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Abstract 

Interest in time-resolved connectivity in fMRI has grown rapidly in recent years. The most widely used 

technique for studying connectivity changes over time utilizes a sliding windows approach. There has 

been some debate about the utility of shorter versus longer windows, the use of fixed versus adaptive 

windows, as well as whether observed resting state dynamics during wakefulness may be predominantly 

due to changes in sleep state and subject head motion. In this work we use an independent component 

analysis (ICA)-based pipeline applied to concurrent EEG/fMRI data collected during wakefulness and 

various sleep stages and show: 1) connectivity states obtained from clustering sliding windowed 

correlations of resting state functional network time courses well classify the sleep states obtained from 

EEG data, 2) using shorter sliding windows instead of longer non-overlapping windows improves the 

ability to capture transition dynamics even at windows as short as 30 seconds, 3) motion appears to be 

mostly associated with one of the states rather than spread across all of them 4) a fixed tapered sliding 

window approach outperforms an adaptive dynamic conditional correlation approach, and 5) consistent 

with prior EEG/fMRI work, we identify evidence of multiple states within the wakeful condition which 

are able to be classified with high accuracy. Classification of wakeful only states suggest the presence of 

time-varying changes in connectivity in fMRI data beyond sleep state or motion. Results also inform 

about advantageous technical choices, and the identification of different clusters within wakefulness 

that are separable suggest further studies in this direction. 

 

1. Introduction 

The human brain continuously engages in mental activities that include introspection, theory of 

mind, and future planning, even when not actively pursuing a task. Fluctuations during the resting state 

have been shown to show functional network topology similar to that observed in task imaging studies 

(Calhoun et al., 2008; Smith et al., 2009). Since the first reports on time varying functional connectivity 

during task performance (Sako´glu et al., 2010) and during a typical resting functional magnetic 

resonance imaging (fMRI) scan (Chang and Glover, 2010; Sakog´lu et al., 2010), there has been interest 

in studying and characterizing the changes in functional connectivity between brain regions on a shorter 

time scale, also referred to as time-resolved or dynamic functional connectivity (Calhoun et al., 2014; 

Hutchison et al., 2013). Recent years have seen a sharp increase in development of novel methods to 
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characterize these dynamics (Allen et al., 2012a; Cribben et al., 2013; Kang et al., 2011; Tagliazucchi et 

al., 2012a; Vidaurre et al., 2017; Yaesoubi et al., 2015a)(see (Preti et al., 2017) for a thorough review). 

One popular method to estimate connectivity dynamics in functional neuroimaging data is the use of 

sliding windows to estimate the connectivity between regions/networks. These time-varying 

connectivity estimates, when computed on the time courses from brain regions or seeds defined a priori 

are referred to as dynamic functional connectivity (dFC) and those estimated from the time courses of 

networks obtained from blind decomposition techniques such as independent components analysis 

(ICA) are referred to as dynamic functional network connectivity (dFNC). In this work we focus on the 

latter, which leverages the benefits of ICA including data-driven identification of networks, robustness to 

noise, separation of overlapping signals of interest, and estimation of homogeneous networks that 

capture individual subject variability (Calhoun and de Lacy, 2017; Yu et al., 2017). Using an ICA based 

pipeline, Allen et al. (2012a) reported the presence of stable, recurring connectivity patterns/states 

obtained from clustering pairwise correlation estimates of windowed time courses of ICA derived 

intrinsic networks from resting fMRI data and more recently (Abrol et al., 2017) showed connectivity 

patterns and dynamic metrics are highly replicable across multiple independent data sets. However, a 

few studies have raised concerns over the quality of connectivity estimates obtained using the sliding 

window method (Lindquist et al., 2014; Smith et al., 2011), choice of window size (Hindriks et al., 2016; 

Leonardi and Van De Ville, 2015; Sakog´lu et al., 2010; Zalesky and Breakspear, 2015), and the ability of 

the method to capture meaningful state transitions (Shakil et al., 2016). Others have primarily attributed 

the observable changes in connectivity in resting fMRI data to sleep state Chang et al. (2016); 

Tagliazucchi and Laufs (2014); Haimovici et al. (2017), sampling variability and head motion (Laumann et 

al., 2016; Liegeois et al., 2017). 

In our prior concurrent EEG/fMRI work (Allen et al., 2017), windows corresponding to distinct dFNC 

connectivity states estimated using a sliding-window correlation method were associated with distinct 

electrophysiological signatures during both eyes open and eyes closed awake conditions and showed the 

ability of the method to track subject vigilance. However, since subjects were mostly awake throughout 

the scan sessions, simultaneously acquired electroencephalogram (EEG) data did not show enough state 

transitions from wakefulness to assess how well observed dFNC state transitions correspond to 

neurobiological state transitions i.e. observable changes in subject sleep state from EEG data. 

Here we use simultaneous EEG-resting fMRI data collected continuously over 50 minutes while the 

subjects transitioned between wakefulness and different sleep stages (defined by EEG-based sleep 

scoring) and assessed the ability of sliding window based dFNC measures to track the changes across 

these different wakefulness states. In addition to comparing the dFNC measure to sleep, this study 

provides us an opportunity to evaluate the impact of several technical choices within a real-world 

dataset rather than in simulations (Leonardi and Van De Ville, 2015; Sako´glu et al., 2010). For example, 

we compare the impact of the length of the sliding window, precisely tapered sliding window (Allen et 

al., 2012a; Barttfeld et al., 2015; Yaesoubi et al., 2015b; Zalesky et al., 2014), on our ability to predict 

sleep stage. Windows should be short enough to be a good compromise between the ability to capture 

time varying connectivity without being too sensitive to noise. In addition, we compare a ‘fixed length’ 

sliding window approach to a method from econometrics which has been applied to fMRI data, the 

dynamic conditional correlation (DCC) (Engle, 2002; Lindquist et al., 2014). DCC uses an adaptive window 

size and has been reported to show better test-rest reliability compared to ‘fixed length’ sliding-window 

methods in estimating time varying functional connectivity (Choe et al., 2017). We also evaluate the 

relationship of the estimated states to motion, in particular we were interested in whether all states 

would show a similar relationship to motion or whether a subset of states captures the variance 

associated with motion. 
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2. Methods 

