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ABSTRACT 

Investigations about the intrinsic brain organization in resting-state are critical for the 

understanding of healthy, pathological and pharmacological cerebral states. Recent studies on 

fMRI suggest that resting state activity is organized on large scale networks of coordinated activity, 

in the so called, Resting State Networks (RSNs). The assessment of the interactions among these 

functional networks plays an important role for the understanding of different brain pathologies. 

Current methods to quantify these interactions commonly assume that the underlying 

coordination mechanisms are stationary and linear through the whole recording of the resting 

state phenomena. Nevertheless, recent evidence suggests that rather than stationary, these 

mechanisms may exhibit a rich set of time-varying repertoires. In addition, these approaches do 

not consider possible non-linear relationships maybe linked to feed-back communication 

mechanisms between RSNs. In this work, we introduce a novel approach for dynamical functional 

network connectivity for functional magnetic resonance imaging (fMRI) resting activity, which 

accounts for non-linear dynamic relationships between RSNs. The proposed method is based on a 

windowed distance correlations computed on resting state time-courses extracted at single 

subject level. We showed that this strategy is complementary to the current approaches for 

dynamic functional connectivity and will help to enhance the discrimination capacity of patients 

with disorder of consciousness. 
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INTRODUCTION 

Recent studies on functional magnetic resonance imaging (fMRI) suggest that healthy brain in 

resting state is organized in large-scale of resting state networks (RSNs).1 The existence of at least 

ten of these RSNs (default mode network (DMN), executive control network left (ECL), executive 

control network right (ECR), saliency, sensorimotor, auditory, cerebellum and three visual 

networks medial, lateral and occipital) have been consistently reported in healthy controls.2 Each 

RSN encompasses a set of spatial regions with a common functional behavior or time-course. 

Several brain pathological conditions including disorders of consciousness, dementia and 

Alzheimer’s, among others, have been studied using the RSN approach.3, 4 These studies mainly 

focus on changes of intrinsic connectivity of one RSN, usually, the DMN. However, recent evidence 

suggests that rather than one, multiple RSNs may be affected during pathological conditions. For 

instance, patients with disorders of consciousness showed alterations of the intrinsic connectivity 

on at least four networks:2 DMN, ECL, ECR and auditory. The alteration of multiple networks may 

suggests also that the interaction mechanisms among RSNs may also be affected during 

neuropathological states. Therefore, interaction between RSNs may be relevant to better 

comprehend brain function in pathological states.5 

The level of interaction during spontaneous activity among different RSNs can be used as a 

complementary resting state analysis strategy, through the so called functional network 

connectivity (FNC).5 In this approach pairwise measurements of interaction between RSNs time-

courses are computed. A measure of interaction commonly used in FNC is the Pearson 

correlation.5 This measurement assumes a lineal relationship among the RSNs time-courses. 

Nevertheless, recent investigations suggests that neuronal function of cortical ensembles may 

follow non-linear behaviors during resting state, probably linked to feed-back mechanisms.6 In 

addition, Pearson correlation is also supported on assumptions of stationary and non-variability 

across time for the RSN time-course relationship. An assumption, which was strongly debated 

recently in terms of novel evidence that shows that resting state dynamic is highly variable and 

cannot be explained just in terms of stationary behaviors.7,8 For instance, evidence on 

magnetoencephalography recorded during resting state suggests that the power correlation 

between the DMN and the dorsal attention network is time-varying.9 Similar investigations 

studying the interactions between the attentional network and the memory network have showed 

similar time-varying behaviors.10 In this scenario, Pearson correlation based FNC approaches may 

be limited to capture the richness of the RSN interaction phenomena. 

In this paper, we propose a novel FNC method that accounts for dynamic changes and non-linear 

relationships between different RSNs time-courses. The proposed method is based on a multiple 

RSN identification approach, which allows to select RSNs at individual level. Between RSN 

interactions were quantified across time using an slicing window version of the distance 

correlation.11 We show that this strategy may complement current approaches for dynamic 

functional connectivity and may also improve the discrimination capacity of patients with disorder 

of consciousness. 
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MATERIALS AND METHODS 

DATA AND PREPROCESSING  

Data from 76 subjects, previously acquired,2 were used for this study: 27 healthy controls, 24 

patients in minimal conscious state (MCS) and 25 with vegetative state/unresponsive wakefulness 

syndrome (VS/UWS). Data were acquired in the Hospital University Liège. For each subject, fMRI 

resting data were acquired in a 3T scanner (Siemens medical Solution in Erlangen, Germany). 

Three hundred fMRI volumes multislice T2H- weighted functional images were captured (32 slices; 

voxel size: 3 × 3 × 3 mm3; matrix size 64; repetition time = 2000 ms; echo time = 30 ms; flip angle = 

78; field of view = 192 mm2). All patients were clinically examined using the French version of the 

Coma Recovery Scale Revised (CRS-R).12 Written informed consent to participate in the study was 

obtained from all patients or legal surrogates of the patients. SPM8 was used for processing of 

fMRI. Preprocessing includes: realignment, coregistration of functional onto structural data, 

segmentation of structural data, normalization into MNI space and spatial smoothing with a 

Gaussian kernel of 8 mm. Further correction for large head motions correction was performed 

using ArtRepair. 

