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ABSTRACT

Russell Arnold: Hamiltonian Shocks and Other Singular Fronts in
Hyperbolic Systems of Conservation Laws
(Under the direction of Roberto Camassa)

The nature of wave interaction in a continuum dynamical model may undergo a qualitative

change in certain asymptotic regimes, most notably when linearity or complete integrability is

introduced. This occurs in particular when the mKdV equation is used to model the unidirectional

dispersive dynamics of two layer shallow water fluid flow near a critical interfacial height. Motivated

by the symmetric properties of conjugate states which have been observed for the MCC equations

in the Boussinesq limit, this work elucidates a more subtle qualitative shift, residing purely in the

dispersionless reduction of a 2×2 system, which determines whether a Hamiltonian undercompressive

shock, representing a profile connecting two conjugate states, may interact with a continuous

background wave without producing a loss of regularity, which would take the form of a classical

dispersive shock. The resulting criterion is also related to an infinitude of conservation laws, drawing

a further parallel to the integrable case.

Then, motivated by the study of shallow water fluid flow, criteria are derived for the splitting of

corner points in the initial conditions of a solution to a one dimensional quasilinear hyperbolic system

of conservation laws. To this end, a distributional approach to moving singularities is elaborated.

Then the class of systems admitting solutions with persisting infinite derivatives is shown to coincide

with the class for which genuine nonlinearity does not hold uniformly and fails at such singular

points in particular. In both cases the application to problems in fluid flow is demonstrated in the

context of explicit solutions.
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v and u plotted on the horizontal and vertical axes respectively. The dotted lines are
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CHAPTER 1

Overview

This thesis presents new results in the theory of singular wave fronts for hyperbolic systems of

conservation laws and applications to stratified fluid flow. In this context, studying the "morphology

and evolution" [1] of nonlinear internal waves, including their interactions is an important step

towards understanding flow properties in the ocean [2, 3] which affect marine wild life habitats [4],

for example.

Traveling fronts of fixed form occur in the MCC model of strongly nonlinear dispersive two layer

stratified fluid flow, corresponding to the large width limit of flat solitary waves [5, 6, 7]. In this

context, as well as in the context of diffuse interfaces in liquid vapor mixtures, it has been pointed

out that these fronts in dispersively perturbed systems can be viewed as undercompressive shocks

[8, 9] (this connection has also been made in the theory of undercompressive shocks arising from

perturbations where dispersion and diffusion enter at the same scale [10]). Chapter 2 of this thesis

introduces a new general and systematic approach for understanding these shocks in the Hamiltonian

setting. In particular, the realization that the kinetic condition for these Hamiltonian shocks simply

amounts to a larger than usual set of Rankine-Hugoniot relations is used to place their study in a

self contained hyperbolic theory. The set of solutions considered to be ‘regular’ is enlarged to include

these shocks, expanding the scope of energy conserving wave dynamics that can be understood

hyperbolically, without recourse to Whitham modulation [11, 12]. The elementary algebraic tools

of classical hyperbolic theory are then leveraged to draw a connection between the existence of an

infinitude of independent Hamiltonian shock-conserved quantities and regular wave interactions,

i.e., interactions that do not lead to strong oscillations (classical dispersive shock formation). We

emphasize that, strictly speaking, the results of chapter 2 only pertain to discontinuous solutions

of hyperbolic systems and that to make the connection with the theory of dispersively perturbed

systems rigorous would be far beyond the scope of this thesis.

The subject of chapter 3 is continuous but non-smooth solutions of hyperbolic systems of

1



conservation laws. Discontinuous derivatives provide geometric markers tracking the evolution of

wavefronts between two distinct smooth profiles which meet continuously (but not smoothly). In

[13], an asymptotic approach is provided to study the case where one profile represents a quiescent

(flat) state and generalization to the non-quescient case is indicated. However, in the investigation

self similar solutions to the Airy shallow water system connected to a constant background as a

model for wetting of dry points [14, 15], explicit computations called attention to the splitting of

corner points for which the approach provided in [13] is not applicable. The computation of corner

position is accomplished in [16] using a distributional ansatz.

In chapter 3, the use of distributional ansatz to study corners is placed in a formal and general

context. From this, criteria for the splitting of corners (discontinuous derivative points) are found,

providing a qualified confirmation of a conjecture in [16]. Then, motivated again by phenomena

observed in the splicing of explicit self similar solutions to shallow water fluid flow, this time in the

case of two density stratified layers, the formal study of non-smooth continuous solutions concludes

with a proof that persistence of a vertical gradient may occur if and only if the system fails to be

genuinely nonlinear at some point.

In both chapters, the theoretical developments are complemented by revisitations of the physical

systems which motivated the study, with new tools in hand. Motivated in turn by the possession

of these theoretical tools, new explicit solutions are explored and new wave interaction scenarios

formulated for numerical simulations.

The numerical simulations of dispersive systems were carried out by Lingyun Ding and the

theoretical results of chapter 2 were developed in collaboration with Roberto Camassa, and those of

chapter 3 with Roberto Camassa, Gregorio Falqui, Giovanni Ortenzi and Marco Pedroni.
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CHAPTER 2

Hamiltonian shocks

2.1 Introduction

In this chapter, motivated by systems in dispersive hydrodynamics admitting heteroclynic

connections, known as conjugate state or kink solutions ([7, 17, 18, 19, 20, 21, 8, 22, 6], see also

below), we study a class of undercompressive shocks (see e.g. [23, 24, 10, 25]) satisfying an excess of

Rankine-Hugoniot conditions, including energy. Specifically, we consider a special class of shocks

(see Appendix A for the definition of shocks) for the hyperbolic quasilinear Hamiltonian system

Ut + (B∇H(U))x = 0, (2.1)

where U = (u1, u2, ..., un)T , B is a constant, symmetric and non-singular matrix, H is convex and

hyperbolicity requires that the eigenvalues of B∇2H(U) are real and distinct:

λ1 < λ2 < ... < λn. (2.2)

Because B is constant, such a Hamiltonian structure belongs to the class referred to as "canonical"

or "in flat coordinates" in the Russian literature (see e.g. [26]). For n = 1 we will use the short hand

u1 = u, and for n = 2 we shall write u1 = u and u2 = v.

The class of shocks which we study satisfy, in addition to the standard Rankine-Hugoniot

conditions

−s[U ] + [B∇H(U)] = 0, (2.3)

a further jump condition for the Hamiltonian density

−s[H] + [
1

2
∇HTB∇H] = 0 (2.4)

3



corresponding to the conservation law

Ht + (
1

2
∇H(U)TB∇H(U))x = 0 (2.5)

which is implied by (2.1) for strong solutions. Here square brackets denote jumps across a discontinuity

[U ] = Ur −Ul, (2.6)

where Ul and Ur are the left and right limits of U at a jump discontinuity and s is the shock speed.

We recall [10] that undercompressive shocks may occur in a hyperbolic system when certain

singularities occur that interrupt the Lax shock construction [27], in particular, when the condition

∇λk(U) · rk 6= 0, (2.7)

known as genuine nonlinearity, fails non-uniformly, where rk is the right eigenvector corresponding

to λk. We shall refer to this manilfold, the locus of

∇λk(U) · rk = 0, (2.8)

as the NGNL manifold. Undercompressive shocks are exceptional in that they are impinged upon by

exactly n characteristics while Lax shocks are impinged upon by n + 1 characteristics [27, 28] as

illustrated in figure 2.1 for n = 2 (see appendix A for a review of basic definitions and constructions

in hyperbolic systems of conservation laws). Thus the 2n variables Ul = (u1l , u
2
l , ..., u

n
l )T and

Ur = (u1r , u
2
r , ..., u

n
r )T may be subjected to n further constraints for the undercompressive case in

contrast to Lax shocks for which only n−1 constraints remain to be dictated by the Rankine-Hugoniot

conditions (2.3)(note: one constraint is eliminated by solving for s). Thus for undercompressive

shocks in the Hamiltonian system (2.1) an additional shock conservation law, i.e., Rankine-Hugoniot

condition, may be imposed. We recall that in the non-Hamiltonian case, a “kinetic condition”

which does not represent a Rankine-Hugoniot condition can be formulated to fully constrain an

undercompressive shock (see e.g. [24, 10]).

As alluded to above, the study of Hamiltonian shocks is motivated by certain wave behaviors in

4
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Figure 2.1: Characteristic diagrams are shown for (a) an undercompressive shock and (b) a lax shock
when n = 2. In the former case a total of n characteristic families impinge upon the shock while
for the latter case n+ 1 = 3 impingements occur. The dashed lines represent characteristics of the
1-family while the dotted lines represent those of the 2-family.

a dispersive system which may be expressed as a Hamiltonian perturbation of a hyperbolic system.

Following [29], we define a Hamiltonian perturbation of the hyperbolic system (2.1) to be the system

U ε
t +BδHε[U ε]x = 0, ε ≥ 0, (2.9)

where δ denotes the variational gradient,

Hε[U ] = H(U , εUx, ε
2Uxx, ε

3Uxxx, ...) (2.10)

and

H(U , 0, 0, 0, ...) = H(U). (2.11)

The perturbed system (2.9) also satisfies conservation of energy:

Hε[U ε]t + F ε[U ε]x = 0 (2.12)

where

F ε[U ] = F(U , εUx, ε
2Uxx, ε

3Uxxx, ...) (2.13)

5



and

F(U , 0) =
1

2
∇H(U)TB∇H(U). (2.14)

The system (2.9) is homogeneous in ε in the sense that U ε satisfies (2.9) if and only if

U ε(x, t) = U1(x/ε, t/ε) (2.15)

for some U1 which solves (2.9) with ε = 1, when ε > 0.

We recall that a kink is a traveling wave solution of (2.9):

U ε(x, t) = V ε(x− st) = V 1

(
x− st
ε

)
, (2.16)

for which

lim
ξ→−∞

V 1(ξ) = Ul (2.17)

and

lim
ξ→∞

V 1(ξ) = Ur. (2.18)

Integrating (2.9) and (2.12) shows that the left and right states Ul, Ur and the propagation speed s

satisfy the Hamiltonian shock conditions (2.3) and (2.4):

0 =

∫ ∞
−∞

∂

∂t
V 1(x− st) +

∂

∂x
BδH1[V 1(x− st)]dx (2.19)

=

∫ ∞
−∞

d

dξ

(
−sV 1(ξ) +BδH1[V 1(ξ)]

)
dξ (2.20)

= −s[U ] + [B∇H(U)] (2.21)

and similarly

0 =

∫ ∞
−∞

∂

∂t
H1[V 1(x− st)] +

∂

∂x
F 1[V 1(x− st)]dx (2.22)

=

∫ ∞
−∞

d

dξ

(
−sH1[V 1(ξ) + F 1[V 1(ξ)]

)
dξ (2.23)

= −s[H] + [
1

2
∇HTB∇H]. (2.24)
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Thus a Hamiltonian shocks is reached in the ε→ 0 limit.

In keeping with a common paradigm in the theory of shocks and perturbed systems (e.g.

[30, 31, 25, 10, 24]) we may (non-rigorously) view solutions containing Hamiltonian shocks as arising

from a matching problem where traveling wave dynamics dominate in a strip of thickness proportional

to ε which must be fitted into a solution outside of the strip, approximating to a continuous solution

of (2.1) as ε→ 0. In the dispersive case however, periodic traveling waves are typical and lead to

a strip with width independent of ε, and growing in time, known as a classical dispersive shock

wherein traveling wave dynamics dominate (see e.g. [12, 11, 32, 33, 34], or, for richer traveling wave

dynamics with higher order non-convex dispersion see [35]). Thus for the perturbed system (2.9),

kinks are exceptional in that they approximate to a jump in the dispersionless limit, in particular a

Hamiltonian shock by (2.22) and (2.19).

The present chapter seeks to address two natural question which arise in connection with

Hamiltonian shocks: i. Can conditions be delineated under which some class of initial conditions,

continuous except at a Hamiltonian shock, will evolve in such a way that this property is maintained?

alternatively: can conditions be found ensuring that a Hamiltonian shock will interact with a

continuous wave in such a way that gradient catastrophe does not occur? (section 2.2) and ii. can

an infinitude of shock conservation constraints be enforced? (section 2.3).

We restrict to the cases n = 1 and n = 2 (though we shall proceed with n left unconstrained

where possible in order to indicate how similar results can be obtained in larger systems as well),

and find that a necessary condition for i. is that the Hamiltonian shock map

Ur = Ũ(Ul), (2.25)

defined implicitly by the constraints (2.3) and (2.4), maps simple waves to simple waves. We shall

refer to systems (2.1) having this property as simple wave preserving. We also find a sufficient but

not necessary condition, namely the existence of a map sending Hamiltonian shocks to continuous

solutions of an auxilliary system. This provides a generalization of the map from a model of two

layer shallow water flow in the Boussinesq limit to the Airy system (see e.g. [36, 15] or below) which

was applied in connection to kinks in [17]. In this case characteristics pass through the Hamiltonian

shock unaffected and we refer to the system (2.1) as Hamiltonian shock symmetric.
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We shall see that the answers to question ii. closely parallel those of i., providing a link between

conservation laws and coherent wave interaction, reminiscent of the well known connection between

these properties for integrable systems. Violation of simple wave preservation places additional

differential constraints (linear PDEs) on conserved quantities beyond the n(n− 1)/2 that must be

satisfied by virtue of equation (2.1). For n > 2 the system of equations required for a conservation

law is already overdetermined (see e.g. [28]) and for n = 2 we show explicitly that only a finite

number of conserved quantities may be Hamiltonian shock conserved when simple wave preservation

fails. Furthermore, for the Hamiltonian shock symmetric case, any quantity conserved for strong

solutions of the auxiliary system can be pulled back to produce a Hamiltonian shock conserved

quantity. This produces an infinitude of Hamiltonian shock conservation laws in the two layer

Boussinesq case, for example.

We will see that an infinitude of Hamiltonian shock conserved quantities is a necessary condition

for integrability, as formulated by Dubrovin [29], for a perturbed system (2.9) admitting kinks.

Thus simple wave preservation and Hamiltonian shock symmetry can be viewed as intermediate

conditions between the integrable case and the generic non-integrable case, determined purely

from the hyperbolic reduction (note: we make no claim that this extends to arbitrary notions of

integrability).

The foregoing considerations indicate that gradient catastrophe in the interaction problem signals

the appearance of classical dispersive shocks (we emphasize again that, as with Whitham modulation

theory in the integrable case, the connection between the hyperbolic system and the perturbed

system is not rigorous). This is shown below in numerical simulations of systems from dispersive

hydrodynamics that do not satisfy the simple wave preserving property, namely a two layer shallow

water model with unequal densities, and a non-linear wave equation, in the class referred to as

Korteweg models in [22], which is a dispersive perturbation of an equation for a deformable medium

in Lagrangian coordinates. For the simple wave preserving case on the other hand, numerical

simulations of the interaction of a kink with a continuous wave for the Boussinesq (equal density)

limit of the two later model shows strong agreement with the corresponding analytically computed

Hamiltonian shock solution. This was also observed for the scalar case (which is trivially simple

wave preserving) in the study [20] which catalogued a comprehensive array of different types of

nonlinear wave interactions for the mKdV equation.
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2.2 Wave interaction

In this section we give the precise statement of the Hamiltonian shock interaction problem with

which we shall be concerned and demonstrate, for the cases n = 2 and n = 1, respectively, its relation

to simple wave preservation and Hamiltonian shock symmetry. Essentially, a Hamiltonian shock

enters from a quiescent state into a wave background that, evolving of its own accord would not

develop gradient catastrophe. We show that if simple waves are not preserved by the Hamiltonian

shock map then there will be initial conditions of this type for a solution at all times cannot be

defined without introducing Lax shocks (precise statement given in 2.2.2).

2.2.1 Set up

Ur

Ua Ub

x

U0
c(x)

U

x0ya yb

Ul

Ua

Ub

x

U0
c(x)

U

x0 ya yb

Figure 2.2: schematic of Initial conditions U c
0(x) and U0(x) in the slow undercompressive case and

fast undercompressive case, respectively.

We take U c
0(x) to be an initial condition giving rise to a strong solution U c(x, t) at all time

under the evolution of (2.1) with

U c
0(x) = Ua, x < yl, (2.26)

U c
0(x) = Ub, yr < x (2.27)

where yl < yr. The simplest non-trivial example is a centered simple wave (see appendix A). Then

9



we construct initial conditions

U(x, 0) = U0(x) (2.28)

which will give a single Hamiltonian shock front interacting with the gradual wave produced by

U c(x, t).

The front may enter either from the right or from the left depending on whether the speed s

is slower or faster than the speed of propagation of the left boundary of the continuous wave or

slower than that of the right boundary (if neither holds then the shock does not interact with the

continuous wave). In the former case, we define

U0(x) =

 U c
0(x), x < x0

Ur, x0 ≤ x
(2.29)

with x0 > yr, and Ub = Ul and Ur satisfying the Rankine-Hugoniot conditions (2.3) and (2.4). This

case is known as a slow undercompressive shock (see e.g. [10] or appendix C) because

s < λk(Ul), λk(Ur) (2.30)

where λk is the characteristic speed of the family which propagates the boundary of the non-constant

region for U c to the right. Similarly for the latter case:

U0(x) =

 Ul, x ≤ x0

U c
0(x), x0 < x

(2.31)

with x0 < yl, and Ua = Ur and Ul, again, satisfying (2.3) and (2.4). This shock is known as fast

undercompressive since

s > λk(Ul), λk(Ur). (2.32)

2.2.2 Interaction

We refer solution of (2.1) with initial data (2.31)/(2.29) continuous, except at a moving point

x = s(t) (2.33)
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with s(0) = x0 at which a Hamiltonian shock with speed

s′(t) = s (2.34)

is present, as a continuity preserving Hamiltonian shock interaction. We seek necessary conditions on

the system (2.1) for all such initial value problems to give rise to continuity preserving Hamiltonian

shock interactions.

