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Abstract—Tunable diode laser absorption spectroscopy 

tomography (TDLAST) has been widely applied for imaging 
two-dimensional distributions of industrial flow-field 
parameters, e.g., temperature and species concentration.  
Two main interested imaging objectives in TDLAST are the 
local combustion and its radiation in the entire sensing 
region. State-of-the-art algorithms were developed to 
retrieve either of the two objectives. In this paper, we 
address the both by developing a novel multi-output 
imaging neural network, named as Spatially Progressive 
Neural Network (SpaProNet). This network consists of 
locally and globally prioritized reconstruction stages. The 
former enables hierarchical imaging of the finely resolved 
and highly accurate local combustion, but coarsely 
resolved background. The later retrieves a fine-resolved 
image for the entire sensing region, at the cost of slightly 
trading off the reconstruction accuracy in the combustion 
zone. Furthermore, the proposed network is driven by the 
hydrodynamics of the real reactive flows, in which the 
training dataset is obtained from large eddy simulation. The 
proposed SpaProNet is validated by both simulation and 
lab-scale experiment. In all test cases, the visual and 
quantitative metric comparisons show that the proposed 
SpaProNet outperforms the existing methods from the 
following two perspectives: a) the locally prioritized stage 
provides ever-better accuracy in the combustion zone; b) 
the globally prioritized stage shows turbulence-indicative 
accuracy in the entire sensing region for diagnosis of heat 
radiation from the flame and flame-air interactions. 
 

Index Terms—laser imaging, neural network, spatial 
resolution, tomography, tunable diode laser absorption 
spectroscopy. 

 
 
This work was supported in part by Hebei Natural Science 

Foundation under Grant F2021203027, the U.K. Engineering and 
Physical Science Research Council under Platform Grant 
EP/P001661/1, the Cultivation Project for Basic Research and 
Innovation of Yanshan University under Grant 2021LGZD011, and the 
Hebei Key Laboratory Project under Grant 202250701010046. 
(Corresponding author: Chang Liu) 

J. Si, G. Fu and X. Liu are with the School of Information Science and 
Engineering, Yanshan University, Qinhuangdao 066004, China. 

Y. Cheng is with the Ocean College, Hebei Agricultural University, 
Qinhuangdao 066003, China. 

R. Zhang, J. Xia, Y. Fu, and C. Liu are with the School of Engineering, 
University of Edinburgh, Edinburgh EH9 3JL, U.K. (e-mail: 
C.Liu@ed.ac.uk) 

G. Enemali is with the Department of Electrical and Electronic 
Engineering, Glasgow Caledonian University, Glasgow, U.K. 

 

I. INTRODUCTION 
NDUSTRIAL process tomography has been well known for 
non-intrusive visualization and quantification of the flow 

behaviors. The electrical imaging modalities are generally used 
to image permittivity and/or inductivity [1-3]. In contrast, 
Tunable Diode Laser Absorption Spectroscopy Tomography 
(TDLAST) offers unique capability for characterizing the 
thermochemical parameters, such as temperature and species 
concentration in reactive flows [4-6]. TDLAST is implemented 
in a manner analogous to X-ray tomography. Instead of using 
rotational X-ray sources, TDLAST collects projection data 
using laser beams. Taking the reliability and safety into 
consideration, industrial chambers and reactors are generally 
available for very limited optical windows. Compared with X-
ray tomography that can acquire thousands of projection data 
from 360-degree rotation of the X-ray source, only a small 
number of fixed-position laser beams can access the sensing 
region through these windows. Consequently, the inverse 
problem of TDLAST is inherently ill-posed, due to the limited 
number of projection data and severe rank deficiency [7]. 

To solve the inverse problem of TDLAST, computational 
tomographic algorithms, such as the algebraic techniques [8] 
and regularization methods [9] generally mitigate the artefacts 
in the reconstruction by imposing implicit empirically 
determined penalization. Apart from non-negativity and 
smoothness of the reconstruction, most penalizing prior are 
implicit and unable to indicate the physical features of the 
reactive flow. The recently developed statistical inversions use 
explicit prior [10-13], such as linear elements, leading to highly 
resolved imaging of the energy-containing scales of turbulence. 
However, its universality may need to be further expanded 
since hydrodynamic features may not be adequately covered in 
case of isotropic turbulences with strong shear force and 
compressibility. In addition, the computational method suffers 
from complex and time-consuming computation, which hinders 
rapid feedback to the combustion engineers in case of high 
imaging rate and/or long-time test campaigns.    

The fast-booming deep neural networks, especially with 
hardware acceleration [14], offer speedy tools for TDLAST 
image reconstruction. Pioneering algorithms based on 
Convolutional Neural Network (CNN) [15, 16] were proposed 
for TDLAST sensors with dense-beam layout. In recent years, 
an improved CNN-aided tomographic algorithm [17], a Long 
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Short-term Memory (LSTM) based tomographic algorithm [18], 
and a Swin Transformer based tomographic algorithm [19] 
were demonstrated on more practical TDLAST sensors with a 
small number of laser beams. However, all these data-driven 
methods are only capable of reconstructing the predetermined 
Region of Interest (RoI) with fixed resolution.  

The choice of RoI, where distributions of flow-field 
parameters are to be retrieved, and the discretization schemes 
employed in the RoI are key factors affecting the imaging 
accuracy, efficiency and applicable scenarios. In general, high 
measurement sensitivity is enabled in the combustion zone 
where laser beams densely pass through. Defining the RoI as 
the entire sensing region with fine meshes generally introduces 
more artefacts in the background where is insufficiently 
covered by lasers beams. On the contrary, if the combustion 
zone is only chosen as the RoI, the imaging quality can be 
improved but at the cost of losing background information. 
Recent attempts have been made by hybrid meshing, i.e., fine 
meshes in the combustion zone and coarse meshes in the 
background, to maintain the physical integrity of laser 
measurement and mitigate the rank deficiency [20, 21]. 
However, the coarsely meshed background suffers from 
degenerated efficacy that is important to understand the heat 
radiation and flame-air interactions in many applications, such 
as imaging of the aero-engine exhaust [22]. Therefore, a data-
driven algorithm is highly demanded for TDLAST which can 
optionally prioritize the reconstruction accuracy in (a) the 
combustion zone to highlight the physiochemical performance 
in the flames or (b) the global image to indicate both the flames 
and their nearby reactions. 

