1,726 research outputs found

    NEURON: Enabling Autonomicity in Wireless Sensor Networks

    Get PDF
    Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes

    DMP: Detouring Using Multiple Paths against Jamming Attack for Ubiquitous Networking System

    Get PDF
    To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Protection and efficient management of big health data in cloud environment

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Healthcare data has become a great concern in the academic world and in industry. The deployment of electronic health records (EHRs) and healthcare-related services on cloud platforms will reduce the cost and complexity of handling and integrating medical records while improving efficiency and accuracy. To make effective use of advanced features such as high availability, reliability, and scalability of Cloud services, EHRs have to be stored in the clouds. By exposing EHRs in an outsourced environment, however, a number of serious issues related to data security and privacy, distribution and processing such as the loss of the controllability, different data formats and sizes, the leakage of sensitive information in processing, sensitive-delay requirements has been naturally raised. Many attempts have been made to address the above concerns, but most of the attempts tackled only some aspects of the problem. Encryption mechanisms can resolve the data security and privacy requirements but introduce intensive computing overheads as well as complexity in key distribution. Data is not guaranteed being protected when it is moved from one cloud to another because clouds may not use equivalent protection schemes. Sensitive data is being processed at only private clouds without sufficient resources. Consequently, Cloud computing has not been widely adopted by healthcare providers and users. Protecting and managing health data efficiently in many aspects is still an open question for current research. In this dissertation, we investigate data security and efficient management of big health data in cloud environments. Regarding data security, we establish an active data protection framework to protect data; we investigate a new approach for data mobility; we propose trusted evaluation for cloud resources in processing sensitive data. For efficient management, we investigate novel schemes and models in both Cloud computing and Fog computing for data distribution and data processing to handle the rapid growth of data, higher security on demand, and delay requirements. The novelty of this work lies in the novel data mobility management model for data protection, the efficient distribution scheme for a large-scale of EHRs, and the trust-based scheme in security and processing. The contributions of this thesis can be summarized according to data security and efficient data management. On data security, we propose a data mobility management model to protect data when it is stored and moved in clouds. We suggest a trust-based scheduling scheme for big data processing with MapReduce to fulfil both privacy and performance issues in a cloud environment. • The data mobility management introduces a new location data structure into an active data framework, a Location Registration Database (LRD), protocols for establishing a clone supervisor and a Mobility Service (MS) to handle security and privacy requirements effectively. The model proposes a novel security approach for data mobility and leads to the introduction of a new Data Mobility as a Service (DMaaS) in the Cloud. • The Trust-based scheduling scheme investigates a novel composite trust metric and a real-time trust evaluation for cloud resources to provide the highest trust execution on sensitive data. The proposed scheme introduces a new approach for big data processing to meet with high security requirements. On the efficient data management, we propose a novel Hash-Based File Clustering (HBFC) scheme and data replication management model to distribute, store and retrieve EHRs efficiently. We propose a data protection model and a task scheduling scheme which is Region-based for Fog and Cloud to address security and local performance issues. • The HBFC scheme innovatively utilizes hash functions to cluster files in defined clusters such that data can be stored and retrieved quickly while maintaining the workload balance efficiently. The scheme introduces a new clustering mechanism in managing a large-scale of EHRs to deliver healthcare services effectively in the cloud environment. • The trust-based scheduling model uses the proposed trust metric for task scheduling with MapReduce. It not only provides maximum trust execution but also increases resource utilization significantly. The model suggests a new trust-oriented scheduling mechanism between tasks and resources with MapReduce. • We introduce a novel concept “Region” in Fog computing to handle the data security and local performance issues effectively. The proposed model provides a novel Fog-based Region approach to handle security and local performance requirements. We implement and evaluate our proposed models and schemes intensively based on both real infrastructures and simulators. The outcomes demonstrate the feasibility and the efficiency of our research in this thesis. By proposing innovative concepts, metrics, algorithms, models, and services, the significant contributions of this thesis enable both healthcare providers and users to adopt cloud services widely, and allow significant improvements in providing better healthcare services