DYNAMICAL FNC METHOD 

RSNS IDENTIFICATION 

The fMRI signal was represented as a linear mix of sources statistically independent by using ICA 

(Independent component analysis). ICA aims to explain the signal into a set of statistically 

independent components (ICs) of brain activity. Given that the fMRI data the spatial dimension is 

much greater than temporal one, we used spatial ICA at single subject level, which decompose the 

signal into maximally independent spatial maps with an associated time course.13 For the RSNs 

identification we selected the set of ICs that maximize the similarity with a set of RSN templates. 

After the RSN spatial map identification, a machine learning based labeling method was applied to 

discriminate between IC of “neuronal” or “artifactual” origin. A binary classification method based 

on support vector machines and an spatio-temporal feature vector was used for the ICs 

description.2 The RSN time-courses labeled as neuronal were subsequently used for all the FNC 

computations. 

RSN TIME-SERIES INTERACTION MEASUREMENT 

For the computation of the RSN time-series interaction, we used the Distance correlation (DC),11 

which accounts non-linear dependencies between random variables in arbitrary dimensions. DC 

aims to measure dependencies between two random variables X and Y with finite moments in 

arbitrary dimension, not necessarily of equal dimensions.11 For defining DC, we started with an 
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observed random sample (X, Y) = {(Xk, Yk )|k = 1, 2, . . . , n} of the joint distribution of random vectors 

X in Rp and Y in Rq . Using these samples a transformed distance matrix A can be defined as follows: 

 

With k, l = 1, 2, ..., n. Similarly, B is defined to characterize distances between samples for Y. 

Following, the empirical distance is defined by   . 

 Finally, the empirical DC corresponds to the square root of  

 

Where  (X) =  (X, X). Note that A and B can be computed independently of p and q, and both 

contain information about between sample elements distances in X and Y .   (X, Y ) is a measure 

of the distance between the probability distribution of the joint distribution and the product of the 

marginal distributions, i.e.,   (X, Y) quantifies ||fX,Y − fX fY ||, with fX and fY the characteristic 

function of X and Y , respectively, and fX,Y the joint characteristic function.11 In contrast to PC,   

(X, Y) vanish if and only if X and Y are independent variables.11 The DC corresponds to a normalized 

version of   (X, Y), which takes values between 0 and 1, with zero corresponding to statistical 

independence between X and Y , and 1 total dependency. In order to explore the FNC dynamic 

behaviour we repeated the DC computations of across time using an sliding-window.14 In 

particular, we computed T − w + 1 successive DC values from the truncated RSN time-courses in 

windows of size w, each one being shifted one TR with respect to the previous one, with T the 

number of volumes in the resting state fMRI acquisition (figure 1). For the computations, we used a 

fixed w of 240 s. 

Figure 1. DC computations between two RSN time-courses extracted by using sliding-window running across 

the fMRI acquisition. 
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RESULTS 

Figure 2 shows the differences between dynamic and static FNC approaches15 for the three 

considered measurements (DC, NMI and PC). Static connectivity was computed by considering the 

whole time course in the interaction computations.15 To have a single estimation of the dynamic 

functional connectivity, we computed the maximum of the dynamic functional connectivity across 

time. Connections width in figure 2 is related to the strength of the difference between static and 

dynamic FNC.14 As observed, dynamical FNC approaches are able to capture different information 

about interaction compared to the static alternative. Interestingly, DC based computations 

resulted on less differences than the PC. 

Figure 3 shows the dynamical FNC for interactions between ECL-ECL and Salience-Visual Medial, 

we focused this analysis in these interactions because previous study showed differences 

discriminating patients with DOC in these RSN connections.15 For the interaction quantification we 

compared three measurements Pearson correlation (PC), normalized mutual information (NMI)16 

and DC. As observed, DC captures different dynamical behavior than PC. DC also enhance possible 

difference between pathological conditions compared to other non-linear approaches as NMI. In 

order to study the strength of the discrimination capacity of the dynamical FNC approach based on 

PC, NMI and DC we performed a dynamical effect size analysis. For this, we computed the Cohen’s 

d coefficient comparing DC and PC values extracted for sliding-windows in two pathological 

conditions (MCS and VS/UWS). Figure 4 shows the dynamical effect size analysis. As observed, DC 

outperforms PC in discrimination capacity for ECL-ECR interaction. Nevertheless, in Salience-

Visual Medial connection PC showed higher effect size than DC. 

 

Figure 2. Difference between dynamic and static FNC approaches, for the three considered interaction 

measurements: DC, NMI and PC. Connection width is related to the strength of the difference between static and 

dynamic FNC. Static connectivity was computed using the whole time course, and the dynamic connectivity as 

computed as the maximum of the dynamic functional connectivity across time. 
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Figure 3. Dynamical  FNC  based  on  three  measurements  (Pearson  correlation  -  left,  normalized  mutual  

information - center and distance correlation - right) for interactions between ECL-ECL and Salience-Visual  

Medial  in  randomly selected subjects in three categories (Control - top, MCS - center and VS/UWS bottom). 

 

Figure 4. Dynamic effect size in interest networks from MCS and VS/UWS patients group 
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CONCLUSIONS 

In this work, we proposed a novel method to study of dynamical functional network connectivity, 

in resting state fMRI. The strategy is based on a single subject RSN time-course extraction 

approach. Followed by a sliding window distance correlation computation. Our results indicate 

that dynamical FNC will highly different behaviors than linear based approaches. In addition, FNC 

based on DC will enhance the discriminative capacity for RSN interactions in patients with 

disorders of consciousness. Therefore, this measurement can be used as complementary tool to 

study dynamical behaviors in FNC. 
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