2.1. Data acquisition 

Resting state functional MRI data was collected from 55 subjects for 52 minutes each (1505 volumes 

of echo planar images, repetition time (TR)=2.08 s, TE = 30 ms, matrix 64 x 64; FOV = 192 mm
2
, 

Thickness=2 mm, 1 mm gap between slices) on a Siemens 3T Trio scanner while the subjects rested with 

their eyes closed (details in (Tagliazucchi et al., 2012b)). Simultaneous EEG was acquired on 30 EEG 

channels with FCz as the reference (sampling rate = 5 kHz, low pass filter = 250 Hz, high pass filter = 

0.016 Hz) using an MR compatible device (BrainAmp MR+, BrainAmp ExG; Brain Products, Gilching, 

Germany). 

Of 63 nonsleep-deprived subjects scanned in the evening after 8:00 PM, 8 subjects had no epochs of 

sleep and were not used in this analysis. Remaining 55 subjects reached at least sleep stage N1 as 

assessed from EEG derived hypnogram and were included in the analysis. All subjects reached at least N1 

sleep stage, 39 reached N2 stage and 19 went into N3 stage during the scan. For details of epochs of 

individual sleep durations, see Supplemental Table 7.1 of Tagliazucchi et al. (2013). 

2.2. Data preprocessing 

EEG data underwent MRI and pulse artifact correction based on average artifact subtraction 

(Allen et al., 1998), followed by ICA-based residual artifact rejection. This data was subsequently sleep 

staged into wakeful (W), drowsy/light sleep (N1), moderate sleep (N2), and deep sleep (N3) stages by a 

sleep expert per American Academy of Sleep Medicine (AASM) criteria (AASM and Iber, 2007) resulting 

in a hypnogram for the scan duration for each subject. None of the participants went into REM sleep 

stage during the scan period. The first 5 volumes of functional imaging data were discarded to account 

for T1 equilibration effects. The data were then corrected for head movement (rigid body) and slice 

timing differences. Subject data was then spatially normalized to MNI template space using SPM12 

toolbox and resampled to 3 mm
3 

isotropic voxel resolution. Since the scan duration was long, we 

detrended each voxel time series using a high model order (21) polynomial. The subject brain voxel data 

were then spatially smoothed to 5 mm FWHM using AFNI’s 3dBlurInMask. Finally, the voxel time courses 

were variance normalized (z-scored). 

2.3. Independent component estimation 

We performed a group independent component analysis (Calhoun et al., 2001; Calhoun and Adali, 

2012) using the GIFT toolbox (http://mialab.mrn.org/software/gift) to decompose the data into 100 

spatially independent components each associated with a coherent time course. First subject data were 

reduced in time to 1400 points using principal components analysis (PCA). These time reduced datasets 

were then concatenated in time and a group PCA was used to further reduce the data to 100 orthogonal 

directions of maximal variance. Spatial ICA analysis was performed on this data to obtain 100 spatially 

independent components using infomax algorithm. To ensure stability of decomposition, the Infomax 

ICA algorithm was repeated 20 times in ICASSO (Himberg et al., 2004) with random initialization, and 

aggregate spatial maps were estimated as the modes of the component clusters. Subject specific 

component maps and their associated time courses were obtained using spatio-temporal regression 

(Erhardt et al., 2011). 

2.4. Component selection and dynamic FNC estimation 

Of the 100 spatial ICA components, we identified 62 components as intrinsic connectivity networks 

(ICNs) in a semi-automatic manner using the spatial profile of component maps, and dominant low 

frequency spectral power of their time courses as described in (Allen et al., 2011). The corresponding 

ICN time courses of each subject were orthogonalized against estimated head movement parameters in 

a regression framework and then filtered using 5th order Butterworth filter with a passband of 0.01 to 
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0.15 Hz. Following (Allen et al., 2012a), we performed dynamic functional network connectivity analysis 

using the post processed ICN time courses. Briefly, we computed pairwise correlations between tapered 

windowed segments (a rectangular window of 30 TR (60s) convolved with a Gaussian kernel of σ = 3s) of 

time courses sliding in steps of 1 TR. This resulted in 1500-30=1470 windows over which we estimated 

dFNC between 62 independent network time courses (1891 pairs). Since the number of samples are 

smaller than a static approach using all the time course information, we used a robust estimation 

strategy employing the graphical LASSO method (Friedman et al., 2008) by placing a penalty on the L1 

norm of the precision matrix (inverse correlation matrix) to promote sparsity. Given the concerns with 

estimation of dFNC using shorter windows (Leonardi and Van De Ville, 2015; Lindquist et al., 2014; Smith 

et al., 2011), we repeated the analysis with longer tapered window sizes of size 45 TR, 60 TR, and 

shorter tapered window sizes of size 16 TR and 22 TR. 

