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Neural, electrophysiological and anatomical correlates of temporal variability of brain 

networks and its implication in mental disorders 

Temporal variability of brain networks: mechanism and characteristic alteration in 

mental disorders 

 

SUMMARY 

Functional connectivity in the brain has been shown to be dynamic in nature during resting state. Existing 

work usually investigate time-varying properties at micro (functional-connectivity) or macro (whole 

brain functional-connectivity) scale, and how meso-scale functional architecture of a brain region 

changes over time remains uncharted. Most importantly, the coupling between this variability of a region 

and its neuronal activity is hard to analyze at micro/macro scale, and the underlying mechanism remains 

elusive. We propose a variability measure that characterize the temporal change of the functional-

connectivity profile of a region, which reflects the inclination of the ROI to dynamically reconfigure 

itself into multiple functional communities in different time. Whole-brain variability topography shows 

that that primary and unimodal sensory-motor cortices have lowest variability while transmodal areas 

demonstrate highest variability. Neural, electrophysiological and anatomical correlates analysis indicate 

that regional variability is modulated by both the amplitude/frequency of its BOLD activity and  α band 

oscillation, and is relates to intra- versus inter-community structural connection. Application to 

schizophrenia, ADHD and Autism dataset including 1020 subjects revealed that regions demonstrate 

largest/smallest variability in controls are most liable to change in patients, and diametrically opposite 

patterns of variability changes are found among these 3 disorders. Our results indicate that healthy brain 

maintains an optimal level of the variability in key resting-state networks, which provide new insights 

into the dynamical organization of resting brain and how it alters in disordered brain. 

 

ITRODUCTION 

The human brain demonstrates remarkable variability in its structure and function (Frost and Goebel, 

2012; Rademacher et al., 2001; Sugiura et al., 2007) , which underlies the inter-subject variability in 

thinking or behavior. For example, it has been shown that inter-subject variability in functional 

connectivity were heterogeneous across the cortex, and was significantly correlated with the degree of 

evolutionary cortical expansion (Mueller et al., 2013). Individual variability in resting-state functional 
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connectivity is also predictive of task performance (Baldassarre et al., 2012). Recently, the temporal 

variability of neuronal activity and functional brain connectivity/networks also attracts increasingly great 

attention (Calhoun et al., 2014; Kopell et al., 2014; Kucyi and Davis, 2014; Mueller et al., 2013; 

Tagliazucchi and Laufs, 2014). For example, BOLD signal variability which was considered 

measurement-related “noise”, has significant age-predictive power (Garrett et al., 2010), and is related 

with task performance (Garrett et al., 2011). Using sliding window or time–frequency analysis, it is 

shown that even during rest, the spontaneous activity (Garrett et al., 2010, 2011; Lippe et al., 2009; 

McIntosh et al., 2008; Misic et al., 2010; Protzner et al., 2010; Samanez-Larkin et al., 2010) and the 

interactions among brain regions are dynamic, or nonstationary in nature (Chang and Glover, 2010; 

Hutchison et al., 2013; Kang et al., 2011; Majeed et al., 2011; Mueller et al., 2013).  

To date most work on time-varying brain networks either focus on single functional connectivity among 

given ROIs (Chang and Glover, 2010; Hutchison et al., 2013; Kang et al., 2011; Kucyi and Davis, 2014; 

Majeed et al., 2011; Zalesky et al., 2014), or the connectivity of the whole brain (Allen et al., 2014). 

Variability at meso-scale, i.e., dynamic changes of the functional architecture of a given brain region has 

not been investigated. Though the presence nonstationarity in functional connectivity/networks has been 

revealed, the underlying mechanisms or the neural/anatomical correlates are still unknown. The 

advantage of characterizing simultaneous change of multiple functional connectivities associated with a 

brain region proposed in our paper is twofold: first, it allows the coupling between functional-

connectivity variability of a region and local neural activity to be conveniently analyzed This helps 

delineate factors contributing to functional architecture changes of brain regions, shedding lights onto 

the mechanisms for variability. Second, it facilitates whole-brain topography of variability to be readily 

constructed so that the regions with significant variability changes in general mental disorders could be 

localized, helping us to understand the dynamics of functional brain networks for various mental 

disorders.  

 

To this end, we propose to characterize the variability of functional architecture at brain region level 

using resting-state fMRI. This is achieved by constructing whole-brain functional networks at successive, 

non-overlapping time windows, and then compare the global functional-connectivity profile of a ROI 

across different windows. We hypothesized that variability of regional functional architecture may be 

modulated by local neural activity manifested in BOLD signal and α band oscillation in EEG, and has 



3 
 

its anatomical substrate. Using simultaneously recorded EEG and DTI data, we found that functiuonal-

connectivity variability of a region is modulated by local BOLD activity (the amplitude and frequency 

of BOLD oscillations), and is positively associated with the alpha band power of the ROI. Moreover, 

variability is also related to the intra- versus. inter-community structural connectivity of a region. 