To meet the above-mentioned requirements, a novel 
multiple-output imaging neural network, named as Spatially 
Progressive Neural Network (SpaProNet), is developed for 
TDLAST. The locally prioritized reconstruction of the 
combustion zone is to highlight the flame-central temperature 
profiles, while the globally prioritized reconstruction of the 
entire sensing region is to finely retrieve the characterization of 
heat radiation from the flame and flame-air interactions. The 
main contributions are: 
a) A Local-Prior-Global-Progressive (LPGP) discretization is 

designed to enable finely resolved imaging of the 
combustion zone and, meanwhile, establish progressive 
discretization of the global image with coarse-to-fine 
spatial correspondence. 

b) Based on the LPGP discretization, the SpaProNet is 
developed for temperature imaging in a locally/globally 
selective manner. It contains a locally prioritized stage to 
reconstruct high-accuracy combustion zone, and a globally 
prioritized stage to finely retrieve the entire sensing region. 

c) The proposed SpaProNet is driven by the hydrodynamics 
of the real reactive flows, which is obtained from large 
eddy simulation. It enables better generalizability and 
wider applicability with minimum penalizing coefficients. 

d) An experiment is designed with limited projection data to 
validate the SpaProNet. This indicates feasibility of the 
proposed network for imaging similar combustion 

processes in energy-generation industry, which is of great 
practical significance. 

II. MATHEMATICAL BACKGROUND 
In this work, we consider the inverse problem of TDLAST to 

reconstruct two-dimensional (2-D) distributions of critical gas 
parameters from Line-of-Sight (LoS) measurements with a 
limited number.  

If the sensing region is uniformly discretized into M grids and 
gas parameters in each grid are assumed to be uniform [5], as 
shown in Fig.1, the path integrated absorbance of the kth laser 
beam passing through the sensing region at the transition v, Av,k 

[cm-1], can be written as 

 , , , ,
1 1

( )
M M

v k v m k m m v m k m
m m

A a L PX S T L
 

   ,  k=1,2,...,K   (1) 

where Tm [K], Xm, and av,m [cm-2] are the local temperature, 
absorbing gas concentration, and absorbance density of Av,k in 
the mth grid, respectively [6]. P [atm] is the local pressure 
assumed to be 1. Lk,m [cm] is the chord length of the kth laser 
beam passing through the mth grid. K is the total number of 
laser beams. Sv(T) [cm-2atm-1] is the temperature-dependent line 
strength. In compact form,  

 = = ( )v v vP SA La L X T                         (2) 

Av ∈ ℝK×1 is the path integrated absorbance vector. T ∈ ℝM×1, X 
∈ ℝM×1, and av ∈ ℝM×1 are the temperature, gas concentration, 
and absorbance density vectors, respectively. L ∈ ℝK×M is the 
chord length matrix in which the elements are {Lk,m: k=1,2,...,K, 
m=1,2,...,M}.  denotes element-wise multiplication. Sv(·) 
performs element-wise computation. In this work, temperature 
imaging, i.e., retrieval of T, is exampled to demonstrate the 
proposed SpaProNet, since the temperature distribution is the 
most straightforward indication of thermal condition of the 
reaction, the combustion efficiency, and the formation of life-
threatening pollutants, e.g., NOx, CO, and soot [23]. 

              
 

Fig. 1. A line-of-sight TDLAST measurement in the uniformly 
discretized sensing region. 

  

 
 
Fig. 2.  LPGP discretization with J=4. (a) C-BG discretization and (b) 
F-BG discretization. 
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III. LOCAL-PRIOR-GLOBAL-PROGRESSIVE DISCRETIZATION 
To highlight temperature imaging in the combustion zone 

(CZ), and progressively and effectively allocate computational 
force for the background (BG), the LPGP discretization is 
designed with the following two discretization schemes: 

1) C-BG discretization − fine discretization of the CZ and 
coarse discretization of the BG. The CZ is discretized into MCZ 
dense grids with size of HCZ × WCZ, while the BG is discretized 
into MC-BG coarse grids with size of HC-BG × WC-BG. Here, HC-BG > 
HCZ and WC-BG > WCZ. 

2) F-BG discretization − fine discretization of both the CZ and 
the BG. The CZ is discretized densely as 1), while each coarse 
grid in the BG of the C-BG discretization is further split into J × 
J fine grids. That is, the BG is discretized into MF-BG = MC-BG × 
J2

 fine grids with size of HF-BG × WF-BG = (HC-BG / J) × (WC-BG / 
J). 

Fig. 2 demonstrates the LPGP discretization with (a) the C-
BG discretization and (b) the F-BG discretization with J = 4. 
Each grid in the BG in Fig. 2 (a) is split into 4 × 4 grids in the 
BG in Fig. 2 (b). 

