10 research outputs found

    Dynamic functional network connectivity using distance correlation

    Get PDF
    Investigations about the intrinsic brain organization in resting-state are critical for the understanding of healthy, pathological and pharmacological cerebral states. Recent studies on fMRI suggest that resting state activity is organized on large scale networks of coordinated activity, in the so called, Resting State Networks (RSNs). The assessment of the interactions among these functional networks plays an important role for the understanding of different brain pathologies. Current methods to quantify these interactions commonly assume that the underlying coordination mechanisms are stationary and linear through the whole recording of the resting state phenomena. Nevertheless, recent evidence suggests that rather than stationary, these mechanisms may exhibit a rich set of time-varying repertoires. In addition, these approaches do not consider possible non-linear relationships maybe linked to feed-back communication mechanisms between RSNs. In this work, we introduce a novel approach for dynamical functional network connectivity for functional magnetic resonance imaging (fMRI) resting activity, which accounts for non-linear dynamic relationships between RSNs. The proposed method is based on a windowed distance correlations computed on resting state time-courses extracted at single subject level. We showed that this strategy is complementary to the current approaches for dynamic functional connectivity and will help to enhance the discrimination capacity of patients with disorder of consciousness

    Topological Fractionation of Resting-State Networks

    Get PDF
    Exploring topological properties of human brain network has become an exciting topic in neuroscience research. Large-scale structural and functional brain networks both exhibit a small-world topology, which is evidence for global and local parallel information processing. Meanwhile, resting state networks (RSNs) underlying specific biological functions have provided insights into how intrinsic functional architecture influences cognitive and perceptual information processing. However, topological properties of single RSNs remain poorly understood. Here, we have two hypotheses: i) each RSN also has optimized small-world architecture; ii) topological properties of RSNs related to perceptual and higher cognitive processes are different. To test these hypotheses, we investigated the topological properties of the default-mode, dorsal attention, central-executive, somato-motor, visual and auditory networks derived from resting-state functional magnetic resonance imaging (fMRI). We found small-world topology in each RSN. Furthermore, small-world properties of cognitive networks were higher than those of perceptual networks. Our findings are the first to demonstrate a topological fractionation between perceptual and higher cognitive networks. Our approach may be useful for clinical research, especially for diseases that show selective abnormal connectivity in specific brain networks

    Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders

    Get PDF
    Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of single (micro) or whole-brain (macro) connectivity. However, the mechanism underlying time-varying properties remains unclear, as the coupling between brain network variability and neural activity is not readily apparent when analysed at either micro or macroscales. We propose an intermediate 15 (meso) scale analysis and characterize temporal variability of the functional architecture associated with a particular region. This yields a topography of variability that reflects the whole-brain and, most importantly, creates an analytical framework to establish the fundamental relationship between variability of regional functional architecture and its neural activity or structural connectivity. We find that temporal variability reflects the dynamical reconfiguration of a brain region into distinct functional modules at different times and may be indicative of brain flexibility and adaptability. Primary and unimodal sensory-motor cortices demon- 20 strate low temporal variability, while transmodal areas, including heteromodal association areas and limbic system, demonstrate the high variability. In particular, regions with highest variability such as hippocampus/parahippocampus, inferior and middle temporal gyrus, olfactory gyrus and caudate are all related to learning, suggesting that the temporal variability may indicate the level of brain adaptability. With simultaneously recorded electroencephalography/functional magnetic resonance imaging and functional magnetic resonance imaging/diffusion tensor imaging data, we also find that variability of regional functional architec- 25 ture is modulated by local blood oxygen level-dependent activity and a-band oscillation, and is governed by the ratio of intra- to inter-community structural connectivity. Application of the mesoscale variability measure to multicentre datasets of three mental disorders and matched controls involving 1180 subjects reveals that those regions demonstrating extreme, i.e. highest/lowest variability in controls are most liable to change in mental disorders. Specifically, we draw attention to the identification of diametrically opposing patterns of variability changes between schizophrenia and attention deficit hyperactivity disorder/autism. 30 Regions of the default-mode network demonstrate lower variability in patients with schizophrenia, but high variability in patients with autism/attention deficit hyperactivity disorder, compared with respective controls. In contrast, subcortical regions, especially the thalamus, show higher variability in schizophrenia patients, but lower variability in patients with attention deficit hyperactivity disorder. The changes in variability of these regions are also closely related to symptom scores. Our work provides insights into the dynamic organization of the resting brain and how it changes in brain disorders. The nodal variability measure may also be 35 potentially useful as a predictor for learning and neural rehabilitation