Application to different psychiatric disorders including schizophrenia, autism spectrum disorder, ADHD 

with their matched controls revealed disease-specific variability changes in DMN, visual and subcortical 

regions of the brain, which provides novel knowledge of spatial-temporal organization of brain and how 

it altered in patients with psychiatric disease. 

Results 

Variability of a region reflects the stability of its functional architecture/community membership 

change 

Variability reflects collective changes of all the functional connectivities associated with a ROI with time. 

Low temporal variability (V near 0) means that the ROI’s global functional connectivities are highly 

correlated at different time window, or alternatively, the correlation time series of the ROI with other 

regions are highly synchronized (Figure 1a and S1). On the contrary, the correlation time series of a high-

variability ROI (V near 1) with other regions remains highly synchronous. In real fMRI data, due to the 

dynamical nature of functional connectivity, a ROI may connect with different regions, or be involved in 

different communities at different time slot. We find that the variability defined here can well characterize 

this property, see Fig. S2. Out of the 62 controls in dataset 1, 56 (90%) show negative correlation between 

regional variability and stability of intra-community members, 34 of which (55%) are significant 

(p<0.05). This means if the intra-community members of a ROI changes frequently with time (i.e., not 

stable, see Fig. S2 for detail), then the ROI will have a high variability. Therefore, regional variability 

reflects the ability/tendency of a region to reconfigure itself into different functional community with 

time, i.e., the membership changes.  

 

Whole-brain variability topography and its robustness  

For healthy controls, a non-uniform regional variability distribution throughout the cerebral cortex 

is found, see Figure 1 and Table S1. Various datasets consistently demonstrate low variability in 

primary sensory-motor (e.g., Heschl, postcentral and calcarine gyrus) or unimodal association 
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cortex (middle/superior occipital gyrus, cuneus, lingual gyrus, superior temporal gyrus), and default 

mode systems like medial frontal gyrus and PCC/PCUN. In comparison, transmodal association 

cortex, including limbic association cortex such as temporal pole, hippocampus , parahippocampus 

and amygdala (Bullard et al., 2013; Pearlson et al., 1996), anterior association cortex such as interior 

and orbital frontal gyrus, and posterior association cortex such as inferior parietal gyrus, 

inferior/middle temporal gyrus and paracentral lobule demonstrate high variability. The variability 

adopted demonstrates great robustness by showing consistent pattern in healthy controls across all 

6 datasets (Figure S), though its amplitude differs slightly possibly due to age and other factors. 

Finally, note that the variability obtained at different window length (ranging from 20s to 40s) are 

highly correlated (Figure S4) and the above results are based on the average over different window 

length.  

 

Figure 1 Whole brain variability topography on AAL template for healthy controls. The variability 

is averaged over the results obtained 6 different datasets. 

 

Correlation between regional variability and local/global metrics from various modalities 

BOLD activity 

We first analyze correlation between regional variability and metrics derived from BOLD signal, 
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including BOLD activity (local, both its amplitude and low frequency components) and degree of the 

region (global, derived from BOLD brain network). We find that regional variability correlates 

negatively with both its BOLD activity and degree (naturally BOLD activity and degree are positively 

correlated), and it associates positively with low frequency energy, see Figure 2, S5, and Table S2 for 

details).  

Electrophysiological recording 

We used simultaneously recorded EEG/fMRI data and analyze the correlation between variability of a 

region with its alpha band power across subjects. We mainly found positive correlation between 

variability of a region and its α band power (8 out of 26 subjects, 31%), see Table S3. 

Structural connectivity (DTI) 

We define intra-community vs. inter-community structural connection ratio (IICR) characterizing if a 

node if more structurally to nodes within its own community. We find that out of 142 healthy subject in 

IMAGEN dataset, IICR is significantly correlated with variability across 90 regions for 49 subjects 

(p<0.05). 40 of them (28%) show a negative correlation (-0.28±0.0032). This suggests that the more 

intra-community connections a node has (compared to intra-community connections), the smaller its 

variability. This is reasonable as the node with more fiber connection to regions belonging to the same 

community is expected to form more stable functional community and that its variability is low. In 

comparison, a node that is structurally connected to regions from many other communities is expected 

to have a large variability because the membership changes would be more frequent. 

 



6 
 

 

Figure 2 Correlation between regional variability and local/global metrics obtained from 

various modalities (blue for negative correlation and red for positive correlation, with the strength of 

correlation listed in Table S2). A. Variability of a ROI. The top panel denotes a ROI with small variability, 

and the correlation coefficient time series of the ROI with the rest region are synchronous. The bottom 

panel is for a ROI with large variability, and its correlation time series with other regions are independent. 