At this point we restrict to the case n = 2 so that we may make use of Riemann invariants,

though we conjecture that the presence of Riemann invariants is not necessary for the conclusions of

this section to hold. We shall now need to distinguish between three different cases:

i. λ1 < λ2 < s

ii. λ1 < s < λ2

iii. s < λ1 < λ2.

We refer to case i. as a strictly fast, case ii. as fast-slow, and case iii. as strictly slow. We shall need

the following lemma

Lemma. Take points (ul, vl) and (ur, vr) related by (2.3) and (2.4) and assume that both points

contain neighborhoods for which the change to Riemann invariants: (u, v) 7→ (φ1(u, v), φ2(u, v)) is

a diffeomorphism. Furthermore, assume H is convex. Then (φ1l , φ
2
l ) = (φ1(ul, vl), φ

2(ul, vl)) and

(φ1r , φ
2
r) = (φ1(ur, vr), φ

2(ur, vr)) are related by diffeomorphism

(φ1r , φ
2
r) = (φ̃1(φ1l , φ

2
l ), φ̃

2(φ1l , φ
2
l )). (2.35)

Proof. Let

Ω(Ul,Ur, s) = −s

[U ]

[H]

+

 [B∇H]

[12∇H
TB∇H].

 (2.36)

Then the simultaneous satisfaction of (2.3) and (2.4) can be expressed by

Ω(Ul,Ur, s) = 0. (2.37)
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We compute

∂Ω

∂(ul, vl)
=

 I

∇H(Ul)

 (sI −B∇2H(Ul)) (2.38)

where I is the 2× 2 identity matrix, and

∂Ω

∂(ul, vl)
=

 I

∇H(Ur)

 (sI −B∇2H(Ur)), (2.39)

and

∂Ω

∂s
= −

[U ]

[H]

 . (2.40)

Thus if

Ω̃(φ1l , φ
2
l , φ

1
r , φ

2
r , s) = Ω(U(φ1l , φ

2
l ),U(φ1r , φ

2
r), s) (2.41)

then

∂Ω̃

∂(ul, vl)
=

 I

∇H(Ul)

 (sI −B∇2H(Ul))
∂U

∂(φ1l , φ
2
l )
, (2.42)

∂Ω̃

∂(ul, vl)
=

 I

∇H(Ur)

 (sI −B∇2H(Ur))
∂U

∂(φ1r , φ
2
r)
, (2.43)

and

∂Ω̃

∂s
= −

[U ]

[H]

 . (2.44)

The lemma will follow from the implicit function theorem if we may show that

∂Ω̃

∂ur
,
∂Ω̃

∂vr
and

∂Ω̃

∂s
(2.45)

are linearly independent. Let V1 and V2 be the columns

(V1,V2) = (sI −B∇2H(Ur))
∂U

∂(φ1r , φ
2
r)
. (2.46)
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Then a dependence between the vectors in (2.45) takes the form

[U ] = αV1 + βV2, (2.47)

[H] = ∇H(Ur)
T (αV1 + βV2). (2.48)

These may be combined to obtain

H(Ur) +∇H(Ur)
T (Ul −Ur) (2.49)

which contradicts convexity. Thus the dependence (2.45) must not hold and the lemma follows.

The main result of this section is split into two cases. We start with the strictly fast/strictly

slow case.

Theorem. Assume that a system (2.1) of two equations for which the initial value problem for

(2.1) with initial data (2.31)/ (2.29) always gives rise to a continuity preserving Hamiltonian shock

interaction. Assume that this system admits strictly fast or strictly slow Hamiltonian shocks. Also

make two non-degeneracy assumptions at a point (ua, va), (uq, vq) = (ũ(ua, va), ṽ(ua, va)): (i) that the

system (2.1) is genuinely non-linear within sufficiently small neighborhoods of (ua, va) and (uq, vq),

and (ii) that the shock connecting (ua, va) and (uq, vq) is not a contact discontinuity, i.e., the speed s

is not an eigenvalue of B∇2H(ua, va) or B∇2H(uq, vq).

Then the Hamiltonian shock map Ũ is simple wave preserving, i.e., level sets of the Riemann

invariants (see Appendix A) φj, j = 1, 2, are mapped to the same.

Proof. We begin by changing coordinates to the Riemann invariant form

Φ(U) =

φ1(U)

φ2(U)

 (2.50)

in which we express the Hamiltonian shock map by

Φ̃(Φ(U)) = Φ(Ũ(U)). (2.51)

13



By genuine nonlinearity, Φ can be defined in such a way that (see e.g. [28])

∂λj
∂φj

> 0, (2.52)

j = 1, 2. Then for continuity of the solution to hold at all times, it is necessary [37] and sufficient

[38] that φ1 and φ2 are non-decreasing. Thus the initial conditions leading to continuous solutions

at all times,

Φc
0 = Φ(U c

0) (2.53)

satisfy this property. For the solution to be continuous except at the Hamiltonian shock curve

x = s(t), this condition must be satisfied away from this curve. We proceed to show that if simple

wave preservation does not hold then there will exist initial conditions having non-decreasing Riemann

invariants which lead, after interaction, to a solution which has decreasing Riemann invariants. Thus

such a system will not be continuity preserving.

Plugging (2.26) and (2.27) into Φ we may write

Φc
0(x) =

φ1a
φ2a

 , x < ya, (2.54)

and

Φc
0(x) =

φ1b
φ2b

 , x > yb. (2.55)

For 1-simple wave solutions φ2b = φ2a and for 2-simple wave solutions φ1b = φ1a. In any case, the

requirement for continuity is that

φ1a < φ1b (2.56)

and

φ2a < φ2b . (2.57)

A fundamental property of the Riemann invariants φj is that they are constant on the corre-

sponding characteristics

φj(χj(t; ξ), t) = φj(ξ, 0) (2.58)
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where
dχj
dt

= λj , χj(0; ξ) = ξ. (2.59)

Thus the values of Φ on the left and right sides of the jump at x = s(t) may be determined by

considering which characteristics impinge upon the shock. In particular, the distance between the

shock and a characteristic starting at ξ is

|χj(t; ξ)− s(t)| = |ξ − x0 +

∫ t

0
(λj − s)dt| (2.60)

(we have omitted the dependence of s and λj).

We shall now focus on the strictly fast case since the strictly slow case is proven by symmetric

but otherwise identical reasoning. We take the inequality λ1 < λ2 < s characterizing this case to be

uniform in the sense that

s− λ2, λ2 − λ1 > m. (2.61)

This can be achieved by taking Φb sufficiently close to Φa since it follows from Lemma 2.2.2 that the

codomain of the solution, consisting of neighborhoods of Φa and Φq, depends continuously on the

difference between Φb and Φa. In particular, the solution must lie within the union of the rectangles

(φ1a, φ
1
b)× (φ2a, φ

2
b) ∪ (φ̃1a, φ̃

1
b)× (φ̃2a, φ̃

2
b) (2.62)

where φ̃1a = φ̃(φ1a, φ
2
a), etc.

We set

Φl = Φ̃(Φa) (2.63)

(cf. figure 2.2). Then for ξ > x0,

χj(t; ξ)− s(t) = ξ − x0 +

∫ t

0
(λj − s)dt (2.64)

≤ ξ − x0 −mt (2.65)

which vanishes for some t. According to the constancy of Riemann invariants along characteristics

(equation (2.58)), this implies that for t sufficiently large, the value of Φ on the right side of the
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shock will be given by

Φ(s(t)+, t) = Φb (2.66)

and on the left side by

Φ(s(t)−, t) = Φ̃(Φb) (2.67)

Now in order for the Riemann invariants to be non-decreasing on the left side of the shock (which

is required for continuity as noted in the beginning of the proof), it must be the case that

φ1l = φ̃1(φ1a, φ
2
a) < φ̃1(φ1b , φ

2
b) (2.68)

and

φ2l = φ̃2(φ1a, φ
2
a) < φ̃2(φ1b , φ

2
b). (2.69)

Since Φb may be taken arbitrarily close to Φa and because equations (2.56) and (2.57) must hold,

the elements of the Jacobian
∂φ̃i

∂φj
≥ 0 (2.70)

for i, j = 1, 2. However, because the Hamiltonian shocks are reversible (unlike classical shocks) the

roles of Φa and Φl may be switched. Then identical reasoning leads to the conclusion that the

components of the inverse Jacobian satisfy

∂φj

∂φ̃i
≥ 0. (2.71)

It is only possible to simultaneously enforce these order relations for the Jacobian (equation (2.70))

and its inverse (equation (2.71)), if it is diagonal or off diagonal, which in either case implies that

level sets of Riemann invariants are mapped to level sets of Riemann invariants and thus simple

waves are preserved.

For the fast-slow case, the proof follows from similar reasoning except that an additional solvability

assumption is needed, namely that given φ1l and φ2r, φ1r and φ2l satisfying (2.3) and (2.4) can be

solved for continuously. For the strictly fast and strictly slow cases, solvability is guaranteed by

Lemma (2.2.2). In the fast-slow case however, the implicit function theorem argument does not lead
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to a contradiction to convexity. Thus we include the solvability assumption in the general case where

strictly slow or strictly fast Hamiltonian shocks may not exist.

Theorem. Assume that a system (2.1) of two equations for which the initial value problem for

(2.1) with initial data (2.31)/ (2.29) always gives rise to a continuity preserving Hamiltonian shock

interaction. Assume further that if φ1l and φ2r are fixed, (2.3) and (2.4), may be solved smoothly for

φ1r and φ2l or vice versa, i.e., there exists a diffeomorphism

(φ1l , φ
2
r) 7→ (φ1r , φ

2
l ), (2.72)

which we denote by

(φ1r , φ
2
l ) = (φ̂1(φ1l , φ

2
r), φ̂

2(φ1l , φ
2
r)). (2.73)

Also make two non-degeneracy assumptions at a point (ua, va), (uq, vq) = (ũ(ua, va), ṽ(ua, va)): (i)

that the system (2.1) is genuinely non-linear within sufficiently small neighborhoods of (ua, va) and

(uq, vq), and (ii) that the shock connecting (ua, va) and (uq, vq) is not a contact discontinuity, i.e.,

the speed s is not an eigenvalue of B∇2H(ua, va) or B∇2H(uq, vq).

Then the Hamiltonian shock map Ũ is simple wave preserving, i.e., level sets of the Riemann

invariants (see Appendix A) φj, j = 1, 2, are mapped to the same.

Proof. We only need to prove the theorem for the case where only fast-slow Hamiltonian shocks

occur since otherwise it follows immediately from Theorem 2.2.2. This time, for concreteness, we

consider interactions with simple waves, starting with the 1-simple wave case φ2b = φ2a. Reasoning

analogous to (2.64) applied to the order relation

λ1 < s < λ2 (2.74)

for fast-slow Hamiltonian shocks shows that 2-characteristics impinge upon the shock curve x = s(t)

from the left and 1-characteristics from the right. In particular, a Hamiltonian shock enters on the

right for a 1-simple wave, in which case we have

φ2(s(t)−, t) = φ2l = φ̃2(φ1a, φ
2
a) (2.75)
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and

φ1(s(t)+, t) = φ1b . (2.76)

Appealing again to the requirement for continuity, that Riemann invariants increase from left to

right, we must have

φ1l ≤ φ̂1 (2.77)

and

φ̂2 ≤ φ2b = φ2a. (2.78)

Returning to regarding the value of the solution on the left side of the shock in terms of the

function Φ applied to the solution on the right side, we have φ̃2 = φ2l on the left remaining fixed,

φ̃1 on the left increasing along x = s(t) through the course of the interaction (t increasing) and φ1

increasing on the right while φ2 decreases on the right. This may be expressed as

∂φ1

∂φ̃1
≥ 0,

∂φ2

∂φ̃1
≤ 0. (2.79)

Symmetric reasoning for the 2-simple wave case yields

∂φ2

∂φ̃1
≤ 0,

∂φ2

∂φ̃2
≥ 0. (2.80)

As before, the roles of Φa and Φl may be reversed (Φa and Φr in the 2-simple wave case), to

conclude that
∂φ̃1

∂φ1
≥ 0,

∂φ̃2

∂φ1
≤ 0, (2.81)

∂φ̃2

∂φ1
≤ 0,

∂φ̃2

∂φ2
≥ 0. (2.82)

Again, these order relations for the Jacobian and its inverse may only hold if the Jacobian is diagonal

or off-diagonal and thus simple wave preserving.

Thus far we have discussed necessary conditions for the maintenance of continuity under Hamil-

tonian shock interaction. In the following subsections we consider two cases where Hamiltonian

shock interactions are guaranteed to be continuity preserving.
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U(Uc(x,t))
~

Figure 2.3: Schematic showning a Hamiltonian shock moving through without affecting the charac-
teristic structure.

2.2.3 Hamiltonian shock symmetric case

In the Hamiltonian shock symmetric case, the system (2.1) is equivalent to a hyperbolic system

Wt +A(W )Wx = 0 (2.83)

with

W (Ũ(U)) = W (U). (2.84)

The function W (U c(x, t)) is a solution to this system, continuous at all time and a Hamiltonian

shock solution may be obtained by splicing together two branches of its inverse across a Hamiltonian

shock curve

U(x, t) =

 U c(x, t), x ≤ s(t)

Ũ(U c(x, t)), s(t) < x.
(2.85)

In this case s is found by solving the ODE

s′(t) = s(U c(s(t), t), Ũ(U c(s(t), t))), s(0) = x0. (2.86)

The characteristic diagram is shown in figure 2.3.
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2.2.4 Scalar case

For a scalar law (2.1) with n = 1,

ut +H ′(u)x = 0, (2.87)

the initial value problem with boundary data

u(s(t), t) = ũ(uc(s(t), t)), (2.88)

given by the Hamiltonian shock map along the shock curve can be solved by the method of

characteristics. We now show that gradient catastrophe will not be induced by Hamiltonian shock

interaction. This demonstrates that Hamiltonian shock symmetry is not a necessary condition for

this property, as it is easy to see that not all scalar laws are Hamiltonian shock symmetric.

First we recall that for the continuous state uc solving (2.87) with initial condition

uc(x, 0) = uc0(x) (2.89)

is given by

uc(x0 + tH ′′(uc0(x0)), t) = uc0(x0), (2.90)

and the continuity requirement holds if and only if none of the characteristic lines cross:

x1 + tH ′′(uc0(x1)) 6= x2 + tH ′′(uc0(x2)) (2.91)

for x1 6= x2 any t > 0. This in turn holds if and only if (see e.g. [13])

H ′′′(uc0(x0))u
c
0(x0)

′ > 0 (2.92)

for all x0. Similarly, the solution after interaction is given by

u(s(τ) + tH ′′(ũ(uc(s(τ), t))), t) = ũ(uc(s(τ), τ)) (2.93)

20



where as before ũ(u) is a right state to which the left state u can be connected by a Hamiltonian

shock. For the fast case, the characteristics emanate from the left of the interaction curve x = s(τ)

so in order to prevent crossing, the slope H ′′ must be increasing in τ (see figure 2.4):

0 < H ′′′(ũ(uc))ũ′(uc)(uct + sucx) (2.94)

= H ′′′(ũ(uc))ũ′(uc)(s−H ′′(uc))ucx. (2.95)

By continuity of uc we must have

0 < H ′′′(uc)(uct + sucx) (2.96)

and under the assumption that a single NGN point lies between ũ(uc) and uc, H ′′′(ũ(uc)) has the

sign opposite to H ′′′(uc). Furthermore, by equation (2.154) below, we have ũ′(uc) < 0 and by fast

undercompressivity,

s−H ′′(ũ(uc)) > 0 (2.97)

so (2.96) holds. The slow case follows in the same way except that (2.96) is reversed because the

characteristics emanate from the right of the interaction curve:

0 > H ′′′(ũ(uc))ũ′(uc)(uct + sucx) (2.98)

= H ′′′(ũ(uc))ũ′(uc)(s−H ′′(uc))ucx. (2.99)

which follows by applying slow undercompressivity, replacing (2.97) with

H ′′(uc)− s > 0. (2.100)

In appendix D, we demonstrate the same procedure for a classical undercompressive shock.

2.3 Additional conserved quantities

In this section we consider conservation laws

G(U)t +M(U)x = 0 (2.101)
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Figure 2.4: Schematics for a Hamiltonian shock interaction in the scalar case. The left panel shows
a slow undercompressive shock, along which the slope of the characteristics must decrease and the
right a fast undercompressive shock, along which the slope of the characteristics must increase.

which hold for the evolution of (2.1) and which, furthermore, satisfy Rankine-Hugoniot jump

conditions:

−s[G] + [M ] = 0 (2.102)

across a Hamiltonian shock. These conservation laws may arise in the dispersionless limit from local

conserved quantities Gε of equation (2.9):

Gε[U ε, ε]t +M ε[U ε, ε]x = 0, (2.103)

in the same fashion as was discussed for conservation of energy in the introduction. For the

dispersively perturbed system (2.9) to be integrable in the sense of Dubrovin (see e.g. [39] or [29]) it

is necessary (though not sufficient) that an infinite number of independent conservation laws of the

form (2.101) for the Hamiltonian hyperbolic system (2.1) exist arising as dispersionless reductions of

conservation laws of the form (2.103) for the evolution of the perturbed system (2.9).