2.5. K-means clustering and comparison to EEG hypnogram 

The dFNC windows from a given sliding window were clustered using the K-means algorithm in two 

steps consistent with our previous work (Allen et al., 2012a). We first computed a time course of 

standard deviation of dFNC matrices for each subject and selected subset of subject windows 

corresponding to local maxima in standard deviation as subject exemplars. These subset exemplars were 

clustered using K-means algorithm with Manhattan (L1) distance as distance measure. The number of 

clusters was set to 5 based on elbow criterion of ratio of within to between cluster distance of windows 

from cluster centroids, referred to as dFNC states. The obtained centroids were used as starting points 

to cluster all the data. This two-step procedure, one to identify initial starting points and subsequent 

clustering of all window data using these starting points results in stable centroid patterns across 

independent datasets. The K-means clustering (a hard-clustering approach) assigns each dFNC window 

to one of the dFNC states. This assignment of subject windows in time to dFNC states results in a 

discrete vector referred to as state vector. Figure 1 shows the schematic of the analysis pipeline used in 

the paper. We assessed the correspondence between subject dFNC state vector and EEG-derived 

hypnogram using correlation. To further visualize the correspondence between dFNC estimates from the 

sliding-window method and EEG-based subject hypnogram, we project the multidimensional (1891) 

dFNC data into 2 dimensions using the t-distributed stochastic neighborhood embedding (t-SNE) 

algorithm that preserves the distances between similar objects in high dimensional space to low 

dimensions (van der Maaten et al., 2008). We also sought to characterize the temporal properties of 

state vectors obtained from each modality by computing state transition probabilities from these 

vectors and then compare the similarities between the two vectors. 

In our earlier work (Allen et al., 2017), we aligned FNC state vectors to EEG using the time point 

corresponding to the center of the sliding window. As that study was performed during awake 

conditions only (eyes open and eyes closed awake conditions), we did not have many EEG-based 

transitions within the subject wakeful state. Since the data from this study has a ground truth (EEG-

based) hypnogram transition state vector informing of subject’s sleep stage, we performed a 

classification study using linear support vector machine (SVM) to see if the alignment of EEG hypnogram 

best corresponds to start or middle or in-between shift (3, 5 or 7 TRs) of dFNC state vector obtained 

from sliding window size of 30s. Prior to running SVM, the dFNC connectivity matrix (1891 pairs) was 

reduced to 30 dimensions using PCA. An 11-fold cross-validation was performed to assess the 

consistency of best alignment. For each fold, 5 different subjects were left out and a linear SVM was 

trained on remaining 50 subjects using libsvm package (https://www.csie.ntu.edu.tw/ cjlin/libsvm/). A 

multi-class (all pairs/one-against-one) linear SVM model identifies support points in kernel space that 

maximally separates each pair of classes (W-N1,W-N2,W-N3,N1-N2,N1-N3,N2-N3). Then each test 

case/window is assigned to the class that gets most votes. Both training and test balanced (averaged per 
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class) accuracies were computed. The two awake dFNC states were collapsed into one for this analysis. 

The analysis was repeated with radial basis function (RBF) kernel. For linear SVM, the optimum penalty 

parameter C was identified using grid search between [0.1 and 10]. For RBF SVM, a grid search was 

performed to identify optimal hyperparameters C and gamma in the range [0.1 to 10] and [1e-03 to 1e-

01] respectively. 

To identify optimal window size among the tested window sizes, we performed another linear SVM 

separately for dFNC windows obtained with each choice of window length. Similar cross validation 

analysis as mentioned above was used. Finally, we also tested the performance of the DCC algorithm, 

which uses adaptive windowing, to track subject sleep state. The DCC algorithm fits univariate 

generalized autoregressive conditional heteroscedastic (GARCH) GARCH(1,1) models to each univariate 

time series to obtain standardized residuals and then applies an exponentially weighted moving average 

window on these standard residuals of each pair of time courses to compute a non-normalized version 

of time-varying correlation between the two time courses (see (Lindquist et al., 2014; Choe et al., 2017) 

for more details). 

To investigate if wakeful state can be further clustered into meaningful sub-clusters as in our earlier 

work, we restricted our clustering analysis to the 26001 dFNC windows (State 1 for window size 30) that 

corresponded to the subject wakeful EEG condition. This analysis revealed 4 sub-clusters with distinct 

connectivity profiles. We ran a SVM classification analysis by holding out 6000 dFNC windows and 

performed a threefold cross validation on the remaining 20000 windows to estimate a model for a RBF 

kernel. The best model was then used to test the classification accuracy on the held-out samples and we 

computed average per class accuracy and confusion matrix. 

2.6. Head motion effects 

To assess the impact of subject head motion on the connectivity estimates, we assessed the 

relationship between the subject head movement summaries and dFNC state vector. We computed 

framewise displacement (FD) and framewise data variation (DVARS) (Power et al., 2012) for each subject 

to represent their motion summary. We then computed the number of instances subject DVARS exceeds 

its mean by 2.5 times its standard deviation for each k-means state. A one-way ANOVA was then 

performed on the counts to see if certain states show significantly more motion related outliers. In 

addition, we plotted each subject state vector along with their FD and DVARS to visually assess if any of 

the states are contaminated by head movement. 

3. Results 

The sixty-two ICNs selected for subsequent analysis are depicted in Figure 2. These components are 

grouped into subcortical (5), auditory (2), sensorimotor (10), visual (11), a set of higher order associative 

areas involved in attentional and executive control as well as cognitive control (19), default mode 

regions (10) and cerebellar (5) components based on anatomical proximity and functional connectivity 

as in our earlier studies (Allen et al., 2012a, 2011). The selected 62 ICN labels are summarized in Table 1. 

3.1. dFNC clustering results 

The centroids (k=5) obtained from k-means clustering of dynamic FNC window data of all subjects 

are shown in Figure 3A. The centroids were ordered according to their frequency of occurrence in time 

(from the most awake state to the deepest sleep state), with the exception of state 2 Figure 3B. These 

centroids show distinct connectivity patterns from state to state. Estimation of modularity of the 

centroid states using the Louvain community detection algorithm (Rubinov and Sporns, 2011) resulted in 

three modules for states 1,2 and 3, and four modules for states 4 and 5. Although subcortical and 

cerebellar ICs belong to the same module in all states, they segregate as an additional module for states 
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4 and 5. We computed mean within module connectivity strength and the top 12 ICs for each module 

are shown in Figure 3C. 

