277 research outputs found

    L’incontro tra Adriano Olivetti e Franco Ferrarotti: il senso umano del lavoro

    Get PDF
    Negli anni Cinquanta del Novecento la fabbrica-comunità costituita ad Ivrea da Adriano Olivetti, uomo e imprenditore dalla vena rivoluzionaria, fu una vera e propria “anomalia italiana”. L'articolo dà vita a un ideale confronto intellettuale con il suo “braccio destro” e sociologo Franco Ferrarotti e le “derive” delle realtà industriali attuali. Ben lungi dal non vederne le zone d’ombra o ammantarla di socialismo proudhoniano, Ferrarotti presenta l’impresa diOlivetti secondo il modello in fieri della comunità concreta (politica, sociale e culturale) dal retrogusto corporativo, e non come un mondo dualisticamente diviso, di stampo marxiano. Viene così tratteggiato un Adriano Olivetti sospeso su infiniti fili d’impegno sociale, che percorreva all’insegna della sperimentazione del personalismo comunitario alla Mounier, senza prevedere che la sua impresa sarebbe stata una “rivoluzione mancata” - fortemente temuta da una Confindustria che voleva eliminarne il “virus” ideologico e la sua inconsueta formula organizzativa antigerarchica). Quel modo di intendere l’impresa era infatti molto diverso da quello ora dominante, manchevole di valori improntati alla collettività e con un senso morale in liquefazione, atomisticamente e darwinianamente votato a una competizione spietata

    A Self-Reconfigurable Framework for Context Awareness

    Get PDF
    Urban environments are increasingly pervaded by ICT devices. Soon, citizens and technologies could collaboratively constitute large-scale socio-technical organisms supporting both individual and collective awareness. This paper illustrates a modern awareness framework designed to deal with the complexity of this scenario. The framework is able to collect and classify data streams in a modular way by supporting service oriented, reconfigurable components. Furthermore, we evaluate an innovative meta-classifcation scheme based on state-automata for (i) improving energy efficiency, (ii) improving classification accuracy and (iii) improving software engineering of aware systems, without affecting the overall performance

    Dealing with data and software interoperability issues in digital factories

    Get PDF
    The digital factory paradigm comprises a multi-layered integration of the information related to various activities along the factory and product lifecycle manufacturing related resources. A central aspect of a digital factory is that of enabling the product lifecycle stakeholders to collaborate through the use of software solutions. The digital factory thus expands outside the actual company boundaries and offers the opportunity for the business and its suppliers to collaborate on business processes that affect the whole supply chain. This paper discusses an interoperability architecture for digital factories. To this end, it delves into the issue by analysing the main challenges that must be addressed to support an integrated and scalable factory architecture characterized by access to services, aggregation of data, and orchestration of production processes. Then, it revises the state of the art in the light of these requirements and proposes a general architectural framework conjugating the most interesting features of serviceoriented architectures and data sharing architectures. The study is exemplified through a case study

    Dynamic digital factories for agile supply chains: An architectural approach

    Get PDF
    Digital factories comprise a multi-layered integration of various activities along the factories and product lifecycles. A central aspect of a digital factory is that of enabling the product lifecycle stakeholders to collaborate through the use of software solutions. The digital factory thus expands outside the company boundaries and offers the opportunity to collaborate on business processes affecting the whole supply chain. This paper discusses an interoperability architecture for digital factories. To this end, it delves into the issue by analysing the key requirements for enabling a scalable factory architecture characterized by access to services, aggregation of data, and orchestration of production processes. Then, the paper revises the state-of-the-art w.r.t. these requirements and proposes an architectural framework conjugating features of both service-oriented and data-sharing architectures. The framework is exemplified through a case study

    Forecasting Parking Lots Availability: Analysis from a Real-World Deployment

    Get PDF
    Smart parking technologies are rapidly being deployed in cities and public/private places around the world for the sake of enabling users to know in real time the occupancy of parking lots and offer applications and services on top of that information. In this work, we detail a real-world deployment of a full-stack smart parking system based on industrial-grade components. We also propose innovative forecasting models (based on CNN-LSTM) to analyze and predict parking occupancy ahead of time. Experimental results show that our model can predict the number of available parking lots in a ±3% range with about 80% accuracy over the next 1-8 hours. Finally, we describe novel applications and services that can be developed given such forecasts and associated analysis