In this section we show that Ũ must be simple wave preserving in order for an infinitude of

Hamiltonian shock conserved quantities to exist in the case of n=2. The argument we will use applies

to n > 2 as well by producing additional PDEs that G must satisfy in addition to (2.101), however,

we do not provide explicit proof in the latter case that the resulting overdetermined system only has

trivial solutions. For the case n = 1 on the other hand, we show that an infinitude of independent

conservation laws will always exist by explicit construction.
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2.3.1 Jump conditions from Hamiltonian symmetries

Impulse conservation and flow force balance We begin by recalling one additional conserva-

tion law beyond u1, u2, ..., un and Hε[U ] which can always be found, namely the impulse defined

by

I =
1

2
UTB−1U . (2.104)

For the disperionless reduction (2.1), this conservation law takes the form

(
1

2
UTB−1U)t + (UT∇H −H)x = 0 (2.105)

with corresponding jump conditions

−s[1
2
UTB−1U ] + [UT∇H −H] = 0. (2.106)

We can see from direct computation that (2.106) implies conservation of energy (2.4) since (2.3)

implies that

(−sUr +B∇Hr)
TB−1(−sUr +B∇Hr) = (−sUl +B∇Hl)

TB−1(−sUl +B∇Hl) (2.107)

so

s2[UTB−1U ]− 2s[∇HTU ] + [∇HTB∇H] = 0 (2.108)

which yields

−s[H] + [
1

2
∇HTB∇H] = s(−s[1

2
UTB−1U ] + [UT∇H −H]). (2.109)

Remark. The quantity

−s[1
2
UTB−1U ] + [UT∇H −H] (2.110)

arising in the above computation is referred to in [40] as the "flow force", a title justified physically

by equation (2.109) in which the latter can be interpreted as introducing external work done on the

system.
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Hamiltonian shock symmetry conditions As was illustrated in the impulse case, for G to be

conserved across a Hamiltonian shock, its jump conditions (2.102) must depend on the extended

Rankine-Hugoniot conditions (2.3) and (2.4). So, leaving s free now for convenience, if the map

Φ : IR2n+1 → IRn+2 is defined by

Φ(Ul,Ur, s) = −s


[U ]

[H]

[G]

+


[B∇H]

[12∇H
TB∇H]

[M ]

 (2.111)

in block matrix form, then its differential, also in block matrix form:

(
ΦUl

ΦUr Φs

)
, (2.112)

must have rank n+ 1 by the implicit function theorem. The vector valued partial derivatives are

given by:

ΦUr = −s


I

∇HT
r

∇GTr

+


B∇2Hr

∇HT
r B∇2Hr

∇GTr B∇2Hr

 =


I

∇HT
r

∇GTr

 (B∇2Hr − sI), (2.113)

ΦUl
= s


I

∇HT
l

∇GTl

−


B∇2Hl

∇HT
r B∇2Hl

∇GTr B∇2Hl

 = −


I

∇HT
l

∇GTl

 (B∇2Hl − sI), (2.114)

and

Φs = −


[U ]

[H]

[G]

 (2.115)

where I is the n× n identity matrix. As long as s is not an eigenvalue of each side, i.e. the shock is

not a contact discontinuity, the latter matrix is column equivalent to the block matrix


I I [U ]

∇HT
l ∇HT

r [H]

∇GTl ∇GTr [G]

 . (2.116)
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Multiplying on the right by the non-singular matrix,


I −I −Ul

0 I Ur

0 0 −1

 , (2.117)

the matrix (2.112) is, furthermore, column equivalent to


I 0 0

∇HT
l [∇HT ] [∇HTU −H]

∇GTl [∇GT ] [∇GTU −G]

 (2.118)

where zero matrices are given appropriate dimensions of n× n, 1× n, n× 1 or 1× 1 depending on

the context. The dimensional restriction dictated by the implicit function theorem implies that the

2× (n+ 1) matrix in the bottom has rank 1. This immediately produces a set of jump conditions

for G which do not require the explicit form of M to be known:

−σ[U ] + [B · ∇G] = 0, (2.119)

and

−σ[
1

2
UTB−1U ] + [UT∇G−G] = 0, (2.120)

and by a manipulation mirroring the flow force balance (2.109):

−σ[G] + [
1

2
∇GTB∇G] = 0. (2.121)

From the foregoing, an analogy may be seen with the theory of Hamiltonian symmetries. Any

quantity G conserved for strong solutions of (2.1) satisfies

B∇2HB∇2G−B∇2GB∇2H = 0 (2.122)
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and correspondingly, the evolution of

Uτ +B∇G(U)x = 0, (2.123)

under τ commutes with that of (2.1) under t (see e.g. [41] or [40]). The latter system has further

conservation laws for G and S:

Gτ + (∇GTB∇G)x = 0, (2.124)

and

(
1

2
UTB−1U)τ + (UT∇G−G)x = 0 (2.125)

for which (2.119), (2.121) and (2.120) are the state, energy and impulse Rankine-Hugoniot conditions

for Hamiltonian shocks corresponding to (2.3), (2.4) and (2.106). Thus the well known comutatitvity

of flows for Hamiltonian systems extends also to Hamiltonian shocks.

2.3.2 Overdetermined system

We now find an overdetermined system on conserved quantities G that are Hamiltonian shock

conserved, i.e. satisfy the Rankine-Hugoniot condition (2.102) or, equivalently, the jump conditions

of the form (2.119), (2.120), (2.121) arising from the Hamiltonian flow generated by G. We set

Ul = U , and Ur = Ũ(U). (2.126)

Then differentiating the jump conditions (2.119) and (2.120) with respect to U yields

−[U ]∇σT + (B∇2Gr − σI)J − (B∇2Gl − σI) = 0 (2.127)

and

−[
1

2
UTB−1U ]∇σT + UT

r B
−1(B∇2Gr − σI)J −UT

l B
−1(B∇2Gl − σI) = 0 (2.128)

where J is the matrix of partial derivatives of Ũ .

We may assume that [12U
TB−1U ] does not vanish, since if it does we may transform the system
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(2.1) by U → U + C where C is a constant shift. Then we may solve (2.128) for ∇σT :

∇σT =
1

[12U
TB−1U ]

(
UT
r B
−1(B∇2Gr − σI)J −UT

l B
−1(B∇2Gl − σI)

)
. (2.129)

Plugging this into (2.127) gives

Yr(B∇2Gr − σI)J = Yl(B∇2Gl − σI) (2.130)

where

Yr = [
1

2
UTB−1U ]I − [U ]UT

r B
−1 (2.131)

and

Yl = [
1

2
UTB−1U ]I − [U ]UT

l B
−1. (2.132)

We rearrange to obtain

B∇2Gr − σI = W (B∇2Gl − σI)J−1 (2.133)

where W = Y −1r Yl and we have assumed that Yr is invertible which is implied by convexity of H

(see appendix C).

Let Pr be the matrix of right eigenvectors for B∇2Gr which, by the commutation relation (2.122),

is also that of B∇2Hr and thus can be computed independently of G. We therefore diagonalize

(2.133):

Λr − σI = P−1r W (B∇2Gl − σI)J−1Pr (2.134)

or equivalently

Λr + σ(P−1r WJ−1Pr − I) = P−1r WB∇2GlJ
−1Pr, (2.135)

where Λr is the diagonalization of B∇2Gr. There are two cases to consider: either P−1r WJ−1Pr has an

off-diagonal entry which implies that σ may be expressed linearly in terms of the coefficients of ∇2Gl

since the terms with an explicit right side dependence dwell on the diagonal, or else D = P−1r WJ−1Pr

is a diagonal matrix. In the former case (2.130) can be plugged into (2.129) to obtain a linear PDE

that G must satisfy in addition to (2.122) causing the system to be overdetermined even in the 2× 2

case. This can be expected to rule out Hamiltonian shock conservation laws beyond the span of the
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naturally given: (2.1), (2.5) and (2.105), as will be shown explicitly below for the 2× 2 case. In the

case where σ cannot be thus solved,

D = P−1r WJ−1Pr (2.136)

implies that

P−1r W = DP−1r J (2.137)

which, when substituted into (2.135), gives

Λr + σ(D − I) = D(J−1Pr)
−1B∇2Gl(J

−1Pr), (2.138)

i.e., B∇2Gl is diagonalized by J−1Pr which is therefore a matrix of right eigenvectors of B∇2Gl

and also B∇2Hl by the commutation relation (2.122). This may be summarized by the statement

that J−1 maps right eigenvectors on the right to right eigenvectors on the left and equivalently J

maps right eigenvectors on the left to right eigenvectors on the right. By the elementary theory of

ODEs, this holds if and only if Ũ maps simple waves to simple waves.

2.3.3 Systems of two conservation laws

We proceed to demonstrate how G can be constrained in the 2× 2 case with

B =

0 1

1 0

 . (2.139)

When P−1r WJ−1Pr is not diagonal, (2.134) can be solved for Gluv − σ in terms of Guu and Gvv.

However, for this Hamiltonian structure the commutativity relation (2.122) becomes

HuuGvv +HvvGuu = 0. (2.140)

So Gvv may be eliminated to obtain a relation of the form

σ = Guv + CGuu. (2.141)
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Then multiplying (2.127) on the left by [U ]T

[U ]T [U ]
and applying (2.130) and the relation

Yr − Yl = −[U ][U ]TB−1, (2.142)

we obtain

∇σT =
[U ]T

|[U ]|2
(Y −1r Yl − I)(B∇2Gl − σI) (2.143)

=
1

[u][v]([u]2 + [v]2)

(
[u] [v]

)[u][v] [u]2

[v]2 [u][v]


−CGuu Gvv

Guu −CGuu

 (2.144)

= Guu

(
1
[u]

1
[v]

)−C Hvv
Huu

1 −C

 (2.145)

from (2.140) (note: [v] = 0 or [u] = 0 would imply a violation of the convexity of H as shown in

appendix C). But (2.141) also implies that

∇σT =

Guuv + CuGuu + CGuuu

Guvv + CvGuu + CGuuv


T

(2.146)

=


 C 1

Hvv
Huu

C


Guuu
Guuv

+

 CuGuu

(Hvv
Huu

)uGuu + CvGuu



T

. (2.147)

Equation (2.141) is invariant under the choice of conservation law G. Taking G = H then gives

C =
s−Huv

Huu
(2.148)

which implies that  C 1

Hvv
Huu

C

 =
1

Huu

s−Huv Huu

Hvv s−Huv

 (2.149)

which has determinant (s −Huv)
2 −HuuHvv, vanishing exactly when s is a characteristic speed.

Thus if we again assume that the shock is not a contact discontinuity, we invert this matrix to arrive
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at

∇(logGuu)T =
1

Guu
(∇Guu)T (2.150)

=

( 1
[u]

1
[v]

)−C Hvv
Huu

1 −C

− (Cu (Hvv
Huu

)u + Cv

)
−C Hvv

Huu

1 −C


−1

(2.151)

which determines Guu up to a multiplicative factor. But from (2.140), we see that G is then also

determined up to a multiplicative factor and linear combination with of u, v and uv. Thus we have

proven the following Theorem

Theorem. Consider a 2 × 2 Hamiltonian system (2.3) admitting Hamiltonian shocks, which are

(generically) not contact discontinuities. If simple wave preservation fails then any conserved quantity

G satisfying (2.101) and the corresponding Rankine-Hugoniot condition (2.102) across Hamiltonian

shocks is given by

G = g1u+ g2v + g3uv + g4H (2.152)

where gi, i = 1, ..., 4 are constants.

2.3.4 Scalar case

For the scalar case a more direct approach is available which allows an infinite number of

Hamiltonian shock conserved quantities G to be found in all cases. The Hamiltonian jump conditions

(2.119) and (2.121) for the Hamiltonian symmetry generated by G, may be combined to obtain

[u][G′2]− [G][G′] = 0 (2.153)

and W = −1 so (2.133) becomes

ũ′(ul) = J = −
H ′′l − s
H ′′r − s

. (2.154)

If we assume for simplicity that the map ur = ũ(ul) has just one fixed point (which will always hold

locally) and we presecribe G(ur) = Gr(ur), for an arbitrary smooth function Gr having the right

side of this fixed point as its domain, we may find G(ul) on the other by solving the ODE

Gr(ũ(ul))− (ũ(ul)− ul)G′r(ũ(ul))/2 = G(ul)− (ul − ũ(ul))G
′(ul)/2. (2.155)
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For an example we consider the simplest case: when H is even. Then H is conserved across

ũ(ul) = −ul since [H] = 0, so its Rankine-Hugoniot conditions hold automatically. Plugging this

into (2.155):

Gr(−ul) + ulG
′
r(−ul) = G(ul)− ulG′(ul) (2.156)

which rearranges to

−u2l
d

dul
(
Gr(−ul)

ul
) = −u2l

d

dul
(
G(ul)

ul
) (2.157)

that is solved by

G(ul) = Gr(−ul) +Bul (2.158)

where B is an arbitrary constant. By enforcing continuous differentiability at ul = 0 we get

G(ul) = Gr(−ul) = G(−ul) (2.159)

which shows that G is conserved across Hamiltonian shocks for even H when G is also even, assuming

ũ has only one fixed point.

2.4 Applications

In this section several examples admitting Hamiltonian shocks are considered and interactions

of a kink with a rarefaction wave are numerically simulated. The presence or absence of classical

dispersive shock generation in the interactions are in agreement with the theory. For the latter case

the position of the kink and the evolution of the wave profile align with the analytic Hamiltonian

shock computation.

2.4.1 Korteweg Models

The nonlinear wave equation

u
v


t

+

 −v

−Σ(u)


x

= 0 (2.160)

arises in the description of a continuum system in Lagrangian coordinates. In this context, un-

dercompressive shocks are often interpreted as phase boundaries (see e.g. [42], [43], [10], [24], [22]

or [44]). These undercompressive shocks may be permitted due to failure of genuine nonlinearity
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that occurs at inflection points of Σ(u), but another possibility which arises is an elliptic strip

ug < u < uq dividing two hyperbolic half planes, which occurs when Σ(u) is decreasing in u, on the

elliptic interval.

Hamiltonian shocks arise in the ε → 0 limit of the dispersively perturbed systems admitting

kinks which were studied in [22] with u representing the density and v the velocity for a liquid-vapor

mixture with internal capillarity. In this case Σ(u) = F ′(u) with

H(u, v) = −v
2

2
− F (u). (2.161)

The nonlinear wave equation (2.160) then becomes

u
v


t

+

 −v

−F ′(u)


x

=

u
v


t

+

0 1

1 0


Hu

Hv


x

= 0. (2.162)

The Rankine-Hugoniot conditions, (2.3) and (2.4) for a Hamiltonian shock can be manipulated into

the form

[v]2 = [F ′(u)][u] (2.163)

and

(F ′(ur) + F ′(ul))[u] = 2[F (u)] (2.164)

after eliminating s. So ur depends entirely on ul and

vr = vl ±
√

[F ′(u)][u]. (2.165)

We now show that simple waves are not preserved by the Hamiltonian shock map when (2.162)

is hyperbolic for all u, but first we derive the solvability condition for the fast-slow case in Theorem

2.2.2 is satisfied. Riemann invariants for (2.162) may be given by

φk(u, v) = v + (−1)kQ(u) (2.166)
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where Q′(u) =
√
F ′′(u). Then from (2.165), the right side Riemann invariants are given by

φkr = vl ±
√

[F ′(u)][u] + (−1)kQ(ur). (2.167)

Thus, given knowledge of φ1l and φ2r, vl may be eliminated to obtain a relation between ul and ur

from which ul may be solved with the aid of (2.164):

φ2r − φ1l = ±
√

[F ′(u)][u] +Q(ul) +Q(ur). (2.168)

Having found ul, vl and vr may also be solved for determining the full problem.

Returning to the question of simple wave preservation, for u > 0, the eigenvectors are given by

rk =

 1

(−1)k
√
F ′′(u)

 , (2.169)

and for u < 0 by

rk =

 1

(−1)k+1
√
F ′′(u)

 (2.170)

and the Jacobian of the Hamiltonian shock map by

J =

u′r(ul) 0

q 1

 (2.171)

where

q =
d

dul
(
√

[F ′(u)][u]) (2.172)

=
(F ′′(ur)u

′
r(ul)− F ′′(ul))[u] + [F ′(u)](u′r(ul)− 1)]

2
√

[F ′(u)][u]
. (2.173)
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On the other hand, taking ul > 0 without loss of generality,

Jrk =

u′r(ul) 0

q 1


 1

(−1)k
√
F ′′(u)

 (2.174)

=

 u′r(ul)

q + (−1)k
√
F ′′(ul)

 . (2.175)

So for simple wave preservation, it is required that

q + (−1)k
√
F ′′(ul) = ±

√
F ′′(ur)u

′
r(ul) (2.176)

and

q − (−1)k
√
F ′′(ul) = ∓

√
F ′′(ur)u

′
r(ul) (2.177)

from which it immediately follows that q = 0. Equivalently, by (2.172),

(F ′′(ur)u
′
r(ul)− F ′′(ul))[u] + [F ′(u)](u′r(ul)− 1)] = 0 (2.178)

and differentiating (2.164) yields

(F ′′(ur)u
′
r(ul)− F ′′(ul))[u]− [F ′(u)](u′r(ul) + 1) = 0 (2.179)

which together imply that [F ′(u)]u′r(ul) vanishes identically. The quantity u′r(ul) is non-vanishing

and F ′(ur) = F ′(ul) implies that the two are separated by an elliptic point u∗: F ′′(u∗) < 0. Thus

simple waves are not preserved when hyperbolicity holds for all u, i.e., convex H. The lack of simple

wave preservation for the case H(u, v) = −1
2v

2 − u4 is shown in figure 2.5.