3.2. Do clustered connectivity states correspond to sleep states? 

The subject-state vectors are sorted by sleep state (W, N1, N2 and N3) and frequency counts by 

sleep state were obtained and are shown in Figure 4. As seen in the figure, connectivity patterns in 

states 1 and 2 predominantly occur in the awake state while the patterns seen in states 3, 4 and 5 occur 

more frequently as subjects fall into different sleep states gradually with the connectivity pattern in 

state 5 occurring during N3 (deep) sleep stage. 

We tested the correspondence between subject state vectors obtained through clustering dFNC 

matrices and subject hypnograms obtained by computing the cross-correlation between the two 

vectors. Figure 5 shows examples of subjects with the two best and the two worst correlations between 

the two. As seen in the figure, the best subject showed a correlation of 0.89 between his/her hypnogram 

and state vector. The subjects that showed the poorest correlation between the two primarily tended to 

stay awake throughout the scan session, and the dFNC state vector showed transitions between awake 

related states 1 and 2. 

The results assessing the correspondence between subject dFNC state vector and his/her hypnogram 

are summarized in Figure 6. For this projection, a random sample of 400 dFNC windows by state (total 

2000 points) were visualized using the t-SNE algorithm and were color coded with their corresponding k-

means cluster assignment (Fig 6A) or by sleep stage obtained from the respective hypnogram (Fig 6B). 

Both awake states from the k-mean clustering are grouped together and show a transition from 

wakefulness to deeper sleep stages that occurs gradually along a smooth trajectory. This result shows 

that the dFNC estimates using the sliding window method and subsequent clustering correspond well to 

neurophysiological states as estimated via the EEG-based hypnogram. 

3.3. How does motion affect the clustering? 

To assess the effect of subject head movement during the scan on dFNC clustering results, we 

computed the number of windows with significant subject head movements (points greater that 2.5 

standard deviations from mean framewise displacement) for each dFNC state and also visually assessed 

subject dFNC state vector and mean framewise displacement vectors. State 2 is associated with larger 

head movements during the scan relative to the other states. The number of significant head 

movements by state are shown in Supplemental Figure S1A. A couple of example subject state vectors 

and their head movement summary (FD) vectors are also shown in Supplemental Figure S1B. 

3.4. Characterization of temporal dynamics 

Comparison of the temporal properties of state vectors obtained from each modality is summarized 

in (Figure 7). The average dwell times and frequency of occurrence of each state are consistent for data 

from both modalities. The state transition matrices show good correspondence with more probable 

transitions from W->N1, N1->N2, N2->N3 and transitions to the W state from all sleep stages. This is in 

line with our knowledge of progression into various sleep stages. However, we observe a higher average 

number of transitions between states from the dFNC clustering derived state vectors compared to those 

computed using the EEG derived hypnogram. 

3.5. Alignment of EEG derived hypnogram and windowed dFNC data 

The SVM classification results for best alignment of EEG hypnogram and dFNC window position are 

presented in Figure 8. The results suggest that maximum accuracy is obtained when dFNC state vector is 

aligned to corresponding EEG hypnogram vector by the starting point of the window and the 

classification performance is reduced when a shift is introduced between the two vectors. 
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3.6. How well can we predict sleep stages from dFNC data? 

The SVM classification accuracies comparing the prediction of subject hypnogram with dFNC 

estimates obtained using different window lengths is presented in Figure 9. As seen in the figure, the 

classification accuracy significantly increases with dFNC estimates from shorter to longer window sizes in 

training subject cases (the data SVM model has seen: one-way ANOVA F=342, p<1e-35). The accuracies 

on left out test samples did not significantly differ with window sizes (one-way ANOVA F=0.7, p>0.58). 

These accuracy rates are consistent with earlier reports (Tagliazucchi et al., 2012b) however we show 

that these can be achieved using much shorter window lengths. The classification accuracies for dFNC 

estimates using DCC method performed poorly compared to those obtained using sliding window 

methods for all window sizes. 

3.7. Does wakeful stage correspond to only one dFNC cluster? 

Since our prior work (Allen et al., 2017) showed multiple wakeful states with distinct EEG spectral 

signatures, we further focused on the awake condition only to see if it can be reliably segmented into 

sub-clusters. A search for the optimal number of clusters using the elbow criterion yielded four clusters. 

The cluster centroids are depicted in Figure 10. Awake state cluster centroids 1 and 2 resemble each 

other but differ in the strength of correlations in within and between module groupings. 

Awake state 4 resembles state 3 from the full dataset but distinguishes itself in anti-correlations 

between sensory (visual, motor and auditory) networks to higher order cognitive networks and also to 

the default-mode regions. Results from SVM classification of awake only cluster windows resulted in 

92% classification accuracy using a one-vs-rest RBF SVM model with grid search. The resulting confusion 

matrix is presented in Table 2. The classification is performed using leave 10% subjects out in a fivefold 

cross-validation scheme. Classification accuracy reaches chance level of 25% when the class labels are 

permuted. This result suggests that the sub-clusters obtained from awake state are linearly separable 

with high accuracy. 
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30    -49   -10 

-27   -43   -10 

IC 97 (0.73)(0.73)(0.73)(0.73) 

R LINGUAL GYRUS 

 

972 

 

43.732 

 

18    -73   -7 

IC 66 (0.95)(0.95)(0.95)(0.95) 

L CUNEUS 

 

  939 

 

46.324 

 

-6     -97    14 

IC 22 (0.98)(0.98)(0.98)(0.98) 

R LINGUAL GYRUS 

 

674 

 

51.127 

 

21     -94   -7 

IC 69 (0.94)(0.94)(0.94)(0.94) 

R MIDDLE OCCIPITAL GYRUS 

L MIDDLE OCCIPITAL GYRUS 

 

