5372E-5 5.4666E-5 9.3066E-5 1.3927E-4 1.9212E-4 2.5056E-4 3.1367E-4 3.8063E-4 4.5072E-4 

0.07 6.6101E-6 2.5327E-5 5.4569E-5 9.2900E-5 1.3902E-4 1.9177E-4 2.5010E-4 3.1308E-4 3.7990E-4 4.4984E-4 

0.08 6.5969E-6 2.5275E-5 5.4455E-5 9.2703E-5 1.3872E-4 1.9135E-4 2.4955E-4 3.1240E-4 3.7906E-4 4.4882E-4 

0.09 6.5819E-6 2.5214E-5 5.4322E-5 9.2474E-5 1.3838E-4 1.9087E-4 2.4892E-4 3.1160E-4 3.7808E-4 4.4765E-4 

0.10 6.5642E-6 2.5144E-5 5.4168E-5 9.2210E-5 1.3798E-4 1.9032E-4 2.4820E-4 3.1069E-4 3.7698E-4 4.4633E-4 

ExactCWM uu 

01.0t 02.0t 03.0t 04.0t 05.0t 06.0t 07.0t 08.0t 09.0t 10.0t
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Table 6.8 The absolute errors obtained by two-dimensional Chebyshev wavelet method with 

regard to MHAM solutions for fractional SGE eq. (6.37) given in example 6.1 at various points of 

x and t taking .75.1  

 

Table 6.9 The absolute errors obtained by two-dimensional Chebyshev wavelet method with 

regard to MHAM solutions for fractional SGE eq. (6.37) given in example 6.1 at various points of 

x and t taking .5.1  

 

Table 6.10 Comparison of absolute errors obtained by two-dimensional Chebyshev wavelet 

method with regard to exact solutions and MHAM for classical SGE eq. (6.37) given in example 

6.2 at various points of x and t taking .2  

x 
 

          

0.01 8.9761E-4 3.5234E-3 7.7847E-3 1.3593E-2 2.0864E-2 2.9519E-2 3.9482E-2 5.0680E-2 6.3047E-2 7.6517E-2 

0.02 8.7243E-4 3.4244E-3 7.5651E-3 1.3207E-2 2.0270E-2 2.8673E-2 3.8343E-2 4.9210E-2 6.1206E-2 7.4270E-2 

0.03 8.4432E-4 3.3142E-3 7.3209E-3 1.2780E-2 1.9611E-2 2.7738E-2 3.7088E-2 4.7592E-2 5.9187E-2 7.1809E-2 

0.04 8.1361E-4 3.1937E-3 7.0545E-3 1.2314E-2 1.8895E-2 2.6722E-2 3.5727E-2 4.5843E-2 5.7006E-2 6.9159E-2 

0.05 7.8057E-4 3.0642E-3 6.7684E-3 1.1814E-2 1.8127E-2 2.5636E-2 3.4274E-2 4.3977E-2 5.4684E-2 6.6339E-2 

0.06 7.4549E-4 2.9268E-3 6.4651E-3 1.1285E-2 1.7315E-2 2.4489E-2 3.2740E-2 4.2009E-2 5.2238E-2 6.3373E-2 

0.07 7.0863E-4 2.7825E-3 6.1467E-3 1.0730E-2 1.6465E-2 2.3287E-2 3.1136E-2 3.9953E-2 4.9685E-2 6.0281E-2 

0.08 6.7026E-4 2.6322E-3 5.8156E-3 1.0153E-2 1.5581E-2 2.2040E-2 2.9472E-2 3.7822E-2 4.7042E-2 5.7081E-2 

0.09 6.3062E-4 2.4771E-3 5.4737E-3 9.5579E-2 1.4670E-2 2.0755E-2 2.7758E-2 3.5630E-2 4.4323E-2 5.3793E-2 

0.10 5.8994E-4 2.3179E-3 5.1231E-3 8.9478E-2 1.3737E-2 1.9439E-2 2.6004E-2 3.3388E-2 4.1545E-2 5.0435E-2 

x 
 

          

0.01 4.1180E-4 1.6331E-3 3.6485E-3 6.4435E-3 1.0005E-2 1.4321E-2 1.9381E-2 2.5175E-2 3.1695E-2 3.8932E-2 

0.02 4.5144E-4 1.7862E-3 3.9798E-3 7.0093E-3 1.0853E-2 1.5491E-2 2.0905E-2 2.7077E-2 3.3992E-2 4.1636E-2 

0.03 4.8403E-4 1.9118E-3 4.2512E-3 7.4718E-3 1.1544E-2 1.6443E-2 2.2142E-2 2.8617E-2 3.5847E-2 4.3810E-2 

0.04 5.1000E-4 2.0117E-3 4.4665E-3 7.8376E-3 1.2090E-2 1.7191E-2 2.3110E-2 2.9818E-2 3.7286E-2 4.5490E-2 

0.05 5.2980E-4 2.0877E-3 4.6295E-3 8.1133E-3 1.2499E-2 1.7749E-2 2.3828E-2 3.0702E-2 3.8339E-2 4.6708E-2 

0.06 5.4386E-4 2.1413E-3 4.7438E-3 8.3051E-3 1.2781E-2 1.8130E-2 2.4313E-2 3.1292E-2 3.9031E-2 4.7498E-2 

0.07 5.5260E-4 2.1742E-3 4.8128E-3 8.4189E-3 1.2945E-2 1.8347E-2 2.4582E-2 3.1609E-2 3.9390E-2 4.7890E-2 

0.08 5.5640E-4 2.1879E-3 4.8400E-3 8.4608E-3 1.3000E-2 1.8412E-2 2.4651E-2 3.1674E-2 3.9441E-2 4.7915E-2 

0.09 5.5565E-4 2.1839E-3 4.8287E-3 8.4363E-3 1.2955E-2 1.8337E-2 2.4536E-2 3.1507E-2 3.9208E-2 4.7601E-2 

0.10 5.5073E-4 2.1638E-3 4.7821E-3 8.3510E-3 1.2818E-2 1.8134E-2 2.4252E-2 3.1127E-2 3.8715E-2 4.6978E-2 

x 
 

          

0.01 3.359E-10 9.694E-12 5.667E-10 1.320E-9 2.255E-9 3.360E-9 4.619E-9 6.021E-9 7.553E-9 9.204E-9 

0.02 2.329E-10 1.131E-10 6.708E-10 1.425E-9 2.363E-9 3.469E-9 4.732E-9 6.139E-9 7.676E-9 9.334E-9 

0.03 1.456E-10 2.005E-10 7.588E-10 1.514E-9 2.453E-9 3.562E-9 4.827E-9 6.237E-9 7.779E-9 9.442E-9 

0.04 7.237E-11 2.738E-10 8.323E-10 1.588E-9 2.528E-9 3.638E-9 4.905E-9 6.318E-9 7.863E-9 9.531E-9 

0.05 1.161E-11 3.345E-10 8.930E-10 1.649E-9 2.589E-9 3.700E-9 4.969E-9 6.383E-9 7.931E-9 9.602E-9 

0.06 3.809E-11 3.840E-10 9.423E-10 1.698E-9 2.638E-9 3.749E-9 5.019E-9 6.434E-9 7.984E-9 9.658E-9 

0.07 7.807E-11 4.237E-10 9.814E-10 1.737E-9 2.677E-9 3.788E-9 5.057E-9 6.473E-9 8.025E-9 9.699E-9 

0.08 1.095E-10 4.547E-10 1.012E-9 1.767E-9 2.706E-9 3.816E-9 5.085E-9 6.501E-9 8.053E-9 9.728E-9 

MHAMCWM uu 

01.0t 02.0t 03.0t 04.0t 05.0t 06.0t 07.0t 08.0t 09.0t 10.0t

MHAMCWM uu 

01.0t 02.0t 03.0t 04.0t 05.0t 06.0t 07.0t 08.0t 09.0t 10.0t

MHAMCWM uu 

01.0t 02.0t 03.0t 04.0t 05.0t 06.0t 07.0t 08.0t 09.0t 10.0t
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Table 6.11 The absolute errors obtained by two-dimensional Chebyshev wavelet method with 

regard to MHAM solutions for fractional SGE eq. (6.37) given in example 6.2 at various points of 

x and t taking .75.1  

 

Table 6.12 The absolute errors obtained by two-dimensional Chebyshev wavelet method with 

regard to MHAM solutions for fractional SGE eq. (6.37) given in example 2 at various points of x 

and t taking .5.1   

 

6.10 Convergence Analysis of Chebyshev Wavelet 

Theorem 6.1 (Convergence Theorem) 

If a continuous function   2),( Ltxu  defined on    1,01,0   be bounded viz. 

  Ktxu , , then the Chebyshev wavelets expansion of ),( txu  converges uniformly to it.  

0.09 1.336E-10 4.782E-10 1.034E-9 1.788E-9 2.726E-9 3.836E-9 5.104E-9 6.519E-9 8.071E-9 9.746E-9 

0.10 1.514E-10 4.953E-10 1.051E-9 1.803E-9 2.740E-9 3.848E-9 5.114E-9 6.529E-9 8.079E-9 9.754E-9 

x 
 

        

0.01 7.80306E-4 3.12057E-3 7.02163E-3 1.24867E-2 1.95210E-2 2.81321E-2 3.83293E-2 5.01238E-2 

0.02 9.25929E-4 3.67903E-3 8.22523E-3 1.45343E-2 2.25797E-2 3.23383E-2 4.37906E-2 5.69199E-2 

0.03 1.05489E-3 4.17342E-3 9.29032E-3 1.63455E-2 2.52839E-2 3.60551E-2 4.86136E-2 6.29182E-2 

0.04 1.16806E-3 4.60703E-3 1.02240E-2 1.79324E-2 2.76518E-2 3.93077E-2 5.28314E-2 6.81597E-2 

0.05 1.26625E-3 4.98308E-3 1.10333E-2 1.93069E-2 2.97013E-2 4.21207E-2 5.64760E-2 7.26847E-2 

0.06 1.35029E-3 5.30471E-3 1.17249E-2 2.04806E-2 3.14498E-2 4.45181E-2 5.95788E-2 7.65325E-2 

0.07 1.42099E-3 5.57500E-3 1.23055E-2 2.14649E-2 3.29144E-2 4.65237E-2 6.21708E-2 7.97417E-2 

0.08 1.47911E-3 5.79696E-3 1.27817E-2 2.22709E-2 3.41118E-2 4.81604E-2 6.42819E-2 8.23499E-2 

0.09 1.52543E-3 5.97352E-3 1.31597E-2 2.29095E-2 3.50582E-2 4.94507E-2 6.59415E-2 8.43939E-2 

0.10 1.56068E-3 6.10756E-3 1.34458E-2 2.33912E-2 3.57696E-2 5.04168E-2 6.71784E-2 8.59096E-2 

x 
 

          

0.01 1.0416E-3 3.9097E-3 8.2311E-3 1.3648E-2 1.9820E-2 2.6420E-2 3.3137E-2 3.9675E-2 4.5752E-2 5.1101E-2 

0.02 8.0050E-4 2.9839E-3 6.2331E-3 1.0244E-2 1.4727E-2 1.9403E-2 2.4008E-2 2.8289E-2 3.2006E-2 3.4932E-2 

0.03 5.7955E-4 2.1356E-3 4.4026E-3 7.1261E-2 1.0062E-2 1.2977E-2 1.5650E-2 1.7867E-2 1.9427E-2 2.0138E-2 

0.04 3.7779E-4 1.3611E-3 2.7317E-3 4.2801E-3 5.8053E-3 7.1154E-3 8.0265E-3 8.3635E-3 7.9594E-3 6.6553E-3 

0.05 1.9432E-4 6.5698E-4 1.2127E-3 1.6933E-3 1.9371E-3 1.7893E-3 1.1019E-3 2.6672E-4 2.4516E-3 5.5813E-3 

0.06 2.8208E-5 1.9564E-5 1.6195E-4 6.4725E-4 1.5621E-3 3.0273E-3 5.1587E-3 8.0671E-3 1.1858E-2 1.6634E-2 

0.07 1.2142E-4 5.5452E-4 1.3997E-3 2.7541E-3 4.7112E-3 7.3608E-3 1.0789E-2 1.5080E-2 2.0312E-2 2.6563E-2 

0.08 2.5546E-4 1.0685E-3 2.5078E-3 4.6397E-3 7.5286E-3 1.1236E-2 1.5823E-2 2.1348E-2 2.7865E-2 3.5429E-2 

0.09 3.7472E-4 1.5258E-3 3.4933E-3 6.3162E-3 1.0032E-2 1.4679E-2 2.0294E-2 2.6911E-2 3.4565E-2 4.3289E-2 

0.10 4.8006E-4 1.9296E-3 4.3631E-3 7.7951E-3 1.2240E-2 1.7714E-2 2.4232E-2 3.1808E-2 4.0460E-2 5.0202E-2 

MHAMCWM uu 

01.0t 02.0t 03.0t 04.0t 05.0t 06.0t 07.0t 08.0t

MHAMCWM uu 

01.0t 02.0t 03.0t 04.0t 05.0t 06.0t 07.0t 08.0t 09.0t 10.0t
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Proof: 

Let ),( txu  be a function defined on    1,01,0   and   Ktxu , , K  is a positive constant. 

The Chebyshev wavelet coefficients of continuous functions ),( txu  are defined as  
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Applying mean value theorem of integral calculus, we have 
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Applying mean value theorem of integral calculus, we have 
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Therefore    
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Hence the Chebyshev series expansion of  txu ,  converges uniformly.  □  

Theorem 6.2 (Error Estimate) 

If a continuous function )(),( 2 Ltxu  defined on    1,01,0   be bounded viz. 

  Ktxu , , then 
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Proof: 
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Substituting eq. (6.43) of theorem 6.1, in eq. (6.44) we obtain  
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6.11 Conclusion 

The time fractional fifth-order Sawada-Kotera equation has been solved by using two-

dimensional Chebyshev wavelet method. The obtained results are then compared with 

exact solutions as well as with homotopy analysis method in fractional order case. The 

obtained results demonstrate the accuracy, efficiency and reliability of the proposed 

algorithm based on two-dimensional Chebyshev wavelet method and its applicability to 

nonlinear time fractional Sawada-Kotera equation. Agreement between present numerical 

results obtained by Chebyshev wavelet method with homotopy analysis method and exact 

solutions appear very satisfactory through illustrative results in Tables 6.1-6.3.  

In case of nonlinear Camassa-Holm equation with Riesz time-fractional derivative, the 

results  obtained by two-dimensional Chebyshev wavelet method are compared with the 

solutions obtained by homotopy analysis method and variational iteration method. The 

results demonstrated in Tables 6.4-6.6 show the accuracy, efficiency and plausibility of the 

proposed algorithm based on two-dimensional Chebyshev wavelet method and its 

applicability to nonlinear Camassa-Holm equation with Riesz time-fractional derivative. 