2.4.2 Internal waves for two layer sharply stratified fluids

Internal waves at the interface of two sharply stratified fluids of constant density ρ2 > ρ1 confined

vertically between two plates can be modeled, in the long wave limit, by a quasilinear system,

hyperbolic in an appropriate domain (see e.g. [36]). This system may be written in terms of the
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Figure 2.5: The simple wave curves (solid) for (2.162), with quartic Hamiltonian H(u, v) = −1
2v

2−u4,
and their images under Ũ (dashed). The respective families are indicated by gray and black.

non-dimensional lower layer thickness u and momentum shear v:

u
v


t

+

 1−2u+ru2
(1−ru)2 v u(1−u)

1−ru

1− (1−r)v2
(1−ru)3

1−2u+ru2
(1−ru)2 v


u
v


x

= 0. (2.180)

This choice of variables admits the Hamiltonian structure (2.1) (see [45] and [15]):

0 =

u
v


t

+

 u(1−u)
1−ru v

1
2
1−2u+ru2
(1−ru)2 v2 + u


x

=

u
v


t

+

0 1

1 0


Hu

Hv


x

(2.181)

Where

r =
ρ2 − ρ1
ρ2

(2.182)

and

H =
1

2

(u(1− u)v2

1− ru
+ u2

)
. (2.183)

Depending on the relative scales of effects not included in the model, e.g. viscosity or mixing,

different pairs of Rankine-Hugoniot conditions will select weak solutions containing traveling fronts

consistent with a given physical scenario (see [46]). In contrast, front solutions arising from the

purely dispersive model of [7] must satisfy the jump condition (2.4) for conservation of energy in

addition to the two conditions (2.3). In fact, it can be checked that this system may be written in
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the perturbed Hamiltonian form (2.9) with

Hε[uε, vε] =
1

2

(uε(1− uε)y2
1− ruε

+ uε2
)

+

ε2
1

6

(
(1− r + ruε)(

uε(1− uε)
1− ruε

y)2x − 2r
uε(1− uε)

1− ruε
y(
uε(1− uε)

1− ruε
y)xu

ε
x +

uε(1−ε u)

1− rεu
y2uε2x

)
(2.184)

and

vε = L[uε]y (2.185)

=

(
1 +

ε2

3

(
uε2x + r

uε(1− uε)
1− ruε

uεxx + r∂
uε(1− uε)

1− ruε
uεx − ∂2(1− r + ruε)

uε(1− uε)
1− ruε

))
y. (2.186)

The Hamiltonian shock map has four branches:

vr = vl ± (1− (1 +
√

1− r)ul)−
√

1− r
1− rul

vl (2.187)

ur =
1

1 +
√

1− r

(
1∓
√

1− rvl
1− rul

)
(2.188)

for the first two branches, and for the other two branches

vr = vl ± (1− (1−
√

1− r)ul) +

√
1− r

1− rul
vl (2.189)

ur =
1

1−
√

1− r

(
1±
√

1− rvl
1− rul

)
. (2.190)

The fronts arising from the first two branches (2.189) and (2.190) have been studied previously [7]

and connect two states across the NGN curves crossing in the center of the hyperbolic region (see

figure 2.6). For these branches

{(ul, vl) : vl = 0} ↔ {(ur, vr) : ur = u∗} (2.191)

where

u∗ =
1

1 +
√

1− r
(2.192)

which is the well known critical depth ratio for which kinks survive when taking a weakly nonlinear
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expansion (see section 2.4.3 below). The second pair of branches connect states which cross the NGN

curves near the hyperbolic-elliptic boundary (see figure 2.6) and only produce substantial jumps in

the presence of a large density difference.

(a) 0-1 -0.5 0.5 1

0.5

1

v

u

(b)
0-1 -0.5 0.5 1

0.5

1

v

u

(c)
0-1.5 -1 -0.5 0.5 1 1.5

0.5

1

v

u

Figure 2.6: The hyperbolic region of (3.46) is shown for (a) r = 0, (b) r = 0.3, and (c) r = 0.7; its
boundary is indicated by the bold curves. The NGN curves are dotted and the dashed curves are
those which, when crossed by Ul, result in one of the branches of Ũ(Ul) switching in or out of the
hyperbolic region. For the curvilinear pentagon enclosed by black dashed curves and the top solid
boundary, two branches are in the hyperbolic region. Each dashed line that is crossed in moving
further out of this region corresponds to the departure of one more branch of Ũ from the hyperbolic
region. For the lower triangle (again, enclosed by curves in black), Ũ has no branches going into the
hyperbolic region. For r = 0, this pentagon degenerates to the entire (rectangular) hyperbolic region
and two of the four smooth curves comprising the NGN locus merge into the boundary. The red
curve encloses the region where H is convex. The black dot is a typical value of (ul, vl) and the blue
and purple dots are its images (ur, vr) under the Hamiltonian shock maps given by the two branches
of (2.189), (2.190).

Hamiltonian shock interaction The Jacobian J of the Hamiltonian shock map is given by

J11 J12

J21 J22

 =

 − (1−
√
1−r)

√
1−rv

(1−ru)2 −
√
1−r

(1+
√
1−r)(1−ru)

−(1 +
√

1− r)− r
√
1−r

(1−ru)2 v 1−
√
1−r

1−rul

 . (2.193)
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Simple wave preservation holds if and only if the right eigenvectors

rk(ul, vl) =


√

ul(1−ul)
1−rul

(−1)k
√

1− (1−r)v2l
(1−rul)3

 , (2.194)

for j = 1, 2, on the left are mapped by J to the right eigenvectors on the right, i.e., become parallel

to

rk(ur, vr) =


√

ur(1−ur)
1−rur

(−1)k
√

1− (1−r)v2r
(1−rur)3

 . (2.195)

A lengthy calculation (using a symbolic manipulator) shows that this does not hold for r 6= 0. For

r = 0

ur =
1

2
(1± vl), (2.196)

vr = ∓(1− 2ul) (2.197)

so the Jacobian becomes J11 J12

J21 J22

 =

 0 ±1
2

±2 0

 , (2.198)

and the right eigenvectors on the left and right sides of the jump are

rkl =

 √
ul(1− ul)

(−1)k
√

1− v2l

 (2.199)

and

rkr =

 1
2

√
1− v2l

(−1)k2
√
ul(1− ul)

 (2.200)

which with (2.196) and (2.197) yields

Jrkl = rkr (2.201)

so that in the r = 0 case simple waves are preserved. Theorem (2.2.2) applies because it is not hard

to check that the Hamiltonian shocks occurring in this system are strictly fast or strictly slow (this

check is most easily accomplished numerically).
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Hamiltonian shock interaction problem for the Boussinesq limit For the r = 0 case we

can compute the Hamiltonian shock solution explicitly for a continuous solution (uc, vc) of the

hyperbolic system (2.181) interacting with a shock starting at a point x0 as in section 2.2. To

accomplish this we make use of the map (see reference [36, 47])

û = (1− 2u)v, v̂ = (1− v2)(u− u2) (2.202)

transforming the system (2.181) into the Airy shallow water system

v̂t + (ûv̂)x = 0, (2.203)

ût + (
1

2
û2 + v̂)x = 0. (2.204)

The transformation (3.61) has four inverses (see [15]):

uij =
1

2

(
1 + (sgn û)i+1(−1)(i+j+1)

√
Q− (−1)i

√
Q2 − û2

)
(2.205)

and

vij = −(sgn û)i(−1)(i+j+1)

√
Q+ (−1)i

√
Q2 − û2 (2.206)

where j = 1, 2 and

Q =
û2 − 4v̂ + 1

2
(2.207)

(hereinafter we adorn the dependent variables with hats when they are obtained through the map

(3.61)). Figure 3.2 shows the images of the four branches while figure 3.3 shows the image Ω̃ of the

hyperbolic region Ω of the two layer system (3.46) under the map (3.61) along with the singular

curves

u =
1

2
± v

2
. (2.208)

Note that these are level curves of the Riemann invariants

Rj(û, v̂) = û+ 2(−1)j
√
v̂ (2.209)
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since

Q2 − û2 =
1

16
(1− 2û2 + û4 − 4v̂ − 4v̂û2 + 16v̂2) (2.210)

=
1

16
((R1)2 − 1)((R2)2 + 1). (2.211)

We assert that (u1j , v1j) is connected to (u2k, v2k) by a Hamiltonian shock, j, k = 1, 2. This

follows from the identity

s :=
f2k − f1j
u2k − u1j

=
g2k − g1j
v2k − v1j

=
1

2
(û+ (−1)j+k) (2.212)

where f and g are the fluxes for (2.181):

fjk =
1

2
(ujk(1− ujk))vjk, gjk =

1

2
(1− 2ujk)vjk + ujk. (2.213)

That these are Hamiltonian follows since

Hjk =
1

2
(1− v2jk)(ujk − u2jk) +

1

2
ujk (2.214)

=
1

2
(ujk − û) (2.215)

and the corresponding fluxes are given by

Fjk = HuHv|u=ujk,v=vjk =
1

2
(fjk − f̂), (2.216)

so
F2k − F1j

H2k −H1j
=
f2k − f1j
u2k − u1j

= s. (2.217)

For concrete illustration, we consider the slow undercompressive case with (uc, vc) in the 1, 1

quadrant (see figure 3.2) and (ur, vr) is in the 2, 1 quadrant; the other cases are solved simliarly.

The solution is given by

u(x, t) =

 uc(x, t), x ≤ s(t)

u21(û(uc(x, t), vc(x, t)), v̂(uc(x, t), vc(x, t))), x > s(t),
(2.218)
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Figure 2.7: The i, j quadrant is the image of the curved triangle in figure 3.3 under (ûij , v̂ij) with
v and u plotted on the horizontal and vertical axes respectively. The dotted lines are the singular
curves of the map (u, v)→ (û, v̂).

.
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Figure 2.8: The image Ω̃ of the hyperbolic region Ω under the map (u, v) → (û, v̂), with û and v̂
plotted on the horizontal and vertical axes respectively. The dotted curves are the image of the
singular curves.

.

and

v(x, t) =

 vc(x, t), x ≤ s(t)

v21(û(uc(x, t), vc(x, t)), v̂(uc(x, t), vc(x, t))), x > s(t)
(2.219)

and s(t) solves the initial value problem

s′(t) =
1

2
(û(uc(s(t), t), vc(s(t), t)), v̂(uc(s(t), t), vc(s(t), t)) + 1), (2.220)

a(0) = x0. (2.221)

For an explicit example, let (uc, vc) be a centered simple wave:

uc(x, t) =


ua, x/t ≤ λa = û(ua, va) +

√
v̂(ua, va)

u11(
φ+2x/t

3 , (φ−x/t3 )2), λa < x/t < λl

ul, x/t ≥ λl = û(ul, vl) +
√
v̂(ul, vl),

(2.222)
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vc(x, t) =


va, x/t ≤ λa = û(ua, va) +

√
v̂(ua, va)

v11(
φ+2x/t

3 , (φ−x/t3 )2), λa < x/t < λl

vl, x/t ≥ λl = û(ul, vl) +
√
v̂(ul, vl),

(2.223)

with φ a constant (a Riemann invariant) having

u11(
φ+ 2λa

3
, (
φ− λa

3
)2) = ua (2.224)

and

u11(
φ+ 2λb

3
, (
φ− λb

3
)2) = ub. (2.225)

Then the interaction is given according to (2.218) and (2.219) with

s(t) =


x0 + s0t, t ≤ ti
R−3
4 t+ c0t

1/3, ti < t < te

xe + se(t− te), t ≥ te

(2.226)

where s0 is the shock speed for the initial jump and

ti =
x0

λr − s0
, xi = λrti, λr = λl, (2.227)

c0 = t
−1/3
i (xi − ti

φ− 3

4
), te =

(
λl − R−3

4

c0

)−3/2
, (2.228)

and

xe = λlte. (2.229)

Figure 2.9 shows the passage of the hamiltonian shock through the centered simple wave for ul = 0.33,

vl = 0.2, ua = 0.15, va ≈ −0.225, ur = 0.6 and vr = −0.34. Snapshots of this solution are also shown

in figure 2.10 where comparison is made with a numerically computed solution for a Hamiltonian

perturbation.
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Figure 2.9: The interaction of a simple wave with a Hamiltonian shock with u(x, t) shown on the
left and v(x, t) on the right.

2.4.3 Weakly nonlinear expansion

A weakly nonlinear expansion may be taken about a fixed layer thickness u0 under the assumption

of small velocity which corresponds to v0 = 0 in the present variables.1 Keeping four orders in the

Hamiltonian (2.183), we get

H =
1

2
(z2 + αv2 + βzv2 − γv2z2), (2.230)

Where

α = u0
1− u0
1− ru0

, (2.231)

β =
1− 2u0 + ru20

(1− ru0)2
, (2.232)

1See [7] for careful assymptotic derivations.
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and

γ =
1− r

(1− ru0)3
. (2.233)

The system can then be written

0 =

z
v


t

+

αv + βvz − γvz2

z + β
2 v

2 − γv2z


x

=

u
v


t

+

0 1

1 0


Hz

Hv


x

. (2.234)

In this case the dispersive term is linear (see [7]) and may be made to contain only spatial derivatives

by exploiting asymptotic equivalencies. So the dispersive system may be written

Hε =
1

2
(z2 + αv2 + βzv2 − γv2z2 − ε2z2x), (2.235)

0 =

z
v


t

+

 αv + βvz − γvz2

z + β
2 v

2 − γv2z + εzxx


x

=

z
v


t

+

0 1

1 0


δzH
δvH


x

(2.236)

and away from the critical value u∗ (see (2.192)) which is the only physically relevant root of the

equation β = 0, the fourth order term γv2z2 can be ignored because it of its higher asymptotic order.

In this case (2.236) becomes the Boussinesq shallow water system with z replaced by

w = βz + α. (2.237)

Thus the system is described entirely in terms of one of the layers, which layer depending on the

sign of β and the "bottom" as viewed from the corresponding single layer model. This is either the

top or the bottom confining wall depending on which side of the critical value u∗ the unperturbed

interface height u0 falls, with the other confining wall being lost to higher order asymptotics. On

the other hand, when u0 is sufficiently near the critical depth u∗, β will be small enough that the

fourth order term becomes relevant and conjugate states will occur (see e.g. [48] or [7]).

We note that, by performing the change of variable z = w + C with C =
−β±
√
β2+4αγ
2γ , equation

(2.230) becomes

H =
1

2
(w2 + (2β ±

√
β2 + 4αγ)wv2 − γv2w2) (2.238)
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and taking the plus branch guarantees that all coefficients are positive. But up to rescaling of

constants, this is just the Hamiltonian (2.183) with r = 0. That is to say that in the weakly

nonlinear limit, even at critical depth, the mathematical structure is independent of the densities

and determines only a scaling of coefficients. Therefore, from the standpoint of Hamiltonian shocks,

it suffices, in the weakly nonlinear case, to study the systems (2.181) since the case r = 0 of the

latter subsumes the mathematical properties of the weakly nonlinear system for any densities.

2.4.4 Unidirectional model

A further simplification of (2.236) consists of considering the evolution of the system on a lower

dimensional manifold (a curve in this case). For the hyperbolic system (2.234) this can be done

exactly using simple waves, as seen above, and asymptotically in the dispersive case. The result is

equivalent to the combined KdV-mKdV equation (see [7])

ut + (βu2/2 + u3/3− ε2uxx)x. (2.239)

This is equivalent via the transformation

u(x, t)→ u(x− β2

4
t, t) +

β

2
(2.240)

to the mKdV equation

ut + (u3/3− uxx)x = 0 (2.241)

which can be written in Hamiltonian form:

ut + ∂xδH
ε[u] = 0 (2.242)

where

Hε =
u4

12
+ ε2

u2x
2
. (2.243)

The dispersionless reduction is

ut + (u3/3)x = ut + ∂xH
′(u) = 0 (2.244)
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where

H =
u4

12
. (2.245)

In this case, the computation of a non-dissipative shock moving through a rarefaction fan was

carried out in [20].

2.4.5 Infinitude of conservation laws

According to the result of section 2.3, the nonlinear wave equation (2.162) and the two later

system (2.181) with r 6= 0, for which the Hamiltonian shock map is not simple wave preserving, will

not have local conserved quantities beyond u, v, uv and H. For the system (2.181) with r = 0 on

the other hand, any conservation law

Ĝ(û, v̂)t + M̂(û, v̂)x = 0 (2.246)

of the Airy system (2.203) gives rise, via the map (3.61), to a conservation law

G(u, v)t +M(u, v)x = 0 (2.247)

where

G(u, v) = Ĝ(û(u, v), v̂(u, v)) (2.248)

and

M(u, v) = M̂(û(u, v), v̂(u, v)). (2.249)

The quantity G is Hamiltonian shock conserved since

−s[G] + [M ] = −s[Ĝ(û, v̂)] + [M̂(û, v̂)] = 0. (2.250)

Therefore an infinite number of conservation laws can be found.

Similarly for the unidirectional case, the map û = u2 sends (2.244) to

ût + ûûx = 0 (2.251)

whose conservation laws may be pulled back in a like manner. We point out that in this case the
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map ũ extends to the well known Miura map

ûε = uε +
√

6εuεx (2.252)

sending solutions of the perturbed (mKdV) equation (3.47) to the KdV equation

ûεt + ûεûεx − εûεxxx = 0 (2.253)

mapping kinks to solitary waves.

2.4.6 Numerics

Simulations of the interaction problem from section 2.2 were performed on dispersive perturbations

of the nonlinear wave equation (2.162) and the two layer system (2.181). The results align with the

theory, both in that classical dispersive shocks form when simple wave preservation fails and that

when they do not form, the perturbed interaction is well approximated by the weak solution to the

hyperbolic system given by Hamiltonian shock interaction.