384 

218 

 

53.579 

37.83 

 

42    -73    35 

-39   -76    32  

IC 73 (0.94)(0.94)(0.94)(0.94) 

L SUPERIOR OCCIPITAL GYRUS    

R MIDDLE OCCIPITAL GYRUS 

 

375 

191 

 

44.761 

42.562 

 

-24    -73    35 

33    -73    23 

IC 50 (0.97)(0.97)(0.97)(0.97) 

R INFERIOR OCCIPITAL GYRUS 

L LINGUAL GYRUS    

 

349 

264 

 

40.302 

36.962 

 

45   -73   -10 

-33   -85   -16 

    

COGNITIVE CONTROL NECOGNITIVE CONTROL NECOGNITIVE CONTROL NECOGNITIVE CONTROL NETWORKSTWORKSTWORKSTWORKS    

 

V` 

 

tmax 

 

Coordinate 

IC 76 (0.91)(0.91)(0.91)(0.91) 

R INFERIOR PARIETAL LOBULE 

 

602 

 

52.132 

 

39    -40   50 

IC 71 (0.95)(0.95)(0.95)(0.95) 

L INFERIOR PARIETAL LOBULE 

 

552 

 

53.538 

 

-45   -37   44 

 

Table 1: Peak activations of ICN SMs. The quality index (Iq) 

associated with each ICN is listed in parentheses adjacent to 

the component number; V` = number of voxels in each 

cluster;13 tmax = maximum t-statistic in each cluster; 

                

IC 42 (0.97)(0.97)(0.97)(0.97) 

L INFERIOR TEMPORAL GYRUS    

R MIDDLE TEMPORAL GYRUS 

 

331 

151 

 

56.538 

37.405 

 

–57   –58   -7 

  60    -52   -7 

IC 84 (0.88)(0.88)(0.88)(0.88) 

R INFERIOR TEMPORAL GYRUS 

 

568 

 

41.245 

 

 45   -13    -25 

IC 74 (0.93)(0.93)(0.93)(0.93) 

L ANTERIOR CINGULATE CORTEX 

 

668 

 

51.788 

  

-3    26    26 

IC 47 (0.97)(0.97)(0.97)(0.97) 

L ANGULAR GYRUS 

 

583 

 

48.228 

 

-42   -70.  41 

IC 65 (0.94)(0.94)(0.94)(0.94) 

L INFERIOR FRONTAL GYRUS (P. OPERCULARIS) 

R INFERIOR FRONTAL GYRUS (P. OPERCULARIS)    

 

396 

96 

 

42.552 

29.433 

 

-42   11   29 

 42    14   32 

IC 89 (0.92)(0.92)(0.92)(0.92) 

L INFERIOR FRONTAL GYRUS (P. OPERCULARIS)    

R INFERIOR FRONTAL GYRUS (P. TRIANGULARIS) 

 

465 

213 

 

40.334 

35.37 

 

   -54    14 

    54     26 

IC 53 (0.96)(0.96)(0.96)(0.96) 

R INSULA LOBE 

L INSULA LOBE    

 

421 

305 

 

50.671 

47.124 

 

    36    20 

   -33    17 

IC 33 (0.98)(0.98)(0.98)(0.98) 

R SUPRAMARGINAL GYRUS 

L INFERIOR PARIETAL LOBULE    

 

286 

278 

 

44.455 

44.221 

 

    57   -46   35 

   -54   -49   38 

IC 32 (0.98)(0.98)(0.98)(0.98) 

R SUPERIOR ORBITAL GYRUS 

L MIDDLE FRONTAL GYRUS    

 

288 

274 

 

37.454 

33.346 

 

27   56    -1 

  -30   53   2 

IC 51 (0.97)(0.97)(0.97)(0.97) 

R MIDDLE FRONTAL GYRUS    

L MIDDLE FRONTAL GYRUS 

 

397 

280 

 

43.207 

34.033 

 

   30    44   29 

  -33    38   29 

IC 49 (0.98)(0.98)(0.98)(0.98) 

R INFERIOR TEMPORAL GYRUS 

L MIDDLE TEMPORAL GYRUS    

 

328 

259 

 

40.668 

38.391 

 

  63   -31   -19 

–63  –43   –13 

IC 86 (0.86)(0.86)(0.86)(0.86) 

R MIDDLE FRONTAL GYRUS 

L MIDDLE FRONTAL GYRUS    

 

715 

166 

 

49.803 

33.725 

 

 27    17    53 

-27   23    53 

IC 78 (0.95)(0.95)(0.95)(0.95) 

L SMA 

 

673 

 

57.132 

 

-3     11    62 

IC 36 (0.98)(0.98)(0.98)(0.98) 

R SUPERIOR TEMPORAL GYRUS    

 

547 

 

44.804 

 

57   -49   20 

IC 96 (0.69)(0.69)(0.69)(0.69) 

R INFERIOR FRONTAL GYRUS (P. TRIANGULARIS) 

R INFERIOR FRONTAL GYRUS (P. OPERCULARIS)    

 

199 

110 

 

39.597 

30.408 

 

42    35   17 

51    11   23 

DEFAULTDEFAULTDEFAULTDEFAULT----MODE NETWORKSMODE NETWORKSMODE NETWORKSMODE NETWORKS    V` tmax Coordinate 

IC 18 (0.98)(0.98)(0.98)(0.98) 

R MIDDLE CINGULATE CORTEX    

R PRECUNEUS 

 

134 

  93 

 

45.344 

41.094 

 

3   -22   29 

   12   -64   35 

IC 75 (0.95)(0.95)(0.95)(0.95) 

R PRECUNEUS 

 

  7 

 

59.873 

 

3    -52   50 

IC 83 (0.89)(0.89)(0.89)(0.89) 