One can observe a pretty good agreement between the present numerical results obtained 

by Chebyshev wavelet method with homotopy analysis method and variational iteration 

method solutions through illustrations in Tables 6.4-6.6.  

Next, the Chebyshev wavelet method (CWM) has been successfully employed to 

demonstrate the approximate numerical solutions of the Riesz fractional sine-Gordon 

equation. The proposed wavelet method has been implemented for the first time to solve 

the fractional sine-Gordon equation numerically. Two test examples are given in order to 

show the validity and accuracy of this procedure. Also, the acquired results are compared 

with the exact solutions as well as with MHAM-FT [141], which reveals the efficiency 

and plausibility of the proposed Chebyshev wavelet method. The results exhibited in 

Tables 6.7-6.12 illustrate a pretty good agreement between the present numerical method 

with MHAM-FT and exact solution.  

In this work, we consider fractional order Sawada-Kotera equation, fractional Camassa-

Holm equation and fractional sine-Gordon equations. The motivation of the present work 

is to illustrate that the two-dimensional Chebyshev wavelet method as a powerful tool for 

solving the fractional Sawada-Kotera equation, Riesz fractional Camassa-Holm equation 
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and Riesz fractional sine-Gordon equation. Finally, it is worthwhile to mention that the 

proposed method is a promising and powerful method for solving fractional differential 

equations in mathematical physics. Also, the present scheme is very simple, effective and 

appropriate for obtaining numerical solutions of fractional differential equations.  

Analyzing the numerical results, it can be concluded that the two-dimensional Chebyshev 

wavelet method provides accurate numerical solutions for fractional differential equations. 
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CHAPTER 7 

7 Application of Hermite Wavelet 

Method for Numerical Simulation of 

Fractional Differential Equations  

7.1 Introduction 

In this chapter, a new wavelet method based on the Hermite wavelet expansion together 

with operational matrices of fractional integration and derivative of wavelet functions is 

proposed to solve time-fractional modified Fornberg-Whitham (mFW) equation. The 

technique is also implemented for finding the numerical solution to a coupled system of 

nonlinear time-fractional Jaulent-Miodek (JM) equations. Consequently, the approximate 

solutions of time-fractional modified Fornberg-Whitham equation and fractional Jaulent-

Miodek equations acquired by using Hermite wavelet technique were compared with those 

derived by using optimal homotopy asymptotic method (OHAM) and exact solutions.  

Again as the exact solution of fractional Fornberg-Whitham equation is unknown, we 

employ first integral method to determine exact solutions. The solitary wave solution of 

fractional modified Fornberg-Whitham equation has been attained by using first integral 

method.  Analytical techniques such as First Integral Method (FIM) and OHAM are 

applied in order to determine the exact solutions of fractional order modified Fornberg-

Whitham equation. 

The Fornberg-Whitham equation is given by [154] 
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,    (7.1) 

which was first proposed by Whitham in 1967 for studying the qualitative behavior of 

wave breaking [155]. In 1978, Fornberg and Whitham [156] obtained a peaked solution 
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consisting of an arbitrary constant. Modifying the nonlinear term 
x

u
u



 in (7.1) to 
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2 , 

He et al. proposed in [154] the modified Fornberg-Whitham equation as follows 
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Consider the following time-fractional modified Fornberg-Whitham equation  
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.   (7.3) 

Here , 10   is the parameter representing the order of the fractional time derivative. 

The fractional derivative is considered in the Caputo sense. A great deal of research work 

has been invested in recent years for the study of classical order modified Fornberg-

Whitham equations. Various methods such as the bifurcation theory and the method of 

phase portraits analysis [154], reduced differential transform method [157], and variational 

iteration method [158] have been developed independently for the solution of modified 

Fornberg-Whitham equation. But according to the best possible information of the authors, 

the detailed study of the nonlinear fractional order modified Fornberg-Whitham equation 

is only beginning. 

In contemporary years, significant research has been done to study the classical Jaulent-

Miodek equations. Various methods such as unified algebraic method [124], Adomian 

decomposition method [159], tanh-sech method [160], homotopy perturbation method 

[161], exp-function method [162], and homotopy analysis method [163] had been 

implemented for solving of coupled Jaulent-Miodek equations. But in keeping with the 

available information, the comprehensive analysis of the nonlinear fractional order 

coupled Jaulent-Miodek equation is only an initiation.  

Consider the following time-fractional coupled Jaulent-Miodek (JM) equations  
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 (7.4) 
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which is associated with energy-dependent Schrödinger potential [164-166]. Here 

, 10   is the parameter representing the order of the fractional derivative, deemed in 

the Caputo sense. This present chapter emphasizes on the implementation of two-
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dimensional Hermite wavelet method to solve the problem of fractional differential 

equations. With a view to exhibit the capabilities of the proposed wavelet method, we 

employ the method to deal with fractional modified Fornberg-Whitham equation and 

fractional order coupled Jaulent-Miodek equations. The approximate solutions attained via 

Hermite wavelet technique were compared with exact solutions and those derived by using 

OHAM in case of fractional order.  

7.2 Algorithm of Hermite Wavelet Method 

The proposed numerical algorithm implemented in our numerical experiment is simple, 

very easy to implement and it does not depend upon mesh of discretized time and space. 

Furthermore, it is also efficient in computation. 

Input: Consider the following general differential equation of the form

 
A  ,0),( txu       (7.6)  

which can be written as L  ),( txu N   ),(),( txgtxu  ,   (7.7) 

       where L    is the linear operator, 

 N    is the nonlinear operator, 

                ),( txg  is the known function. 

Output: The approximate solution of ),( txu . 

Initial Step:  Enter the values of M (order of Hermite polynomial) and k (level of 

resolution). 

Step I:  Construct the Hermite wavelet using the following formula 
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, 

21  and mm  are order of Hermite polynomials, 

21  and nn  are translation parameters, 

21  and kk  are positive integers specifying level of resolution. 
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Step II: Set       
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 and nonlinear term N         
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Step III: Compute L  
1
[ L   ),( txu  N     )],( txu  L  )],([1 txg

  (7.11) 

Step IV:  For 1
1

12)1(1



k

Mi  do 

compute 
1
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ki
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i
x   (collocation points for spatial variable) 

  end 

  For 1
2

22)1(1



k

Mj  do 

calculate 
1

2
222

12





kj
M

j
t   (collocation points for temporal variable) 

  end 

Step V: Substituting the collocation points ix  and jt  obtained in Step IV in eq. 

(7.11) and obtain the system of algebraic equations in 
2211 ,,, mnmna and 

2211 ,,, mnmnb . 

Step VI: By solving the system of equations obtained in Step V using Newton’s 

method, the Hermite wavelet coefficients 
2211 ,,, mnmna and 

2211 ,,, mnmnb
 
can be 

obtained.   

Step VII: Substituting the value of 
2211 ,,, mnmna in eq. (7.9), obtain the approximate 

solution for ),( txu . 

Step VIII: Stop. 
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7.3 Application of Analytical and Numerical Methods for 

Solving Time-Fractional Modified Fornberg-Whitham 

Equation 

7.3.1 Two-Dimensional Hermite Wavelet Method for Solving Nonlinear 

Time-Fractional Modified Fornberg-Whitham Equation 

To exhibit the effectiveness and accuracy of proposed numerical scheme, we consider the 

time-fractional modified Fornberg-Whitham equation. The numerical solutions thus 

obtained are compared with the exact solutions in case of classical order and with the 

solutions obtained by OHAM in case of fractional order respectively. 

Consider the nonlinear time-fractional modified Fornberg-Whitham equation 
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,  (7.12) 

with initial condition  
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The exact solution of eq. (7.12) is given by [154] 
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The Hermite wavelet solution of  txu ,  is sought by assuming that  txu ,  can be expanded 

in terms of Hermite wavelet as 

      
 





 







11
1

12
22

1

1

0

2

1

1

0

,,,,,, ,  ,

k k

n

M

i l

M

j

jlinjlin txdtxu  ,    (7.15) 

where .1,...,0,2,...,1,1,...,0,2,...,1 2
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The nonlinear terms presented in eq. (7.12) can be approximated using Hermite wavelet 

function as 
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This implies 
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and  
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Again applying 
tJ on both sides of eq. (7.12) we have 
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 . (7.22) 

Putting eqs. (7.15), (7.16), (7.17) and (7.18) in eq. (7.22), we have 
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 (7. 23) 

Now substituting the collocation points 
1

112

5.0

M

l
x

kl 


  and 

2
122

5.0

M

r
t

kr 


  for 

1
112, . .. ,2 ,1 Ml

k 
  and 2

122, . .. ,2 ,1 Mr
k 

  in eqs. (7.19), (7.20), (7.21) and (7.23), we 

have   2
1

1
1 21 224 MM

kk   equations in   2
1

1
1 21 224 MM

kk 

 unknowns in jlina ,,, , jlinb ,,, ,
 

jlinc ,,,  and jlind ,,, . By solving this system of equations using Newton’s method, the 

Hermite wavelet coefficients jlina ,,, , jlinb ,,, , jlinc ,,,  and jlind ,,,  
can be obtained.   

7.3.2 To Compare with OHAM for Solution of Time-Fractional 

Modified Fornberg-Whitham Equation 

Using optimal homotopy asymptotic method [30-32], the homotopy for eqs. (7.12) can be 

written as 
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    (7.24) 

where        





1

0 ,, ;  ,
i

i
i ptxutxuptx ,      (7.25)

  . . . 3
3

2
21  pCpCpCpH  .      (7.26) 

Substituting eqs. (7.25) and (7.26) in eq. (7.24) and equating the coefficients of different 

powers in p, we have the following system of partial differential equations. 

Coefficients of 
0p

 
0

,
: 0 








t

txu
.       (7.27) 
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and so on. 

For solving fractional order modified Fornberg-Whitham equation using OHAM, we 

consider the following initial condition for equation (7.12)  

      xhxu 







 15510

20

1
 sec515

4

3
0, 2 . 

Using the initial condition )0,(0 xuu   and solving eq. (7.27) to eq. (7.30), we obtain the 

expressions for 3210  , , , uuuu  and so on. 

Finally, the third order approximate solution for time-fractional modified Fornberg-

Whitham equation is given by 

),( ),( ),( ),( 3210 txutxutxutxuu  .    (7.31) 

The optimal values of the convergence control constants 321  and   , CCC  can be obtained 

using weighted residual least square method given in eqs. (1.34) and (1.35) of chapter 1. 

7.4 Numerical Results and Discussion 

The comparison of the absolute errors for time-fractional modified Fornberg-Whitham 

equation (7.12) have been exhibited in Tables 7.1 and 7.2 which are generated using the 

results obtained by two-dimensional Hermite wavelet method and OHAM at different 

values of x and t taking  1 . In the present analysis, to examine the accuracy and 

reliability of the Hermite wavelets for solving fractional order modified Fornberg-

Whitham equation, we compare the approximate solution of Hermite wavelets with the 

third order approximate solution obtained by OHAM. Tables 7.3 and 7.4 show the 

absolute errors of fractional order modified Fornberg-Whitham equation (7.12) at various 

points of x and t taking 0.5  and  750 .α   respectively. Agreement between present 

numerical results for time-fractional modified Fornberg-Whitham equation obtained by 

Hermite wavelets and OHAM appears very satisfactory through illustrations in Tables 7.5 

and 7.6. Table 7.7 shows the LL  and 2  error norms for fractional modified Fornberg-

Whitham equation using two-dimensional Hermite wavelet methods and OHAM at 

various points of t taking 0.5.   and  75.0   
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Table 7.1 The absolute errors obtained by two-dimensional Hermite wavelet method for 

nonlinear modified Fornberg-Whitham equation given in eq. (7.12) at various points of x and t 

taking .1  
 

x 
 

1.0t  2.0t  3.0t  4.0t  5.0t  6.0t  7.0t  8.0t  9.0t  

0.1 3.7564E-4 5.5722E-4 5.1447E-4 2.1718E-4 3.6388E-4 1.2543E-3 2.4734E-3 4.0313E-3 5.9263E-3 

0.2 3.6817E-4 5.4379E-4 5.0090E-4 2.1372E-4 3.4281E-4 1.1905E-3 2.3457E-3 3.8163E-3 5.6007E-3 

0.3 3.6433E-4 5.3561E-4 4.9206E-4 2.1218E-4 3.2489E-4 1.1373E-3 2.2382E-3 3.6336E-3 5.3201E-3 

0.4 3.6412E-4 5.3275E-4 4.8812E-4 2.1292E-4 3.0961E-4 1.0938E-3 2.1497E-3 3.4808E-3 5.0827E-3 

0.5 3.6757E-4 5.3531E-4 4.8929E-4 2.1630E-4 2.9639E-4 1.0593E-3 2.0792E-3 3.3572E-3 4.8871E-3 

0.6 3.7478E-4 5.4349E-4 4.9589E-4 2.2274E-4 2.8468E-4 1.0331E-3 2.0259E-3 3.2615E-3 4.7320E-3 

0.7 3.8584E-4 5.5751E-4 5.0827E-4 2.3274E-4 2.7383E-4 1.0144E-3 1.9888E-3 3.1928E-3 4.6163E-3 

0.8 4.0091E-4 5.7767E-4 5.2688E-4 2.4690E-4 2.6312E-4 1.0023E-3 1.9670E-3 3.1500E-3 4.5391E-3 

0.9 4.2025E-4 6.0441E-4 5.5231E-4 2.6594E-4 2.5171E-4 9.9595E-4 1.9595E-3 3.1322E-3 4.4992E-3 

Table 7.2 The absolute errors obtained by optimal homotopy asymptotic method (OHAM) 

for modified Fornberg-Whitham equation given in eq. (7.12) at various points of x and t taking 