With this LPGP discretization, Av in (2) can be written as 
CZ CZ CZ C-BG C-BG C-BG= ( ) + ( )v v vP S P SA L X T L X T            (3) 

for the C-BG discretization, and 

 CZ CZ CZ F-BG F-BG F-BG= ( ) + ( )v v vP S P SA L X T L X T            (4) 

for the F-BG discretization, respectively. Here, TCZ ∈ ℝMCZ×1, 
XCZ ∈ ℝMCZ×1, and LCZ ∈ ℝK×MCZ denote the temperature vector, 
the gas concentration vector, and the chord length matrix of the 
CZ. TC-BG ∈ ℝMC-BG×1 (TF-BG ∈ ℝMF-BG×1), XC-BG ∈ ℝMC-BG×1 (XF-

BG ∈  ℝMF-BG×1 ), and LC-BG ∈  ℝK×MC-BG  (LF-BG  ∈  ℝK×MF-BG ) 
denote the temperature vector, the gas concentration vector, and 
the chord length matrix of the BG of C-BG (F-BG) discretization. 
The inverse problem of the spatially progressive TDLAST 
discussed in this work is to reconstruct CZ-prioritized 

temperature vector TC = � TCZ 
TC-BG� ∈ ℝ(MCZ+MC-BG)×1 and globally 

prioritized temperature vector TF = � TCZ 
TF-BG�  ∈ ℝ(MCZ+MF-BG)×1 

with different computational costs from Av1  ∈ ℝK×1 and Av2 ∈ 
ℝK×1 measured at two pre-selected transitions, v1 and v2.  

IV. NETWORK ESTABLISHMENT 

A. System Setup 
The multiple-output neural network, named as SpaProNet, is 

developed to realize spatially progressive temperature imaging 
for the TDLAST sensors with K laser beams. In this work, a lab-
scale 32-beam TDLAST sensor is designed to validate the 
SpaProNet. The arrangement of the 32 laser beams is shown in 
Fig. 3. As demonstrated in [24], four-angle projection, that is 45° 
angular spacing between projections, is very cost-effective for 
maximizing the spatial resolution of TDLAST with limited 
number of laser beams. We denote the numbers of projection 
angles, the equispaced parallel beams at each angle, and the 
selected transitions as R, Q, and V, respectively. Here, R = 4, Q 

= 8, V = 2, and K = R × Q = 32. The spacing between neighboring 
parallel beams within each projection is 18 mm. The sensing 
region is octagonal, with its side length of 144 mm. Water vapor 
(H2O), a major product of hydrocarbon combustion, is selected 
as the target absorbing gas. Two H2O transitions at v1 = 7185.60 
cm-1 and v2 = 7444.36 cm-1 are chosen for experimental study 
given their good temperature sensitivity over 300-1200 K [25]. 
With this 32-beam TDLAST sensor, measurements Av1 ∈ ℝ32×1 
and Av2 ∈ ℝ32×1 are obtained at v1 and v2, respectively.  

The local combustion happens in the central square area with 
the side length of 144 mm. According to the LPGP discretization, 
the CZ is discretized into 40 × 40 dense grids. MCZ = 1600 and 
HCZ × WCZ = 3.6 mm × 3.6 mm. For the C-BG discretization, the 
BG is discretized into 364 coarse grids. MC-BG = 364 and HC-BG 
× WC-BG = 14.4 mm × 14.4 mm. For the F-BG discretization, the 
BG is discretized into 5824 fine grids. J = 4, MF-BG = 5824, and 
HF-BG × WF-BG = 3.6 mm × 3.6 mm. 

B. Network Implementation 
Taking Av1

reshape  ∈ ℝQ×R and Av2
reshape  ∈ ℝQ×R, reshaped from 

Av1 ∈ ℝK×1 and Av2 ∈ ℝK×1, as inputs, the SpaProNet consists of 
two stages, as shown in Fig. 4, i.e., a locally prioritized 
reconstruction stage and a globally prioritized reconstruction 
stage, which output temperature vectors T�C and T�F with the BG 
coarsely and finely reconstructed, respectively. 

1) Locally prioritized reconstruction stage  
A CNN-based sub-network is constructed in this stage. As 

shown in Fig. 4, it consists of three convolutional layers i.e., 
Conv1~Conv3, one Squeeze-and-Excitation (SE) block [26], 
and four fully-connected layers, i.e., FC1~FC4. Conv1~Conv3 
model multi-scale spatial dependencies in LoS measurements 
[Av1

reshape ;  Av2
reshape ]∈ ℝQ×R×2 and output convolutional features  

OConv1, OConv2, and OConv3, respectively. The SE block models the 
inter-dependencies among the channels of OConv3. Different from 
existing data-driven tomographic algorithms in [15, 16, 18, 19], 
multi-scale spatial and cross-frequency features extracted by 
convolutional layers are combined here and mapped with 

 
Fig. 3. Beam arrangement of the 32-beam TDLAST sensor. 
 

 
Fig. 4.  Architecture of the proposed SpaProNet. 
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FC1~FC4 to retrieve temperature vector T�C  of C-BG 
discretization. The forward propagation can be described as 

      C
4 3 2 1 Conv1 Conv2 Conv3

ˆ =FC FC FC FC Concat , ,SET O O O

(5) 
where SE(·), Concat(·), and FCi(·) represent the operations of SE, 
concatenation, and FCi for i∈{1,2,3,4}, respectively. 

The output of this stage is the temperature vector T�C with the 
CZ finely reconstructed and the BG coarsely reconstructed.  

2) Globally prioritized reconstruction stage 
The Transformer architecture is notable for its use of attention 

mechanisms [27] to model long-range dependencies in the data. 
Its success in the natural language processing domain has 
attracted researchers to investigate its applications to computer 
vision [28, 29]. In this work, Vision Transformer (ViT) [29] is 
introduced into the globally prioritized reconstruction stage of 
the SpaProNet to reconstruct the 2-D temperature distribution 
with fine spatial resolution for both the CZ and the BG. 

As shown in Fig. 5, this stage consists of a patch partition and 
embedding layer, a two-branch Transformer Encoder, and a 
Multi-Layer Perceptron (MLP) layer. OConv2, featuring spatial 
and cross-frequency correlations of the LoS measurements, are 
organized into a sequence of expanded patches via the patch 
partition and embedding layer. The short-range and long-range 
dependencies among the patches are subsequently modeled by 
the two-branch Transformer Encoder, and finally mapped to the 
temperature vector in F-BG discretization by the MLP layer.   