B. Amplitude of BOLD activity of a ROI. Top panel for large amplitude and the bottom for small 

amplitude. C. α band power of EEG of a ROI. Top panel shows a region with small α band power and 

the bottom panel for a region with largeα band power. D. Degree of a ROI obtained from BOLD-

constructed brain network. Top panel shows a region with large degree and the bottom panel for a region 

with small degree. E. intra-community vs. inter-community structural connection ratio (IICR). Top panel 

shows a region with large IICR (i.e., the ROI connect more with nodes belonging to the same community, 

and the bottom panel for a region with small IICR (the ROI connect more with nodes belonging to 

different community. The upper (lower) panels in each figure are correlated, i.e., a region with low 

variability will have a higher BOLD activity, high degree, low α band oscillation and high IICR. 
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Characteristic changes of variability in various mental disorders 

We furthermore performed a whole brain variability analysis across healthy controls and subjects with 

schizophrenia, Autism spectrum disorders (ASD) and ADHD and identified disease-specific changes. 

For the disorders with more than one datasets, meta-analysis is adopted to integrate results from multi-

dataset. For schizophrenia, more than 20% of brain regions (19) show significant variability difference, 

see Figure 3a and Table S4a. The variability decreases mainly in rectus, para-hippocampus and temporal 

lobe (middle temporal pole and inferior temporal gurus), while increases most prominently in subcortical 

areas like thalamus and parllidum, putamen, and visual cortex involving superior occipital and lingual 

gyrus. Thalamic variability are found to be associated with positive symptoms, see Table S5a.  

For autisms, all regions showing significant variability changes are found to have a higher variability in 

autism patients (compared to controls), most significantly in medial orbital and superior medial frontal 

gyrus , see Figure 3b and Table S4b. In particular, the variability of these default network regions are 

found to be positively related to the symptom scores (Table S5b).  

For ADHD, we found that medial orbital frontal gyrus, PCC/PCUN, angular (DMN network) have higher 

variability in ADHD patients, while the brain regions in subcortical network, i.e., bilateral caudate and 

thalamus are lower in ADHD patients than controls, see Figure 3c and Table S4c. Variability changes in 

post cingulate and frontal regions are found to be associated with severity of ADHD symptoms, see Table 

S5c.  
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Figure 3 Brain regions showing significant variability difference across patients with mental disorders 

and matched controls. A. Schizophrenia; B. Autism; C. ADHD. Blue indicates variability of patients is 

lower than that of controls, and red indicates the opposite.  

 

Discussion 

Neural, electro-physiological and anatomical correlates of variability 

Interestingly, the primary (Heschl and postcentral gyrus, superior occipital gyrus) or unimodal 

association cortex (middle occipital gyrus, cuneus, calcerine and lingual gyrus, superior temporal gyrus) 

were found to show very low variability (see Figure 1). This is because these regions are involved in 
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unitary neural circuit responsible for simple sensory-motor functions, and the regions they connect remains 

are rather stable over time. In comparison, the transmodal areas (Mesulam, 1998) including all 

heteromodal (anterior association cortex like interior frontal gyrus, triangular part posterior association 

cortex such as inferior parietal gyrus, paracentral lobule), paralimbic (temporal pole, parahippocampus) 

and limbic areas (hippocampus and amygdala) demonstrate high variability. This is because 

trans/heteromodal cortex receives information from multiple sensory modalities and are considered to be 

responsible for more complex or integrated cognitive activities (Bullard et al., 2013; Pearlson et al., 1996). 

Therefore these regions may take part in multiple functional communities in different time and have high 

variability. We also note relatively low-variability of DMN network, including medial frontal gurus and 

post cingulate/precuneus due to the strong connection within this network. These results are consistent 

with (Power et al., 2011) that suggests sensory-motor, visual and default mode systems are rather 

stationary.   

Certain brain region such as caudate is known to be involved in multiple neural circuits, also has a large 

variability that facilitate more flexible engagement of a region into various circuit, reflecting its ability 

to dynamical reconfigure itself into multiple functional circuits. 

The negative correlation between intra- vs. inter-community structural connection and variability (Figure 

1e) support the above conclusion. If structural connection of a region is confined only to its own 

community, then it will be stably involve one functional community and its variability would be low. In 

comparison, a region with structural connection to multiple communities are bound to switch among 

different functional circuit thus demonstrates a high variability.   

  

The negative correlation between variability of a region and its BOLD activity /degree (Figure 2 and 

Table S2) indicates that the variability is modulated by the local BOLD activity (both strength of BOLD 

oscillation and its frequency). To facilitate information transmission, or functional integration with other 

regions, it is natural for a brain region to demonstrate greater BOLD activity and relatively high level of 

functional connectivity/functional integration with other regions, therefore higher degree. In this case, 

the variability of the ROI is expected to be low to maintain a high level of information transmission.  

The negative correlation between a ROI’s variability and low frequency component in its BOLD 

oscillation indicates that low frequency oscillation of a region facilitate information transmission and 

functional integration: a low-variability ROI has higher low-frequency component, therefore tends to 



10 
 

synchronize easily with other regions. This is consistent with the finding that lower frequency oscillations 

allow for integration of large neuronal networks (Buzsaki and Draguhn, 2004). Comparatively, a region 

with more high-frequency components usually cannot synchronize effectively with other regions, thus 

demonstrate high variability.  