L PRECUNEUS 

687 52.332 0 -64 59 

IC 13 (0.98)(0.98)(0.98)(0.98) 

L PRECUNEUS 

532 60.221 -6 -52 14 

IC 59 (0.97)(0.97)(0.97)(0.97) 

L MIDDLE CINGULATE CORTEX 

 

735 

 

59.744 

 

-3 -31 35 

IC 61 (0.95)(0.95)(0.95)(0.95) 

R INFERIOR PARIETAL LOBULE 

 

539 

 

50.287 

 

45 -58 50 

IC 57 (0.96)(0.96)(0.96)(0.96) 

L MID ORBITAL GYRUS 

 

851 

 

44.422 

 

0    50   -13 

IC 24 (0.98)(0.98)(0.98)(0.98) 

L PRECUNEUS 

 

443 

 

81.554 

 

0     -61    32 

IC 35 (0.97)(0.97)(0.97)(0.97) 

L SUPERIOR MEDIAL GYRUS 

 

885 

 

43.348 

 

-3     47    35 

IC 29 (0.98)(0.98)(0.98)(0.98) 

L MIDDLE TEMPORAL GYRUS 

 

591 

 

41.693 

 

-51   -52   14 

CEREBELLAR NETWORKSCEREBELLAR NETWORKSCEREBELLAR NETWORKSCEREBELLAR NETWORKS    V tmax Coordinate 

IC 16 (0.98)(0.98)(0.98)(0.98) 

R CEREBELLUM (CRUS 1) 

 

1198 

 

50.811 

 

18 -76 -28 

IC 100 (0.61)(0.61)(0.61)(0.61) 

L CEREBELLUM (CRUS 1) 

 

201 

 

30.986 

 

–36 –46 –34 

IC 45 (0.97)(0.97)(0.97)(0.97) 

R CEREBELLUM (VI) 

 

568 

 

42.816 

 

30 -49 -34 

IC 8 (0.98)(0.98)(0.98)(0.98) 

R CEREBELLUM (IX) 

 

837 

 

48.11 

 

15 -58 -49 

IC 9 (0.98)(0.98)(0.98)(0.98) 

R CEREBELLUM (IV-V) 

 

987 

 

62.466 

 

12 -49 -19 
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Coordinate = coordinate (in mm) of tmax in MNI space, 

following LPI convention. 
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 Train:Predicted Test:Predicted 

 

AwState 1 

 AwState 2 

AwState 3 

AwState 4 

Table 2: Awake state SVM classification confusion matrix. The percent classification accuracy from RBF SVM model for each 

of the four awake only K-means states. The classification was performed using leave 5 subject out cross validation scheme and 

the average train (left) and test (right) confusion matrix across folds is shown above. The high accuracy strongly suggests that 

these clusters are unlikely to be noise. 

4. Discussion 

In this work, using an ICA based pipeline, we assess the ability of sliding window correlation based 

dynamic functional network connectivity measures to capture neurophysiological state transitions 

obtained from sleep staging of EEG data that was concurrently acquired during resting fMRI acquisition. 

Results show a good correspondence between the subject state vectors obtained from k-means 

clustering of dFNC windows and subject hypnograms. We further demonstrate that distinct resting 

functional connectivity patterns are associated with wakeful and sleep states with dFNC state 1 

predominantly occurring while subjects are awake, dFNC state 3 corresponding to reduced subject 

vigilance and early sleep stage (N1) and dFNC states 4 and 5 are more likely to be associated with deeper 

sleep stages. Deep sleep (N3) is primarily associated with dFNC state 5 across all subjects. One state 

(dFNC state 2) primarily captures variance associated with subject movement. 

4.1. dFNC clustering estimates can reliably predict subject sleep state 

Recently, using the same data reported in this work, Haimovici et al. (2017) showed good 

correspondence between centroids of windowed resting fMRI correlation data obtained from kmeans 

clustering and those informed by an EEG-based hypnogram. In Haimovici et al. (2017), the connectivity 

measures were estimated from non-overlapping windows of length 100 seconds within fixed regions of 

interest and so precludes time varying connectivity information. Our work replicated the 

aforementioned result in Haimovici et al. (2017) despite several differences including the use of time-

varying connectivity estimates from ICA derived network time courses as well as the use of overlapping 

windows with a step size of 1 TR. Using this approach, we show that high classification accuracies can be 

obtained for windows as short as 30 seconds (15 TRs). 

Our results also demonstrated that dFNC estimates from sliding window correlation show higher 

accuracy compared to an adaptive windowless dynamic conditional correlation method. However, DCC 

estimates from sliding window-based covariance estimates resulted in classification accuracies similar to 

those obtained from the sliding window method suggesting this parametric model of conditional 

correlation for resting fMRI data might be more sensitive to noise than smoother sliding window 

estimates when instantaneous conditional correlation estimates are computed. 

95.8 2.31 1.8 0.09 

0.47 

91.28 4.44 3.36 0.92 

0.63 

0.77 

0.3 

97.54 1.36 1.51 93.42 3.74 1.33 

2.09 96.07 1.08  2.4 3.44 92.14 2.02 

1.07 2.12 96.52 1.7 2.3 3.95 92.03 
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Our analysis demonstrates that even window lengths as short as 30 seconds result in reasonable 

estimates of time-varying connectivity profiles with estimated dFNC clustering states showing good 

classification accuracy with subject hypnogram. This is in line with previous reports (Shirer et al., 2012) 

and suggests that the 1/fmin recommendation for window length as recommended by Leonardi and Van 

De Ville (2015) might be too conservative (Vergara and Calhoun, 2018). In our case 1/fmin would result in 

100 sec (since fmin = 0.01 Hz after filtering) and may limit our ability to capture dynamics for 1/f spectral 

distributed BOLD data (Zalesky and Breakspear, 2015). 