In detail, the input OConv2 ∈ ℝHO2×WO2×CO2 is reshaped into a 
sequence of flattened patches x0 =( x1

0 ; x2
0 ;...; xNpatch

0 ) 
∈ ℝNpatch×(HpWpCO2), where Hp × Wp is the patch size and Npatch = 
(HO2 × WO2) / (HP × WP) is the number of patches. Then, each 
element xi

0 ∈ ℝ1×(HpWpCO2) of x0, i ∈ {1,2,...,Npatch}, is taken as a 
“token” and mapped to patch embedding xi

0WL ∈ ℝ1×D with a 
linear projection matrix WL ∈ ℝ(HpWpCO2)×D , where D is the 
constant vector dimension throughout all layers of the two-
branch Transformer Encoder. A embedding z0

0 ∈ ℝ1×D  is 
prepended to the sequence of embedded patches, whose state at 
the output of the two-branch Transformer Encoder serves as the 
input of the MLP layer. After adding position embedding Wpos 
∈ ℝ(Npatch+1)×D , the output Z0 ∈ ℝ(Npatch+1)×D  of the patch 
partition and embedding layer can be descried as 

patch

0 0 0 0
0 0 1 2 pos= ; ; ;...; +L L N LZ z x W x W x W W 

  
          (6) 

The two-branch Transformer Encoder is composed of a stack 
of Nlayer layers, which are of identical structure but use different 
parameters from layer to layer. In the lth layer, l ∈ {1,2,...,Nlayer}, 
Zl-1 ∈ ℝ(Npatch+1)×D  and Zl ∈ ℝ(Npatch+1)×D

 denote the input and 
output, respectively. As shown in the dashed box in Fig. 5, the 
lth layer contains two branches. One branch models the long-
range dependencies in Zl-1 with a Multi-headed Self Attention 
(MSA) sub-layer and a Feed-Forward Network (FFN) sub-layer. 
The other branch models the short-range dependencies in Zl-1 
with convolutional layers. Operations performed in the MSA 
sub-layer, the FFN sub-layer, and the convolutional branch are 
described as below. 

(i) MSA sub-layer 
A total of NSA self-attention operations SAh(·), h ∈ 

{1,2,...,NSA}, called “heads”, are run on normalized input 1lZ   
= LN(Zl-1) in parallel, where LN(·) denotes the layer 
normalization. Their concatenated outputs are linearly projected 
by SA head

MSA
N D DW  , in which Dhead is the dimension of each 

head. The output of this sub-layer lZ   ∈ ℝ(Npatch+1)×D
 is 

  SA1 1 1 1 MSA= Concat SA ( ),...,SA ( )l l l N lZ Z Z Z W       (7)  

The self-attention operation of the hth head SAh( 1lZ  ) is 

 T
1 headSA ( ) softmaxh l h h hD Z Q K V                 (8) 

1[ , , ]h h h l hQ K V Z U                           (9) 

where head3U D D
h is the projection matrix of the hth head. 

In this work, Dhead is set as D / NSA. 
(ii) FFN sub-layer 
This sub-layer consists of two linear transforms with 

nonlinearity in between, which are applied to each row in the 
normalized input LN( )l lZ Z   separately and identically. The 

output lZ ∈ ℝ(Npatch+1)×D of this sub-layer is 

  FFN FFN FFN FFN
1 1 2 2= GELUl l lZ Z Z W b W b    

 
    (10) 

Here, FFNFFN
1

D nW   ( FFNFFN
2

n DW  ) and FFN1FFN
1

nb   

( FFN 1
2b  D ) are the weight matrix and the bias vector of the 

first (second) linear transform, respectively. GELU(·) realizes 
the nonlinearity between the two linear transforms. 

(iii) Convolutional branch 
This branch models the short-range dependencies in Zl-1 with 

convolutional layers. In this work, one convolutional layer is 

 
Fig. 5. Detailed architecture of the globally prioritized reconstruction stage.  
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exampled, i.e., the output of this branch is lZ  =Conv(Zl-1) 
∈ ℝ(Npatch+1)×D. The output  Zl of the lth layer of the two-branch 
Transformer Encoder is lZ  + lZ  .    

With the above operations of Nlayer layers, the output of the 
two-branch Transformer Encoder is 

layerNZ = [z0
Nlayer; z1

Nlayer;...; 

zNpatch

Nlayer ]. Its first element  z0
Nlayer  ∈ ℝ1×D is the input of the MLP 

layer, which consists of only one linear transform. The forward 
propagation of the MLP layer can be formulated as 

  layer
TF

0 MLP MLP
ˆ N T z W b                    (11) 

where WMLP ∈ ℝD×nMLP  and bMLP ∈ ℝ1×nMLP  are the weight 
matrix and the bias vector of the MLP layer, respectively. nMLP 
is set as MCZ + MF-BG. The output of this globally prioritized 
reconstruction stage is the temperature vector T�F with both the 
CZ and BG finely retrieved.  

V. NETWORK TRAINING AND TESTING 

A. Network Training 
To train the SpaProNet with hydrodynamics of the real 

reactive flows, the training dataset is constructed by cross-
sectional distributions of temperature and H2O concentration in 
a dynamic field that are generated by Large Eddy Simulation 
(LES) via Fire Dynamic Simulator (FDS) [30, 31]. With 
sufficient coverage of various simulation conditions, e.g., 
structures and dimensions of the burner, fuel/air flow rates, 
equivalent ratios, the LES is able to drive the SpaProNet with 
computational fluid dynamics (CFD) aided dataset. Instead of 
empirically penalizing the TDLAST inverse problem, the CFD-
data driven SpaProNet performs hydrodynamics-informed 
learning and thus enabling good generalizability and 
applicability for real-world combustion processes. 