    Efficient Authentication, Node Clone Detection, and Secure Data Aggregation for Sensor Networks

    Get PDF
    Sensor networks are innovative wireless networks consisting of a large number of low-cost, resource-constrained sensor nodes that collect, process, and transmit data in a distributed and collaborative way. There are numerous applications for wireless sensor networks, and security is vital for many of them. However, sensor nodes suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the lack of infrastructure, all of which impose formidable security challenges and call for innovative approaches. In this thesis, we present our research results on three important aspects of securing sensor networks: lightweight entity authentication, distributed node clone detection, and secure data aggregation. As the technical core of our lightweight authentication proposals, a special type of circulant matrix named circulant-P2 matrix is introduced. We prove the linear independence of matrix vectors, present efficient algorithms on matrix operations, and explore other important properties. By combining circulant-P2 matrix with the learning parity with noise problem, we develop two one-way authentication protocols: the innovative LCMQ protocol, which is provably secure against all probabilistic polynomial-time attacks and provides remarkable performance on almost all metrics except one mild requirement for the verifier's computational capacity, and the HBC^C protocol, which utilizes the conventional HB-like authentication structure to preserve the bit-operation only computation requirement for both participants and consumes less key storage than previous HB-like protocols without sacrificing other performance. Moreover, two enhancement mechanisms are provided to protect the HB-like protocols from known attacks and to improve performance. For both protocols, practical parameters for different security levels are recommended. In addition, we build a framework to extend enhanced HB-like protocols to mutual authentication in a communication-efficient fashion. Node clone attack, that is, the attempt by adversaries to add one or more nodes to the network by cloning captured nodes, imposes a severe threat to wireless sensor networks. To cope with it, we propose two distributed detection protocols with difference tradeoffs on network conditions and performance. The first one is based on distributed hash table, by which a fully decentralized, key-based caching and checking system is constructed to deterministically catch cloned nodes in general sensor networks. The protocol performance of efficient storage consumption and high security level is theoretically deducted through a probability model, and the resulting equations, with necessary adjustments for real application, are supported by the simulations. The other is the randomly directed exploration protocol, which presents notable communication performance and minimal storage consumption by an elegant probabilistic directed forwarding technique along with random initial direction and border determination. The extensive experimental results uphold the protocol design and show its efficiency on communication overhead and satisfactory detection probability. Data aggregation is an inherent requirement for many sensor network applications, but designing secure mechanisms for data aggregation is very challenging because the aggregation nature that requires intermediate nodes to process and change messages, and the security objective to prevent malicious manipulation, conflict with each other to a great extent. To fulfill different challenges of secure data aggregation, we present two types of approaches. The first is to provide cryptographic integrity mechanisms for general data aggregation. Based on recent developments of homomorphic primitives, we propose three integrity schemes: a concrete homomorphic MAC construction, homomorphic hash plus aggregate MAC, and homomorphic hash with identity-based aggregate signature, which provide different tradeoffs on security assumption, communication payload, and computation cost. The other is a substantial data aggregation scheme that is suitable for a specific and popular class of aggregation applications, embedded with built-in security techniques that effectively defeat outside and inside attacks. Its foundation is a new data structure---secure Bloom filter, which combines HMAC with Bloom filter. The secure Bloom filter is naturally compatible with aggregation and has reliable security properties. We systematically analyze the scheme's performance and run extensive simulations on different network scenarios for evaluation. The simulation results demonstrate that the scheme presents good performance on security, communication cost, and balance

    A Novel Locality Algorithm and Peer-to-Peer Communication Infrastructure for Optimizing Network Performance in Smart Microgrids