The observed differences between the individual dFNC state vector and the hypnogram can arise for 

the following reasons. The hypnogram is scored from EEG data epochs of 30 seconds and assigns each 30 

second segment to a single hypnogram stage (W/N1/N2 or N3). The dFNC at a given instant is estimated 

from a window length ‘w’ on either side of the time point (past and future). However, k-means is a hard-

clustering approach and, as seen in Figure 6, there is ambiguity in the assignment of the data point with 

its immediate neighboring state (for example dFNC states 4 and 5 and corresponding N2 and N3 sleep 

stages) compared to the ground truth (hypnogram). Fuzzy k-means approaches can help mitigate this 

issue by allowing for states to overlap with one another (Miller et al., 2016). Another source of possible 

differences may be due to the different impact of noise (e.g. motion, MRI gradients) on the two signals 

which can hinder our ability of accurately estimating subject states. 

4.2. Head motion appears to be separable from dynamic connectivity measures 

Our dFNC clustering analysis reveals that motion appears to be mostly associated with one of the 

states (dFNC state 2) rather than spread across all of them. An examination of classification errors by 

sleep stage obtained for a window length of 30 TRs suggested that the awake state has the least errors 

(about 10%) and N1 sleep stage had the most errors (approximately 40%), with deeper sleep stages 

having an error rate of about 20%. Further evaluation to determine if dFNC windows overlapping with 

larger head movements during the scan drive these errors suggested that motion only contributed to 

about 15% of misclassified cases evenly across wakeful and sleep stages i.e 15% of 10, 40, 20 and 20 

error rates of W, N1, N2, and N3 stages respectively. This suggests that dFNC windows exhibit larger 

variability during the N1 sleep stage compared to other sleep stages as observed in Supplemental Figure 

S2 leading to misclassification. This highlights the need to further identify additional sub-clusters in the 

N1 sleep stage and investigate if a fine grained EEG classification of this stage as proposed by Hori and 

colleagues (Hori et al., 1994) and recently demonstrated using EEG data (Jagannathan et al., 2018) can 

provide additional insights into large scale connectivity changes during the transition to sleep (Goupil 

and Bekinschtein, 2012). 

4.3. Evidence of multiple dFNC sub-clusters states during wakefulness 

The elbow criterion, computed as a ratio of between-cluster to within-cluster distance, was used to 

obtain an optimal k for clustering of the data using the k-means algorithm. Results suggest a 5-cluster 

solution within which we observe fewer (two) states from the wakeful portions of the scans than those 

reported earlier for data collected during the wakeful condition only (Allen et al., 2012b, 2017). This 

could be due to the fact that variability in dFNC fluctuations during wakefulness is lower compared to 

variability across different sleep stages (see Supplemental Figure S2). To evaluate this further, we 

performed a separate elbow criterion search and clustering of dFNC windows within only the wakeful 

state to see if additional clusters of meaningful time-varying connectivity profiles within and across 

subjects can be reliably estimated. Separate K-means clustering of dFNC windows from the awake only 

state (state 1) revealed additional sub-clusters not seen from clustering the data including all sleep 

stages. Windows corresponding to these sub-clusters are linearly separable with good accuracy using a 
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linear SVM classifier. This result is in line with and extends recent reports showing replicable dFNC states 

in multiple independent datasets (Abrol et al., 2017) during (unconfirmed) wakeful conditions. 

Some recent studies have argued that the observed connectivity states during wakefulness are 

primarily a reflection of sampling variability, changes in subject vigilance and partly reflect changes due 

to head movement (Laumann et al., 2016; Liegeois et al., 2017; Haimovici et al., 2017). Spontaneous eye 

blinks during wakefulness have also been shown to cause connectivity fluctuations in resting fMRI data 

(Wang et al., 2016). Another view is that time-varying connectivity changes in resting state fMRI can be 

modeled as hierarchical transitions between connectivity states consisting of two metastates: one 

corresponding to states with increased connectivity in brain regions involved in higher cognition and 

other corresponding to states with greater integration within sensory regions (Vidaurre et al., 2017). 

Another recent study identified strong correlation between dFC obtained using sliding window 

correlation of BOLD data and temporal dynamics of calcium signal during rest in mice brain recordings 

suggesting a neuronal origin of the observed dynamics (Matsui et al., 2018). In this work, 

we show distinct connectivity states during wakefulness that are separable via a cross-validated linear 

classifier. Future studies should evaluate the underlying neurobiological signatures of both sleep and 

wakefulness in greater detail. Transition between wakefulness to light sleep (N1) is associated with 

increased cortico-cortical connectivity and reduced sub-cortical cortical connectivity. N1 to N2 sleep 

transition is reduction in between and within sensory domain connectivity and increased connectivity 

between cerebellar ICNs. Finally, deep sleep (N3) is associated with further reductions in long range 

connectivity between ICNs resulting in connectivity patterns closer to structural connectivity consistent 

with earlier reports. 

4.4. Limitations and future work 

We did not compare the sliding window correlation method to alternative methods of dynamic 

connectivity methods like multiplication of temporal derivatives (Shine et al., 2015) and time-frequency 

approaches (Yaesoubi et al., 2015c). The current dFNC patterns reported only correspond to certain 

sleep stages observed during the one-hour scan performed early in the night. Further studies are needed 

to fully characterize functional connectivity during other known sleep states like rapid eye movement 

(REM) sleep possibly by scanning late in the night or from early morning recordings. Also, in this work we 

show the presence of linearly separable (predictable) connectivity states during wakeful rest to extend 

our previous work and address some current technical controversies in the field. Going forward, it would 

be interesting to perform a hierarchical analysis of various sleep stages to evaluate the possibility of 

different states existing during different sleep stages as well as to further study the underlying 

neurobiological correlates of these states with the use of multimodal imaging data along with novel 

modeling techniques. 