In the simulation, a three-dimensional open-boundary domain, 
filled with air, is established. The reactive flow field is generated 
by a circular burner located at the bottom of the domain. The 
cross section of the domain is 347.6 mm × 347.6 mm, and 
discretized into high-resolution grids of 1.8 mm × 1.8 mm. 
Cross-sectional distributions of temperature and H2O 
concentration over these high-resolution grids are generated. 
The synthetic path integrated absorbances Av1 ∈ ℝ32×1 and Av2  ∈ 
ℝ32×1 are generated using the highly-resolved gas parameters to 
a) guarantee a most accurate forward problem of TDLAST and 

b) incorporate realistic model errors in the data. Propane is 
chosen as the fuel. Eight different combustion processes are 
simulated by varying the diameter of the burner in range of {60 
mm, 80 mm, 100 mm, 120 mm}. For each diameter, two 
different mass fractions of the propane, i.e., 0.2 kg/m2/s and 0.1 
kg/m2/s, are introduced to cover high and low fuel flows, 
respectively. At 20 mm above the burner outlet, 150 consecutive 
frames of cross-sectional images of temperature and H2O 
concentration are recorded at an interval of 0.1 s for each 
burning process. To expand diversity of the simulative dataset, 
these images are rotated by 9 angles with an angular spacing of 
36°. 

The dataset is generated according to the beam arrangement 
shown in Fig. 3. An individual sample is denoted as ((Av1, Av2), 
TC, TF), where Av1  ∈ ℝ32×1 and Av2 ∈ ℝ32×1 are path integrated 
absorbances calculated over high-resolution grids according to 
(2). The LPGP discretization is applied on the simulated sensing 
region with the same settings as that for the lab-scale 32-beam 
TDLAST sensor described in Section IV A. TC ∈ ℝ1964×1 and 
TF ∈ ℝ7424×1  are temperature vectors of the C-BG and F-BG 
discretizations, respectively. Seven out of the eight simulated 
burning processes are selected to generate training data. To 
verify the generalization of the proposed network, sample no. 1 
to sample no. 135 generated in each of the 7 selected burning 
process, i.e., 90% of the samples in sequence, are used as the 
training samples. The last 10% of the samples in sequence are 
used as the validation samples. To examine the performance of 
the trained network on reconstruction of unknown temperature 
distributions, the test is carried out by reconstruction of the one 
remaining burning process, in which the temperature 
distributions are independent of any of those in the previously 
selected 7 burning processes. 500 samples are generated in this 
burning process for test. Thus, the sizes of training set, validation 
set, and test set are Ntrain = 9,450, Nvalid = 1,050, and Ntest = 500, 
respectively.  

The proposed SpaProNet is trained with Algorithm 1 over the 
noise-free training set. Hyper-parameters of the SpaProNet in 
the simulation are shown in Table I. Leaky ReLu is selected as 
the activation function for all convolutional layers. In Algorithm 
1, ΘL

i
, ΘG

i
, and Θ

i
 = ΘL

i
 ∪ ΘG

i
 denote parameters sets updated 

in the ith iteration for the locally prioritized reconstruction stage, 
the globally prioritized reconstruction stage, and the whole 
network of SpaProNet, respectively. L(T, T � | Θ) calculates the 

TABLE I     HYPER-PARAMETERS OF THE SPAPRONET 
Locally prioritized reconstruction stage Globally prioritized reconstruction stage 

 Input dim. Weight matrix 
size Stride Output dim.  HO2×WO2×CO2 HP×WP NSA D Dhead nFFN 

Conv1 8×4×2 2×2 (1,1) 7×3×8 Transformer 6×2×16 1×2 4 64 16 1024 

Conv2 7×3×8 2×2 (1,1) 6×2×16  Input dim. Weight matrix 
size Stride nMLP Output dim. 

Conv3 6×2×16 2×2 (1,1) 5×1×32 Conv 6×2×16 3×3 (1,1) - 6×2×16 
FC1 520   520×520 - 520 
FC2 520   1024×520 - 1024 

MLP 64 7424×64 - 7424 7424 FC3 1024 1024×1024 - 1024 
FC4 1024 1964×1024 - 1964 
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Mean Square Error (MSE) loss between the true T and the T� 
reconstructed under parameters set Θ 

    
2

2
ˆ ˆ( , | )L  T T Θ T T T                    (12) 

where |T| is the length of vector T. Batch size B, number of 
epochs E, and learning rate α are set as 64, 100, and 0.001, 
respectively. Adam optimizer is employed as Optimizer(⋅). 

To the best of the authors’ knowledge, none existing data-
driven tomographic algorithms can reconstruct the two different 
objects, i.e., high-accuracy combustion zone and finely-resolved 
sensing region, by training a single network. To examine the 
performance of the proposed SpaProNet, it is compared with the 
other three state-of-the-art data-driven algorithms for TDLAST 
and computer vision. All these three networks are adapted for 
our 32-beam TDLAST sensor, where the distribution of 
temperature is reconstructed from Av1 ∈ ℝ32×1 and Av2  ∈ ℝ32×1. 
Moreover, each network is adapted into two forms. One form, 
named with suffix “-LP”, reconstructs temperature vector  T�C ∈ 
ℝ1964×1 of the C-BG discretization, while the other form, named 
with suffix “-GP”, reconstructs temperature vector T�F ∈ ℝ7424×1 
of the F-BG discretization.  

1) Huang’s CNN (H-CNN). Here, the pioneering CNN-based 
temperature imaging network established in [15] is adapted into 
two separate networks, i.e., H-CNN-LP and H-CNN-GP, to 
reconstruct temperature vectors T�C and T�F, respectively. Fully-
connected layers are added to H-CNN-LP and H-CNN-GP to 
make the numbers of trainable parameters close to those of 
SpaProNet-LP and SpaProNet-GP, respectively.   

