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Abstract

Dispersive shock wave (DSW), sometimes referred to as an undular bore in fluid me-
chanics, is a non-linear dispersive wave phenomenon which arises in non-linear disper-
sive media for which viscosity effects are negligible or non-existent. It is generated
when physical quantities, such as fluid pressure, density, temperature and electro-
magnetic wave intensity, undergo rapid variations as time evolves. Its structure is
a non-stationary modulated wavetrain which links two distinct physical states. DSW’s
occurrence in nature is quite omnipresent in classical/quantum fluids and non-linear
optics.

The main purpose of this thesis is to fully analyse all regimes for DSW propagation
in the non-linear optical medium of a nematic liquid crystal in the defocusing regime.
These DSWs are generated from step initial conditions for the intensity of the optical
field and are resonant in that linear diffractive waves (termed dispersive waves in the
context of fluid mechanics) are in resonance with the DSW, leading to a resonant wave-
train propagating ahead of it. It is found that there are six hydrodynamic regimes,
which are distinct and require different solution methods. In previous studies, a reduc-
tive nematic Korteweg-de Vries equation and gas dynamic shock wave theory were used
to understand all nematic dispersive hydrodynamics, which do not yield solutions in full
agreement with numerical solutions. Indeed, the standard DSW structure disappears
and a “Whitham shock” emerges for sufficiently large initial jumps. Asymptotic the-
ory, approximate methods or Whitham’s modulation theory are used to find solutions
for these resonant DSWs in a given regime. It is found that for small initial intensity
jumps, the resonant wavetrain is unstable, but that it stabilises above a critical jump
height. It is additionally found that the DSW is unstable, except for small jump heights
for which there is no resonance and large jump heights for which there is no standard
DSW structure. The theoretical solutions are found to be in excellent agreement with
numerical solutions of the nematic equations in all hydrodynamic regimes.
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waves limit with m = 0.01, ū = 1 and a = 0.1: (yellow) dash-dot line.
(Online version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Solitary and cnoidal waves in fluids. (a) Russell’s solitary wave in the
Union Canal recreated by a group of scientists who gathered in a non-
linear waves conference that took place at Heriot-Watt University in
1995. The soliton, appearing as a hump wave, is ahead of the boat. This
image was retrieved from the URL https://www.ma.hw.ac.uk/solitons/soliton1.html.
(b) Cnoidal waves in the Panama Coast, Central America, taken in 1933.
Image source: National Geographic Magazine, Volume 63. (c) Echogram
of a large internal (dark) solitary wave in the Saguenay Fjord, Canada,
taken in 2016. Courtesy of Daniel Bourgault et al [169]. (d) An in-
teraction (Y-type interaction) between two solitons in Nuevo Vallarta,
Mexico, taken in 2012. Courtesy of Mark Ablowitz et al [170]. (Online
version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9



1.4 Experimental design of an optical apparatus. A generated bright soli-
tary wave (yellow region), nematicon, by a linear-polarised light wave
U propagating through a cell filled with a focusing nematic liquid crys-
tal. The light wave is linearly polarised in the direction X. Two thin
electrodes, creating dipole moments, and anchoring films are attached.
They are shown by (black) and (gray) regions, respectively. The ne-
matic molecules which are located at the boundaries are held tightly by
the virtue of the anchoring films. The far right inset (black) dashed box
exhibits angular positions of a nematic molecule with respect to the di-
rection of the propagation Z before and after releasing the light wave
through the nematic cell. (Online version in colour.) . . . . . . . . . . . 28

1.5 Optical properties and experimental formations of a laser beam travel-
ling through different optical media. (a) Illustration of the self-focusing
property generated by increasing the power of a laser beam propagating
in a Kerr medium. Courtesy of Geoffrey New [9]. (b) Linear diffracting
wave in a nematic liquid crystal that results when the optical power of
a laser beam is less than a minimum milliwatt, such as 2 mW. Courtesy
of Gaetan Assanto et al [7]. (c) Bright nematicon generated when the
optical power of a laser beam is 2 mW. Courtesy of Gaetano Assanto et
al [7]. (d) Dark nematicon obtained when an azo dye is added to the
nematic cell. The minimum optical power to create this dark nematicon
was found to be of magnitude 4 mW. Courtesy of Gaetano Assanto et
al [6]. (Online version in colour.) . . . . . . . . . . . . . . . . . . . . . . 29

1.6 Mathematical and physical formations of VSWs. (a) Stationary Hyper-
bolic tangent profiles given by the expression (1.25) smoothing out a
physical singularity which is shown by a (blue) solid line. Here, the (or-
ange) dashed line is a tanh with µv = 0.2 and the (yellow) dash-dot line
is a tanh with µv = 0.05. In the plot, u− = 1 and u+ = 0. (b) Two
aircraft flying at speeds faster than the speed of sound in the atmosphere
which yield to shock waves travelling away from the planes, resulting in
a sonic boom sound. Courtesy of Nasa [110]. (Online version in colour.) 30

1.7 Full details of a KdV DSW structure, with positive polarity and positive
orientation. The unphysical singularity in the variable u is regularised
via a modulated cnoidal wavetrain shown by a (blue) solid profile. The
slowly varying amplitude and wavenumber within the DSW are denoted
by a and k, respectively. The speed at the trailing edge is given by
s−, whereas the leading edge velocity is given by s+. Courtesy of Mark
Hoefer et al [171]. (Online version in colour.) . . . . . . . . . . . . . . . 34

1.8 Stable and unstable DSW types. (a) Demonstration of the polarities
and orientations of standard (KdV and NLS) DSWs. Courtesy of Mark
Hoefer et al [18]. (b) Stable DSW as a solution of a “defocusing” NLS
Riemann problem. (c) Unstable DSW as a solution of a “focusing” NLS
Riemann problem. Courtesy of Noel F. Smyth et al. [59]. . . . . . . . . 36

1.9 DSWs in shallow water and atmosphere. (a) DSW (undular bore) on the
Severn river near Gloucester, England, taken in 2007. Courtesy of Mark
Humpage, this image was retrieved from his website: www.markhumpage.com.
(b) Hang glider in front of a morning glory cloud (DSW) over the Gulf
of Carpentaria, Northern Australia. This image was taken from [172].
(c) Panoramic view of morning glory clouds. Courtesy of the COMET R©

Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10



1.10 Experimental pictures of DSWs. (a) A blast pulse of a laser beam prop-
agating through the centre of a static Bose-Einstein condensate. This
pulse rapidly pushes atoms from the centre of the superfluid radially out-
ward, resulting in the formation of fluid density concentric rings (quan-
tum DSWs). Courtesy of Eric Cornell et al. [20]. (b) Oscillatory fronts
(optical DSWs) created by a Gaussian laser beam travelling through a
photorefractive crystal. Courtesy of Wenjie Wan et al. [112]. . . . . . . 39

3.1 The initial top hat (3.23); red (dashed) line. A nematic numerical so-
lution, computed from (3.18), is symmetric at the right and left initial
jumps due to the periodicity of Fourier spectral method; blue (solid)
line. Here, z = 1000, u− = 1.2, u+ = 1.0, ν = 0.2 and q = 2. (Online
version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Regime 1, PDSW regime. Numerical solutions of the nematic equations
(2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue (solid)
line: |u| at z = 1500; red (dashed) line θ at z = 1500; green (dash-dot)
line: |u| at z = 0 and violet (dotted) line θ at z = 0. Here, u− = 1.0,
u+ = 0.8, ν = 200 and q = 2. (Online version in colour.) . . . . . . . . . 53

3.3 Regime 2, RDSW regime. Numerical solutions of the nematic equations
(2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue (solid)
line: |u| at z = 1500; red (dashed) line θ at z = 1500; green (dash-dot)
line: |u| at z = 0 and violet (dotted) line θ at z = 0. Here, u− = 1.0,
u+ = 0.72, ν = 200 and q = 2. (Online version in colour.) . . . . . . . . 53

3.4 Regime 3, CDSW regime. Numerical solutions of the nematic equations
(2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue (solid)
line: |u| at z = 1500; red (dashed) line θ at z = 1500; green (dash-dot)
line: |u| at z = 0 and violet (dotted) line θ at z = 0. Here, u− = 1.0,
u+ = 0.6, ν = 200 and q = 2. (Online version in colour.) . . . . . . . . . 54

3.5 Regime 4, TDSW regime. Numerical solutions of the nematic equations
(2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue (solid)
line: |u| at z = 1500; red (dashed) line θ at z = 1500; green (dash-dot)
line: |u| at z = 0 and violet (dotted) line θ at z = 0. Here, u− = 1.0,
u+ = 0.3, ν = 200 and q = 2. (Online version in colour.) . . . . . . . . . 54

3.6 Regime 5, VDSW regime. Numerical solutions of the nematic equations
(2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue (solid)
line: |u| at z = 1500; red (dashed) line θ at z = 1500; green (dash-dot)
line: |u| at z = 0 and violet (dotted) line θ at z = 0. Here, u− = 1.0,
u+ = 0.12, ν = 200 and q = 2. (Online version in colour.) . . . . . . . . 55

3.7 Regime 6, dam break problem. Numerical solutions of the nematic equa-
tions (2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue
(solid) line: |u| at z = 1500; red (dashed) line θ at z = 1500; green
(dash-dot) line: |u| at z = 0 and violet (dotted) line θ at z = 0. Here,
u− = 1.0, u+ = 0.0, ν = 200 and q = 2. (Online version in colour.) . . . 55

3.8 Case 2, a pair of DSWs connected by a steady level. Numerical solutions
of the nematic equations (2.19) and (2.20) for the initial conditions (2.29)
and (2.31). Blue (solid) line: |u| at z = 1500; red (dashed) line θ at
z = 1500; green (dash-dot) line: |u| at z = 0 and violet (dotted) line θ
at z = 0. Here, u− = 1.2, u+ = 1.0, v− = 2, v+ = 0 and q = 2. (Online
version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

11



3.9 Case 3, fast simple wave and slow DSW. Numerical solutions of the
nematic equations (2.19) and (2.20) for the initial conditions (2.29) and
(2.31). Blue (solid) line: |u| at z = 500; red (dashed) line θ at z = 500;
green (dash-dot) line: |u| at z = 0 and violet (dotted) line θ at z = 0.
Here, u− = 0.8, u+ = 1.0, v− = 0, v+ = 0 and q = 2. (Online version in
colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.10 Case 4, two simple waves linked by a constant plateau. Numerical solu-
tions of the nematic equations (2.19) and (2.20) for the initial conditions
(2.29) and (2.31). Blue (solid) line: |u| at z = 200; red (dashed) line θ at
z = 200; green (dash-dot) line: |u| at z = 0 and violet (dotted) line θ at
z = 0. Here, u− = 1.2, u+ = 1.0, v− = −2, v+ = 0 and q = 2. (Online
version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.11 Case 4, two simple waves linked by a constant plateau. Numerical solu-
tions of the nematic equations (2.19) and (2.20) for the initial conditions
(2.29) and (2.31). Blue (solid) line: |u| at z = 1500; red (dashed) line
θ at z = 1500; green (dash-dot) line: |u| at z = 0 and violet (dotted)
line θ at z = 0. Here, u− = 1.2, u+ = 1.0, v− = −2, v+ = 0 and q = 2.
(Online version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.12 Case 5, two simple waves and a near-vacuum region. Numerical solutions
of the nematic equations (2.19) and (2.20) for the initial conditions (2.29)
and (2.31). Blue (solid) line: |u| at z = 1500; red (dashed) line θ at
z = 1500; green (dash-dot) line: |u| at z = 0 and violet (dotted) line θ at
z = 0. Here, u− = 1.2, u+ = 1.0, v− = −6, v+ = 0 and q = 2. (Online
version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.13 Case 6, a couple of fast and slow interacting DSWs. Numerical solutions
of the nematic equations (2.19) and (2.20) for the initial conditions (2.29)
and (2.31). Blue (solid) line: |u| at z = 1000; red (dashed) line θ at
z = 1000; green (dash-dot) line: |u| at z = 0 and violet (dotted) line θ
at z = 0. Here, u− = 0.95, u+ = 1.0, v− = 6, v+ = 0 and q = 2. (Online
version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.14 Geometrical classification of the six cases in the (u−, v−) Cartesian plane
when the initial phases in (2.29) and (2.31) are not both zeroes. Here,
u+ = 1, v+ = 0 and q = 2. (Online version in colour.) . . . . . . . . . . 61

5.1 Full dispersion relation (blue; solid line), long wave dispersion relation
(yellow; dash-dot) and short wave dispersion relation (orange; dashed
line). Here, ν = 200, q = 2, ρ̄ = 1 and v̄ = 0. (Online version in colour.) 78

5.2 A resonant DSW governed by the Kawahara equation (1.40). Here,
µd = 7.0, u− = 1, u+ = 0 and t = 50 . . . . . . . . . . . . . . . . . . . . 79

5.3 Full dispersion relation (blue; solid line), long wave dispersion relation
(yellow; dash-dot) and short wave dispersion relation (orange; dashed
line). Here, ν = 200, q = 2, ρ̄ = 1 and v̄ = 0. (Online version in colour.) 80

5.4 Parts of numerical solutions of the nematic equations (2.19) and (2.20)
for the initial condition (2.29). Blue (solid) line: |u| at z = 1000; green
(dash-dot) line: the initial level ahead (turning point) u+ = 0.85369. (a)
Nematic DSW solution with ν = 200, (b) nematic DSW solution with
ν = 10. Here u− = 1.0 and q = 2. (Online version in colour.) . . . . . . 97

12



5.5 Parts of numerical solutions of the nematic equations (2.19) and (2.20)
for the initial condition (2.29). Blue (solid) line: |u| at z = 1000; green
(dash-dot) line: the initial level ahead (turning point) u+ = 0.90962. (a)
Nematic DSW solution with ν = 200, (b) nematic DSW solution with
ν = 5. Here u− = 1.0 and q = 2. (Online version in colour.) . . . . . . . 98

5.6 Numerical solutions of the nematic equations (2.19) and (2.20). Blue
(solid) line: |u|; green (dash-dot) line: u+. Solutions at (a) z = 500, (b)
z = 1000, (c) z = 1500. Here u− = 1.0, u+ = 0.65, q = 2 and ν = 200.
(Online version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Numerical solution of the nematic equations (2.19) and (2.20) for |u|
showing evolution of resonant wavetrain instability. Here u− = 1.0,
u+ = 0.65, ν = 200 and q = 2. (Online version in colour.) . . . . . . . . 106

5.8 A portion of Kawahara TDSW regime. Whitham shock structure is
expanded as a “partial” oscillatory solitary wave governed by the Kawa-
hara equation (1.40). Orange (dash-dot) line: numerical full oscillatory
solitary wave solution governed by the Kawahara equation with µd = 1
(1.40). Blue (solid) line: partial oscillatory solitary wave exhibited by
the Kawahara TDSW regime. Courtesy of Patrick Sprenger et al [79].
(Online version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 Numerical solution of the nematic equations (2.19) and (2.20) for |u| in
the TDSW regime showing the Whitham shock (solid red line) linking
the resonant wavetrain with the intermediate shelf. Here u− = 1.0,
u+ = 0.3, ν = 200 and q = 2. (Online version in colour.) . . . . . . . . . 109

5.10 Intermediate level ui as given by numerical solutions of the nematic
equations (2.19) and (2.20) over all the nematic DSW regimes and the
theoretical average expression (5.28). Numerical solution: orange boxes;
theoretical values: blue (solid) line. Here u− = 1.0, ν = 200 and q = 2.
(Online version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.11 Non-local versus local partial DSWs in the nematic TDSW regime as
numerical solutions of equations (2.19) and (2.20). (a) Black (solid) line:
|u| (non-local partial DSW); green (dash-dot) line: u+ = 0.3. Here,
u− = 1, q = 2, ν = 200 and z = 1000. (b) Black (solid) line: |u| (local
partial DSW); green (dash-dot) line: u+ = 1.0. Here, u− = 1.2, q = 2,
ν = 1.5 and z = 1000. (Online version in colour.) . . . . . . . . . . . . . 111

5.12 Numerical solution of the nematic equations (2.19) and (2.20) for |u|:
blue (solid) line; expansion wave solution (5.22): green (dash-dot) line;
expansion wave solution (5.22) ±u+: red (dashed) line, +u+ (upper),
−u+ (lower). Here u− = 1.0, u+ = 0.12, ν = 200 and q = 2. (Online
version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 Numerical solutions of the nematic equations (2.19) and (2.20) for the
initial conditions (2.29) and (2.31). Blue (solid) line: |u| at z = 1500;
red (dashed) line θ at z = 1500; green (dash-dot) line: |u| at z = 0 and
violet (dotted) line θ at z = 0; black (pluses): theoretical solution (5.22)
at z = 1500. Here, u− = 1.0, u+ = 0.0, ν = 200 and q = 2. (Online
version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

13



6.2 Numerical solutions of the nematic equations (2.19) and (2.20) for the
initial conditions (2.29) and (2.31). Blue (solid) line: |u| at z = 1500;
red (dashed) line θ at z = 1500; green (dash-dot) line: |u| at z = 0 and
violet (dotted) line θ at z = 0; black (pluses): theoretical solution (5.45)
at z = 1500. Here, u− = 1.2, u+ = 1.0, v− = −2 and v+ = 0. (Online
version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Comparisons between numerical solutions of the nematic equations (2.19)
and (2.20) and the DSW solution of the lead solitary wave height Hs for
the PDSW, RDSW and CDSW regimes. Numerical solution: orange
boxes; analytical solution: blue (solid) line. Here, u− = 1.0, ν = 200
and q = 2. (Online version in colour.) . . . . . . . . . . . . . . . . . . . 120

6.4 Comparisons between numerical solutions of the nematic equations and
the DSW solution of the lead solitary wave velocity Vs for Regimes 1,
2 and 3. Numerical solution: orange boxes; analytical solution: blue
(solid) line; DSW fitting method solutions: green (dash-dot) line. Here,
u− = 1.0, ν = 200 and q = 2. (Online version in colour.) . . . . . . . . . 121

6.5 Comparisons between numerical solutions of the nematic equations and
the DSW solution of the trailing edge velocity si for Regimes 1, 2 and 3.
Numerical solution: orange boxes; analytical solution: blue (solid) line;
DSW fitting method solutions: green (dash-dot) line. Here, u− = 1.0,
ν = 200 and q = 2. (Online version in colour.) . . . . . . . . . . . . . . . 121

6.6 Comparisons between numerical solutions of the nematic equations (2.19)
and (2.20) and the solution of the resonant wavetrain height Hr for the
CDSW, TDSW and VDSW regimes. Numerical solution: orange boxes;
analytical solution: blue (solid) line. Here, u− = 1.0, ν = 200 and q = 2.
(Online version in colour.) . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.7 Comparisons between numerical solutions of the nematic equations (2.19)
and (2.20) and the solution of the resonant wavetrain background ūr for
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Chapter 1

Physical and Mathematical
Backgrounds

1.1 Nematic Liquid Crystals and Non-linear Optics

The discovery of liquid crystals dates back to the 19th century. It is ascribed to
the moment when Frederick Reinitzer, an Austrian chemist, heated a solid sample of
cholesteryl benzoate in his lab to investigate the sample’s chemical and physical prop-
erties. During his experiment, Reinitzer found that the sample manifested two different
melting points, unlike any other organic compounds [2]. At temperatures around 145
◦C, he observed that the sample changed into a peculiar hazy liquid and then became
a normal transparent liquid at higher temperatures. That foggy liquid was understood
to be a new state of matter by the German physicist Otto Lehmann. Lehmann named
this intermediate phase which lies between the solid and liquid (isotropic) states a liq-
uid crystal [3]. Scientific experiments then found that molecules of liquid crystals are
long, thin, ellipsoid-shape and of moderate-size with a rigid centre allowing them to
maintain their forms [4]. They are also easily polarisable molecules, so they form strong
dipoles after being exposed to an electric field [4, 5]. The main reason for this is the fact
that liquid crystals consist of complex organic molecules which are based on aromatic
elements (benzene rings) as their functional groups. A benzene group has a number of
electrons that are free to move relatively [4]. Therefore, when a liquid crystal is exposed
to a polarised electromagnetic wave, these electrons delocalise and a dipole moment in
each of the molecules is generated. The application of liquid crystals in today’s modern
technology is quite ubiquitous. For example, they are used in TVs, computer monitors,
electronic watches, medical thermometers, optical imaging equipment et cetera.

The molecules of liquid crystals exist in different natural arrangements: positional
or orientational order [4]. The positional order refers to regular distances between the
molecules, whilst orientational order indicates a common averaged direction. The types
of molecular organisation play a key role when it comes to classifying the phases of liquid
crystals, as we shall see shortly. There is a another kind of molecular arrangement, the
so-called bond-orientational arrangement, which represents a line attaching the centres
of closest-neighbour molecules without a uniform spacing condition, but this is outside
the scope of the present work so we will not deal with it further. Liquid crystals possess
a high level of orientational alignment because of strong intermolecular forces, but a low
positional order. As a result of this, they exhibit anisotropic features. Their molecules
tend to self-align themselves and point in one particular direction represented by a unit
vector known as the molecular director n̂, as shown in Figure 1.1(a). The orientational
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(a) (b)

(c)

Figure 1.1: Thermotropic liquid crystals and properties. (a) Collection of liquid crys-
tal’s molecules oriented averagely towards the director unit vector n̂. The parallel
and orthogonal refractive indices are illustrated by n|| (red arrow) and n⊥ (yellow ar-
row). (b) Phase transitions from solid to nematic liquid crystal and then to liquid
are shown in terms of the order parameter S as a function of the temperature T .
Courtesy of Gaetano Assanto et al [6]. (c) From left to right: nematic, smectic A,
smectic B and chiral liquid crystals structures. This image was retrieved from the URL
https://www.medicinescomplete.com/mc/rem/2012/cf-fig-26-50.png. (Online version
in colour.)

order is described in terms of the molecular director and another parameter termed the
order parameter S. This parameter S shows how much molecular ordering exists on
scale 0 to 1 and it is given by the mathematical expression

S =
1

2

{
3
〈
cos2 γ

〉
− 1
}
, (1.1)

where γ is the angle between the director and the long molecular axis; the bracket <>
denotes the average taken over the total solid angle γ [6]. The order parameter usually
depends on temperature T as most of the liquid crystals are thermometric media, a
phase that will be discussed below. In Figure 1.1(b), the order parameter of a solid is
given by S(0) = 1 and as the temperature T rises, it vanishes to zero, at which the
state is a liquid.

In general, liquid crystals are categorised into three categories: thermotropic, ly-
otropic and metallotropic. Thermotropic is a phase of matter for which orientational
and positional orders depend on the temperature only. In contrast, lyotropic is a state
of matter for which the order depends on both the temperature and the concentration
of the liquid crystal in a solvent such as water. The last category of the liquid crystals,
metallotropic, consists of organic and inorganic molecules, and the order in this case is
governed by the ratio between these different molecules together with the temperature
and the concentration. Most liquid crystals are thermotropic materials and have uniax-
ial molecular arrangements. This thesis is related to this kind of liquid crystals. Based
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on the geometry of the molecular arrangements, the thermotropic phase is divided into
three sub-categories, as presented in Figure 1.1(c):

• Nematic phase. A nematic liquid crystal is characterised by its elongated and
rod-like molecules, therefore its name as nematic which comes from the ancient
Greek word for thread. Nematic molecules have no positional order because their
ends are not aligned with one another. However, due to the intermolecular forces,
they tend to retain an alignment parallel to the molecular director n̂.

• Smectic phase. This phase takes place at lower temperatures than the nematic
phase. Its molecules are in fact nematic, but with the molecules packed into layers.
In smectic A, the long molecular axes are orthogonal, or slightly orthogonal, to
the layer planes, while in smectic B, the axes are inclined with respect to the
planes.

• Chiral phase. Chiral molecules are nematic and grouped in layers similar to
the smectic phase. Nonetheless, the axis of each molecule is oriented parallel to
its neighbours within the same layer. Moreover, the director’s angle in each layer
rotates from one level to the next, forming a helical pattern.

In this thesis, we are only interested in the nematic phase of thermotropic liquid crystals.
In particular, we are concerned with how the nematic molecules respond to an applied,
linearly-polarised, coherent light wave. Therefore, we shall now discuss the optical
properties of nematic liquid crystals and describe the interactions between nematic
materials and linearly-polarised electromagnetic waves.

In optics, the term polarisation has two meanings. Sometimes it refers to dipole
moment (dipoles are molecules that contain a pair of positive and negative equal-
magnitude charges with a slight separation distance) per unit volume, and is given
by the product between the electric charge q and the separation distance d from the
negative charge to the positive one:

P = Nqd, (1.2)

where N is the number of the dipoles [9, 10]. On the other hand, the same term is used
to describe the polarisation of light, which is the direction of the electric field in an
electromagnetic wave. Electromagnetic waves can be linearly, circularly or elliptically
polarised [9, 10]. Here, we are only concerned with the linear polarisation case. Liquid
crystals either consist of permanent dipoles or unpolarised molecules [4]. Those which
are unpolarised become polarised under the application of an electric field. The dipoles
are either along or across the long molecular axes. When they are parallel, or nearly
parallel, to the long molecular axes, the molecules tend to align with the electric field
direction and are perturbed from their equilibrium positions at a particular angle due
to the generated dipolar torque which is balanced with the elastic intermolecular forces
of liquid crystals [4, 6]. Otherwise, they tend to orient normally to the electric field
direction. This property is often referred to as reorientation. Such a molecular rotation
does not occur unless the power of the induced electric field is high enough. The reason
for this is that nematic liquid crystals are highly elastic media. A minimum electric
field is required to initiate this rotation and overcome the elastic intermolecular forces.
This minimum electric field is termed Fréedericksz threshold [4, 6]. Below this thresh-
old, the director remains unrotated. The deformation of the director undergoes three
possible distinct geometries: splay, twist and bend, see e.g. [5, 6] for further details.
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The nematic molecules respond to the electric field collectively, which causes either a
uniform or non-uniform modification in the structure of the molecular director depend-
ing upon the intensity of the electric field. If the electric field strength is extremely
high, some undesired physical effects and irreversible optical damages take place, such
as local heating which can destroy the nematic phase. Beside the reorientational prop-
erty, nematic liquid crystals are typically saturable materials. This means that when
the initial long molecular axes are parallel to the applied electric field direction, the
molecular director is not displaced. Nematic liquid crystals are also non-local media;
in the sense that the response of the nematic to the optical forcing extends beyond the
waist of the optical beam [5, 6, 7, 8].

Now let us consider some important linear and non-linear optical effects, such as
linear/non-linear diffraction (dispersion), non-linear self-focusing and self-trapping. Ba-
sically, the difference between linear and non-linear optics is that the first is a field of
physics that studies the interaction between matter and light waves of weak intensities,
while the latter is concerned with the interplay between matter and light waves of strong
intensities. In linear regimes, a polarised light beam spreads over a targeted optical
medium and its size gets gradually wider than the original size of the beam as it prop-
agates. This classical linear effect is called linear optical diffraction (spatial spreading
waves) or dispersion (temporal spreading waves). However, in non-linear regimes, the
situation is much more complicated. The light beam may diffract, self-focus (it focuses
upon itself without the aid of any additional tools such as a lens) or self-trap (confines
itself and travels steadily without the aid of any extra optical tools) depending on the
natural properties of the optical medium plus the strength of the intensity of the light
beam, see e.g. Figure 1.5 in Section 1.3. The radical transition from linear to non-linear
optics is ascribed to John Kerr, a British physicist. Kerr launched a linearly polarised
light beam through an optical material and kept raising the beam’s intensity until he
discovered two new optical features.

First, the refractive index of a solid or liquid does not only depend on the induced
optical wavelength, it could also depend on the optical wave’s intensity. A traditional
example for this is the refractive index of fused silica for which the refractive index is
given by [9]

n(λ, I) = n0(λ) + n2I, (1.3)

with n0 the low intensity (linear) index, n2 the non-linear index (Kerr coefficient) and
I the beam’s intensity. Another example that is relevant to the work of this thesis
is nematic liquid crystals. It has been found that their non-linear refractive index
depends on the molecular rotational angle γ generated by a linearly-polarised light
beam [5, 6, 11], namely,

ne(γ) =
n‖no√

n2
‖ cos2(γ) + n2

o sin2(γ)
, (1.4)

where no = n⊥ is the linear refractive index for a so-called ordinary beam, which will
be defined shortly. Here, n‖ is the refractive index that is parallel to the nematic
director n̂. It is measured by a linear-polarised electric field that is parallel to the
nematic director. On the other side, n⊥ is the refractive index that is perpendicular
to the nematic director n̂. It is measured by a linear-polarised electric field that is
perpendicular to the nematic director. Figure 1.1(a) demonstrates these two different
refractive indices. In nematic liquid crystals, n|| > n⊥ always [6]. As we can see,
there are two distinct kinds of refractive indices: ordinary refractive index no and
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extraordinary refractive index denoted by ne. This is because nematic liquid crystals
are birefringent materials, in particular uniaixal materials [6]. Therefore, the light beam
splits into two eigenmodes [1, 4, 6]. One is non-dispersive (an ordinary beam associated
with the refractive index no) and the another one is dispersive (an extraordinary beam
associated with the refractive index ne).

Second, as opposed to linear media in which the response of the polarisation to the
electric field E is linear [9, 10], i.e.,

PL = ε0χ
(1)E, (1.5)

where ε0 is the vacuum permittivity and χ(1) is the linear electric susceptibility of the
material, the polarisation responds non-linearly to the electric field in non-linear ma-
terials. As the electric field of the optical beam increases, the polarisation increases
sequentially. However, this action does not continue indefinitely. As the optical field
grows to be very large, the magnitude of the field itself starts to become on the magni-
tude of the electric fields between the atoms in the materials. When this process takes
place, the materials themselves become “slightly” altered and the optical behaviour is
no longer linear. Instead, it starts to become weakly non-linear. Mathematically, this
can be given as a Taylor expansion in the electric field E [9, 10],

P = ε0

{
χ(1)E + χ(2)E2 + χ(3)E3...

}
= PL + PNL, (1.6)

where the χ(i)s are the i−th order electric susceptibilities.
The last thing we need to discuss in this section is the optical self-trapping property

of nematic liquid crystals. This is probably the most important optical feature of
nematic materials. For any non-linear optical media, there are two types of self-trapped
waves that can occur: bright and dark self-trapped waves. In general, when an intense
laser beam penetrates a nematic cell, the self-focusing and dispersion effects balance
each other to result in a bright self-confined beam propagating through the cell without
any change in its form. The laser beam’s intensity in this case is of peak shape [6]. This
kind of wave is called a bright optical solitary wave. However, in a doped nematic cell,
which will be discussed in Section 1.3, the beam may confine as a dark self-confined
region travelling in the crystal and the beam’s intensity becomes of dip shape [6, 58].
This self-confined beam with an intensity dip is termed a dark solitary wave. Prior to
presenting a laboratory experimental set-up that shows how these classes of nematic
waves can be produced, we give a brief introduction of solitary waves and their historic
developments.

1.2 Solitary Waves and Solitons

The first observation of solitary waves, in the context of water waves, was made by
John Scott Russell, who was a British civil engineer and naval architect living in the
19th century. In the year of 1834 he was riding on a horse and pursuing a horse-drawn
boat in the narrow Union Canal which connects Edinburgh and Glasgow. Russell’s
pursuit of that boat was not without motivation. At that time he was carrying out
experiments to design the optimal shape of a canal boat. When the boat accidentally
stopped moving, presumably because of an obstacle it encountered, he recognised the
development of a peculiar and unique wave that was propagating behind the boat.
That wave featured properties that were not expected by the community of scientists
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at that time. Those properties are:

• Contrary to classical (linear) waves which were believed to be of an oscillatory
type only, Russell’s wave was a travelling single hump, i.e., a localised wave,
propagating on the surface of the canal.

• The wave was observed to maintain its form without any deformation over large
distances and long times, which is a manifestation of its robustness against natural
perturbations caused by the uneven canal floor.

Since then, Russell termed this unprecedented wave phenomenon a “wave of trans-
lation” and started to recreate it experimentally in his 30 ft wave tank that he had
built in the backyard of his home. After several experimental trials that lasted over a
period of 10 years, he succeeded in simulating that translating wave in his tank and
immediately reported his discovery in the 14th meeting of the British Association for
the Advancement of Science. Russell explained his finding in his famous report [12] in
the following way:

“... I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped not so the mass of wa-
ter in the channel which it had put in motion; it accumulated round the prow of the
vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward
with great velocity, assuming the form of a large solitary elevation, a rounded, smooth
and well-defined heap of water, which continued its course along the channel appar-
ently without change of form or diminution of speed. I followed it on horseback, and
overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its
original figure some thirty feet long and a foot to a foot and a half in height. Its height
gradually diminished, and after a chase of one or two miles I lost it in the windings of
the channel. Such, in the month of August 1834, was my first chance interview with
that singular and beautiful phenomenon which I have called the Wave of Translation ...”

After the discovery and the experiments of Russell on solitary waves, George Airy
believed that the theoretical solution for a solitary wave can be deduced from linear
wave theory [13]. He thought that the dynamics of shallow water waves, such as canal
waves, are fully governed by the linear hyperbolic partial differential equation (PDE),
known as the wave equation [1, 99],

∂2u

∂t2
− c2∂

2u

∂x2
= 0, (1.7)

where c =
√
gh. The variable u is related to the water wave elevation from the fluid

equilibrium surface. The parameter c is the linear shallow water wave velocity and is
given in terms of the gravitational acceleration g and the water depth h. Indeed, the
linear wave equation (1.7) admits a solitary wave solution, the so-called d’Alembert
solution [1, 99], of the form

u(x, t) = f(x+
√
ght) + g(x−

√
ght) (1.8)

for any real-valued, smooth functions f and g such that f and g approach one constant
asymptotic state as x→ ±∞, for instance, sech2(x±

√
ght). Although Airy was correct

in the interpretation that the sech2 solution exhibits the form of a solitary wave, it is
because the general form of a solution of the linear wave equation (1.7) is generic enough
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to encompass any such solution. Moreover, modelling shallow water waves by using the
linear wave equation (1.7) disagrees with non-linear shallow water wave theory [1] in
that the wave velocity c does not depend on the wave amplitude. George Stokes, on the
other hand, did not agree with Russell’s solitary wave as he believed that gravity water
waves are dispersive waves and the only permanent form of waves that could possibly
exist is sinusoidal waves (Fourier modes).

Russell’s observation at that time did not stand on a strong theoretical basis and it
lacked a mathematical background. Consequently, his finding was not taken seriously
among the applied mathematics and physics communities. However, after more than
20 years, John Boussinesq [14] and Lord Rayleigh [15], independently, felt that what
prohibited the theoretical prediction of the solitary wave, that is Russell’s wave, was
the neglect of non-linearity to which could balance dispersion. In other words, and in
general, the root reason behind the formation of solitary waves is a balance between a
linear effect, causing the waves to disperse, and a non-linear effect, causing the waves to
steepen and then break. Indeed, with the supposition of an incompressible and inviscid
fluid and weakly non-linear profile long waves (shallow water), Boussinesq formulated
a mathematical model that describes what Russell observed. His equation admits a
localised wave solution, with a sech2, that vanishes in the limit |x| → ∞. The resulting
Boussinesq equation is a bi-directional, non-linear, dispersive wave equation, given in
normalised form [14, 16]

∂2u

∂t2
− ∂2u

∂x2
− 3

∂2u2

∂x2︸ ︷︷ ︸
Non-linearity

− ∂4u

∂x4︸︷︷︸
Dispersion

= 0. (1.9)

The linear dispersion relation exhibits right-running and left-running waves, on that it
is a bi-directional equation. Rayleigh’s approach to justify Russell’s wave of translation
was different and much more direct than Boussinesq’s method. Of course, the conclu-
sion was the same, the reader can refer to e.g. [15] for further details. Rayleigh was not
aware of Boussinesq’s work at that time, but he became familiar with it eventually. He
finished his article [15] with the following remark:

“I have lately seen a memoir by M. Boussinesq, Comptes Rendus, Vol. LXXII, in
which is contained a theory of the solitary wave very similar to that of this paper. So as
far as our results are common, the credit of priority belongs of course to M. Boussinesq.”