The variability of a region is also modulated by α band power of its EEG, manifested by the positive 

correlation between variability and α power (Figure 2 and Table S2). This is consistent with the finding 

that αoscillation inhibits BOLD activity by showing a strong negative correlation with BOLD activity, 

especially in occipital, parietal and frontal cortical (de Munck et al., 2007; Laufs et al., 2006) Considering 

the negative correlation between BOLD activity regional variability, a positive correlation between 

variability and α power is expected, which is verified in our work. 

Characteristic changes in temporal variability in various mental disorders 

Resting-state functional connectivity have revealed alterations in the intrinsic topographical organization 

of brain in several mental disorders, including schizophrenia, autism and ADHD (Castellanos et al.; 

2008;Kennedy and Courchesne, 2008; Whitfield-Gabrieli and Ford, 2012). However, little attention is 

devoted to time-varying networks in disease (Damaraju et al., 2014; Ma et al., 2014). Our work 

demonstrate disorder-specific changes in variability, which might add important further information on 

the specific, dynamical neuropathological profiles of the different mental disorders, and contribute to the 

development of differential & diagnostic imaging. 

Previous studies in schizophrenia reported a hyper-activated and concomitantly hyper-connected DMN 

(Whitfield-Gabrieli et al., 2009) , which may mirror intensive self-reference and decreased attentional 

capacities in patients (Whitfield-Gabrieli et al., 2009). In line with these findings, schizophrenia patients 

exhibited decreased variability in the DMN, which was associated with increased activity and 

connectivity. The interplay between the DMN and the task-positive network is related to working 

memory and switching between an intrinsic and extrinsic focus of attention (Weissman et al., 2006; 

Whitfield-Gabrieli and Ford, 2012). Decreased default mode system variability in schizophrenia patients 

therefore relate to schizophrenia-characteristic neurocognitive symptoms, e.g., an exaggerated focus on 

one’s own thoughts and feelings, and a blurring of the boundary between internal and external world 

(Whitfield-Gabrieli et al., 2009). Schizophrenia also demonstrate basic information processing deficits, 

particularly sensory gating (Bender et al., 2007) associated with thalamus. Increased variability in 

schizophrenia patients in subcortical regions could therefore point to de-synchronized basic filter 
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modules, associated with an inability to filter out irrelevant stimuli and a correspondingly diminished 

ability to focus attention (Freedman et al., 1987).   

Our results are consistent with Yu (Yu et al., 2014), who showed greater oscillation in the slow-5 band 

(0.01-0.027 Hz, corresponding to low frequency in our paper) than in the slow-4 band (0.027-0.073 Hz, 

corresponding to high frequency) in mPFC while greater ALFF/fALFF in the slow-4 band in subcortical 

regions like basal ganglia. We find that schizophrenia patients demonstrate lower variability in frontal 

regions corresponding to higher low frequency oscillations), and higher variability in thalamus/basal 

ganglia corresponding to smaller low-frequency component (0.027-0.073).  

For autisms, a number of works have found reduced DMN connectivity and activity (Kennedy and 

Courchesne, 2008) in resting-state, which correspond to high variability of DMN regions in our work. 

High variability of DMN network suggests a low functionality, i.e., disruption of the resting-state default-

mode cognition, which is mainly related to self-referential processing, such as processing of information 

associated with theory of mind, inner speech, retrieving and manipulating memories, and future plans 

(Garrity et al., 2007; Greicius et al., 2003; Kennedy et al., 2006). Therefore there might be an absence of 

self-referential thought in autism (Cherkassky et al., 2006), which is directed more towards obsessive 

interests and sensory-enviroment processing than towards self-reflective activities for autism patient 

(Crespi and Badcock, 2008).   

Temporal variability analysis in ADHD patients revealed increased variability in the DMN and 

concomitantly decreased variability in subcortical regions. In accordance with our findings previous 

studies have reported decreased DMN connectivity and integration (Castellanos et al., 2008) in ADHD, 

subsumed under the “default-mode interference” hypothesis (Castellanos et al., 2008; Sonuga-Barke and 

Castellanos, 2007). This theory suggests that the characteristic pattern of variability in performance in 

ADHD may be based on a dysfunctional synchronization in the DMN or its interactions with “task-active” 

regions, e.g., decreased anti-corelations between the PCC and task-positive regions (the dACC, 

Castellanos et al., 2008). This is consistent with our finding of high variability in DMN regions like 

PCC/PCUN (associated with its low functional connectivity), which may reflect default mode 

interference that contributs to attentional deficits in ADHD. In particular, the high variability with 

PCC/PCUN may be related to diminished volume (Carmona et al., 2005) or decreased cortical thickness 

(Makris et al., 2007) in precuneus and PCC in ADHD.  