    Connectivity dynamics from wakefulness to sleep

    Get PDF
    Interest in time-resolved connectivity in fMRI has grown rapidly in recent years. The most widely used technique for studying connectivity changes over time utilizes a sliding windows approach. There has been some debate about the utility of shorter versus longer windows, the use of fixed versus adaptive windows, as well as whether observed resting state dynamics during wakefulness may be predominantly due to changes in sleep state and subject head motion. In this work we use an independent component analysis (ICA)-based pipeline applied to concurrent EEG/fMRI data collected during wakefulness and various sleep stages and show: 1) connectivity states obtained from clustering sliding windowed correlations of resting state functional network time courses well classify the sleep states obtained from EEG data, 2) using shorter sliding windows instead of longer non-overlapping windows improves the ability to capture transition dynamics even at windows as short as 30 ​s, 3) motion appears to be mostly associated with one of the states rather than spread across all of them 4) a fixed tapered sliding window approach outperforms an adaptive dynamic conditional correlation approach, and 5) consistent with prior EEG/fMRI work, we identify evidence of multiple states within the wakeful condition which are able to be classified with high accuracy. Classification of wakeful only states suggest the presence of time-varying changes in connectivity in fMRI data beyond sleep state or motion. Results also inform about advantageous technical choices, and the identification of different clusters within wakefulness that are separable suggest further studies in this direction.Fil: Damaraju, Eswar. Instituto Tecnológico de Georgia; Estados UnidosFil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Laufs, Helmut. Goethe Universitat Frankfurt; AlemaniaFil: Calhoun, Vince D.. Instituto Tecnológico de Georgia; Estados Unido

    Simulations to benchmark time-varying connectivity methods for fMRI

    Get PDF
    Published: May 29, 2018There is a current interest in quantifying time-varying connectivity (TVC) based on neuroimaging data such as fMRI. Many methods have been proposed, and are being applied, revealing new insight into the brain’s dynamics. However, given that the ground truth for TVC in the brain is unknown, many concerns remain regarding the accuracy of proposed estimates. Since there exist many TVC methods it is difficult to assess differences in time-varying connectivity between studies. In this paper, we present tvc_benchmarker, which is a Python package containing four simulations to test TVC methods. Here, we evaluate five different methods that together represent a wide spectrum of current approaches to estimating TVC (sliding window, tapered sliding window, multiplication of temporal derivatives, spatial distance and jackknife correlation). These simulations were designed to test each method’s ability to track changes in covariance over time, which is a key property in TVC analysis. We found that all tested methods correlated positively with each other, but there were large differences in the strength of the correlations between methods. To facilitate comparisons with future TVC methods, we propose that the described simulations can act as benchmark tests for evaluation of methods. Using tvc_benchmarker researchers can easily add, compare and submit their own TVC methods to evaluate its performance.WHT acknowledges support from the Knut och Alice Wallenbergs Stiftelse (SE) (grant no. 2016.0473, http://kaw.wallenberg.org). PR acknowledges support from the Swedish Research Council (Vetenskapsrådet) (grants no. 2016-03352 and 773 013-61X-08276-26-4) (http://vr.se) and the Swedish e-Science Research Center (http://e- science.se/). CGR acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the ªSevero Ochoaº Programme for Centres/Units of Excellence in R&Dº (SEV-2015-490, http://csic.es/)

    The Effects of Chronic Sleep Deprivation on Sustained Attention: A Study of Brain Dynamic Functional Connectivity

    Get PDF
    It is estimated that about 35-40% of adults in the U.S. suffer from insufficient sleep. Chronic sleep deprivation has become a prevalent phenomenon because of contemporary lifestyle and work-related factors. Sleep deprivation can reduce the capabilities and efficiency of attentional performance by impairing perception, increasing effort to maintain concentration, as well as introducing vision disturbance. Thus, it is important to understand the neural mechanisms behind how chronic sleep deprivation impairs sustained attention. In recent years, more attention has been paid to the study of the integration between anatomically distributed and functionally connected brain regions. Functional connectivity has been widely used to characterize brain functional integration, which measures the statistical dependency between neurophysiological events of the human brain. Further, evidence from recent studies has shown the non-stationary nature of brain functional connectivity, which may reveal more information about the human brain. Thus, the objective of this thesis is to investigate the effects of chronic sleep deprivation on sustained attention from the perspective of dynamic functional connectivity. A modified spatial cueing paradigm was used to assess human sustained attention in rested wakefulness and chronic sleep deprivation conditions. Partial least squares approach was applied to distinguish brain functional connectivity for the experimental conditions. With the integration of a sliding-window approach, dynamic patterns of brain functional connectivity were identified in two experimental conditions. The brain was modeled as a series of dynamic functional networks in each experimental condition. Graph theoretic analysis was performed to investigate the dynamic properties of brain functional networks, using network measures of clustering coefficient and characteristics path length. In the chronic sleep deprivation condition, a compensation mechanism between highly clustered organization and ineffective adaptability of brain functional networks was observed. Specifically, a highly clustered organization of brain functional networks was illustrated with a large clustering coefficient. This organization suggested that brain utilizes more connections to maintain attention in the chronic sleep deprivation condition. A smaller impact of clustering coefficient variation on characteristics path lengths indicated an ineffective adaptability of brain functional networks in the chronic sleep deprivation condition. In the rested wakefulness condition, brain functional networks showed the small-world topology in general, with the average small-world topology index larger than one. Small-world topology was identified as an optimal network structure with the balance between local information processing and global integration. Given the fluctuating values of the index over time, small-world brain networks were observed in most cases, indicating an effective adaptability of the human brain to maintain the dominance of small-world networks in the rested wakefulness condition. On the contrary, given that the average small-world topology index was smaller than one, brain functional networks generally exhibited random network structure. From the perspective of dynamic functional networks, even though there were few cases showing small-world brain networks, brain functional networks failed to maintain the dominance of small-world topology in the chronic sleep deprivation condition. In conclusion, to the best of our knowledge this thesis was the first to investigate the effects of chronic sleep deprivation on sustained attention from the perspective of dynamic brain functional connectivity. A compensation mechanism between highly clustered organization and ineffective adaptability of brain functional networks was observed in the chronic sleep deprivation condition. Furthermore, chronic sleep deprivation impaired sustained attention by reducing the effectiveness of brain functional networks\u27 adaptability, resulting in the disrupted dominance of small-world brain networks