There was now a mathematical verification that waves can exist with a non-oscillatory
shape, consistent with Russell’s observation and experiments. Yet, it was still believed
that oscillatory waves only exist in linear regimes. Korteweg and de Vries, however, in
1895 realised that Boussinesq and Rayleigh deduced their theoretical solutions under
the single assumption that the shallow water wave decays at ±∞. Before extending this
assumption, and for the sake of simplicity, they first considered wave solutions propa-
gating to the right direction only. This led to the following uni-directional, non-linear,
dispersive wave equation [17]

∂u

∂t
+ 6u

∂u

∂x︸ ︷︷ ︸
Non-linearity

+
∂3u

∂x3︸︷︷︸
Dispersion

= 0, (1.10)

which is known as Korteweg-de Vries (KdV) equation and can be deduced from the
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Boussinesq equation (1.9) [1]. Then, instead of seeking a wave like solitary wave they
sought a general travelling periodic wavetrain, say, u = u(x−V t) where V is the phase
velocity, and solved the resulting non-linear ordinary differential equation (ODE). The
general solution was found as a periodic wavetrain in terms of the Jacobian elliptic
function cn and it is analogous to the cosinusoidal solution of the linear equation (1.7),
hence it is named a cnoidal wave. Some contemporary books [19] and research papers
[18, 20], though, tend to prefer to represent this periodic wavetrain in terms of the
Jacobian elliptic function dn instead of cn. Similarly, it is called dnoidal waves and can
be expressed as [18, 19, 20]

u(x, t) = ū+
2a

m
dn2

(√
a

m
{x− Vpt} ;m

)
− 2a

m

E(m)

K(m)
. (1.11)

Here, a, m, ū, K(m) and E(m) being the amplitude, the modulus squared parameter
of elliptic integrals, the wave mean and the complete elliptic integrals of first and second
kinds, respectively. The phase velocity satisfies

Vp = 6ū+ 4a

{
2

m
− 1

}
− 12a

m

E(m)

K(m)
. (1.12)

In the infinite-wavelength asymptotic limit, associated with m → 1, this solution re-
duces to the solitary wave solution which is known from the work of Boussinesq and
Rayleigh, namely,

u(x, t) = ū+ as sech2

(√
as
2
{x− Vst}

)
, (1.13)

where as = 2a is the soliton’s amplitude and Vs = 6ū+ 2as is its velocity. In the linear
limit, with 0 < a � 1 and m → 0, the dnoidal wavetrain (1.11) simplifies to classical
cosine waves. After using some Jacobian elliptic functions identities [21] we get

u(x, t) = ū+ a cos

(
2

√
a

m
{x− Vpt}

)
+ O(a). (1.14)

Some connections between steady dnoidal, solitary and harmonic waves, depending
on the values of a, ū, m and t, are given in Figure 1.2(b). This major contribution
from Korteweg and de Vries showed that periodic wavetrains are possible in non-linear
regimes. In this regard their work is considered to be far more general than the previous
mathematical contributions. Figure 1.3 shows some examples of solitary and cnoidal
waves occurring in fluids.

After that, the research on non-linear dispersive waves was not extremely active and
went through a long period of dormancy until around the mid of the 20th century. In
1965, Zabusky and Kruskal [22] solved the KdV equation (1.10) with periodic boundary
conditions and a harmonic initial condition numerically, in particular u(x, 0) = 10 cosπx
on the spatial domain [0, 2], and they discovered something remarkable. First, they no-
ticed that the initial cosinusoidal wave began to steepen until it arrived at a breaking
point, that is, a point at which a slope is nearly vertical. Second, prior to the occur-
rence of breaking, small waves were generated behind the shock-like structure. These
waves started growing gradually. As this growth was occurring, the collection of waves
spread over the whole spatial domain and formed a group of solitary waves, each of
them propagating with a distinct velocity. Afterwards, as the time advanced, these
solitary waves started to interact with each other due to the imposed periodic bound-
ary conditions. The most important and astonishing thing that was discovered in this
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Figure 1.2: Steady dnoidal waves and solitons at t = 0. (a) Bright soliton: (blue) solid
line; black soliton with A = 0 and B = 1: (orange) dashed line; gray soliton with
A = 0.6 and B = 0.8: (yellow) dash-dot line. The parameter as was chosen 1.0 in the
expressions (1.19) and (1.20). (b) dnoidal waves approaching the solitary wave limit
with m = 0.999, ū = 1 and a = 1.0: (blue) solid line; dnoidal waves with m = 0.5,
ū = 1 and a = 0.6: (orange) dashed line; dnoidal waves approaching the linear waves
limit with m = 0.01, ū = 1 and a = 0.1: (yellow) dash-dot line. (Online version in
colour.)

numerical study was the clean interactions between the KdV solitary waves. By a
clean interaction we mean that the interacting solitary waves survived the collision
with no change in shape and speed. The only effect that the collision left behind was a
phase shift, namely, a shift in the position of the contributing solitary waves [22]. This
collision resembles a typical elastic collision between solid particles. Because of this
particle-like behaviour possessed by solitary waves, Zabusky and Kruskal coined these
waves “solitons.” The motivation that drove Zabusky and Kruskal to undertake this
numerical research project is connected with the FPUT problem [24], an abbreviation
that stands for Fermi-Pasta-Ulam-Tsingou. In 1955, right after the emergence of one
of the first fast computers at Los Alamos, called Maniac I, Fermi had an idea to test
an unproven hypothesis in statistical mechanics which says that, in simple words, after
a long time the energy of a system is spread equally among all modes. This hypothesis
is often referred to as energy equipartition [23]. He and his collaborators tested this
hypothesis by studying numerically a mass-spring system in which the restoring force
is a non-linear function of the displacement from an equilibrium position (non-linear
mass-spring problem), which is a model of atoms in a crystal. At the beginning, they
expected to see a gradual and continuous transfer of energy from the first mode to
the higher ones. Instead, after leaving the numerical code to run for a long time, they
noticed that the energy only increased from the first mode to few more modes, about
five modes, and then it recurred to its original value, which was in the first mode and
kept going in this pattern until the end of the numerical simulation. Their system ex-
hibited a periodic behaviour rather than an ergodic one. Fermi and his co-workers did
not have a theoretical explanation for this surprising result, but the work of Zabusky
and Kruskal provided an excellent illustration. In the continuum and long-wave lim-
its, Fermi’s equations that govern the dynamics of the non-linear mass-spring system
can be reduced to a KdV equation like (1.10), as shown in [22, 25, 26]. From this,
we understand that the initial condition in the FPUT problem gives rise to a certain
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number of solitons. Hence, the energy excitation is in the first few modes, with clean
interactions between them, thus the observed energy recurrence.

Two years after the discovery of solitons, Gardener, Greene, Kruskal and Miura
developed a new method that solves the KdV initial value problem exactly [28]. This
method is known as the inverse scattering transform (IST) and was the first general
method that solves non-linear PDEs. It is the non-linear analog of a standard Fourier
transform used to solve linear PDEs. The point spectrum of the KdV scattering prob-
lem was found to correspond to solitons [1, 27, 28, 26]. Subsequently, it was realised
in general that clean interactions between solitons is a direct consequence of having an
inverse scattering solution. In other words, if an equation, or system of equations, is
exactly solvable, possesses an inverse scattering solution and has an infinite number of
conservation laws, then it is guaranteed that its solitary waves interact elastically with
each other. An equation that has this property is said to be an “integrable equation.”
Solitary waves are called solitons in this case. With this background, the different
terms soliton and solitary wave emerge. Every soliton is a solitary wave, but not the
converse. An example of a system of equations that has solitary wave solutions, but
their collision is not clean, is the nematic system of equations (2.19) and (2.20), which
is the main mathematical model in this thesis, see e.g. [30, 31, 32, 33]. That is why
we will use the term solitary wave rather than soliton when it comes to studying these
equations; they form a non-integrable system.

As the research area of non-linear dispersive waves has developed, many non-linear
dispersive PDEs other than KdV equation were found to be integrable and admit soliton
and cnoidal wave solutions. For instance, the modified KdV equation [29], the non-
linear Schrödinger (NLS) equation [36], the sine-Gordon equation [37], the Kadomtsev-
Petviashvili equation [26, 27], the Benjamin-Ono equation [38], the Gardner equation
[39] et al. A wide list of similar equations can be found in e.g. [40]. The non-linear
wave equation that we shall focus on is the NLS equation because the mathematical
model in this thesis reduces to the NLS equation in one limit, as see in Section 2.1.
The NLS equation has a huge array of applications as it naturally arises in non-linear
optics [41, 42, 43, 44], fluid mechanics (deep water waves) [45, 46, 47] and plasma
physics [48, 49]. Sometimes it is referred to as the Gross-Pitaevski equation, after
Gross and Pitaevski who deduced it in the context of Bose-Einstein condensates (BECs)
[50, 51, 52]. There are two versions of the NLS equation: focusing and defocusing
equations.

In dimensionless form, the focusing NLS equation is

i
∂u

∂t
+

1

2

∂2u

∂x2︸ ︷︷ ︸
Dispersion

+ |u|2u︸ ︷︷ ︸
+ve Non-linearity

= 0, (1.15)

and has a soliton solution of the form [35]

u(x, t) = as sech (as {x− Vst}) ei(kx−ωt), (1.16)

where as, Vs, k and ω are the soliton amplitude, the soliton velocity, the wavenumber
and frequency of the carrier plane wave (background wave), in order. Here, the soliton
velocity satisfies Vs = k and the frequency ω is provided by the linear dispersion
relation ω = k2/2−as. A well-known application of the focusing NLS equation in fluid
mechanics is the explanation that it provides for the evolution of the deep water wave
modulational instability which is known as Benjamin-Feir instability, see [19, 25] for
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Figure 1.3: Solitary and cnoidal waves in fluids. (a) Russell’s solitary wave in the
Union Canal recreated by a group of scientists who gathered in a non-linear waves
conference that took place at Heriot-Watt University in 1995. The soliton, appear-
ing as a hump wave, is ahead of the boat. This image was retrieved from the URL
https://www.ma.hw.ac.uk/solitons/soliton1.html. (b) Cnoidal waves in the Panama
Coast, Central America, taken in 1933. Image source: National Geographic Magazine,
Volume 63. (c) Echogram of a large internal (dark) solitary wave in the Saguenay Fjord,
Canada, taken in 2016. Courtesy of Daniel Bourgault et al [169]. (d) An interaction
(Y-type interaction) between two solitons in Nuevo Vallarta, Mexico, taken in 2012.
Courtesy of Mark Ablowitz et al [170]. (Online version in colour.)

detailed discussion. In the other hand, the defocusing NLS equation is given by

i
∂u

∂t
+

1

2

∂2u

∂x2︸ ︷︷ ︸
Dispersion

− |u|2u︸ ︷︷ ︸
-ve Non-linearity

= 0, (1.17)

and its soliton solution is [34]

u(x, t) = as {B tanh (asB {x− Vst}) + iA} ei(kx−ωt), (1.18)

where Vs = asA+ k and ω = k2/2 + as. The constants A and B are connected through
the relation A2 + B2 = 1. The defocusing soliton solution (1.18) admits two types of
soliton solutions, known as black and gray solitons. The black soliton corresponds to
the case when A = 0 and B = 1, while the latter one is associated with the case when
A,B 6= 0. Note that in the theory of hydrodynamics, the defocusing NLS equation
appears as a system of dispersive Euler equations for compressible gas dynamics, see
Section 2.1 for further illustration.

The nomenclature focusing and defocusing originates from non-linear optics. In
practice, that is in an experimental setting, when a light wave propagates through
an optical medium, the light wave intensity I = |u|2 is the physical quantity that is
actually measured inside the medium, not the complex electric field u. When this
medium is a focusing one, the refractive index increases with I, so that the beam

26



self-focuses, forming a bright region. This bright region is called a bright soliton and
mathematically is given by

I = a2
s sech2 (as {x− Vst}) . (1.19)

Bright solitons can be used as information carrier waves (optical bits), for instance,
in optical fibers. This is one of several advantages they have in real-life applications,
the references [41, 42, 43, 44] provides wide benefits obtained from this kind of optical
solitons. On the other hand, when the medium is of defocusing type, the refractive
index decreases with the intensity rather than increases, resulting in a dark self-confined
region. This dark region is coined a dark soliton and mathematically is given by

I = a2
s

{
B2 tanh2 (asB {x− Vst}) +A2

}
. (1.20)

Such a soliton demands optical fibers to have a non-zero optical background, i.e., to be
continuously flooded with light while the dark soliton propagates back and forth. For
this and other reasons dark solitons are not practical in optical fiber communications.
However, they have been observed in experiments [53, 58]. Figure 1.2(a) displays the
intensity profiles of the bright (1.19) and black/gray (1.20) steady solitons. The bright
soliton intensity is similar to Russell’s water wave, i.e., a hump, whereas the dark
(gray) counterpart takes the form of a flipped hump that drops to x = 0 (x 6= 0). The
resemblance between wave phenomena occurring in optics and fluids is generally deep.
In the same way bright and dark solitons arise in optical materials, they also do in deep
water waves. As for black/gray solitons, it may sound strange that water waves in the
form of a flipped, well-defined lump are possible to exist, but this has been observed by
a group of scientists at École Centrale Marseille in a wave tank experiment. Travelling
waves of dipping amplitudes occurring within the water in the tank were detected, see
[54] for details. These waves are called “internal solitary waves” and their existence in
oceans is ubiquitous, one clear illustration of this is depicted in Figure 1.3(c). They
are produced when the interface between the fluid layers is perturbed, such as when
tidal flow passes over rough ocean floors, ridges, or other obstacles. In addition to
these types of solitons, there are several others such as breathers [55], gap solitons [56],
vortex solitons [27, 57], etc. These waves are outside the scope of this thesis, so we will
not discuss them further.

We have given so far a brief introduction to solitary waves, nematic liquid crystals
and their basic physical properties. We are ready now to present an experimental set-up
that generates bright or dark solitary wave in nematic liquid crystals.

1.3 Experimental Set-up

As in Figure 1.4, let us consider the propagation of a coherent, linearly-polarised light
beam from a laser, such as Argon laser, through an optical cell filled with a nematic
liquid crystal, a typical type which is used is the commercial mixture E7 [6]. Suppose
that the light propagates in the direction Z down to the cell with the laser beam being
polarised in the X direction. The Y coordinate then closes the coordinate system as
depicted in the figure. Typically, the physical cell dimensions are 200 μm×30 μm×1
mm [6]. Two parallel slides of glass are used to trap this nematic cell and separated
by a distance. In addition, a third glass plate is deployed to seal the cell’s entrance as
shown in the figure. The role of this additional glass is to avoid the formation of an
undesired meniscus at the interface of air and the nematic liquid crystal. A meniscus
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Figure 1.4: Experimental design of an optical apparatus. A generated bright solitary
wave (yellow region), nematicon, by a linear-polarised light wave U propagating through
a cell filled with a focusing nematic liquid crystal. The light wave is linearly polarised
in the direction X. Two thin electrodes, creating dipole moments, and anchoring films
are attached. They are shown by (black) and (gray) regions, respectively. The nematic
molecules which are located at the boundaries are held tightly by the virtue of the
anchoring films. The far right inset (black) dashed box exhibits angular positions of a
nematic molecule with respect to the direction of the propagation Z before and after
releasing the light wave through the nematic cell. (Online version in colour.)

could change the polarisation and phase distribution of the input laser beam. There
is an external static electric field E that is applied across the cell through a voltage
source V and produced from a pair of attached thin film electrodes. Such an electric
field creates dipoles in the nematic molecules, realigns them towards the direction of
the polarisation and pre-tilts them at an angle θ0 with respect to the direction of
the propagation, as shown in the figure. There is also a pair of polymer anchoring
films deposited on the internal surfaces of the electrodes. Their role is to anchor the
molecules at the boundaries at θ0 � π/2 and prevent defects in the orientation of the
molecular director. One of the main complexities of the nematic medium is that if
its molecules are initially aligned with their director orthogonal to the electric field U ,
then the optical Fréedericksz threshold exist. Therefore, a minimum static electric field
E is required to overcome the elastic intermolecular forces and enable the molecular
rotation θ. For this reason, the voltage source is used at specific amount of voltage with
a low frequency, for example, V = 0.8 V with frequency 1 kHZ [6, 7]. Otherwise, the
nematic molecules will not experience the rotation θ. The optical power of the launched
light beam is adjusted at milliwatt levels at a wavelength typically in the near infrared,
for instance, 2 mW at wavelength 514 nm [6, 7]. High optical power yields excessive
heating which can cause the medium to change its state out of the nematic. With this
background and experimental settings, the following are observed:

• The director’s configuration is uniformly reoriented and planarly aligned.

• An additional optical, rotational angle θ is induced in the molecules from the
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transverse effects in thin films. Except for the early attempts by
Braun et al., Karpierz et al. and Warenghem et al., the molecular
optical nonlinearity of nematic liquid crystals had remained
largely unexplored in terms of excitation and propagation of
spatial optical solitons. In 2000 a nematicon, a spatial optical
soliton in bulk nematic liquid crystals, was clearly observed fol-
lowing field-induced reorientation in planarly anchored
nematic liquid crystal molecules (see Fig. 1).

If the nematic molecules (elongated organic rods with a
refractive index that is larger along the axis) form an angle <!/2
with respect to an electric field E , they tend to realign so as to
reduce the angle because of dipolar torque. In the process, the
refractive index experienced by the field increases, thereby giving
rise to positive lensing along the axis of a bell-shaped beam.
When the reorientation effect is large enough, or in other words,
when the field is sufficiently intense and the self-focusing bal-
ances natural diffraction, a nematicon is excited: a lightwave
coupled with a matter distortion propagates forward with an
invariant (or cyclically breathing) transverse profile. Through
the molecular nonlinear response of a liquid crystal, an optical
spatial soliton has been born.

Spatial optical solitons in two transverse dimensions (i.e.,
2 + 1D solitons) are known to be unstable in media with a Kerr
nonlinear response, i.e., when the local change in refractive
index is linear in the intensity I and described by "n=n2 I. In
nematics, conversely, the nonlinearity is non-Kerr because of its
molecular nature; in this case, the change in index is associated
with an angular reorientation of molecules in a liquid and is,

Figure 1. Side view geometry of the
planar liquid crystal cell employed in
the experiments. The glass cell and
molecule distribution at (left) low-
beam intensity and (right) high-beam
intensity. When the level of reorienta-
tion is sufficient, a nematicon is ob-
tained. Voltage V is applied through
the thin film electrodes to induce a
pre-tilt of the molecular axes with 
respect to the electric field E.

Figure 2. Photographs of (a) a lin-
early diffracting and (b) a soliton
beam of 2 mW power from an ar-
gon-ion laser oscillating at 514 nm.
In (a), the light was polarized or-
thogonally to the reorientation
plane (x-z).

therefore, saturable and nonlocal. The effect cannot exceed the
natural birefringence of the medium and extends in space
beyond the location at which the electromagnetic disturbance is
applied. While both saturation and spatial nonlocality can make
solitons stable against perturbations or power fluctuations,
spatial nonlocality is the main ingredient that allows for the
generation and experimental observation of nematicons. The
index change behaves like a sheet being pushed in a given point:
its deformation is not localized exclusively where the pressure is
applied but spreads depending on the sheet fabric and bound-
aries. The coupled equations that describe the light-induced
angular reorientation # -#rest and the evolution of the optical 
E field are:
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respectively, with K the elastic constant of the medium and k the
propagation constant of the beam. After suitable scaling and
approximations for #rest close to !/4, Eq. (1) can be recast in
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transverse effects in thin films. Except for the early attempts by
Braun et al., Karpierz et al. and Warenghem et al., the molecular
optical nonlinearity of nematic liquid crystals had remained
largely unexplored in terms of excitation and propagation of
spatial optical solitons. In 2000 a nematicon, a spatial optical
soliton in bulk nematic liquid crystals, was clearly observed fol-
lowing field-induced reorientation in planarly anchored
nematic liquid crystal molecules (see Fig. 1).

If the nematic molecules (elongated organic rods with a
refractive index that is larger along the axis) form an angle <!/2
with respect to an electric field E , they tend to realign so as to
reduce the angle because of dipolar torque. In the process, the
refractive index experienced by the field increases, thereby giving
rise to positive lensing along the axis of a bell-shaped beam.
When the reorientation effect is large enough, or in other words,
when the field is sufficiently intense and the self-focusing bal-
ances natural diffraction, a nematicon is excited: a lightwave
coupled with a matter distortion propagates forward with an
invariant (or cyclically breathing) transverse profile. Through
the molecular nonlinear response of a liquid crystal, an optical
spatial soliton has been born.

Spatial optical solitons in two transverse dimensions (i.e.,
2 + 1D solitons) are known to be unstable in media with a Kerr
nonlinear response, i.e., when the local change in refractive
index is linear in the intensity I and described by "n=n2 I. In
nematics, conversely, the nonlinearity is non-Kerr because of its
molecular nature; in this case, the change in index is associated
with an angular reorientation of molecules in a liquid and is,

Figure 1. Side view geometry of the
planar liquid crystal cell employed in
the experiments. The glass cell and
molecule distribution at (left) low-
beam intensity and (right) high-beam
intensity. When the level of reorienta-
tion is sufficient, a nematicon is ob-
tained. Voltage V is applied through
the thin film electrodes to induce a
pre-tilt of the molecular axes with 
respect to the electric field E.

Figure 2. Photographs of (a) a lin-
early diffracting and (b) a soliton
beam of 2 mW power from an ar-
gon-ion laser oscillating at 514 nm.
In (a), the light was polarized or-
thogonally to the reorientation
plane (x-z).

therefore, saturable and nonlocal. The effect cannot exceed the
natural birefringence of the medium and extends in space
beyond the location at which the electromagnetic disturbance is
applied. While both saturation and spatial nonlocality can make
solitons stable against perturbations or power fluctuations,
spatial nonlocality is the main ingredient that allows for the
generation and experimental observation of nematicons. The
index change behaves like a sheet being pushed in a given point:
its deformation is not localized exclusively where the pressure is
applied but spreads depending on the sheet fabric and bound-
aries. The coupled equations that describe the light-induced
angular reorientation # -#rest and the evolution of the optical 
E field are:
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propagation constant of the beam. After suitable scaling and
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Fig. 91. Sketch of the planar cell employed for the observation of dark nematicons.

Fig. 92. Nonlinear propagation of a dark notch in azo-NLC. Acquired images (top), transverse intensity profiles in z = 0 µm (second row), 300 µm (third
row), 600 µm (fourth row) for input powers (a) 1.2, (b) 2.0, (c) 4.0 mW, respectively. The spreading of the bright lobes is limited by saturation effects and
losses.
Source: Reproduced with permission from Piccardi et al. (2011a).

12. Fast temporal dynamics of nematicons

Themain distinctive feature between temporal and spatial solitons are the time scales in which the nonlinear medium is
required to respond: while several examples of spatial solitons in fast media have been demonstrated in optics, nematicons
stem from a molecular response and tend to be nonlocal not only in space but also in time, i.e. slow (Beeckman et al.,
2005). On the opposite side, temporal solitons generally require a fast electronic or catalytic nonlinearity, usually treated
as instantaneous and local at light frequencies (Agrawal, 2001; Hasegawa and Tappert, 1973; Mollenauer et al., 1980;
Eisenberg et al., 2001). Light, however, can also affect the optical properties of liquid crystals without changing the director
orientation. These nonlinearities are driven by different mechanisms, such as changes in the degree of orientational order,
density, molecular conformation and electronic response. The latter has typical times in the fs region and is often treated
as instantaneous. The electronic response of liquid crystals has been exploited for wave-mixing, harmonic generation and
several fast effects, as reviewed by Khoo (1995, 2009).

The electronic Kerr effect enables the observation of nonlinear evolution in short optical pulses, including temporal
((1+ 1)D) solitons. In space (2+ 1)D Kerr solitons are known to be unstable (Kelley, 1965). (3+ 1)D spatiotemporal solitons
or light bullets, i.e. wavepackets invariant in both space and time as they propagate, were proposed by Silberberg (1990a).
Light bullets require the simultaneous nonlinear compensation of group velocity dispersion (1D in time) and diffraction (2D
in space). The number of transverse dimensions is indeed a key aspect of spatiotemporal soliton stability (Kuznetsov and
Rubenchik, 1986). ‘Quasi’-(3 + 1)D bullets were recently observed in a glass waveguide array (Minardi et al., 2010).

Spatial nonlocality stabilizes the otherwise unstable (2 + 1)D spatial solitary waves (Kivshar and Agrawal, 2003; Conti
and Assanto, 2004), as in NLC. Analogously, stable bullets need be excited in specific nonlinear regimes to prevent collapse.
Here we discuss the propagation of light bullets in NLC, combining nonlocal nematicons in (2+ 1)Dwith the fast electronic
response in time.

(b)

(c) (d)

(a)

Figure 1.5: Optical properties and experimental formations of a laser beam travelling
through different optical media. (a) Illustration of the self-focusing property generated
by increasing the power of a laser beam propagating in a Kerr medium. Courtesy of
Geoffrey New [9]. (b) Linear diffracting wave in a nematic liquid crystal that results
when the optical power of a laser beam is less than a minimum milliwatt, such as 2
mW. Courtesy of Gaetan Assanto et al [7]. (c) Bright nematicon generated when the
optical power of a laser beam is 2 mW. Courtesy of Gaetano Assanto et al [7]. (d)
Dark nematicon obtained when an azo dye is added to the nematic cell. The minimum
optical power to create this dark nematicon was found to be of magnitude 4 mW.
Courtesy of Gaetano Assanto et al [6]. (Online version in colour.)

pre-titled position θ0.

• In general, the light beam tends to self-focus due to the effect of non-linearity
(Kerr effect). However, the basic saturation and non-locality properties of ne-
matic liquid crystals do not allow the self-focusing to continue to dominate the
diffraction. Instead, the self-focusing and diffraction balance each other, resulting
in an intense and undistorted bright self-confined beam, which is a bright nematic
solitary wave, see Figure 1.5(c). This wave is often found in the literature by an
alternative name, bright “nematicon.” The term nematicon refers to a spatial op-
tical solitary wave propagating through a nematic liquid crystal in the “time-like”
direction Z.

• When the power of the optical beam is reduced below a minimum level, such as
2 mW [6, 7], the molecules still undergo an extra rotation, but the induced laser
beam self-diffracts rather than self-confines, as seen in Figure 1.5(b). We are not
interested in this linear behaviour.

Although a nematic liquid crystal is usually a focusing medium; that is it produces a
bright nematicon from a milliwatt laser beam and the refractive index increases with
intensity, it has been found that the addition of small amounts of an azo dye (an organic
chemical compound) to the nematic liquid crystal modifies the medium’s response. The
nematic becomes a self-defocusing medium instead [58]. By way of explanation, when a
light beam propagates through a cell with an azo dye doped nematic, the light diffracts
(defocuses) in the entire cell and, most importantly, it leaves in the middle a dark self-
confined region with reduced light, as illustrated in Figure 1.5 (d). This dark portion
is a dark nematic solitary wave, or dark nematicon.

The addition of an azo dye is necessary when it comes to studying nematic dispersive
shock waves (DSWs). Nematic DSWs are created when abrupt changes in the optical
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Figure 1.6: Mathematical and physical formations of VSWs. (a) Stationary Hyperbolic
tangent profiles given by the expression (1.25) smoothing out a physical singularity
which is shown by a (blue) solid line. Here, the (orange) dashed line is a tanh with
µv = 0.2 and the (yellow) dash-dot line is a tanh with µv = 0.05. In the plot, u− = 1
and u+ = 0. (b) Two aircraft flying at speeds faster than the speed of sound in the
atmosphere which yield to shock waves travelling away from the planes, resulting in a
sonic boom sound. Courtesy of Nasa [110]. (Online version in colour.)

intensity take place, subsequently leading to sudden changes in the nematic molecular
response. It has been found that focusing nematic liquid crystals exhibit unstable
DSWs [59, 128]. However, the defocusing counterpart manifests stable DSWs [60,
61], especially when the initial rapid changes in the optical intensity are small. We
will discuss this later in more details. Unfortunately, unlike other kinds of DSWs
occurring in fluid mechanics, BECs and optical fibres, nematic DSWs have been solely
investigated numerically and theoretically. No laboratory experiments exist to our
knowledge. It is hoped that such experiments can be conducted in the future. This
thesis is centred on DSWs in defocusing nematic liquid crystals. It is important then
to give an introduction to this type of waves and present the key mathematical tools
needed to study them. This will be the subject of the next section.

1.4 Dispersive Shock Waves and Whitham’s Averaging
Theory

Shock waves are non-linear wave phenomena that generally occur when physical quan-
tities vary rapidly due to the effect of non-linearity [1]. Shock waves arise in a wide
range of physical applications. In gas dynamics, a shock wave is generated when the
speed of sound is exceeded by an evolving physical quantity, such as fluid velocity,
temperature, pressure or density, resulting in supersonic flow. This implies that the
Mach number is greater one (M > 1), leading to a sonic boom. In shallow water wave
theory, on the one hand, a shock wave emerges when a fluid moves with velocity greater
than the linear shallow water wave velocity

√
gh, where g is the gravity acceleration

constant and h is the water depth. This implies that the Froude number is greater
than one (Fr > 1), yielding a supercritical flow. Shock waves are also found in other
applications related to, e.g., modelling traffic flow and erosion [1, 94, 95, 96, 97, 98].
The most general scalar, one-dimensional mathematical model which has a shock wave
solution is the non-linear hyperbolic PDE

∂u

∂t
+

∂

∂x
f(u) = 0. (1.21)
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The simplest initial condition which will generate a right-propagating shock is the step
initial condition

u(x, 0) =

{
u−, x < x0

u+, x > x0,
(1.22)

such that u− > u+ on assuming that f ′(u) > 0. This initial condition breaks immedi-
ately, forming a shock at x0. This mathematical problem is called Riemann problem.
The variable u is a mathematical quantity that is related to a physical quantity, such
as the fluid velocity. The flux function f is a smooth function such that f ′′(u) 6= 0 (a
genuine non-linearity condition in hydrodynamics). If f ′(u) < 0, then a shock wave
is formed only when u− < u+. The shock will travel to the left in this case. The
case of u− < u+ with f ′(u) > 0 leads to a right-propagating rarefaction wave [1, 99],
which is also of concern in this thesis. The formation of shocks is more complicated
when f ′(u) > 0 for some values of u and f ′(u) < 0 for others. In this case, multiple
shocks travelling in different directions can be generated [100]. Since this case is outside
the scope of this thesis, it will not be discussed here. A famous example of Riemann
problem is the Hopf equation, for which f(u) = u2/2, which leads to the convective
derivative present in fluid equations [1].

In a shock wave Riemann problem, when the initial condition breaks immediately,
multiple distinct values of a physical quantity are produced at one single position. This
could be different fluid density or velocity values at one position x, which is obviously
non-physical. In the language of mathematics, the breaking process yields a blow-up
in the derivative values; gradient catastrophe [1, 18]. This hydrodynamic singularity
must be resolved. The way to resolve this relies fundamentally on the nature of the
physical medium. Within our domain of interest and concern, there are media which
are viscous, that is, the dispersion effect is very small, as for the flow generated by
supersonic aircraft; see Figure 1.6(b) [109, 110], and dispersive, namely, the viscosity
effect is almost zero or does not exist, such as quantum fluids and optical materials
[111, 112, 113, 115, 119]. In either way, a specific non-zero differential (or integro-
differential) operator Dx [18, 86], that contains derivatives of second order or higher in
spatial and/or mixed partial derivatives, can be added to equation (1.21)

∂u

∂t
+

∂

∂x
f(u) = Dx(u) (1.23)

in order to resolve the shock discontinuity. Shock waves that occur in viscous, some-
times called dissipative, media are called classical or viscous shock waves (VSWs) and
the hydrodynamic singularity is overcome by adding derivatives of even order, and of
asymptotic limit O(µv), where µv is a parameter that measures the strength of kine-
matic viscosity and usually this is very small 0 < µv � 1. In fluid dynamics, even
order derivative terms in hydrodynamic equations capture viscosity, whilst odd order
derivative terms correspond to the effect of dispersion, see [120, 121, 122]. The sim-
plest dissipative hydrodynamic model that manifests a VSW is Burgers’ equation, with
f(u) = u2/2 and Dx(u) = µvuxx,

∂u

∂t
+ u

∂u

∂x
= µv

∂2u

∂x2
, (1.24)

which is exactly solvable via Cole-Hopf transformation [1]. This simple Riemann prob-
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lem admits a travelling wave solution of the form

u(x, t) =
u− + u+

2
− u− − u+

2
tanh

(
u− − u+

4µv
{x− Vshockt}

)
, (1.25)

which moves with the shock velocity Vshock = {u− + u+} /2. Figure 1.6(a) shows a non-
physical singularity in the fluid velocity smoothed and regularised by the hyperbolic
tangent solution (1.25), we can also see the effect of the viscosity in this regularisation
process.

In contrast to a compressible flow shock, when viscosity is negligible or non-existent
and dispersion dominates, the rapid transition of a shock wave is replaced by an un-
steady (continual spatial expansion), non-linear, dispersive, slowly modulating wave-
train to connect the steady, initial rear u− and front u+ states, see Figure 1.7. This
wavetrain is termed a dispersive shock wave (DSW) because it is the dispersive analogue
of a VSW, also well-known as an undular bore in fluid mechanics applications [123]. It
should be noted that in fluid mechanics, bores come in two general forms, viscous bores
and undular bores [18]. A viscous bore is a steady wave that is formed due to a balance
between viscosity and dispersion/non-linearity, so that viscous bores dissipate energy
[1, 18, 124]. In comparison, for a DSW, an undular bore, there is no loss and it is an
unsteady modulated wave for which the dispersion stops non-linear breaking, as occurs
for a gas dynamic shock due to the effect of viscosity. In general, a DSW exists as a
multi-scale wavetrain involving two distinct scales: a fast oscillatory scale given by the
wave phase, and a slowly varying scale characterised by the amplitude, wavenumber,
angular frequency and mean height of the wave envelope. Furthermore, its structure
generically has two distinct edges, with a solitary wavetrain at one edge and a linear,
dispersive wavetrain at the opposite edge. Each of these boundaries propagates with
a different velocity. In this regard, the non-linearity of DSWs are considered to be of
strong type.

From a mathematical viewpoint, unlike dissipative hydrodynamics, the non-physical
singularity in this situation is regularised by adding an odd order derivative term to
equation (1.21) as this results in dispersion. The most classic and simplest mathemat-
ical model that combines both non-linear propagation effects and dispersive effects is
the KdV equation, with f(u) = 3u2 and Dx(u) = −µduxxx,

∂u

∂t
+ u

∂u

∂x
= −µd

∂3u

∂x3
; µd > 0. (1.26)

Here, µd gives the strength of dispersion and it is assumed that it is strictly positive.
The Riemann problem for the KdV equation is non-trivial, unlike that for Burgers’
equation (1.24). The standard manner to find DSW solutions, giving how the ampli-
tude, wavenumber, velocity and mean height of a DSW evolve with respect to space
and time, is Whitham’s modulation theory developed in the 1960s, which is based on
the method of averaged Lagrangians or averaged conservation laws [1, 82, 83] for non-
linear dispersive wave equations. This method is also known as Whitham’s averaging
theory. It is the basic mathematical tool in the field of dispersive hydrodynamics; the
counterpart of dissipative hydrodynamics. Whitham’s averaging theory is a powerful
method used in physical applied mathematics to analyse both slowly varying linear and,
most importantly, non-linear dispersive waves [1]. In general, the method produces a
system of equations, termed modulation equations, that describes and governs a slowly
varying wavetrain. If this system of modulation equations forms a hyperbolic system
(eigenvectors form a basis or eigenvalues are real), then the underlying non-linear pe-
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riodic wave is stable. On the other hand, if the modulation equations form an elliptic
system (eigenvalues are complex), then the wave is unstable. Note that if the associated
eigenvalues with the modulation system are real and distinct, then Whitham modu-
lation equations are “strictly” hyperbolic. Whitham used his modulation theory to
give a theoretical explanation for the Benjamin-Feir instability of gravity water waves
[84], showing that the modulation equations for gravity water waves are elliptic if the
product kh of the depth of the water h and the wavenumber k is above a critical value.

The breakthrough for the theory of DSWs was the realisation that if the modulation
equations for a non-linear dispersive wave equation form a hyperbolic system, then an
expansion fan solution of these equations corresponds to a DSW. The first DSW solution
found was that for the KdV equation [105] based on its previously derived modulation
equations [1, 83]. There are two ways to undertake Whitham’s averaging theory, either
by averaging Lagrangians or by averaging conservation laws for the equations that
govern physical systems of interest. The basic steps of modulation theory to reach to
a DSW solution can be summarised as follows:

• Find a Lagrangian for the non-linear dispersive wave equation of interest. Al-
ternatively, if one wants to use the conservation laws approach, then Nöther’s
Theorem can be implemented to find the conservation laws for this equation.
Here, it is worth to mention that, for instance, in the physical theory of shock
waves, random conservation laws are not accepted and will not lead to valid jump
conditions for shocks, so Nöther’s Theorem is the physical approach to use. We
will come across this case in Section 4.2.