Two layer stratified fluids The dispersive two layer system from [7], which evolves under (2.9)

with Hamiltonian Hε given by (2.184), is ill-posed, a consequence of the Kelvin-Helmholtz instability.

Thus further regularization is required in order to perform simulations. This is achieved in [17] by

including terms corresponding to surface tension (see [49] for an alternative approach to stabliziation).

The approach we have taken is to exclude several terms in the dispersive perturbation resulting in

the following Hamiltonian:

Hε[uε, vε] =
1

2

(uε(1− uε)y2
1− ruε

+ uε2
)

+ ε2
1

2
(
uε(1− uε)

1− ruε
y)2x (2.254)

and

vε = L[uε]y (2.255)

=

(
1− ∂2u

ε(1− uε)
1− ruε

)
y (2.256)

= y + uεxt. (2.257)
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Then, dropping ε superscripts, the perturbed system (2.9) becomes

 u

y + uxt


t

+

 1−2u+ru2
(1−ru)2 y u(1−u)

1−ru

1− (1−r)y2
(1−ru)3

1−2u+ru2
(1−ru)2 y


u
y


x

= 0. (2.258)

Linearizing around a steady state via the typical ansatz

u(x, t)

y(x, t)

 =

u0
y0

+ ei(kx−ωt)

u1
y1

 (2.259)

yields the condition for well-posedness:

A±
√
BC + (BC −A)(1 +Bk2) > 0 (2.260)

for all real k where A = Huy, B = Hyy and C = Huu which holds exactly when H is convex (the

region enclosed by the red curve in figure 2.6).

To find traveling wave solutions u(x, t) = U(x− ct), y(x, t) = V (x− ct), we integrate to obtain

 −cU + U(1−U)V
1−rU

−cV + 1
2
1−2U+rU2

(1−rU)2
V 2 + U + c2U ′′

 =

A1

A2

 . (2.261)

From this we may deduce that

V =
(A1 + cU)(1− rU)

U(1− U)
. (2.262)

Substituting into the second equation and integrating once more we get

U ′2

2
=
U4 − (1 + 2A2 − rc2)U3 + (2A2 − 2A3 + c2 − 2A1cr)U

2 + (2A3 + 2A1c−A2
1r)U +A2

1

2c2U(1− U)
.

(2.263)

Since U and 1− U are both positive in the hyperbolic region, the right side is a positive multiple of

an upward facing quartic on that region and thus has double roots yielding kink solutions when the

numerator takes the form (U − ul)2(U − ur)2.

Figure 2.10 shows the interaction for the Boussinesq limit with the analytically computed

Hamiltonian shock solution superimposed. Figure 2.11 shows the interaction of a kink with a simple
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Figure 2.10: A Hamiltonian shock and a simple wave before and after interacting for the Boussinesq
limit: (2.258) with r = 0.

wave for r = 0, 0.2 and 0.5. A dispersive shock forms when r 6= 0, in line with the failure of simple

wave preservation in this case.

In interpreting the graphs of the r = 0 case, we note that, since the system (2.9) is dispersive,

convergence to continuous hyperbolic solutions for small ε is well known to be subject to gentler

ripples (see e.g. [50]) resulting from higher order effects, which have also been studied by asymptotic

methods [51]. These ripples are qualitatively different than classical dispersive shocks; to begin with

the left and right edges do not connect distinct states.

Korteweg model In the case of a Korteweg model, we used a system with cubic flux

u
v


t

+

 v

−4u3 + ε2uxx


x

=

u
v


t

+

0 1

1 0


δuH
δvH


x

= 0 (2.264)

resulting from the Hamiltonian

H = −v
2

2
− u4 − ε2u

2
x

2
(2.265)
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Figure 2.11: Snapshots of a Hamiltonian shock interaction for various values of r.

(a)

(b)

Figure 2.12: Evolution of the Hamiltonian shock interaction with r = 0, corresponding to the red
curve in figure 2.11.
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(a)

(b)

Figure 2.13: Evolution of the Hamiltonian shock interaction with r = 0.2, corresponding to the blue
curve in figure 2.11.

(a)

(b)

Figure 2.14: Evolution of the Hamiltonian shock interaction with r = 0.5, corresponding to the blue
curve in figure 2.11.
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whose unconditional well-posedness is easily checked.

To obtain traveling wave solutions u(x, t) = U(x− ct), v(x, t) = V (x− ct), we integrate

 −cU − V

−cV − 4U3 + ε2U ′′


′

= 0. (2.266)

From the first component equation we may solve V = A1 − cU where A1 is a constant and putting

this into the second we get

−cA1 + c2U − 4U3 + ε2U ′′ = A2. (2.267)

Multiplying by U ′ and integrating yields

U ′2/2 =
1

ε2

(
A0 + (cA1 +A2)U −

c2

2
U2 + U4

)
. (2.268)

which is an upward facing quartic, producing heteroclynic orbits when double roots occur.

Figures 2.16 and 2.15 show the interaction of a kink with initial conditions, constant in u and

piecewise linear in v which lead to global continuous solution in the absence of Hamiltonian shock

interaction. A dispersive shock forms, in line with the failure of simple wave preservation for this

system.
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(a)

(b)

Figure 2.15: Evolution of the Hamiltonian shock interaction for (a) u and (b) v for the Korteweg
model (2.264).

53



-20 -10 0 10 20

x

-1

-0.5

0

0.5

1

u

t = 0

-20 -10 0 10 20

x

-3

-2

-1

0

1

2

v

t = 0

(a)

-20 -10 0 10 20

x

-1

-0.5

0

0.5

1

u

t = 1

-20 -10 0 10 20

x

-3

-2

-1

0

1

2

v

t = 1

(b)

-30 -20 -10 0 10 20 30

x

-1

-0.5

0

0.5

1

u

t = 5

-30 -20 -10 0 10 20 30

x

-3

-2

-1

0

1

2

v

t = 5

(c)

-50 0 50

x

-1

-0.5

0

0.5

1

u

t = 20

-50 0 50

x

-3

-2

-1

0

1

2

v

t = 20

(d)

Figure 2.16: Snapshots of the Hamiltonian shock interaction for the Korteweg model portrayed in
figure (2.15).
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CHAPTER 3

Evolution of derivative singularities

3.1 Introduction

Models of water wave propagation, both surface and internal to a density stratified fluid, often

lead to a “core" hyperbolic structure (see eg., [13, 36, 47] for a partial list), and in this context

self-similar special exact solutions provide useful information on the evolution of more general

initial data [15, 16]. However, in order to be physically relevant, these special solutions often

generate discontinuous derivatives, whose evolution can then be tracked within the model thanks to

general tools for hyperbolic systems. As is well known, a hyperbolic system of partial differential

equations (see e.g. [13]) admits solutions with persisting discontinuous derivatives of some order along

characteristics. An element of the aforementioned water wave models is the presence of corner-type

singularities (i.e., first order derivative jumps) in the initial data, and fissioning of these points along

multiple characteristics can be expected. In this work we study this phenomenon and related issues.

Specifically, this chapter considers (i) the splitting of corner points and (ii) solutions containing

points where the spatial derivative is infinite but the solution evolves continuously without smoothing

or the formation of a jump discontinuity for a quasilinear hyperbolic system of conservation laws. For

the splitting of corners, an approach using distributional ansatzes is developed, further elaborating

an idea from [16]. This generalizes the classical approach of [13] to the emergence of several corners

from a single point. Then it is shown how the failure of genuine nonlinearity (see below for definition)

is necessary and sufficient for the sustenance of an infinite spatial derivative along a characteristic

without either of the most typical scenarios: instantaneous smoothing or shock formation. Finally,

in the second half of the paper, these results are discussed in relation to explicit solutions of systems

arising in shallow water flow.

3.2 Notation

Let U(x, t) be the mapping of (a subset of) the space-time half-plane (x, t) ∈ IR × IR+ to an

n-dimensional vector in IRn, i.e., U : IR× IR+ → IRn, defined to be the solution of the quasilinear
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system

∂tU + ∂x
(
F (U)

)
= 0, (3.1)

or its weak form

∫ ∞
0

∫ ∞
−∞

(∂tφ)U + (∂xφ)
(
F (U)

)
dxdt+

∫ ∞
−∞

U(x, 0)φ(x, 0)dx = 0, (3.2)

for any φ supported on a compact subset of (−∞,∞)× [0,∞) and differentiable on (−∞,∞)×(0,∞),

with initial condition

U(x, 0) = U0(x). (3.3)

The Jacobian matrix DF with components Aij ≡ ∂Fi/∂Uj where dropping bolds and adding

subscripts indicates taking vector components, is assumed diagonalizable with real and distinct

eigenvalues λ1(U) < λ2(U) < ... < λn(U). We denote a corresponding set of right eigenvectors

by r1, r2, ..., rn. For our purposes the function F : IRn → IRn is assumed to be at least twice

continuously differentiable.

A common assumption known as genuine nonlinearity, which was formulated in the seminal work

[27] is (note, Einstein convention of summation over repeated indices is not used)

0 6= Dλk(U)rk. (3.4)

In the present work we shall consider the failure of this condition, i.e., the existence of points U

where

0 = Dλk(U)rk, (3.5)

in multiple settings (see also e.g. [52, 53, 24, 18, 54, 10] for further applications, in particular to the

problem of shocks). We shall call the manifold of such points the NGNL manifold.

3.3 Splitting of corner points

In this section we consider how a gradient jump in an initial condition for a hyperbolic system

(3.2) will split, traveling on a subset of the characteristics emanating from the point (x, t) = (x0, 0),
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where U0(x) is continuously differentiable except at x = x0:

lim
x→x−0

U ′0(x) 6= lim
x→x+0

U ′0(x), (3.6)

and derive criteria for the presence of such a corner on a given characteristic (given Lipschitz

continuity of certain coefficients whose form is determined by the flux function F ). In this context a

conjecture from reference [16] is resolved, namely that corners split exactly along the characteristics

for which there are corners in the corresponding Riemann invariants, when these can be found.

Let x = χk(t;x0) with χk(0;x0) = x0 be one of the characteristics along which a derivative jump

propagates. Then let

lim
x→χk(t;x0)−

Ux(x, t) ≡ (U l
x)k(t), (3.7)

lim
x→χk(t;x0)+

Ux(x, t) ≡ (U r
x)k(t), (3.8)

and we denote derivative jump by square brackets,

[Ux]k(t) ≡ (U r
x)k(t)− (U l

x)k(t). (3.9)

Similarly

lim
x→χk(t;x0)−

F (U)x(x, t) ≡ (F l
x)k(t), (3.10)

lim
x→χk(t;x0)+

F (U)x(x, t) ≡ (F r
x )k(t), (3.11)

[Fx]k(t) ≡ (F r
x )k(t)− (F l

x)k(t). (3.12)

We define (U l
xx)k, (U r

xx)k, (F l
xx)k, (F r

xx)k, [Uxx]k and [Fxx]k analogously. Then we may write

U(x, t) = Ũ(x, t) +
∑
k

[Ux]k(t)J1(x− χk(t;x0)) + [Uxx]k(t)J2(x− χk(t;x0)) (3.13)

and

F (x, t) = F̃ (x, t) +
∑
k

[Fx]k(t)J1(x− χk(t;x0)) + [Fxx]k(t)J2(x− χk(t;x0)) (3.14)
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where Ũ(x, t) is twice differentiable and

Jm(x) ≡ xm

m!
H(x) (3.15)

where H(x) is the Heaviside function. We use the further notation Jkm = Jm(x− χk) and henceforth

we will suppress various dependencies for ease of notation. From the weak system (3.2), we obtain

the vanishing condition

0 =
∑
k

(−χ′k[Ux]k + [Fx]k)J
k
0 + (−χ′k[Uxx]k + [Fxx]k + [Ux]′k)J

k
1 + ψ(x, t) (3.16)

where ψ(x, t) is once continuously differentiable with respect to x. Both the coefficients of Jk0 and of

Jk1 must vanish. The vanishing of the Jk0 coefficient may be written

0 = −χ′k[Ux]k + [DFUx]k

= (−χ′kI +DF )[Ux]k, (3.17)

where I denotes the n× n identity matrix. Formula (3.17) is merely the characteristic equation and

[Ux]k is a corresponding eigenvector:

[Ux]k = σkrk. (3.18)

The vanishing condition for the Jk1 coefficient is then

0 = (DF − λk)[Uxx]k + [D2F (Ux,Ux)]k + [Ux]′k

= σ′krk + σk(Drk(λk −DF )(U l
x)k + 2DF ((U l

x)k, rk)) + σ2kD
2F (rk, rk) + (DF − λk)[Uxx]k.

(3.19)

Multiplying by the suitably normalized left eigenvector lk yields (cf. [13])

0 = σ′k + σklk · (Drk(λkI −DF )(U l
x)k + 2DF ((U l

x)k, rk)) + σ2klk ·D2F (rk, rk). (3.20)

This is an ODE for σk which, if the coefficients are Lipschitz continuous will have a unique solution

given an initial condition σk(0) = σ0k.
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By considering the case σ0k = 0, we see that a corner will propagate along precisely the character-

istics for which

lk(U0(x0)) · [U ′0] 6= 0. (3.21)

For the case when Riemann invariants exist, denoted here by Rj(U), we recall that they must satisfy

the constraints [13]

DRj = βjlj . (3.22)

So

[Rjx]k = DRj · [Ux]k

= βjlj · (σkrk)

= δjkβjσk. (3.23)

This shows that a derivative discontinuity will propagate along the k’th characteristic when the

Riemann invariant has a corner in its initial condition. A corner in the initial Riemann invariants is

also necessary for corner propagation on the corresponding characteristic when βk(U0(x0)) 6= 0, i.e.,

U0(x0) is not a critical point for the given Riemann invariant. When the Riemann invariants have

critical points, it is possible that they will be smooth even though the dependent variables are not.

An example of this will be given in subsection 3.5.3 below.

Remark 1. Our approach above differs from the approach of [13] in that by using distributions

we are not confined to a single characteristic. However, our approach as such doesn’t apply to the

non-conservative case

Ut +A(U)Ux = 0 (3.24)

because solutions with derivative jumps are not strictly defined, in the distributional sense, but

an expansion consistent with the conservative case may be obtained by taking a one sided Taylor

expansion of the entire equation requiring the various order coefficients to vanish, as was done in

[13].

Remark 2. This form of expansion can be applied to shock formation at a point of parabolic

degeneracy. This occurs in particular for vacuum points in the Airy shallow water system (see (3.45))
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at what is known as the "physical vacuum singularity" (see [16]).1 In this case the vanishing of the

Jk0 coefficient in (3.16), i.e., the characteristic equation, may not be satisfiable when the k family

has a non-trival Jordan block at U0(x0). In particular, if [Ux]k is a generalized eigenvector then

(DF − λkI)[Ux]k 6= 0. (3.25)

This can be remedied, however, by adding [U ]kJ
k
0 and [F ]kJ

k
0 terms to the respective expansions

(3.13) and (3.14) (terms which we assume to vanish at initial time as we still wish to consider

continuous initial conditions). Then the vanishing condition for the coefficient of Jk0 becomes

[U ]′k = (DF − λkI)[Ux]k, (3.26)

producing a jump for any t > 0, even though the initial conditions do not suffer a gradient catastrophe.

Remark 3. In the particular case of the Airy system, the formation of "shocks" in this way at the

vacuum only appears when the velocity is regarded as being defined at the vacuum and is determined by

Rankine-Hugoniot conditions for the conservation thereof. These conditions happen be to compatible

with the physically correct Rankine-Hugoniot conditions for the conservation of momentum (see [16]),

however the velocity cannot be computed from the a zero momentum and may be presumed on physical

grounds not be defined at the vacuum.