    Full text link
    [EN] Peer-to-Peer (P2P) overlay communications networks have emerged as a new paradigm for implementing distributed services in microgrids due to their potential benefits: they are robust, scalable, fault-tolerant, and they can route messages even with a large number of nodes which are frequently entering or leaving from the network. However, current P2P systems have been mainly developed for file sharing or cycle sharing applications where the processes of searching and managing resources are not optimized. Locality algorithms have gained a lot of attention due to their potential to provide an optimized path to groups with similar interests for routing messages in order to get better network performance. This paper develops a fully functional decentralized communication architecture with a new P2P locality algorithm and a specific protocol for monitoring and control of microgrids. Experimental results show that the proposed locality algorithm reduces the number of lookup messages and the lookup delay time. Moreover, the proposed communication architecture heavily depends of the lookup used algorithm as well as the placement of the communication layers within the architecture. Experimental results will show that the proposed techniques meet the network requirements of smart microgrids even with a large number of nodes on stream.This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2R. This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under BES-2013-064539.Marzal-Romeu, S.; González-Medina, R.; Salas-Puente, RA.; Figueres Amorós, E.; Garcerá, G. (2017). A Novel Locality Algorithm and Peer-to-Peer Communication Infrastructure for Optimizing Network Performance in Smart Microgrids. Energies. 10(9):1-25. https://doi.org/10.3390/en10091275S125109Khan, R. H., & Khan, J. Y. (2013). A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network. Computer Networks, 57(3), 825-845. doi:10.1016/j.comnet.2012.11.002Dada, J. O. (2014). Towards understanding the benefits and challenges of Smart/Micro-Grid for electricity supply system in Nigeria. Renewable and Sustainable Energy Reviews, 38, 1003-1014. doi:10.1016/j.rser.2014.07.077Lidula, N. W. A., & Rajapakse, A. D. (2011). Microgrids research: A review of experimental microgrids and test systems. Renewable and Sustainable Energy Reviews, 15(1), 186-202. doi:10.1016/j.rser.2010.09.041Hussain, A., Arif, S. M., Aslam, M., & Shah, S. D. A. (2017). Optimal siting and sizing of tri-generation equipment for developing an autonomous community microgrid considering uncertainties. Sustainable Cities and Society, 32, 318-330. doi:10.1016/j.scs.2017.04.004Dehghanpour, K., Colson, C., & Nehrir, H. (2017). A Survey on Smart Agent-Based Microgrids for Resilient/Self-Healing Grids. Energies, 10(5), 620. doi:10.3390/en10050620Palizban, O., Kauhaniemi, K., & Guerrero, J. M. (2014). Microgrids in active network management – part II: System operation, power quality and protection. Renewable and Sustainable Energy Reviews, 36, 440-451. doi:10.1016/j.rser.2014.04.048Shi, W., Li, N., Chu, C.-C., & Gadh, R. (2017). Real-Time Energy Management in Microgrids. IEEE Transactions on Smart Grid, 8(1), 228-238. doi:10.1109/tsg.2015.2462294Deng, R., Yang, Z., Chow, M.-Y., & Chen, J. (2015). A Survey on Demand Response in Smart Grids: Mathematical Models and Approaches. IEEE Transactions on Industrial Informatics, 11(3), 570-582. doi:10.1109/tii.2015.2414719Moazami Goodarzi, H., & Kazemi, M. (2017). A Novel Optimal Control Method for Islanded Microgrids Based on Droop Control Using the ICA-GA Algorithm. Energies, 10(4), 485. doi:10.3390/en10040485Erol-Kantarci, M., Kantarci, B., & Mouftah, H. (2011). Reliable overlay topology design for the smart microgrid network. IEEE Network, 25(5), 38-43. doi:10.1109/mnet.2011.6033034Hassan Youssef, K. (2016). Optimal management of unbalanced smart microgrids for scheduled and unscheduled multiple transitions between grid-connected and islanded modes. Electric Power Systems Research, 141, 104-113. doi:10.1016/j.epsr.2016.07.015Giotitsas, C., Pazaitis, A., & Kostakis, V. (2015). A peer-to-peer approach to energy production. Technology in Society, 42, 28-38. doi:10.1016/j.techsoc.2015.02.002Kazmi, S. A. A., Shahzad, M. K., Khan, A. Z., & Shin, D. R. (2017). Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective. Energies, 10(4), 501. doi:10.3390/en10040501Werth, A., Andre, A., Kawamoto, D., Morita, T., Tajima, S., Tokoro, M., … Tanaka, K. (2018). Peer-to-Peer Control System for DC Microgrids. IEEE Transactions on Smart Grid, 9(4), 3667-3675. doi:10.1109/tsg.2016.2638462Deconinck, G., Vanthournout, K., Beitollahi, H., Qui, Z., Duan, R., Nauwelaers, B., … Belmans, R. (2008). A Robust Semantic Overlay Network for Microgrid Control Applications. Architecting Dependable Systems V, 101-123. doi:10.1007/978-3-540-85571-2_5Bandara, H. M. N. D., & Jayasumana, A. P. (2012). Collaborative applications over peer-to-peer systems–challenges and solutions. Peer-to-Peer Networking and Applications, 6(3), 257-276. doi:10.1007/s12083-012-0157-3Palizban, O., & Kauhaniemi, K. (2015). Hierarchical control structure in microgrids with distributed generation: Island and grid-connected mode. Renewable and Sustainable Energy Reviews, 44, 797-813. doi:10.1016/j.rser.2015.01.008Khatibzadeh, A., Besmi, M., Mahabadi, A., & Reza Haghifam, M. (2017). Multi-Agent-Based Controller for Voltage Enhancement in AC/DC Hybrid Microgrid Using Energy Storages. Energies, 10(2), 169. doi:10.3390/en10020169Planas, E., Gil-de-Muro, A., Andreu, J., Kortabarria, I., & Martínez de Alegría, I. (2013). General aspects, hierarchical controls and droop methods in microgrids: A review. Renewable and Sustainable Energy Reviews, 17, 147-159. doi:10.1016/j.rser.2012.09.032Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C. A., Iravani, R., Kazerani, M., … Hatziargyriou, N. D. (2014). Trends in Microgrid Control. IEEE Transactions on Smart Grid, 5(4), 1905-1919. doi:10.1109/tsg.2013.2295514Vandoorn, T. L., Vasquez, J. C., De Kooning, J., Guerrero, J. M., & Vandevelde, L. (2013). Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies. IEEE Industrial Electronics Magazine, 7(4), 42-55. doi:10.1109/mie.2013.2279306Zhou, B., Li, W., Chan, K. W., Cao, Y., Kuang, Y., Liu, X., & Wang, X. (2016). Smart home energy management systems: Concept, configurations, and scheduling strategies. Renewable and Sustainable Energy Reviews, 61, 30-40. doi:10.1016/j.rser.2016.03.047Ancillotti, E., Bruno, R., & Conti, M. (2013). The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Computer Communications, 36(17-18), 1665-1697. doi:10.1016/j.comcom.2013.09.004Llaria, A., Terrasson, G., Curea, O., & Jiménez, J. (2016). Application of Wireless Sensor and Actuator Networks to Achieve Intelligent Microgrids: A Promising Approach towards a Global Smart Grid Deployment. Applied Sciences, 6(3), 61. doi:10.3390/app6030061Luna, A. C., Diaz, N. L., Graells, M., Vasquez, J. C., & Guerrero, J. M. (2016). Cooperative energy management for a cluster of households prosumers. IEEE Transactions on Consumer Electronics, 62(3), 235-242. doi:10.1109/tce.2016.7613189Gungor, V. C., Lu, B., & Hancke, G. P. (2010). Opportunities and Challenges of Wireless Sensor Networks in Smart Grid. IEEE Transactions on Industrial Electronics, 57(10), 3557-3564. doi:10.1109/tie.2009.2039455Zhao, C., He, J., Cheng, P., & Chen, J. (2017). Consensus-Based Energy Management in Smart Grid With Transmission Losses and Directed Communication. IEEE Transactions on Smart Grid, 8(5), 2049-2061. doi:10.1109/tsg.2015.2513772Lo, C.-H., & Ansari, N. (2013). Decentralized Controls and Communications for Autonomous Distribution Networks in Smart Grid. IEEE Transactions on Smart Grid, 4(1), 66-77. doi:10.1109/tsg.2012.2228282Li, C., Savaghebi, M., Guerrero, J., Coelho, E., & Vasquez, J. (2016). Operation Cost Minimization of Droop-Controlled AC Microgrids Using Multiagent-Based Distributed Control. Energies, 9(9), 717. doi:10.3390/en9090717Wu, X., Jiang, P., & Lu, J. (2014). Multiagent-Based Distributed Load Shedding for Islanded Microgrids. Energies, 7(9), 6050-6062. doi:10.3390/en7096050Kantamneni, A., Brown, L. E., Parker, G., & Weaver, W. W. (2015). Survey of multi-agent systems for microgrid control. Engineering Applications of Artificial Intelligence, 45, 192-203. doi:10.1016/j.engappai.2015.07.005Lopes, A. L., & Botelho, L. M. (2008). Improving Multi-Agent Based Resource Coordination in Peer-to-Peer Networks. Journal of Networks, 3(2). doi:10.4304/jnw.3.2.38-47Cameron, A., Stumptner, M., Nandagopal, N., Mayer, W., & Mansell, T. (2015). Rule-based peer-to-peer framework for decentralised real-time service oriented architectures. Science of Computer Programming, 97, 202-234. doi:10.1016/j.scico.2014.06.005Zhang, C., Wu, J., Cheng, M., Zhou, Y., & Long, C. (2016). A Bidding System for Peer-to-Peer Energy Trading in a Grid-connected Microgrid. Energy Procedia, 103, 147-152. doi:10.1016/j.egypro.2016.11.264Malatras, A. (2015). State-of-the-art survey on P2P overlay networks in pervasive computing environments. Journal of Network and Computer Applications, 55, 1-23. doi:10.1016/j.jnca.2015.04.014Eng Keong Lua, Crowcroft, J., Pias, M., Sharma, R., & Lim, S. (2005). A survey and comparison of peer-to-peer overlay network schemes. IEEE Communications Surveys & Tutorials, 7(2), 72-93. doi:10.1109/comst.2005.1610546Xu, J., Kumar, A., & Yu, X. (2004). On the Fundamental Tradeoffs Between Routing Table Size and Network Diameter in Peer-to-Peer Networks. IEEE Journal on Selected Areas in Communications, 22(1), 151-163. doi:10.1109/jsac.2003.818805Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (2001). Chord. ACM SIGCOMM Computer Communication Review, 31(4), 149-160. doi:10.1145/964723.383071Rowstron, A., & Druschel, P. (2001). Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes in Computer Science, 329-350. doi:10.1007/3-540-45518-3_18Yuh-Jzer Joung, Li-Wei Yang, & Chien-Tse Fang. (2007). Keyword search in DHT-based peer-to-peer networks. IEEE Journal on Selected Areas in Communications, 25(1), 46-61. doi:10.1109/jsac.2007.070106Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek, F., & Balakrishnan, H. (2003). Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Transactions on Networking, 11(1), 17-32. doi:10.1109/tnet.2002.808407Gottron, C., König, A., & Steinmetz, R. (2010). A Survey on Security in Mobile Peer-to-Peer Architectures—Overlay-Based vs. Underlay-Based Approaches. Future Internet, 2(4), 505-532. doi:10.3390/fi2040505Seyedi, Y., Karimi, H., & Guerrero, J. M. (2017). Centralized Disturbance Detection in Smart Microgrids With Noisy and Intermittent Synchrophasor Data. IEEE Transactions on Smart Grid, 8(6), 2775-2783. doi:10.1109/tsg.2016.2539947Youssef, T., Elsayed, A., & Mohammed, O. (2016). Data Distribution Service-Based Interoperability Framework for Smart Grid Testbed Infrastructure. Energies, 9(3), 150. doi:10.3390/en9030150Liu, X., Xia, H., & Chien, A. A. (2004). Validating and Scaling the MicroGrid: A Scientific Instrument for Grid Dynamics. Journal of Grid Computing, 2(2), 141-161. doi:10.1007/s10723-004-4200-3Kansal, P., & Bose, A. (2012). Bandwidth and Latency Requirements for Smart Transmission Grid Applications. IEEE Transactions on Smart Grid, 3(3), 1344-1352. doi:10.1109/tsg.2012.2197229Kuo, M.-T., & Lu, S.-D. (2013). Design and Implementation of Real-Time Intelligent Control and Structure Based on Multi-Agent Systems in Microgrids. Energies, 6(11), 6045-6059. doi:10.3390/en6116045Del Val, E., Rebollo, M., & Botti, V. (2012). Enhancing decentralized service discovery in open service-oriented multi-agent systems. Autonomous Agents and Multi-Agent Systems, 28(1), 1-30. doi:10.1007/s10458-012-9210-0Howell, S., Rezgui, Y., Hippolyte, J.-L., Jayan, B., & Li, H. (2017). Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources. Renewable and Sustainable Energy Reviews, 77, 193-214. doi:10.1016/j.rser.2017.03.107Frey, S., Diaconescu, A., Menga, D., & Demeure, I. (2015). A Generic Holonic Control Architecture for Heterogeneous Multiscale and Multiobjective Smart Microgrids. ACM Transactions on Autonomous and Adaptive Systems, 10(2), 1-21. doi:10.1145/2700326Miers, C., Simplicio, M., Gallo, D., Carvalho, T., Bressan, G., Souza, V., … Damola, A. (2010). A Taxonomy for Locality Algorithms on Peer-to-Peer Networks. IEEE Latin America Transactions, 8(4), 323-331. doi:10.1109/tla.2010.5595121Porsinger, T., Janik, P., Leonowicz, Z., & Gono, R. (2017). Modelling and Optimization in Microgrids. Energies, 10(4), 523. doi:10.3390/en10040523Ali, M., Zakariya, M., Asif, M., & Ullah, A. (2012). TCP/IP Based Intelligent Load Management System in Micro-Grids Network Using MATLAB/Simulink. Energy and Power Engineering, 04(04), 283-289. doi:10.4236/epe.2012.44038Shin, I.-J., Song, B.-K., & Eom, D.-S. (2017). International Electronical Committee (IEC) 61850 Mapping with Constrained Application Protocol (CoAP) in Smart Grids Based European Telecommunications Standard Institute Machine-to-Machine (M2M) Environment. Energies, 10(3), 393. doi:10.3390/en10030393Loh, P. C., Li, D., Chai, Y. K., & Blaabjerg, F. (2013). Autonomous Operation of Hybrid Microgrid With AC and DC Subgrids. IEEE Transactions on Power Electronics, 28(5), 2214-2223. doi:10.1109/tpel.2012.2214792Overlay networks for smart gridshttp://users.atlantis.ugent.be/cdvelder/papers/2013/wauters2013sgv.pdfEugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). The many faces of publish/subscribe. ACM Computing Surveys, 35(2), 114-131. doi:10.1145/857076.857078Ali, I. (2012). High-speed Peer-to-peer Communication based Protection Scheme Implementation and Testing in Laboratory. International Journal of Computer Applications, 38(4), 16-24. doi:10.5120/4596-6793Yoo, B.-K., Yang, S.-H., Yang, H.-S., Kim, W.-Y., Jeong, Y.-S., Han, B.-M., & Jang, K.-S. (2011). Communication Architecture of the IEC 61850-based Micro Grid System. Journal of Electrical Engineering and Technology, 6(5), 605-612. doi:10.5370/jeet.2011.6.5.605Dou, X., Quan, X., Wu, Z., Hu, M., Yang, K., Yuan, J., & Wang, M. (2014). Hybrid Multi-Agent Control in Microgrids: Framework, Models and Implementations Based on IEC 61850. Energies, 8(1), 31-58. doi:10.3390/en801003