Two interesting trend is worthy to note. First, regions demonstrating vary high/low variabilities in healthy 
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controls are most liable to change in psychiatric disorders. As is shown in Table S4. About half of the 

significantly changed regions in the 3 disorders are among the top 10% highest- or lowest-variability 

regions in matched controls (11/19 in schizophrenia, 3/8 in autism, and 4/10 in ADHD). This indicates 

that regions at the two extremes of the axis of variability are not stable and tend to be affected by mental 

disorders. Second, the three different mental disorders showed disease-specific, partly opposite regional 

pattern of altered variability in regions previously reported to associate with the symptoms. For example, 

schizophrenia and Autism demonstrates opposite trend in variability changes in DMN regions (compared 

with respective controls, see Figure 1 and Table S6). This is consistent with the idea that schizophrenia 

and autism may represent opposite pathologies (Crespi and Badcock, 2008). These disorders exhibit 

diametrically opposite phenotypes, or patterns for characteristics of social brain development, like social 

cognition, language, and behavior, and local /global processing. Social cognition is believed to be 

underdeveloped in autistic-spectrum disorders, while hyper-developed on the psychotic spectrum 

(Crespi and Badcock, 2008). In addition, there is also opposite trend in variability changes in thalamus 

for schizophrenia and ADHD (Figure 1 and Table S6).  

 

The influence of head motion 

Though it has been shown that head movements can influence estimates of functional connectivity  

(Power et al., 2014), there are also evidence that head movement only explains a small fraction of the 

variability in connectivity (Van Dijk et al., 2012), and motion-associated differences in brain connectivity 

cannot fully be attributed to motion artifacts but rather also reflect individual variability in functional 

organization (Zeng et al., 2014). To evaluate the possible effect of head motion on the regional variability, 

we calculate their correlation, see Table S7. Out of the 6 fMRI datasets, only the patients in dataset 4# 

(ADHD: NYU) show significant correlation with head movements (FDR, q=0.05). We also listed the 

regions whose p value is less than 0.01 for other datasets in Table S7, which we find to have no consistent 

patterns across datasets. These results suggests that the head movement effect may be small, and in the 

case-control study of ADHD we did not use NYU dataset due to the correlation with headmovement. 

EXPERIMENTAL PROCEDURES  

Quality control   

For each psychiatric disorders, we combine multi-center data with possibly large variation. Therefor 

we set up a protocol to ensure data quality. The exclusion criteria were: 1. Subjects with poor 
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structural scans, or functional MRI data cannot be successfully preprocessed, i.e., normalization to MNI 

space, or without complete demographic information. 2. Head movement: subjects with >10% 

displaced frames in a scrubbing procedure or maximal motion between volumes in each direction >3 

mm, and rotation about each axis > 3○ were excluded. Patients and controls were screened in each 

dataset so that the total root mean square displacements did not show significant differences. It 

should be noted that for ADHD dataset, we only have the preprocessed data (i.e., BOLD time series) 

from the public website, thus scrubbing cannot be performed. 3. For autism dataset, subjects with a 

full IQ exceeding 2 standard deviations (SD) from the overall ABIDE sample mean (108 _ 15) were not 

included. 

1. Case-control study (fMRI) 

Subjects 

Six resting-state datasets were used from Schizophrenia, Autism and ADHD patients and their respective 

healthy control groups. Full demographic details of patients and healthy controls is given by Table 1, and 

medication information are given in Table S8.  

Schizophrenia 

Two datasets were used, including Taiwan dataset (1# dataset: 62 healthy controls and 69 medicated 

schizophrenia patients) from National Taiwan University Hospital in Taiwan (Guo et al., 2014) and 

COBRE dataset from the Center for Biomedical Research Excellence (COBRE, 2# dataset: 67 healthy 

controls  and 53 chronic patients). 

All patients were identified according to DSM-IV diagnostic criteria by qualified psychiatrists and 

symptom severity assessed using the Positive and Negative Syndrome Scale (PANSS). Exclusion criteria 

included (1) presence of other DSM-IV disorders; (2) history of substance abuse; (3) clinically significant 

head trauma. Healthy controls were also confirmed using DSM-IV criteria to be free of schizophrenia or 

other Axis 1 disorders and not to have a history of substance abuse or clinically significant head trauma. 

Informed consents were approved by Institutional review boards (IRB) of respective hospitals (Taiwan 

and USA). 

Autism 

The autism datasets is from The ABIDE repository hosted by the 1000 Functional Connectome Project 

(http://fcon_1000.p rojects.nitrc.org for more information). In this paper we used datasets from two 

centres, i.e., NYU (3# dataset: 102 controls and 75 patients) and UM (4# dataset: 64 controls and 38 

http://cobre.mrn.org/
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patients). Research procedures and ethical guidelines were followed in accordance with the Institutional 

Review Boards (IRB) of the respective participating institution. Details of diagnostic criteria, acquisition, 

informed consent, and site-specific protocols are available at : 

http://fcon_1000.projects.nitrc.org/indi/abide/.  