3.4 Persistent infinite derivatives in continuous solutions

In this section we show that a persistent vertical gradient in a continuous solution may only

occur at points where genuine nonlinearity fails. Let χ(t) be a curve along which an infinite gradient

persists in a continuous solution U in a hyperbolic system. Note, we do not assume from the outset

that χ(t) is a characteristic since infinite derivatives could be associated with shocks which do

not move along characteristics. The spatial derivative may be decomposed in terms of the right

eigenvectors:

Ux =
∑
k

αk(x, t)rk(U(x, t)). (3.27)

1See [55] for a similar approach to the appearance of δ-shocks from functional initial conditions.
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A vertical gradient is present exactly when

lim
x→χ(t)−

αj(x, t) = ±∞ (3.28)

for at least one index j where we have assumed without loss of generality that the blowup occurs in

the left limit x→ χ(t)−. Differentiating U along the curve x = χ(t) gives

d

dt
U(χ(t), t) =

∑
k

αk(χ(t), t){χ′(t)− λj(U(χ(t), t))}rk(U(χ(t), t)) (3.29)

and, assuming the solution has bounded variation along this curve, the derivative cannot blowup

identically so χ′(t) = λj for some j, i.e., χ(t) is a characteristic (or an envelope of characteristics if

we only require a continuous solution to exist on one side of the curve). Thus we write

χ(t) = χj(t;x0) (3.30)

where x0 = χ(0) and

lim
x→χj(t;x0)−

αj(x, t) = ±∞. (3.31)

We shall proceed to show by contradiction, that if genuine nonlinearity holds at a persistent

infinite gradient then (λj)x is bounded along x = χ(t) contradicting the simultaneous assumptions

that genuine nonlinearity holds and there is a persistent infinite gradient. The spatial gradient of λj

is given by

(λj)x = Dλj ·Ux (3.32)

=
∑
k

αkDλj · rk (3.33)

which is dominated by the αj term going to ±∞ except when genuine nonlinearity fails on x = χ(t),

in which case the whole expression may still be bounded. Without loss of generality we can assume

that αj →∞ (otherwise we may replace U(x, t) with U(−x,−t) and work backwards in time) and,

using the genuine nonlinearity assumption, choose rj so that

Dλjrj > 0. (3.34)
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In this case

lim
x→χ(t)

(λj)x(x, t) =∞ (3.35)

for all t (at least on some parameter interval). Then using (3.30), we have for x2 < x1 that

∞ = lim
x1,x2→x0

λj(χj(t;x1), t)− λj(χj(t;x2), t)
χj(t;x1)− χj(t;x2)

≡ lim
x1,x2→x0

λ1j (t)− λ2j (t)
χ1
j (t)− χ2

j (t)

= lim
x1,x2→x0

λ1j (t)− λ2j (t)
x1 − x2 +

∫ t
0 λ

1
j (τ)− λ2j (τ)dτ

= lim
x1,x2→x0

1

x1−x2
χ1
j (t)−χ2

j (t)

χ1
j (t)−χ2

j (t)

λ1j (t)−λ2j (t)
+
∫ t
0

λ1j (τ)−λ2j (τ)
λ1j (t)−λ2j (t)

dτ

= lim
x1,x2→x0

1

x1−x2
χ1
j (t)−χ2

j (t)
1

(λj)x(x∗(t),t)
+
∫ t
0

λ1j (τ)−λ2j (τ)
λ1j (t)−λ2j (t)

dτ
(3.36)

for some χ2
j (t) < x∗(t) < χ1

j (t) and we have used superscripts as a shorthand to denote quantities

on the respective characteristics. We observe that each quantity in the denominator is positive and

that the integrand approaches unity as x2 → x1 and so also in the limit x1, x2 → x0. Therefore

lim
x1,x2→x0

λj(χj(t;x1), t)− λj(χj(t;x2), t)
χj(t;x1)− χj(t;x2)

≤ 1

t
(3.37)

which is finite for any t > 0, contradicting the assumption that the infinite gradient persists along

x = χ(t). Therefore an infinite gradient may not persist in a continuous solution when genuine

nonlinearity holds.

3.4.1 Scalar conservation laws

A simplified alternative version of the previous section’s proof is available in the case of a scalar

conservation law:

ut + c(u)ux = 0 (3.38)

where c(u) = F ′(u) with initial conditions

u(x, 0) = u0(x). (3.39)
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Along characteristics

x = χ(t;x0) = x0 + c(u0(x0))t (3.40)

we have

ux(x, t) =
u′0(x0)

1 + c′(u0(x0))u′0(x0)t
=

u′0(x0)

1 + c′(u(x, t))u′0(x0)t
. (3.41)

If we consider a singularity where ux is infinite along the characteristic x = χ(t; 0), say, then taking

the limit x→ χ(t; 0) gives

ux(x, t)→∞. (3.42)

The corresponding limit for the initial condition implies that

u′0(x0)→∞ (3.43)

as x0 → 0, so that the blowup in the initial data is maintained:

ux(x, t) =
u′0(x0)

1 + c′(u)u′0(x0)t
→∞ . (3.44)

However, the divergence of the numerator in the limit would be canceled by that in the denominator

preventing a persistent infinite gradient in spatial derivative if it were not the case that c′(u) = 0,

i.e., the failure of genuine nonlinearity in the scalar setting.

Remark 4. We note that the scalar case above can be realized in the multidimensional setting by

restricting to simple waves (see Appendix).

3.5 Applications

For the remainder of the paper, we study cases of the singular points studied above in three

quasilinear hyperbolic models. The first model we consider is the Airy shallow water system

vt
ut

+

u v

1 u


vx
ux

 = 0. (3.45)
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The second model is a two layer shallow water model in the Boussinesq limit (see e.g. [15]):

u
v


t

+

(1− 2u)v u(1− u)

1− v2 (1− 2u)v


u
v


x

= 0. (3.46)

The third model we consider is the scalar law

ut + u2ux = 0 (3.47)

which illustrates the key features of infinite gradients in simple wave solutions.

The examples are organized topically, starting with section 3.5.2 where a non-splitting corner in

the Ariy system is constructed. In section 3.5.3 an example from the two layer system, equation

(3.46), exhibits non-splitting of a corner as well as the necessity of no critical points in the Riemann

invariants for the conclusions of section 3.3 to hold. Then sections 3.5.4 and 3.5.5 demonstrate

persistent infinite derivatives in simple wave solutions. Finally, section 3.5.6 illustrates a persistent

infinite gradient, not in a simple wave solution, making a dynamically evolving angle with the

adjacent slope.

3.5.1 Methods of explicit solution

For explicit examples we shall make use of the linear core solutions of the Airy system (3.45)

from reference [56]:

U(x, t) = α(t)x+ β(t) (3.48)

and

V (x, t) = ω(t)x+ ζ(t) (3.49)

where

α(t) =
α0

1 + α0t
, β(t) =

β0 − ω0
α0

log(1 + α0t)

1 + α0t
, (3.50)

ω(t) =
ω0

(1 + α0t)2
, ζ(t) =

ζ0
1 + α0t

+
ω0(

ω0
α0
− β0)t

(1 + α0t)2
−

ω2
0

α2
0

log(1 + α0t)

(1 + α0t)2
. (3.51)
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The formulae for the characteristics χj(t;x0) may be found by solving the equations

u(χj(t;x0), t) + 2(−1)j
√
v(χj(t;x0), t) = Rj

0
= α0x0 + β0 + 2(−1)j

√
ω0x0 + ζ0, (3.52)

which yields

χj(t;x0) = (1 + α0t)x0 + t
(
α0x0 + β0 + 2(−1)j

√
ω0x0 + ζ0

)
+

2

α2
0

(
ω0 + (−1)jα0

√
ω0x0 + ζ0

)
(1−

√
1 + α0t) +

ω0

α2
0

log (1 + α0t). (3.53)

Such a solution may be spliced with a constant state via a simple wave (see [16]), i.e., the initial

conditions are modified to be constant for x > 0 (or x < 0):

u0(x) =

 β0 + α0x, x < 0

β0, 0 ≤ x
(3.54)

and

v0(x) =

 ζ0 + ω0x, x < 0

ζ0, 0 ≤ x.
(3.55)

In this way, examples may be constructed satisfying physical boundary conditions at ±∞ by placing

the core between two constant states within the hyperbolic region. Since we are only concerned

with the evolution of singularities with a definite position, we will only require that solutions

under consideration are in the hyperbolic region in the part of the space-time half plane where

these singularities occur. Because the Riemann invariants Rj are constant on the corresponding

characteristics, the region of the x− t plane covered simultaneously by characteristics x = χj(t;x0)

for both j = 1, 2 with x0 ≤ 0, will coincide with the linear core solution (u, v) = (U, V ) in (3.48)

and (3.49). Similarly, for the region of the x− t plane covered by characteristics of both families

emanating from the constant region, the solution will be constant. The right boundary curve of the

left (linear core) region will be the characteristic

b1(t) = χ1(t; 0) (3.56)
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of the first family. Similarly, the left boundary of the constant region will be a characteristic of the

second family:

b2(t) = λ2(β0, ζ0)t. (3.57)

The solution can then be constructed in the middle region by enforcing the constancy of the Riemann

invariants on characteristics:

R1(x, t) = R1(0, 0) (3.58)

for b1(t) < x < b2(t) and

R2(b1(t0) + (t− t0)λ2(b1(t0), t0), t) = R2(b1(t), t0). (3.59)

Then the identities

u =
1

2
(R1 +R2), v =

1

16
(R1 −R2)2 (3.60)

can be used to recover the solution in the simple wave region since R1 is constant and R2(χ1(t0; 0), t0)

is given explicitly in terms of the linear core solution. We note that u and v are also constant on the

characteristics x = b1(t0) + (t− t0)λ2(b1(t0), t0) since they are determined uniquely by the Riemann

invariants (this hold even in the two layer case under the mapping (3.61), provided that a particular

quadrant is chosen). A schematic of the characteristics in the x− t plane is shown in figure 3.1.

In order to provides explicit solutions to system (3.46), we make use of a map [36, 47] relating it

to system (3.45), allowing for the construction of explicit solutions with the type of singularities we

have considered in the previous sections. This map is given by

û = (1− 2u)v, v̂ = (1− v2)(u− u2) (3.61)

sending solutions (u, v) of system (3.46) to solutions (u, v) = (û, v̂) of system (3.45). The map (3.61)

is many-to-one with 1→ 4 inverses (see [15]) given by

uij =
1

2

(
1 + (sgn û)j+1(−1)i

√
Q− (−1)j

√
Q2 − û2

)
(3.62)
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x

2b (t)

t

1b (t)

Figure 3.1: Characteristic diagram with the linear core solution for x < b1(t), the simple wave
solution for b1(t) ≤ x ≤ b2(t) and a constant state for b2(t) < x. Dotted curves denote characteristics
of the first family and solid curves denote characteristics of the second.

and

vij = −(sgn û)j(−1)i
√
Q+ (−1)j

√
Q2 − û2 (3.63)

where j = 1, 2 and

Q =
û2 − 4v̂ + 1

2
(3.64)

(hereinafter we adorn the dependent variables with hats when they are obtained through the map

(3.61)). Figure 3.2 shows the images of the four branches while figure 3.3 shows the image Ω̃ of the

hyperbolic region Ω of the two layer system (3.46) under the map (3.61) along with the singular

curves

u =
1

2
± v

2
. (3.65)

Note that these are level curves of the Riemann invariants

Rj(û, v̂) = û+ 2(−1)j
√
v̂ (3.66)
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1,1

1,2

2,1

2,2

Figure 3.2: The i, j quadrant is the image of the curved triangle in figure 3.3 under (ûij , v̂ij) with
v and u plotted on the horizontal and vertical axes respectively. The dotted lines are the singular
curves of the map (u, v)→ (û, v̂).

.
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Figure 3.3: The image Ω̃ of the hyperbolic region Ω under the map (u, v) → (û, v̂), with û and v̂
plotted on the horizontal and vertical axes respectively. The dotted curves are the image of the
singular curves.

.

since

Q2 − û2 =
1

16
(1− 2û2 + û4 − 4v̂ − 4v̂û2 + 16v̂2) (3.67)

=
1

16
((R1)2 − 1)((R2)2 + 1). (3.68)

3.5.2 Example 1: non-splitting corner in the Airy system

We use the linear core construction to present a solution which has a corner that does not split,

corresponding to the lack of a jump in one of the Riemann invariants. We take initial conditions:

v0(x) =

 1 + x, x < 0

1, 0 ≤ x
(3.69)
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and

u0(x) =

 x, x < 0

0, 0 ≤ x
(3.70)

The initial Riemann invariants are then

Rk0(x) =

 x+ 2(−1)k
√

1 + x, x < 0

2(−1)k, 0 ≤ x.
(3.71)

The derivative jumps of the Riemann invariants for the initial corner at x0 = 0 are given by

[Rk0
′
] = −1− (−1)k (3.72)

from which we may predict that the corner will not split given that only one of the Riemann

invariants has a nonzero derivative jump using the conditions derived above. We have

α0 = ω0 = ζ0 = 1 (3.73)

and

β0 = 0 (3.74)

so the linear core is given by

v(x, t) =
x− log(1 + t) + 2t+ 1

(1 + t)2
, (3.75)

u(x, t) =
x− log(1 + t)

1 + t
, (3.76)

and the leftmost characteristic bounding the core solution is given by

b1(t) = −2t+ log(1 + t). (3.77)

Having computed the basic elements explicitly, we turn to show that no corner will propagate

along x = b1(t0). To achieve this we must take the spatial derivatives on the right side, i.e., in

the simple wave region where u and v are defined implicitly via the method of characteristics, and
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compare to the spatial derivatives defined by the linear core solution. The left derivatives are

ulx(b1(t0), t0) = α(t0) =
1

1 + t0
(3.78)

and

vlx(b1(t0), t0) = ω(t0) =
1

(1 + t0)2
. (3.79)

Then the right spatial derivative of u is

urx(b1(t0), t0) = lim
t→t0

u(x(t0, t), t)− u(b1(t), t)

x(t0, t)− b1(t)
(3.80)

= lim
t→t0

u(b1(t0), t0)− u(b1(t), t)

x(t0, t)− b1(t)
(3.81)

where x(t0, t) = b1(t0) + (t− t0)λ2(b1(t0), t0), and

urx =
d
dt0
u(b1(t0), t0)
∂x
∂t0

(t0, t0)
(3.82)

=
d
dt0
u(b1(t0), t0)

λ1(b1(t0), t0)− λ2(b1(t0), t0)
. (3.83)

Identical manipulations yield

vrx =
d
dt0
v(b1(t0), t0)

λ2(b1(t0), t0)− λ1(b1(t0), t0)
. (3.84)

Thus we compute

d

dt0
u(b1(t0), t0) = − 2t0

(1 + t0)2
,

d

dt0
v(b1(t0), t0) = − 2t0

(1 + t0)3
, (3.85)

and

λ1(b1(t0), t0)− λ2(b1(t0), t0) = − 2t0
(1 + t0)

. (3.86)

Plugging these into the formulae (3.82) and (3.84) for the right (simple-wave-side) derivatives yields

the same results as those for the left (linear-core-side) derivatives (3.78) and (3.79), so there is no

jump along this characteristic. The initial condition in figure 3.4 evolves into figure 3.5 illustrating
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Figure 3.4: Initial conditions for which only one Riemann invariant has a corner: u(x, 0) is shown in
(a) and v(x, 0) in (b).
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Figure 3.5: Evolution of a corner from the initial conditions in 3.4: u(x, .5) is shown in (a) and
v(x, .5) in (b).

the non-splitting of the corner. This contrasts the generic case illustrated in figures 3.6 and 3.7

obtained by changing to α0 = 1.6, causing corners to occur in both Riemann invariants.

3.5.3 Example 2: non-splitting corner and singular Riemann invariant

In this subsection we consider a linear core solution2 of the Airy system (3.45) which is tangent to

the boundary of the domain of (ûij , v̂ij) and the images thereunder. That this property is maintained

by evolution follows from the fact that this curve is a level surface of a Riemann invariant. An

elementary computation shows that tangency can be achieved by setting

β0 = û0, ω0 =
α0

2
(û0 − 1), ζ0 = v̂0 (3.87)

2Since we are only concerned with local behavior at small time, we shall not, in this example, be concerned with
splicing the linear core to a constant solution, shock formation at large time, or ellipticity away from points of interest.
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Figure 3.6: Initial conditions for which both Riemann invariants have corners: u(x, 0) is shown in
(a) and v(x, 0) in (b).
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Figure 3.7: Evolution of a corner from the initial conditions in 3.6: u(x, .5) is shown in (a) and
v(x, .5) in (b).
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Figure 3.8: Linear core solutions tangent to the boundary of Ω̃, (a) at time t = 0 and (b) at time
t = .5.

where (û0, v̂0) = (û(0, 0), v̂(0, 0)) is the initial point of tangency and α0 is a free parameter. For the

present example we take β0 = .3 and α0 = 1. The dependent variables in the (û, v̂) domain at time

t = 0 and t = .5 are shown in figure 3.8.

Finally, we consider the solutions to (3.46) in the 1, 1 quadrant by mapping the linear core

solution:

u(x, t) = u11(û(x, t), v̂(x, t)), v(x, t) = v11(û(x, t), v̂(x, t)), (3.88)

This solution is shown in the space of dependent variables at times t = 0 and t = .5 in figure 3.9 and

the total pre-image of the linear core solution is shown in 3.10. The spatial dependence of u and v

at fixed time are shown in figures 3.11 and 3.12.

We see that a single corner propagates in the solution (u, v), however the linear core solution is

smooth by construction and the mapping from the system (3.45) to its Riemann invariants is also

smooth in the hyperbolic region. Thus there are no corners in the initial Riemann invariants despite

the fact that a single corner is achieved in the solution (u(x, t), v(x, t)). This is a consequence of the

fact that the boundaries of the quadrants, i.e., the NGNL curves, are each vanishing loci for the

gradients of the corresponding Riemann invariants.

3.5.4 Example 3: Infinite gradient in a scalar conservation law

We provide an example of an infinite gradient which is not constant on either side, in the scalar

case of section 3.4.1. Since simple waves are, by definition, solutions to a scalar law, the present

example qualitatively illustrates the general situation where two simple waves of the same family

are glued together at the NGN point where the orientation of the curve reverses. This type of

solution obviously leads to shocks at large enough time but we may track the evolution prior to
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Figure 3.9: pre-image of linear core solutions in the 1, 1 quadrant, (a) at time t = 0 and (b) at time
t = .5.
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Figure 3.10: total pre-image of linear core solution in all quadrants, (a) at time t = 0 and (b) at
time t = .5.

(a)-0.3 -0.2 -0.1 0.1 0.2 0.3 0.4

0.1

0.2

0.3

(b)-0.3 -0.2 -0.1 0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.11: Initial conditions in the 1, 1 quadrant: u(x, 0) is shown in (a) and v(x, 0) in (b).
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Figure 3.12: Evolution of the initial conditions in figure 3.11: u(x, .5) is shown in (a) and v(x, .5) in
(b).
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shock formation.