.1  
 

Table 7.3 The absolute errors obtained by two-dimensional Hermite wavelet method and 

third order OHAM solution for fractional order nonlinear modified Fornberg-Whitham equation 

given in eq. (7.12) at various points of x and t taking  

waveletHermiteExact uu  

.75.0

x 
 

1.0t  2.0t  3.0t  4.0t  5.0t  6.0t  7.0t  8.0t  9.0t  

0.1 6.4610E-6 1.2928E-5 5.7106E-5 1.2329E-4 2.0699E-4 3.0203E-4 4.0061E-4 4.9330E-4 5.6917E-4 

0.2 2.5099E-5 2.2342E-5 8.7492E-6 6.6918E-5 1.4918E-4 2.5087E-4 3.6563E-4 4.8544E-4 6.0074E-4 

0.3 4.3236E-5 5.6305E-5 3.7197E-5 1.4365E-5 9.6935E-5 2.0734E-4 3.4071E-4 4.9050E-4 6.4853E-4 

0.4 6.0707E-5 8.8650E-5 8.0295E-5 3.3830E-5 5.0831E-5 1.7204E-4 3.2644E-4 5.0897E-4 7.1289E-4 

0.5 7.7360E-5 1.1908E-4 1.2014E-4 7.7185E-5 1.1402E-5 1.4551E-4 3.2329E-4 5.4121E-4 7.9400E-4 

0.6 9.3052E-5 1.4735E-4 1.5637E-4 1.1527E-4 2.0905E-5 1.2816E-4 3.3161E-4 5.8741E-4 8.9183E-4 

0.7 1.0765E-4 1.7320E-4 1.8867E-4 1.4773E-4 4.5730E-5 1.2029E-4 3.5157E-4 6.4760E-4 1.0061E-3 

0.8 1.2105E-4 1.9644E-4 2.1678E-4 1.7429E-4 6.2814E-5 1.2211E-4 3.8324E-4 7.2163E-4 1.1365E-3 

0.9 1.3314E-4 2.1689E-4 2.4049E-4 1.9473E-4 7.1997E-5 1.3366E-4 4.2653E-4 8.0916E-4 1.2824E-3 

x 
 

         

0.1 4.7565E-4 3.5641E-3 8.0016E-3 1.3396E-2 1.9495E-2 2.6133E-2 3.3182E-2 4.0509E-2 4.7923E-2 

0.2 8.8635E-4 1.2693E-3 4.8602E-3 9.4511E-3 1.4770E-2 2.0648E-2 2.6963E-2 3.3585E-2 4.0320E-2 

0.3 2.2468E-3 1.0167E-3 1.7374E-3 5.5349E-3 1.0084E-2 1.5214E-2 2.0804E-2 2.6727E-2 3.2788E-2 

0.4 3.6037E-3 3.2904E-3 1.3619E-3 1.6542E-3 5.4468E-3 9.8382E-3 1.4712E-2 1.9946E-2 2.5339E-2 

0.5 4.9553E-3 5.5482E-3 4.4327E-3 2.1843E-3 8.6443E-4 4.5308E-3 8.7013E-3 1.3255E-2 1.7987E-2 

0.6 6.2997E-3 7.7868E-3 7.4700E-3 5.9744E-3 3.6545E-3 6.9903E-4 2.7806E-3 6.6656E-3 1.0747E-2 

0.7 7.6352E-3 1.0003E-2 1.0469E-2 9.7098E-3 8.1023E-3 5.8419E-3 3.0385E-3 1.9102E-4 3.6320E-3 

0.8 8.9603E-3 1.2193E-2 1.3425E-2 1.3384E-2 1.2471E-2 1.0888E-2 8.7451E-3 6.1561E-3 3.3425E-3 

OHAMExact uu 

OHAMExact uu 

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t
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Table 7.4 The absolute errors obtained by two-dimensional Hermite wavelet method and 

third order OHAM solution for fractional order nonlinear modified Fornberg-Whitham equation 

given in eq. (7.12) at various points of x and t taking   

x  

1.0t  2.0t  3.0t  4.0t  5.0t  6.0t  7.0t  8.0t  9.0t  

0.1 1.2334E-2 4.0688E-3 1.4027E-2 1.6573E-2 1.5687E-2 1.5562E-2 1.5805E-2 6.6256E-3 3.5980E-2 

0.2 1.5565E-2 3.8814E-4 1.0784E-2 1.3953E-2 1.3347E-2 1.3079E-2 1.3374E-2 6.0014E-3 3.0299E-2 

0.3 1.8769E-2 3.2892E-3 7.5422E-3 1.1332E-2 1.0998E-2 1.0573E-2 1.0901E-2 5.3094E-3 2.4724E-2 

0.4 2.1934E-2 6.9543E-3 4.3072E-3 8.7171E-3 8.6477E-3 8.0497E-3 8.3899E-3 4.5590E-3 1.9229E-2 

0.5 2.5043E-2 1.0597E-2 1.0867E-3 6.1147E-3 6.3028E-3 5.5169E-3 5.8492E-3 3.7602E-3 1.3790E-2 

0.6 2.8082E-2 1.4209E-2 2.1116E-3 3.5329E-3 3.9725E-3 2.9834E-3 3.2865E-3 2.9235E-3 8.3783E-3 

0.7 3.1037E-2 1.7780E-2 5.2800E-3 9.8022E-4 1.6663E-3 4.5848E-4 7.1012E-4 2.0604E-3 2.9665E-3 

0.8 3.3892E-2 2.1298E-2 8.4099E-3 1.5347E-3 6.0631E-4 2.0482E-3 1.8707E-3 1.1828E-3 2.4738E-3 

0.9 3.6632E-2 2.4754E-2 1.1492E-2 4.0027E-3 2.8348E-3 4.5263E-3 4.4464E-3 3.0333E-4 7.9720E-3 

Table 7.5 Comparison of approximate solutions obtained by two-dimensional Hermite 

wavelet method and optimal homotopy asymptotic method for fractional order nonlinear modified 

Fornberg-Whitham equation given in eq. (7.12) at various points of x and t taking .75.0   

x 1.0t  2.0t  3.0t  4.0t  5.0t  6.0t  7.0t  8.0t  9.0t  

HW
u  

OHAM
u  

HW
u  

OHAM
u  

HW
u  

OHAM
u  

HW
u  

OHAM
u  

HW
u  

OHAM
u  

HW
u  

OHAM
u  

HW
u  

OHAM
u  

HW
u  

OHAM
u  

HW
u  

OHAM
u  

0.1 -0.84 

414 

-0.84 

495 

-0.84 

068 

-0.84 

367 

-0.83 

584 

-0.84 

165 

-0.83 

002 

-0.83 

905 

-0.82 

346 

-0.83 

594 

-0.8 

1635 

-0.83 

238 

-0.8 

0879 

-0.82 

840 

-0.80 

095 

-0.82 

404 

-0.7 

9298 

-0.8 

1933 

0.2 -0.84 

449 

-0.84 

509 

-0.84 

175 

-0.84 

444 

-0.83 

759 

-0.84 

298 

-0.83 

241 

-0.84 

090 

-0.82 

649 

-0.83 

828 

-0.8 

1999 

-0.83 

518 

-0.8 

1304 

-0.83 

164 

-0.80 

576 

-0.82 

770 

-0.7 

9836 

-0.8 

2338 

0.3 -0.84 

435 

-0.84 

476 

-0.84 

235 

-0.84 

473 

-0.83 

885 

-0.84 

385 

-0.83 

431 

-0.84 

229 

-0.82 

901 

-0.84 

016 

-0.8 

2312 

-0.83 

753 

-0.8 

1677 

-0.83 

444 

-0.81 

006 

-0.83 

093 

-0.8 

0321 

-0.8 

2703 

0.4 -0.84 

375 

-0.84 

395 

-0.84 

247 

-0.84 

455 

-0.83 

963 

-0.84 

423 

-0.83 

571 

-0.84 

320 

-0.83 

103 

-0.84 

157 

-0.8 

2574 

-0.83 

942 

-0.8 

1997 

-0.83 

679 

-0.81 

383 

-0.83 

372 

-0.8 

0752 

-0.8 

3024 

0.5 -0.84 

268 

-0.84 

266 

-0.84 

211 

-0.84 

389 

-0.83 

991 

-0.84 

415 

-0.83 

661 

-0.84 

365 

-0.83 

253 

-0.84 

253 

-0.8 

2783 

-0.84 

085 

-0.8 

2264 

-0.83 

869 

-0.8 

1705 

-0.83 

606 

-0.8 

1129 

-0.8 

3302 

0.6 -0.84 

115 

-0.84 

091 

-0.84 

128 

-0.84 

277 

-0.83 

971 

-0.84 

358 

-0.83 

702 

-0.84 

362 

-0.83 

352 

-0.84 

301 

-0.8 

2941 

-0.84 

182 

-0.8 

2478 

-0.84 

013 

-0.81 

975 

-0.83 

796 

-0.8 

1452 

-0.8 

3535 

0.7 -0.83 

915 

-0.83 

868 

-0.83 

998 

-0.84 

117 

-0.83 

903 

-0.84 

255 

-0.83 

693 

-0.84 

312 

-0.83 

401 

-0.843 

02 

-0.8 

3046 

-0.84 

233 

-0.8 

2639 

-0.84 

110 

-0.82 

189 

-0.83 

939 

-0.8 

1719 

-0.8 

3724 

0.8 -0.83 

669 

-0.83 

600 

-0.83 

821 

-0.83 

910 

-0.83 

787 

-0.84 

105 

-0.83 

634 

-0.84 

215 

-0.83 

399 

-0.84 

256 

-0.8 

3099 

-0.84 

236 

-0.8 

2746 

-0.84 

162 

-0.82 

349 

-0.84 

038 

-0.8 

1932 

-0.8 

3867 

0.9 -0.83 

379 

-0.83 

286 

-0.83 

598 

-0.83 

657 

-0.83 

624 

-0.83 

908 

-0.83 

527 

-0.84 

072 

-0.83 

346 

-0.84 

163 

-0.8 

3101 

-0.84 

193 

-0.8 

2800 

-0.84 

167 

-0.82 

455 

-0.84 

090 

-0.8 

2088 

-0.8 

3966 

 

Table 7.6 Comparison of approximate solutions obtained by two-dimensional Hermite 

wavelet method and optimal homotopy asymptotic method for fractional order nonlinear modified 

Fornberg-Whitham equation given in eq. (7.12) at various points of x and t taking .5.0  

x 1.0t  2.0t  3.0t  4.0t  5.0t  6.0t  7.0t  8.0t  9.0t  

HW
u  

OHAM
u  

HW
u  

OHAM
u  

HW
u  

OHAM
u  

HW
u  OHAM

u  

HW
u  

OHAM
u  

HW
u  

OHAM
u  

HW
u  

OHAM
u  

HW
u  OHAM

u  

HW
u  

OHAM
u  

0.1 -0.85 

594 

-0.84 

360 

-0.83 

668 

-0.84 

073 

-0.82 

344 

-0.83 

747 

-0.81 

743 

-0.83 

401 

-0.81 

471 

-0.83 

040 

-0.8 

1114 

-0.82 

671 

-0.8 

0713 

-0.82 

294 

-0.81 

248 

-0.81 

911 

-0.8 

5122 

-0.8 

1524 

0.2 -0.85 -0.84 -0.84 -0.84 -0.82 -0.83 -0.82 -0.83 -0.81 -0.83 -0.8 -0.82 -0.8 -0.82 -0.81 -0.82 -0.8 -0.8 

.5.0

waveletHermiteOHAM uu  

0.9 1.0273E-2 1.4356E-2 1.6335E-2 1.6992E-2 1.6754E-2 1.5830E-2 1.4328E-2 1.2363E-2 1.0162E-2 
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929 372 118 157 807 885 188 584 928 263 1620 928 1246 583 629 230 4899 1869 

0.3 -0.86 

214 

-0.84 

337 

-0.84 

523 

-0.84 

195 

-0.83 

223 

-0.83 

977 

-0.82 

589 

-0.83 

722 

-0.82 

342 

-0.83 

442 

-0.8 

2086 

-0.83 

143 

-0.8 

1740 

-0.82 

831 

-0.81 

976 

-0.82 

507 

-0.8 

4646 

-0.8 

2174 

0.4 -0.86 

449 

-0.84 

256 

-0.84 

881 

-0.84 

185 

-0.83 

593 

-0.84 

024 

-0.82 

944 

-0.83 

815 

-0.82 

711 

-0.83 

576 

-0.8 

2509 

-0.83 

314 

-0.8 

2196 

-0.83 

035 

-0.82 

286 

-0.82 

742 

-0.8 

4361 

-0.8 

2438 

0.5 -0.86 

632 

-0.84 

127 

-0.85 

189 

-0.84 

130 

-0.83 

916 

-0.84 

025 

-0.83 

252 

-0.83 

863 

-0.83 

035 

-0.83 

665 

-0.8 

2889 

-0.83 

441 

-0.8 

2611 

-0.83 

196 

-0.82 

559 

-0.82 

935 

-0.8 

4039 

-0.8 

2660 

0.6 -0.86 

762 

-0.83 

954 

-0.85 

449 

-0.84 

028 

-0.84 

191 

-0.83 

979 

-0.83 

513 

-0.83 

866 

-0.83 

313 

-0.83 

710 

-0.8 

3225 

-0.83 

523 

-0.8 

2985 

-0.83 

314 

-0.82 

793 

-0.83 

085 

-0.8 

3678 

-0.8 

2841 

0.7 -0.86 

838 

-0.83 

735 

-0.85 

659 

-0.83 

882 

-0.84 

417 

-0.83 

889 

-0.83 

725 

-0.83 

823 

-0.83 

543 

-0.83 

710 

-0.8 

3516 

-0.83 

562 

-0.8 

3317 

-0.83 

388 

-0.82 

986 

-0.83 

192 

-0.8 

3276 

-0.8 

2979 

0.8 -0.86 

860 

-0.83 

471 

-0.85 

819 

-0.83 

689 

-0.84 

594 

-0.83 

753 

-0.83 

889 

-0.83 

736 

-0.83 

726 

-0.83 

665 

-0.8 

3761 

-0.8 

3556 

-0.8 

3605 

-0.8 

3418 

-0.83 

138 

-0.83 

256 

-0.8 

2827 

-0.8 

3075 

0.9 -0.86 

826 

-0.83 

163 

-0.85 

929 

-0.83 

453 

-0.84 

722 

-0.83 

573 

-0.84 

004 

-0.83 

604 

-0.83 

859 

-0.83 

576 

-0.8 

3959 

-0.83 

506 

-0.8 

3849 

-0.83 

405 

-0.83 

246 

-0.83 

277 

-0.8 

2330 

-0.8 

3127 

Table 7.7  error norms for fractional order nonlinear modified Fornberg-Whitham 

equation using two-dimensional Hermite wavelet methods at various points of t taking 

0.5.   and  75.0  

t 
  

    

0.1 1.80944E-2 3.6632E-2 7.80858E-2 1.0273E-2 

0.2 2.39252E-2 2.4754E-2 4.21019E-2 1.4356E-2 

0.3 2.69190E-2 1.4027E-2 2.49960E-2 1.6335E-2 

0.4 3.00791E-2 1.6573E-2 2.72568E-2 1.6992E-2 

0.5 3.52921E-2 1.5687E-2 2.62040E-2 1.9495E-2 

0.6 4.31487E-2 1.5562E-2 2.55744E-2 2.6133E-2 

0.7 5.34017E-2 1.5805E-2 2.62044E-2 3.3182E-2 

0.8 6.55134E-2 6.6256E-3 1.29004E-2 4.0509E-2 

0.9 7.87788E-2 3.5980E-2 5.94344E-2 4.7923E-2 

The following Figures 7.1 and 7.2 demonstrate the graphical comparison of the numerical 

solutions obtained by two-dimensional Hermite wavelet approximation with regard to 

OHAM for 0.5   and  75.0   respectively.  