 

ADHD 

The ADHD dataset was obtained from the ADHD-200 Consortium 

(http://fcon_1000.projects.nitrc.org/indi/adhd200/). 2 sites with a total of 490 subjects were used, 

involving PKU dataset (5# dataset: 143 controls and 99 ADHD patients), and NYU dataset (6# dataset:108 

controls and 140 ADHD patients). All subjects were evaluated using the Schedule of Affective disorders 

and Schizophrenia for Children - Present and Lifetime version (KSADS-PL) with one parent for the 

establishment of diagnosis. The ADHD Rating Scale (ADHD-RS) IV was employed to measure severity 

of ADHD symptoms. All subjects are (1) right handed, (2) no history of head trauma with loss of 

consciousness (3) no history of neurological disease or diagnosis of schizophrenia, affective disorder, 

pervasive development disorder or substance abuse (4) had a Weschler Intelligence Scale for Children 

score of >80. Details of diagnostic criteria, acquisition, informed consent, and site-specific protocols are 

available at : http://fcon_1000.projects.nitrc.org/indi/adhd200/.  

 

2. Simultaneous EEG/fMRI recording 

26 healthy subjects (7 # dataset :11 females, age 21.4 ± 2.0, between 18 and 25 years) without any history 

of psychiatric or neurological illness were recruited from the local community (approved by the Ethics 

Committee of the Southwest University) for acquisition of simultaneous resting-state EEG/fMRI, 

which is used in electrophysiological correlate analysis of variability. Written informed consent 

was obtained after detailed explanation of the study protocol.  

 

3. fMRI/DTI 

142 healthy subject (7 # dataset: 76  females, age 14.5±0.2, between 13.2 and 15.9 years) with both 

resting-state and DTI images from IMAGEN consortium (Schumann et al., 2010) were used to seek 

anatomical correlates of variability. The detailed information can be found in (Schumann et al., 2010). 

http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
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Image acquisitions 

1. Case-control study 

All Individuals were asked to remain still, close their eyes (For COBRE and UM (autism) dataset, eye 

open/close information were not available) and think of nothing systematically but not to fall asleep when 

functional imaging data were collected.  

Schizophrenia 

For Taiwan dataset, a 3T MR system (TIM Trio, Siemens) is used. A total of 180 volumes of EPI images 

were obtained axially, (slices, 34; TR, 2000 ms; TR, 24 ms; thickness, 3 mm; flip angle, 90°; FOV, 

256256 mm2; resolution, 64 64).  

For COBRE dataset, BOLD fMRI were obtained by single-shot full k-space EPI with ramp sampling 

correction using the inter-comissural line (AC-PC) as a reference (TR: 2 s, TE: 29 ms, matrix size: 64x64, 

32 slices, voxel size: 3 × 3 × 4 mm3 FOV = 256x256 mm2). 

Autism 

All data In the ABIDE initiative being collected at a number of different centres with 3T scanners. Details 

regarding data acquisition are provided on the ABIDE website (http://fcon_1000.pro 

jects.nitrc.org/indi/abide). 

ADHD 

Peking University: SIEMENS TRIO 3-Tesla. A total of 232 volumes of echo planar images were 

obtained axially (30 slices; TR 2000 ms; TE 30 ms; slice thickness 4.5 mm; flip angle 90°; FOV 220×220 

mm2; matrix 64×64).  

New York University: A total of 172 volumes of echo planar images were obtained axially (33 slices; 

TR 2000 ms; TE 15 ms; slice thickness 4 mm; flip angle, 90°; FOV = 240×240 mm2; matrix 80×80). 

 

2. Simultaneous EEG/fMRI recording  

The EEG was digitized at 5 kHz, referenced online to FCz using a non-magnetic MRI-compatible EEG 

system (BrainAmp MR plus, Brain products, Munich, Germany). 32 electrodes (nonmagnetic Ag/AgCl ) 

were placed on the scalp according to the international 10/20 system. An additional electrode was 

dedicated to the electrocardiogram. BOLD fMRI was acquired using a 3T Siemens Trio scanner. 200 

functional volumes were scaned using an EPI sequence with the following parameters: TR/TE=1500/29 

http://fcon_1000.pro/
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ms, FOV=192×192 mm2, flip angle=90°, acquisition matrix=64×64, thickness/gap=5/0.5 mm, in-plane 

resolution=3.0×3.0 mm2, axial slices=25.  

3. fMRI/DTI 

As the resting-state fMRI and DTI data are from multi centers, the detailed parameters can be found in 

Imagen consortium (Schumann et al., 2010). 

 

Data preprocessing 

fMRI data 

For all fMRI data used in our study, the first 10 volumes were discarded to allow for scanner stabilization 

and the subjects' adaptation to the environment. fMRI data preprocessing was then conducted by SPM8 

(http://www.fil.ion.ucl.ac.uk/spm) and a Data Processing Assistant for Resting-State fMRI (DPARSF). 