We consider the simplest possible scalar law: the cubic flux conservation law (3.47). With initial

conditions u(x, 0) = u0(x), the solution is given according to the method of characteristics:

u(x0 + u0(x0)
2t, t) = u0(x0). (3.89)

In the case

u0(x0) = (sgnx0)
√
|x0|, (3.90)

we have

x = x0(1 + (sgnx0)t) (3.91)

which is single valued, having sgnx0 = sgnx when t < 1. Thus we may solve

x0 =
1

1 + (sgnx)t
x (3.92)

yielding

u(x, t) =
sgnx

1 + (sgnx)t

√
|x|. (3.93)

The evolution of the solution before shock time is shown in figure 3.13. The same process may also

be applied to the initial condition

u0(x0) =
√
|x0|, (3.94)

yielding the evolution

u(x, t) =
1

1 + (sgnx)t

√
|x|. (3.95)

shown in 3.14.
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Figure 3.13: Evolution under the scalar law (3.47) of the initial condition (3.91), (a) at time t = 0
and (b) at time t = .8.
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Figure 3.14: Evolution under the scalar law (3.47) with initial condition (3.94), (a) at time t = 0
and (b) at time t = .8.

3.5.5 Example 4: Infinite gradient in a centered simple wave

For the two layer system (3.46), the rarefaction curves (see Appendix for the setting) may be

expressed explicitly. We take a centered simple wave solution in the 1, 1 quadrant:

u(x, t) =


ul, x/t ≤ λ2(ul, vl)

u11(−1
3(2xt + 1

2), 1
36(2xt − 1)), λ2(ul, vl) < x/t < λ2(ur, vr)

ur, x/t ≥ λ2(ur, vr)

(3.96)

and

v(x, t) =


vl, x/t ≤ λ2(ul, vl)

v11(−1
3(2xt + 1

2), 1
36(2xt − 1)), λ2(ul, vl) < x/t < λ2(ur, vr)

vr, x/t ≥ λ2(ur, vr)

(3.97)

where

ul = 0.15, vl = 0.268466, ur = 0.25, vr = 0.5. (3.98)

76



(a)
-5 5 10 15

0.18

0.20

0.22

0.24

(b)
-5 5 10 15

0.35

0.40

0.45

0.50

Figure 3.15: Initial conditions for the Riemann problem: u(x, 0) is shown in (a) and v(x, 0) in (b).
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Figure 3.16: Evolution of the centered simple wave at time 10 is shown in (a) and v(x, 0) in (b).

The initial conditions in figure 3.15 are step functions. As time evolves in figures 3.16 and 3.17, the

wave becomes less and less steep, except at the right state where the infinite gradient occurs. This is

an NGNL point as can be seen in figure 3.18 where the simple wave segment is shown in the space

of dependent variables.

3.5.6 Example 5: an infinite gradient spliced with a non-constant angle

In the previous infinite gradient examples the point in the space of dependent variables where an

infinite gradient occurs remains constant in the evolution and, correspondingly, moving at a constant

characteristic speed in the space-time half plane. This happens generically since the evolution along
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Figure 3.17: Evolution of the centered simple wave at time 22 is shown in (a) and v(x, 0) in (b).
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Figure 3.18: The simple wave segment shown in the space of dependent variables.

a characteristic for a hyperbolic system (3.1) occurs normally to the corresponding left eigenvector:

lk ·
d

dt
U(χk(t;x0), t) = lk · (λkI −DF (U))Ux = 0, (3.99)

whereas the NGNL manifold need not be normal to the left eigenvector. In the 2 × 2 case, non-

constant evolution along a characteristic will remain on the NGNL curve if and only if the latter is a

level set of a Riemann invariant. One particular instance where this is the case is the Boussinesq

two layer system (3.46). We illustrate an explicit solution with an evolving infinite gradient point

for this case. To accomplish this we consider the evolution obtained by connecting the linear core

solution with initial parameters

α0 =
1

3
, β0 = −1

3
, ω0 =

1

3
, ζ0 =

1

9
(3.100)

on the left of the origin with the constant state (û, v̂) = (β, ζ) on the right. Then a simple wave

region will emerge between the rightmost characteristic b1(t) of the linear core and the leftmost

characteristic b2(t) of the constant state. This simple wave coincides with the singular curve of the

map (3.61) (see figure 3.19). The infinite gradient propagates along b1(t), with dependent variables

evolving along the NGNL curve, as shown in figure 3.21 and 3.22. We note that, unlike previous

examples, the angle formed between the tangent lines at the infinite gradient point is not π/2

(infinite gradient at the boundary of a constant state), π (front-like) or 0 (cusp) as it was in previous

examples. This is apparent in figures 3.21 and 3.22 with the exact angle at a given time computable

by the same method as in section 3.5.2.
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Figure 3.19: The solution in the (ũ, ṽ) space (a) at time t = 0 and (b) at time t = .5.
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Figure 3.20: The solution to the two layer system, obtained from the 1, 1 branch of the mapping
applied to the solution in figure 3.19 (a) at time t = 0 and (b) at time t = .5.
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Figure 3.21: Initial conditions in the 1, 1 quadrant: u(x, 0) is shown in (a) and v(x, 0) in (b).
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Figure 3.22: Evolution of the initial conditions in figure 3.21: u(x, .5) is shown in (a) and v(x, .5) in
(b).
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CHAPTER 4

Conclusions

In chapter 2, we developed a shock theory for quasilinear Hamiltonian systems where discontinu-

ities are required to satisfy Rankine-Hugoniot conditions for all of the conservation laws naturally

given by the Hamiltonian structure. This requires that the shocks be undercompressive and produce

a map (or discrete set of maps), giving right states that can be joined to a given left state, in

contrast to the one parameter family of the classical shock theory. The properties of this map

were shown to determine key features of the system. It was shown,in particular that for a 2 × 2

system, preservation of simple waves by this map is a necessary condition for the satisfaction of

Rankine-Hugoniot conditions for an infinitude of independent conservation laws across a Hamiltonian

shock, and for the interaction of Hamiltonian shocks with continuous waves to be assured to proceed

without the development of gradient catastrophe. The case where Hamiltonian shock solutions map

to continuous solutions of an auxiliary system was used to explicitly compute interactions. These

findings were compared to numerical simulations of dispersive systems, where gradient catastrophe

signals the development of classical dispersive shocks, yielding agreement with the theory. Further

tasks and questions emerge from this study which we now outline.

One direction for further research is stratified fluid flow with more than two layers. The three

layer case was studied in the Hamiltonian setting in [57]. In the Boussinesq approximation with

equal density gradients, a symmetry of the system exists [58] which was shown in [57] to be a

Hamiltonian symmetry. It is not hard to show that this symmetry is a Hamiltonian shock map which

thus produces conjugate states that produce continuity preserving Hamiltonian shock interactions.

This map, however, does not exhaust the possible conjugate states of the system. In particular,

these shocks are necessarily mode 1, whereas mode 2 conjugate states were studied in [59], wherein

the existence of corresponding heteroclynic connections was argued for within the rich traveling

wave dynamics of this system (recall that conjugate states are necessary but not sufficient for such a

connection for arbitrary Hamiltonian perturbations).
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Among two of the explicit examples we considered, the hyperbolic part of the Hamiltonian

was given by a fourth order polynomial in two variables, one exhibiting simple wave preservation:

H = 1
2(u(1 − u)v2 + u2), and one not: H = −1

2v
2 − u4. Further work will involve classifying the

properties of Hamiltonian shocks for all polynomials of order at most four. In particular, it is not

hard to see that if H(u, v) is symmetric in u and v, the Hamiltonian shocks are obtained by switching

the two and simple wave preservation holds.

A relationship could be sought between the simple wave preserving property to other paradigms

in the study of dispersive perturbations of hyperbolic systems, e.g. solitonic modulation [18, 20] and

N -integrability [29, 39]. Another further line of inquiry which we have not pursued is the interaction

of two Hamiltonian shocks with one another. The possibility of such an interaction is based purely

on algebraic properties of the various branches of the Hamiltonian shock map. In all of the cases we

have studied, Hamiltonian shocks have given an accurate representations of kink-continuous wave

interactions in a dispersive system. Further testing of the robustness of this representation against

various different properties of the dispersive perturbations would require the inclusion of higher order

dispersion, which is known to produce non-classical effects [35], or stronger non-linearities in the

dispersion which could create asymmetric kink profiles.

Then in chapter 3, we described how initial discontinuities in derivatives evolve over time in

hyperbolic systems and have shown that infinite derivatives may persist in a continuous solution

if and only if genuine nonlinearity fails where the infinite derivative lies. The former development

resolves a conjecture from [15] that a corner propagates along a characteristic if and only if the

initial Riemann invariant of the corresponding family has a derivative jump. The resolution is in the

affirmative except when i. the corner point is also a critical point for the Riemann invariant and ii.

quantities arising from differentiating the eigenvectors are not Lipschitz continuous. In both cases a

corner in the initial Riemann invariant is sufficient for corner propagation. A counterexample to the

necessity of condition i. was found: a corner which propogates along a characteristic despite the

Riemann invariant of the corresponding family having no first derivative jump. In case ii. on the

other hand, further analysis would be required.

81



REFERENCES

[1] S. Zhang, M. H. Alford, and J. B. Mickett, “Characteristics, generation and mass transport of
nonlinear internal waves on the w ashington continental shelf,” Journal of Geophysical Research:
Oceans, vol. 120, no. 2, pp. 741–758, 2015.

[2] A. Scotti, R. C. Beardsley, B. Butman, and J. Pineda, “Shoaling of nonlinear internal waves in
massachusetts bay,” Journal of Geophysical Research: Oceans, vol. 113, no. C8, 2008.

[3] A. Scotti and J. Pineda, “Observation of very large and steep internal waves of elevation near
the massachusetts coast,” Geophysical Research Letters, vol. 31, 2004.

[4] A. Bertrand, D. Grados, F. Colas, S. Bertrand, X. Capet, A. Chaigneau, G. Vargas, A. Mous-
seigne, and R. Fablet, “Broad impacts of fine-scale dynamics on seascape structure from
zooplankton to seabirds,” Nature communications, vol. 5, no. 1, pp. 1–9, 2014.

[5] M. Funakoshi and M. Oikawa, “Long internal waves of large amplitude in a two-layer fluid,”
Journal of the Physical Society of Japan, vol. 55, pp. 128–144, 1986.

[6] K. G. Lamb and B. Wan, “Conjugate flows and flat solitary waves for a continuously stratified
fluid,” Physics of Fluids, vol. 10, no. 8, pp. 2061–2079, 1998.

[7] W. Choi and R. Camassa, “Weakly nonlinear internal waves in a two-fluid system,” Journal of
Fluid Mechanics, vol. 313, pp. 83–103, 1996.

[8] A. Kluwick, S. Scheichl, and E. A. Cox, “Near-critical hydraulic flows in two-layer fluids,”
Journal of Fluid Mechanics, vol. 575, pp. 187–219, 2007.

[9] S. Benzoni-Gavage, “Linear stability of propagating phase boundaries in capillary fluids,” Physica
D: Nonlinear Phenomena, vol. 155, no. 3-4, pp. 235–273, 2001.

[10] P. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical
Shock Waves. Lectures in Mathematics. ETH Zürich, Birkhäuser Basel, 2002.

[11] A. Gurevich and L. Pitayevsky, “Nonstationary structure of a collisionless shock wave,” Journal
of Experimental and Theoretical Physics, vol. 38, no. 3, pp. 291–297, 1973.

[12] G. Whitham and M. J. Lighthill, “Non-linear dispersive waves,” Proceedings of the Royal Society
of London. Series A. Mathematical and Physical Sciences, vol. 283, no. 1393, pp. 238–261, 1965.

[13] G. B. Whitham, Linear and Nonlinear Waves. John Wiley & Sons, Ltd, 1999.

[14] R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni, and G. Pitton, “Singularity formation as a
wetting mechanism in a dispersionless water wave model,” Nonlinearity, vol. 32, pp. 4079–4116,
sep 2019.

[15] R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni, and C. Thomson, “Hydrodynamic Models and
Confinement Effects by Horizontal Boundaries,” Journal of Nonlinear Science, vol. 29, no. 4,
pp. 1445–1498, 2019.

[16] R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni, and G. Pitton, “On the "vacuum" dam-break
problem: Exact solutions and their long time asymptotics,” SIAM J. Appl. Math., vol. 80,
pp. 44–70, 2020.

82



[17] J. G. Esler and J. D. Pearce, “Dispersive dam-break and lock-exchange flows in a two-layer
fluid,” Journal of Fluid Mechanics, vol. 667, pp. 555–585, 2011.

[18] G. A. El, M. A. Hoefer, and M. Shearer, “Dispersive and diffusive-dispersive shock waves for
nonconvex conservation laws,” SIAM Review, vol. 59, no. 1, pp. 3–61, 2017.

[19] A. M. Kamchatnov, Y.-H. Kuo, T.-C. Lin, T.-L. Horng, S.-C. Gou, R. Clift, G. A. El, and
R. H. J. Grimshaw, “Undular bore theory for the gardner equation,” Phys. Rev. E, vol. 86,
p. 036605, Sep 2012.

[20] K. van der Sande, G. A. El, and M. A. Hoefer, “Dynamic soliton–mean flow interaction with
non-convex flux,” Journal of Fluid Mechanics, vol. 928, p. A21, 2021.

[21] W. Melville and K. R. Helfrich, “Transcritical two-layer flow over topography,” Journal of Fluid
Mechanics, vol. 178, pp. 31–52, 1987.

[22] S. Benzoni-Gavage, R. Danchin, S. Descombes, and D. Jamet, “On korteweg models for fluids
exhibiting phase changes,” in Proceedings of 10th International Conference on Hyperbolic
Problems, Osaka, Yokohama Publishers, 2004.

[23] M. Shearer, D. G. Schaeffer, D. Marchesin, and P. L. Paes-Leme, “Solution of the riemann
problem for a prototype 2x2 system of non-strictly hyperbolic conservation laws,” Archive for
Rational Mechanics and Analysis, vol. 97, no. 4, pp. 299–320, 1987.

[24] M. R. Schulze and M. Shearer, “Undercompressive shocks for a system of hyperbolic conservation
laws with cubic nonlinearity,” Journal of Mathematical Analysis and Applications, vol. 229,
p. 334, 1999.

[25] A. L. Bertozzi, A. Münch, and M. Shearer, “Undercompressive shocks in thin film flows,” Physica
D: Nonlinear Phenomena, vol. 134, no. 4, pp. 431–464, 1999.

[26] S. P. Tsarev, “The geometry of hamiltonian systems of hydrodynamic type. the generalized
hodograph method,” Mathematics of the USSR-Izvestiya, vol. 37, pp. 397–419, apr 1991.

[27] P. D. Lax, “Hyperbolic systems of conservation laws ii,” Communications on Pure and Applied
Mathematics, vol. 10, no. 4, pp. 537–566, 1957.

[28] P. D. Lax, 1. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock
Waves, pp. 1–48. Society for Industrial and Applied Mathematics, 1973.

[29] B. Dubrovin, “Hamiltonian pdes: deformations, integrability, solutions,” Journal of Physics A:
Mathematical and Theoretical, vol. 43, no. 43, p. 434002, 2010.

[30] S. Bianchini and A. Bressan, “Vanishing viscocity solutions to nonlinear hyperbolic systems,”
Annals of mathematics, vol. 161, no. 1, pp. 223–342, 2005.

[31] P. Le Floch, “Shock waves for nonlinear hyperbolic systems in nonconservative form.” 1989.

[32] P. D. Lax and C. David Levermore, “The small dispersion limit of the korteweg-de vries equation.
i,” Communications on Pure and Applied Mathematics, vol. 36, no. 3, pp. 253–290, 1983.

[33] S. Venakides, “The zero dispersion limit of the korteweg-de vries equation for initial potentials
with non-trivial reflection coefficient,” Communications on Pure and Applied Mathematics,
vol. 38, no. 2, pp. 125–155, 1985.

83



[34] G. A. El, “Resolution of a shock in hyperbolic systems modified by weak dispersion,” Chaos:
An Interdisciplinary Journal of Nonlinear Science, vol. 15, no. 3, p. 037103, 2005.

[35] M. A. Hoefer, N. F. Smyth, and P. Sprenger, “Modulation theory solution for nonlinearly
resonant, fifth-order korteweg–de vries, nonclassical, traveling dispersive shock waves,” Studies
in Applied Mathematics, vol. 142, no. 3, pp. 219–240, 2019.

[36] L. V. Ovsyannikov, “Two-layer "Shallow water" model,” Journal of Applied Mechanics and
Technical Physics, vol. 20, no. 2, pp. 127–135, 1979.

[37] P. D. Lax, “Development of singularities of solutions of nonlinear hyperbolic partial differential
equations,” Journal of Mathematical Physics, vol. 5, no. 5, pp. 611–613, 1964.

[38] J. L. JOHNSON, Global continuous solutions of hyperbolic systems of quasi-linear equations.
University of Michigan, 1967.

[39] B. Dubrovin, Hamiltonian perturbations of hyperbolic PDEs: from classification results to the
properties of solutions, pp. 231–276. Springer, 2009.

[40] T. . B. . Benjamin and S. . Bowman, “Discontinuous solutions of one-dimensional hamiltonian
systems,” Proceedings of the Royal Society of London, vol. 413, no. 1845, pp. 263–295, 1987.

[41] F. Magri, “A simple model of the integrable hamiltonian equation,” Journal of Mathematical
Physics, vol. 19, no. 5, pp. 1156–1162, 1978.

[42] M. Slemrod, “Admissibility criteria for propagating phase boundaries in a van der Waals fluid,”
Archive for Rational Mechanics and Analysis, vol. 81, no. 4, pp. 301–315, 1983.

[43] R. D. James, “The propagation of phase boundaries in elastic bars,” Archive for Rational
Mechanics and Analysis, vol. 73, no. 2, pp. 125–158, 1980.