• Average the Lagrangian or the conservation laws over the rapid-scale of the wave,
i.e., the period or the phase. This will leave the averaged Lagrangian or the
averaged conservation laws in terms of parameters that are slowly varying in
space and time.

• Take variations of the averaged Lagrangian with respect to the slowly varying
wave parameters. This yields a set of modulation equations which are averaged
Euler-Lagrange equations. We note that the equations which are obtained after
averaging the conservation laws are the modulation equations themselves.

• Next step, the most challenging step, is to set the modulation equations in Rie-
mann invariant form or a diagonal system of Riemann variables if the modulation
equations are hyperbolic. This is always possible for a 2×2 system of modulation
equations, but not always achievable for systems whose sizes higher than this
(Pfaff’s problem) [1].

• Determine when the attained characteristic eigenvalues, namely, the characteristic
curves or the non-linear group velocities, are real or imaginary. If the eigenvalues
are real (real and distinct), or more generally the eigenvectors form a basis, then
the system is hyperbolic (strictly hyperbolic) and we have a stable DSW. Other-
wise, if the eigenvalues are imaginary, then we have an unstable DSW due to the
modulational instability.

• We now suppose that the modulation equations are hyperbolic. We determine the
right characteristic on which the expansion fan solution corresponds to a DSW.
Note that in the linear approximation 0 < a� 1, the DSW characteristics reduce
to the trailing edge characteristics which move with the linear group velocity,
where a is the wave amplitude. If the modulation equations form an elliptic
system, then no simple wave solution, corresponding to a DSW, exists.
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Figure 1.7: Full details of a KdV DSW structure, with positive polarity and positive
orientation. The unphysical singularity in the variable u is regularised via a modulated
cnoidal wavetrain shown by a (blue) solid profile. The slowly varying amplitude and
wavenumber within the DSW are denoted by a and k, respectively. The speed at the
trailing edge is given by s−, whereas the leading edge velocity is given by s+. Courtesy
of Mark Hoefer et al [171]. (Online version in colour.)

Modulation theory is related to the standard method of multiple-scales from per-
turbation theory, as shown in [1]. Astonishingly, Whitham found that secular terms in
the method of multiple-scales which are needed to eliminate unperiodic solutions are
exactly the averaged conservation laws obtained from Nöther’s theorm or the averaged
Euler-Lagrange equations acquired from the method of averaged Lagrangians. This is
a main reason why “arbitrary” conservation laws are not physically valid in shock wave
theory.

Let us now return to the KdV Riemann problem, equation (1.26) subject to the
initial condition (1.22). Following the work of Gurevich and Pitaevskii [105], the KdV
equation has the cnoidal (periodic wave) solution

u(x, t) = u− − {u− − u+}m+ 2 {u− − u+}m cn2 K(m)

π
√
µd

(kx− ωt), (1.27)

where K(m) is the complete elliptic integral of the first kind [21]. In modulation theory,
the wave parameters, the amplitude a, wavenumber k, mean height ū, phase velocity
Vp, upper uP and lower uL parts of the DSW’s envelope, are allowed to slowly vary. In
the KdV DSW, these parameters are given by [105, 125]

a = 2 {u− − u+}m , ū = 2u+ − u− + {u− − u+}
{

2
E(m)

K(m)
+m

}
, (1.28)

k =
π

K(m)

√
u− − u+ , Vp = 2u− + 4u+ + 2 {u− − u+}m, (1.29)

uP = u− + {u− − u+}m , uL = u− − {u− − u+}m, (1.30)

34



where E(m) is the complete elliptic integral of the second kind [21]. The characteristic
velocities in the KdV Riemann system that correspond to this DSW are, 0 ≤ m ≤ 1,

x

t
= Vp − 4 {u− − u+}

m {1−m}K(m)

E(m)− {1−m}K(m)
. (1.31)

Thus, the solitary wave (leading) edge, m→ 1, moves with the velocity

Vs = 4u− + 2u+, (1.32)

and the linear dispersive wavetrain (trailing) edge, m→ 0, propagates with the group
velocity

cg = 12u+ − 6u−. (1.33)

The geometrical structure of the KdV DSW solution (1.27)–(1.28) is illustrated in
Figure 1.7. The sign of the dispersion in the KdV equation (1.26) is positive. If this
sign is negative, that is,

∂u

∂t
+ u

∂u

∂x
= µd

∂3u

∂x3
; µd > 0, (1.34)

then the arrangement of the solitary waves and the linear dispersive waves in the DSW
structure flips. The linear dispersive waves locate the leading edge of the DSW and
the solitary waves occupy the trailing side. This motivates us to define an orientation
for DSWs by introducing a parameter denoted by d [18]. When the solitary waves are
at the leading edge of the DSW, then the value of the orientation parameter is defined
by d = 1, otherwise, d = −1. Moreover, the negative sign of the dispersion in the KdV
equation (1.34) makes the modulated wavetrain of the DSW dips in the varying mean
level ū, rather than elevating about it as in Figure 1.7. This consequence allows us to
introduce another new parameter p which determines the polarity of DSWs [18]. If the
edge of the solitary wave is an elevation edge, then p = 1 and the governing DSW is
termed bright DSW, and if it is a depression edge, then p = −1 and the dark DSW
term is used. Feasible orientations and polarities of DSWs are outlined in Figure 1.8(a).
The KdV DSW (p = −1, d = −1) given by equation (1.34) is shown in the bottom left
corner of Figure 1.8(a).

Remark 1. Note that the top left and bottom right corners of Figure 1.8(a) are also
KdV DSWs. They are associated with the KdV equations (1.26) and (1.34) under the
simple transformation x→ −x, respectively.

The type of the DSW exhibited by the defocusing NLS Riemann problem (equation
(1.17) subject to an initial jump condition in |u|), on the other hand, is notably different
than that of the KdV Riemann problem. As time evolves and this initial discontinuity
breaks, two distinct waves propagate in opposite directions, with a shelf in-between, as
the NLS equation is a bi-directional equation. One wave is a non-dispersive wave (an
expansion fan) that moves in the upstream direction and the other wave is a DSW that
travels in the downstream direction, with solitary waves at the trailing edge and linear
dispersive waves at the leading edge, as depicted in Figure 1.8(b). Thus, the defocusing
NLS DSW possesses negative polarity p = −1 and negative orientation d = −1.

The KdV and defocusing NLS DSWs are stable DSWs due to the hyperbolicity
of the associated Whitham modulation equations. In contrast, the focusing NLS Rie-
mann Problem, namely, equation (1.15) subject to an initial jump condition in |u|, has
Whitham modulation equations which form a strict elliptic system. Hence, its DSW is
unstable [59, 128]. In Figure 1.8(c), we recognise that the hydrodynamic singularity is
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Figure 1.8: Stable and unstable DSW types. (a) Demonstration of the polarities and
orientations of standard (KdV and NLS) DSWs. Courtesy of Mark Hoefer et al [18].
(b) Stable DSW as a solution of a “defocusing” NLS Riemann problem. (c) Unstable
DSW as a solution of a “focusing” NLS Riemann problem. Courtesy of Noel F. Smyth
et al. [59].

regularised by an unstable modulated wavetrain, namely, an unstable bright-like DSW
with p = 1 and d = 1 connecting the initial stationary levels |u| = u− and |u| = u+

together.
As mentioned previously, the most difficult step in modulation theory is the ability

to set modulation equations in Riemann invariant form or a diagonal system of Riemann
variables. Because the concepts of Riemann invariant and Riemann variable appear a
lot in this thesis, let us briefly introduce their definitions. Consider a system of one
dimensional, first order, non-homogeneous, quasi-linear PDEs

∂u

∂t
+ A(u)

∂u

∂x
+ b(u) = 0, (1.35)

where uT (x, t) = [u1 . . . un] is a differentiable vector, A is a non-singular matrix and
b is a real-valued vector. Note that, in general, A and b may not depend on u.
Let lk =

[
lk1 . . . l

k
n

]
and λk be a “left” eigenvector and eigenvalue (group velocity),

respectively, of the matrix A, where the index k ∈ {1, 2 . . . , n}. Then, the above
quasi-linear system can be written in the so-called characteristic form

lk · du
dt

+ fk(u) = 0 on
dxk

dt
= λk, (1.36)

with the scalar function fk(u) = lk · b and xk = xk(t) being a parametrised character-
istic curve. In linear systems, the eigenvector lk does not depend on u. In this case, it
is possible to reduce the above characteristic form (1.36) to

drk

dt
+ fk(u) = 0 on

dxk

dt
= λk, (1.37)
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with rk = lk ·u. On the other hand, in non-linear systems, lk may depend on u and it is
not always possible to achieve the diagonal system form (1.37). It would be necessary
in this situation to find a non-zero τ for each rk such that

τdrk = lk · du (1.38)

to reach to the representation (1.37). This can always be attained for n = 2, but not
necessarily possible for n > 2 (Pfaff’s problem) [1]. Now, if fk = 0, then rk = lk · u is
called Riemann invariant and the system (1.37) becomes

∂rk

∂t
+ λk

∂rk

∂x
= 0 on

dxk

dt
= λk. (1.39)

This means that the Riemann invariant rk is constant along the characteristic curve
xk(t). If fk 6= 0, then rk is termed Riemann variable, so the form (1.37) represents a
diagonal system of Riemann variables.

For the KdV equation, Whitham did extremely ingenious calculations which were
essentially extensive algebraic manipulations on elliptic integrals, as the periodic wave
solution of the KdV equation is in terms of the elliptic functions cn or dn, to reduce
the modulation equations of the KdV equation to Riemann invariant form. His original
paper was a seminal contribution in non-linear dispersive wave theory [83]. The subse-
quent major advance happened when it was justified using techniques from functional
analysis that the ability to set the KdV modulation equations in Riemann invariant
form was linked to the KdV equation having an inverse scattering solution [127]. This
contribution demonstrated how to derive Whitham modulation equations for other non-
linear dispersive wave equations having inverse scattering solutions (integrable equa-
tions). Because of this advance, DSW solutions for integrable, non-linear, dispersive
wave equations such as the defocusing NLS equation [62], the focusing NLS equation
(giving an unstable DSW) [128] and the Benjamin-Ono equation [129, 130, 131, 132]
were found, in contrast to Whitham’s work for the KdV modulation equations.

In principle, the DSW solution for any non-linear dispersive wave equation with
a modulationally stable periodic wave solution can then be derived. However, most
non-linear dispersive wave equations are non-integrable. While it is still difficult to de-
termine the full DSW structure for non-integrable equations, a general method exists
to find its solitary wave and linear dispersive wave edges if the DSW is of “KdV-type,”
that is it consists of a monotonic modulated periodic wavetrain with solitary waves
at one edge and linear, dispersive waves at the other [18]. The method is coined the
DSW fitting method, or El’s method ascribing to Gennady El who developed this tech-
nique in his papers [133, 134]. This method is based solely on the linear dispersion
relation of the equation of interest. The reason that this can be done is that for a
modulationally stable, non-linear, periodic, dispersive wave, its modulation equations
are degenerate at its two edges and have a standard structure which can be determined
without detailed knowledge of the full modulation equations. The DSW fitting method
was tested for several non-integrable equations, such as the Kawahara equation [79], the
dispersive Eulerian fluid equations (dispersive Navier-Stokes equations with zero viscos-
ity) [135], the Benjamin-Ono equation (by introducing a modified version of the DSW
fitting method) [130], the magma flow equations [136], the Whitham equation [137],
the non-linear ion-acoustic wave equations in collisionless plasma [134], etc. Excellent
agreements were found with numerical solutions for these equations. This method will
be examined for nematic DSWs in Chapter 5. Of interest in this thesis is the Kawahara
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Figure 1.9: DSWs in shallow water and atmosphere. (a) DSW (undular bore) on the
Severn river near Gloucester, England, taken in 2007. Courtesy of Mark Humpage, this
image was retrieved from his website: www.markhumpage.com. (b) Hang glider in front
of a morning glory cloud (DSW) over the Gulf of Carpentaria, Northern Australia. This
image was taken from [172]. (c) Panoramic view of morning glory clouds. Courtesy of
the COMET R© Program.

equation,
∂u

∂t
+ 6u

∂u

∂x
+ µd

∂3u

∂x3
+
∂5u

∂x5
= 0; µd0, (1.40)

where the µd parameter denotes the dispersion strength. This is the KdV equation
with the next higher order, fifth order, dispersion included [79]. In the context of
fluid mechanics, the Kahawara equation arises when surface tension effects in water
waves are incorporated in the weakly non-linear, long wave asymptotic expansion of
the water wave equations (Serre equations)[138], resulting in the extended, generalised
Serre equations [? ]. For positive dispersion, µd ≥ 0, we shall see in Section 5.1
why we require µd to be positive here rather than negative, Kawahara DSWs take
the form of non-classical DSWs, in the sense that the DSWs are attached to a small-
amplitude resonant wavetrain [79, 80]. This non-standard structure of the DSW is
termed radiating DSWs [61]. At a critical value of µd, the KdV-type DSW structure
disappears and new types of DSWs are generated as µd evolves beyond this critical
value. One of these new DSW types is a radiating DSW and the others are known as
crossover and travelling DSWs [79, 61]. For detailed descriptions of these non-classical
DSWs, see Section 3.2.1. There is an analogy, to some extent, between the Kawahara
and nematic DSWs.

The topic of this thesis is focused on DSWs governed by the defocusing nematic
equations (2.19) and (2.20). This is a non-integrable system of equations and lacks a
known exact non-linear periodic wave solution. For these reasons, Whitham modulation
equations are not reachable for the nematic equations. Therefore, we seek a weakly non-
linear, dispersive, periodic, wavetrain (Stokes wave) solution of the nematic equations
and apply Whitham’s averaging theory to this periodic wavetrain. This will be dealt
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Figure 1.10: Experimental pictures of DSWs. (a) A blast pulse of a laser beam prop-
agating through the centre of a static Bose-Einstein condensate. This pulse rapidly
pushes atoms from the centre of the superfluid radially outward, resulting in the for-
mation of fluid density concentric rings (quantum DSWs). Courtesy of Eric Cornell
et al. [20]. (b) Oscillatory fronts (optical DSWs) created by a Gaussian laser beam
travelling through a photorefractive crystal. Courtesy of Wenjie Wan et al. [112].

with in Chapter 4.
DSWs’ occurrences in nature are utterly ubiquitous. We mention some of them

here. The typical example of DSWs is tidal bores which take place in coastal areas of
strong tidal flow and appropriate coastal topography to enhance the flow, for instance,
the Severn Estuary in England, the Bay of Frundy in Canada and the Pororoca tidal
bore on the Amazon River in Brazil. DSWs can also be found in a broad array of phys-
ical systems, including meteorology, an example being the morning glory clouds which
are rare phenomena that occur in Australia and elsewhere [139, 140, 141], oceanography
[123, 142], water waves [123, 143], geophysics (magma flow) [136, 144, 145, 146], pho-
torefractive crystals [111, 112, 113, 114], non-linear optical fibers [115, 116], non-linear
thermal optical media [117, 118] and colloidal media [147, 148]. Moreover, DSWs have
been observed in quantum media acting as BECs [20] and Fermionic fluids [150]. See
[18] for a summary of these applications. Figures 1.9 and 1.10 present some demon-
strated and experimental snapshots of DSWs occurring in different physical media.

1.5 Thesis Organisation

This thesis is organised as follows. In Chapter 2, a dispersive hydrodynamic model that
governs the optical propagation of a linearly polarised light wave through a nematic liq-
uid crystal doped with an azo-dye is given. Then, the research aims of the thesis will be
discussed. Chapter 3 presents an efficient numerical scheme that solves the defocusing
nematic equations subject to the initial jump condition in the optical field amplitude
(2.29) and the resulting initial step condition in the director angle (2.31). The numerical
scheme section will be followed by a section that presents distinct numerical solutions
and discusses each of the obtained non-dispersive and dispersive hydrodynamic regimes
in detail. In Chapter 4, a Stokes wave solution will be derived from the nematic disper-
sive hydrodynamic system as the nematic equations have no known general non-linear,
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periodic wave solution that can be used in Whitham’s averaging theory. Modulation
theory will then be developed based on a slowly varying nematic Stokes wave to deduce
the nematic modulation equations and study the modulational stability of the Stokes
wave. Chapter 5 presents a thorough theoretical analysis of the nematic non-dispersive
and dispersive hydrodynamic regimes using various perturbation methods. In Chapter
6, theoretical results will be compared with numerical solutions and discussed. In gen-
eral, the agreement between the theory and numerical solutions is found to vary from
very good, with an error bound O(0.05), to excellent, with an error bound O(10−3).
Lastly, Chapter 7 outlines the main research results and approximate methods used in
this thesis and concludes with a list of potential research projects that are under our
current investigation.
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Chapter 2

Dispersive Hydrodynamic Model
and Research Objectives

In this chapter, we present a mathematical model that governs the evolution of a linearly
polarised light wave propagating in a cell filled with a defocusing nematic liquid crystal
and the response of the nematic molecules. This model represents the mathematics
behind the physics experiment which was discussed in Section 1.3. This model will be
first non-dimensionalised and then written in a dispersive hydrodynamic form. The
research objectives of this thesis will be outlined at the end of the chapter.

2.1 Mathematical Model

Let U = UêX be the electric vector field of a polarised light beam that propagates in the
middle of the defocusing nematic liquid crystal cell along the Z direction with a wave
vector k = kêZ . W assume that the applied static electric field E = EêX determines
the molecular director pre-tilt angle θ0 in the XZ dimensional propagation plane, so
that it overcomes the Fréedericksz threshold. Recall that Fréedericksz threshold is the
minimum amount of the electric field required to initiate this rotation θ0 and overcome
the elastic intermolecular forces in the nematic. We take E and θ to be invariants in the
Y direction. The rate of change of φ in the Z direction is very small due to the paraxial
approximation (small-angle approximation). The bias E is assumed to be unaffected
by the optical perturbation of the director n̂. The mathematical model that governs
the complex-valued, slowly varying envelope of the optical beam’s electric field U and
the total angular rotation φ = θ + θ0, which is due to the optical and static electric
fields, consists of two coupled PDEs. In dimensional form, they are [6, 7]:

2ik0ne
∂U

∂Z
+
∂2U

∂X2
−
{

sin2 φ− sin2 θ0

}
k2

0εaU = 0 (2.1)

and

4K
∂2φ

∂X2
+
{

2∆εRFE
2 + ε0εa|U |2

}
sin 2φ = 0. (2.2)

The first equation (2.1) is an NLS-type equation, while the second equation (2.2) is a
non-linear elliptic PDE. Here, the constant K is the single, elastic, molecular response
constant approximation in which the elastic constants for splay, bend and twist are all
assumed to be equal, ∆εRF is the dielectric anisotropy at radio frequencies (1 kHz)
normally used for biasing the cell, k0 is the input wavenumber of the beam in free
space, ne is the extraordinary refractive index (1.4) and εa = n2

‖ − n
2
⊥ is the optical
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anisotropy. When the nematic liquid crystal is of focusing type, that is to say it does
not contain an azo dye, so a bright solitary wave is generated rather than a dark one,
the governing equations will be exactly the same, except that the coefficient of k2

0εaU
in the NLS-type equation (2.1) will come with a positive sign instead of a negative one.
From now on, we will call the system (2.1)–(2.2) the “defocusing nematic equations.”

Note that the above underlying equations (2.1)–(2.2) are in terms of several physical
variables and parameters which have distinct units. To be able to study these equations
with mathematical methods, especially numerical and perturbation methods, it is best
to convert this system to non-dimensional form. Otherwise, when it comes to, for ex-
ample, comparing two or more physical quantities in a single equation and decide which
one is small or large, the comparison is obviously meaningless without reference values.
The key process to remove units from an equation(s) involving physical quantities and
parameters is known as scaling or non-dimensionalisation. This is a standard method
in applied mathematics and it is at the heart of mathematical modelling.

In general, to derive the non-dimensional counterpart of a dimensional system of
equations, the independent and dependent dimensional physical variables involved in
that system need to be re-scaled to dimensionless mathematical quantities. This is done,
for instance, by dividing those variables by specific scales whose units are the same as
the physical variables. These scales are often called characteristic scales and they are
commonly deduced from the physics behind our mathematical model of interest. Having
this in mind, for the defocusing nematic equations, consider the following dimensionless
quantities:

u =
U

U0
, x =

X

W0
, z =

Z

D
, (2.3)

where U0, W0 and D are some characteristic scales. We will see how to select these
scales from the physics of our experimental set-up shortly. Substituting (2.3) into the
system of equations (2.1) and (2.2) gives

i
∂u

∂z
+

1

2

D

k0neW0
2

∂2u

∂x2
− Dk0εa

2ne

{
sin2 φ− sin2 θ0

}
u = 0 (2.4)

and
8K

W 2
0 |U0|2ε0εa

∂2φ

∂x2
+

{
4∆εRFE

2

|U0|2ε0εa
+ 2|u|2

}
sin 2φ = 0. (2.5)

Let us assume that the extra induced rotation θ of the director, beyond the imposed
pre-tilt angle θ0, much less than the pre-tilt angle, that is to say |θ| � θ0. Note that this
assumption is in agreement with experiments [6]. Then, the trigonometric coefficient
in equation (2.4) can be asymptotically simplified as

sin2 φ− sin2 θ0 =
1

2
{1− cos 2θ} cos 2θ0 + sin θ0 cos θ0 sin 2θ ∼ θ sin 2θ0. (2.6)

Therefore, equations (2.4) and (2.5) become

i
∂u

∂z
+

1

2

{
D

k0neW 2
0

}
∂2u

∂x2
−
{
Dk0εa sin 2θ0

4ne

}
2θu = 0 (2.7)

and
8K

W 2
0 |U0|2ε0εa

∂2φ

∂x2
+

{
4∆εRFE

2

|U0|2ε0εa
+ 2|u|2

}
sin 2φ = 0. (2.8)

Now, we observe that when we set the terms between the curly brackets in equation
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(2.7) equal to 1, we obtain

W0 =
2

k0

√
εa sin 2θ0

(2.9)

and

D =
4ne

k0εa sin 2θ0
, (2.10)

which are well-known expressions for laser beam waist and diffraction length, respec-
tively, in non-linear optical physics [6, 9]. This offers us a good scale choice, based on
physics, of the characteristic scales for x and z in (2.3). As for the electric field U , the
natural choice to make u in (2.3) a non-dimensional dependent variable is to choose
U0 to be the complex electric field amplitude at the origin of the nematic cell. For
simplicity, let us denote

α =
8K

W 2
0 |U0|2ε0εa

and β =
4∆εRFE

2

|U0|2ε0εa
, (2.11)

so we have

i
∂u

∂z
+

1

2

∂2u

∂x2
− 2θu = 0 (2.12)

and

α
∂2φ

∂x2
+
{
β + 2|u|2

}
sin 2φ = 0. (2.13)

In the absence of the optical beam, i.e., no additional molecular rotation θ due to the
optical field, we have

α
∂2θ0

∂x2
= −β sin 2θ0. (2.14)

Substituting equation (2.14) into (2.13) gives

α
∂2θ

∂x2
+ β {cos 2θ0 sin 2θ + (cos 2θ − 1) sin 2θ0} + 2|u|2 sin (2θ0 + 2θ) = 0. (2.15)

With the experimental approximation |θ| � θ0 and the small enough limit of θ so that
the first terms in the Taylor series of sin 2θ and cos 2θ can be taken, the above equation
(2.15) becomes

ν
∂2θ

∂x2
+ 2qθ + 2 |u|2 = 0, (2.16)

where the non-dimensional parameters ν and q satisfy

ν =
α

sin 2θ0
=

8K

W 2
0 |U0|2ε0εa sin 2θ0

(2.17)

and

q =
β

tan 2θ0
=

4∆εRFE
2

|U0|2ε0εa tan 2θ0
. (2.18)

However, in real optics experiments, the Fréedericksz transition does not take place
unless the nematic molecules are pre-tilted at an angle more than or close to π/4,
which implies that cos(2θ0) < 0 [11]. Therefore, the correct dimensionless nematic
equations are

i
∂u

∂z
+

1

2

∂2u

∂x2
− 2θu = 0 (2.19)
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and

ν
∂2θ

∂x2
− 2qθ + 2 |u|2 = 0, (2.20)

with

q =
β

| tan 2θ0|
=

4∆εRF
|U0|2ε0εa| tan 2θ0|

E2. (2.21)

The parameter ν is termed the non-locality parameter and experimentally it has
been found that its value is large; ν = O(200) [5, 6]. With this large non-local limit, the
molecular director perturbation θ becomes wider than the optical intensity |u|2 profile
of the laser beam [5, 6, 7, 8]. In this regard, the nematic reorientational response
is non-local. This non-local response and large value of ν play a dominating role in
nematic DSW structures. The parameter q, for typical experimental conditions, is of
order O(1) [5, 6, 60, 61]. We note that in the so-called local limit ν → 0, the defocusing
nematic equations (2.19) and (2.20) reduce to the defocusing NLS equation

i
∂u

∂z
+

1

2

∂2u

∂x2
− 2

q
|u|2u = 0 (2.22)

whose DSW theoretical solution is known [62] and numerical solution is given in Figure
1.8(b). While the nematic system takes the form of an NLS-type system, its DSW more
resembles a KdV DSW (p = 1, d = 1) [60, 61] than an NLS DSW (p = −1, d = −1) [62]
due to the large non-locality ν, as is observed from the numerical solutions in Chapter
3.

While the system of equations (2.19) and (2.20) has been presented in the context
of the non-linear optics of nematic liquid crystals, they are more general than this.
The same system of equations arises in the optics of non-linear thermal optical media
[64, 65], for example lead glasses [66, 67, 68], and certain photorefractive crystals [69].
A similar system of equations also arises in simplified models of fluid turbulence [70]
and in quantum gravity as the Schödinger-Newton equations [71, 72, 73].

The defocusing nematicon system of equations (2.19) and (2.20) can be written in a
dispersive hydrodynamic form (1.23) by the use of the so-called Madelung transforma-
tion [18]. Within the framework of the nematic equations in this thesis, the Madelung
transformation is a polar coordinate representation of the complex, optical, electrical
field u propagating through the cell filled with (azo-doped) nematic liquid crystals,
expressly,

u =
√
ρeiφ, v = φx. (2.23)

Here, the variable φ is the full nematic phase, ρ is the squared light wave intensity
(ρ = |u|2) and v is the change in the nematic phase φ. This transformation leads to
the following dispersive hydrodynamic system

∂ρ

∂z
+ ρ

∂v

∂x
+ v

∂ρ

∂x︸ ︷︷ ︸
Non-dispersive

= 0, (2.24)

∂v

∂z
+ v

∂v

∂x
+ 2

∂θ

∂x︸ ︷︷ ︸
Non-dispersive

=
∂

∂x

(
ρxx
4ρ
− ρ2

x

8ρ2

)
︸ ︷︷ ︸

Dispersive

, (2.25)

2ρ− 2qθ︸ ︷︷ ︸
Non-dispersive

= −ν ∂
2θ

∂x2︸ ︷︷ ︸
Dispersive

. (2.26)

44



We call the above system the “nematic dispersive hydrodynamics.” If the dispersive
terms in (2.24)–(2.26) are ignored, we recover Euler equations for compressible gas
dynamics, or shallow water wave equations with different parameter roles, which are
Navier-Stokes equations with zero viscosity and zero external force on a fluid [77].
Because of this analogy, we term the above system nematic dispersive hydrodynamics.
In the local limit, ν → 0, the nematic dispersive hydrodynamics becomes the defocusing
NLS dispersive hydrodynamics [62], namely, with q = 2,

∂ρ

∂z
+ ρ

∂v

∂x
+ v

∂ρ

∂x
= 0, (2.27)

∂v

∂z
+ v

∂v

∂x
+
∂ρ

∂x
=

∂

∂x

(
ρxx
4ρ
− ρ2

x

8ρ2

)
. (2.28)

It is important to remark that the criterion of having odd derivatives as dispersive terms
and even derivatives as non-dispersive terms does not hold for the nematic dispersive
hydrodynamics. This criterion is only valid for hydrodynamic systems arises in the
context of fluid mechanics, as previously stated in Section 1.4. Instead, we follow the
general criterion demonstrated in El’s paper [133]. We scale the variables x and z
by slow variables, say, X ′ = εx and Z ′ = εz, where 0 < ε � 1. Then, the non-
dispersive terms are those of order O(1) and the rest are the dispersive ones. From
this point onwards, we label equation (2.24) the “mass equation” and equation (2.25)
the “momentum equation” due to their analogy with the mass and the momentum
equations which emerge in shallow water wave theory [1, 77]. There is a much stronger
motivation behind adopting these tags which pertains to Nöther’s Theorem. We will
come back to this in more detail in Section 4.2.

2.2 Research Objectives

The research in this thesis studies various kinds of standard and non-standard DSWs
which arise from the defocusing nematic equations (2.19) and (2.20), which govern an
optical beam propagating in the non-linear optical medium of a nematic liquid crystal
[6, 74, 75].

To generate a DSW for our underlying physical system, we impose a step initial
condition that represents an abrupt change in the intensity/power of the optical electric
field u at z = 0, the input position of the beam into the nematic cell is

u(x, 0) =

{
u−e

iφ− , x < 0
u+e

iφ+ , x > 0,
(2.29)

where the initial nematic phases φ− and φ+ are

φ− = v−x and φ+ = v+x. (2.30)

The constants v− and v+ in the expressions (2.30) play the role of initial wavenum-
bers. The nematic molecular response equation (2.20) shows that the consistent initial
condition for the resulting director angle θ is

θ(x, 0) =


u2−
q , x < 0
u2+
q , x > 0.

(2.31)
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Unfortunately, the nematic equations form a non-integrable system and a general
exact theoretical solution has not been found in literature. The nematic response
equation (2.20) is a damped, linear, elliptic PDE (forced Helmholtz-like equation) with
constant coefficients. Hence, its solution can be expressed in terms of a Green’s function.
However, when this Green’s function is substituted ino the electric field equation (2.19),
the result is an involved non-linear, non-local, dispersive wave equation which is not
integrable and has no known general exact solution, see e.g. [76]. Therefore, to obtain
an insight into the nematic DSW solution, we shall solve the problem using numerical
methods. Numerical solutions show that there are several non-dispersive and dispersive
hydrodynamic regimes, depending significantly upon the optical intensity difference
|u− − u+| and the values of the initial phases φ− and φ+. In most of the numerical
solutions, nematic DSWs were found to be resonant DSWs, that for which there is a
resonance between the waves of the DSW and linear dispersive radiation. This is not
a standard form of a DSW as it is not the classical KdV or NLS DSWs. The observed
resonance has a major effect on the DSW structure as the resonant radiation leaks mass
and energy from it. The effect of the resonant radiation on the nematic DSW structure
will be discussed in detail in this thesis.

There have been a number of studies of nematic DSWs recently [60, 61]. However,
several disagreements between theoretical and numerical solutions over the full range
of the initial intensity strengths |u− − u+| were found. The reasons why there was
not satisfactory agreement in [60] were that the nematic DSW was assumed to be a
KdV-type DSW and a reductive third order nematic KdV equation was used to study
the nematic DSW theoretically, rather than using the full reductive nematic Kawahara
(fifth order KdV) equation [78], especially when the initial jump |u−−u+| is small. On
the other hand, when the initial jump |u−−u+| is large, it was assumed in [61] that the
DSW has a gas dynamic shock jump condition rather than a “Whitham shock” jump
condition [81, 85]. These assumptions do not hold over the full range of initial jumps
in the optical intensity, as is found in this thesis. The main objective of this thesis is to
develop a comprehensive analytical treatment which covers all regimes for the nematic
DSW and in agreement with numerical solutions.
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Chapter 3

Numerical Method and
Simulations

In this chapter, we present an efficient numerical method that solves the governing
defocusing nematic equations (2.19)–(2.20) subject to the initial jump condition (2.29)
and the resulting one (2.31). As discussed in Chapter 2, this mathematical model is
a non-integrable system. It is helpful then to implement a numerical method that
solves this model and allows us to identify what form a nematic DSW evolves to. We
utilise a numerical approach similar to the efficient one developed by Fornberg and
Whitham [86, 89] to solve non-linear dispersive wave equations typified by the KdV
equation and its generalisations. They used Fourier (spectral) and leap-frog (centred-
difference) methods to calculate the spatial and temporal coordinates of the equations,
respectively. Here, instead of using a leap-frog numerical scheme, we deploy the method
of 4th order Runge-Kutta (RK4) as it is faster and its numerical accuracy is higher.
To improve the stability of our numerical scheme, the method of integrating factors
will be used, as explained in [87, 88, 89]. In principle, the mathematical formations of
DSWs are unrelated to spatial boundaries, so they do not require specific/complicated
boundary conditions, only an initial condition in a form of step is needed, resulting in
a periodic boundary condition. For this reason, the use of spectral methods is the best
option for the computation of DSWs. This is in addition to the undefeated speed of
algorithms with O (N lnN), where N is the number of spatial grids [90].

3.1 Pseudo-spectral Method

We start by applying the continuous Fourier transform to the NLS-type equation (2.19)

d

dz
F {u(x, z); f}+

if2

2
F {u(x, z); f}+ iF {2θ(x, z)u(x, z); f} = 0, (3.1)

where f ∈ R represents the frequency. Here, the adopted definitions of the continuous
Fourier transform and its inverse transform are

F {u(x, z); f} = û(f, z) =

∞∫
−∞

u(x, z)e2πixfdx, (3.2)

F−1 {û(f, z);x} = u(x, z) =

∞∫
−∞

û(f, z)e−2πixfdf, (3.3)
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respectively. Equation (3.1) is an ODE equation in the time-like variable z. Since we
aim to solve this problem numerically, then we have to discretise the spatial, frequency
and temporal-like domains. Assume that we are interested in the spatial computational
domain

x ∈
[
−L

2
,
L

2

]
, (3.4)

and we want to discretise it into N−equidistant samples (grids) such that N satisfies
N = 2j for some j ∈ N. Such choice of N is necessary when it comes to applying the
fast Fourier transform method (FFT) [89, 90, 91]. Then a discretisation of the variable
x reads

xn = n∆x; n ∈
{
−N

2
+ 1, ...,

N

2

}
, (3.5)

where the sampling rate is ∆x = L/N . The frequency domain is discretised so that the
aliasing phenomenon does not occur [89, 91]. Aliasing is a computational phenomenon
by which undesired low frequency waves can take on the appearance or the identity of
high frequency waves due to discretisation and discrete sampling of a continuous wave.
To be specific, we have to restrict the range of the frequencies values to be

fk = k∆f ; k ∈
{
−N

2
+ 1, ...,

N

2

}
, (3.6)

where the frequency resolution satisfies ∆f = 2π/N∆x = 2π/L [89, 91]. Therefore,
equation (3.1) takes the following discretised form

d

dz
ûk(z) +

i

2
f2
k ûk(z) + iF {2θn(z)un(z); k} = 0. (3.7)

The time-like variable z will be dealt with shortly. With the discretisation of the
variables x and u, the continuous Fourier transforms (3.2)–(3.3) must be discretised as
well. The discrete version of the Fourier transform is merely the Riemann sum of its
integral. Thus, the discrete Fourier transform (DFT) is defined as

ûk(z) =

N/2∑
n=−N/2+1

un(z)e2πink/N , (3.8)

while the inverse discrete Fourier transform (IDFT) is given by

un(z) =
1

N

N/2∑
k=−N/2+1

ûk(z)e
−2πink/N . (3.9)

The parameter ∆x in the above Riemann summations (3.8) and (3.9) is neglected
because the discrete Fourier transform basically maps the complex functions un(z) into
the complex functions ûk(z) without a necessary dependence on the sampling rate [91].

There is a “stiffness” problem arising in this numerical scheme and is due to the term
uxx in the electric field equation (2.19). This term involves high frequencies, f2

k , in the
discretised electric field equation (3.7) which can delay numerical stabilities. Including
such a stiff term in the numerical scheme requires the use of a very small sampling
rate to achieve stability, so it is expensive. To overcome this problem and suppress
instabilities at high frequencies, we use the method of integrating factors [87, 88, 89].
Following this approach, we multiply the ODE (3.7) by the integrating factor eif

2
kz/2
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which yields
d

dz

{
eif

2
kz/2ûk(z)

}
= −iF {2θn(z)un(z); k} eif2kz/2. (3.10)

The director angle θn(z) is determined from the director equation (2.20). When we
apply the DFT to the director equation, we obtain

θ̂k(z) =
2û2

k(z)

νf2
k + 2q

, (3.11)

which gives θn(z) through the application of the IDFT, i.e.,

θn(z) = F−1

{
2û2

k(z)

νf2
k + 2q

;n

}
. (3.12)

Another possible and fast way, but might affect the spectral accuracy of the numerical
scheme, to find θn(z) is by using a Fourier transform based on a finite difference method.
This is commonly used for Poisson or Helmholtz boundary value problems, refer to
[91]. The basic idea is to discretise the spatial second order derivative in (2.20) by, for
example, a leap-frog scheme, which leads to

ν

∆x2
{θn+1(z)− 2θn(z) + θn−1(z)} − 2qθn(z) + 2|un|2(z) = 0, (3.13)

and then use the IDFTs of the functions θn(z) and un(z), following the definition (3.9),
so that we end up with the expression

θ̂k(z) =
û2
k(z)

q − ν
∆x2

{
cos
(

2πk
N

)
− 1
} . (3.14)

This enables us to deduce θn(z) via applying the IDFT. In a real experimental set-up
[6, 92], the molecular angle θ is fixed at the boundaries of a nematic cell as the molecules
are anchored by polymer films, as discussed in Section 1.3. However, we are not looking
at the full nematic cell as the wave propagation takes place in the middle of the cell,
which is far from the boundaries. We can now substitute either the formula (3.12) or
the IDFT of (3.14) into the electric field equation (3.10) and solve the ODE problem
by employing the RK4 method.