    Location-aware mechanism for efficient video delivery over wireless mesh networks

    Get PDF
    Due to their flexibility, ease of use, low-cost and fast deployment, wireless Mesh Networks have been widely accepted as an alternative to wired network for last-mile connectivity. When used in conjunction with Peer-to-Peer data transfer solutions, many innovative applications and services such as distributed storage, resource sharing, live TV broadcasting or Video on Demand can be supported without any centralized administration. However, in order to achieve a good quality of service in such variable, error-prone and resource-constrained wireless multi-hop environments, it is important that the associated Peer-to-Peer overlay is not only aware of the availability, but also of the location and available path link quality of its peers and services. This thesis proposes a wireless location-aware Chord-based overlay mechanism for Wireless Mesh Networks (WILCO) based on a novel geographical multi-level ID mapping and an improved finger table. The proposed scheme exploits the location information of mesh routers to decrease the number of hops the overlay messages traverse in the physical topology. Analytical and simulation results demonstrate that in comparison to the original Chord, WILCO has significant benefits: it reduces the number of lookup messages, has symmetric lookup on keys in both the forward and backward direction of the Chord ring and achieves a stretch factor of O(1). On top of this location-aware overlay, a WILCO-based novel video segment seeking algorithm is proposed to make use of the multi-level WILCO ID location-awareness to locate and retrieve requested video segments from the nearest peer in order to improve video quality. An enhanced version of WILCO segment seeking algorithm (WILCO+) is proposed to mitigate the sometimes suboptimal selection of the WILCO video segment seeking algorithm by extracting coordinates from WILCO ID to enable location-awareness. Analytical and simulation results illustrate that the proposed scheme outperforms the existing state-of-the-art solutions in terms of PSNR and packet loss with different background traffic loads. While hop count is frequently strongly correlated to Quality of Service, the link quality of the underlying network will also have a strong influence on content retrieval quality. As a result, a Cross-layer Wireless Link Quality-aware Overlay peer selection mechanism (WLO) is proposed. The proposed cross-layer mechanism uses a Multiplication Selector Metric (MSM) to select the best overlay peer. The proposed MSM overcomes the two issues facing the traditional summation-based metric, namely, the difficulty of bottleneck link identification and the influence of hop count on behavior. Simulation results show that WLO outperforms the existing state-of-the-art solutions in terms of video quality at different background loads and levels of topology incompleteness. Real life emulation-based tests and subjective video quality assessments are also performed to show that the simulation results are closely matched by the real-life emulation-based results and to illustrate the significant impact of overlay peer selection on the user perceived video quality