The remaining functional scans were first corrected for within-scan acquisition time differences between 

slices and then realigned to the middle volume to correct for inter-scan head motions. Subsequently, the 

functional scans were spatially normalized to a standard template (Montreal Neurological Institute) and 

resampled to 3 3 3 mm3. After normalization, BOLD signal of each voxel was firstly detrended to 

abandon linear trend and then passed through a band-pass filter (0.01-0.08 Hz) to reduce low-frequency 

drift and high-frequency physiological noise. Finally, nuisance covariates including head motion 

parameters, global mean signals, white matter signals and cerebrospinal signals were regressed out from 

the BOLD signals. After data preprocessing, the time series were extracted in each ROI by averaging the 

signals of all voxels within that region. In terms of Global signal removal, please see supplemental 

experimental procedure for and Fig. S6 for comparison between Global signal removal and unremoval. 

 

We further implemented careful volume censoring (‘scrubbing’) movement correction (Power et al., 

2014) to ensure that head-motion artefacts were not driving observed effects. The mean framewise 

displacement was computed with the framewise displacement threshold for exclusion being a 

displacement of 0.5 mm. In addition to the frame corresponding to the displaced time point, one 

preceding and two succeeding time points were also deleted to reduce the ‘spill-over’ effect of head 

movements. Finally, we used the mean framewise displacement as a covariate when comparing the two 

groups during statistical analysis.For all three datasets the automated anatomical labeling atlas (AAL) 

(Tzourio-Mazoyer et al., 2002) was used to parcellate the brain into 90 regions of interest (ROIs) (45 per 

http://www.fil.ion.ucl.ac.uk/spm
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hemisphere). The names of the ROIs and their corresponding abbreviations are listed in Table S9.  

Simultaneous EEG/fMRI data processing 

EEG data was preprocessed by temporal independent component analysis to remove gradient and 

ballistocardiographic (BGC) artifacts (Mantini et al., 2007). The FMRIB toolbox in EEGLAB 

(www.sccn.ucsd.edu/eeglab) was used for correction of the MRI imaging artifact (Niazy et al., 2005). It 

implements the adaptive artifact subtraction (AAS) method, in which the MRI imaging artifact 

waveforms are segmented, averaged and iteratively subtracted from the EEG signals (Allen et al., 2000). 

Subsequently, data were down-sampled to 250 Hz, filtered within the 1-30 Hz frequency band 

(Chebyshev II-type filter, 40 dB attenuation, zero-phase distortion). Data segments contaminated by 

muscle activity were removed, and 190 to 275 s (225 ± 32 s) of continuous EEG recordings were 

remained. A digital FFT-based power spectrum analysis (Welch technique, Hanning window, no phase 

shift) computed power density of the EEG rhythms. The following standard band frequencies were 

studied based on previous EEG studies (Lukas et al., 1986; Sanz-Martin et al., 2011): delta (2–4 Hz), 

theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20 Hz), and beta 2 (20–30 Hz). 

 

DTI Processing 

We first used FMRIB Software Library v5.0 (http://fsl.fmrib.ox.ac.uk/fsl) [Jenkinson et al., 2012] to 

remove the eddy-current and extract the brain mask from the B0 image. Then, we used TrackVis [Wang 

et al. 2007] to obtain the fiber images by the deterministic tracking method, and the anatomical regions 

were defined using the automated anatomical labelling atlas (AAL) (Tzourio-Mazoyer et al., 2002)， 

based coregistered T1 image from each subject. This way the presence of streamlines connecting every 

pair of brain regions. All the processes were performed using the PANDA suite (Cui et al., 2013).  

Finally, for any pair of brain regions, we will have fractional anisotropy, fiber number and fiber length 

assigned to the corresponding fiber connections. 

 

Table 1: Demographic information for the 6 dataset involving 3 psychiatric disorders (a) 

schizophrenia, (b) Autism and (c) ADHD. 

(a) Schizophrenia 

1. Taiwan dataset 
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Groups N Age/yrs 

 

Sex (M/F) PANSS  

(P) 

PANSS  

(N) 

PANSS  

(G) 

Illness 

duration 

Taiwan 

Controls 62 29.9±8.6 25/37  

Schizophrenia 69 31.9±9.6 35/34 11.9±4.7 13.6

±6.3 

27.±9.6 7.2±6.6 

COBRE 

Controls 67 34.8 ± 11.3 42 / 11  

Schizophrenia 53 36.8 ± 13.7 46 / 21 14.9±4.6 14.7±5.2 29.7±8.2 8.9±6.9 

 

 (b): Autism 

Groups N Sex (M/F) Age/yrs Hamilton score 

NYU 

Controls 102 76/26 15.9± 6.3 21.4±12.7 

Autism 75 65/10 14.8±7.0 92.6±31.0 

UM 

Controls 64 48/16 15.1±3.7  

Autism 38 31/7 13.6±2.4 

 

(c) ADHD  

Dataset N Age/yrs Sex (M/F) ADHD index 

PKU 

Control 143 11.4±1.9 84/59 29.3±6.4 

ADHD 99 12.1±2.0 89/10 50.4±8.2 

NYU 

Control 108 12.2±3.1 54/54 45.4±6.0 

ADHD 140 11.1±2.7 106/34 71.9±8.7 

 