2) QHT-LSTM [18]. This is the first work of developing 
progressive data-driven tomographic algorithm for TDLAST. 
However, the two temperature images reconstructed by QHT-
LSTM are of the same spatial resolutions. Here, QHT-LSTM is 
adapted into two separate networks, i.e., QHT-LSTM-LP and 
QHT-LSTM-GP, to finally reconstruct T�C and T�F, respectively.  

3) SwinT-T [19]. Swin Transformer is a new vision 
Transformer that serves as a general-purpose backbone for 
computer vision [32]. SwinT-T is a Swin Transformer based 
network recently established for TDLAST temperature imaging. 
It computes MSA in regularly partitioned windows and shifted 
windows alternatively to introduce cross-window connections 
while maintaining the efficient computation of local non-
overlapped windows. Here, SwinT-T is adapted into two 
separate networks, i.e., SwinT-T-LP and SwinT-T-GP, to 
reconstruct T�C and T�F, respectively.  

The numbers of trainable parameters of these networks are 
stated in Table II. All networks are trained and tested on the 
same dataset with Pytorch framework on a computer with Intel 
i5-7300h CPU, NVIDA GeForce GTX 1050 Ti GPU, and 8G 
memory. These computing resources can be equipped on the 
host PC in the existing industrial applications of TDLAST 
systems, such as diagnostics of aero-engine exhaust [22] and 
wind tunnels [33]. Moreover, the proposed network can be 
potentially deployed on System-on-a-Chip (SoC), such as a 
Field Programmable Gate Array (FPGA) [34, 35], to accelerate 
the image reconstruction.  

B. Test Results 
The data acquisition process is simulated by adding physically 

meaningful noise [36, 37], i.e., frequency-dependent noise and 
frequency-independent noise, of different levels on the laser 
transmission. The frequency-dependent noise mainly contains 
pink noise (1/f noise), e.g., laser and detector excess noise, and 
low-frequency environmental noise generally caused by flow-
induced beam steering. The frequency-independent noise, 
known as white noise, is dominated by the thermal noise from 
the detector, signal amplification, and digitization circuits. In the 
simulation, the Signal to Noise Ratio (SNR) depicts the level of 
the physically meaningful noise on the digitized laser 
transmission signal. Then, path integrated absorbances Av are 
extracted from the noise-contaminated laser transmission.  

Tests are carried out in a practical range of 12.5 dB SNRs, 
from 35 dB to 47.5 dB with an interval of 2.5 dB. Optimally 

Algorithm  1  The training algorithm for SpaProNet 

Input: training set
 
{((Av1,𝜏𝜏, Av2,𝜏𝜏), T𝜏𝜏

C, T𝜏𝜏
 F): 𝜏𝜏 = 1,2,...,Ntrain}, batch size B, 

number of epochs E, and learning rate α. 
Initialize: Nbatch ← floor(Ntrain / B); i ← 0; Parameters in sets ΘL

0  and ΘG
0  

are randomly initialized; Θ0 ← ΘL
0  ∪ ΘG

0   
Iterations: 

For t = 1 to E do  
1:     Training samples are randomly divided into Nbatch batches; 
    For b = 1 to Nbatch do 
2:         i ← i + 1 
3:         Get the bth batch {((Av1,s, Av2,s), Ts

 C, Ts
 F): s = 1,2,...,B}; 

            For s = 1 to B do 
4:              Input Av1,s and Av2,s, propagate forward through SpaProNet, 

output locally prioritized reconstruction T�s
C and globally 

prioritized reconstruction T�s
F; 

5:            Calculate Ls
 sample-L of the sth sample in the bth batch as 

                    Ls
 sample-L ← L(Ts

 C, T�s
C | ΘL

i-1) 
6:            Calculate Ls

 sample-G
 of the sth sample in the bth batch as 

                        Ls
 sample-G ← L(Ts

 F, T�s
F | ΘG

i-1) 
            End for 
7:        Calculate Lb

 batch-L of the bth batch as 

                   Lb
 batch-L  ←  1

B
∑ Ls

 sample-LB
s=1  

8:        Calculate 𝐿𝐿b
 batch-G

 of the bth batch as 

                   Lb
 batch-G  ←  1

B
∑ Ls

 sample-GB
s=1  

9:         Update ΘL
i  by back propagation as 

ΘL
i  ← Optimizer(ΘL

i-1 | Lb
 batch-L, α) 

10:       Update ΘG
i

 by back propagation as 
ΘG

i  ← Optimizer(ΘG
i-1 | Lb

 batch-G, α) 
11:       Θi ← ΘL

i  ∪ ΘG
i  

        End for 
End for 

Output: parameters set Θi 
 

TABLE II  NUMBERS OF TRAINABLE PARAMETERS OF SPAPRONET AND 
THE ADAPTED EXISTING NETWORKS 

-LP H-CNN QHT-LSTM SwinT-T SpaProNet 
Parameters 3.88 M 6.32 M 4.36 M 3.87 M 

-GP H-CNN QHT-LSTM SwinT-T SpaProNet 
Parameters 5.26 M 17.79 M 11.36 M 5.54 M 
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trained H-CNN-LP/-GP, QHT-LSTM-LP/-GP, SwinT-T-LP /-
GP, and SpaProNet are implemented individually on the test set 
at various SNRs. In the following, visual and quantitative metric 
comparisons are carried out among H-CNN-LP, QHT-LSTM-
LP, SwinT-T-LP, and SpaProNet-LP for locally prioritized 
temperature reconstruction, and among H-CNN-GP, QHT-
LSTM-GP, SwinT-T-GP, and SpaProNet-GP for globally 
prioritized temperature reconstruction.  