Now let us consider the following z computational domain

z ∈ [0, T ] (3.15)

to be discretised. We divide this into M -equispaced grid points for which

zm = m∆z; m ∈ {0, ...,M − 1}, (3.16)

and the temporal-like step is ∆z = T/M . Let us denote

R (ûmk , zm) = −iF
{

2F−1
{
θ̂mk ;n

}
F−1 {ûmk ;n} ; k

}
. (3.17)

Hence, the solution of the discretised electric field equation (3.10) from the RK4 pro-
cedure [93] reads

ûm+1
k = ûmk +

1

6
{r1 + 2r2 + 2r3 + r4} , (3.18)
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with

r1 = ∆zR (ûmk , zm) , (3.19)

r2 = ∆zR

(
ûmk +

1

2
r1, zm +

1

2
∆z

)
, (3.20)

r3 = ∆zR

(
ûmk +

1

2
r2, zm +

1

2
∆z

)
, (3.21)

r4 = ∆zR (ûmk + r3, zm + ∆z) . (3.22)

Finally, the solutions umn are calculated by applying the DFT to (3.18). The compu-
tation of the Fourier coefficients ûmk and umn in the DFT and IDFT is performed by
the FFT and inverse fast Fourier transform (IFFT) methods [89, 90, 91], in the order
given.

The final thing that we need to deal with is the fitting of an initial step into the
Fourier spectral method that generates a periodic solution. We can impose periodicity
in our computational domain by taking an initial condition as a “top hat” joining the
initial levels u− and u+, but which has a jump down to u+ to enforce periodicity, as
illustrated in Figure 3.1. From this figure, moreover, we recognise that the numerical
solution at the initial jump from u− to u+ is symmetric to the one in the opposite
direction. Therefore, we only focus on the right hand side initial jump here. The
theoretical sharp discontinuities at the both jumps must be smoothed to ensure that
Gibbs’ phenomenon [99] will not take place. This can be done by using hyperbolic
tangent functions. To be mathematically specific, this is smoothing given by

u(xn, 0) =

{
1

2
(u− − u+)

(
tanh

xn +D

W
− tanh

xn
W

)
+ u+

}
eiφ(xn,0), (3.23)

with φ(xn, 0) = v(xn, 0)xn smoothed in a similar fashion, namely,

v(xn, 0) =
1

2
{v− − v+}

{
tanh

xn +D

W
− tanh

xn
W

}
+ v+. (3.24)

The width W was chosen to be large enough to stop instabilities, but small enough to
well approximate a step. In practice, W = 1 was found suitable. The distance D at
which the initial condition goes back to the level u+ was chosen large enough so that
the waves generated from the step at x = 0 do not interact with the step down, with
D = 10000 found suitable.

As for the change in the phase v, it is calculated through differentiating the Madelung
transformation (2.23):

ux = {|u|x + i|u|φx} eiφ =⇒ φx = v = Im
(ux
u

)
. (3.25)

Then, it is computed numerically by discretising the derivative term ux by a leap-frog
scheme, as its accuracy is of order 2. We then acquire

vmn = Im

(
umn+1 − umn−1

2∆x2umn

)
. (3.26)

Finally, to achieve numerical stability and have the scheme robust, suitable number of
Fourier modes were found to be N = 217 = 131072, with a z step ∆z = 0.005 and
domain range L = 32768. All the comparisons with numerical solutions will be for the

50



parameter choices q = 2 and ν = 200. In particular, the value of the non-locality ν
depends on the beam power and wavelength, but ν = 200 is typical for near-infrared
beams of milliwatt powers [101, 102, 103, 104].
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Figure 3.1: The initial top hat (3.23); red (dashed) line. A nematic numerical solution,
computed from (3.18), is symmetric at the right and left initial jumps due to the
periodicity of Fourier spectral method; blue (solid) line. Here, z = 1000, u− = 1.2,
u+ = 1.0, ν = 0.2 and q = 2. (Online version in colour.)

3.2 Results and Discussions

3.2.1 Zero Initial Phase Jumps

Consider first the numerical solution of the nematic equations (2.19) and (2.20) with
the initial discontinuities (2.29) and (2.31) for no jump in the phase; φ− = φ+ = 0.
The solution depends critically on the initial jump height u− − u+, with five various
DSW regimes, plus one dispersionless regime possible. Figures 3.2 to 3.7 show these
hydrodynamic structures. Four of these DSW types are similar to some extent to those
for the Kawahara equation (1.40) [79, 80]. The other two are related to the existence of
the vacuum cases with u = 0 at some point. These solutions will be for the particular
values u− = 1, with varying u+, with ν = 200 and q = 2.

• Regime 1. Perturbed dispersive shock wave (PDSW):

This regime is numerically identified for 0.76 < u+ < 1.0 and is shown in Figure
3.2. The nematic DSW of this type resembles the standard KdV DSW (p =
1, d = 1) [86, 105], with a monotonic modulated wavetrain consisting of bright
solitary waves at the leading edge and linear waves at the trailing edge. There is
no resonant wavetrain ahead of the DSW as there is no resonance between the
phase velocity of a possible resonant wavetrain and the DSW [60, 61]. As the
nematic equations (2.19) and (2.20) are bi-directional, there is also a backwards
propagating expansion wave, as for the compressible flow shock tube problem
[1, 106], which links the level behind u− and an intermediate shelf of height
|u| = ui behind the DSW. The DSW takes the place of the shock in the Sod
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shock tube problem. Thus, this DSW structure is the dispersive analogue of the
Sod shock tube problem. The solution for this DSW type will be found as a
perturbation of the KdV DSW (p = 1, d = 1).

• Regime 2. Radiating dispersive shock wave (RDSW):

This structure takes place in the interval 0.70 < u+ < 0.76. When the jump height
reaches the critical value being u− − u+ < 0.24, resonance can exist between the
DSW and diffractive waves (dispersive waves), so that a resonant wavetrain ahead
of the DSW is generated, as shown in Figure 3.3. The DSW itself resembles a
KdV DSW (p = 1, d = 1), but with an attached resonant wavetrain. This case
resembles the equivalent RDSW type for the Kawahara equation [79]. The DSW
itself will be found to be a perturbed KdV DSW (p = 1, d = 1), as for the PDSW
regime.

• Regime 3. Crossover dispersive shock wave (CDSW):

This type occurs in the range 0.44 < u+ < 0.70. With increasing jump height,
the DSW becomes unstable, as does its resonant wavetrain, as seen in Figure 3.4.
The DSW loses its rank ordered structure and the resonant wavetrain has a highly
modulated amplitude. Again, this DSW structure is similar to its equivalent for
the Kawahara equation [79].

• Regime 4. Travelling dispersive shock wave (TDSW):

This nematic DSW structure exists for 0.22 < u+ < 0.44. Here, the DSW itself
disappears, leaving just a resonant wavetrain, as shown in Figure 3.5. This so-
lution form is similar to the travelling DSW (TDSW) found for the Kawahara
equation (1.40) [79]. A remnant of the DSW is left in the form of a negative
polarity solitary wave (termed Whitham shock) which links the resonant wave-
train to the intermediate level. It is further seen that the resonant wavetrain is
of higher amplitude than in the CDSW case and has stabilised.

• Regime 5. Vacuum dispersive shock wave (VDSW):

This regime arises for 0 < u+ < 0.22. As u+ decreases, the jump height increases,
and the amplitude of the resonant wavetrain grows, so that the minimum of its
oscillation eventually hits the vacuum point u = 0, at which point there is a phase
singularity and the DSW solution changes form, as illustrated in Figure 3.6. A
constant amplitude resonant wavetrain now propagates on a varying mean level.
Behind this, there is a resonant wavetrain on a constant mean level, which is
linked to the intermediate level by a negative polarity wave, as for the TDSW.
A similar vacuum point solution occurs for the defocusing NLS equation [62, 63],
but without the accompanying resonant wavetrain.

• Regime 6. Dam break problem:

When the initial level ahead u+ = 0, the numerical solution becomes essentially
non-diffractive, namely, non-dispersive, as depicted in Figure 3.7. This solution
is referred to as the dam break solution because it is a simple wave solution of the
shallow water wave equations and emerges as a solution for the flow generated
by a breaking dam [1]. Note that there are some small wiggles near the corner
where the simple wave solution meets the initial level ahead. This is because of
the discontinuity in derivatives being smoothed by the effect of dispersion [86].
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Figure 3.2: Regime 1, PDSW regime. Numerical solutions of the nematic equations
(2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue (solid) line: |u| at
z = 1500; red (dashed) line θ at z = 1500; green (dash-dot) line: |u| at z = 0 and violet
(dotted) line θ at z = 0. Here, u− = 1.0, u+ = 0.8, ν = 200 and q = 2. (Online version
in colour.)
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Figure 3.3: Regime 2, RDSW regime. Numerical solutions of the nematic equations
(2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue (solid) line: |u| at
z = 1500; red (dashed) line θ at z = 1500; green (dash-dot) line: |u| at z = 0 and
violet (dotted) line θ at z = 0. Here, u− = 1.0, u+ = 0.72, ν = 200 and q = 2. (Online
version in colour.)
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Figure 3.4: Regime 3, CDSW regime. Numerical solutions of the nematic equations
(2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue (solid) line: |u| at
z = 1500; red (dashed) line θ at z = 1500; green (dash-dot) line: |u| at z = 0 and violet
(dotted) line θ at z = 0. Here, u− = 1.0, u+ = 0.6, ν = 200 and q = 2. (Online version
in colour.)
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Figure 3.5: Regime 4, TDSW regime. Numerical solutions of the nematic equations
(2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue (solid) line: |u| at
z = 1500; red (dashed) line θ at z = 1500; green (dash-dot) line: |u| at z = 0 and violet
(dotted) line θ at z = 0. Here, u− = 1.0, u+ = 0.3, ν = 200 and q = 2. (Online version
in colour.)
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Figure 3.6: Regime 5, VDSW regime. Numerical solutions of the nematic equations
(2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue (solid) line: |u| at
z = 1500; red (dashed) line θ at z = 1500; green (dash-dot) line: |u| at z = 0 and
violet (dotted) line θ at z = 0. Here, u− = 1.0, u+ = 0.12, ν = 200 and q = 2. (Online
version in colour.)
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Figure 3.7: Regime 6, dam break problem. Numerical solutions of the nematic equa-
tions (2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue (solid) line: |u|
at z = 1500; red (dashed) line θ at z = 1500; green (dash-dot) line: |u| at z = 0 and
violet (dotted) line θ at z = 0. Here, u− = 1.0, u+ = 0.0, ν = 200 and q = 2. (Online
version in colour.)
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3.2.2 Non-zero Initial Phase Jumps

Let us consider next the solution of the nematic equations (2.19) and (2.20) with the
initial discontinuities (2.29) and (2.31) for non-zero jumps in the phase, in other words,
φ−, φ+ 6= 0. These new DSW types involve combinations of resonant DSWs and rar-
efaction waves identified for v− and v+. These numerical solutions are slightly similar
to those for Calogero-Sutherland (CS) dispersive hydrodynamics [107] and the defo-
cusing NLS equation [62]. However, the nematic solutions are much more complicated.
This is due to the strong effect of the non-locality and possible resonant radiations
making the nematic solutions different than those that were mentioned above. The
way to classify the new solutions in this section is via specifying particular inequalities
which are derived from Riemann invariants of the nematic dispersive hydrodynamics
(2.24)–(2.26) in the dispersionless limit. These Riemann invariants will be derived in
Chapter 5. The inequalities are given in the expressions (3.27)–(3.32) below. They will
be stated here and verified in Section 5.2. Based on the numerical simulations depicted
in Figures 3.8 to 3.13, we provide the following descriptions:

• Case 1. Slow simple wave and fast DSW:

The solution for this case is merely that outlined previously for v− = v+ = 0.
It is one of the hydrodynamic regimes in the previous subsection based on the
jump height at z = 0. We have an expansion fan, propagating in the upstream
(left) direction and a DSW travelling in the opposite direction, both of which are
joined by an intermediate shelf ui, vi. Any of Figures 3.2 to 3.7 is an example
for this case. The existence region for this case, in terms of the nematic Riemann
invariants, is

v− − 2

√
2

q
u− ≤ v+ − 2

√
2

q
u+ and v− + 2

√
2

q
u− ≥ v+ + 2

√
2

q
u+. (3.27)

• Case 2. A pair of DSWs connected by a steady level:

In this case, no expansion wave exists and we are left with two DSWs of crossover
type, unlike the NLS and CS dispersive hydrodynamics where the DSWs are of
NLS and KdV-type, respectively [62, 107]. We have one DSW which propagates
to the right and another one which travels to the left. They are both linked by
an intermediate shelf ui, vi that rises above both the rear u−, v− and the front
u+, v+ levels. The existence region for this case, in terms of the nematic Riemann
invariants, is

v− − 2

√
2

q
u− > v+ − 2

√
2

q
u+ and v− − 2

√
2

q
u− ≤ v+ + 2

√
2

q
u+. (3.28)

A numerical solution for this case is illustrated in Figure 3.8 and a suitable selec-
tion of the parameters u+, u−, v+ and v− is captioned in the figure.

• Case 3. Fast simple wave and slow DSW:

When the orientation of the initial jump in Case 1 is reversed, i.e., u− < u+,
then the DSW and the expansion fan flip around, with u− < ui < u+. Thus, the
solution in this case consists of an expansion fan moving in the downstream (right)
direction which connects the initial levels u+, v+ ahead to an intermediate shelf
ui, vi. The solution is then taken from this intermediate shelf to the upstream
initial levels u−, v−. Obviously, the theoretical solution of this case is going to
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be similar to Case 1, the sole distinction is the waves’ propagation direction. The
existence region for this case, in terms of the nematic Riemann invariants, is

v− − 2

√
2

q
u− > v+ − 2

√
2

q
u+ and v− + 2

√
2

q
u− < v+ + 2

√
2

q
u+. (3.29)

A numerical solution for this case is shown in Figure 3.9 and an appropriate choice
of the parameters u+, u−, v+ and v− is captioned in the figure.

• Case 4. Two simple waves linked by a constant plateau:

Here, the solution is composed of two expansion waves travelling in opposite di-
rections with their lower edges anchored at an intermediate shelf ui, vi. This shelf
sits below the front and rear initial levels, that is to say u− < ui < u+. Looking at
Figure 3.10 or 3.11, we can see that this solution forms a hybrid solution between
the expansion fans in Case 1 and Case 3. An additional observation is that as
the time-like variable z evolves, two small modulated wavetrains are created on
the shelf. This is because two small jumps in the centre of the intermediate level
are generated, which create small DSWs. As the DSWs are resonant, resonant
dispersive waves are also produced. The existence region for this case, in terms
of the nematic Riemann invariants, is

v− + 2

√
2

q
u− < v+ + 2

√
2

q
u+ and v− + 2

√
2

q
u− ≥ v+ − 2

√
2

q
u+. (3.30)

A numerical solution for this case is shown in Figures 3.10 and 3.11 at different z
for a suitable selection of the parameters u+, u−, v+ and v− as captioned in the
figures.

• Case 5. Two simple waves and a vacuum region:

This solution is shown in Figure 3.12. This is similar to the previous case, but
with the intermediate level ui approaching the vacuum u = 0 as z advances, as
occurs for the defocusing NLS DSW [62, 63] and the CS DSW [107]. The existence
region for this case, in terms of the nematic Riemann invariants, is

v− + 2

√
2

q
u− < v+ − 2

√
2

q
u+. (3.31)

A suitable choice of the parameters u+, u−, v+ and v− is captioned in the figure.

• Case 6. A pair of fast and slow interacting DSWs:

The solution for this case occurs when two DSWs collide and interact with each
other, analogous to the NLS and CS dispersive hydrodynamics [107, 108]. The
solution for this structure is then a two phase wavetrain, which is difficult to
analyse without the full Whitham modulation equations. The solution of Figure
3.13 shows two interacting TDSWs. There are two partial DSWs on either side of
the central wavetrain, which is (almost) a uniform resonant wavetrain. In essence,
the interaction has destroyed the intermediate shelf so that the two individual
TDSWs can join with each other. The existence region for this case, in terms of
the nematic Riemann invariants, is

v− − 2

√
2

q
u− > v+ + 2

√
2

q
u+. (3.32)
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An appropriate choice of the parameters u+, u−, v+ and v− is captioned in the
figure.

Expressions (3.27)–(3.32) comprise four arbitrary parameters u−, u+, v− and v+.
To construct a simple geometrical visualisation of the classification of these new cases,
we set u+ = 1, v+ = 0 and plot a classification diagram in the coordinate system
(u−, v−), as shown in Figure 3.14. Note that changing the parameter values of u+ and
v+ does not affect the classification.
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Figure 3.8: Case 2, a pair of DSWs connected by a steady level. Numerical solutions
of the nematic equations (2.19) and (2.20) for the initial conditions (2.29) and (2.31).
Blue (solid) line: |u| at z = 1500; red (dashed) line θ at z = 1500; green (dash-dot)
line: |u| at z = 0 and violet (dotted) line θ at z = 0. Here, u− = 1.2, u+ = 1.0, v− = 2,
v+ = 0 and q = 2. (Online version in colour.)
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Figure 3.9: Case 3, fast simple wave and slow DSW. Numerical solutions of the nematic
equations (2.19) and (2.20) for the initial conditions (2.29) and (2.31). Blue (solid) line:
|u| at z = 500; red (dashed) line θ at z = 500; green (dash-dot) line: |u| at z = 0 and
violet (dotted) line θ at z = 0. Here, u− = 0.8, u+ = 1.0, v− = 0, v+ = 0 and q = 2.
(Online version in colour.)
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Figure 3.10: Case 4, two simple waves linked by a constant plateau. Numerical solutions
of the nematic equations (2.19) and (2.20) for the initial conditions (2.29) and (2.31).
Blue (solid) line: |u| at z = 200; red (dashed) line θ at z = 200; green (dash-dot) line:
|u| at z = 0 and violet (dotted) line θ at z = 0. Here, u− = 1.2, u+ = 1.0, v− = −2,
v+ = 0 and q = 2. (Online version in colour.)

-8000 -6000 -4000 -2000 0 2000 4000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3.11: Case 4, two simple waves linked by a constant plateau. Numerical solutions
of the nematic equations (2.19) and (2.20) for the initial conditions (2.29) and (2.31).
Blue (solid) line: |u| at z = 1500; red (dashed) line θ at z = 1500; green (dash-dot) line:
|u| at z = 0 and violet (dotted) line θ at z = 0. Here, u− = 1.2, u+ = 1.0, v− = −2,
v+ = 0 and q = 2. (Online version in colour.)
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Figure 3.12: Case 5, two simple waves and a near-vacuum region. Numerical solutions
of the nematic equations (2.19) and (2.20) for the initial conditions (2.29) and (2.31).
Blue (solid) line: |u| at z = 1500; red (dashed) line θ at z = 1500; green (dash-dot) line:
|u| at z = 0 and violet (dotted) line θ at z = 0. Here, u− = 1.2, u+ = 1.0, v− = −6,
v+ = 0 and q = 2. (Online version in colour.)
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Figure 3.13: Case 6, a couple of fast and slow interacting DSWs. Numerical solutions
of the nematic equations (2.19) and (2.20) for the initial conditions (2.29) and (2.31).
Blue (solid) line: |u| at z = 1000; red (dashed) line θ at z = 1000; green (dash-dot)
line: |u| at z = 0 and violet (dotted) line θ at z = 0. Here, u− = 0.95, u+ = 1.0,
v− = 6, v+ = 0 and q = 2. (Online version in colour.)
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Figure 3.14: Geometrical classification of the six cases in the (u−, v−) Cartesian plane
when the initial phases in (2.29) and (2.31) are not both zeroes. Here, u+ = 1, v+ = 0
and q = 2. (Online version in colour.)

3.3 Conclusions

A pseudo-spectral method based on the numerical method developed by Whitham and
Forenberg [86, 89] was used to solve the Riemann problem of the defocusing nematic
equations (2.19) and (2.20). Fourier spectral and RK4 methods were used to discretise
and solve the spatial and temporal-like dimensions, respectively. It has been found
that the resulting numerical solutions depend critically upon two things: the magni-
tude/strength of the initial jump condition in the optical field |u−−u+| and the initial
jump values of the optical field phases φ− and φ+.

For u− > u+ (u− 6= 0) and zero initial phases (φ− = φ+ = 0), the initial discontinu-
ity evolves into six distinct hydrodynamic regimes. One regime is fully non-dispersive
and the other regimes are made of non-dispersive and dispersive regions. The non-
dispersive regions in these regimes are given by rarefaction wave solutions, similar to
dam break solutions in shallow water wave theory, whilst the dispersive regions are
featured by various (resonant) DSW solutions. These DSWs are resonant in the sense
that there is a resonant radiation propagating ahead of them. The form of these DSWs
varies from classical to non-classical as the difference u− − u+ changes from small to
large. The nematic dispersive shock and rarefaction wave solutions are joined by a
non-zero intermediate level acting as a mean of u− and u+.

On the other hand, for non-zero initial phases (φ−, φ+ 6= 0), the initial jump breaks
into five new different non-dispersive/dispersive hydrodynamic regimes and one more
regime that is identical to one of the regimes that were discussed above. These new
regimes are combinations of various rarefaction waves and resonant DSWs.
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Chapter 4

Modulational Stability of
Nematic Wavetrains

In this chapter, we apply Whitham’s averaging theory to understand the behaviour
and the structure of a non-linear periodic wave solution governed by the defocusing
nematic equations. This periodic wave is related to the resonant radiation generated
by a nematic DSW. This approach will generate modulation equations that govern the
slowly varying wave parameters of the nematic periodic wave solution. As discussed in
Section 1.4, the main ingredient in this method is the need for an exact periodic wave
solution. Unfortunately, the nematic equations (2.19) and (2.20) possess no known
exact general solution, in particular a periodic travelling wave solution. However, if
we assume that the resonant wavetrain has a small amplitude, known in non-linear
wave theory as “weakly” non-linear wavetrain, then a periodic wave solution can be
found as a Stokes expansion. This was similarly done for the Kawahara equation in
[79], the KdV5 equation (Kawahara equation (1.40) with µd = 0) in [80] and the fluid
conduit equation in [151]. We start this chapter by deriving a nematic Stokes wave
and then conclude it with deriving weakly non-linear modulation equations. These
modulation equations will help us to study the modulational stability of the nematic
resonant radiation and to analyse the structures of the nematic TDSW and VDSW
regimes. Here, we focus only on the modulational stability part and defer the analysis
of the TDSW and VDSW structures through modulation theory until the next chapter.

4.1 Nematic Uniform Stokes waves

We seek a Stokes expansion solution for the nematic dispersive hydrodynamic equations
(2.24)–(2.26). This can be done by adopting perturbation expansions in the small
parameter a (0 < a� 1), where a is the amplitude of the wavetrain, for the variables
ρ, v, θ and ω about mean levels ρ̄, v̄, θ̄ and linear angular frequency ω0, respectively.
They are

ρ = ρ̄+ aρ1 cosϕ+ a2ρ2 cos 2ϕ+ a3ρ3 cos 3ϕ+ o(a3), (4.1)

v = v̄ + av1 cosϕ+ a2v2 cos 2ϕ+ a3v3 cos 3ϕ+ o(a3), (4.2)

θ = θ̄ + aθ1 cosϕ+ a2θ2 cos 2ϕ+ a3θ3 cos 3ϕ+ o(a3), (4.3)

ω = ω0 + aω1 + a2ω2 + o(a2), (4.4)

where
ϕ = kx− ωz (4.5)
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is the uniform wavetrain phase. Our task is to determine the coefficients ρ1, ρ2, v1, v2,
θ1, θ2, ω1, ω2 and the linear dispersion relation ω0. This can be achieved by substituting
the above Stokes expansions into the nematic dispersive hydrodynamic system.

Originally, the general form of Stokes expansions are in terms of general unknown
functions, for instance, fn(ϕ), where n ∈ N, used instead of the Fourier modes cos(nϕ)
in the expansions (4.1)–(4.3) [1, 153]. The substitution of these general Stokes expan-
sions into the governing system of interest results in a system of ODEs in the functions
fn(ϕ). It is well-known in non-linear dispersive wave theory that Stokes’ approach
in the weakly non-linear limit yields functions that are proportional to Fourier modes
[1, 153], namely,

fn(ϕ) ∝ cos(nϕ). (4.6)

Because of this, it is possible and equivalent to use directly the Fourier modes cos(nϕ)
in place of the general functions fn(ϕ) in the nematic Stokes expansions. This adoption
helps us to determine the weakly non-linear, periodic wavetrain without the necessity
of solving differential equations.

Now, the substitution of the above nematic Stokes expansions into the mass equation
(2.24) gives

O(a) : kv̄ρ1 − ω0ρ1 + kρ̄v1 = 0, (4.7)

O(a2) : ω1ρ1 sinϕ− {kv1ρ1 + 2kv̄ρ2 − 2ω0ρ2 + 2kρ̄v2} sin 2ϕ = 0, (4.8)

O(a3) : 2ω2ρ1 − kv2ρ1 − kv1ρ2 = 0. (4.9)

In equation (4.8), we notice coefficients of two distinct harmonic modes. It is standard
in perturbation theory that terms which are proportional to the Fourier modes sinϕ
and cosϕ are secular terms which lead to unbounded growth in the solution in ϕ. This
can be more clear in the framework of using the general functions fn(ϕ) for the Stokes
expansions, as these secular terms appear as one of the damping terms in the obtained
differential equations and resonate with the differential operator [1]. The secular terms
must be discarded [1, 152]. Here, we only have one secular term in (4.8) and we can
eliminate it by setting

ω1 = 0, (4.10)

so that we have a periodic and bounded wavetrain. Expanding the angular frequency
ω in a power series is vital in weakly non-linear dispersive wave theory, as secular terms
can be eliminated. This was one of the Stokes’ remarkable discoveries in 1847 [153].

The substitution of the above Stokes series into the momentum equation (2.25),
eliminating secular terms again, provides

O(a) : k3ρ1 + 4ρ̄v̄kv1 − 4ω0ρ̄v1 + 8ρ̄kθ1 = 0, (4.11)

O(a2) : 3k3ρ2
1 − 4kρ̄2v2

1 − 16k3ρ̄ρ2 − 16kv̄ρ̄2v2

: + 16ω0ρ̄
2v2 − 32kρ̄2θ2 = 0, (4.12)

while the substitution into the director equation (2.26) gives

O(1) : θ̄q − ρ̄ = 0, (4.13)

O(a) : 2ρ1 − νk2θ1 − 2qθ1 = 0, (4.14)

O(a2) : 4νk2θ2 + 2qθ2 − 2ρ2 = 0. (4.15)

There is no need to additionally consider the terms of order O(a3) in the momentum
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and director equations as we are able to find an expression for ω2 by (4.9) only,

ω2 =
k

2ρ1
{v1ρ2 + v2ρ1} . (4.16)

Therefore, the overall hierarchy now reads

O(1) : θ̄ =
ρ̄

q
, (4.17)

O(a) : {kv̄ − ω0} ρ1 + kρ̄v1 = 0, (4.18)

: k3ρ1 + {4ρ̄v̄k − 4ω0ρ̄} v1 + 8ρ̄kθ1 = 0, (4.19)

: 2ρ1 −
{
νk2 + 2q

}
θ1 = 0, (4.20)

O(a2) : kρ1v1 + 2kv̄ρ2 − 2ω0ρ2 + 2kρ̄v2 = 0, (4.21)

: 3k3ρ2
1 − 4kρ̄2v2

1 − 16k3ρ̄ρ2

: +
{

16ω0ρ̄
2 − 16kv̄ρ̄2

}
v2 − 32kρ̄2θ2 = 0, (4.22)

: 2ρ2 −
{

4νk2 + 2q
}
θ2 = 0, (4.23)

O(a3) : ω2 =
k

2ρ1
{v1ρ2 + v2ρ1} . (4.24)

We notice from equation (4.17) that the mean level of the nematic director profile θ̄ is
relative to the optical intensity mean level |u| . This matches the numerical simulations
of the nematic resonant wavetrains, as shown in Chapter 3.

Remark 2. It is clear that the correct notation to express the mean level of the optical
intensity should be given by |u|. However, for the purpose of simplicity in mathematical
expressions presented in this thesis, we shall start using the notation ū instead. Thus,
we will assume here that ū ≡ |u|.

Numerically, it has been found that the mean level of the resonant wavetrain ū
is indeed very close to the value ū =

√
qθ̄ rather than u+, especially when the jump

from u− to u+ is large as in the TDSW and VDSW regimes. The root cause for this
is the non-linear interactions between the nematic DSWs and the resonant wavetrain,
resulting in an uplift in the resonant mean level from u+ to

√
qθ̄. Then, the resonant

wavetrain does not oscillate on the mean level ū = u+, as assumed in previous work
[60, 61].

Let us now determine the Stokes coefficients. To determine the linear dispersion
relation ω0, we note that the O(a) equations (4.18)–(4.20) have a solution of∣∣∣∣∣∣

kv̄ − ω0 kρ̄ 0
k3 4ρ̄v̄k − 4ω0ρ̄ 8ρ̄k
2 0 −νk2 − 2q

∣∣∣∣∣∣ = 0, (4.25)

which provides

ω0 = kv̄ +

√
kρ̄√

νk2 + 2q

√
4k +

k3

4ρ̄
(νk2 + 2q). (4.26)

When we insert the above linear dispersion relation into equation (4.18), we obtain

v1 =
1√

kρ̄(νk2 + 2q)

√
4k +

k3

4ρ̄
(νk2 + 2q). (4.27)
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Equation (4.8) then gives

θ1 =
2ρ1

2q + νk2
. (4.28)

All the Stokes corrections of order O(a) have been found, except ρ1. We can choose

ρ1 = 1, (4.29)

as this then sets the amplitude parameter a. As for the remainder of the nematic Stokes
coefficients to O(a2), they are calculated through solving the system of equations (4.21)–
(4.24) on using the above expressions (4.26)–(4.29). After many simplifications carried
out in Maple software, we find

ρ2 =
−(8 k2ν + 4 q)

k2 (2 k4ν2 + 5 k2ν q − 8 ν ρ̄+ 2 q2)
, (4.30)

v2 = −
{
k4ν + 2 k2q + 16 ρ̄

ν k2 + 2 q

} 1
2

× (4.31)

=
(3 k6ν2 + 15k4ν q/2 + 12 k2ν ρ̄+ 3 k2q2 + 12 qρ̄)

12ρ̄2k2 (k4ν2 + 5k2ν q/2 + q2 − 4 ν ρ̄)
, (4.32)

θ2 =
−4

k2 (2 k4ν2 + 5 k2ν q − 8 ν ρ̄+ 2 q2)
, (4.33)

ω2 = −
{
k4ν + 2 k2q + 16 ρ̄

ν k2 + 2 q

} 1
2

×

=
(k6ν2 + 5k4ν q/2 + 12 k2ν ρ̄+ k2q2 + 8 qρ̄)

8ρ̄2k (k4ν2 + 5k2ν q/2 + q2 − 4 ν ρ̄)
. (4.34)

As we can see, however, the expressions for the Stokes coefficients are complicated and
not really useful to derive amenable modulation equations. Fortunately, the resonant
wavetrain is a wave of short wavelength, namely, k = O(1), relative to the nematic
DSW, which is a long wave with wavenumber range 0 < k < 0.15, and the non-local
limit of ν large can be taken as it is the physical limit in experiments [6, 92]. Taking
then the nematic non-locality effect into account and after non-trivial algebra carried
out in Maple software, we have the following asymptotic results:

ω0 = kv̄ +
k2

2
+

4ρ̄

νk2
− 8ρ̄q

ν2k4
− 16ρ̄2

ν2k6
+ o

(
1

ν2k6

)
, (4.35)

v1 =
k

2ρ̄
+

4

ν k3
− 8q

ν2k5
− 16ρ̄

ν2k7
+ o

(
1

ν2k7

)
, (4.36)

θ1 =
2

νk2
− 4q

ν2k4
+ o

(
1

ν2k4

)
, (4.37)

ρ2 = − 4

νk4
+

8q

ν2k6
− 16ρ̄

ν2k8
+ o

(
1

ν2k8

)
, (4.38)

v2 = − k

4ρ̄2 −
4

ρ̄νk3
+

8q

ρ̄ν2k5
− 16

ν2k7
+ o

(
1

ν2k7

)
, (4.39)

θ2 = − 2

ν2k6
+ o

(
1

ν2k6

)
, (4.40)

ω2 = − k2

8ρ̄2
− 3

ρ̄νk2
+

6q

ρ̄ν2k4
− 20

ν2k6
+ o

(
1

ν2k6

)
. (4.41)
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It is important to mention that the above nematic linear dispersion relation ω0 for
the resonant wavetrain is in terms of the wave phase which satisfies φx = v, instead of
the original phase φ in the Madelung transformation (2.23). To obtain the dispersion
relation for the original phase φ, we need to add the phase shift term which is omitted
on differentiating the phase φ. This can be seen by looking for the dispersion relation for
a wave in u on a constant background θ̄. This results in a linear Schrödinger equation
in the complex electric field u

i
∂u

∂z
+

1

2

∂2u

∂x2
− 2θu = 0, (4.42)

with the asymptotic limit

θ ∼ θ̄ =
ū2

q
. (4.43)

In other words, in finding the phase φ from v, with φx = v, a function of z must be
determined which is in fact 2ρ̄/q to match with waves on a constant mean/background.
The asymptotic assumption (4.43) is in fair agreement with numerical solutions for
the director θ in the resonant wavetrain region, see Chapter 3. The reason why the
profile of the director is nearly constant and has the averaged value given by (4.43)
is that the non-locality effect smooths out the response of the director to the electric
field, resulting in the director essentially reacting to the mean of the rapid oscillation of
|u|, as has been found previously [60, 59, 154]. The above linear Schrödinger equation
(4.42) possesses a dispersion relation, for right-propagating waves that captures the
phase shift,

ω =
k2

2
+ 2θ̄ =

k2

2
+

2ρ̄

q
. (4.44)

This linear dispersion relation matches (4.35) at O(1), with v̄ = 0 and the phase shift
term 2ρ̄/q added. For the resonance, at first (linear) approximation, the mean level of
v is

v̄ = 2

√
2

q
(ū− u+) , (4.45)

we will verify this in Chapter 5. The approximation of the linear Schrödinger equation
(4.42) assumes that the resonance oscillates about the mean level ū = u+, rather

than ū =
√
qθ̄, hence, v̄ = 0. Although this is not precisely true for the resonance,

this approximation gives an excellent prediction of the phase shift. Another way to
determine the phase shift 2ρ̄/q without the above argument is by implementing the
above Stokes’ approach with a perturbation expansion in φ instead of a perturbation in
v (4.2), as this involves no differentiation with respect to x. The resonant mean level ū
will be determined theoretically when we study Whitham modulation jump conditions
in Chapter 5. The linear nematic dispersion relation (4.35) now becomes

ω0 = kv̄ +
k2

2
+

2ρ̄

q
+

4ρ̄

νk2
− 8ρ̄q

ν2k4
− 16ρ̄2

ν2k6
+ o

(
1

ν2k6

)
. (4.46)

Lastly, the nematic Stokes expansions are

ρ = ρ̄+ a cosϕ− 4a2

νk4
cos 2ϕ+ o

(
a2

νk4

)
, (4.47)

v = v̄ +
ka

2ρ̄
cosϕ− ka2

4ρ̄2 cos 2ϕ+ o
(
a2
)
, (4.48)
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θ =
ρ̄

q
+

2a

νk2
cosϕ− 2a2

ν2k6
cos 2ϕ+ o

(
a2

ν2k6

)
, (4.49)

ω = kv̄ +
k2

2
+

2ρ̄

q
− k2a2

8ρ̄2
+ o

(
a2
)
, (4.50)

where only the leading order terms are taken in the Stokes coefficients. Higher order
terms are not necessary for the calculation of the resonant wavetrain in the next section.