Methods  
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Temporal variability of a brain region 

To characterize temporal variability of functional connectivity profile of a given region, we first segment 

all BOLD time series into n non-overlapping windows each with length l. Within the ith time window 

the whole-brain functional network Fi (which is a m*m matrix, with m nodes) is obtained, The correlation 

map (or functional connectivity profile) for a brain region k at time window i then is Fi (k,:) which is a 

m-dimensional vector and is shortened as Fi,k. We then define the variability of a ROI k as:  

𝑉𝑘 = 1 − 𝐸[𝑐𝑜𝑟𝑟𝑐𝑜𝑒𝑓(𝐹𝑖,𝑘 , 𝐹𝑗,𝑘)], 𝑖, 𝑗 = 1,2,3, … , 𝑛, see Figure 3 for illustration. 

The latter part compares the global functional connectivity profile of a region across different time 

windows, which is the averaged correlation coefficient among different functional-connectivity profiles 

of a region and thus a similarity measure. A deduction from 1 then indicates temporal variability of a 

region. By this we are able to evaluate temporal variability of a ROI at the network level, and localize to 

a specific brain region simultaneously. In fact this measure was used at a different context in (Baldassarre 

et al., 2012) to calculate individual variability, i.e., the correlation is performed among global functional 

connectivity profile for different individual, rather than among global functional connectivity profiles 

obtained at different time window for the same individual. To reduce the effect of segmentation scheme 

of BOLD signal, for a given window length l, we perform l-1 times segmentation and each time we start 

from the sth point (s=1,2,…, l-1) and average the variability obtained from l-1 times segmentation. in 

application  to avoid arbitrary choice of window length, we calculate 𝑉𝑘  at different l (l=10, 11, 

12,…20 sampled points, equal to 20, 22, 24,…40 second), and then take the average value as the final 

variability of the ROI. We choose the above window length as it was suggested that window sizes 

around 30–60 s produce robust results in image acquisitions, cognitive states (Shirer et al., 2012) 

and topological descriptions of brain networks (Jones et al., 2012). In fact we find that variability 

obtained at different window length (e.g., 20s, 30s, 40s) are highly correlated (r>0.98, Figure S4), 

indicating that this metric does not critically depend on the choice of window length.  

Correlation between variability and local/global characteristics from multi-modalities  

To elucidate the neural/electrophysiological and anatomical correlates of temporal variability, we 

perform extensive correlation analysis using simultaneously collected EEG/fMRI (dataset 5#) and 

fMRI/DTI (dataset 7#) data of healthy controls. For neural correlates, correlation between variability of 

a region and its BOLD activity (local measures, including the standard deviation of BOLD signal and its 

low frequency component) and degree (global measure, the number of its functional connectivity with 
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absolute strength larger than 0.3) across 90 brain regions for each subject. For electrophysiological 

correlates, we perform correlation between variability of a region and its α band power (obtained from 

simultaneously recorded EEG) across all 28 electrodes/regions (see Supplemental Experimental 

Procedures for the correspondence to the 28 regions in AAL template) for each subject. 

For anatomical correlates, we perform correlation between variability of a region and its intra-community 

vs. inter-community structural connection ratio (IICR) across 90 brain regions for each subject. IICR is 

defined as the total number of fibers of the ROI with those regions belonging to the same community 

divided by the total number of fibers with those regions belonging to other communities. It characterizes 

the specificity/selectivity of a ROI to structurally connect to regions belong to its own functional 

community (see Supplemental Experimental Procedures). 

 

 

Figure 3. Flow chart of temporal variability analysis (a) The procedure of calculating variability of a 

given region. (b) Correlation analysis of variability with measures from multimodalities neuroimaging 
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data like simultaneously recorded EEG and DTI data. (c) Case-control studies for different psychiatric 

disorders including schizophrenia, autism and ADHD. 

 

Meta-analysis to integrate results from different imaging centers 

In case-control studies, we used a Liptak-Stouffer z-score method (Liptak, 1958) which is well-

validated in integrating results from individual datasets (e.g., MRI (Glahn et al., 2008)). For datasets 

of the same mental disorder, the p-value of each functional connectivity in the relevant dataset i was 

converted to the corresponding z score: 𝑧𝑖 = Φ−1(1 − 𝑝𝑖) , where Φ is the standard 

normal cumulative distribution function. Then a combined z score for a functional connectivity was 

obtained using the Liptak-Stouffer formula: 

𝑍 =
∑ 𝑤𝑖𝑧𝑖

𝑘
𝑖=1

√∑ 𝑤𝑖
2𝑘

𝑖=1

 

where 𝑤𝑖 is the inverse of the variance of zi. Z follows a standard normal distribution under the 

null hypothesis and is transformed into its corresponding p-value, with Bonferroni correction used 

to correct for multiple comparisons. 
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