    BARRIER EFFECT IN CO2 CAPTURE AND STORAGE FEASIBILITY STUDY

    Get PDF
    CO2 Capture & Storage (CCS) in saline aquifer is one of the most promising technologies for reducing anthropogenic emission of CO2. Feasibility studies for CO2 geo-sequestration in Italy have increased in the last few years. Before planning a CCS plant an appropriate precision and accuracy in the prediction of the reservoir evolution during injection, in terms of both geochemical calculation and fluid flow properties, is demanded. In this work a geochemical model will be presented for an offshore well in the Tyrrhenian Sea where the injection of 1.5 million ton/year of CO2 is planned. The dimension of the trapping structure requires to study an area of about 100 km2 and 4 km deep. Consequently, three different simulations were performed by means of TOUGHREACT code with Equation Of State module ECO2N. The first simulation is a stratigraphic column with a size of 110*110*4,000 meters and a metric resolution in the injection/cap-rock area (total of 8,470 elements), performed in order to asses the geochemical evolution of the cap-rock and to ensure the sealing of the system. The second simulation is at large scale in order to assess the CO2 path from the injection towards the spill point (total of about 154,000 elements). During this simulation, the effect of the full coupling of chemistry with fluid flow and a relevant effect in the expected CO2 diffusion velocity was recognized. Owing to the effect of chemical reaction and coupling terms (porosity/permeability variation with mineral dissolution/precipitation), the diffusion velocity results to be 20% slower than in a pure fluid flow simulation. In order to give a better picture of this 'barrier' effect, where the diffusion of the CO2-rich acidic water into the carbonate reservoir originates a complex precipitation/dissolution area, a small volume simulation with a 0.1 m grid was elapsed. This effect may potentially i) have a big impact on CO2 sequestration due to the reduction of available storage volume reached by the CO2 plume in 20 years and/or the enhanced injection pressure and ii) outline the relevance of a full geochemical simulation in an accurate prediction of the reservoir properties

    Modeling composition of Ca-Fe-Mg carbonates in a natural CO2 reservoir

    Get PDF
    Understanding the physical-chemical features of liquid, gas and solid phases in natural analogue reservoirs of Carbon Capture and Sequestration (CCS) site is fundamental as they can provide key data for building up both conceptual and numerical modeling of reaction path for gas-water-rock interaction in high pCO2 systems. The aim of this work is improve the knowledge about these processes, by employing appropriate methods for compositional data on a case study, focusing on the solid (minerals) phases. In the early eighties, the PSS1 well (Eastern Tuscany, Central Italy), drilled down to almost 5,000 m for oil exploration by ENI (Italian National Agency of Hydrocarbons), intercepted a high pressure (≈700 bar) CO2 reservoir at the temperature of 120 °C. The reservoir rocks in the fertile horizon, located at about 3,800 m, consist of altered volcanic deposits interbedded with gypsumdolomite- bearing evaporites (“Burano Formation”). Surveys for determining the actual paragenesis of volcanic rocks, carried out on the drill core samples, corresponded to the top of CO2 reservoir (3,864-3,871 m depths from surface on the PSS1 bore-well log). Quartz, Ca-Fe-Mg carbonates, clay minerals (illite and chlorite series) and Fe-Ti oxides were found as principal mineralogical phases. Electron Microprobe Analysis on the carbonates has allowed to recognize the presence of ankerite and calcites. Compositional data, related to atomic % content of Ca, Fe, and Mg in carbonates minerals, were transformed by using Isometric Log-Ratio balances, whilst the variability affecting the data pattern was investigated in simple binary diagrams. The stoichiometric substitution processes governing the presence of Ca, Fe and Mg in carbonates were modeled by using regression techniques in the new space defined by ilrs coordinates. Results have evidenced the different role of Fe and Mg in substituting or not Ca in both carbonate minerals of these CO2-bearing reservoir rocks
    corecore