Firstly, reconstructed temperature images are visually 
inspected. Fig. 6 (a) shows a temperature phantom obtained 
from the FDS. Figs. 6 (b-i) show the reconstructions at the SNR 
of 35 dB using H-CNN-LP, H-CNN-GP, QHT-LSTM-LP, 
QHT-LSTM-GP, SwinT-T-LP, SwinT-T-GP, the proposed 
SpaProNet-LP and SpaProNet-GP, respectively. It can be seen 
that all the reconstructions are capable of indicating the 
temperature profile with correct position of the flame. The visual 
comparison is carried out on the combustion zone and the global 
image, respectively. Two results can be drawn here: 

1) SpaProNet-LP outperforms other networks for the 
reconstruction of the combustion zone.  

2) SpaProNet-GP gives better-quality image for the entire 
sensing region than other networks. 

Then, the reconstruction fidelity is compared under different 
SNRs with quantitative evaluation. Relative Reconstruction 
Error (RRE) e is defined to quantify the pixel-wised 
reconstruction error as 

| |

1

ˆ1
| |

j j

j j

T T
e

T


 

T

T
                         (13) 

where Tj and T𝚥𝚥�  are the jth elements in the true temperature 
vector T and the reconstructed temperature vector T�  over the 
high-resolution ground-truth grids of 1.8 mm × 1.8 mm, 
respectively. When calculating RRE for the CZ and the entire 
sensing region, T�CZ and T�C (T�F) are projected to the temperature 
vectors T�∈ ℝ6400×1  and T�∈  ℝ29696×1 over the high-resolution 
grids with uniform interpolation, respectively. To characterize 
the overall reconstruction fidelity of the network over the test set, 
RREs are averaged on { τe : 𝜏𝜏 = 1, 2,…, Ntest} achieved for all 
test samples as 

test test

1
test

1  N
ττ

e
N 

                          (14) 

Fig. 7 depicts test obtained by all the above-mentioned 

networks at different SNRs. Figs. 7 (a) and (b) show test  of the 
CZ and the global image reconstructed by H-CNN-LP/-GP, 
QHT-LSTM-LP/-GP, SwinT-T-LP/-GP, and SpaProNet-LP/GP, 
respectively. As shown in Fig. 7 (a), at all the given SNRs, test

of the CZ obtained by SpaProNet-LP is always lower than those 
obtained by the other networks. For example, in comparison 
with H-CNN-LP, SwinT-T-LP, and QHT-LSTM-LP, 
SpaProNet-LP suppresses test  of the CZ by 31.14%, 16.78%, 
and 7.01% at the SNR of 35 dB, respectively. As shown in Fig. 

 
Fig. 7.  

test  obtained for (a) the combustion zone and (b) the entire 
sensing region using the data-driven algorithms at given SNRs.  

Phantom Color 
bar 

 H-CNN- QHT-LSTM- SwinT-T- SpaProNet- 

(a) 

 

 

 

-LP 

    

-GP 

    
 
Fig. 6. Reconstruction of a simulated temperature phantom. (a) shows the true temperature distribution. (b-i) show temperature images 
reconstructed at the SNR of 35 dB using H-CNN-LP, H-CNN-GP, QHT-LSTM-LP, QHT-LSTM-GP, SwinT-T-LP, SwinT-T-GP, SpaProNet-LP, and 
SpaProNet-GP, respectively. 

(b) 

(c) 

(d) (f) (h) 

(g) (i) (e) 
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7 (b), test  of the global image obtained by SpaProNet-GP is the 
lowest at the given SNRs. In comparison with H-CNN-GP, 
SwinT-T-GP, and QHT-LSTM-GP, SpaProNet-GP suppresses 

test  of the global image by 21.96%, 8.78%, and 7.53% at the 
SNR of 35 dB, respectively.  

Finally, training time for all the networks are compared. As 
shown in Table III, QHT-LSTM-LP/-GP, SwinT-T-LP/-GP, and 
SpaProNet take longer training time than H-CNN-LP/-GP. This 
is because of the more complex network structures established 
in QHT-LSTM, SwinT-T, and SpaProNet to achieve higher-
fidelity performance than H-CNN. Once optimally trained, 
SpaProNet can realize both locally prioritized reconstruction 
and globally prioritized reconstruction. In contrast, H-CNN, 
QHT-LSTM, and SwinT-T must be trained twice to realize 
locally prioritized reconstruction and globally prioritized 
reconstruction individually. 

VI.  EXPERIMENTAL VALIDATION 
With the 32-beam TDLAST sensor built as described in 

Section IV. A, we carry out lab-scale experiments to further 
validate the performance of the proposed SpaProNet. More 
details of the optics and hardware electronics of the experimental 
system can be found in [9, 37].  

In the sensing region, there is a propane-fueled burner located 
at the center shown in Fig. 8 (a). The fuels are released from the 
annular injectors, which is similar as the simulated scenarios in 
Section V. Since the LES results are convincing to qualitatively 
characterize of the target flames in terms of approximate 
temperature range, dimensions of the hot spot and fluctuation 
frequency, the proposed networks should be capable of imaging 
an independent burning process that shares quantitative 
similarities. Real measurement data, Av1  ∈ ℝ 32×1 and Av2  ∈ 
ℝ32×1, are obtained from the 32-beam TDLAST sensor. The real 
measurement data are input to each optimally trained network. 
As shown in Figs. 8 (b-i), temperature distributions are finally 

reconstructed from H-CNN-LP, H-CNN-GP, QHT-LSTM-LP, 
QHT-LSTM-GP, SwinT-T-LP, SwinT-T-GP, SpaProNet-LP, 
and SpaProNet-GP, respectively. 