    Changes in the EEG Spectrum of a Child with Severe Disabilities in Response to Power Mobility Training

    Get PDF
    Literature suggests that self-generated locomotion in infancy and early childhood enhances the development of various cognitive processes such as spatial awareness, social interaction, language development and differential attentiveness. Thus, having access to a power mobility device may play a crucial role for the overall development, mental health, and quality of life of children with multiple, severe disabilities who have limited motor control. This study investigates the feasibility of using electroencephalography (EEG) as an objective measure to detect changes in brain activity in a child due to power mobility training. EEG data was collected with a modified wireless neuroheadset using a single-subject A-B-A-B design consisting of two baseline phases (A) and two intervention phases (B). One trial consisted of three different activities during baseline phase; resting condition at the beginning (Resting 1) and at the end (Resting 2) of the trial, interaction with adults, and passive mobility. The intervention phase included a forth activity, the use of power mobility, while power mobility training was performed on another day within the same week of data collection. The EEG spectrum between 2.0 and 12.0 Hz was analyzed for Resting 1 and Resting 2 condition in each phase. We found significant increase of theta power and decrease in alpha power during all three phases following the first baseline. In respect of previous findings, these observations may be related to an increase in alertness and/or anticipation. Analysis of the percentage change from Resting 1 to Resting 2 condition revealed decrease in theta and increasing alpha power during the first intervention phase, which could be associated with increasing cognitive capacity immediately after the use of power mobility. Overall, no significant difference between baseline phase and intervention phase was observed. Thus, whether the observed changes may have been influenced or enhanced by power mobility training remains unclear and warrants further investigation

    Statistical approaches for resting state fMRI data analysis

    Get PDF
    This doctoral dissertation investigates the methodology to explore brain dynamics from resting state fMRI data. A standard resting state fMRI study gives rise to massive amounts of noisy data with a complicated spatio-temporal correlation structure. There are two main objectives in the analysis of these noisy data: establishing the link between neural activity and the measured signal, and determining distributed brain networks that correspond to brain function. These measures can then be used as indicators of psychological, cognitive or pathological states. Two main issues will be addressed: retrieving and interpreting the hemodynamic response function (HRF) at rest, and dealing with the redundancy inherent to fMRI data. Novel approaches are introduced, discussed and validated on simulated data and on real datasets, in health and disease, in order to track modulation of brain dynamics and HRF across different pathophysiological conditions

    Monitoring Attentional State with Functional Near Infrared Spectroscopy

    Full text link
    Functional Near Infrared Spectroscopy (fNIRS) is a technique for quantifying hemodynamic activity in the brain. Its portability allows application in real world operational contexts. The ability to distinguish levels of task engagement in safety-critical situations is important for detecting and preventing attentional performance decrement. We therefore investigated whether fNIRS can be used to distinguish between high and low levels of task engagement during the performance of a selective attention task, and validated these results using functional magnetic resonance imaging (fMRI) as a gold standard. Participants performed the multi-source interference task (MSIT) while we recorded brain activity with fNIRS from two brain regions. One was a key region of the “task-positive” network, which is associated with relatively high levels of task engagement. The second was a key region of the “task-negative” network, which is associated with relatively low levels of task engagement (e.g., resting and not performing a task). Using activity in these regions as inputs to a multivariate pattern classifier, we were able to predict above chance levels whether participants were engaged in performing the MSIT or resting. Classifier input features were selected from an array of probe channels at each of the two locations based on the fit to a model of expected task activity, or on training data. Standard linear regression was implemented with both static and adaptive general linear models to remove concurrently measured physiological noise. Two types of models were used to process the fNIRS signals. One employed knowledge of the task being performed to determine the system’s best capability. The other did not, for a realistic characterization. We were also able to replicate prior findings from fMRI indicating that activity in “task-positive” and “task-negative” regions is negatively correlated during task performance. Finally, data from both companion and simultaneous fMRI experimental trials verified our assumptions about the sources of brain activity in the fNIRS experiment, established a upper bound on classification accuracy expectations for response to the MSIT, and served to validate our fNIRS classification results. Together, our findings suggest that fNIRS could prove quite useful for monitoring cognitive state in real-world settings.PHDBiomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/108861/1/angelarh_1.pd
    corecore