4.2 Nematic Slowly Varying Stokes Waves and Modula-
tional Stability

We now move to the derivation of the nematic Whitham modulation equations in the
weakly non-linear limit by employing the above calculated Stokes expansions. There are
several approaches to formulate these modulation equations. One way is by averaging
the Lagrangian formulation of the equations and another way is through averaging the
conservation laws for the governing equations, or a combination of both. In this study, it
has been found that the method of averaged Lagrangians provides us with conservation
laws of mass, wave action and waves. For a full set of the modulation equations, two
additional conservation laws are needed. These conservation laws are conservation of
energy and momentum. To procure them, we use Nöther’s Theorem and average the
resulting energy and momentum conservation laws over the fast oscillations, as was
done by Whitham to derive the modulation equations for the KdV equation [1, 83]. In
this sense, a mixture of the methods of averaged Lagrangians and conservation laws is
optimal.

Let us commence with the method of averaged Lagrangians. The Lagrangian for
the nematic equations (2.19) and (2.20) is [154]

L = i (u∗uz − uu∗z)− |ux|2 − 4θ|u|2 + νθ2
x + 2qθ2. (4.51)

However, what we really need is the Lagrangian for the nematic equations in the shallow
water wave form (2.24)–(2.26). To obtain this, we apply the Madelung transformation
(2.23) to the above Lagrangian (4.51). This results in

L = −2ρφz −
ρ2
x

4ρ
− ρφ2

x − 4ρθ + νθ2
x + 2qθ2. (4.52)

For many non-linear dispersive wave equations, such as the KdV5 equation [80], the
KdV equation and the Klein-Gordon equation [1], it is typical that a slowly varying
wave parameter appears in governing Lagrangians in terms of derivatives only, namely,
in terms of potentials. This demands that we introduce the so-called pseudo-phase ψ
for the mean flow v̄, with

γ = −ψz and v̄ = ψx. (4.53)

This is a standard step in Whitham’s averaging theory [1]. In other words, we seek a
slowly varying Stokes wave for the variable φ as

φ = ψ + Φ(ϕ), (4.54)

with the wave parameters, the amplitude a, wavenumber k, angular frequency ω and
mean height v̄, slowly varying functions of x and z. The quantities γ and v̄ are given the
names pseudo-frequency and pseudo-wavenumber [1], respectively. Their combination
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as ψ = v̄x − γz represents a pseudo-phase for a uniform wavetrain. These quantities
have important physical meanings in water wave theory, as they represent mean fluid
velocity and mean height [1]. The function Φ represents a wavetrain with zero mean
level and the function ψ gives the mean level variation for this wavetrain, given by
(4.53). The slowly varying wavenumber and angular frequency are defined from the
(slowly varying) phase ϕ by

k = ϕx and ω = −ϕz. (4.55)

With the use of
φx = v̄ + kΦϕ (4.56)

and
φz = −γ − ωΦϕ, (4.57)

the Lagrangian (4.52) becomes

L = 2ργ + 2ρωΦϕ −
k2ρ2

ϕ

4ρ
− ρv̄2 − 2kv̄ρΦϕ − k2ρΦ2

ϕ − 4θρ+ νk2θ2
ϕ + 2qθ2. (4.58)

We approximate the ratio in the third term in (4.58) by Taylor series based on the
Stokes expansion (4.1) and select the leading order term only,

ρ2
ϕ

ρ
∼ a2 sin2 ϕ

ρ̄
+ o(a2), (4.59)

as higher order terms are beyond the calculated order. Then, the Lagrangian is ex-
pressed as

L = 2ργ+ 2ρωΦϕ−
k2a2

4ρ̄
sin2 ϕ− ρv̄2− 2kv̄ρΦϕ− k2ρΦ2

ϕ− 4θρ+ νk2θ2
ϕ + 2qθ2. (4.60)

The function Φ is deduced from equations (4.2) and (4.56), which gives

Φ(ϕ) = aΦ1 sinϕ+ a2Φ2 sin 2ϕ =
av1

k
sinϕ+

a2v2

2k
sin 2ϕ. (4.61)

Substituting the slowly varying Stokes waves (4.47)–(4.50) and the expression (4.61)
into the Lagrangian (4.60), and then averaging over the fast scale variable ϕ by inte-
grating from 0 to 2π, yields the averaged Lagrangian in terms of the slow-scale variables

L =
1

2π

2π∫
0

Ldϕ = L (ρ̄, ϕx, ϕz, ψx, ψz, a)

=

{
2ρ̄γ − ρ̄v̄2 − 2ρ̄2

q

}
= + a2

{
k2θ2

1ν

2
− v̄v1ρ1 + qθ2

1 −
v2

1 ρ̄

2
+
v1ρ1ω

k
− k2ρ1

8ρ̄
− 2θ1ρ1

}
+ o(a2)

=

{
2ρ̄γ − 2ρ̄2

q
− ρ̄v̄2

}
+ a2

{
ω

2ρ̄
− k2

4ρ̄
− v̄k

2ρ̄

}
+ o(a2).

(4.62)

Note that the higher order terms of order O
(

1
ν

)
have been neglected as they are not

needed to determine the resonant wavetrain at leading order. We have four slowly
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varying functions (ρ̄, ϕ, ψ, a), so we need four modulation equations, which are Euler-
Lagrange equations of the averaged Lagrangian. Taking the variations of the averaged
Lagrangian (4.62) with respect to the amplitude a,

δa : La = 0, (4.63)

gives the non-linear dispersion relation

ω = ω0 + O(a2). (4.64)

To obtain the Stokes dispersion relation (4.50) to O(a2) by taking variations with
respect to a, the averaged Lagrangian is needed to O(a4). However, this dispersion
relation is known via (4.50), so these O(a4) terms in the averaged Lagrangian are not
necessary here. Taking variations of the averaged Lagrangian (4.62) with respect to
the pseudo-phase ψ,

δψ :
∂

∂z

∂L

∂γ
− ∂

∂x

∂L

∂v̄
= 0, (4.65)

gives
∂

∂z
{ρ̄}+

∂

∂x

{
ρ̄v̄ +

a2v1ρ1

2

}
= 0, (4.66)

which results in the averaged mass conservation equation

∂ρ̄

∂z
+

∂

∂x

{
ρ̄v̄ +

ka2

4ρ̄

}
= 0, (4.67)

on using (4.48). Taking variations with respect to the phase ϕ,

δϕ :
∂

∂z

∂L

∂ω
− ∂

∂x

∂L

∂k
= 0, (4.68)

gives
∂

∂z

{
a2ρ1v1

k

}
+

∂

∂x

{
kθ2

1νa
2 − v1ρ1ωa

2

k2
− kρ1a

2

4ρ̄

}
= 0, (4.69)

which results in the conservation law of wave action equation

∂

∂z

{
a2

ρ̄

}
+

∂

∂x

{
v̄a2

ρ̄
+
ka2

ρ̄

}
= 0, (4.70)

on using (4.47)–(4.50). As usual in non-linear dispersive wave problems, a set of mod-
ulation equations is concluded with the conservation of waves equation. This is derived
from the wavenumber and frequency expressions (4.55) as a consistency relation, ex-
pressly,

∂k

∂z
+
∂ω

∂x
= 0. (4.71)

Another name that is commonly given for the conservation of waves equation in modu-
lation theory is the consistency equation [1, 19]. There is another consistency equation,
analogous to the waves conservation (4.71), which follows from the expressions (4.53)
for the pseudo-phase, that is,

∂v̄

∂z
+
∂γ

∂x
= 0. (4.72)
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Although this consistency equation will not be used for nematic modulations, it will
show up automatically in the middle of our work. So far we have three modulation
equations, and we lack one more equation to close the modulation system. To pro-
ceed, we use Nöther’s Theorem on the Lagrangian (4.52). Only conservation laws that
arise from this theorem are acceptable in modulation theory, as was pointed out in
Section 1.4. The theorem says that if a Lagrangian possesses a continuous symmetry,
i.e., it is invariant under continuous transformations or translations, then conservation
laws can be deduced from these symmetries. Mathematically speaking, the theorem is
formulated as [155]:

Nöether’s Theorem. Let us assume that the functional

J [r] =

∫
Rn

F (x, r,∇r) dx (4.73)

is invariant under the family of transformations

x∗i = xi + αhi
(
xi, rj , rxj

)
; (i = 1, 2, 3, . . . , n), (4.74)

r∗j = rj + αwj
(
xi, rj , rxj

)
; (j = 1, 2, 3, . . . ,m), (4.75)

for an arbitrary region Rn such that α is a small constant, x = 〈x1, . . . , xn〉 and r =
〈r1, . . . , rm〉, hi and wj are continuously differentiable functions. Then

n∑
i=1

∂

∂xi


m∑
j=1

∂F

∂
(
∂rj
∂xi

) w̄j + Fhi

 = 0 (4.76)

on each extremal surface of J [r], which are conservation laws for the underlying equa-
tion(s), where

w̄j = wj −
n∑
i=1

∂rj
∂xi

hi. (4.77)

The Lagrangian (4.52), L = L (ρ, θ,∇ρ,∇φ,∇θ), is invariant under the following
three collections of translations. First, it is invariant under a translation with respect
to φ, that is, φ∗ = φ+ α, which gives the mass conservation law

∂

∂z

∂L

∂φz
+

∂

∂x

∂L

∂φx
= 0. (4.78)

Second, it is invariant under a translation with respect to x, namely, x∗ = x+α, which
leads to the momentum conservation law

∂

∂z

{
∂L

∂ρz

∂ρ

∂x
+
∂L

∂φz

∂φ

∂x
+
∂L

∂θz

∂θ

∂x

}
+

∂

∂x

{
∂L

∂ρx

∂ρ

∂x
+

∂L

∂φx

∂φ

∂x
+
∂L

∂θx

∂θ

∂x
− L

}
= 0.

(4.79)
Third, it is invariant under a translation with respect to z, z∗ = z + α, which yields
the energy conservation law

∂

∂z

{
∂L

∂ρz

∂ρ

∂z
+
∂L

∂φz

∂φ

∂z
+
∂L

∂θz

∂θ

∂z
− L

}
+

∂

∂x

{
∂L

∂ρx

∂ρ

∂z
+

∂L

∂φx

∂φ

∂z
+
∂L

∂θx

∂θ

∂z

}
= 0.

(4.80)
The terms mass, momentum and energy are used in this thesis in the sense of the
invariances of a Lagrangian and how they arise in water wave theory and classical
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mechanics [1, 156]. While these terms will be used here, in optics they have different
interpretations. For example, mass conservation equation is conservation of optical
power. Substituting the expression for the nematic Lagrangian (4.52) into (4.78)–
(4.80), we have the mass, momentum and energy conservation equations

∂ρ

∂z
+

∂

∂x
{ρv} = 0,

∂

∂z
{ρv}+

∂

∂x

{
ρv2 +

ρ2
x

4ρ
+ qθ2 − νθ2

x

2
− ρxx

4

}
= 0,

∂

∂z

{
ρ2
x

4ρ
+ ρv2 + 4θρ− νθ2

x − 2qθ2

}
+

∂

∂x

{
3vρ2

x

4ρ
+
ρxvx

2
+ ρv3 − vρxx

2

3vρ2
x

4ρ
+ 4ρθv + 2νθxθz

}
= 0,

(4.81)

respectively. Although the first and second formulae in (4.81) are merely the first two
equations in the nematic dispersive hydrodynamic system (2.24)–(2.26), after some
algebraic manipulations, Nöther’s approach has to be undertaken to make sure that
these are the correct conservation laws that eliminate the secular terms in the multi-
scales method of modulation theory. This was the motive behind using the titles mass
and momentum equations for (2.24) and (2.25), respectively, from the start. By using
the Stokes expansions (4.1)–(4.4) and averaging over the phase ϕ from 0 to 2π, we
obtain the averaged mass, momentum and energy conservation laws

∂ρ̄

∂z
+

∂

∂x

{
ρ̄v̄ +

v1ρ1a
2

2

}
= 0,

∂

∂z

{
ρ̄v̄ +

v1ρ1a
2

2

}
+

∂

∂x

{
ρ̄2

q
+ v̄2ρ̄+

qθ2
1a

2

2
+
k2ρ2

1a
2

8ρ̄
+
v2

1 ρ̄a
2

2
+ v̄v1ρ1a

2

− k2θ2
1νa

2

4

}
= 0,

∂

∂z

{
2ρ̄2

q
+ v̄2ρ̄+ 2θ1ρ1a

2 − qθ2
1a

2 +
k2ρ2

1a
2

8ρ̄
+
v2

1 ρ̄a
2

2
+ v̄v1ρ1a

2 − k2θ2
1νa

2

2

}
+
∂

∂x

{
ρ̄v̄3 +

4v̄ρ̄2

q
+

3v̄ρ̄v2
1a

2

2
+

3v̄2v1ρ1a
2

2
+

2ρ̄v1ρ1a
2

q
+ 2ρ̄v1θ1a

2 + 2v̄ρ1θ1a
2

+
k2v1ρ1a

2

2
+

3v̄k2ρ2
1a

2

8ρ̄
− kω0νθ

2
1a

2

}
= 0,

(4.82)
respectively. When the Stokes expansions (4.47)–(4.50) are used in the above equations,
we obtain the averaged mass, momentum and energy conservation laws as, in order,

∂ρ̄

∂z
+

∂

∂x

{
ρ̄v̄ +

ka2

4ρ̄

}
= 0,

∂

∂z

{
ρ̄v̄ +

ka2

4ρ̄

}
+

∂

∂x

{
ρ̄2

q
+ ρ̄v̄2 +

k2a2

4ρ̄
+
v̄ka2

2ρ̄

}
= 0,

∂

∂z

{
ρ̄v̄2 +

2ρ̄2

q
+
k2a2

4ρ̄
+
kv̄a2

2ρ̄

}
+

∂

∂x

{
ρ̄v̄3 +

4v̄ρ̄2

q
+
ka2

q
+
k3a2

4ρ̄

+
3v̄k2a2

4ρ̄
+

3v̄2ka2

4ρ̄

}
= 0,

(4.83)
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The averaged mass conservation law in (4.83) is in conformity with (4.67), which is
expected.

Now, the set of the modulation equations for the nematic Stokes wave that enables
us to deduce the “structure” of the resonant wavetrain generated by the DSW (to be
specific, TDSW and VDSW) is

∂ρ̄

∂z
+

∂

∂x

{
ρ̄v̄ +

kA

4ρ̄

}
= 0,

∂k

∂z
+

∂

∂x

{
kv̄ +

k2

2
+

2ρ̄

q
− k2A

8ρ̄2

}
= 0,

∂

∂z

{
ρ̄v̄ +

kA

4ρ̄

}
+

∂

∂x

{
ρ̄2

q
+ ρ̄v̄2 +

k2A

4ρ̄
+
v̄kA

2ρ̄

}
= 0,

∂

∂z

{
ρ̄v̄2 +

2ρ̄2

q
+
k2A

4ρ̄
+
kv̄A

2ρ̄

}
+

∂

∂x

{
ρ̄v̄3 +

4v̄ρ̄2

q
+
kA

q
+
k3A

4ρ̄
+

3v̄k2A

4ρ̄

+
3v̄2kA

4ρ̄

}
= 0,

(4.84)

where A = a2, this will be dealt with in Sections 5.5 and 5.6. On the other hand,
the family of the modulation equations that allows us to understand the “modulational
stability” of the resonant wavetrain generated by the nematic DSWs can be summarised
as

∂ρ̄

∂z
+

∂

∂x

{
ρ̄v̄ +

kA

4ρ̄

}
= 0,

∂

∂z

{
A

ρ̄

}
+

∂

∂x

{
v̄A

ρ̄
+
kA

ρ̄

}
= 0,

∂k

∂z
+

∂

∂x

{
kv̄ +

k2

2
+

2ρ̄

q
− k2A

8ρ̄2

}
= 0,

∂

∂z

{
ρ̄v̄ +

kA

4ρ̄

}
+

∂

∂x

{
ρ̄v̄2 +

ρ̄2

q
+
k2A

4ρ̄
+
v̄kA

2ρ̄

}
= 0.

(4.85)

Here, the notation A = a2 is adopted as it simplifies the subsequent calculations,
especially in the modulational stability calculations of the nematic Stokes wave. In this
chapter, we concentrate on addressing the modulational stability of the Stokes wave
based on the modulation equations (4.85). Methods to find the TDSW and VDSW
solutions by the means of the modulation equations (4.84) will be presented in the next
chapter, based on Whitham modulation jump conditions [81, 85].

To determine the modulational stability of the nematic Stokes wave, the modulation
equations (4.85) need to be set in the characteristic form (1.36) [1]. In general, if the
size of a system of PDEs is at most second order, then one can always set the system in
Riemann invariant form (1.39) by using a standard method that reduces it to a scalar
ODE with an integrating factor that can always be found. For systems of PDEs of
higher order, however, it may or may not be possible to set them in Riemann invariant
form. An example of a third order system of coupled PDEs for which an integrating
factor can be found is Euler’s equations of perfect gas dynamics, see e.g. [1]. Another
example of a third order system is the weakly non-linear modulation equations for the
KdV5 equation which have been derived and put in Riemann invariant form [80]. The
weakly non-linear nematic modulation system (4.85) is a fourth order system. We have
not been able to set them in an exact Riemann invariant form. However, we can set
them in characteristic form asymptotically using “eigenvalue perturbation method.”
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This method seeks asymptotic expressions, in a form of a perturbation series, for the
eigenvalues and the eigenvectors of a matrix, see a rigorous discussion of this method
in [157].

Differentiating term by term the fluxes and the densities in the modulation equations
(4.85) and collecting terms with common coefficients gives

ρ̄z +

{
v̄ − kA

4ρ̄2

}
ρ̄x +

A

4ρ̄
kx +

k

4ρ̄
Ax + ρ̄v̄x = 0,

kz +

{
2

q
+
Ak2

4ρ̄3

}
ρ̄x +

{
v̄ + k − kA

4ρ̄2

}
kx −

k2

8ρ̄2
Ax + kv̄x = 0,

Az −
kA

ρ̄
ρ̄x +Akx +

{
v̄ + k +

kA

4ρ̄2

}
Ax + 2Av̄x = 0,

v̄z +

{
2

q
− A

2ρ̄2q

}
ρ̄x +

Ak2

32ρ̄4
Ax + v̄v̄x = 0,

(4.86)

which can be expressed in the matrix form

Gz + B(G)Gx = 0, (4.87)

where GT = [ρ̄ k A v̄] and

B =



v̄ − kA
4ρ̄2

A
4ρ̄

k
4ρ̄ ρ̄

2
q + Ak2

4ρ̄3
v̄ + k − kA

4ρ̄2
− k2

8ρ̄2
k

−kA
ρ̄ A v̄ + k + kA

4ρ̄2
2A

2
q −

A
2ρ̄2q

0 Ak2

32ρ̄4
v̄

 . (4.88)

Notice that the last equation in (4.86) represents the consistency equation (4.72) after
differentiating the function γ which can be obtained by taking the mass conservation
out of the momentum conservation. Let us denote the perturbed eigenvalues and
eigenvectors, of the matrix system (4.87) by

λ1 = λ1,0 +
√
Aλ1,1 + O (A) ,

λ2 = λ2,0 +
√
Aλ2,1 + O (A) ,

λ3 = λ3,0 +Aλ3,1 + O
(
A2
)
,

λ4 = λ4,0 +Aλ4,1 + O
(
A2
)
,

(4.89)

and
χ1 = χ1,0 +

√
Aχ1,1 + O (A) ,

χ2 = χ2,0 +
√
Aχ2,1 + O (A) ,

χ3 = χ3,0 +Aχ3,1 + O
(
A2
)
,

χ4 = χ4,0 +Aχ4,1 + O
(
A2
)
.

(4.90)

The eigenvalues λ1 and λ2 are constructed as perturbation series in powers of
√
A,

while the others are calculated as perturbation series in powers of A. This is impor-
tant. Otherwise, we will encounter asymptotic inconsistency in determining higher
order corrections such as λ1,1 and λ2,1. In detailed explanation, when the λ1 and λ2

expressions (4.89) are substituted into (4.87), we find that λ1,1 and λ1,2 are only pos-
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sible to be determined at the asymptotic order O
(
A2
)
, which is beyond the calculated

asymptotic order, hence, the lack of consistency in the asymptotics. This is due to one
characteristic being double at leading order (repeated eigenvalues).

To proceed, we first find the eigenvalues and the “left” eigenvectors of the above
matrix system (4.87) with A = 0, that is, the eigenvalues and the eigenvectors of order
O(1). After a standard linear algebra calculation, we find that the eigenvalues are

λ1,0 = λ2,0 = v̄ + k, λ3,0 = v̄ +

√
2ρ̄

q
, λ4,0 = v̄ −

√
2ρ̄

q
, (4.91)

and the left eigenvectors are

χ1,0 =


0
0
1
0

 , χ2,0 =


0
0
−1
0

 , χ3,0 =


√

2
qρ̄

0√
2qρ̄k

4ρ̄2(
√

2ρ̄q−kq)
1

 , χ4,0 =


−
√

2
qρ̄

0√
2qρ̄k

4ρ̄2(
√

2ρ̄q+kq)
1

 .
(4.92)

Next, we substitute the perturbed expressions (4.89) and (4.90), on using (4.91) and
(4.92), into the weakly non-linear system (4.87) and gather the terms whose asymptotic

orders are identical, i.e., O
(√

A
)

and O (A). After extensive algebraic manipulations

carried out in Maple software, we end up with the perturbed eigenvalues (characteris-
tics)

λ1 = {v̄ + k}+
√
A

{
k

4ρ̄

√
20 ρ̄− 2k2q

k2q − 2 ρ̄

}
,

λ2 = {v̄ + k} −
√
A

{
k

4ρ̄

√
20 ρ̄− 2k2q

k2q − 2 ρ̄

}
,

λ3 =

{
v̄ +

√
2ρ̄

q

}
+A

{
k

2ρ̄

(
2
√

2ρ̄− k√q
)(√

2ρ̄ (k2q + 2 ρ̄)− 4 kρ̄
√
q
)} ,

λ4 =

{
v̄ −

√
2ρ̄

q

}
+A

{
k

2ρ̄

(
2
√

2ρ̄+ k
√
q
)(√

2ρ̄ (k2q + 2 ρ̄) + 4 kρ̄
√
q
)} ,

(4.93)

associated with the perturbed left eigenvectors

χ1 =


0

0

1

0

+
√
A



−32λ1 ρ̄2

k(k2q−10 ρ̄)

−8λ1 ρ̄2(k2q−2 ρ̄)
k2(k2q−10 ρ̄)

0

−8λ1 ρ̄2(k2q+2 ρ̄)
k2(k2q−10 ρ̄)


,

χ2 =


0

0

1

0

+
√
A



32λ1 ρ̄2

k(k2q−10 ρ̄)

8λ1 ρ̄2(k2q−2 ρ̄)
k2(k2q−10 ρ̄)

0

8λ1 ρ̄2(k2q+2 ρ̄)
k2(k2q−10 ρ̄)

,


,

(4.94)
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χ3 =



√
2
qρ̄

0
√

2qρ̄ k

4ρ̄2(
√

2qρ̄−kq)

1


+A


0

1
4 ρ̄2+2 ρ̄ k2q−4 ρ̄ k

√
2qρ̄

0

0

 ,

χ4 =



−
√

2
qρ̄

0
√

2qρ̄ k

4ρ̄2(
√

2qρ̄+kq)

1


+A


0

1
4 ρ̄2+2 ρ̄ k2q+4 ρ̄ k

√
2qρ̄

0

0

 .
(4.95)

The above perturbed eigenvectors are calculated up to the first non-trivial asymptotic
order. In calculating the Riemann variables, only the first non-trivial terms in the
expansions in terms of O(

√
A) and O(A) were retained for simplicity and to yield

amenable expressions. A similar asymptotic approach was done for the KdV5 equation
[80] and excellent agreement with numerical solutions was found. In summary, the
characteristic form of the modulation equations (4.85) is

− 32λ1ρ̄
2a

k (qk2 − 10ρ̄)

dρ̄

dz
−

8λ1ρ̄
2
(
qk2 − 2ρ̄

)
a

k2 (qk2 − 10ρ̄)

dk

dz
+
da2

dz
−

8λ1ρ̄
2
(
qk2 + 2ρ̄

)
a

k2 (qk2 − 10ρ̄)

dv̄

dz
= 0

on
dx

dz
= λ1 = v̄ + k +

ka

4ρ̄

√
20 ρ̄− 2k2q

qk2 − 2 ρ̄
, (4.96)

32λ1ρ̄
2a

k (qk2 − 10ρ̄)

dρ̄

dz
+

8λ1ρ̄
2
(
qk2 − 2ρ̄

)
a

k2 (qk2 − 10ρ̄)

dk

dz
+
da2

dz
+

8λ1ρ̄
2
(
qk2 + 2ρ̄

)
a

k2 (qk2 − 10ρ̄)

dv̄

dz
= 0

on
dx

dz
= λ2 = v̄ + k − ka

4ρ̄

√
20 ρ̄− 2k2q

qk2 − 2 ρ̄
, (4.97)√

2

q

1√
ρ̄

dρ̄

dz
+

a2

4ρ̄2 + 2qk2ρ̄− 4
√

2qkρ̄3/2

dk

dz
+

√
2qk

4ρ̄3/2
(√

2q
√
ρ̄− qk

) da2

dz
+
dv̄

dz
= 0

on
dx

dz
= λ3 = v̄ +

√
2

q

√
ρ̄+

ka2

2ρ̄

2
√

2ρ̄−√qk
√

2ρ̄ (qk2 + 2 ρ̄)− 4
√
q kρ̄

, (4.98)

−
√

2

q

1√
ρ̄

dρ̄

dz
+

a2

4ρ̄2 + 2qk2ρ̄+ 4
√

2qkρ̄3/2

dk

dz
+

√
2qk

4ρ̄3/2
(√

2q
√
ρ̄+ qk

) da2

dz
+
dv̄

dz
= 0

on
dx

dz
= λ4 = v̄ −

√
2

q

√
ρ̄+

ka2

2ρ̄

2
√

2ρ̄+
√
qk

√
2ρ̄ (qk2 + 2 ρ̄) + 4

√
q kρ̄

, (4.99)

to O(a2). Unfortunately, it was not possible to set the characteristic form (4.96)–(4.99)
into Riemann invariant form; a basic manifestation of Pfaff’s problem [1]. Note that
at leading order, with a = 0, the two characteristics (4.98) and (4.99) are those for the
shallow water wave equations [1], which must be the case. The system (4.96)–(4.99) is
hyperbolic if the wavenumber k falls within the restricted range

ū <

√
q

2
k <
√

5 ū, (4.100)

as ū =
√
ρ̄. The Stokes wavetrain is then modulationally stable for k in the range
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(4.100) and unstable otherwise. The restricted range of the wavenumber for stability
leads to the resonant wavetrain generated by the DSW being unstable over the majority
of the range of its existence. Outside the range (4.100), the system (4.96)–(4.99) is
a mixed elliptic-hyperbolic system since the characteristics (4.98) and (4.99), which
are those for the shallow water equations at leading order, are always real. This is
important as in the following chapter the Riemann variables on these characteristics
are used to construct the solutions in the TDSW and VDSW regimes. The rest of the
characteristics, which are (4.96) and (4.97), represent the non-linear generalisation of
the linear nematic group velocity in the short-wavelength approximation. The leading
terms in these characteristics are the linear group velocities and these velocities are
perturbed by two identical corrections with opposite signs. Such double splitting of
characteristic velocities, under the effect of the non-linearity, is standard in non-linear
dispersive wave theory [1]. Our study and discussion of the nematic modulational
stability will be extended with further details in the next chapter, to be specific, in
Sections 5.4 and 5.5.

4.3 Conclusions

A Stokes wave solution as an alternative to an exact non-linear periodic wave solution
for the non-integrable defocusing nematic equations was derived. Weakly non-linear
Whitham’s modulation theory was then employed on a slowly varying nematic Stokes
wave to derive two sets of modulation equations. These modulation equations are
obtained by a mixture of the methods of averaged Lagrangians and averaged conser-
vation laws. The set of modulation equations obtained from the method of averaged
Lagrangians was used to study the modulational stability of nematic resonant radi-
ation, whilst the other one obtained from the method of averaged conservation laws
will be used in Chapter 5 to analyse the structures of the nematic TDSW and VDSW
regimes. The reason behind these two different utilisations of modulation equations
is the energy conservation law which is needed in the physical theory of shock waves
instead of the wave action conservation law, more details will be given in Section 5.5.
The nematic modulation equations is a system of size 4×4, and it was impossible to us
to find integrating factors that set this modulation system in Riemann invariant form
(Pfaff’s problem). It has been found that when the value of the resonant wavenumber
lies within the range k2 ∈ (2ū/q, 10ū/q), the nematic modulation system becomes fully
hyperbolic, otherwise, it is half elliptic half hyperbolic.
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Chapter 5

Full Analysis of Nematic
Hydrodynamics

In this chapter, we derive theoretical solutions for nematic non-dispersive and disper-
sive hydrodynamic regimes. These solutions are obtained by using the method char-
acteristics and various perturbation techniques that are base directly or indirectly on
Whitham’s averaging theory. The theoretical results will be compared with numerical
solutions and discussed further in the next chapter.

5.1 Non-convex Dispersive Hydrodynamics

Non-convex dispersive hydrodynamics is a dispersive hydrodynamic equation or system
of equations whose linear dispersion relation ω is a non-convex function over the domain
of the wavenumber k. The nematic dispersive hydrodynamic system (2.24)–(2.26) is
an example of non-convex dispersive hydrodynamics. Indeed, the profile of its linear
dispersion relation has an inflection point at k = 0.281, as depicted in Figure 5.3.
In essence, the loss of convexity for the linear dispersion relation leads to a potential
resonance between low and high frequency waves [61, 79]. This is consistent with
what is seen in Figures 3.3 and 3.4. These figures show that the nematic (resonant)
DSWs are made of two different wave structures based on two distinct frequency scales.
First, a KdV-type DSW (p = 1, d = 1) which consists of modulated waves of low
frequencies (long-wavelengths; 0 < k < 0.15) lies at the leading edge of the intermediate
level. Second, there is a linear resonant wavetrain, located in the front of the DSW,
which is composed of waves of relatively high frequencies (short-wavelengths), actually
k = O(1). The resonance acts as a damping force on the nematic DSW and this results
in a leak in energy and mass from the DSW. This is the underlying reason for why the
nematic DSW in, for example, Figure 3.4, resembles an unstable modulated wavetrain.
The effect of the resonance on the DSW form is significant when the difference between
u− and u+ is large. However, it is negligible when this difference is small. Note that
there is another branch of non-convex dispersive hydrodynamics in which hyperbolic
fluxes are non-convex, as in the modified KdV equation [18, 171]. This source of
non-convexity in dispersive hydrodynamics gives rise to undercompressive shock waves
and shock-rarefactions in the theory of hyperbolic systems. This kind of non-convex
dispersive hydrodynamics is outside the scope of this thesis, however, so it will not be
discussed further.

In general, the existence of a resonance in non-linear dispersive wave equations
is typical when higher order dispersive effects are taken into account. For instance,
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Figure 5.1: Full dispersion relation (blue; solid line), long wave dispersion relation
(yellow; dash-dot) and short wave dispersion relation (orange; dashed line). Here,
ν = 200, q = 2, ρ̄ = 1 and v̄ = 0. (Online version in colour.)

resonant DSWs have been observed experimentally in the context of non-linear optics,
for which the governing equations is the NLS equation with higher order dispersive
terms added [158, 159, 160, 161] and also have been studied in the context of fluid
mechanics when fifth order dispersion is added to the KdV equation (water wave theory)
[79, 80, 81]. Similarly, resonant radiation is possible to exist as part of solitary wave
solutions of non-linear dispersive wave equations when higher order dispersive terms are
added. The effect of the linear resonant radiation generation by solitary wave solutions
of these equations is well-known in the framework of non-linear optics [163, 164] and
gravity-capillary water waves [165, 166, 167, 168]. A simple example of a non-convex
dispersive hydrodynamic equation, that is related to the work of this thesis and has been
well studied recently, is the Kawahara equation (1.40) [79, 80, 81]. The linear dispersion
relation for the Kawahara equation (1.40) about an initial state (a background) ū is

ω = 6ūk − µdk3 + k5. (5.1)

When the dispersion parameter µd is positive (µd > 0), the linear dispersion relation
becomes a non-convex function over the range of the wavenumber k. Then, linear
radiation can propagate at a phase velocity Vp that equals the velocity of the lead
solitary wave Vs of the Kawahara DSW, yielding a propagating resonance ahead of the
DSW whose front is given by the group velocity of the linear radiations [61, 79, 80].
Solitary waves are then unstable and leak away to radiation. Figure 5.2 shows a resonant
DSW governed by the non-convex Kawahara equation (1.40). The analogy between
this figure and Figure 3.3 is illuminating. When the dispersion parameter is negative
(µd < 0), the linear dispersion relation becomes convex, thus, the Kawahara equation
does not exhibit a resonant DSW in this case. The resulting DSW is similar to the DSW
given by the classical third-order KdV equation (1.10) which has the linear dispersion
relation

ω = 6ūk − µdk3. (5.2)
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Independent of whether the sign of the dispersion is positive or negative in the third-
order KdV equation, the solitary waves at the leading edge of the KdV DSW (p =
1, d = 1) do not shed radiation ahead of it due to the convexity or the concavity of
the linear dispersion relation (5.2), as can be seen in Figures 1.7 and 1.8(a). Thus, the
change in the curvature from negative (concavity) to positive (convexity) in the non-
convex linear dispersion relation corresponds to radical transformations in the form
of the Kawahara DSWs as k increases [79]. Now let us discuss the non-convexity of
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Figure 5.2: A resonant DSW governed by the Kawahara equation (1.40). Here, µd =
7.0, u− = 1, u+ = 0 and t = 50

the nematic dispersive hydrodynamics (2.24)–(2.26). To analyse mathematically the
two generic oscillatory structures existing for the nematic resonant DSWs, we need to
seek long- and short-wavelength approximations of the full linear dispersion relation
(4.26). The short-wavelength approximation of the full linear dispersion relation has
been already derived in Section 4.1 and we recall it here. With the asymptotic limits
ν � 1 and νk2 � 1, the dispersion relation is

ω = kv̄ +
k2

2
+

2ρ̄

q
+ O

(
1

νk2

)
. (5.3)

In contrast, the long-wavelength approximation of the full linear dispersion relation,
with the asymptotic limits k � 1 and νk2 � 1, is

ω = k {U + v̄} − U

4

{
ν

q
− q

4ρ̄

}
k3 +

U

32

{
3ν2

q2
+

ν

2ρ̄
− q2

16ρ̄2

}
k5 + o(k5), (5.4)

with

U =

√
2

q

√
ρ̄. (5.5)

This long-wavelength approximation is analogous to the Kawahara linear dispersion
relation (5.1). Although we have assumed that νk2 � 1, this does not hold always
true for reasonably small wavenumber due to the very large value of the non-locality
ν. However, we shall see that this long wave approximation captures key qualitative
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characteristics of the nematic dispersion relation (4.26). From the short wave asymp-
totic expression (5.3), we can see that the dispersion is convex for large wavenumbers
(ωkk > 0), whereas the asymptotic formula (5.4) shows that the dispersion is concave
for small wavenumbers (ωkk < 0). Hence, we see the non-convexity of the full linear
dispersion relation (4.26) over the whole range of the wavenumber. A comparison be-
tween the approximations (5.3) and (5.4) and the nematic full linear dispersion relation
(4.26) is given in Figure 5.3. It can be seen that the expressions (5.3) and (5.4) co-
incide with the profile of the full nematic dispersion relation in the limits of low and
high wavenumber, respectively, which is to be expected. Yet, because of the large coef-
ficient of the k5 term in the asymptotic dispersion relation (5.4), the short-wavelength
approximation expansion rapidly diverges from the exact nematic linear dispersion re-
lation as k increases. Nonetheless, it qualitatively captures the basic property of the
non-convexity of the full nematic linear dispersion relation, so it can be used for qual-
itative predictions of the effects of the non-locality on the nematic DSW behaviour.
In Figure ??, we can see that the full nematic phase velocity Vp is a non-monotonic
function and has an inflection point at a particular wavenumber, k = 0.099. This is
also qualitatively captured by the long-wavelength approximation. The change in the
behaviour of the full phase velocity from decreasing to increasing indicates that the
solitary waves’ velocity in the nematic KdV-type DSW regime, that takes place in the
low wavenumber limit, changes to be equal to the phase velocity of the linear radiation
in the high wavenumber limit, namely, Vs = Vp, hence the observed resonance.
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Figure 5.3: Full dispersion relation (blue; solid line), long wave dispersion relation
(yellow; dash-dot) and short wave dispersion relation (orange; dashed line). Here,
ν = 200, q = 2, ρ̄ = 1 and v̄ = 0. (Online version in colour.)