 

 
 

Figure 7.1 Comparison of the numerical solutions of  obtained by OHAM with 

regard to two-dimensional Hermite wavelet approximation for .75.0  

LL  and 2

75.0  5.0
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Figure 7.2 Comparison of the numerical solutions of  obtained by OHAM with 

regard to two-dimensional Hermite wavelet approximation for .5.0  

7.5 Application of Analytical Methods to Determine the 

Exact Solutions of Time-Fractional Modified 

Fornberg-Whitham Equation 

7.5.1 Implementation of the First Integral Method for Solving 

Fractional Modified Fornberg-Whitham Equation 

Let us consider the following time-fractional modified Fornberg-Whitham equation  
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,  (7.32) 

Here , 10   is the parameter representing the order of the fractional time derivative. In 

this present section, new exact solution of fractional modified Fornberg-Whitham equation 

has been derived using the first integral method. The first integral method has been 

implemented for finding exact solution of fractional modified Fornberg-Whitham equation 

given in eq. (7.32) with an intention to demonstrate the efficacy and accuracy of the 

proposed method. The exact solutions devised are compared with the numerical solution 

obtained by OHAM.  

Let us introduce the following fractional complex transform in eq. (7.32): 

)(),( txu ,    
)1( 







t
kx ,     (7.33) 

where k and   are constants.  

),7.0( tu
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By applying the fractional complex transform (7.33), eq. (7.32) can be transformed to the 

following nonlinear ordinary differential equation 
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Integrating eq. (7.34) once with respect to  , we obtain 
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 (7.35) 

where 0

~
  is an integration constant. 

Using eqs. (1.6) and (1.7) of chapter 1, eq. (7.35) can be written as the following two-

dimensional autonomous system 

              )(
)(





Y

d

dX
 ,    

      0
23332 )()()(

3
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  YkkXX

k
X

d

dY
Xkk .  (7.36)  

According to the first integral method, we suppose that )(X  and )(Y  are the nontrivial 

solutions of eq. (7.36) and 





m

i

i
i YXaYXQ

0

)(),(  

 is an irreducible polynomial in the complex domain C [X, Y] such that  

  



m

i

i
i YXaYXQ

0

0)())(()(),(  ,    (7.37)    

where ))(( Xai , mi ,...,2,1,0  are polynomials in X and 0)( Xam . Eq. (7.37) is called 

the first integral to eq. (7.36). Applying the division theorem 1.1 of chapter 1, there exists 

a polynomial YXhXg )()(   in the complex domain C [X, Y] such that  

                     



m

i

i
i YXaYXhXg

d

dQ

0

)())()((


.    (7.38)         

Considering 1m  in eq. (7.38), we obtain 
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Q   YXaXaYXhXg )()()()( 10  .  (7.39) 
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Equating the coefficients of 
iY , 1,0i  on both sides of eq. (7.39), we have 

:0Y     . )()()()(
3

)()( 32
00

3
1 XkkXgXakXX

k
XXa 








   (7.40)            

:1Y      . )()()()()( 32
10

32
0 XkkXgXaXhXaXkkXa         (7.41) 

       :2Y      . )()()()( 3
1

32
1

32
1 kXaXkkXhXaXkkXa      (7.42) 

Since )(Xai , 1,0i  are polynomials in X, from eq. (7.42) we infer that )(1 Xa  is a 

constant and 
kX

k
Xh





)( . For simplicity, we take 1)(1 Xa . Then balancing the 

degrees of )(0 Xa  and )(Xg , eq. (7.41) indicates that ))(deg())(deg( 0 XaXg  , thus 

from eq. (7.41), we conclude that ))(deg( Xg 1. 

Now suppose that  

       01)( bXbXg  ,  01
22

0
2

)( AXAX
A

Xa  ,   )0,0( 21  Ab ,    (7.43) 

where 1b , 0b , 2A , 1A  and 0A  are all constants to be determined later. Using eq. (7.41), we 

find that  


0

10

kA
Ab  ,        (7.44)

2
0

2
1

21


AkkA
Ab  .       (7.45) 

Next, substituting )(0 Xa  and )(Xg  in eq. (7.40) and consequently equating the 

coefficients of 
iX , 4,3,2,1,0i  to zero, we obtain the following system of nonlinear 

algebraic equations: 

:0X   00
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00 kAb .      (7.46)       

                        :1X   kkAbkAbkAb   3
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.                     (7.48)   

                       :3X   
322

3
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2
21 k
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.    (7.49)   

          :4X   0
2

3
21 
kAb

.       (7.50) 
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Solving the above system of eqs. (7.46)-(7.50) simultaneously, we get the following 

family of nontrivial solutions              
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and 
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Case I: Substituting the values of 210   and , AAA , obtained in eq. (7.51) into eq. (7.37), we 

get 
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Solving eq. (7.53), we obtain the exact solution to eq. (7.32) as 
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where 1  is an arbitrary constant. 

Case II: Substituting the values of 210   and , AAA  from eq. (7.52) into eq. (7.37), we get 
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Solving eq. (7.55), we obtain the exact solution to eq. (7.32) as 
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 (7.56) 

where 2  is an arbitrary constant. 

The established solutions in eqs. (7.54) and (7.56) have been checked by putting them into 

the eq. (7.34). Thus the new exact solutions given in eqs. (7.54) and (7.56) for time-
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fractional modified Fornberg-Whitham equation have been first time obtained in this 

present section.  

7.5.2 Implementation of OHAM for Approximate Solution of Fractional 

Modified Fornberg-Whitham Equation 

To exhibit the effectiveness and accuracy of proposed scheme, we consider the fractional 

modified Fornberg-Whitham equation with an initial condition. The solutions thus 

obtained are compared with the exact solutions obtained by first integral method. 

Using optimal homotopy asymptotic method [30-32], the homotopy for eq. (7.32) can be 

written as 
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 (7.57) 

where 





1
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i ptxutxuptx ,        (7.58) 

...)( 3
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2
21  pCpCpCpH  .      (7.59) 

Substituting eqs. (7.58) and (7.59) in eq. (7.57) and equating the coefficients of different 

powers in p, we have the following system of partial differential equations. 
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Coefficients of :2p  
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  (7.62) 

and so on. 

For solving fractional order modified Fornberg-Whitham equation using OHAM, we 

consider the following initial condition for equation (7.32)  
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 .(7.63) 

Using the initial condition )0,(0 xuu   and solving eq. (7.60) to eq. (7.62), we obtain the 

expressions for 210  , , uuu  and so on. 

Finally, the third order approximate solution for fractional modified Fornberg-Whitham 

equation is given by 

     ),( ),( ),( 210 txutxutxuu  .    (7.64) 

The optimal values of the convergence control parameters 21   and  CC  can be obtained 

using weighted residual least square method given in eqs. (1.34) and (1.35) of chapter 1. 

7.6 Numerical Results and Discussion 

The comparison of the absolute errors for fractional modified Fornberg-Whitham equation 

(7.32) have been exhibited in Tables 7.8-7.10 which are generated by using the results 

obtained by first integral method and OHAM at different values of .  In order to examine 

the accuracy and reliability of first integral method for solving fractional order nonlinear 

modified Fornberg-Whitham equation, we compare the exact solution obtained by using 

first integral method with the third order approximate OHAM solutions. Table 7.11 

illustrates the LL  and 2  error norms for fractional modified Fornberg-Whitham equation 

given in eq. (7.32) at various points of t taking 5.0  and 0.75. Figures 7.3-7.6 
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demonstrate the comparison of approximate solutions obtained by OHAM with first 

integral method for modified Fornberg-Whitham equation. It can be observed that the 

derived numerical simulation results are in good agreement with the exact solutions 

obtained by first integral method through illustrations in Tables and figures.  

Table 7.8 The absolute errors obtained by OHAM for nonlinear modified Fornberg-

Whitham equation given in eq. (7.32) at various points of x and t taking ,1k 5.2 , 11  , and 

.1  

x 
OHAMExact uu   

1.0t  2.0t  3.0t  4.0t  5.0t  6.0t  7.0t  8.0t  9.0t  0.1t  

0.1 9.3908E-4 8.9819E-4 2.8677E-5 1.5351E-3 3.6724E-3 6.2730E-3 9.2349E-3 1.2462E-2 1.5864E-2 1.9351E-2 

0.2 1.1574E-3 1.2728E-3 5.0544E-4 1.0041E-3 3.1298E-3 5.7577E-3 8.7828E-3 1.2107E-2 1.5637E-2 1.9284E-2 

0.3 1.3864E-3 1.6646E-3 1.0025E-3 4.5210E-4 2.5680E-3 5.2267E-3 8.3199E-3 1.1746E-2 1.5413E-2 1.9227E-2 

0.4 16274E-3 2.0759E-3 1.5231E-3 1.2413E-4 1.9834E-3 4.6765E-3 7.8428E-3 1.1379E-2 1.5188E-2 1.9178E-2 

0.5 1.8818E-3 2.5092E-3 2.0703E-3 7.2846E-4 1.3721E-3 4.1029E-3 7.3478E-3 1.1000E-2 1.4960E-2 1.9135E-2 

0.6 2.1514E-3 2.9676E-3 2.6480E-3 1.3652E-3 7.2944E-4 3.5016E-3 6.8304E-3 1.0605E-2 1.4725E-2 1.9094E-2 

0.7 2.4381E-3 3.4543E-3 3.2605E-3 2.0392E-3 5.0184E-5 2.8671E-3 6.2856E-3 1.0191E-2 1.4480E-2 1.9053E-2 

0.8 2.7441E-3 3.9732E-3 3.9127E-3 2.7562E-3 6.7161E-4 2.1934E-3 5.7074E-3 9.7520E-3 1.4218E-2 1.9007E-2 

0.9 3.0720E-3 4.5286E-3 4.6103E-3 3.5225E-3 1.4428E-3 1.4734E-3 5.0890E-3 9.2805E-3 1.3936E-2 1.8951E-2 

1.0 3.4245E-3 5.1254E-3 5.3596E-3 4.3457E-3 2.2716E-3 6.9904E-4 4.4222E-3 8.7694E-3 1.3624E-2 1.8880E-2 

 

Table 7.9 The absolute errors obtained by third order OHAM for nonlinear modified 

Fornberg-Whitham equation given in eq. (7.32) at various points of x and t taking ,1k 5.2 , 

11  , and .75.0  

 
x 

OHAMExact uu   

1.0t  2.0t  3.0t  4.0t  5.0t  6.0t  7.0t  8.0t  9.0t  0.1t  

0.1 1.5780E-3 8.3963E-4 7.3067E-4 2.7686E-3 5.0835E-3 7.5542E-3 1.0094E-2 1.2641E-2 1.5139E-2 1.7548E-2 

0.2 1.9515E-3 1.3377E-3 1.9635E-4 2.2546E-3 4.6313E-3 7.1966E-3 9.8595E-3 1.2551E-2 1.5217E-2 1.7813E-2 

0.3 2.3436E-3 1.8601E-3 3.6403E-4 1.1749E-3 4.1550E-3 6.8173E-3 9.6052E-3 1.2446E-2 1.5283E-2 1.8069E-2 

0.4 2.7562E-3 2.4098E-3 9.5402E-4 1.1456E-3 3.6507E-3 6.4126E-3 9.3285E-3 1.2321E-2 1.5333E-2 1.8312E-2 

0.5 3.1920E-3 2.9902E-3 1.5775E-3 5.4267E-4 3.1141E-3 5.9781E-3 9.0252E-3 1.2174E-2 1.5363E-2 1.8541E-2 

0.6 3.6537E-3 3.6052E-3 2.2390E-3 9.8730E-5 2.5405E-3 5.5091E-3 8.6907E-3 1.2000E-2 1.5370E-2 1.8749E-2 

0.7 4.1442E-3 4.2590E-3 2.9435E-3 7.8394E-4 1.9243E-3 5.0001E-3 8.3195E-3 1.1792E-2 1.5349E-2 1.8934E-2 

0.8 4.6671E-3 4.9566E-3 3.6966E-3 1.5190E-3 1.2590E-3 4.4443E-3 7.9051E-3 1.1546E-2 1.5293E-2 1.9089E-2 

0.9 5.2262E-3 5.7034E-3 4.5047E-3 2.3111E-3 5.3754E-4 3.8345E-3 7.4401E-3 1.1252E-2 1.5195E-2 1.9207E-2 

1.0 5.8260E-3 6.5056E-3 5.3752E-3 3.1681E-3 2.4874E-3 3.1621E-3 6.9156E-3 1.0904E-2 1.5047E-2 1.9279E-2 

 

Table 7.10 The absolute errors obtained by third order OHAM for nonlinear modified 

Fornberg-Whitham equation given in eq. (7.32) at various points of x and t taking ,1k 5.2 , 

11  , and .5.0  
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x 

OHAMExact uu   

1.0t  2.0t  3.0t  4.0t  5.0t  6.0t  7.0t  8.0t  9.0t  0.1t  

0.1 2.2513E-3 7.4423E-4 1.0160E-3 2.7858E-3 4.4912E-3 6.1032E-3 7.6093E-3 9.0044E-3 1.0286E-2 1.1455E-2 

0.2 2.7556E-3 1.2335E-3 6.1201E-4 2.5001E-3 4.3430E-3 6.1056E-3 7.7717E-3 9.3342E-3 1.0789E-2 1.2136E-2 

0.3 3.2903E-3 1.7588E-3 1.6932E-4 2.1737E-3 4.1529E-3 6.0647E-3 7.8897E-3 9.6181E-3 1.1245E-2 1.2769E-2 

0.4 3.8590E-3 2.3241E-3 3.1646E-4 1.8023E-3 3.9160E-3 5.9757E-3 7.9580E-3 9.8510E-3 1.1648E-2 1.3347E-2 

0.5 4.4652E-3 2.9338E-3 8.5036E-4 1.3803E-3 3.6268E-3 5.8327E-3 7.9708E-3 1.0026E-2 1.1993E-2 1.3865E-2 

0.6 5.1131E-3 3.5931E-3 1.4381E-3 9.0172E-4 3.2786E-3 5.6289E-3 7.9209E-3 1.0138E-2 1.2271E-2 1.4314E-2 

0.7 5.8072E-3 4.3078E-3 2.0862E-3 3.5928E-4 2.8640E-3 5.3561E-3 7.7998E-3 1.0175E-2 1.2473E-2 1.4685E-2 

0.8 6.5529E-3 5.0845E-3 2.8021E-3 2.5513E-4 2.3740E-3 5.0051E-3 7.5977E-3 1.0129E-2 1.2588E-2 1.4967E-2 

0.9 7.3558E-3 5.9304E-3 3.5944E-3 9.5096E-4 1.7984E-3 4.5648E-3 7.3028E-3 9.9877E-3 1.2604E-2 1.5145E-2 

1.0 8.2226E-3 6.8540E-3 4.4727E-3 1.7391E-3 1.1254E-3 4.0224E-3 6.9015E-3 9.7347E-3 1.2506E-2 1.5205E-2 

 

Table 7.11 LL  and 2  error norms for time-fractional nonlinear modified Fornberg-Whitham 

equation given in eq. (7.32) at various points of t taking . 0.5   and  75.0  

 

 

 
 

Figure 7.3 Comparison of approximate solution obtained by OHAM with the exact solution 

obtained by FIM for fractional modified Fornberg-Whitham equation at 1.0t taking 1 . 