    Security in peer-to-peer communication systems

    Get PDF
    P2PSIP (Peer-to-Peer Session Initiation Protocol) is a protocol developed by the IETF (Internet Engineering Task Force) for the establishment, completion and modi¿cation of communication sessions that emerges as a complement to SIP (Session Initiation Protocol) in environments where the original SIP protocol may fail for technical, ¿nancial, security, or social reasons. In order to do so, P2PSIP systems replace all the architecture of servers of the original SIP systems used for the registration and location of users, by a structured P2P network that distributes these functions among all the user agents that are part of the system. This new architecture, as with any emerging system, presents a completely new security problematic which analysis, subject of this thesis, is of crucial importance for its secure development and future standardization. Starting with a study of the state of the art in network security and continuing with more speci¿c systems such as SIP and P2P, we identify the most important security services within the architecture of a P2PSIP communication system: access control, bootstrap, routing, storage and communication. Once the security services have been identi¿ed, we conduct an analysis of the attacks that can a¿ect each of them, as well as a study of the existing countermeasures that can be used to prevent or mitigate these attacks. Based on the presented attacks and the weaknesses found in the existing measures to prevent them, we design speci¿c solutions to improve the security of P2PSIP communication systems. To this end, we focus on the service that stands as the cornerstone of P2PSIP communication systems¿ security: access control. Among the new designed solutions stand out: a certi¿cation model based on the segregation of the identity of users and nodes, a model for secure access control for on-the-¿y P2PSIP systems and an authorization framework for P2PSIP systems built on the recently published Internet Attribute Certi¿cate Pro¿le for Authorization. Finally, based on the existing measures and the new solutions designed, we de¿ne a set of security recommendations that should be considered for the design, implementation and maintenance of P2PSIP communication systems.Postprint (published version
    corecore