[44] C. Audiard, “Existence of multi-travelling waves in capillary fluids,” Proceedings.Section A,
Mathematics - The Royal Society of Edinburgh, vol. 150, pp. 2905–2936, 12 2020.

[45] R. Camassa, G. Falqui, and G. Ortenzi, “Two-layer interfacial flows beyond the Boussinesq
approximation : a Hamiltonian approach,” Nonlinearity, vol. 30, pp. 466–491, 2017.

[46] P. Milewski and E. Tabak, “Conservation law modelling of entrainment in layered hydrostatic
flows,” Journal of Fluid Mechanics, vol. 772, pp. 272–294, 2015.

[47] L. Chumakova, F. E. Menzaque, P. A. Milewski, R. R. Rosales, E. G. Tabak, and C. V. Turner,
“Stability properties and nonlinear mappings of two and three-layer stratified flows,” Studies in
Applied Mathematics, vol. 122, no. 2, pp. 123–137, 2009.

[48] J. A. Gear and R. Grimshaw, “A second-order theory for solitary waves in shallow fluids,” The
Physics of Fluids, vol. 26, no. 1, pp. 14–29, 1983.

[49] A. Boonkasame and P. A. Milewski, “A model for strongly nonlinear long interfacial waves with
background shear,” Studies in Applied Mathematics, vol. 133, no. 2, pp. 182–213, 2014.

[50] B. Fornberg and G. B. Whitham, “A numerical and theoretical study of certain nonlinear wave
phenomena,” Philosophical Transactions of the Royal Society of London. Series A, Mathematical
and Physical Sciences, vol. 289, no. 1361, pp. 373–404, 1978.

84



[51] J. A. Leach and D. J. Needham, “The large-time development of the solution to an initial-value
problem for the korteweg–de vries equation: I. initial data has a discontinuous expansive step,”
Nonlinearity, vol. 21, pp. 2391–2408, sep 2008.

[52] T.-P. Liu, “The riemann problem for general 2x2 conservation laws,” Transactions of the
American Mathematical Society, vol. 199, pp. 89–112, 1974.

[53] T.-P. Liu, “The riemann problem for general systems of conservation laws,” Journal of Differential
Equations, vol. 18, no. 1, pp. 218–234, 1975.

[54] P. G. LeFloch and M. D. Thanh, “Nonclassical riemann solvers and kinetic relations i. a
nonconvex hyperbolic model of phase transitions,” Zeitschrift für angewandte Mathematik und
Physik ZAMP, vol. 52, no. 4, pp. 597–619, 2001.

[55] C. M. Edwards, S. D. Howison, H. Ockendon, and J. R. Ockendon, “Non-classical shallow water
flows,” IMA Journal of Applied Mathematics, vol. 73, pp. 137–157, 12 2007.

[56] R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni, and G. Pitton, “On the geometry of extended
self-similar solutions of the airy shallow water equations,” Symmetry, Integrability and Geometry:
Methods and Applications, vol. 15, 2019.

[57] R. Camassa, G. Falqui, G. Ortenzi, M. Pedroni, and T. Ho, “Hamiltonian aspects of three-layer
stratified fluids,” Journal of Nonlinear Science, vol. 31, no. 4, pp. 1–32, 2021.

[58] F. de Melo Viríssimo and P. A. Milewski, “Three-layer flows in the shallow water limit,” Studies
in Applied Mathematics, vol. 142, no. 4, pp. 487–512, 2019.

[59] A. Doak, R. Barros, and P. A. Milewski, “Large mode-2 internal solitary waves in three-layer
flows,” arXiv preprint arXiv:2205.00503, 2022.

[60] J. A. Smoller and J. L. Johnson, “Global solutions for an extended class of hyperbolic systems
of conservation laws,” Archive for Rational Mechanics and Analysis, vol. 32, no. 3, pp. 169–189,
1969.

[61] J. A. Smoller, Shock Waves and Reaction-Diffusion Equations. Springer, 1983.

[62] L. Ding, R. Hunt, R. M. McLaughlin, and H. Woodie, “Enhanced diffusivity and skewness of a
diffusing tracer in the presence of an oscillating wall,” Research in the Mathematical Sciences,
vol. 8, no. 3, pp. 1–29, 2021.

[63] L. Ding and R. M. McLaughlin, “Determinism and invariant measures for diffusing passive scalars
advected by unsteady random shear flows,” Physical Review Fluids, vol. 7, no. 7, p. 074502,
2022.

[64] L. Ding, Scalar Transport and Mixing. PhD thesis, University of North Carolina at Chapel Hill,
2022.

[65] J. P. Boyd, Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

85



APPENDIX A

HYPERBOLIC QUASILINEAR SYSTEMS

We review the elements of the theory of quasilinear hyperbolic systems. A quasilinear hyperbolic

system in one space dimension is a system of PDEs

Ut +A(U)Ux = 0 (A.1)

where U is a vector valued function of one space variable x and time t > 0: U : IR× IR+ → IRn, and

A is an n× n matrix valued function of U which is assumed to have real and distinct eigenvalues

λ1 < λ2 < ... < λn. In contrast, when A(U) has real eigenvalues but is not diagonalizable (A.1) is

referred to as parabolic, and when any of the eigenvalues are imaginary it is referred to as elliptic.

When A is the differential of a vector valued function F :

Aij =
∂fi
∂uj

, (A.2)

A(U) = DF (U), (A.3)

equation (A.1) can be written in conservation form

∂tU + ∂x
(
F (U)

)
= 0. (A.4)

In this case we may also consider weak solutions: possibly non-smooth or even discontinuous functions

satisfying

−
∫ ∞
0

∫ ∞
−∞

(∂tφ)U + (∂xφ)
(
F (U)

)
dxdt−

∫ ∞
−∞

U(x, 0)φ(x, 0)dx = 0 (A.5)

for any φ infinitely differentiable and compactly supported. (A.5) reduces to (A.4) when U is

differentiable.

A Riemann problem is an initial value problem for (A.5) with initial data of the form

U(x, 0) = U0(x) =

 Ul, x < 0

Ur, x > 0.
(A.6)
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If U(x, t) is continuous except across a moving point x = s(t), (A.5) is expressed at this point by

the conditions

s(Ur −Ul) + (Fr − Fl) = 0, (A.7)

s = s′(t), known as the Rankine-Hugoniot conditions, where the subscripts r and l denote evaluation

of the left and right limits of the quantities at s(t):

Ul = lim
x→−s(t)

U(x, t), (A.8)

Ur = lim
x→+s(t)

U(x, t). (A.9)

Following [27], the building blocks of the solution to (A.6) are known as k-waves. These are a

special set of curvesWk(ξk;Ul) in the space of dependent variables defined as follows: for ξk ≥ λk(Ul),

Wk is an integral curve of rk, i.e.

d

dξk
Wk(ξk;Ul) = rk(Wk(ξk;Ul)), (A.10)

with ξk = λk(Wk(ξk;Ul)), while for some δk > 0, λk(Ul)−δk < ξk < λk(Ul), Wk is defined implicitly

by (A.7):

F (Wk(ξk;Ul))− F (Ul) = sk(ξk)(Wk(ξk;Ul)−Ul). (A.11)

The resulting singular 1-manifold is sometimes referred to as the Hugoniot locus. This also defines

sk implicitly and it is shown in [27] that the choice

sk(λk(Ul)) = λk(Ul) (A.12)

makes Wk(ξk;Ul) twice differentiable at ξk = λk.

A solution to (A.5)-(A.6) with Ur = Wk(ξk;Ul) is, for ξk > λk(Ul):

Uk(x, t;Ul,Ur) =


Ul, x/t ≤ λk(Ul)

Wk(x/t;Ul), λk(Ul) < x/t < λk(Ur)

Ur, x/t ≥ λk(Ur),

(A.13)
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or for ξk < λk(Ul):

Uk(x, t;Ul,Ur) =

 Ul, x/t < sk(ξk)

Ur, x/t > sk(ξk).
(A.14)

i.e. a discontinuous (shock) solution to (A.5)-(A.6).

In [27] a solution to (A.5)-(A.6) is constructed for any Ur that can be reached by gluing together

consecutive Wk curves, k = 1, 2, 3, ..., n:

Ur = Wk(ξk;Wk−1(ξk−1; (...(W1(ξ1;Ul))...))), (A.15)

it is given by

U(x, t) = Uk(x, t;U
k−1
r ,Uk

r ), ζk−1(ξk−1) ≤
x

t
≤ ζk(ξk), 1 ≤ k ≤ n (A.16)

where

U0
r = Ul, U j

r = Wj(ξj ;U
j−1
r ) (A.17)

and

ζj(ξj) =

 ξj , ξj ≥ λj(U j−1
r )

sj(ξj), ξj < λj(U
j−1
r ).

(A.18)

Let Ω be the set Ur thus reachable from Ul (see [27]). Then Ul is an interior point of Ω so a solution

to the Riemann problem (A.6) can be constructed for any Ur sufficiently close to Ul. This solution

is shown to be unique within the class satisfying the following inequalities for ξk < λk(Ul) (known

as the Lax entropy inequalities)

λk(U
k
r ))) < sk(ξk) < λk(U

k−1
r )), (A.19)

and

λk−1(U
k−1
r )) < sk(ξk) < λk+1(U

k
r ). (A.20)

The first inequality holds for Wk by construction when ξk is close enough to λk and insisting that it

hold on the full domain of Wk amounts to a restriction on δk. It also prevents the possibility that a

k-shock and a k-rarefaction could coexist, i.e., that multiple admissible solutions could be found by
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gluing together two Wk curves choosing the parameter ξk to have ξk −λk first negative then positive

or vice-versa to connect the same left and right states Ul and Ur by distinct centered solutions. The

second set of inqualities ensures that the U = Uk−1 wedge of the solution falls to the left of the Uk

segment which in turn falls to the left of the Uk+1 wedge.

Some extensions of these results exist to larger neighborhoods from which Ur can be taken, see

for [60] for a class of examples. This method of solution is also extended (see e.g. [61]) to the case of

linear degeneracy, where

∇λk · rk ≡ 0 (A.21)

for some k and the result is a solution of (A.7) with sk = λk, called a contact discontinuity.

Finally, we recall that a Riemann invariant (see e.g. [13]) is a function φk whose gradient is a

left eigenvector lk of B∇2H corresponding to λk:

∇φk(U)TA(U) = λk(U)∇φk(U) (A.22)

which are not guaranteed to exist for n > 2.
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APPENDIX B

NUMERICAL METHODS (LINGYUN DING)

We document the details of the numerical methods. The (pseudo) Fourier spectral method is

one of the efficient methods for the simulation the domains with regular geometries [17, 62, 63, 64].

In this method, all functions are approximated by the Fourier series. Therefore, the derivative acts

as multiplication in the spectral space. The nonlinear terms are efficiently calculated by Fast Fourier

transform (FFT) based convolution. We refer the reader to the textbook [65] for more details.

We approximate the infinite interval by the finite interval x ∈ [L,L] with a large number L

which depends on the traveling wave speed and the final time of the simulation. The solutions of

equations discussed in this section usually tend to different constants at infinity. Applying Fourier

series approximation to this non-periodic solution could yield a serious Gibbs phenomenon. To

alleviate the approximation error, we consider an even extension of the computational domain.

We adopt the explicit 4th-order Runge-Kutta method as the time-marching scheme. In the

dealiasing process at each time step, we apply the all-or-nothing filter with the two-thirds rule to

the spectrum, that is, we set the upper one-third of the resolved spectrum to zero.

The inversion of the operator L provided in equation (2.255) is calculated via the generalized

minimal residual method (GMRES). At each time step, we choose the solution value at the previous

time step as the initial guess of GMRES.

The typical number of grid points is 215 + 1 before the even extension and 216 after the even

extension. The spatial grid size is around 0.0192, and the time step size is around 0.003. We verified

that all numerical results were not sensitive to an increase in either spatial or temporal resolution.

The relative error measured by the mesh refinement test is at the order of 10−4.
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APPENDIX C

UNDERCOMPRESSIVITY

we recall that the definition of an undercompressive shock, is a steplike solution (A.14) with left

and right states satisfying (A.11) but failing to satisfy (A.19) and (A.20), and instead satisfying, for

each characteristic family, either

λk(Ul), λk(Ur) < sk (C.1)

or

sk < λk(Ul), λk(Ur). (C.2)

Taking the determinant of (2.133) with G = H gives

detYr det JΠn
j=1(λ

l
j − s) = detYlΠ

n
j=1(λ

r
j − s). (C.3)

We consider the case where J is negative. This holds in all the examples we have considered, thanks

to the fact that the Hamiltonian shock map behaves like a reflection near a fixed curve in cast of a

2 × 2 system and likewise near a fixed point for a scalar equation. It can be seen by considering

how Yl and Yr act by left multiplication on an orthonormal basis containing [U ]T

|[U ]| , that both have

eigenvalue [12U
TB−1U ] with multiplicity n− 1 and the remaining eigenvalue is either [12U ]TB−1[U ]

or −[12U ]TB−1[U ], respectively. The impulse [12U
TB−1U ] can be assured not to vanish by making

a constant shift (see section 2.3.2) and 1
2 [U ]TB−1[U ] = 1

2s [U ]T [∇H], the vanishing of which violates

convexity. To see this, we recall that convexity implies

H(Ur) < H(Ul) +∇H(Ul) · (Ur −Ul), (C.4)

H(Ul) < H(Ur) +∇H(Ur) · (Ul −Ur) (C.5)

and if [12U ]T [∇H] = 0 we may substitute

∇H(Ur) · (Ul −Ur) = −∇H(Ul) · (Ur −Ul) (C.6)
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into (C.5) and add to (C.4) to obtain

H(Ul) +H(Ur) < H(Ul) +H(Ur) (C.7)

which is a contradiction. Therefore
detYr det J

detYl
> 0 (C.8)

which, together with (C.3), implies that

sgnΠn
j=1(λ

l
j − s) = sgnΠn

j=1(λ
r
j − s). (C.9)

This shows that since λlk ≤ s < λlk+1 and λrk ≤ s < λrk+1 for some k at any point Ul = U0 at a fixed

point of Ũ , it must also hold on a neighborhood thereof.
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APPENDIX D

CLASSICAL UNDERCOMPRESSIVE CASE

The construction of section 2.2.4 can be used to provide insight into solutions with evolving

classical undercompressive shock fronts. The kinetic condition relating admissible pairs Ul and Ur is

not symmetric in this case as it is for Hamiltonian shocks and thus the exact argument made above

for loss of regularity following a failure of Ũ to preserve simple waves does not quite work. However,

when the kinetic relation is a perturbation of Ur = Ũ(Ul) (see e.g. [10]), the regularity loss will

carry over from the non-dissipative case, at least for small perturbations.

We give an explicit demonstration of the regularity maintenance for a classical undercompressive

shock interacting with a continuous wave for a scalar law in the case of a cubic flux. The admissible

undercompressive shocks are parametrized by β which controls the ratio of the dispersive terms to

the dissipative terms: β = α√
54
, where the weakly dispersive-dissipative regularized system is given

by

ut + u2u− εαuxx − ε2uxxx = 0. (D.1)

The parametrization of admissible undercompressive-shock-jumps is given by

ur =


−ul − β, ul ≤ −2β

−ul/2, ul ≤ |2β|

−ul + β, ul ≥ 2β.

(D.2)

We consider the third case. Then the shock speed is given by

s =
[u3/3]

[u]
=

1

3
(u2l − βul + β2). (D.3)

Again, for a shock moving through a centered expansion wave, u(x, t) =
√
x/t, we have an ODE,

s′(t) =
1

3
(u(s(t), t)2 − βu(s(t), t) + β2) (D.4)
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and a convenient change of variable is to u, which has

u′(t) =
−1

2t
u(t) +

1

2

√
1

ts(t)
s′(t) (D.5)

=
1

2t

(
−u(t) +

1

u(t)
s′(t)

)
(D.6)

=
1

6u(t)t
(−2u(t)2 − βu(t) + β2). (D.7)

We may separate variables:

C1 −
1

3
log t =

∫
udu

(u+ β)(u− β/2)
(D.8)

=
1

3

∫
1

u− β/2
+

2

u+ β
du (D.9)

for some constant C1 and we ultimately obtain

C2

t
= (u+ β)2(u− β/2) (D.10)

which yields an implicit expression for s(t):

C2

√
t = (

√
s(t) + β

√
t)2(
√
s(t)− β/2

√
t). (D.11)

As before, we may fit this into a simple wave solution with constant states on the left and right.

Figure D.1 shows this for α = 1
2 , ul = 1.1, um = 2 which together imply that ur = −3

2 . We observe

that as the left state approaches the boundary of the piecewise definition (D.2) of an admissible

undercompressive shock, ul → 2β, the leftmost characteristic emanating from s(t) approaches the

outgoing shock curve.

As in the non-dissipative case, the slope of the characteristics exiting from the undercompressive

94



5 10 15

5

10

15

u

x

Figure D.1: Characteristic diagram for an undercompressive shock moving through a simple wave
with α = 1

2 , ul = 1.1, um = 2.

shock may be computed:

d

dt
λ(ur) =

dλr
dur

dur
dul

(s′(t)(ul)x + (ul)t) (D.12)

=
dλr
dur

dur
dul

(s− λl)(ul)x (D.13)

=
dλr
dur

dur
dul

(s− λl)
uc0
′

1 + tλ′′(uc0)u
c
0
′ (D.14)

where as before, uc0 denotes the continuous initial condition before interaction with the undercom-

pressive shock. The same sign considerations apply, namely the continuity of the solution after

interacting with the undercompressive shock is ensured by the negativity of durdul
and the property

that dλr
dur

has the opposite sign of dλldul
.
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