 

t 75.0  5.0 
 

2    L
 L     

 2    L
 L     

 

0.1 1.19640E-2 5.8260E-3 1.68180E-2 8.2226E-3 

0.2 1.22987E-2 6.5056E-3 1.46109E-2 6.8540E-3 

0.3 8.97947E-3 5.3752E-3 7.03247E-3 4.4727E-3 

0.4 5.83484E-3 3.1681E-3 5.36896E-3 2.7858E-3 

0.5 1.02858E-2 5.0835E-3 1.06703E-2 4.4912E-3 

0.6 1.82208E-2 7.5542E-3 1.74206E-2 6.1056E-3 

0.7 2.77533E-2 1.0094E-2 2.42832E-2 7.9708E-3 

0.8 3.78696E-2 1.2641E-2 3.10113E-2 1.0175E-2 

0.9 4.82540E-2 1.5370E-2 3.75238E-2 1.2604E-2 

1.0 5.87011E-2 1.9279E-2 4.37840E-2 1.5205E-2 
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Figure 7.4 Comparison of approximate solution obtained by OHAM with the exact solution 

obtained by FIM for fractional modified Fornberg-Whitham equation at 5.0t taking 1 . 

 

Figure 7.5 Comparison of approximate solution obtained by OHAM with the exact solution 

obtained by FIM for fractional modified Fornberg-Whitham equation at 2.0t taking 75.0 . 

 

Figure 7.6 Comparison of approximate solution obtained by OHAM with the exact solution 

obtained by FIM for fractional modified Fornberg-Whitham equation 4.0t taking 5.0 . 
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7.7 Application of Analytical and Numerical Methods for 

Solving Time-Fractional Coupled Jaulent-Miodek 

Equation 

7.7.1 Two-Dimensional Hermite Wavelet Method for Solving Nonlinear 

Time-Fractional Coupled Jaulent-Miodek Equations 

To demonstrate the accuracy and efficiency of the proposed numerical technique, we 

consider time-fractional coupled Jaulent-Miodek equation. The numerical approximate 

solutions thus achieved are compared with the exact solutions in case of classical order 

and with the solutions obtained by OHAM in case of fractional order respectively. 

Consider the nonlinear time-fractional coupled Jaulent-Miodek equations 
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with initial conditions [163] 
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where   is an arbitrary constant. 

For ,1  the exact solutions of eqs. (7.65) and (7.66) are given by [163] 
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The Hermite wavelet solutions of  txu ,  and  txv ,   are sought by assuming that  txu ,  and 

 txv ,  can be expanded in terms of Hermite wavelets as 
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The nonlinear terms appeared in eqs. (7.65) and (7.66) can be approximated using Hermite 

wavelet function as 
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This implies 
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Again employing 
tJ on both sides of eqs. (7.65) and (7.66) we have 
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Putting eqs. (7.73)- (7.80) in eqs. (7.89) and (7.90), we have 
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Now substituting the collocation points 
1

112

5.0

M

l
x

kl 


  and 

2
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5.0

M

r
t

kr 


  for 

1
112, . .. ,2 ,1 Ml

k 
  and 2

122, . .. ,2 ,1 Mr
k 

  in eqs. (7.81)-(7.88), and in (7.91), (7.92), we 

have   2
1

1
1 21 2210 MM

kk   equations in   2
1

1
1 21 2210 MM

kk 

 unknowns. By solving these 

systems of equations using Newton’s method, the Hermite wavelet coefficients can be 

acquired.   

7.7.2 To Compare with OHAM for Solution of Nonlinear Time-

Fractional Coupled Jaulent-Miodek Equation 

Implementing optimal homotopy asymptotic method [30], the homotopy for eqs. (7.65) 

and (7.66) can be written as 
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  (7.94) 

where        





1
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i

i
i ptxutxuptx ,      (7.95)
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i
i ptxvtxvptx ,      (7.96)

  . . . 3
3

2
21  pCpCpCpH ,      (7.97) 