5.2 Nematic Non-dispersive Hydrodynamics

In this section, we derive theoretical solutions of the defocusing nematic equations
(2.19) and (2.20) in the dispersionless limit. These solutions will be derived in both
cases for which the initial phases in the condition (2.29) are both trivial, φ− = φ+ = 0,
and when at least one of the initial phases is not so, φ− and/or φ+ 6= 0. As shown in
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Chapter 3, the majority of the numerical nematic hydrodynamic solutions feature two
distinct wave structures that can be easily distinguished by the influence of dispersion.
These solutions have expansion waves followed by DSWs with a shelf in between, or
the other way around, as in Case 1, see Subsection 3.2.2. Other hydrodynamic regimes
are either fully non-dispersive, such as the dam break solution [1], a combination of
rarefaction waves, or completely dispersive for which DSWs are interacting with each
other. Theoretically, the non-dispersive and dispersive regions existing in the numerical
solutions can be analysed separately by using the polar coordinate transformation, the
Madelung transformation (2.23). The nematic hydrodynamics in the dispersionless
limit then takes the form of, on using (2.24)–(2.26),

∂ρ

∂z
+ ρ

∂v

∂x
+ v

∂ρ

∂x
= 0, (5.6)

∂v

∂z
+ v

∂v

∂x
+ 2

∂θ

∂x
= 0, (5.7)

2ρ− 2qθ = 0, (5.8)

which yields the following second order system

∂ρ

∂z
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0, (5.9)

∂v

∂z
+

2

q

∂ρ

∂x
+ v

∂v

∂x
= 0, (5.10)

The variables ρ and v play the roles of the fluid depth and the fluid velocity in the
shallow water wave equations [1], respectively. To calculate the nematic non-dispersive
solutions, the above dispersionless equations (5.9) and (5.10) need to be set in Riemann
invariant form. Clearly, the associated matrix system of this dispersionless system is[

ρ
v

]
z

+

[
v ρ

2/q v

] [
ρ
v

]
x

=

[
0
0

]
. (5.11)

This matrix has eigenvalues (characteristics)

λ+ = v +

√
2

q

√
ρ and λ− = v −

√
2

q

√
ρ, (5.12)

and “left” eigenvectors

χT+ =

[ √
2
q

1√
ρ

1

]
and χT− =

[
−
√

2
q

1√
ρ

1

]
. (5.13)

Therefore, we find the characteristic form of the nematic dispersionless hydrodynamics
(5.6)–(5.8),

dv +

√
2

q

1
√
ρ
dρ = 0 on C+ :

dx

dz
= v +

√
2

q

√
ρ, (5.14)

dv −
√

2

q

1
√
ρ
dρ = 0 on C− :

dx

dz
= v −

√
2

q

√
ρ. (5.15)

Since this is a second order system, it can be set in Riemann invariant form as integrat-
ing factors always exist [1]. The Riemann invariant form of the non-dispersive system
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(5.6)–(5.8) is

v + 2

√
2

q

√
ρ = R+ on C+ :

dx

dz
= v +

√
2

q

√
ρ, (5.16)

v − 2

√
2

q

√
ρ = R− on C− :

dx

dz
= v −

√
2

q

√
ρ, (5.17)

with θ = ρ/q. These Riemann invariants and characteristics are the keys to deduce
the dam break and simple wave solutions existing in the nematic regimes, as we shall
see shortly. Because there are many types of non-dispersive wave solutions that can be
observed from the numerical solutions presented in Chapter 3, these solutions will be
classified into three classes: Rarefaction Wave Classes I, II and III. Our classification
is mainly based upon the orientation of the rarefaction wave and the existence of more
than one rarefaction wave in one hydrodynamic regime. Detailed descriptions of these
rarefaction waves will be given in the subsequent subsections, as well as providing
theoretical solutions for them. The analytical solutions will be compared with numerical
solutions in Chapter 6 and excellent agreement is found. Note that these theoretical
solutions are also valid as non-dispersive solutions for the defocusing NLS equation
(1.17). This is because the nematic dispersive hydrodynamics is an NLS-type system
and reduces to the NLS dispersive hydrodynamics in the limit ν → 0.

5.2.1 Rarefaction Wave Class I

This is a simple wave solution that exists when the initial level behind is non-zero
(u− 6= 0), the initial phases are both trivial (φ− = φ+ = 0) and u− > u+. This class of
non-dispersive solution is divided into two non-dispersive subclasses. One subclass is a
pure expansion fan with a zero initial level ahead, u+ = 0. This is the counterpart of the
dam break solution that occurs in shallow water wave theory [1]. The another subclass
is an expansion fan with a shelf ui 6= 0, as the level ahead of u−, separating the simple
wave from the nematic DSW. These types of dispersionless waves are demonstrated in
Figures 3.2–3.7.

Let us commence with the first dispersionless subclass, for which u+ = 0. Generally
speaking, we need to determine the right Riemann invariant and the characteristic, from
(5.16) and (5.17), which are associated with this class of rarefaction wave. Clearly, there
are four pair of options: (R+, C+), (R+, C−), (R−, C+) and (R−, C−). The valid choice
that corresponds to this rarefaction wave is found to be (R+, C−). The other options
give invalid trailing or leading edge velocities for the rarefaction wave. The Riemann
invariant on the C+ characteristics, R+, is determined by the initial condition (2.29).
This gives

v + 2

√
2

q

√
ρ = R+ = 2

√
2

q

√
ρ−. (5.18)

Hence, the phase gradient v and the characteristic curves C− become, respectively,

v = 2

√
2

q
{√ρ− −

√
ρ} and

x

z
= v −

√
2ρ

q
, (5.19)

where the constant of integration obtained by integrating the characteristics C− equals
zero as the expansion fan starts at x = 0 at the initial value z = 0. From equation
(5.19), we deduce that the trailing and leading edge velocities of the dam break solution
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are, in the order given,

x−
z

= −
√

2

q

√
ρ− and

x+

z
= 2

√
2

q

√
ρ−. (5.20)

The analytical expressions for the derivative of the phase v and the optical intensity
|u| =

√
ρ as functions of the independent variables x and z are, on solving equations

(5.19),

v =
2

3

x

z
+

2

3

√
2

q
u− and |u| = 1

3

√
q

2

{
2

√
2

q
u− −

x

z

}
. (5.21)

The final solution for the dam break problem is then

|u| =


u−, x

z < −
√

2
qu−

1
3

√
q
2

{
2
√

2
qu− −

x
z

}
, −

√
2
qu− ≤

x
z ≤ 2

√
2
qu−

0, 2
√

2
qu− <

x
z

(5.22)

and

v =


0, x

z < −
√

2
qu−

2
3

{√
2
qu− + x

z

}
, −

√
2
qu− ≤

x
z ≤ 2

√
2
qu−

2
√

2
qu−, 2

√
2
qu− <

x
z .

(5.23)

Next, we solve the second dispersionless subclass for which the level ahead of u−
is the shelf ui 6= 0. The main differences between the previous dam break solution
and this dispersionless solution are the velocity of the leading edge of the rarefaction
wave and the value of the phase derivative on the intermediate level ui. As the leading
edge of the simple wave is connected to the intermediate level, then it follows from
(5.19) that the derivative of the phase and the leading edge velocity at the shelf are,
respectively,

vi = 2

√
2

q
{u− − ui} and

xi
z

=

√
2

q
{2u− − 3ui} . (5.24)

Therefore, the overall solution for the non-dispersive wave is

|u| =


u−, x

z < −
√

2
qu−

1
3

√
q
2

{
2
√

2
qu− −

x
z

}
, −

√
2
qu− ≤

x
z ≤

√
2
q {2u− − 3ui}

ui,
√

2
q {2u− − 3ui} < x

z ≤ s−

(5.25)

and

v =


0, x

z < −
√

2
qu−

2
3

{√
2
qu− + x

z

}
, −

√
2
qu− ≤

x
z ≤

√
2
q {2u− − 3ui}

vi,
√

2
q {2u− − 3ui} < x

z ≤ s−.

(5.26)

The value of the velocity s− of the leading edge of the shelf ui depends on the nematic
DSW regimes. In the PDSW, RDSW and CDSW regimes, s− denotes the group velocity
of the trailing edge of the DSW, whilst in the TDSW and VDSW regimes, it is the
Whitham shock velocity. These velocities will be calculated in Sections 5.3, 5.5 and 5.6.
Now, the remaining thing is to determine analytically the shelf ui analytically. This
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quantity can be determined by the requirement that the Riemann invariant along the
characteristics C−, that is, R−, is conserved across the nematic DSW. This was shown
to be true for the defocusing NLS DSW by using modulation theory [18, 133, 134, 162]
and we here generalise it to the nematic DSWs as the electric field equation in the
defocusing nematic system is a defocusing NLS-type equation. Thus, we have

vi − 2

√
2

q

√
ρi = R− = −2

√
2

q

√
ρ+, (5.27)

which then yields, on using (5.24),

ui =
1

2
{u− + u+} . (5.28)

Equation (5.28) means that the shelf height is simply the average value of the initial
levels ahead u+ and behind u−, which is in agreement with numerical solutions of
Chapter 3. The corresponding director solution is given by θ = |u|2/q. This finishes
the analytical discussion of Rarefaction Wave Class I.

5.2.2 Rarefaction Wave Class II

This simple wave solution exists when the initial level ahead is non-zero (u+ 6= 0), at
least one of the initial phases is non-trivial (φ− and/or φ+ 6= 0) and the initial phases
satisfy the inequalities (3.29) with u− < u+. There are two different non-dispersive
subclasses here. The first subclass is a pure expansion fan with a trivial initial level
(u− = 0), while the second one is an expansion fan with a shelf ui 6= 0 as the level
separating the simple wave from the nematic DSW. It is clear that this class is opposite
to the previous one. This class of non-dispersive wave is presented in Subsection 3.2.2
as Case 3, see Figure 3.9.

Contrary to Rarefaction Wave Class I, the simple wave solution in this class corre-
sponds to the Riemann invariant and characteristic pair (R−, C+). The calculation is
similar to the one of the previous section, but with the initial wavenumbers v− and v+

accounted for now. We start with the dam break solution that takes place when u− = 0.
From the initial condition (2.29), the Riemann invariant along the characteristics C−
satisfies

v − 2

√
2

q

√
ρ = R− = v+ − 2

√
2

q

√
ρ+. (5.29)

Then, the phase gradient v and the characteristic curves C+ are, successively,

v = v+ + 2

√
2

q
{√ρ−√ρ+} and

x

z
= v +

√
2

q

√
ρ. (5.30)

and

v = v+ + 2

√
2

q
{√ρ−√ρ+} and

x

z
= v +

√
2

q

√
ρ. (5.31)

Consequently, the trailing and leading edge velocities of the dam break solution are, in
the order given,

x−
z

= v+ − 2

√
2

q

√
ρ+ (5.32)

and
x+

z
= v+ +

√
2

q

√
ρ+. (5.33)
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The theoretical expressions for the phase derivative v and the optical intensity |u| = √ρ
as functions of the independent variables x and z are, on using equations (5.31),

v =
2

3

x

z
− 2

3

√
2

q

√
ρ+ +

v+

3
and |u| = 1

3

√
q

2

{
x

z
+ 2

√
2

q

√
ρ+ − v+

}
. (5.34)

Therefore, the solution of the dam break problem for this case is

|u| =


0, x

z < v+ − 2
√

2
qu+

1
3

√
q
2

{
x
z + 2

√
2
qu+ − v+

}
, v+ − 2

√
2
qu+ ≤ x

z ≤ v+ +
√

2
qu+

u+, v+ +
√

2
qu+ < x

z

(5.35)

and

v =


0, x

z < v+ − 2
√

2
qu+

2
3
x
z −

2
3

√
2
qu+ + v+

3 , v+ − 2
√

2
qu+ ≤ x

z ≤ v+ +
√

2
qu+

v+, v+ +
√

2
qu+ < x

z .

(5.36)

As for the case for which the intermediate level ui 6= 0 is located at the rear side
of the simple wave separating the expansion fan from the nematic DSW. The trailing
edge of the rarefaction wave now propagates with the velocity

xi
z

= vi +

√
2

q

√
ρi, (5.37)

for which the derivative of the phase on the intermediate height vi is given by, on using
(5.31),

vi = v+ + 2

√
2

q
{√ρi −

√
ρ+} . (5.38)

The analytical formula for the shelf ui =
√
ρi in the above equations can be determined

by the fact that the Riemann invariant R− is conserved through the rarefaction wave
and R+ is conserved across the nematic DSW. The first conservation result is already
given in equation (5.38), whereas the latter conservation result at ρ = ρi and v = vi is

vi + 2

√
2

q

√
ρi = R+ = v− + 2

√
2

q

√
ρ−. (5.39)

Solving equations (5.38) and (5.39) gives

ui =
√
ρi =

1

4

√
q

2
{v− − v+}+

1

2
{√ρ− +

√
ρ+} (5.40)

and

vi =
1

2
{v− + v+}+

√
2

q
{u− − u+} . (5.41)

Therefore, the trailing edge velocity of the simple wave is

xi
z

=
1

4
{3v− + v+}+

1

2

√
2

q
{3u− − u+} . (5.42)
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Hence, we finally have the theoretical solution for the second subclass of Rarefaction
Wave Class II:

|u| =



ui, s− ≤ x
z <

1
4 {3v− + v+}+ 1

2

√
2
q {3u− − u+}

1
3

√
q
2

{
x
z + 2

√
2
qu+ − v+

}
, 1

4 {3v− + v+}+ 1
2

√
2
q {3u− − u+} ≤ x

z

u+ kkkkkkkkkkkkkkkkkkkkkkk ≤ v+ +
√

2
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√

2
qu+ < x

z

(5.43)
and
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1
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q {3u− − u+}
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√
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u+ kkkkkkkkkkkkkkkkkkkkkkk ≤ v+ +
√

2
qu+

v+, v+ +
√

2
qu+ < x

z .

(5.44)
The associated director solution is given by θ = |u|2/q. This completes the analytical
investigation of Rarefaction Wave Class II.

5.2.3 Rarefaction Wave Class III

This wave is a combination of two distinct simple waves. However, these waves are
similar to the ones belonging to the classes of Rarefaction Wave I and II, with a shelf
ui separating them from each other. This is found when the initial levels u−, u+ and
the initial wavenumbers v−, v+ satisfy inequalities (3.30) and (3.31). For illustrations
of this class, see Figures 3.10, 3.11 and 3.12.

In this class, the downstream simple wave resembles a rarefaction wave of Class
II and its solution is given by (5.43) and (5.44). The simple wave in the upstream
direction, on the other hand, represents a rarefaction wave of class I, but the initial
wavenumbers are now non-zero so the solution for this wave is not given in Subsec-
tion 5.2.1. Nonetheless, the derivation of the analytical solution for this simple wave,
with the initial wavenumbers included, is analogous to the calculation in the previous
subsection. Therefore, we only present here the final result of this derivation. The
analytical solution for Rarefaction Wave Class III is

|u| =



u−,
x
z < v− −

√
2
qu−

1
3

√
q
2

{
v− + 2

√
2
qu− −

x
z

}
, v− −

√
2
qu− ≤

x
z

≤ 1
4 {v− + 3v+}+ 1

2

√
2
q {u− − 3u+} ,

ui = 1
2 {u− + u+}+ 1

4

√
q
2 {v− − v+} , 1

4 {v− + 3v+}+ 1
2

√
2
q {u− − 3u+} < x

z

< 1
4 {3v− + v+}+ 1

2

√
2
q {3u− − u+} ,

1
3

√
q
2

{
2
√

2
qu+ − v+ + x

z

}
, 1

4 {3v− + v+}+ 1
2

√
2
q {3u− − u+} ≤ x

z

≤ v+ +
√

2
qu+,

u+, v+ +
√

2
qu+ < x

z

(5.45)
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and

v =



v−,
x
z < v− −

√
2
qu−

1
3v− + 2

3

√
2
qu− + 2

3
x
z , v− −

√
2
qu− ≤

x
z

≤ 1
4 {v− + 3v+}+ 1

2

√
2
q {u− − 3u+} ,

vi = 1
2 {v− + v+}+

√
2
q {u− − u+} , 1

4 {v− + 3v+}+ 1
2

√
2
q {u− − 3u+} < x

z

< 1
4 {3v− + v+}+ 1

2

√
2
q {3u− − u+} ,

1
3v+ − 2

3

√
2
qu+ + 2

3
x
z ,

1
4 {3v− + v+}+ 1

2

√
2
q {3u− − u+} ≤ x

z

≤ v+ +
√

2
qu+,

v+, v+ +
√

2
qu+ < x

z ,

(5.46)
The corresponding director solution is given by θ = |u|2/q. This finishes all of our
discussion pertaining to the nematic non-dispersive hydrodynamics.

5.3 Nematic Perturbed and Radiating DSWs

In this section, the analytical solution for the PDSW regime (Regime 1), as illustrated
in Figure 3.2, and the RDSW regime (Regime 2), as depicted in Figure 3.3, will be
derived. These theoretical solutions will be based on the ability to reduce the defocusing
nematic equations (2.19) and (2.20) into a fifth order KdV equation, termed the nematic
Kawahara equation, under the asymptotic limit of small jump heights ui−u+. This can
be done by using particular multiple-scale perturbation expansions. This approach is
similar to the one used to reduce the NLS equation to the KdV equation and conversely
[25].

The nematic equations were first reduced to a third order KdV equation, in the
small amplitude approximation ui − u+ � 1, by Horikis [173]. This nematic third
order KdV equation was utilised in [60, 61] to study nematic DSW regimes. However,
the agreement with numerical solutions was poor. It is a major result of the present
work that incorporating higher order dispersive effects is essential to tackle the whole
range of nematic DSWs. The derivation of the nematic Kawahara equation in the case
of small jump heights from the shelf ui to the initial flow state ahead u+ was actually
accomplished by El and Smyth [61], but without using it to study the full DSW regimes.
The nematic Kawahara equation does not only address the poor agreement between
the analytical and numerical solutions, but it also provides a physical explanation of
the presence of the resonant wavetrains seen in Figures 3.2 to 3.5 as it has been shown
that for the Kawahara equation (1.40) linear dispersive waves resonate with the DSW
if µd > 0 [79]. In this case, the Kawahara DSW can be a PDSW, RDSW, CDSW
or TDSW, depending on the size of the dispersive parameter µd. The vacuum cases
of Figures 3.5 and 3.6, that is, when the optical intensity can vanish |u| = 0 in some
region, cannot occur for a KdV DSW. They arise for nematic and NLS-type DSWs due
to the requirement |u| ≥ 0.

In the small amplitude limit, the defocusing nematic equations (2.19) and (2.20) can
be reduced to a fifth order KdV equation on using the following perturbation expansions

ρ = ρ0 + ε2P1(ξ, η) + ε4P2(ξ, η) + . . . , (5.47)

v = ε2V1(ξ, η) + ε4V2(ξ, η) + ε6V3(ξ, η) + . . . , (5.48)
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θ =
ρ0

q
+ ε2θ1(ξ, η) + ε4θ2(ξ, η) + ε6θ3(ξ, η) + . . . , (5.49)

for small deviations from the level ρ0. This level ρ0 points to the level from which the
leading solitary wave edge of the PDSW/RDSW arises, in the (ρ, x) coordinate system
at a specific z, i.e., ρ0 = ρ+, with |ε| � 1 being a measure of this deviation. Here, we
choose ε2 = ρi − ρ0, which indicates the jump associated with the nematic KdV-type
DSW existing in the (ρ, x) coordinate system. In the moving scaled coordinates

ξ = ε {x− Uz} and η = ε3z, (5.50)

with

U =

√
2

q

√
ρ0 =

√
2

q
u0, (5.51)

a fifth order KdV equation can be derived in the following way. We start by substituting
the perturbation series (5.47) and (5.49) into the nematic molecular response equation
(2.26), we then acquire

O(ε2) : θ1 =
P1

q
, (5.52)

O(ε4) : θ2 =
ν

2q

∂2θ1

∂ξ
+
P2

q
+
νε2

2q

∂2θ2

∂ξ2
. (5.53)

The term νε2∂ξξθ2/2q is formally of asymptotic order O(ε2) and should arise at next
order in the expression for θ3, as in Horikis’ work [173]. However, this implicitly
presumes that ν = O(1), which is not the case for experimental values of ν. Therefore,
this term will be retained at order O(ε4). Considering νε2∂ξξθ2/2q as a correction,
equation (5.53) can be solved for θ2 to give

θ2 =

{
ν

2q

∂2θ1

∂ξ2
+
P2

q

}
+
ε2ν2

4q2

∂4θ1

∂ξ4
+
ε2ν

2q2

∂2P2

∂ξ2
. (5.54)

Note that the last term in (5.54) has to be retained as (5.53) yields that P2 can be
of order O(ν), making the final term of order O(ν2ε2). Substituting the perturbation
series (5.47)–(5.49) into the mass equation (2.24) and the momentum equation (2.25),
we have, respectively,

O(ε3) :
∂V1

∂ξ
=
U

ρ0

∂P1

∂ξ
and U

∂V1

∂ξ
=

2

q

∂P1

∂ξ
, (5.55)

on using (5.52) for θ1. Compatibility between the equations in (5.55) for V1 and P1

then gives the coordinate velocity U (5.51). Similarly, at order O(ε5) the mass equation
(2.24) and the momentum equation (2.25) gives, respectively,

O(ε5) : ρ0
∂V2

∂ξ
+ V1

∂P1

∂ξ
+ P1

∂V1

∂ξ
+
∂P1

∂η
− U ∂P2

∂ξ
= 0 (5.56)

and

O(ε5) :
∂V1

∂η
− U ∂V2

∂ξ
+ 2

∂θ2

∂ξ
+ V1

∂V1

∂ξ
− 1

4ρ0

∂3P1

∂ξ3
= 0. (5.57)

It was shown in [60, 173] that substituting the first two leading order terms of (5.54),
the terms in curly brackets, into (5.57) and combining it with (5.55) and (5.56) results
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in the classical KdV equation. To extend this, we include the higher order terms of
(5.54). The difficulty we have here is with calculating the last term in (5.54) as the
correction P2 cannot be calculated separately at order O(ε5), leading to equations (5.56)
and (5.57), and a higher order approximation is needed. To overcome this problem, we
propose an appropriate ansatz for P2 which is consistence with (5.56) and (5.57). Let
us assume that

P2 = αν
∂2θ1

∂ξ2
=
αν

q

∂2P1

∂ξ2
, (5.58)

where α is a non-zero real constant to be found. Thus, on using (5.55) and substituting
(5.54) and (5.58) into (5.57) we have

∂V2

∂ξ
=
−1

ρ0

{
∂P1

∂η
+

2U

ρ0
P1
∂P1

∂ξ
− ανU

q

∂3P1

∂ξ3

}
. (5.59)

Now, substituting (5.54), (5.58) and (5.59) into (5.56), we obtain the fifth order KdV
equation in P1

∂P1

∂η
+

3

qU
P1
∂P1

∂ξ
+
U

4

(
ν

q
− q

4ρ0

)
∂3P1

∂ξ3
+
ν2ε2ρ0

4q3U
(1 + 2α)

∂5P1

∂ξ5
= 0. (5.60)

Here, we need to choose α = −1/8 to make the linear dispersion relation of the above
equation compatible with the linear dispersion relation in the long-wavelength approx-
imation (5.4). Hence, the correction P1 satisfies a KdV equation with fifth order dis-
persion (nematic Kawahara equation)

∂P1

∂η
+

3

qU
P1
∂P1

∂ξ
+
U

4

{
ν

q
− q

4ρ0

}
∂3P1

∂ξ3
+ ε2 3ν2U

32q2

∂5P1

∂ξ5
= 0. (5.61)

The linear dispersion relation of the Kawahara equation (5.61), on a zero background
P̄1 = 0, is

ω̃ = −U
4

{
ν

q
− q

4ρ0

}
k̃3 + ε2 3ν2U

32q2
k̃5, (5.62)

where the tilde notation (∼) refers to the re-scaled wave parameters in the coordinates
ξ and η. The re-scaled linear dispersion relation (5.62) is consistent with the nematic
linear long-wavelength dispersion relation (5.4). To be able to make a comparison
between these dispersion relations and conclude their consistency, the coordinates ξ
and η in (5.61) need to be transformed to the physical coordinates x and z. Let
us assume then that A(x, z) = ε2P1(ξ, η). This assumption, along with the scaling
relations (5.50), result in the physical coordinate counterpart of the nematic Kawahara
equation (5.61) in the coordinate system (ρ, x), to be specific,

∂A

∂z
+ U

∂A

∂x
+

3

qU
A
∂A

∂x
+
U

4

{
ν

q
− q

4ρ0

}
∂3A

∂x3
+

3ν2U

32q2

∂5A

∂x5
= 0. (5.63)

The linear dispersion relation of equation (5.63), on a zero background Ā = 0 as P̄1 = 0,
is

ω = Uk − U

4

{
ν

q
− q

4ρ0

}
k3 +

3ν2U

32q2
k5. (5.64)

As can be seen, this dispersion relation is identical to (5.4), with a zero mean phase
gradient level, v̄ = v+ = 0, and the leading order term in the coefficient of k5 being
properly accounted for. The reason why the background of the phase gradient is con-
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sidered zero, in the small jump height approximation, is due to the assumption that the
solitary wave leading edge of the PDSW/RDSW sits on the initial level ahead u0 = u+

for which v̄ = 0, which agrees with numerical solutions. Theoretically, this can be un-
derstood from the mathematical expression for v̄. This expression is derived from the
conservation of the Riemann invariant R− through the DSW, similar to the defocusing
NLS dispersive hydrodynamics [18, 133, 134, 162]. This conservation results in

v̄ = 2

√
2

q
{ū− u+} =⇒ v+ = 2

√
2

q
{u+ − u+} = 0. (5.65)

To derive the full coefficient of the fifth derivative in (5.61), the asymptotic expansions
(5.47) to (5.49) need to be taken to O(ε4) in ρ and O(ε6) in v and θ [61]. Actually,
extending the calculations to these next orders requires extensive calculations. It is
much easier then to match the coefficient of k5 in the dispersion relations (5.4) and
(5.64) at the order O(ε2ν2). It is easy to see from (5.50), (5.63) and (5.64) that
the wavenumber and the angular frequency in the physical coordinates x and z are
connected with their re-scaled counterparts through

k = εk̃, ω = Uk + ε3ω̃. (5.66)

These relations are important as they will be used in the perturbed and radiating DSW
solutions in the next subsection and in the calculations for the CDSW regime, given in
Section 5.4.

The theoretical results obtained in this thesis will be fully compared with numerical
solutions for |u| in the coordinate system (x, z). It is much easier then to deal with
a nematic Kawahara equation in the |u| variable, rather than ρ. We therefore seek a
perturbation expansion in the optical intensity,

|u| = √ρ = u0 + ε2u1(ξ, η) + ε4u2(ξ, η) + . . . , (5.67)

with u0 the level ahead on which the solitary wave edge of the DSW sits, i.e., u0 = u+

[60, 185]. From (5.47) and (5.67), we deduce that P1 = 2u0u1. This leads to the
nematic Kawahara equation in the variable u1

∂u1

∂η
+ 3

√
2

q
u1
∂u1

∂ξ
+

√
2

q

u0

4

{
ν

q
− q

4u2
0

}
∂3u1

∂ξ3
+ ε2

√
2

q

3ν2u0

32q2

∂5u1

∂ξ5
= 0. (5.68)

The discontinuous jump that corresponds to the nematic perturbed and radiating DSWs
governed by equation (5.68) is now ui − u0, instead of ρi − ρ0. Because of this, it is
better to re-define the small parameter ε2, which now measures the deviation from the
initial level ahead u0 = u+ to the level behind ui. This means

ε2 = ρi − ρ0 = u2
i − u2

0
Re-definition−−−−−−−−→ {ui − u0} {ui + u0} = ε2 {ui + u0} . (5.69)

Therefore, with ε2 = ui − u0, we have

∂u1

∂η
+ 3

√
2

q
u1
∂u1

∂ξ
+

√
2

q

u0

4

{
ν

q
− q

4u2
0

}
∂3u1

∂ξ3
+ ε2

√
2

q

3ν2 {ui + u0}u0

32q2

∂5u1

∂ξ5
= 0.

(5.70)
From now on, when the term “nematic Kawahara equation” is mentioned, the equation
which is referred to is (5.70). As there are many nematic Kawahara equations listed
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above in this section and the reader may get confused with which one we will rely on
throughout the thesis, the one that we are interested in has been highlighted by a box.

In the highly non-local limit ν � 1, we notice that the coefficient of the third
derivative term in (5.70) is positive, so that solitary waves are waves of elevation,
which explains why the DSWs illustrated in Figures 3.2 and 3.3 are similar to KdV-
type DSWs of elevation with solitary waves at the leading edge and linear diffractive
waves at the trailing edge, not NLS-type DSWs, which consists of waves of depression
for which the positions of the solitary waves and linear diffractive waves are reversed.
The fifth derivative term is nominally of higher order, but due to the high non-locality
ν the combination εν can be O(1) [61]. In the local limit ν → 0, the third order
dispersive term in the nematic Kawahara equation (5.70) becomes negative and the
fifth order dispersive term can be neglected as it becomes very small. This leads to a
transformation in the form of the DSW from a positive polarity and positive orientation
KdV-type DSW (p = 1, d = 1) to a negative polarity and negative orientation KdV-
type DSW (p = −1, d = −1), similar to the DSW structure displayed in the bottom left
corner of Figure 1.8. This DSW structure together with the simple wave solution in non-
dispersive regions represent overall a defocusing NLS-type dispersive hydrodynamics.

The nematic Kawahara equation reduction (5.70) of the full nematic equations
(2.19) and (2.20) will be used in Subsection 5.3.1 to derive the solutions for the PDSW
and RDSW regimes as these cases correspond to a small jump height ui − u+. While
the DSW radiates resonant waves in the RDSW regime, the effect of the loss associated
with these waves is small and can be neglected to find the DSW solution, as shall be seen
soon. The resonant radiation loss becomes dominant in the CDSW regime and will be
dealt with in Section 5.4. In Subsection 5.3.2, a set of conditions, so-called admissibility
conditions [18, 136], that test whether a DSW is in the standard form (KdV or NLS
forms) or not will be discussed. The final subsection will deal with the application
of the DSW fitting method [18, 133, 134] to the nematic PDSW and RDSW regimes.
This method was briefly highlighted in Section 1.4. The theoretical solutions will be
compared with numerical solutions in Chapter 6, with excellent agreement found.

5.3.1 The Fifth Order KdV (Kawahara) equation as a Perturbed KdV
equation

It has been shown that the KdV equation with all the next higher order non-linear
dispersive and non-linear-dispersive terms of asymptotic order α, such that 0 < α� 1,
in the weakly non-linear long-wavelength expansion

∂Ψ

∂T
+ 6ψ

∂Ψ

∂X
+αC1Ψ2 ∂Ψ

∂X
+
∂3Ψ

∂X3
+αC2

∂Ψ

∂X

∂2Ψ

∂X2
+αC3Ψ

∂3Ψ

∂X3
+αC4

∂5Ψ

∂X5
= 0 (5.71)

can be transformed by a non-local perturbation expansion to the standard KdV equa-
tion (1.10) with error O

(
α2
)

[125], which is of higher order than the validity of the
original equation (5.71). By way of illustration, this is given by

Ψ(X,T ) = ψ + αC5ψ
2 + αC6ψXX + αC7ψX

X∫
VcT

{
ψ(ζ, T )− ψ̄

}
dζ (5.72)

and the re-scaled coordinates

X ′ = X + αC7ψ̄ {X − VcT}+ αC7ΛT, T ′ = T + αC4X/3, (5.73)
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where

C5 =
1

6
{C3 − C1 + 4C4} , C6 =

1

12
{C2 − 6C4 − C1} , (5.74)

C7 =
1

3
{8C4 − C3} , Λ = Vcψ − 3ψ2 − ψX′X′ . (5.75)

This non-local perturbation transformation leads to the classical KdV equation

∂ψ

∂T ′
+ 6ψ

∂ψ

∂X ′
+

∂3ψ

∂X ′3
= 0, (5.76)

when asymptotic terms of order O(α2) are ignored. The Ci’s, i ∈ {1, . . . , 7}, in the
above equations are real constants and their values depend on the physical model of
interest. see [126] for examples of this. The variables ψ̄ and Vc denote the mean level
and phase velocity of the KdV cnoidal wave solution, in order. As for Λ, it is a real
constant obtained by the first integral of the KdV equation.

The above transformation was then used to find the DSW solution of the higher
order KdV equation (5.71) from that for the standard KdV equation [125]. This PDSW
solution will be used to find the perturbed and radiating DSW solutions (Regimes 1 and
2) for the reduction (5.70) of the governing nematic equations. The Kawahara reduction
(5.70) does not contain the higher order terms u2

1u1X , u1Xu1XX and u1u1XXX of the
general higher order KdV equation (5.71). The reason for this can most easily be seen
via the nematic dispersion relation (4.26) in the long-wave limit k � 1, giving the
dispersion relation (5.4). We note that the dispersion relation (5.4) does not contain
a term ū2k, so that there is no higher order non-linear term u2

1u1X . In addition, the
fifth derivative term in (5.70) was obtained by including the fifth derivative from higher
order in the expansions (5.47)–(5.49) as the coefficient ε2ν2 can be O(1) as ν is large. In
a similar manner, the higher order non-linear/dispersive terms u1Xu1XX and u1u1XXX

would be at most O(ε2ν) and so can be ignored.
For simplicity, let us express the reductive Kawahara equation (5.70) of the nematic

equations as
∂u1

∂η
+B2u1

∂u1

∂ξ
+B3

∂3u1

∂ξ3
+ ε2B4

∂5u1

∂ξ5
= 0, (5.77)

where

B2 = 3

√
2

q
, B3 =

√
2

q

u+

4

{
ν

q
− q

4u2
+

}
, B4 =

√
2

q

3ν2 {u− + u+}u+

32q2
. (5.78)

To solve for the nematic perturbed and radiating DSWs, we start by transforming
equation (5.77) to the standard higher order form (5.71). This can be done by re-
scaling the moving coordinates ξ and η into new coordinates X and T with

X = B5ξ and T = B6η. (5.79)

This new coordinate re-scaling gives

∂u1

∂T
+ 6

{
B2B5

6B6

}
u1
∂u1

∂X
+

{
B3B

3
5

B6

}
∂3u1

∂X3
+

{
ε2B4B

5
5

B6

}
∂5u1

∂X5
= 0. (5.80)

Now, we want to find B5 and B6 such that

B2B5

6B6
= 1 (5.81)
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and
B3B

3
5

B6
= 1. (5.82)

These equalities lead to the following expressions

B5 =

√
2

u+

{
ν

q
− q

4u2
+

}−1/2

, (5.83)

B6 =
1

√
u+q

{
ν

q
− q

4u2
+

}−1/2

, (5.84)

ε2B4B
5
5

B6
= ε2

{
3(ui + u+)

4u+

(
1− q2

4u2
+ν

)−2
}

= ε2C4. (5.85)

Therefore, we write the nematic Kawahara equation in the standard higher order form

∂u1

∂T
+ 6u1

∂u1

∂X
+
∂3u1

∂X3
+ ε2C4

∂5u1

∂X5
= 0. (5.86)

Equation (5.86) is the higher order KdV equation (5.71) with ψ = u1, C1 = 0, C2 = 0,
C3 = 0 and α = ε2 = ui − u+. The results of [125] give that the modulated wave
parameters of the DSW solution of the Kawahara equation (5.86), the cnoidal wave
amplitude â (measured peak to trough), the wavenumber k̂, the mean height ˆ̄u and
the characteristic velocity (non-linear group velocity) Γ̂c = X/T , are given by the
expressions

â = 2m− 2mε2C4

{
m− 8

3

}
, (5.87)

k̂ =
π

K(m)

{
1− 1

3
ε2C4

(
8m2 − 14m+ 11

)}
, (5.88)

ˆ̄u = −1 +

{
2E(m)

K(m)
+m

}
+

2

9
ε2C4

{
2− 5m+ 3m2 + 2[2m− 1]

E(m)

K(m)

}
+

32

9
ε2C4

{
3

[
1− E(m)

K(m)

]2

− 2

[
1− E(m)

K(m)

]
[1 +m] +m

}
, (5.89)

on

Γ̂c =
X

T
= β̂1 −

2

3
ε2C4β̂2 +

1

3
ε2C4β̂

2
1 −

8

3
ε2C4

{
−m2 + 2m− 1

}
− 8

3
ε2C4

{
−1 +m+

2E(m)

K(m)

}{
β̂1 − V̂

}
, (5.90)

with

V̂ = 2 {m+ 1} − 4

3
ε2C4

{
−3m2 + 3m− 2

}
(5.91)

and

β̂1 = V̂ − 4m {1−m}K(m)

E(m)− {1−m}K(m)
, β̂2 = 2 {1 +m}− 4m {1−m}K(m)

E(m)− {1−m}K(m)
. (5.92)

Here, K(m) and E(m) are complete elliptic integrals of the first and second kinds of
modulus m, respectively. The hat symbol (∧) in the above expressions refers to the
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re-scaled wave parameters in the X and T coordinates.
The wave parameter expressions (5.87)–(5.92) are valid solutions in the re-scaled

coordinate system. Hence, we need to transform these formulae back to the physical
coordinates x and z to be able to make comparisons with numerical solutions. The
re-scaled amplitude â and mean level ˆ̄u can be transformed to the actual amplitude a
and the mean level ū on using the perturbation expansion (5.67). This is because the
coordinate transformation from ξ and η to X and T does not affect the value of a wave
parameter that is related to the height. Thus, the physical amplitude and mean level
are, respectively,

a(x, z) = ε2â(X,T ) and ū(x, z) = ε2 ˆ̄u(X,T ). (5.93)

On the other hand, the re-scaled wavenumber k̂ and the characteristic velocity Γ̂c =
X/T can be transformed to their values in the physical x and z coordinates by com-
paring the linear dispersion relation (5.64) with the one obtained from equation (5.63)
on using the scaling relations (5.50) and (5.79). We then have the wave parameter
relations between the coordinates (X,T ) and (x, z) are given by

k = εB5k̂ and Γc = U +
ε2B6

B5
Γ̂c. (5.94)

Finally, the PDSW solution is

a = 2m {ui − u+}+ 2mC4 {ui − u+}2
{

8

3
−m

}
, (5.95)

k =
π
√

2 {ui − u+}
K(m)

√
u+

√
ν
q −

q
4u2+

{
1− 1

3
C4

(
8m2 − 14m+ 11

)
(ui − u+)

}
, (5.96)

ū = 2u+ − ui + {ui − u+}
{

2
E(m)

K(m)
+m

}
+

32

9
C4 {ui − u+}2

{
3

[
1− E(m)

K(m)

]2

− 2

[
1− E(m)

K(m)

]
[1 +m] +m

}

+
2

9
C4 {ui − u+}2

{
2− 5m+ 3m2 + 2[2m− 1]

E(m)

K(m)

}
(5.97)

on

Γc =
x

z
=

√
2

q

{
u+ +

1

2
β1 −

1

3
C4β2 +

1

6
C4β

2
1 −

4

3
C4[ui − u+]2[m(2−m)− 1]

− 4

3
C4[ui − u+]

[
m− 1 +

2E(m)

K(m)

]
[β1 − V ]

}
, (5.98)

with

V = 2 {ui − u+} {1 +m} − 4

3
C4 {ui − u+}2

{
3m− 3m2 − 2

}
, (5.99)

β1 = V − 4m {ui − u+} {1−m}K(m)

E(m)− {1−m}K(m)
, (5.100)

and

β2 = 2 {ui − u+}2
{

1 +m− 2m[1−m]K(m)

E(m)− [1−m]K(m)

}
. (5.101)
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Note that various typographical errors in the asymptotic expressions of [125] have been
corrected to obtain the expressions (5.95)–(5.101). The limit m = 0 corresponds to the
trailing linear diffractive wave edge of the PDSW, propagating with the velocity si, and
m = 1 corresponds to the leading, solitary wave edge, travelling with the velocity Vs.
The DSW then lies within the region√

2

q

{
4u+ − 3ui +

64

3
C4(ui − u+)2

}
≤ x

z
≤
√

2

q

{
2ui − u+ +

4

3
C4(ui − u+)2

}
.