In all the reconstructed images, the retrieved flame locations 
in the CZ agree well with that of the real one. However, the 
flames reconstructed by H-CNN-LP and H-CNN-GP shown in 
Figs. 8 (b) and (c) indicate obvious temperature discontinuity of 
the annular combustion in the real flame. As shown in Figs. 8 (d) 
and (e), the profile of the high-temperature zones in the CZ 
reconstructed by QHT-LSTM-LP disagrees with that 
reconstructed by QHT-LSTM-GP. Although the flames 
reconstructed by SwinT-T-LP and SwinT-T-GP shown in Figs. 
8 (f) and (g) could reflect the annular combustion, discrepancy 
can be observed on the sizes of the reconstructed annular 
combustion. In contrast, good agreement is achieved by the 
temperature distributions reconstructed in the CZ by the 
SpaProNet-LP and the SpaProNet-GP shown in Figs. 8 (h) and 
(i). In addition, the image generated by the SpaProNet-GP has 
the most uniform temperature distribution in the region out of 
the high-temperature zones, outperforming the other methods 
with artefacts there.  

Furthermore, quantitative comparison is performed between 
the temperature values extracted from the reconstructions and 
those measured by the thermocouple (TC). The TC 
measurements are carried out at the same height as the 
tomographic cross section. The TC is scanned radially from the 
center to the boundary of the flame, giving point-wised and time-
averaged reference temperature values at the interval of 10 mm 
along the radial direction. Since the burner outlet is rotationally 
symmetric, the radial scans are repeated at different angles to 
reduce measurement uncertainties. These radial TC measured 
temperature values, as well as those reconstructed by each model, 
are averaged and plotted in Fig. 9. It can be seen the radial 
temperature values retrieved by both the SpaProNet-LP and 
SpaProNet-GP are the closest to the TC measurements in the two 
reconstruction stages, indicating their better accuracy than the 
other state-of-the-art data-driven algorithms.  

 TABLE III  COMPARISON OF TRAINING TIME FOR THE EVALUATED NETWORKS 
Network H-CNN-LP H-CNN-GP QHT-LSTM-LP QHT-LSTM-GP SwinT-T-LP SwinT-T-GP SpaProNet 

Training time [min] 1.75 2.99 4.85 6.15 7.99 12.22 7.07 

 
Burner Color 

bar 
 H-CNN- QHT-LSTM- SwinT-T- SpaProNet- 

(a) 

 

 

 

-LP 

    

-GP 

    
Fig. 8. Temperature imaging in the experiment. (a) shows the flame of a circular burner. (b-i) show temperature images reconstructed using H-CNN-
LP, H-CNN-GP, QHT-LSTM-LP, QHT-LSTM-GP, SwinT-T-LP, SwinT-T-GP, SpaProNet-LP, and SpaProNet-GP, respectively. 

(b) 

(c) 

(d) 

(e) (g) 

(f) (h) 

(i) 
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Given annular fuel injectors on the burner surface, the flame, 
in principle, should generate annular hot regions when the 
tomographic cross section is located close to the burner surface, 
for example, the 20 mm height in the experiments in this work. 
The radial temperature distribution should be similar as the 
reconstructed ones with temperature at the flame center lower 
than that in the annular hot regions. When measuring such a 
temperature field using the TC, the TC bead is located at the 
center where the temperature is lower, while the TC wire 
neighboring the bead is located in a hotter region. As noted in 
[38], the heat conducted from the wire to the bead will result into 
a higher TC measured temperature than the true gas temperature. 
That is to say, the TC measured temperature at the flame center, 
i.e., x=0 in Fig. 9, should be corrected to give a lower 
temperature. This correction will give better agreement between 
the TC measurements and the reconstructions.  

In the application of imaging the aero-engine exhaust using 
TDLAST [22], the CZ encloses the reactions in the plume, while 
the BG contains the information of heat radiation from the plume 
and plume-air interactions. When the CZ is of more interested, 
the SpaProNet-LP with the C-BG discretization scheme is 
suitable to highlight the reconstruction in the CZ with finely 
discretized meshes, and to consider the absorption in the BG and 
the integrity of the line-of-sight TDLAST formulation with 
coarsely discretized meshes. The SpaProNet-LP gives better 
accuracies in the CZ but at the sacrifice of the BG accuracies. 
When both the CZ and BG are of interested, the SpaProNet-GP 
with the F-BG discretization scheme can detail the entire sensing 
region with finely discretized meshes. Since the unknown 
parameters in more pixels need to be learned, the SpaProNet-GP 
balance the computational resources between the CZ and BG, 

and gives better accuracy of the entire sensing region than the 
SpaProNet-LP. 

VII. CONCLUSION 
A novel multiple-output imaging neural network, named as 

SpaProNet, is developed for TDLAST. The proposed network, 
for the first time, outputs two images of thermochemical 
parameters, temperature as an example in this work, with a) a 
hierarchical reconstruction with priority for the combustion 
zone and low spatial resolution for the background and b) a 
high-resolution reconstruction for the entire sensing region. 
Furthermore, the SpaProNet is trained by large eddy simulation 
of the real combustion fields, enabling learning of the 
hydrodynamics with minimum empirically determined prior. 

The advantage of SpaProNet over the state-of-the-art data-
driven methods has been validated by both numerical 
simulation with FDS and experiments with a 32-beam 
TDLAST sensor. This work takes an important step towards 
industrial combustion imaging with the objective of RoI-
customized imaging. It offers not only a locally prioritized 
image for monitoring dynamic changes in the central 
combustion zone, but also a globally prioritized image of better-
than-ever quality for analysis of heat dissipation and flame-air 
interactions. Applied with hydrodynamics-informed flow-field 
data, SpaProNet is expected to perform as an attractive 
diagnostic tool for dynamic and complex/harsh- scenario 
reactive flows in the foreseeable future. Our future efforts will 
also be made by integrating more explicit prior [10, 11] into 
deep-learning networks for generalizability-improved 
TDLAST in applications of reactive flow-field diagnosis. 
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