   . . . 
~~~~ 3

3
2

21  pCpCpCpH  .      (7.98) 

Substituting eqs. (7.95)-(7.98) in eqs. (7.93) and (7.94) and then comparing the 

coefficients of identical powers in p , we have the following system of equations. 
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Coefficients of 0p
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Coefficients of :2p  
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and so on. 

For solving fractional order coupled Jaulent-Miodek equations using OHAM, the 

following initial conditions for equations (7.65) and (7.66) are considered 

             

  

















2
 sec41

8

1
0, 22 x

hxu


 ,
    

             
  










2
 sec0,

x
hxv


 . 

Using the initial conditions )0,(0 xuu   and )0,(0 xvv   and solving eqs. (7.99) to (7.104), 

we obtain the expressions for 221100  ,  ; , ; , vuvuvu  and so on. 

Finally, the third order approximate solutions for time-fractional nonlinear coupled 

Jaulent-Miodek equations are given by 

),( ),( ),( 210 txutxutxuu  ,       (7.105) 

),( ),( ),( 210 txvtxvtxvv  .      (7.106) 

The optimal values of the convergence control parameters 2121

~
  ,

~
  and   , CCCC  can be 

obtained using weighted residual least square method given in eqs. (1.34) and (1.35) of 

chapter 1. 

7.8 Numerical Results and Discussion 

The comparison of the absolute errors for nonlinear time-fractional coupled Jaulent-

Miodek equations (7.65) and (7.66) have been illustrated in Tables 7.12 and 7.13 that are 

generated through the results attained by two-dimensional Hermite wavelet method and 

OHAM at various points of x and t taking  1 . In the present study, in order to inspect 
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the accuracy and reliability of Hermite wavelets for solving fractional order nonlinear 

coupled system of Jaulent-Miodek equations, we compare the numerical approximate 

solutions obtained by using Hermite wavelets with the third order approximate OHAM 

solutions. Tables 7.14-7.17 illustrate the comparison of absolute errors of fractional order 

Jaulent-Miodek equations (7.65) and (7.66) at various points of x and t taking 

0.5  and  750 .α   respectively. Agreements between present numerical results for time-

fractional Jaulent-Miodek (JM) equation obtained by Hermite wavelets and OHAM appear 

very satisfactory through illustrations in Tables 7.12-7.18, which also confirm the validity 

of the accurate solution by Hermite wavelets. 

Table 7.12 The absolute errors with regard to ),( txu  obtained by Hermite wavelet method for 

nonlinear system of coupled Jaulent-Miodek equations given in eqs. (7.65) and (7.66) at various 

points of x and t taking 1  and .0.5  

 

x 
 

         

0.1 2.0553E-6 4.6970E-6 2.0543E-5 4.5657E-5 9.0317E-5 1.3421E-4 1.8769E-4 2.5054E-4 3.2257E-4 

0.2 2.2375E-6 1.3360E-5 3.3614E-5 6.3236E-5 1.1255E-4 1.6141E-4 2.2021E-4 2.8892E-4 3.6751E-4 

0.3 6.2475E-6 2.1113E-5 4.4884E-5 7.7842E-5 1.3034E-4 1.8239E-4 2.4438E-4 3.1645E-4 3.9868E-4 

0.4 1.0252E-5 2.8524E-5 5.5227E-5 9.0679E-5 1.4527E-5 1.9909E-4 2.6257E-4 3.3593E-4 4.1938E-4 

0.5 6.7072E-6 2.7007E-5 6.1236E-5 1.1011E-4 1.8039E-4 2.6055E-4 3.5746E-4 4.7156E-4 6.0328E-4 

0.6 7.1378E-6 2.7087E-5 6.0652E-5 1.0857E-4 1.7763E-4 2.5639E-4 3.5173E-4 4.6421E-4 5.9434E-4 

0.7 6.3626E-6 2.5083E-5 5.6901E-5 1.0257E-4 1.6888E-4 2.4445E-4 3.3619E-4 4.4468E-4 5.7054E-4 

0.8 5.1634E-6 2.1991E-5 5.1218E-5 9.3599E-5 1.5592E-4 2.2684E-4 3.1326E-4 4.1581E-4 5.3510E-4 

0.9 3.7368E-6 1.8227E-5 4.4262E-5 8.2587E-5 1.3998E-4 2.0510E-4 2.8485E-4 3.7985E-4 4.9074E-4 

 

Table 7.13 The absolute errors with regard to ),( txv  obtained by Hermite wavelet method for 

nonlinear system of coupled Jaulent-Miodek equations given in eqs. (7.65) and (7.66) at various 

points of x and t taking 1  and .0.5  

 

x 
 

         

0.1 1.0266E-4 1.2531E-4 7.4403E-5 4.2725E-5 2.2305E-4 4.4542E-4 7.0631E-4 9.9217E-4 1.2894E-3 

0.2 6.8598E-6 6.3948E-5 2.0545E-4 4.0998E-4 6.7411E-4 9.7665E-4 1.3136E-3 1.6714E-3 2.0365E-3 

0.3 8.6641E-5 2.4761E-4 4.7556E-4 7.6247E-4 1.1045E-3 1.4804E-3 1.8858E-3 2.3069E-3 2.7302E-3 

0.4 1.7814E-4 4.2632E-4 7.3694E-4 1.1016E-3 1.5161E-3 1.9591E-3 2.4257E-3 2.9022E-3 3.3748E-3 

0.5 1.6264E-4 2.3867E-4 2.4153E-4 1.8420E-4 8.2495E-5 5.6018E-5 2.1508E-4 3.8165E-4 5.4268E-4 

0.6 7.7242E-5 7.4979E-5 6.0988E-6 1.1639E-4 2.7664E-4 4.6748E-4 6.7260E-4 8.7936E-4 1.0751E-3 

0.7 1.9921E-6 7.6519E-5 2.1056E-4 3.9113E-4 6.0232E-4 8.3738E-4 1.0799E-3 1.3178E-3 1.5387E-3 

0.8 7.6073E-5 2.1710E-4 4.1005E-4 6.4194E-4 8.9692E-4 1.1685E-3 1.4405E-3 1.7010E-3 1.9382E-3 

0.9 1.4522E-4 3.4725E-4 5.9317E-4 8.7004E-4 1.1620E-3 1.4631E-3 1.7569E-3 2.0321E-3 2.2773E-3 

 

waveletHermiteExact uu  

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t

waveletHermiteExact vv  

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t
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Table 7.14 The absolute errors with regard to  obtained by two-dimensional Hermite 

wavelet method and third order OHAM solution for fractional order nonlinear coupled Jaulent-

Miodek equations given in eqs. (7.65) and (7.66) at various points of x and t taking 

0.5 and  750  .α .  

 

x 
 

         

0.1 7.4968E-6 3.0040E-5 6.3702E-5 1.0598E-4 1.5534E-4 2.0969E-4 2.6883E-4 3.3038E-4 3.9195E-4 

0.2 1.9727E-5 5.0514E-5 9.1979E-5 1.4208E-4 1.9931E-4 2.6235E-4 3.3101E-4 4.0334E-4 4.7734E-4 

0.3 3.0934E-5 6.8532E-5 1.1601E-4 1.7181E-4 2.3442E-4 3.0327E-4 3.7815E-4 4.5748E-4 5.3958E-4 

0.4 4.1653E-5 8.5048E-5 1.3716E-4 1.9693E-4 2.6291E-4 3.3516E-4 4.1348E-4 4.9660E-4 5.8308E-4 

0.5 4.7032E-5 1.0898E-4 1.8956E-4 2.8591E-4 3.9484E-4 5.1702E-4 6.5070E-4 7.9455E-4 9.4703E-4 

0.6 5.0687E-5 1.1373E-4 1.9513E-4 2.9216E-4 4.0149E-4 5.2437E-4 6.5901E-4 8.0432E-4 9.5894E-4 

0.7 5.2128E-5 1.1459E-4 1.9494E-4 2.9053E-4 3.9790E-4 5.1884E-4 6.5148E-4 7.9493E-4 9.4801E-4 

0.8 5.2327E-5 1.1287E-4 1.9061E-4 2.8301E-4 3.8642E-4 5.0316E-4 6.3127E-4 7.7000E-4 9.1831E-4 

0.9 5.1682E-5 1.0929E-4 1.8321E-4 2.7101E-4 3.6885E-4 4.7954E-4 6.0099E-4 7.3260E-4 8.7341E-4 

 

Table 7.15 The absolute errors with regard to  obtained by two-dimensional Hermite 

wavelet method and third order OHAM solution for fractional order nonlinear coupled Jaulent-

Miodek equations given in eqs. (7.65) and (7.66) at various points of x and t taking

0.5 and  750  .α .   

 

 

x 
 

         

0.1 8.9842E-5 1.1334E-5 1.9121E-4 4.0028E-4 6.0268E-4 7.8294E-4 9.1713E-4 9.8878E-4 9.8134E-4 

0.2 9.1969E-5 3.1053E-4 5.8586E-4 8.7629E-4 1.1504E-3 1.3940E-3 1.5852E-3 1.7089E-3 1.7502E-3 

0.3 2.6796E-4 5.9763E-4 9.6132E-4 1.3253E-3 1.6626E-3 1.9604E-3 2.1985E-3 2.3636E-3 2.4420E-3 

0.4 4.3878E-4 8.7377E-4 1.3192E-3 1.7495E-3 2.1422E-3 2.4855E-3 2.7614E-3 2.9580E-3 3.0627E-3 

0.5 1.9169E-4 1.7339E-4 8.2319E-5 2.5428E-5 1.1164E-4 1.7211E-4 1.8761E-4 1.5108E-4 5.5148E-5 

0.6 3.6408E-4 7.1595E-4 2.2882E-4 3.8801E-4 5.1629E-4 6.1082E-4 6.5499E-4 6.4337E-4 5.7004E-4 

0.7 1.0684E-4 2.9537E-4 5.0987E-4 7.1171E-4 8.7304E-4 9.9249E-4 1.0560E-3 1.0596E-3 9.9889E-4 

0.8 2.3933E-4 4.9968E-4 7.6306E-4 9.9920E-4 1.1852E-3 1.3211E-3 1.3953E-3 1.4052E-3 1.3476E-3 

0.9 3.6156E-4 6.8549E-4 9.8986E-4 1.2525E-3 1.4554E-3 1.5998E-3 1.6766E-3 1.6845E-3 1.6216E-3 

 

Table 7.16 The absolute errors with regard to  obtained by two-dimensional Hermite 

wavelet method and third order OHAM solution for fractional order nonlinear coupled Jaulent-

Miodek equations given in eqs. (7.65) and (7.66) at various points of x and t taking

0.5 and  50  .α .  

 

x 
 

         

0.1 2.1552E-5 8.1878E-5 1.4911E-4 2.1501E-4 2.7542E-4 3.2160E-4 3.5273E-4 3.6046E-4 3.3639E-4 

),( txu

waveletHermiteOHAM uu  

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t

),( txv

waveletHermiteOHAM vv  

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t

),( txu

waveletHermiteOHAM uu  

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t
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0.2 1.0292E-5 7.7946E-5 1.5643E-4 2.3633E-4 3.1247E-4 3.7782E-4 4.3104E-4 4.6468E-4 4.7123E-4 

0.3 4.1238E-6 6.7652E-5 1.5385E-4 2.4384E-4 3.3140E-4 4.1103E-4 4.8085E-4 5.3418E-4 5.6425E-4 

0.4 2.0429E-5 5.2912E-5 1.4387E-4 2.4062E-4 3.3588E-4 4.2555E-4 5.0718E-4 5.7474E-4 6.2205E-4 

0.5 8.1331E-6 1.1511E-4 2.6479E-4 4.2458E-4 5.8491E-4 7.4584E-4 9.0415E-4 1.0570E-3 1.2014E-3 

0.6 3.5413E-5 8.4721E-5 2.3575E-4 3.9943E-4 5.6478E-4 7.3306E-4 9.0046E-4 1.0645E-3 1.2226E-3 

0.7 6.6534E-5 4.7447E-5 1.9658E-4 3.6070E-4 5.2736E-4 6.9890E-4 8.7092E-4 1.0413E-3 1.2076E-3 

0.8 9.9929E-5 5.3824E-6 1.4987E-4 3.1142E-4 4.7612E-4 6.4732E-4 8.1999E-4 9.9225E-4 1.1618E-3 

0.9 1.3460E-4 3.9949E-5 9.7606E-5 2.5404E-4 4.1400E-4 5.8175E-4 7.5163E-4 9.2194E-4 1.0905E-3 

 

Table 7.17 The absolute errors with regard to  obtained by two-dimensional Hermite 

wavelet method and third order OHAM solution for fractional order nonlinear coupled Jaulent-

Miodek equations given in eqs. (7.65) and (7.66) at various points of x and t taking 

0.5. and  50  .α   

 

x 
 

         

0.1 8.3521E-5 2.9312E-4 4.2261E-4 4.3707E-4 3.3456E-4 1.0091E-4 2.5336E-4 7.3818E-4 1.3635E-3 

0.2 3.3416E-4 6.5094E-4 8.5761E-4 9.3554E-4 8.9197E-4 7.1374E-4 4.1479E-4 1.2595E-5 5.7631E-4 

0.3 5.6957E-4 9.8211E-4 1.2548E-3 1.3850E-3 1.3888E-3 1.2538E-3 9.9728E-4 6.1325E-4 9.5719E-5 

0.4 7.9133E-4 1.2891E-3 1.6175E-3 1.7897E-3 1.8301E-3 1.7270E-3 1.5006E-3 1.1468E-3 6.6099E-4 

0.5 3.9482E-4 3.6236E-4 3.4634E-4 3.9120E-4 5.0371E-4 6.8476E-4 9.2508E-4 1.2283E-3 1.5984E-3 

0.6 2.0871E-4 1.0875E-4 4.8599E-5 5.8024E-5 1.3694E-4 2.8552E-4 4.9242E-4 7.5994E-4 1.0908E-3 

0.7 4.4730E-5 1.0899E-4 2.0229E-4 2.1800E-4 1.6237E-4 3.5946E-5 1.4821E-4 3.9122E-4 6.9475E-4 

0.8 9.7652E-5 2.9380E-4 4.0997E-4 4.4120E-4 3.9923E-4 2.8531E-4 1.1391E-4 1.1510E-4 4.0251E-4 

0.9 2.2031E-4 4.4782E-4 5.7730E-4 6.1511E-4 5.7787E-4 4.6746E-4 2.9953E-4 7.4704E-5 2.0705E-4 

Table 7.18  error norms for fractional order nonlinear coupled Jaulent-Miodek 

equation using two-dimensional Hermite wavelet method and OHAM at various points t taking 

75.0,5.0  and 1. 

 

t Error analysis of  with regard to Hermite 

wavelet 

Error analysis of  with regard to Hermite 

wavelet 
1 α  750 .α   50 .α 

 

1 α  750 .α   50 .α   

    

  

    

  

0.1 1.8177
E-5 

2.8524
E-5 

1.2666
E-4 

5.2327
E-5 

1.8669
E-4 

4.387
8E-4 

3.3034
E-4 

1.7814
E-4 

1.2194
E-3 

4.387
8E-4 

1.152
7E-3 

7.913
3E-4 

0.2 6.4740

E-5 

1.0252

E-5 
2.7930

E-4 

1.1459

E-4 
2.1085

E-4 

8.737

7E-4 
7.0640

E-4 

4.2632

E-4 
1.6021

E-3 

8.737

7E-4 
1.891

5E-3 

1.289

1E-3 

0.3 1.4786

E-4 

6.1236

E-5 
4.7612

E-4 

1.9513

E-4 
5.3609

E-4 

1.319

2E-3 
1.1998

E-3 

7.3694

E-4 
2.2193

E-3 

1.319

2E-3 
2.401

9E-3 

1.617

5E-3 

0.4 2.6529

E-4 

1.1011

E-4 
7.1047

E-4 

2.9216

E-4 
9.2243

E-4 

1.749

5E-3 
1.8260

E-3 

1.1016

E-3 
2.9950

E-3 

1.749

5E-3 
2.639

0E-3 

1.789

7E-3 

0.5 4.1778

E-4 

1.8039

E-4 
9.7402

E-4 

4.0149

E-4 
1.3166

E-3 

2.142

2E-3 
2.5736

E-3 

1.5161

E-3 
3.6883

E-3 

2.142

2E-3 
3.688

3E-3 

1.830

1E-3 

0.6 6.3551

E-4 

2.6055
E-4 

1.2522

E-3 

5.2437
E-4 

1.7134

E-3 

2.485
5E-3 

3.4075

E-3 

1.9591
E-3 

4.2743

E-3 

2.485
5E-3 

2.434

3E-3 

1.727
0E-3 

0.7 8.6958

E-4 

3.5746

E-4 

1.5929

E-3 

6.5901

E-4 

2.1030

E-3 

2.761

4E-3 

4.3001

E-3 

2.4257

E-3 

4.7064

E-3 

2.761

4E-3 

2.169

2E-3 

1.500

6E-3 

),( txv

waveletHermiteOHAM vv  

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t

LL  and 2

),( txu ),( txv

2    L L     2    L L     2    L L     2    L L     2    L L     2    L L     
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0.8 1.1454

E-3 

4.7156

E-4 

1.9410

E-3 

8.0432

E-4 

2.4760

E-3 

2.958

0E-3 

5.1364

E-3 

2.9022

E-3 

4.9604

E-3 

2.958

0E-3 

2.120

0E-3 

1.228

3E-3 

0.9 1.4642

E-3 

6.0328

E-4 

2.3095

E-3 

9.5894

E-4 

2.8242

E-3 

3.062

7E-3 

6.1166

E-3 

3.3748

E-3 

5.0141

E-3 

3.062

7E-3 

2.658

8E-3 

1.598

4E-3 

7.9 Convergence of Hermite wavelet 

Theorem 7.1 (Convergence Theorem) 

If a continuous function )(),( 2 Ltxu  defined on    1,01,0   be bounded, i.e., 

  Ktxu , , then the Hermite wavelets expansion of ),( txu  converges uniformly to it.  

Proof: 

Let ),( txu  be a function defined on    1,01,0   and   Ktxu , , where K  is a positive 

constant. 

The Hermite wavelet coefficients of continuous functions ),( txu  are defined as  
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Using the mean value theorem of integral calculus, we will have 
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Using the mean value theorem of integral calculus, we have 
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        since ),( txu  is bounded. 

Therefore 






0 0i j

ijc is absolutely convergent. 

Hence from [44], the Hermite series expansion of  txu ,  converges uniformly.   □  
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7.10 Conclusion 

In this chapter, the numerical solution of time-fractional modified Fornberg-Whitham 

equation has been determined by using two-dimensional Hermite wavelet method. The 

results thus obtained are then compared with exact solutions as well as with optimal 

homotopy asymptotic method (OHAM). The obtained results demonstrate the accuracy, 

efficiency and reliability of the proposed algorithm based on two-dimensional Hermite 

wavelet method and its applicability to nonlinear time-fractional modified Fornberg-

Whitham equation. Agreement between present numerical results obtained by Hermite 

wavelet method with optimal homotopy asymptotic method and exact solutions appear 

very satisfactory through illustrative results in Tables 7.1-7.7.  

The solitary wave solution of fractional modified Fornberg-Whitham equation has been 

obtained for the first time by using first integral method. The fractional order modified 

Fornberg-Whitham equation has also been solved by using the optimal homotopy 

asymptotic method. The acquired numerical approximate results are compared with the 

exact solutions obtained through first integral method, which reveals that the efficiency 

and plausibility of the proposed OHAM technique. The results exhibited in Tables 7.8-

7.10 demonstrate a pretty good agreement between the present numerical methods with the 

exact solution. Finally, it is worthwhile to mention that the first integral method is 

promising and powerful for solving nonlinear fractional differential equations in 

mathematical physics.  

Next, the two-dimensional Hermite wavelet method has been implemented to coupled 

fractional differential equation viz. fractional Jaulent-Miodek equation. The results thus 

obtained are then compared with exact solutions as well as with optimal homotopy 