(5.102)
The amplitude as of the solitary wave at the leading edge of the DSW can be found
from the amplitude expression (5.95) on setting m = 1. This gives

as = 2 {ui − u+}+
10

3
C4 {ui − u+}2 , (5.103)

so that the height Hs of the lead solitary wave of the DSW from u = 0 is

Hs = as + u+ = 2ui − u+ +
10

3
C4 {ui − u+}2 . (5.104)

This completes the solution for the PDSW regime.
As we are considering here a perturbed KdV DSW solution for the nematic PDSW

regime, it is worth then to draw the reader’s attention to recent research work that
has used Whitham’s averaging theory for generating perturbed modulation equations
associated with the Riemann problem of a “perturbed” KdV equation. For further
details, see [149]. Whether this work of A. Kamchatnov could be applied to solve the
nematic PDSW problem or not is a potential study of interest, and it would be good
to investigate it in the future.

As previously found [60, 61], a resonance between dispersive radiation and the DSW
can occur when the phase velocity of the diffractive radiation equals the velocity Vs
of the lead solitary wave of the DSW. As can be seen from Figure 3.3 this resonant
radiation is short wave, k = O(1), relative to the DSW, 0 < k < 0.15, so that the ap-
propriate linear dispersion relation is (5.3). Resonance then occurs for the wavenumber
kr, with

Vs =
ωr
kr

= kr +
2u2

+

qkr
= Vp,r, (5.105)

which implies

kr = Vs +

√
V 2
s −

4

q
u2

+, (5.106)

on taking v̄ = v+ = 0, which is assuming that the resonant wavetrain sits on the initial
level ū = u+ ahead. If Vs ≤ 2u+/

√
q, then there is no resonant wavetrain ahead of the

DSW, which is the PDSW regime illustrated in Figure 3.2. If Vs > 2u+/
√
q, then the

DSW sheds a resonant wavetrain ahead of it as the group velocity cg,r = ∂krωr = kr of
the resonant wavetrain is greater than its phase velocity (Vs = Vp,r < cg,r) [60, 61], on
using (5.105) and (5.102). Resonance can then occur if Vs ≥ 2u+/

√
q. If this resonant

condition is not satisfied, then there is just a standard DSW and we have the PDSW
regime.

When the resonance condition (5.105) has a solution, we have the RDSW regime for
the nematic DSW, as illustrated in Figure 3.3. It was found that the RDSW regime is
also well described by the perturbed KdV DSW solution (5.95)–(5.98). This is because
the resonant radiation shed by the DSW is of small amplitude, as can be seen from
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Figure 3.3, and the existence regime for this type is small, as seen from Table 6.1 in
Chapter 6. The resonant wavetrain has a major effect in the CDSW regime, which is
dealt with in the subsequent section, as the resonant wavetrain acts as a damping on
the DSW and the resonant wavetrain is significant in the CDSW regime.

5.3.2 DSW Admissibility Conditions

At this point the admissibility conditions for the existence of a DSW need to be checked
[18, 136]. These relate to the genuine non-linearity and hyperbolicity of the associated
Whitham modulation equations upon which DSW solutions are ultimately based. See
Section 1.4 for mathematical explanations of the notions of the genuine non-linearity
and hyperbolicity. The breakdown of these leads to linear degeneracy in the first case
and modulational instability in the second case, so that the standard DSW solution,
as derived earlier, breaks down. These admissibility conditions are given in the form
of partial derivatives of the trailing and leading edge velocities of the classical DSW.
Strictly speaking, for a DSW with the initial levels u− behind and u+ ahead, we need
to have the following conditions [18, 136, 137]

∂s−
∂u−

6= 0 ,
∂Vs
∂u+

6= 0, (5.107)

∂s−
∂u+

6= 0 ,
∂Vs
∂u−

6= 0, (5.108)

where s− and Vs stand for the linear group velocity at the trailing edge and the soliton
velocity at the leading edge, respectively. The trailing and leading edge velocities of a
“stable” DSW are either increasing or decreasing (monotonic) functions in the variables
u− and u+ [18]. Therefore, from a physical point of view, the requirement of the above
admissibility conditions makes sense as their break down means that the edge velocities
are not monotonic functions, which results in a multi-phase wavetrain.

In our case, s− = si as the trailing edges of the PDSW and RDSW sit on the shelf
ui. Clearly, the DSW admissibility conditions require that the partial derivatives of the
velocities of the trailing edge si and of the leading edge Vs do not have turning points
as functions of u− and u+. Conditions (5.107) require that the Whitham modulation
equations form a genuinely non-linear system at the trailing and leading edges of the
DSW, respectively. The failure of one of these conditions means that at the turning
point a centred simple wave solution of the Whitham modulation equations which
governs a standard DSW is not possible. In contrast, criteria (5.108) imply that the
Whitham modulation equations form a strictly hyperbolic system at the trailing and
leading edges of the DSW, respectively. The breakdown of one of these criteria means
that the Whitham modulation equations lose hyperbolicity and become an elliptic
system of equations at the turning point, resulting in compression and self-implosion
in the interior structure of the DSW (unstable modulated wavetrain) [135, 136]. In
our calculations, we approximate the constant C4 in (5.85) by C4 = 3{ui + u+}/4u+

as ν is large. We also approximate the shelf ui in (5.102) by the average value (5.28).
The nematic DSW is fundamentally formed by varying u− and u+, and the shelf ui is
a function of both of them. This means that fixing ui is not the same as fixing u−.
Therefore, we shall differentiate with respect to u− instead of ui for the trailing edge
of the nematic DSW. We now have

∂si
∂u−

=

√
2

q

{
6u2
−

u+
+ 4u− − 10u+ −

3

2

}
, (5.109)
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Figure 5.4: Parts of numerical solutions of the nematic equations (2.19) and (2.20) for
the initial condition (2.29). Blue (solid) line: |u| at z = 1000; green (dash-dot) line:
the initial level ahead (turning point) u+ = 0.85369. (a) Nematic DSW solution with
ν = 200, (b) nematic DSW solution with ν = 10. Here u− = 1.0 and q = 2. (Online
version in colour.)

∂si
∂u+

=

√
2

q

{
12u+ − 10u− −

2u3
−

u2
+

+
5

2

}
, (5.110)

∂Vs
∂u−

=

√
2

q

{
1 +

3u2
−

8u+
+
u−
4
− 5u+

8

}
(5.111)

and

∂Vs
∂u+

=

√
2

q

{
3u+

4
− 5u−

8
−

u3
−

8u2
+

}
. (5.112)

We find from the leading edge velocity expression (5.102) for Vs that the partial deriva-
tives do not vanish at the leading edge as u− > u+, so there is no collapse of the
DSW structure at the leading edge. At the linear edge, the partial derivative of si with
respect to u− vanishes when u+ = 0.90962 for u− = 1, and the partial derivative with
respect to u+ vanishes when u+ = 0.85369 for u− = 1.

The breakdown of these admissibility conditions is usually clearly mirrored in nu-
merical solutions by non-standard DSW behaviour, such as the generation of a multi-
phase wavetrain or wavetrain instability [136]. However, for the nematic DSW there is
no clear evidence of such behaviour for values of u+ at or around the turning points
for ν large, as seen in Figures 5.4(a) and 5.5(a).

Figure 5.4(a) shows some evidence of modulational instability at the trailing edge of
the DSW, but it is minor. It can be seen that there is some non-uniform modulation of
the trailing edge, with a modulated wavepacket that resembles a multi-phase behaviour,
but there is no distinct change in the behaviour of the DSW, as found for other DSWs for
which the admissibility conditions are not satisfied, yielding a DSW implosion [18, 136].
The reason here for this is the highly non-local response of a nematic liquid crystal. It
has been shown theoretically and verified experimentally that high non-locality acts to
suppress modulational instability [174, 175]. This greatly delays the onset of instability,
so much so that theoretically unstable nematic wavetrains show no instability over
experimental propagation distances (∼ 1mm). Having this experimental fact in mind,
the nematic DSW at the turning point u+ = 0.84375 has been examined when the
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Figure 5.5: Parts of numerical solutions of the nematic equations (2.19) and (2.20) for
the initial condition (2.29). Blue (solid) line: |u| at z = 1000; green (dash-dot) line:
the initial level ahead (turning point) u+ = 0.90962. (a) Nematic DSW solution with
ν = 200, (b) nematic DSW solution with ν = 5. Here u− = 1.0 and q = 2. (Online
version in colour.)

asymptotic size of ν is not large. Figure 5.4(b) illustrates the structure of the nematic
DSW at the near local limit ν = 10. The modulational instability at the trailing edge
of the DSW is now clear from this figure.

Regarding the linear degeneracy, its existence is slightly ambiguous, either in the
non-local or local regimes. It should be noted that there are no experiments that verify
that the appearance of linear degeneracy is delayed by the non-locality property of the
nematic response, as is the case for modulational instability. It will be speculated here
that the non-locality effect hinders linear degeneracy as it is the sole reasonable and
physical explanation we perceive. Figure 5.5(a) shows the DSW form at the turning
point u+ = 0.90625 and ν = 200, while Figure 5.5(b) depicts the form at the same turn-
ing point, but with the near local limit ν = 5. Unlike the modulational instability case,
the choice of ν = 10 was not found appropriate for linear degeneracy as the numerical
solution at this value of ν does not show a notable difference when compared with
Figure 5.5(a). Thus, the value of ν had to be reduced further to observe a significant
difference in the DSW form, until e.g. ν = 5, as given in Figure 5.5(b). Indeed, Figure
5.5(b) shows that there is an unusual behaviour at the trailing edge of the DSW. This
unusual behaviour is not a numerical issue. Various (small) numerical step-sizes were
checked and the same modulation was observed. Whether this is really a degeneracy of
the non-linearity effect or not is a matter we are not fully certain about, however. The
theoretical implication of linear degeneracy is clear, as discussed in [135]. It implies
that the characteristics of the Whitham modulation equations coalesce. In other words,
there is a coalescence of the non-linear group velocities [1].

5.3.3 DSW Fitting Method

The DSW fitting method, or sometimes known as El’s method for DSWs [133, 134], will
now be applied to determine the edge structure of the KdV-type DSWs governed by the
nematic dispersive hydrodynamics (2.24)–(2.26). By the edge structure, or occasionally
called the macroscopic structure [18], of a DSW we mean the boundaries/edges of the
DSW which are characterised by the trailing and leading wavenumbers, velocities and
positions. The determination of the amplitude parameter at the solitary wave edge of a
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DSW depends upon whether there exists a known relation between the amplitude and
the velocity for a solitary wave. Examples of non-linear dispersive wave equations that
have explicit amplitude-velocity relations for solitary waves are the KdV equation [1],
the Whitham equation [137] and the Kawahara equation (approximate relation deduced
by means of perturbations) [79]. Such an explicit relation does not exist for the nematic
equations (2.19)–(2.20) as an exact solitary or cnoidal wave solution is not known, so
we shall focus only on the wavenumber and velocity parameters. As briefly mentioned
in Section 1.4, the underlying advantage of this method is that it can be utilised for
both integrable and non-integrable non-linear dispersive wave equations in the absence
of the simple wave solution associated with a DSW from the Whitham modulation
system for these equations. The DSW fitting method is based on the degeneracy of
Whitham modulation equations in the linear and solitary wave limits. This degeneracy
shows that the two edges of a DSW are governed by the linear dispersion relation
for a non-linear dispersive wave equation [133, 134]. The non-dispersive form of the
defocusing nematic equations is given by (5.9)–(5.10) and the linear dispersion relation
is (5.4).

Following the work of El [18, 133, 134], matching the non-dispersive region behind
the DSW and the trailing edge of the DSW gives that the trailing wavenumber k
satisfies the following boundary value problem

dk

dū
=

∂ūω(k; ū)

V+(ū)− ∂kω(k; ū)
subject to k(u+) = 0. (5.113)

Here, ω(k; ū) is the linear dispersion relation on the background level ū. V+(ū) is the
characteristic velocity of the non-linear non-dispersive wavetrain of the C+ of the Rie-
mann invariant of the non-dispersive equations. Here, V+(ū) = U + v̄, where U is
(5.5), according to (5.16)–(5.17). The boundary condition k+ = k(u+) = 0, connect-
ing the trailing edge to the leading edge, corresponds to the solitary wave edge for
which the wavenumber approaches zero. The trailing edge of the DSW is consequently
propagating with the group velocity

si =
∂ω

∂k

∣∣
(k;ū)=(ki;ui) , (5.114)

with ki = k(ui) at the trailing edge.
The determination of the details of the leading edge of the DSW is achieved in a

similar manner, but in a less straightforward way in comparison to the trailing edge, see
[18, 133, 134] for further details. This is done by introducing the concepts of “conjugate
wavenumber” k̃ and “conjugate dispersion relation” ω̃(ū, k̃). These conjugate variables
are related to the actual wavenumber k and the non-linear travelling wave frequency ω
at the solitonic edge through the transformations

k̃ → −ik and ω̃(k̃; ū)→ −iω(ik̃; ū). (5.115)

Analogous to the trailing edge of the DSW, the conjugate wavenumber satisfies the
boundary value problem

dk̃

dū
=

∂ūω̃(k̃; ū)

V (ū)− ∂k̃ω̃(k̃; ū)
subject to k̃(ui) = 0, (5.116)

linking the leading edge to the trailing edge of the DSW. The leading edge of the DSW
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is then found to be travelling with the velocity

Vs,+ =
w̃

k̃

∣∣∣(k̃;ū)=(k̃+;u+) , (5.117)

where k̃+ = k̃(u+). The reason behind using these conjugate variables is that the
fundamental periodic wave solution used in Whitham’s modulation theory for KdV
or KdV-type DSWs is given in the form of Jacobian elliptic functions [1, 19]. These
functions have real and complex periods, which means that waves have real and complex
frequencies [21]. The solitary wave solution in the real direction corresponds to a
conjugate, linear, dispersive, periodic wave solution in the complex direction [18, 133,
134].

Given the above background, at the trailing edge of the DSW we have that the
harmonic wavenumber ki = k(ui), provided that ui is (5.28), satisfies the implicit
equation

ln

(
ui

3
5
4u+

)
+

√
17

34
arctan

(
−1√
17

)
+

5

4
ln

(
3ν2

32q2
k4
i −

ν

4q
k2
i + 3

)
−
√

17

34
arctan

(
1√
17

{
3ν

4q
k2
i − 1

})
= 0, (5.118)

where the following integral formula was used (the constant of integration is omitted)∫ {
α1k

2 − α2k
4

α3k − α4k3 + α5k5

}
dk = − α2

4α5
ln(α5k

4 − α4k
2 + α3)

+
2α1α5 − α2α4

2α5

√
4α3α5 − α2

4

arctan

(
2α5k

2 − α4√
4α3α5 − α2

4

)
, (5.119)

with α1, α2, α3, α4, and α5 some valid real constants. The implicit equation (5.118)
can be solved numerically for ki by using Newton’s method [93]. Then, the linear,
dispersive wave edge moves with the group velocity

si = s(ui) =
∂ω

∂k

∣∣
(k;ū)=(ki;ui) = −2

√
2

q
u+ +

√
2

q
ui

{
3− 3ν

4q
k2
i +

15ν2

32q2
k4
i

}
. (5.120)

Similarly, at the leading solitary wave edge of the DSW, we have that the conjugate
wavenumber as a function of the stationary level ahead u+, k̃+ = k̃(u+), satisfies the
implicit equation

ln

(
3

5
4ui
u+

)
+

√
17

34
arctan

(
1√
17

)
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4
ln
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3ν2

32q2
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−
√

17

34
arctan

(
1√
17

{
3νk̃2

s,+

4q
+ 1

})
= 0. (5.121)

The solitary wave edge then propagates with the velocity

Vs,+ = Vs(u+) =
ω̃

k̃

∣∣∣(k̃;ū)=(k̃+;u+) = −2

√
2

q
u+ +

√
2

q

u+

k̃+

{
3k̃+ +

ν

4q
k̃3

+ +
3ν2

32q2
k̃5

+

}
.

(5.122)
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However, for u+ < 0.85, the solutions of the above equations are found complex upon
solving them numerically.

To get rid of this cut-off, we need to expand equations (5.118) and (5.121) in Taylor
series. As the value of the wavenumber in the nematic PDSW and RDSW regimes
lies within the range 0 < k < 0.15, the arguments of the transcendental functions in
equations (5.118) and (5.121) satisfy the requirement to seek Taylor expansions. Taking
this into account, at the trailing edge of the DSW, we have

ln

(
3ν2k4

32q2
− νk2

4q
+ 3

)
∼ ln(3)− νk2

12q
, (5.123)

arctan
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17q
− 1√

17

)
∼ 12

√
17

289

νk2

q
− 50

√
17

867
, (5.124)

which lead to the trailing wavenumber asymptotic expression

k ∼ 2

√
2q

1733ν

√
1734 ln

(
ui

9u+

)
+ 3810. (5.125)

Likewise, at the leading edge of the DSW, we have

ln

(
3ν2k̃4

32q2
+
νk̃2

4q
+ 3

)
∼ ln(3) +

νk̃2

12q
, (5.126)
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which yield the conjugate wavenumber asymptotic expression

k̃ ∼ 2

√
q

1733ν

√
3468 ln

(
ui
u+

)
− 0.07. (5.128)

Given the above asymptotics, we observe that there is no cut-off at the leading edge
of the DSW and the solutions are always real. Yet, at the trailing edge of the DSW,
there is a cut-off at u+ = 0.7. This harmonic edge cut-off does not result because the
solutions turn to complex, it actually results as the lead solitary wave velocity (5.122)
becomes equal to the linear edge velocity (5.120) of the DSW, which is unphysical.
The solutions of the DSW fitting method will be discussed in more detail in Chapter
6. This completes the analysis of the nematic PDSW and RDSW regimes (Regimes 1
and 2).

5.4 Nematic Crossover DSW

In this section, the solution for the nematic CDSW regime (Regime 3), as illustrated
in Figure 3.4, will be derived. As can be seen from Figure 3.4, the transition towards
the CDSW regime results in the KdV-type DSW existing in the PDSW and RDSW
regimes becoming unstable. A large part of the CDSW structure shows that the waves
which are at the leading edge have on “average” equal amplitudes and a rapid drop near
the trailing edge of the DSW. It can also be noticed from Figure 3.4 that the nematic
resonant wavetrain is distinctly non-uniform and has a major effect on the stability of
the nematic DSW. In contrast to the CDSW regime governed by the KdV5 equation,
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that is, equation (1.40) with µd = 0, the KdV5 resonant wavetrain has “almost” a
constant amplitude with a slowly varying front which takes the wavetrain down to the
initial level ahead u+ [80]. This front exemplifies a potion of a modulated solitary
wavepacket [1].

We now develop an asymptotic method to solve for the nematic CDSW regime
by combining two approximate methods from the work of [59, 61]. The first one is
what we term in this thesis the “DSW equal amplitude approximation.” This method
helps us to determine the “averaged” amplitude as and velocity Vs of the front of the
CDSW. We shall explain this method in more detail in the next subsection. The latter
one is the nematic linear Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation
which was calculated by Smyth and El [61]. Obviously, the WKBJ approximation
assumes that the nematic resonant wave is a linear and high frequency wave. The
assumption that this wave is a fast oscillating wave relative to the CDSW is clearly
true. However, the linear assumption can be invalid as the jump height increases. In
spite of the linear assumption, it has been found that the “linear” WKBJ method gives
an excellent prediction for the “averaged” value of the resonant wavetrain amplitude ar.
The resonant wavenumber kr can be calculated from the resonance condition (5.105)
with Vs obtained from the DSW equal amplitude approximation.

5.4.1 DSW Equal Amplitude Approximation

When the CDSW form is compared with the (unstable) focusing NLS DSW form,
as depicted in Figure 1.8(c), an illuminating analogy between each of them can be
recognised, in that the DSW is composed of a train of “nearly” equal amplitude waves
with a rapid decrease to the initial level behind u− at the trailing edge. The work
of [177] found that the major portion of unstable DSWs consists of a train of nearly
equal amplitude waves, which justifies the approximate theory developed by Smyth and
Marchant in [59] that approximates DSWs as trains of equal amplitude solitary waves,
with the amplitude of the solitary waves found from conservation laws, motivated by
the work of [183] on the transcritical flow of a fluid over topography.

Regardless of the integrability property of non-linear dispersive wave equations, it
was found in [59] that the DSW equal amplitude method gives a theoretical prediction
that ranges from very good to excellent for the averaged wave amplitude. Examples
of DSWs that were studied in [59] are DSWs governed by the focusing NLS, focusing
nematic and colloidal equations. Moreover, and intriguingly enough, it was found that
this approximate method effectively works for stable DSWs governed by the KdV,
modified KdV and Benjamin-Ono equations based on the observation that as their
DSWs evolve they become dominated by solitary waves in the long term.

The DSW equal amplitude approximation can be summarised in the following steps

• Seek a solitary wave solution for the governing equation(s).

• Derive mass and energy conservation laws for these equations.

• Average these conservation laws over the spatial domain −∞ < x <∞.

• Solve these averaged conservation laws for the soliton amplitude. The velocity
then is determined by the amplitude-velocity relation.

This approximate method, together with the linear nematic WKBJ solution for the
resonant wavetrain [61], will be utilised on the nematic Kawahara equation (5.70) in
the subsequent subsection to derive the solution for the CDSW regime.
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5.4.2 Implementation to the Nematic Kawahara Equation

The nematic Kawahara equation (5.77) has the “mass” (optical power) conservation
equation

∂

∂η
u1 +

∂

∂ξ

{
1

2
B2u

2
1 +B3u1ξξ + ε2B4u1ξξξξ

}
= 0 (5.129)

and the energy conservation equation
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2
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3
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− ε2B4u1ξu1ξξξ +
1

2
ε2B4u

2
1ξξ

}
= 0. (5.130)

These will now be used to find an approximate solution for the nematic CDSW by
assuming that it consists of a uniform series of solitary waves [59], as discussed at the
beginning of this section.

Let us assume that the CDSW at position (time-like) η consists of N equal solitary
waves of amplitude ãs and width w̃s, where we shall use tildes to denote scaled variables
in the moving and stretched coordinates (ξ, η) as considered in Section 5.3. It is also as-
sumed that the CDSW sheds a uniform resonant wavetrain of amplitude ãr which prop-

agates ahead of it. Then, as ξ → −∞, u1 → 1 and as ξ →∞, u1 → ãr cos
(
k̃rξ − ω̃rη

)
,

since |u| = u+ + ε2u1 + o
(
ε2
)

with ε2 = ui − u+. Integrating the mass and energy
equations (5.129) and (5.130) over the CDSW, we have
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c̃gã

2
r

}
η. (5.131)

In calculating the flux terms due to the resonant wavetrain on the right hand sides of
(5.131), the averages of the resonant wavetrain and its square over a period have been
used as the resonant wave is a high frequency wave relative to the CDSW, see Figure
3.4. Also, not averaging the resonant wavetrain terms in the right hand sides of (5.131)
will make the calculations very difficult. Here, c̃g stands for the group velocity of the
shed radiation in the moving and stretched (ξ, η) coordinates. In calculating the energy
conservation expression (5.131), the second relation in (5.131), this group velocity is
not that for the Kawahara equation (5.77), which is the group velocity for long waves
in the non-local limit ν large, but that for the shed radiation, which is short wave
radiation with the dispersion relation (5.3). From these conservation relations, we see
that the shed radiation leaks mass and energy from the CDSW, which is the reason for
the rapid decrease in its amplitude as u+ decreases, as shall be seen in Chapter 6 when
the theoretical and numerical solutions are compared with each other.

The integrals in the conservation expressions (5.131) are N times the integrals for a
single solitary wave. Due to the high number of derivatives in the Kawahara equation,
no exact solitary wave solutions have been derived for it. However, as for the PDSW
solution in Section 5.3, the perturbation solution of [125, 182] which transforms the
Kawahara equation to the standard KdV equation can be used to find a perturbed
solitary wave solution of the Kawahara equation. This transformation gives that the
solitary wave solution of (5.77) is

u1 = ãs sech2 Θ− 5ε2C4ã
2
s sech2 Θ +

15

2
ε2C4ã

2
s sech4 Θ, (5.132)
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with the width w̃s of the solitary wave, its phase Θ and velocity Ṽs given by

w̃s =

√
6B3√
B2

√
2√
ãs
, Θ =

ξ − Ṽsη
w̃s

, Ṽs =
1

3
B2ãs

{
1 + 2ε2C4ãs

}
. (5.133)

With this perturbation solution for the solitary wave, the mass and energy of a single
solitary wave can be calculated as

∞∫
−∞

u1 dξ = 2ãsw̃s, (5.134)

∞∫
−∞

1

2
u2

1 dξ =
2

3
ã2
sw̃s +

4

3
ε2C4ã
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respectively. Note that in the calculation of the energy, only terms up to O(ε2) have
been retained, consistent with the order of the transformation [125, 182]. Dividing the
mass and energy relations (5.131) hence gives
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2
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2
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1− 3
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B2

1− 1
2 ã

2
r

. (5.136)

Equation (5.136) determines the scaled amplitude ãs of the solitary waves of the CDSW
once the scaled amplitude ãr of the shed resonant radiation is known.

As mentioned earlier, in a former study of nematic DSWs a WKBJ solution for
the shed resonant radiation was derived which was found to be in excellent agreement
with numerical solutions [61]. A WKBJ solution was used as the resonant wavetrain is
short wave relative to the DSW. This solution for the resonant wavetrain was given in
terms of the original variables u and (x, z). Returning the amplitude relation (5.136)
to the original variables can be done by using as = ε2ãs = {ui − u+} ãs, ar = ε2ãr =
{ui − u+} ãr and (5.66). The linear resonant wavetrain solution (WKBJ solution) from
the work [61] is

ur = u+ +

{
[ui − u+]

[
1 +

2u+kras
qVs(kr − Vs)2

]−1
}
ei(krx−ωrz), (5.137)

with ωr given by (5.3). Therefore, the amplitude of the CDSW solitary waves is deter-
mined by

as {1 + 2C4as} = 2 {ui − u+}
1− 3
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{
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√
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2
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, (5.138)

with the resonant radiation’s amplitude ar given by [61]

ar =
ui − u+

1 + 2u+kras
qVs{kr−Vs}2

. (5.139)

Here, the resonant group velocity satisfies
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∂ωr
∂kr
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q

}
= kr, (5.140)
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see (5.3) wit v+ = 0, has been used. On using (5.132), the height Hs of the leading
solitary waves of the CDSW from u = 0 is

Hs = u+ + as +
5

2
C4a

2
s. (5.141)

The velocity of the solitary waves of the CDSW in the original variables is

Vs =

√
2

q
u+ +

1

3
B2as {1 + 2C4as} (5.142)

as the ξ frame moves with velocity u+

√
2/q.

Finally, the resonant wavenumber kr is determined by the resonance condition
(5.105). The reason why v+ = 0 is that the resonant radiation is assumed to oscil-
late on the initial level ahead u+, which agrees with numerical solutions, thus it follows
from (5.65) that v+ = 0. Equations (5.138) and (5.106), with (5.139), were solved nu-
merically using Newton’s method to determine the amplitude as and velocity Vs of the
solitary waves of the CDSW and the amplitude ar and wavenumber kr of the resonant
wavetrain. This was done by using the inbuilt function fsolve in MATLAB software.
It was found that the resonant wave amplitude ar is negligible for u+ > 0.70. This is
then the numerical upper limit of the CDSW regime, in excellent agreement with the
upper CDSW regime numerical limit of Table 6.1, as given in Chapter 6, found from
the above calculation. The lower limit of the CDSW regime will be discussed in the
next section dealing with the TDSW regime.
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Figure 5.6: Numerical solutions of the nematic equations (2.19) and (2.20). Blue (solid)
line: |u|; green (dash-dot) line: u+. Solutions at (a) z = 500, (b) z = 1000, (c) z = 1500.
Here u− = 1.0, u+ = 0.65, q = 2 and ν = 200. (Online version in colour.)
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Figure 5.7: Numerical solution of the nematic equations (2.19) and (2.20) for |u| showing
evolution of resonant wavetrain instability. Here u− = 1.0, u+ = 0.65, ν = 200 and
q = 2. (Online version in colour.)

5.4.3 Resonant Wavetrain and its Modulational Stability

Let us now study further the modulational stability of the nematic resonant wavetrain
ahead of the CDSW. As previously emphasised, the nematic DSW’s instability structure
is driven by the instability of the resonant wavetrain. Since we are assuming that the
resonant wavetrain in this regime oscillates about the initial state u+, one can rely on
the Whitham modulation equations for a steady mean level ρ̄ = ρ+ to verify that the
resonant wavetrain in front of the DSW is unstable as the modulational system will be
fully elliptic, see Figure 3.4. Such a modulational instability for a fixed mean level is
well-known in modulation theory, see [1].

On the other hand, taking into account that the resonant mean level is slowly
varying in general, the Whitham modulation equations (4.96)–(4.99) for the resonant
wavetrain become half elliptic, half hyperbolic, so that Benjamin-Feir instability arises
and the underlying Stokes wave solution for the resonant wavetrain becomes unstable.
The Whitham modulation equations (4.96)–(4.99) for the nematic Stokes wave are
fully hyperbolic for wavenumbers in the range (4.100), so that the weakly non-linear
Stokes wavetrain is stable in this region. Using the resonance condition (5.105) with
k = kr, Vs is given by (5.102) and ū = u+ with q = 2 and ν = 200, this gives that the
resonant wavetrain is unstable if u+ < 0.674. However, numerical solutions show that
the resonant wavetrain in the RDSW regime is unstable, see Figure 3.3 for instance, so
there is a disagreement with the numerical solution in this respect.

Figure 5.6 shows this modulational instability of the resonant wavetrain for u+ =
0.65. The instability of the resonant wavetrain is clear, with the breakup of the resonant
wavetrain as it propagates in z now prominent. It should be noted that each wave of
the DSW generates a resonant wave as a DSW is a modulated wavetrain [80]. Figure
5.6 shows that these resonant waves within the DSW are also unstable. Figure 5.7
provides further details of the evolution of the instability of the resonant wavetrain
and shows a transition from a uniform wavetrain to a series of wavepackets. This
detailed modulational instability evolution closely resembles experimental photographs
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of Benjamin-Feir instability for water waves [176].
The Stokes wave expansions (4.1)–(4.4) and the associated Whitham modulation

equations (4.96)–(4.99) are weakly non-linear and hold for relatively small amplitudes.
As the amplitude of the resonant wavetrain rises it is found numerically that it resta-
bilises, but not totally as marginal instabilities are observed in the resonant wavetrain
of the TDSW regime, as shown in Figure 3.5. It can be seen that while the resonant
wavetrain is not uniform, as for the fifth order KdV resonant wavetrain [80], the degree
of modulation is much reduced over that of Figure 5.6. This resonant wavetrain mod-
ulational instability is significant in the CDSW regime. This completes the analysis of
the nematic CDSW regime (Regime 3).

5.5 Nematic Travelling DSW

As the initial level ahead u+ decreases in the CDSW regime, the effect of the shed
resonant wavetrain grows until the DSW itself ceases to exist and there is just a large
amplitude resonant wavetrain with a small amplitude wave at its trailing edge linking
it to the intermediate level, as shown in Figure 3.5. This is similar to the behaviour
of the DSW for the Kawahara equation (1.40) (with µd = 0 or small enough µd [79,
80]) for which a standard DSW ceases to exist for large enough initial steps. The
DSW is replaced by what is termed a TDSW, a travelling dispersive shock wave [79].
This previous work on the Kahawara equation shows that in the TDSW regime the
DSW largely disappears, with a single remnant negative polarity solitary wave (known
sometimes as an oscillatory solitary wave [78]) connecting the resonant wavetrain to
the initial level behind u−. The same structure is seen in Figure 3.5 for the nematic
TDSW regime, but the remnant solitary wave now is connecting the intermediate level
ui to the resonant wavetrain.

It was shown for the Kawahara equation that in the TDSW regime the resonant
wavetrain is linked to the level u+ ahead by a partial DSW [80]. A partial DSW is a
modulated wavetrain consisting of cnoidal waves for which the modulus either starts at
m = 1 (solitary wave limit) and decreases to a value mo 6= 0, or increases from m = 0
(linear dispersive wave limit) to mo 6= 1. Therefore, it takes a uniform wavetrain down
to a constant level, in contrast to a full DSW which is a modulated wavetrain that
connects two uniform distinct levels [180, 181]. As stated, a negative polarity solitary
wave connects the resonant wavetrain to the level ui behind [79]. As there is no known
solitary wave solution of the Kawahara equation of either polarity, in previous work
[79, 80] this connection was done numerically and also by using approximate theory, see
Figure 5.8. However, it has been recently realised that the determination of this con-
necting negative polarity solitary wave is not necessary [81]. The connection between
the resonant wavetrain and the level behind can be treated as a Whitham shock, the
wavetrain equivalent of a gas dynamic shock, for the Whitham modulation equations
governing the resonant wavetrain, confirming speculation by Whitham when he orig-
inally developed modulation theory [1, 83]. This shock-like nature of the connection
can be seen for the nematic TDSW illustrated in Figure 5.9, where the discontinuous
connection between the resonant wave and the uniform level behind is clearly visible.