4.5. Conclusions 

In this work, using an ICA-based pipeline applied to concurrent EEG/fMRI data collected during 

wakefulness and various sleep stages we demonstrate that time varying connectivity estimates from 

sliding windowed correlations of resting state functional network time courses well classify the sleep 

states obtained from EEG data even for windows as short as 30 seconds. We show that head motion is 

mostly associated with one of the states rather than spread across all of them. Consistent with earlier 

work, we find increased variability in connectivity as subjects’ transition from wakefulness to sleep. We 

report linearly separable clusters within the wakeful state and suggest future directions for assessing 

their neurobiological relevance via hierarchical analysis of predictable states in various sleep stages 

measured with EEG-fMRI data including eye tracking during the wakeful condition. 
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Figure captions: 

Figure 1: Schematic depicting resting fMRI data processing (adapted from (Damaraju et al., 2014)). 

Figure 2: Sixty-two selected ICNs for further analysis were grouped into 7 modules using previously reported methods (Allen 

et al., 2012b). 

Figure 3:  Cluster centroids from k-means clustering of dFNC window data for window size 30 (A) and the frequency of 

occurrence of each state in time (B). The standard errors for the frequency of occurrence were computed using 100 

bootstrap resamples of the subject dFNC window data. (C) The modularity of the centroids is computed using the Louvain 

algorithm ("modularity_louvain_und_sign.m" function in the Brain Connectivity toolbox) resulting in three modules (Mod) 

for states 1,2 and 3 and four modules for states 4 and 5. The top 12 ICs with highest mean within module FC are depicted 

scaled by mean within module FC. Note that the weights (mean within module connectivity) are lower in states 1 and 5 

compared to states 2, 3 and 4. 

Figure 4:  Frequency counts of state vector assignments obtained from k-means clustering of dFNC data sorted by hypnogram 

states. States 1 and 2 primarily occur during wakefulness, dFNC states 4 and 5 during N2 sleep stage and state 5 is 

predominant during deep sleep (N3 stage). 

Figure 5: Comparison of subject state vectors obtained from k-means clustering of dFNC windows and EEG derived 

hypnograms for the two subjects with the highest correlation (A and B) and the two subjects with the lowest correlation 
(C and D). The overall distribution of the correlation between the two state vectors for all 55 subjects is presented in E. As 

seen, the subjects with low correlation tend to be awake throughout the scan session and the corresponding dFNC state 

vector transitions within the states 1 and 2 that are prevalent during wakefulness. 

Figure 6: 2D Visualization of dFNC data: We selected 2000 random dFNC windows (400 per dFNC state) and projected the 

multidimensional (1891) data into 2 dimensions using the t-SNE algorithm. The resulting mapping was subsequently color 

coded by k-means clustering assignment into 5 states (A) and by the subject EEG hypnogram state of that point (B). The data 

dimension was reduced to 30 principal components and a perplexity value of 35 was used for this projection. 

Figure 7: Comparison of state vector statistics and transition matrices computed from EEG-derived hypnograms and dFNC 

cluster derived subject state vectors. Hypnogram and dFNC state vector exhibit similar frequency of occurrences 
(A and C) and mean dwell times (C and D) respectively. The mean state transition matrices for hypnogram vectors (E) and 

dFNC state vectors (F) inform about the probability of transitioning from a given state i at time t-1 to state j at time t. The 

probabilities are converted to -log(10) scale, so higher (yellow to white) intensity values mean lower probability to transition. 

For both modalities, these matrices demonstrate tendency to remain in a given state (diagonal values are lower). The 

transitions to neighboring states are more likely in both the hypnogram and the dFNC state vectors. While there is chance of 

transitioning from deep sleep N3 to any other state (W, N1 or N2), the probability of transitioning from wakefulness at time t-

1 immediately to deeper sleep stages (N2, N3) at time t is very low suggesting gradual transition from W to N3 stage. Note 

that dFNC states 1 and 2 are combined for this analysis. 

Figure 8: Classification accuracies using linear SVM for training (A) and test (B) cases of alignment between EEG hypnogram 

and subject dFNC state vector obtained using a window size of 30 TRs. The alignment is tested for lags -15 to 15 TRs in step of 

3 TRs. Each point in the distribution corresponds to the balanced per class accuracy from one of the 11 cross-validation 

iterations of training data that included data from 50 random subjects and the accuracy from left of test data that included 

data from 5 remaining subjects. The results using a SVM with RBF kernel for the same data are shown in C and D. Results are 

consistent for both linear and RBF SVM kernels. 

Figure 9: Linear SVM classification accuracies of subject sleep stage from dFNC estimates obtained using different window 

sizes for training (A), test (B) data from 11 cross-validation iterations and the classification accuracies obtained from the DCC 



19 

estimates for the same cross-validation scheme for training and left out test data are presented in the top right (C). The 

classification accuracies obtained with RBF kernel for the train (D), test(E) dFNC estimates and for DCC estimates (F) are 

shown. 

Figure 10: Cluster centroids from k-means clustering of window dFNC data of awake only state (State 1). The estimated 

clusters were observed to have meaningful and distinct structure. 

Supplementary Figures 

Figure S1: A) Count of number of DVARS of raw data exceeding 2.5 times its standard deviation by K-means state assignment. 

One-way ANOVA on mean differences in counts is significant with F=8.9 and p < 1e-05. A similar result is observed using 

subject FD values. B) Example subject state vector plotted along with his/her hynogram and head movement summaries 

(DVARS and FD). As seen, State 2 FC estimates seems to be contaminated by bigger jerky movements from subjects. 

Figure S2: Standard deviation of the dFNC estimates by K-means state. The standard deviation increases for most pairs for 

States 3 and 4 compared wakeful state 1 and the variability of dFC reduces during deep sleep stage N3. 

 

 

 