asymptotic method (OHAM). The evaluated outcomes demonstrate the efficiency, 

accuracy and reliability of the proposed algorithm based on two-dimensional Hermite 

wavelet approach and its applicability to nonlinear time-fractional coupled Jaulent-Miodek 

equations. It can be observed that the agreement between proposed numerical results 

attained by Hermite wavelet technique with optimal homotopy asymptotic method and 

exact solutions appear very satisfactory by means of illustrative results in Tables 7.12-

7.18. The present scheme is easy to implement, effective and suitable for acquiring 

numerical solutions of nonlinear time-fractional coupled Jaulent-Miodek equations. 
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The application of the proposed numerical approach based on two-dimensional Hermite 

wavelet method for the solutions of time-fractional modified Fornberg-Whitham equation 

and fractional coupled Jaulent-Miodek equations quite satisfactorily justifies its simplicity, 

effectivity and applicability.  
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CHAPTER 8 

8 Implementation of Petrov-Galerkin 

Method for Solving FPDEs 

8.1 Introduction 

In the present chapter, Petrov-Galerkin method has been utilized for the numerical solution 

of fractional KdV–Burgers (KdVB) equation and fractional Sharma-Tasso-Olver (STO) 

equation. In past few years, tremendous effort has been anticipated by the researchers on 

the study of nonlinear evolution equations appeared in mathematical physics. The 

nonlinear fractional differential equations have been solved numerically through the 

Petrov-Galerkin approach by utilizing a linear hat function as the trial function and a 

quintic B-spline function as the test function.  

In the present study, we consider one of the well-known equations namely the Korteweg-

de Vries–Burgers (KdVB) which play an essential role in both applied mathematics and 

physics. Especially Korteweg–de Vries (KdV) type equations had been paid of more 

attention due to its various applications in plasma physics, solid-state physics and quantum 

field theory.  

The Korteweg-de Vries-Burgers equation is a nonlinear partial differential equation of the 

form 

0 xxxxxxt uuuuu  ,     (8.1) 

which was first derived by Su and Gardner [167]. It arises in quite a lot of contexts as a 

model equation incorporating a few foremost physical phenomena viz. dispersion, 

viscosity and nonlinear advection. This equation arises within the description of long wave 

propagation in shallow water [168], propagation of waves in elastic tube stuffed with a 

viscous fluid [169] and weakly nonlinear plasma waves with certain dissipative effects 

[170]. It additionally represents long wavelength approximations where the effect of the 

nonlinear advection xuu
 
is counterbalanced by means of the dispersion xxxu .   
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The KdVB equation given in eq. (8.1) is a combination of the Burgers’ (when 0 ) and 

the KdV equations (when 0 ). In the year 1939, Burger proposed an equation (known 

as Burgers’ equation) for the study of turbulence and approximate theory of flow through 

a shock wave traveling in a viscous fluid [49, 171]. The KdV equation was first suggested 

by Korteweg and de Vries [172]. This equation was used to study the change in shape of 

long waves moving in a rectangular channel [132, 172]. When diffusion dominates 

dispersion, the numerical solutions of eq. (8.1) tend to behave like Burgers’ equation 

solutions and hence the steady-state solutions of the KdVB equation are monotonic 

shocks. However, when dispersion dominates, the KdV behavior is observed and the 

shocks are oscillatory.  

A number of theoretical issues associated to the KdVB equation have received substantial 

attention. Many analytical and numerical methods have been proposed in recent past for 

the study of classical KdV-Burgers equation. Various methods such as the decomposition 

method [173], tanh method [174], hyperbolic tangent method and exponential rational 

function approach [175], Septic B-spline method [176], Radial basis functions [177], 

Quartic B-spline Galerkin approach [178] and quintic B-spline finite elements [179] had 

been developed independently and had been used to acquire exact as well as numerical 

solutions of KdVB equation. However so far as we know that no numerical works has 

been reported to solve the fractional KdVB equation. Methods such as Adomian 

decomposition method [180], and homotopy perturbation method [181] were used to 

obtain the approximate solution of fractional KdVB equation. 

Let us consider the time-fractional KdV-Burgers equation [181-183] as follows 

0 xxxxxxt uuuuuD  ,     (8.2) 

where  ,   and   are constants and   denotes the order of fractional derivative whose 

range is 10  .  

In the present numerical scheme, fractional derivative has been discretized by Grünwald-

Letnikov derivative and the fractional KdVB equation has been converted directly into 

finite difference equation. Then it has been adjusted in the form of implicit finite 

difference scheme.  

Next, the Sharma-Tasso-Olver equation has been considered, which plays an essential role 

both in physics and applied mathematics. Remarkable effort has been anticipated by the 
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researchers for studying nonlinear equations arising in mathematical physics. In recent 

years, Sharma-Tasso-Olver equations [184, 185] had been paid of more attention due to its 

numerous implementations in mathematical physics. 

Let us consider the time-fractional Sharma-Tasso-Olver equation [186] as follows 

0333 22  xxxxxxxt auauuuauauuD ,   (8.3) 

where ),( txu  is the unknown function depending on the spatial variable x and the 

temporal variable t and a  is a real parameter. Here   denotes the order of fractional 

derivative whose range is .10   

Eq. (8.3) can also be written as [185] 

0)()(
2

3 32  xxxxxxt auuauauD .   (8.4) 

This equation contains both linear dispersive term xxxau  and the double nonlinear terms 

xxu )( 2
 and xu )( 3

. The equation was first derived by Tasso [187] in 1976 as an example of 

odd members of the Burgers hierarchy by extending the linearization achieved through the 

Cole-Hopf ansatz to equations containing as highest derivatives odd space derivatives. In a 

subsequent report [188], the properties of the wave envelope solutions of this equation are 

investigated.  

The Sharma–Tasso–Olver equation appears in many scientific applications such as 

quantum field theory, plasma physics, dispersive wave phenomena, relativistic physics, 

nonlinear optics and physical sciences [184]. It also arises as an evolution equation that 

possesses an infinitely many symmetries [189]. Many analytical and numerical methods 

have been proposed in recent past for the study of classical Sharma-Tasso-Olver equation. 

Various methods such as the Cole–Hopf transformations method [190], the Adomian 

decomposition method [186], the variational iteration method (VIM) [186], the homotopy 

perturbation method [186], Bäcklund transform method [185], Exp-solution method [191], 

improved GG -expansion method [192], tanh and extended tanh method [193] had been 

used to acquire exact as well as numerical solutions of Sharma-Tasso-Olver equation.  

According to the best possible information of the authors, so far no numerical works has 

been reported to solve the fractional Sharma-Tasso-Olver equation. The approximate 

analytical solution of fractional Sharma–Tasso–Olver equation has been obtained by using 

the homotopy analysis method [194], improved generalized tanh-coth method [195], the 
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Adomian decomposition method [186], the variational iteration method (VIM) [186], and 

homotopy perturbation method [186]. In the present numerical scheme fractional 

derivative has been discretized by Grünwald-Letnikov derivative and the fractional 

Sharma-Tasso-Olver equation has been converted directly into finite difference equation. 

Then it has been adjusted in the form of implicit finite difference scheme.  

The present chapter emphasizes on the application of Petrov-Galerkin method for solving 

the fractional differential equations such as the fractional KdVB equation and the 

fractional Sharma-Tasso-Olver equation with a view to exhibit the capabilities of this 

method in handling nonlinear equation. The main objective of this chapter is to 

establish the efficiency and accuracy of Petrov-Galerkin method in solving fractional 

differential equtaions numerically by implementing a linear hat function as the trial 

function and a quintic B-spline function as the test function.  

8.2 Implementation of Petrov-Galerkin Method for 

Numerical Solution of Time-Fractional Kdv-Burgers 

Equation 

Let us consider the time-fractional KdV-Burgers equation [181-183] as 

0 xxxxxxt uuuuuD  ,     (8.5) 

with initial condition [196] 
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where  ,   and   are constants,   denotes the order of fractional derivative whose 

range is .10   

The exact solution of eq. (8.5) is given by [196] 
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The space interval 11 bxa   is discretized with (N+1) uniform grid points jhax j  1 , 

Nj ,...,2,1,0  and the grid spacing is given by 
N

ab
h 11  . Let )(tU j  denotes the 

approximation to the exact solution ),( txu j . We sought the approximate solution of eq. 

(8.5) as 

    



N

j

jj xtUtxu
0

)()(),(  ,    (8.8) 

where )(xj , Nj ,...,2,1,0  are trial functions. 

In order to deal with the nonlinear term xuu , the product approximation technique [191] is 

utilised as follows:   





N

j

jj xtUtxu
0

22 )()(),(  ,    (8.9) 

where )(xj ; Nj ,...,2,1,0  are the usual piecewise linear hat functions given by   

       (8.10) 

The unknown functions )(tU j  are determined from the variational formulation 

0,,,)(
2

, 2  jxxxjxxjxjt uuuuD 


 ,  (8.11) 

where )(xj , Nj ,...,2,1,0  are quintic B-spline functions taken as the test functions and 

are given by 
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Integrating by parts the above eq. (8.11), we obtain   

0)(,)(,,)(
2

, 2  xxjxxjxjxjt uuuuD 


 .  (8.12) 

Each linear hat function covers two elements so that each subinterval ],[ 1jj xx  is covered 

by two linear hat functions. On the other hand each quantic B-spline covers six elements 

so that each subinterval ],[ 1jj xx  is covered by six splines. In terms of local co-ordinate 

system given by  

jxx  , h 0 . 

Both the linear hat functions, j  and the quantic B-spline functions, j  over the element 

],[ 1jj xx  can be defined as follows: 
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From eq. (8.12), we have 
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Next we set  
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where )(tUD jt
  is defined by  
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Similarly, 

 2
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 n
j

n
j

n
j

n
j

n
j

n
j

n
j UUUUUUU

h
I 3211233 2415801524

1
 


  ,  (8.16) 

 n
j

n
j

n
j

n
j

n
j

n
j UUUUUU

h
I 32112324 5409595405

1
   .   (8.17) 

Substituting eqs. (8.14)-(8.17) in eq. (8.13), we have 
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           (8.18) 

where Nj ,...,2,1 . Now to solve the above system, we assume n
jU  to be a discrete 

approximation to the exact solution ),( nj txu . 0n
jU  for 2,1,0,1,2  NNj  and 

N+3. The system (8.18) is three time level scheme, so we require two initial time levels 

and for the computation, the exact value at time equals zero and time equals t  are used 

for the required initial conditions. This nonlinear system (8.18) can be solved by Newton’s 

method in order to compute the unknown approximate solutions n
jU . Hence the required 

solution of the time-fractional KdVB equation can be found. 

8.3 Numerical Results and Discussion 

The comparison of the absolute errors for time-fractional KdVB equation (8.5) have been 

exhibited in Tables 8.1 and 8.2 which are generated using the results acquired by means of 

Petrov-Galerkin method and the new method proposed in Ref. [196] at different values of 

x and t taking 75.0  and 0.5 respectively. In this present analysis, in order to evaluate 

the accuracy and reliability of the Petrov-Galerkin for solving fractional order KdVB 

equation, we compare LL  and 2  error norms at various points of t taking 

0.5  and  750 ,1 .α   as illustrated in Tables 8.3-8.6. Agreement between present numerical 

results for time-fractional KdVB equation obtained by Petrov-Galerkin method appears 

very satisfactory through illustrations in Tables 8.1-8.6. The computed outcomes exhibit 
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that this proposed procedure can also be comfortably applied to such variety of nonlinear 

equations and good accuracy can also be also attained. With the aid of conducting a 

comparison between the absolute error for the obtained numerical results and the analytic 

solution of the KdVB equation we will test the accuracy of the proposed procedure. 

 

Table 8.1 The absolute errors obtained by Petrov-Galerkin method with regard to solution 

obtained by new method in ref [196] for time-fractional KdV-Burgers equation given in (8.5) at 

various points of x and t taking  1,6 1,,75.0   and .2  

Table 8.2 The absolute errors obtained by Petrov-Galerkin method with regard to solution 

obtained by new method in ref [196] for time-fractional KdV-Burgers equation given in (8.5) at 

various points of x and t taking 05.0,6 10,,5.0    and .1.0   

Table 8.3 2L  and L  error norms for nonlinear KdV-Burgers equation using Petrov-

Galerkin method at various points of t taking 0005.0,6,1    and .1.0  

t   

0.1 1.29814E-10 8.90530E-11 

2    L L     

x 
 

        

0.1 1.46833E-3 2.79680E-3 4.03999E-3 5.21834E-3 6.34158E-3 7.41499E-3 8.44173E-3 9.42393E-3 

0.2 1.47268E-3 2.80387E-3 4.04863E-3 5.22763E-3 6.35075E-3 7.42339E-3 8.44882E-3 9.42925E-3 

0.3 1.47692E-3 2.81075E-3 4.0570E-3 5.23656E-3 6.35949E-3 7.43129E-3 8.45536E-3 9.43397E-3 

0.4 1.48107E-3 2.81745E-3 4.06509E-3 5.24514E-3 6.36780E-3 7.43871E-3 8.46143E-3 9.43807E-3 

0.5 1.48512E-3 2.82396E-3 4.07291E-3 5.25337E-3 6.37568E-3 7.44562E-3 8.46676E-3 9.44157E-3 

0.6 1.48908E-3 2.83028E-3 4.08045E-3 5.26124E-3 6.38314E-3 7.45204E-3 8.47164E-3 9.44446E-3 

0.7 1.49293E-3 2.83640E-3 4.08772E-3 5.26875E-3 6.39017E-3 7.45797E-3 8.47595E-3 9.44674E-3 

0.8 1.49669E-3 2.84234E-3 4.09472E-3 5.27591E-3 6.39676E-3 7.46341E-3 8.47972E-3 9.44842E-3 