For the modulation equations to have a Whitham shock, they need to form a hy-
perbolic system. The Whitham modulation equations (4.96)–(4.99) for the Stokes wave
are hyperbolic in the restricted interval (4.100). This shows that the resonant wavetrain
falls outside this region over all the CDSW and all the TDSW existence intervals. How-
ever, as shown in Figure 3.5, the resonant wavetrain is stable in the TDSW regime.
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Figure 5.8: A portion of Kawahara TDSW regime. Whitham shock structure is ex-
panded as a “partial” oscillatory solitary wave governed by the Kawahara equation
(1.40). Orange (dash-dot) line: numerical full oscillatory solitary wave solution gov-
erned by the Kawahara equation with µd = 1 (1.40). Blue (solid) line: partial oscillatory
solitary wave exhibited by the Kawahara TDSW regime. Courtesy of Patrick Sprenger
et al [79]. (Online version in colour.)

As discussed above, the Stokes wave modulation equations are valid in the weakly
non-linear limit and the numerical results show that they do not correctly predict mod-
ulational stability for the resonant TDSW wave as it has relatively large amplitude.
As the full Whitham modulation equations are not known, the Stokes’ wave modu-
lation equations will be used to find jump conditions for the connection between the
intermediate level ui and the resonant wavetrain in the TDSW regime.

5.5.1 Whitham Modulation Jump Conditions

As for the compressible gas equations, the appropriate modulation equations to deter-
mine the wave shock jump conditions are the mass, momentum and energy equations
(4.84). Consistent with the TDSW structure illustrated in Figure 3.5, ahead of the
Whitham shock there is the resonant wavetrain with wavenumber k = kr, mean height
ū = ūr (ρ̄ = ρ̄r = ū2

r), flow v̄r and amplitude a = ar. Behind the Whitham shock there
is no wavetrain, so the wavenumber k = ki = 0, the amplitude a = ai = 0 and the
mean height is ū = ui. Let us denote the Whitham shock velocity by Ushock. Then the
mass, momentum and energy modulation equations (4.84) give the jump conditions
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{
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Figure 5.9: Numerical solution of the nematic equations (2.19) and (2.20) for |u| in
the TDSW regime showing the Whitham shock (solid red line) linking the resonant
wavetrain with the intermediate shelf. Here u− = 1.0, u+ = 0.3, ν = 200 and q = 2.
(Online version in colour.)
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respectively [1]. Here, vi on the intermediate level is related to ρi by (5.24) for the
expansion wave solution from the initial level u− behind. In addition, there is the
resonance condition obtained from the Stokes wave dispersion relation (4.4)

Ushock = v̄r +
1

2
kr +

2ρ̄r
qkr
− kra

2
r

8ρ̄2
r

. (5.146)

These jump conditions and the resonance condition form four equations for the six
unknown parameters ρi, ρ̄r, v̄r, kr, ar and Ushock. For the KdV5 equation, equation
(1.40) with µd = 0, the system was completed by matching the resonant wavetrain
to the partial DSW at its leading edge, which brings the solution back to the initial
level u+. This partial DSW was found as a simple wave solution of the modulation
equations of the KdV5 equation in Riemann invariant form. Even when the Stokes wave
modulation equations are hyperbolic, they cannot be expressed in Riemann invariant
form. To complete the solution for the TDSW regime, some assumptions based on
numerical solutions will be made.
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Figure 5.10: Intermediate level ui as given by numerical solutions of the nematic equa-
tions (2.19) and (2.20) over all the nematic DSW regimes and the theoretical average
expression (5.28). Numerical solution: orange boxes; theoretical values: blue (solid)
line. Here u− = 1.0, ν = 200 and q = 2. (Online version in colour.)

Figure 5.10 shows the level ui of the shelf between the expansion wave from u−
and the resonant wavetrain. It can be seen that in the TDSW regime, it is given by
the average (5.28), (1 + u+)/2 in this case, based on the conservation of the Riemann
invariant R− for the non-dispersive shallow water equations, given by (5.17), through
the Whitham shock. The reason that this is an excellent approximation is that the
Whitham shock is relatively weak, as seen from Figure 3.5, so that this Riemann
invariant is conserved through the shock to leading order [1]. It will then be assumed
that ui is given by (5.28). Consistent with this, it is assumed from the shallow water
Riemann invariant R− given by (5.17) that

v̄r = 2

√
2

q

{√
ρ̄r −

√
ρ+

}
= 2

√
2

q

{√
ρ̄r − u+

}
. (5.147)

As noted in Section 4.2 the shallow water characteristics (4.98) and (4.99) are always
real, so the Riemann invariants on these can be used to propagate the solution. This
assumption is based on ignoring the wave amplitude correction in the characteristic form
(4.99) as this amplitude is small. With these assumptions, the jump conditions (5.143)–
(5.145) were solved numerically using Newton’s method. To be specific, the command
function fsolve in MATLAB was used to solve these modulation jump conditions. It
is good to mention here that, while solving the nematic modulation jump conditions
numerically, the non-linear system was found extremely sensitive to given initial data,
in that very slight changes in the initial data lead to significantly different results.
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Figure 5.11: Non-local versus local partial DSWs in the nematic TDSW regime as
numerical solutions of equations (2.19) and (2.20). (a) Black (solid) line: |u| (non-
local partial DSW); green (dash-dot) line: u+ = 0.3. Here, u− = 1, q = 2, ν = 200
and z = 1000. (b) Black (solid) line: |u| (local partial DSW); green (dash-dot) line:
u+ = 1.0. Here, u− = 1.2, q = 2, ν = 1.5 and z = 1000. (Online version in colour.)

5.5.2 Partial DSW and its Modulational Stability

As previously discussed, the resonant wavetrain in the TDSW regime is attached to a
slowly varying wavetrain (partial DSW) at the front, bringing the optical intensity down
to the initial flow state ahead u+. For the KdV5 equation [80] or the Kawahara equation
[79], this partial DSW is stable and weakly non-linear Whitham’s modulation theory,
based on a Stokes’ wave approach as in Section 4.2, gave a full hyperbolic Riemann
invariant system. It was then possible in previous work [80], following the work of
[1, 180, 181], to determine the slowly varying amplitude, wavenumber, background
(mean level), trailing and leading edge velocities of the partial DSW and excellent
agreement with numerical solutions was obtained.

In this study of nematic DSWs, however, the weakly non-linear system (4.96)–(4.99)
is a mixed system, half elliptic, half hyperbolic. Also, Riemann invariants cannot be
found even in the hyperbolic region (4.100); known as Pfaff’s problem [1]. Regrettably,
this means that a solution for the nematic partial DSW is not available. Whether there
is a way to deal with or solve for this nematic partial DSW is an open question.

There are further notes and comments on the nematic partial DSW and it is im-
portant to report them here. It has been found that the modulational structure of
the nematic partial DSW in the TDSW regime varies depending upon the value of the
non-locality parameter ν. From Figure 5.11, we notice that the non-local partial DSW,
depicted in Figure 5.11(a), is notably unstable at the front, in contrast to the local
counterpart, given in Figure 5.11(b). Whether the reason behind this is the fact that
the nematic weakly non-linear system (4.96)–(4.99) is half elliptic, half hyperbolic and
the partial DSW is unstable in the first place, rather than stable, is not clear at this
stage. This instability is not a numerical issue. Several (small) numerical step-sizes
were used and the same unstable behaviour was observed. Regarding the local partial
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DSW, as depicted in Figure 5.11(b), it is “nearly” identical to the one governed by the
KdV5 equation [80]. It is clear that it is modulationally stable. The reason why it is
stable is that the nematic equations (2.19) and (2.20) approach the defocusing NLS
equation (1.17), with q = 2, as ν → 0, so the partial DSW approaches a full stable NLS
DSW, like the one shown in Figure 1.8(b). In this local limit, the nematic Kawahara
equation (5.70) becomes the classical KdV equation with negative dispersion and the
associated Whitham modulation equations become hyperbolic. This local partial DSW
can then be found from the work of [180, 181]. This will be one of the subjects that will
be studied in the future, see Section 7.2. This completes the analysis of the nematic
TDSW regime (Regime 4).

5.6 Nematic Vacuum DSW

As the initial level ahead u+ decreases in the TDSW regime, the resonant wavetrain
hits the vacuum point at which u = 0, at which point the DSW changes form [62, 63].
When this critical level is reached, the DSW changes to the vacuum DSW (VDSW)
regime, with Figure 3.6 showing a typical VDSW solution. Table 6.1 in Chapter 6
shows this critical value of u+ for the onset of a vacuum point as given by the jump
conditions (5.143)–(5.145) and by numerical solutions, with excellent agreement seen.
The partial DSW of the TDSW regime which brings the resonant wavetrain down to
u+ is now on a (linearly) varying mean. As for the TDSW regime, there is a Whitham
shock which links the resonant wavetrain to the intermediate level ui. This will be

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.12: Numerical solution of the nematic equations (2.19) and (2.20) for |u|:
blue (solid) line; expansion wave solution (5.22): green (dash-dot) line; expansion wave
solution (5.22) ±u+: red (dashed) line, +u+ (upper), −u+ (lower). Here u− = 1.0,
u+ = 0.12, ν = 200 and q = 2. (Online version in colour.)
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determined by the same Whitham shock jump conditions as for the TDSW regime. As
for the TDSW regime, some assumptions based on numerical solutions will need to be
made to derive the VDSW solution due to the lack of Whitham modulation equations
in Riemann invariant form.

Figure 5.12 shows an expanded version of the VDSW solution of Figure 3.6. On
the same figure the expansion wave solution (5.22) continued down to u = 0 and this
solution with ±u+ added are shown. It can be seen that the mean and envelopes of
the transition wave bringing the resonant wavetrain down to u+ from the intermediate
shelf are well approximated by this expansion wave solution. This type of wavetrain
structure does not exist for the defocusing NLS DSW in the vacuum case as there is
no resonance [62]. Without full Whitham modulation equations for the fully non-linear
nematic equations, there is no analytical method to justify this observed structure. This
structure will be assumed here, with some justification based on weak shock theory.

Figure 5.12 shows that the resonant wavetrain and its leading edge have constant
amplitudes, so that ar = u+ will be assumed, which is consistent with the wave en-
velopes of this figure. The resonant wave amplitude is small, so that it decouples from
the mean height variation in the modulation equations. As the resonant wave ampli-
tude is small, it will be ignored in the modulation equations (4.96)–(4.99), so that the
modulation equations (4.98) and (4.99) become the shallow water equations [1]. The
jump conditions in the previous section then become the shallow water equation jump
conditions,

− {ρi − ρr}Ushock + {ρivi − ρrvr} = 0, (5.148)

− {ρivi − ρrvr}Ushock +

{
v2
i ρi +

ρ2
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}
= 0, (5.149)

for which the most convenient form is [1]
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√
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(5.150)
The sign choice for the shallow water equations (and the compressible gas equations)

is the + sign, as in [1]. However, with this choice, in the limit u+ → 0, the shock velocity
approaches the front velocity of the dam break solution 2u−

√
2/q, from (5.22), and

ui → 0. This does not accord with numerical solutions, which show that ui → u−/2
in this limit, which is the Riemann invariant value (5.28). The correct behaviour is
obtained with the − sign choice in the shallow water jump conditions (5.150). Figure
5.12 also shows that the Whitham shock is weak, meaning that the jump is small.
Expanding the jump conditions (5.150) for small jump height, u2

i − ū2
r small, gives
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We see from the upper expansion wave envelope in Figure 5.12 and the expansion wave
solution (5.22) that

ui =

√
q

3
√

2

{
2
√

2
√
q
u− − Ushock

}
+ u+, (5.153)
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so that

Ushock = 2

√
2

q
u− + 3

√
2

q
{u+ − ui} . (5.154)

As for the TDSW solution, the shallow water characteristic forms (4.98) and (4.99)
will be used to propagate the solution. Furthermore, as for the TDSW regime, the
amplitude corrections to these Riemann variables will be neglected, so that they become
the Riemann invariants (5.16) and (5.17). As the shock is weak, at leading order the
Riemann invariant R+ (5.16) is conserved through the shock, so that at first order,
that is shock strength zero,

2

√
2

q
u− = v̄r + 2

√
2

q
ūr. (5.155)

A measure of the shock strength is u+ as it is small. We then seek a weak shock
correction to this Riemann invariant as

v̄r + 2

√
2

q
ūr = 2

√
2

q

{
u− + δ1u+ + δ2u

2
+ + O(u3

+)
}
. (5.156)

Substituting the Riemann invariant correction (5.156) and the shock velocity ex-
pression (5.154) into the weak shock jump conditions (5.151) and (5.152) and solving
as a series in small u+, we find δ1 = δ2 = 0 and

ui = ūr + 2u+ −
u2

+

ūr
. (5.157)

To O(u2
+) there is then no correction to the shallow water Riemann invariant. Equa-

tion (5.154) then gives the Whitham shock velocity. As the Riemann invariant R+ is
conserved to O(u2

+) through the weak Whitham shock, the intermediate level result
(5.28) holds to O(u2

+), as confirmed from the intermediate level comparison of Figure
5.10. Using this intermediate level expression in the shock result (5.157) gives that
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This completes the analysis of the nematic VDSW (Regime 5).
The theoretical results which are obtained in this chapter will be compared with

numerical solutions and discussed in Chapter 6.
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Chapter 6

Comparison with Numerical
Solutions and Discussions

In this chapter, we compare the theoretical solutions for the nematic hydrodynamic
regimes, which were derived in the previous chapter, with numerical solutions and
discuss these results. Comparative plots are provided at the end of the chapter.

6.1 Results and Discussions

Table 6.1 gives comparisons between the existence intervals for the six nematic hydro-
dynamic regimes as given by numerical solutions and the analytical solutions for the
parameter choices u− = 1, ν = 200 and q = 2. As can be seen, the accordance between
the analytical and numerical thresholds is excellent.

DSW type numerical existence interval theoretical existence interval

PDSW 0.76 ≤ u+ < 1.0 0.73 ≤ u+ < 1.0

RDSW 0.70 ≤ u+ < 0.76 0.70 ≤ u+ < 0.73

CDSW 0.44 ≤ u+ < 0.70 0.44 < u+ < 0.70

TDSW 0.22 ≤ u+ < 0.44 0.24 ≤ u+ ≤ 0.44

VDSW 0 < u+ < 0.22 0 < u+ < 0.24

Dam break u+ = 0 u+ = 0

Table 6.1: Comparisons between numerical and theoretical existence regions for the six
nematic hydrodynamic regimes. Here u− = 1.0, ν = 200 and q = 2.

The comparisons shown in Figure 6.1 to Figure 6.9 will be discussed next in this
order: rarefaction wave, PDSW, RDSW, CDSW, TDSW and VDSW solutions.

Let us start with the rarefaction wave solutions. Figure 6.1 shows a comparison
between the nematic dam break solution (5.22) and numerical solution. It can be
seen that the agreement is perfect. However, there is a slight disagreement where the
rarefaction wave meets the initial levels behind u− and ahead u+. The reason for that
is that the discontinuity in the derivatives being smoothed by the effect of dispersion
[86]. Figure 6.2 shows a comparison between numerical solution and theoretical solution
(5.45). This is Case 4 in Subsection 3.2.2, two rarefaction waves separated by a shelf
produced when the initial phases are not zeroes. The agreement is clearly perfect.

Now, we discuss the nematic PDSW and RDSW regimes. Figures 6.3–6.5 show
comparisons between numerical solutions and the perturbed and radiating KdV DSW
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solutions (5.95)–(5.98) for the height Hs = u+ + as and the velocity Vs of the lead
solitary wave of the DSW and the velocity si of the trailing edge of the DSW (5.102). It
can be seen that there is excellent agreement for the lead solitary wave height over both
the PDSW and RDSW regimes. When a resonant wavetrain is present, the amplitude
of the lead wave of the DSW oscillates as resonant radiation propagates out of the DSW
[60, 61, 80]. In this case, the average lead wave amplitude is taken for the numerical
comparisons. Figure 6.4 shows that there is also excellent agreement for the velocity
Vs of the leading edge. There is some disagreement for the lead wave height and the
velocity at the transition from the RDSW regime to the CDSW regime, but this is to
be expected as the DSW drastically changes form. The leading edge velocity does not
show much variation from u− in these PDSW and RDSW regimes. Setting C4 = 0 in
the perturbed and radiating KdV DSW solutions (5.95)–(5.98) gives the standard KdV
DSW solution, for which Hs = u− and Vs = u− on using (5.28) for ui, as found in a
previous study [60], leading to poor agreement with the numerical solutions. It is then
seen that the higher order dispersion in the Kawahara equation (5.70) is necessary to
fully account for the lead solitary wave in the PDSW and RDSW regimes, although
the additional effect is not large.

Figure 6.5 shows a comparison between numerical solutions and the perturbed KdV
DSW solution for the trailing edge velocity si (5.102). The comparison is again very
good, in particular for the turning point in the trailing edge velocity. The implications of
this turning point were discussed in Subsection 5.3.2. The wavenumber of the resonant
wavetrain in the RDSW regime is given by the resonance condition (5.106), which has
a solution if Vs ≥ 2u+/

√
q. From Table 6.1, it can be seen that there is good agreement

for the intervals of existence for the PDSW solution, which does not have an associated
resonant wavetrain as V+ < 2u+/

√
q. There is also excellent agreement for the existence

region of the RDSW, which has an associated resonant wavetrain. Note that the lower
bound for the RDSW regime is connected with the existence of the CDSW regime,
which will be discussed shortly.

The last thing to discuss for the PDSW and RDSW regimes is the results obtained
from the DSW fitting method. As seen in Subsection 5.3.3, the given solutions in
equations (5.118)–(5.122) have a cut-off at u+ = 0.85, in that the DSW solutions
get imaginary for u+ < 0.85. A good question that one may ask here is why the
perturbation method detailed in Subsection 5.3.1 remains working until u+ = 0.7, but
the DSW fitting method does not work below u+ = 0.85? The root cause behind this
is the fact that the theoretical method in Subsection 5.3.1 is based on expanding the
solution in the perturbation series (5.95)–(5.98) which have real coefficients for any
value of u+, while the DSW fitting method solutions (5.118) and (5.121) are given in
terms of roots of transcendental equations that become complex at particular values of
u+.

To overcome this cut-off, equations (5.118)–(5.122) have been expanded in Taylor
series. Indeed, at the leading edge of the DSW, we observe no cut-off. Figure 6.4 shows
that the lead solitary wave velocity solution continues until u+ = 0.7, but with errors
varying from 0.98% to 16% as u+ decreases. In contrast, at the harmonic edge of the
DSW, shown in Figure 6.5, there is a cut-off at u+ = 0.7 which results in as the lead
solitary wave edge of the DSW equals to its linear edge, namely, Vs = si = 1.12, which
is physically unacceptable. Nonetheless, this cut-off is in excellent agreement with the
numerical borderline between the RDSW and CDSW regimes, as provided in Table 6.1.
The errors in this case vary from 0.82% to 13.8% as u+ decreases to u+ = 0.72.

Overall, the perturbation method presented in Subsection (5.3.3) is better than the
DSW fitting method when they are compared with nematic numerical solutions. Pos-
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sible interpretations for the disagreement between these two methods are how asymp-
totic terms are neglected in the methods and how wave solutions are asymptotically
expanded. For instance, the DSW fitting method expands the wave solutions as Taylor
series, whereas the other method expands the solutions as perturbation series resulting
from a non-local transformation (5.71).

In dealing with the DSW harmonic edge, we need to mention that in general the
method which is commonly used to numerically determine the trailing edge velocity
of a DSW is an ad-hoc method to some degree. This is because it is difficult and not
fully clear to see where “exactly” the harmonic edge of the numerical solution starts,
unlike the lead solitary wave edge. An approximate method to determine this velocity
is the following. First, we try to observe where the trailing amplitudes of the waves
of a DSW start to descend “linearly.” Second, we interpolate a polynomial of degree
1 passing through a number of linearly related crests. Third, we calculate the spatial
intersection point between the interpolant and the initial level behind the DSW, that
is, u−, or in our nematic problem the shelf ui. Fourth, we repeat the same procedure
for a different z in order to calculate the velocity from two positions. Note that slight
changes in the chosen linear crests can yield notable differences in the velocity. This
method can always be adjusted to accord with the obtained theoretical data as much
as possible. In this sense, the method is not fully rigorous and is ad-hoc, but this is the
easiest way to our knowledge to determine the trailing edge velocity of a DSW from
numerical data.

Next, we discuss the comparisons for the nematic CDSW regime. Figure 6.3 shows
the height Hs = u+ + as + (5/2)C4a

2
s of the solitary waves of the CDSW as given

by numerical solutions and the equal amplitude approximation, equations (5.138)–
(5.141). It can be seen that there is excellent agreement, except near the boundary
with the TDSW regime. This is expected since as the height of the jump ui − u+

grows, the KdV approximation becomes less valid. In addition, as the TDSW regime is
approached, the form of the DSW changes fundamentally, with the waves of the DSW
disappearing, except for one wave at the leading edge, see Figure 3.5. Figure 3.4 shows
that the amplitudes of the individual waves of the CDSW have a random variation
this is because the CDSW is unstable. To calculate Hs from the numerical solutions,
an amplitude average was then taken over the CDSW, which is consistent with the
equal amplitude approximation. Figure 6.3 shows a rapid decrease in the height of the
CDSW as u+ decreases. However, the amplitude ar of the shed radiation grows, as
can be seen from Figure 6.6 since ar = Hr − u+. The shed resonant radiation acts as
a damping on the DSW and leads to its decay over the non-resonant PDSW case. As
the amplitude of the resonant radiation grows, the greater the damping of the CDSW,
so that its amplitude decreases.

Figure 6.4 shows comparisons for the velocity Vs of the leading edge of the CDSW
from (5.142). The agreement is not as good as for the solitary wave height, but the
difference between the analytical and numerical solutions is about 4%. There are no
results presented for the trailing edge velocity, as for the PDSW and RDSW cases,
as the equal amplitude solitary wave approximation cannot give results for the linear
trailing edge.

Figure 6.6 shows comparisons between the numerical and analytical solutions for
the height Hr = u+ + ar of the resonant wavetrain, equation (5.139) with the initial
level u+ added. There is again excellent agreement, as expected as the WKBJ solution
(5.137) for the resonant wavetrain was previously found to be in excellent agreement
with numerical solutions [61]. It can be seen that as the RDSW regime is approached
the amplitude ar = Hr − u+ of the resonant wavetrain goes to zero, as required. As
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discussed in Section 5.4 the resonant wavetrain in the CDSW regime is unstable when
its amplitude is low and stabilises at high enough amplitude. For the comparisons of
Figure 6.6 the amplitudes and heights of low amplitude numerical resonant waves were
determined before instability broke the wavetrain up. In this regard, a unit distance in
the non-dimensional variable z corresponds to about 2 μm for optical beams in the near
infrared [102, 103, 104]. Typical experimental nematic cell lengths are ∼1 mm, which is
z = 500. As shown in Figure 5.6, the breakup of the resonant wavetrain in the vicinity
of the CDSW occurs after z = 1000. This is well beyond the experimental distance at
which optical solitary waves can be observed, due to their decay because of scattering
losses [6, 74]. Numerical solutions show that the mean height of the resonant wavetrain
is given by ūr =

√
qθr. As the resonant wavetrain is rapidly varying, averaging the

director equation (2.20) then gives this mean height expression. The non-local response
of the nematic acts to average out the oscillations of the electric field.

Figure 6.7 shows a comparison between the mean height ūr of the resonant wavetrain
as given by numerical solutions and by the theoretical CDSW value ūr = u+, with
excellent agreement seen. Finally, Figure 6.8 shows comparisons for the wavenumber kr
of the resonant wavetrain given by (5.106). The numerical values of kr were determined
by averaging over the resonant wavetrain. It was found that averaging 10 to 20 crests
is sufficient. Unlike the resonant wave height and mean level, the comparison is poor,
except in the TDSW regime where the resonant wavetrain restabilises. The reason is
that the resonant wavetrain is unstable over all the CDSW regime and so does not
consist of a single dominant wavenumber, as seen in Figures 5.6 and 5.7.

Now turning to the nematic TDSW regime, Figures 6.6 and 6.7 give comparisons
between numerical solutions and results from the Whitham shock modulation jump
conditions for the resonant wave height Hr = ar + ūr and the resonant wave mean level
ūr in the TDSW regime, equations (5.143)–(5.146) with (5.147). It can be seen that
there is excellent agreement for both parameters with numerical solutions, with some
deviation for the resonant wave height when it transitions to the VDSW regime. As for
the equivalent transitions for the CDSW regime, this is to be expected as the resonant
wave drastically changes form in the VDSW regime, as seen from Figure 3.6.

Figure 6.8 shows a comparison for the resonant wavenumber kr and nearly perfect
agreement across the TDSW regime is seen, unlike for the CDSW regime. The higher
resonant wave amplitude in the TDSW regime has stabilised the wavetrain, so that the
assumption of a single dominant resonant wavenumber is now valid. For u+ > 0.44,
the Whitham shock velocity Ushock from (5.146) is greater than the (linear) group
velocity cg of the resonant wavetrain, which is unphysical. This value of u+ is then
the boundary between the TDSW and CDSW regimes, in excellent agreement with
numerical results, as tabulated in Table 6.1.

Figure 6.9 shows a comparison between numerical solutions and the Whitham shock
jump conditions for the shock velocity Ushock, the velocity of the trailing edge of the
resonant wavetrain, expression (5.146). Again there is near perfect agreement, except
for a slight deviation near the transition to the VDSW regime. This excellent agreement
for the TDSW parameters validates the assumptions (5.28) and (5.147) made above.

Finally, we now discuss the nematic VDSW regime. Figure 6.9 shows comparisons
between numerical solutions for the Whitham shock velocity with the theoretical re-
sult (5.151) in the VDSW regime. It can be seen that there is excellent agreement,
except near the transition to the TDSW regime where the DSW form changes. As the
transition to the TDSW regime is approached, the amplitude of the resonant wavetrain
increases, so that its neglect in the Riemann variables becomes less valid.

Figure 6.6 gives comparisons for the height Hr = u+ + ūr, on using (5.158), of the
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resonant wavetrain with numerical values. Again, there is good agreement, except near
the transition to the TDSW regime, again because the neglect of the resonant wave
amplitude correction to the Riemann variables becomes less accurate. The resonant
wave mean ūr comparison of Figure 6.7 is similar, with an excellent comparison seen.

Figure 5.10, given in Subsection 5.5.1, shows an excellent comparison between the
numerical mean level ui in the VDSW regime and the VDSW theoretical result (5.157),
as expected as the Riemann invariant R+ is conserved to O(u2

+) through the weak
Whitham shock. Figure 6.8 shows comparisons for the resonant wavenumber kr. As
for the CDSW regime, the agreement is poor, except near the boundary with the TDSW
regime where the resonant wavetrain restabilises due to its increased amplitude. As
stated, it was found that the Riemann invariant R+ (5.16) is conserved to O(u2

+)
through the Whitham shock, which means that the intermediate level ui is given by
the mean value (5.28) to this order. It can be seen from Figure 5.10 that there is a
slight deviation of 1% in ui from the mean value in the VDSW regime which grows
as u+ decreases. Presumably, this deviation is due to higher order corrections in the
Riemann invariant expansion (5.156). As this correction is small, it is not considered
here.

6.2 Comparative Figures
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Figure 6.1: Numerical solutions of the nematic equations (2.19) and (2.20) for the initial
conditions (2.29) and (2.31). Blue (solid) line: |u| at z = 1500; red (dashed) line θ at
z = 1500; green (dash-dot) line: |u| at z = 0 and violet (dotted) line θ at z = 0; black
(pluses): theoretical solution (5.22) at z = 1500. Here, u− = 1.0, u+ = 0.0, ν = 200
and q = 2. (Online version in colour.)
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Figure 6.2: Numerical solutions of the nematic equations (2.19) and (2.20) for the initial
conditions (2.29) and (2.31). Blue (solid) line: |u| at z = 1500; red (dashed) line θ at
z = 1500; green (dash-dot) line: |u| at z = 0 and violet (dotted) line θ at z = 0; black
(pluses): theoretical solution (5.45) at z = 1500. Here, u− = 1.2, u+ = 1.0, v− = −2
and v+ = 0. (Online version in colour.)

0.4 0.5 0.6 0.7 0.8 0.9
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

T
D

S
W

PDSW

CDSW

R
D

S
W

Figure 6.3: Comparisons between numerical solutions of the nematic equations (2.19)
and (2.20) and the DSW solution of the lead solitary wave height Hs for the PDSW,
RDSW and CDSW regimes. Numerical solution: orange boxes; analytical solution:
blue (solid) line. Here, u− = 1.0, ν = 200 and q = 2. (Online version in colour.)
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Figure 6.4: Comparisons between numerical solutions of the nematic equations and the
DSW solution of the lead solitary wave velocity Vs for Regimes 1, 2 and 3. Numerical
solution: orange boxes; analytical solution: blue (solid) line; DSW fitting method
solutions: green (dash-dot) line. Here, u− = 1.0, ν = 200 and q = 2. (Online version
in colour.)
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Figure 6.5: Comparisons between numerical solutions of the nematic equations and
the DSW solution of the trailing edge velocity si for Regimes 1, 2 and 3. Numerical
solution: orange boxes; analytical solution: blue (solid) line; DSW fitting method
solutions: green (dash-dot) line. Here, u− = 1.0, ν = 200 and q = 2. (Online version
in colour.)
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Figure 6.6: Comparisons between numerical solutions of the nematic equations (2.19)
and (2.20) and the solution of the resonant wavetrain height Hr for the CDSW, TDSW
and VDSW regimes. Numerical solution: orange boxes; analytical solution: blue (solid)
line. Here, u− = 1.0, ν = 200 and q = 2. (Online version in colour.)
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Figure 6.7: Comparisons between numerical solutions of the nematic equations (2.19)
and (2.20) and the solution of the resonant wavetrain background ūr for the CDSW,
TDSW and VDSW regimes. Numerical solution: orange boxes; analytical solution:
blue (solid) line. Here, u− = 1.0, ν = 200 and q = 2. (Online version in colour.)
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Figure 6.8: Comparisons between numerical solutions of the nematic equations (2.19)
and (2.20) and the solution of the resonant wavetrain wavenumber kr for the CDSW,
TDSW and VDSW regimes. Numerical solution: orange boxes; analytical solution:
blue (solid) line. The gray (shaded) region is the region (4.100) of the stability for the
resonance. Here, u− = 1.0, ν = 200 and q = 2. (Online version in colour.)
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Figure 6.9: Shock velocity Ushock in the TDSW and VDSW regime as given by numer-
ical solutions of the nematic equations (2.19) and (2.20) and the TDSW and VDSW
regime solutions. Numerical solution: orange boxes; analytical solution: blue (solid)
line. Here, u− = 1.0, ν = 200 and q = 2. (Online version in colour.)
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Chapter 7

Conclusions and Future Work

7.1 Summary of Research

Dispersive shock wave (DSW) solutions of the nematic equations (2.19) and (2.20) have
been found in the high non-locality limit ν � 1, which is the experimentally relevant
limit [5, 74]. It has been found that there are five distinct dispersive hydrodynamic
regimes and one non-dispersive hydrodynamic regime, see Figures 3.2 to 3.7. In contrast
to previous work [60, 61], the solutions in these six regimes were found based on different
asymptotic and approximate techniques appropriate for each regime. The work of [60]
assumed that the DSW was of KdV type in all regimes, except the dam break case,
while that of [61] assumed that the DSW solution was determined by a gas dynamics
type shock, except in the dam break case. The present work shows that the nematic
DSW is more complicated than this, with the PDSW and RDSW regimes consisting
of (perturbed) KdV-type DSWs and the TDSW and VDSW regimes being determined
by Whitham shocks in the appropriate Whitham modulation equations. The CDSW
regime is a transition between these two broad types. One novel feature of the present
work is the use of Whitham shocks for Whitham modulation equations, as pioneered
by [81], validating ideas of Whitham [1, 82] when he first developed modulation theory.
The nematic DSW shows a wider range of behaviours and solution types than the
equivalent resonant Kawahara DSW [79, 80]. The DSW solutions for all six regimes
show excellent agreement with numerical solutions for the DSW itself (when it exists),
the resonant wavetrain (when it exists) and the intermediate level linking the backwards
propagating expansion wave with the DSW or Whitham shock. The only exception is
for the wavenumber of the resonant wavetrain when this wavetrain is unstable, as would
be expected.

As stated, the present work obtained solutions for the nematic DSW in the highly
non-local limit ν � 1. As can be seen from Figures , 5.4 and 5.5 the form of the DSW
is highly dependent on the value of ν. Indeed, the nematic equations (2.19) and (2.20)
reduce to the defocusing NLS equation for ν = 0 and a perturbed defocusing NLS
equation for ν small, for which there is no resonance. It is then of interest to study
the transition from the highly non-local case to the local case with ν small. In this
regard, the DSW changes from resonant to non-resonant, as indicated by the change of
sign of the third derivative of the small deviation KdV reduction (5.70) of the nematic
equations.

Most of the solutions for the DSW types derived here have been based to a greater
or lesser degree on Whitham modulation equations for the periodic wave solution of the
nematic equations. Unfortunately, this periodic wave solution is not known in general
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and a weakly non-linear Stokes’ wave approximation was used. While this generally
gave satisfactory results, the Whitham modulation equations based on it gave incorrect
modulational stability when the wave amplitude was not small. Whether these weakly
non-linear modulation equations can be improved on is not clear.

The nematic system (2.19) and (2.20) is general and applies to other non-linear,
non-local optical media. In particular, for optical thermal media q = 0 in the director
equation (2.20), in which case θ is the temperature of the medium. In this limit, |u|
constant ceases to be a valid solution of the system, so that the step initial condition
(2.29) does not result in an expansion wave and DSW being generated between constant
initial levels u− and u+. The form of a DSW for q = 0 is an open question.

In summary, while the form of the DSW in the highly non-local limit has been
largely resolved, there are still many open questions in regard to DSW solutions of the
nematic system for general non-locality and other parameter values.

7.2 Ongoing and Future Research

One research project that is going on at the present time is the study of the transi-
tions from non-local to local DSW regimes in a defocusing nematic liquid crystal as
the non-locality ν decreases, noting that for ν = 0 the nematic equations reduce to
the defocusing NLS equation [186]. The objectives of this research are the following.
One objective is to determine theoretically the borderlines between KdV-type nematic
DSWs and NLS-type nematic DSWs in terms of the non-locality parameter ν and
make comparisons with numerical borderlines. As the non-locality effect decreases,
a new regime that we term a “resonant NLS DSW” appears. This is due to change
in sign of the third derivative in the nematic Kawahara equation (5.70). This DSW
is similar to the nematic TDSW regime, but without the Whitham shock structure
(Figure 5.8) and the resonant radiation is fully stable and of short width relative to
the partial DSW ahead bringing the solution down to the level ahead u+. The next
objective is to understand the structure of this new regime and this can be achieved
by using Whitham’s modulation theory on the nematic equations in the local limit.
In the local limit, moreover, the partial DSW becomes fully stable, unlike the DSW
shown in Figure 5.11(a) and more like the DSW shown in Figure 5.11(b). In this case,
the coefficient of the fifth derivative in the nematic Kawahara equation (5.70) can be
neglected because it becomes small as ν is not large. As a result, we have a standard
KdV equation governing the resonant DSW in the small jump limit. Since the KdV
equation is integrable, its Whitham modulation equations can be set in Riemann in-
variant form and the partial DSW problem can be found. This is another objective.
This project is in collaboration with Côme Houdeville, Timothy R. Marchant and Noel
F. Smyth. Another research project, which is more detailed, is the investigation of all
possible regimes that could arise in the defocusing regime of a nematic liquid crystal
when the initial jumps and the initial non-zero phases change simultaneously with the
non-locality ν. This leads to a large number of new hydrodynamic regimes. We also
plan to extend our study to two dimensional resonant nematic DSWs. These research
projects are in collaboration with Noel. F. Smyth.
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Appendix A

Published and In Preparation
Papers

• Saleh Baqer and Noel F. Smyth. Modulation theory and resonant regimes for dis-
persive shock waves in nematic liquid crystals. Physica D: Nonlinear Phenomena,
403, 132334 (2020). (doi:10.1016/j.physd.2020.132334)

• Saleh Baqer, Côme Houdeville, Noel F. Smyth and Timothy R. Marchant. Ne-
matic dispersive shock waves from nonlocal to local. In preparation (2020).
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