0.9 1.50034E-3 2.84809E-3 4.10143E-3 5.28272E-3 6.40293E-3 7.46834E-3 8.48293E-3 9.44949E-3 

1.0 1.50390E-3 2.85364E-3 4.10787E-3 5.28916E-3 6.40867E-3 7.47279E-3 8.48559E-3 9.44996E-3 

x 
 

  

       

0.1 1.7701E-4 2.5821E-4 2.7527E-4 2.8030E-4 2.8209E-4 2.8281E-4 2.8313E-4 2.8328E-4 2.8335E-4 

0.2 1.7476E-4 2.5594E-4 2.7284E-4 2.7781E-4 2.7958E-4 2.8030E-4 2.8062E-4 2.8076E-4 2.8084E-4 

0.3 1.7328E-4 2.5369E-4 2.7042E-4 2.7535E-4 2.7710E-4 2.7781E-4 2.7812E-4 2.7827E-4 2.7834E-4 

0.4 1.7181E-4 2.5146E-4 2.6802E-4 2.7290E-4 2.7464E-4 2.7534E-4 2.7565E-4 2.7579E-4 2.7587E-4 

0.5 1.7035E-4 2.4924E-4 2.6565E-4 2.7047E-4 2.7219E-4 2.7289E-4 2.7319E-4 2.7334E-4 2.7341E-4 

0.6 1.6890E-4 2.4704E-4 2.6329E-4 2.6806E-4 2.6977E-4 2.7046E-4 2.7076E-4 2.7090E-4 2.7097E-4 

0.7 1.6746E-4 2.4486E-4 2.6094E-4 2.6568E-4 2.6736E-4 2.6804E-4 2.6834E-4 2.6848E-4 2.6856E-4 

0.8 1.6603E-4 2.4269E-4 2.5862E-4 2.6331E-4 2.6497E-4 2.6565E-4 2.6595E-4 2.6609E-4 2.6616E-4 

0.9 1.6460E-4 2.4055E-4 2.5632E-4 2.6096E-4 2.6261E-4 2.6327E-4 2.6357E-4 2.6371E-4 2.6378E-4 

1.0 1.6319E-4 2.3842E-4 2.5403E-4 2.5862E-4 2.6026E-4 2.6092E-4 2.6121E-4 2.6135E-4 2.6142E-4 

ExactPGM uu 

2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t

ExactPGM uu 

1.0t 2.0t 3.0t 4.0t 5.0t 6.0t 7.0t 8.0t 9.0t
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0.2 3.24729E-10 2.22708E-10 

0.3 4.55738E-10 3.12239E-10 

0.4 6.51429E-10 4.46194E-10 

0.5 7.83639E-10 5.36188E-10 

0.6 9.80090E-10 6.70419E-10 

0.7 1.11351E-9 7.60861E-10 

0.8 1.31070E-9 8.95346E-10 

0.9 1.44534E-9 9.86221E-10 

1.0 1.61436E-9 9.16034E-10 

Table 8.4 2L  and L  error norms for nonlinear fractional KdV-Burgers equation using 

Petrov-Galerkin method at various points of t taking  1,6 1,   and .2  

t 
   

      

0.1 9.40227E-5 6.92880E-5 2.70831E-3 8.69312E-4 3.76753E-3 1.20338E-3 

0.2 2.33997E-4 1.72421E-4 7.40982E-3 2.37321E-3 9.22147E-3 2.93842E-3 

0.3 3.21139E-4 2.36466E-4 1.16462E-2 3.72295E-3 1.34609E-2 4.28162E-3 

0.4 4.56772E-4 3.36334E-4 1.55966E-2 4.97718E-3 1.70414E-2 5.41254E-3 

0.5 5.37234E-4 3.95255E-4 1.93290E-2 6.15847E-3 2.01827E-2 6.40209E-3 

0.6 6.68680E-4 4.92039E-4 2.28764E-2 7.27798E-3 2.29996E-2 7.28747E-3 

0.7 7.42556E-4 5.45962E-4 2.62573E-2 8.34210E-3 2.55619E-2 8.09123E-3 

0.8 8.70077E-4 6.39846E-4 2.94832E-2 9.35489E-3 2.79162E-2 8.83089E-3 

0.9 9.37568E-4 6.88894E-4 3.25620E-2 1.03192E-2 3.00956E-2 9.51990E-3 

Table 8.5 2L  and L  error norms for nonlinear fractional KdV-Burgers equation using 

Petrov-Galerkin method at various points of t taking and  

t 
   

      

0.1 1.47277E-6 1.08060E-6 6.58012E-5 2.11747E-5 9.01591E-5 2.89412E-5 

0.2 3.67927E-6 2.69904E-6 1.78696E-4 5.74413E-5 2.20265E-4 7.06189E-5 

0.3 5.13661E-6 3.76477E-6 2.79767E-4 8.98432E-5 3.21907E-4 1.03109E-4 

0.4 7.33184E-6 5.37326E-6 3.74120E-4 1.20036E-4 4.08641E-4 1.30788E-4 

0.5 8.77274E-6 6.42404E-6 4.63866E-4 1.48708E-4 4.85733E-4 1.55354E-4 

0.6 1.09575E-5 8.02246E-6 5.50119E-4 1.76221E-4 5.55895E-4 1.77683E-4 

0.7 1.23825E-5 9.05825E-6 6.33550E-4 2.02793E-4 6.20744E-4 1.98298E-4 

0.8 1.45561E-5 1.06465E-6 7.14595E-4 2.28570E-4 6.81337E-4 2.17540E-4 

0.9 1.59651E-5 1.16672E-5 7.93554E-4 2.53649E-4 7.38412E-4 2.35646E-4 

Table 8.6 2L  and L  error norms for nonlinear fractional KdV-Burgers equation using 

Petrov-Galerkin method at various points of t taking  and  

t 
   

      

0.1 3.47775E-3 2.43860E-3 2.17042E-3 7.07133E-4 2.90983E-3 9.47258E-3 

0.2 8.56125E-3 6.00577E-3 5.83656E-3 1.90089E-3 7.04589E-3 2.29277E-3 

0.3 1.08264E-2 7.56579E-3 9.06678E-3 2.95199E-3 1.02359E-2 3.32980E-3 

0.4 1.53527E-2 1.07535E-2 1.20464E-2 3.92097E-3 1.29361E-2 4.20707E-3 

0.5 1.65410E-2 1.15427E-2 1.48546E-2 4.83370E-3 1.53231E-2 4.98221E-3 

1  0.75  0.5

2    L L     2    L L     2    L L     

 05.0,6 ,5.0   .1.0

1  0.75  0.5

2    L L     2    L L     2    L L     

5,6 1,.0   .6

1  0.75  0.5

2    L L     2    L L     2    L L     
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0.6 2.07597E-2 1.45268E-2 1.75348E-2 5.70435E-3 1.74875E-2 5.68476E-3 

0.7 2.09164E-2 1.46238E-2 2.01140E-2 6.54177E-3 1.94832E-2 6.33230E-3 

0.8 2.52064E-2 1.75783E-2 2.26106E-2 7.35196E-3 2.13452E-2 6.93626E-3 

0.9 2.41525E-2 1.69991E-2 2.50377E-2 8.13924E-3 2.30980E-2 7.50459E-3 

8.4 Implementation of Petrov-Galerkin Method for 

Numerical Solution of Time-Fractional Sharma-Tasso-

Olver Equation 

This section involves the numerical simulations by means of proposed Petrov-Galerkin 

method for time-fractional Sharma-Tasso-Olver equation.  

Let us consider the time-fractional Sharma-Tasso-Olver equation [186] as 

0333 22  xxxxxxxt auauuuauauuD ,     (8.19) 

with initial condition [186] 

)tanh(1

)]tanh([2
)0,(

xw

xw
xu








 ,     (8.20) 

where   and w are constants. 

Eq. (8.19) implies 

 0)()(
2

3 32  xxxxxxt auuau
a

uD , 

where   denotes the order of fractional derivative whose range is 10  . 

For ,1 the exact solution of eq. (8.19) is given by [186] 

))4(tanh(1

))]4(tanh([2
),(

2

2

taxw

taxw
txu








 .     (8.21) 

The space interval 11 bxa   is discretized with (N+1) uniform grid points jhax j  1 , 

Nj ,...,2,1,0  and the grid spacing is given by 
N

ab
h 11  . Let )(tU j  denotes the 

approximation to the exact solution ),( txu j . We sought the approximate solution of eq. 

(8.19) as 

  



N

j

jj xtUtxu
0

)()(),(  ,      (8.22) 

where )(xj , Nj ,...,2,1,0  are trial functions. 
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In order to deal with the nonlinear terms 
2u  and 

3u , the product approximation technique 

[197] is utilised as follows:   
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0

33 )()(),(  ,    (8.23) 

where )(xj , Nj ,...,2,1,0  are the usual piecewise linear hat functions given by   
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The unknown functions )(tU j  are determined from the variational formulation 

0,,)(,)(
2

3
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a
uD  ,  (8.25) 

where )(xj ; Nj ,...,2,1,0  are quintic B-spline functions taken as the test functions and 

are given by 
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Integrating by parts the above eq. (8.25), we obtain   

0)(,,)()(,)(
2

3
, 32  xxjxjxxjxjt uauau

a
uD  .  (8.26) 

Each linear hat function covers two elements so that each subinterval ],[ 1jj xx  is covered 

by two linear hat functions. On the other hand each quantic B-spline covers six elements 
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so that each subinterval ],[ 1jj xx  is covered by six splines. In terms of local co-ordinate 

system given by  

jxx , h0 . 

Both the linear hat functions, j  and the quantic B-spline functions, j  over the element 

],[ 1jj xx  can be defined as follows: 

h
j
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From eq. (8.26), we have 
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Next we set  
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where )(tUD jt
  is defined by  
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Substituting eqs. (8.28)-(8.31) in eq. (8.27), we have 
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where Nj ,...,4,3,2,1 . Now to solve the above system, we assume n
jU  to be a discrete 

approximation to the exact solution ),( nj txu . 0n
jU  for 2,1,0,1,2  NNj  and 

N+3. The system (8.32) is three time level scheme, so we require two initial time levels 

and for the computation, the exact value at time equals zero and time equals t  are used 

for the required initial conditions. This nonlinear system (8.32) can be solved by Newton’s 

method in order to compute the unknown approximate solutions n
jU . Hence the required 

solution of the time-fractional Sharma-Tasso-Olver equation can be found. 

8.5 Numerical Results and Discussion 

In this present analysis, the absolute errors for Sharma-Tasso-Olver equation (8.19) have 

been exhibited in Table 8.7 in case of integer order 1 . In order to evaluate the 

accuracy and reliability of the Petrov-Galerkin for solving fractional order Sharma-Tasso-

Olver equation, the absolute errors obtained by Petrov-Galerkin and VIM have been 

presented in Tables 8.8 and 8.9 for various points of x  and t taking  75.0α  and 5.0  

respectively. The comparison of LL  and 2  error norms at various points of t taking 

0.5  and  750.α   has been illustrated in Table 8.10. Agreement between present numerical 

results for time-fractional Sharma-Tasso-Olver equation obtained by Petrov-Galerkin 

method appears very satisfactory through illustrations in Tables 8.7-8.10. The computed 

outcomes exhibit that this proposed procedure can also be comfortably applied to such 

variety of nonlinear equations and good accuracy can also be attained. The accuracy of the 

proposed procedure can be examined with the aid of conducting a comparison between the 

absolute errors obtained by proposed numerical results and the VIM solutions of the 

fractional Sharma-Tasso-Olver equation. A comprehensible inference can be drawn from 
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the numerical results that the proposed Petrov-Galerkin method imparts highly accurate 

numerical solutions for nonlinear fractional differential equations.  

Table 8.7 The absolute errors obtained by Petrov-Galerkin method with regard to exact 

solution for time-fractional Sharma-Tasso-Olver equation given in (8.19) at various points of x and 

t taking 1 , 01.0 , 05.0w , and 1a .  

 

Table 8.8 The absolute errors obtained by Petrov-Galerkin method with regard to solution 

obtained by VIM for time-fractional Sharma-Tasso-Olver equation given in (8.19) at various 

points of x and t taking  05.0,01.0,1  wa  and 75.0 . 

Table 8.9 The absolute errors obtained by Petrov-Galerkin method with regard to solution 

obtained by VIM for time-fractional Sharma-Tasso-Olver equation given in (8.19) at various 

points of x and t taking  05.0,01.0,1  wa  and 5.0 . 

x 
ExactPGM uu   

01.0t  02.0t  03.0t  04.0t  05.0t  06.0t  07.0t  08.0t  09.0t  1.0t  

1 2.23959E-5 4.42244E-5 6.54935E-5 8.62037E-5 1.06349E-4 1.25918E-4 1.44892E-4 1.63248E-4 1.80957E-4 1.9799E-4 

2 2.58227E-5 5.16002E-5 7.73625E-5 1.03126E-4 1.28891E-4 1.54645E-4 1.80359E-4 2.05993E-4 2.31490E-4 2.5678E-4 

3 1.55609E-5 3.15260E-5 4.80049E-5 6.50892E-5 8.28516E-5 1.01344E-4 1.20597E-4 1.40617E-4 1.61390E-4 1.8287E-4 

4 1.07875E-5 2.15582E-5 3.25306E-5 4.39120E-5 5.58949E-5 6.86546E-5 8.23457E-5 9.71000E-5 1.13024E-4 1.3019E-4 

5 1.02889E-5 1.94437E-5 2.77437E-5 3.54742E-5 4.29222E-5 5.03723E-5 5.81029E-5 6.63819E-5 7.54633E-5 8.5583E-5 

6 1.39288E-5 2.52770E-5 3.42716E-5 4.11663E-5 4.62383E-5 4.97847E-5 5.21189E-5 5.35662E-5 5.44601E-5 5.5137E-5 

7 2.31580E-5 4.24684E-5 5.79771E-5 6.97697E-5 7.79699E-5 8.27384E-5 8.42708E-5 8.27945E-5 7.85668E-5 7.1871E-5 

8 4.14883E-5 7.91986E-5 1.12952E-4 1.42603E-4 1.68044E-4 1.89204E-4 2.06047E-4 2.18575E-4 2.26826E-4 2.3087E-4 

9 7.40691E-5 1.46667E-4 2.17516E-4 2.86355E-4 3.52940E-4 4.17049E-4 4.78481E-4 5.37061E-4 5.92634E-4 6.4507E-4 

x 
VIMPGM uu   

1.0t  2.0t  3.0t  4.0t  5.0t  6.0t  7.0t  8.0t  9.0t  

1 1.0614E-8 2.1103E-8 3.0835E-8 4.0017E-8 4.8760E-8 5.7131E-8 6.5178E-8 7.2937E-8 8.0437E-8 

2 1.0601E-8 2.1075E-8 3.0795E-8 3.9965E-8 4.8696E-8 5.7056E-8 6.5093E-8 7.2843E-8 8.0332E-8 

3 1.0584E-8 2.1044E-8 3.0749E-8 3.9905E-8 4.8623E-8 5.6971E-8 6.4996E-8 7.2734E-8 8.0212E-8 

4 1.0566E-8 2.1008E-8 3.0696E-8 3.9838E-8 4.8541E-8 5.6874E-8 6.4886E-8 7.2610E-8 8.0076E-8 

5 1.0546E-8 2.0968E-8 3.0638E-8 3.9762E-8 4.8449E-8 5.6767E-8 6.4763E-8 7.2473E-8 7.9924E-8 

6 1.0524E-8 2.0925E-8 3.0574E-8 3.9679E-8 4.8348E-8 5.6648E-8 6.4627E-8 7.2321E-8 7.9757E-8 

7 1.0501E-8 2.0877E-8 3.0504E-8 3.9588E-8 4.8237E-8 5.6518E-8 6.4480E-8 7.2156E-8 7.9575E-8 

8 1.0474E-8 2.0825E-8 3.0428E-8 3.9490E-8 4.8117E-8 5.6378E-8 6.4319E-8 7.1977E-8 7.9377E-8 

9 1.0446E-8 2.0769E-8 3.0347E-8 3.9384E-8 4.7988E-8 5.6227E-8 6.4147E-8 7.1784E-8 7.9164E-8 

10 1.0416E-8 2.0709E-8 3.0260E-8 3.9271E-8 4.7850E-8 5.6065E-8 6.3962E-8 7.1577E-8 7.8937E-8 

x 
VIMPGM uu   

1.0t  2.0t  3.0t  4.0t  5.0t  6.0t  7.0t  8.0t  9.0t  

1 1.2512E-8 2.4987E-8 3.6440E-8 4.7065E-8 5.6977E-8 6.6251E-8 7.4944E-8 8.3098E-8 9.0749E-8 

2 1.2495E-8 2.4954E-8 3.6392E-8 4.7004E-8 5.6903E-8 6.6165E-8 7.4847E-8 8.2990E-8 9.0632E-8 

3 1.2477E-8 2.4917E-8 3.6338E-8 4.6934E-8 5.6818E-8 6.6066E-8 7.4735E-8 8.2866E-8 9.0496E-8 

4 1.2456E-8 2.4875E-8 3.6276E-8 4.6854E-8 5.6722E-8 6.5954E-8 7.4608E-8 8.2726E-8 9.0343E-8 

5 1.2432E-8 2.4828E-8 3.6208E-8 4.6766E-8 5.6614E-8 6.5829E-8 7.4467E-8 7.2569E-8 9.0171E-8 



 

251 
 

Table 8.10 LL  and 2  error norms for time-fractional Sharma-Tasso-Olver equation using 

Petrov-Galerkin method at various points of t taking ,1 a  and 5.0w . 

 

8.6 Conclusion 

In the present chapter, we have presented the Petrov-Galerkin method for solving time-

fractional KdV-Burgers equation and time-fractional Sharma-Tasso-Olver equation 

numerically by implementing a linear hat function as the trial function and a quintic B-

spline function as the test function. This numerical method seems to be competent of 

producing numerical solutions of high accuracy for the fractional differential equations. A 

comparison between the numerical results is carried out to illustrate the pertinent feature 

of the proposed algorithm. The acquired numerical approximate solutions preserve good 

accuracy when compared with the exact solutions. The accuracy of the method is assessed 

in terms of  error norms. A comprehensible inference can be drawn from the 

numerical results that the proposed Petrov-Galerkin method imparts highly accurate 

numerical solutions for nonlinear fractional differential equations. 

 

LL  and 2

6 1.2406E-8 2.4776E-8 3.6132E-8 4.6668E-8 5.6496E-8 6.5692E-8 7.4311E-8 7.2396E-8 8.9983E-8 

7 1.2378E-8 2.4719E-8 3.6049E-8 4.6561E-8 5.6367E-8 6.5541E-8 7.4141E-8 7.2208E-8 8.9777E-8 

8 1.2347E-8 2.4658E-8 3.5960E-8 4.6445E-8 5.6227E-8 6.5379E-8 7.3957E-8 7.2004E-8 8.9554E-8 

9 1.2314E-8 2.4592E-8 3.5863E-8 4.6321E-8 5.6076E-8 6.5204E-8 7.3758E-8 7.1784E-8 8.9314E-8 

10 1.2278E-8 2.4521E-8 3.5760E-8 4.6188E-8 5.5915E-8 6.5016E-8 7.3546E-8 7.1549E-8 8.9057E-8 

t 
  

    

0.1 3.32917E-8 1.06143E-8 3.92436E-8 1.25119E-8 

0.2 6.61903E-8 2.11033E-8 7.83723E-8 2.49873E-8 

0.3 9.67138E-8 3.08351E-8 1.14294E-7 3.64403E-8 

0.4 1.25515E-7 4.00176E-8 1.47621E-7 4.70657E-8 

0.5 1.52935E-7 4.87599E-8 1.78709E-7 5.69776E-8 

0.6 1.79190E-7 5.71309E-8 2.07798E-7 6.62518E-8 

0.7 2.04431E-7 6.51783E-8 2.23007E-7 7.49444E-8 

0.8 2.28769E-7 7.29378E-8 2.60638E-7 8.30987E-8 

0.9 2.52290E-7 8.04370E-8 2.84636E-7 9.07498E-8 

75.0 5.0

2L L 2L L
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