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Abstract 

Literature suggests that self-generated locomotion in infancy and early childhood enhances the 

development of various cognitive processes such as spatial awareness, social interaction, 

language development and differential attentiveness. Thus, having access to a power mobility 

device may play a crucial role for the overall development, mental health, and quality of life of 

children with multiple, severe disabilities who have limited motor control. This study 

investigates the feasibility of using electroencephalography (EEG) as an objective measure to 

detect changes in brain activity in a child due to power mobility training. EEG data was collected 

with a modified wireless neuroheadset using a single-subject A-B-A-B design consisting of two 

baseline phases (A) and two intervention phases (B). One trial consisted of three different 

activities during baseline phase; resting condition at the beginning (Resting 1) and at the end 

(Resting 2) of the trial, interaction with adults, and passive mobility. The intervention phase 

included a forth activity, the use of power mobility, while power mobility training was 

performed on another day within the same week of data collection. The EEG spectrum between 

2.0 and 12.0 Hz was analyzed for Resting 1 and Resting 2 condition in each phase. We found 

significant increase of theta power and decrease in alpha power during all three phases following 

the first baseline. In respect of previous findings, these observations may be related to an 

increase in alertness and/or anticipation. Analysis of the percentage change from Resting 1 to 

Resting 2 condition revealed decrease in theta and increasing alpha power during the first 

intervention phase, which could be associated with increasing cognitive capacity immediately 

after the use of power mobility. Overall, no significant difference between baseline phase and 

intervention phase was observed. Thus, whether the observed changes may have been influenced 

or enhanced by power mobility training remains unclear and warrants further investigation.   

 



5 

 

Table of Contents 

1 Introduction ........................................................................................................................... 11 

1.1 Purpose ........................................................................................................................... 12 

1.2 Scope .............................................................................................................................. 12 

1.2.1 Aim 1 ...................................................................................................................... 13 

1.2.2 Aim 2 ...................................................................................................................... 13 

1.3 Assumptions ................................................................................................................... 13 

1.4 Hypothesis ...................................................................................................................... 14 

1.5 Significance .................................................................................................................... 15 

2 Manuscript ............................................................................................................................ 16 

2.1 Introduction .................................................................................................................... 17 

2.2 Methods and Materials ................................................................................................... 20 

2.2.1 Subject..................................................................................................................... 20 

2.2.2 Power wheelchair trainer (PWCT) .......................................................................... 20 

2.2.3 Experimental Conditions ........................................................................................ 21 

2.2.4 EEG Recording ....................................................................................................... 23 

2.2.5 Preprocessing .......................................................................................................... 25 

2.2.6 Spectral Analysis .................................................................................................... 25 

2.2.7 Statistical Analysis .................................................................................................. 27 

2.3 Results ............................................................................................................................ 28 

2.4 Identification of Theta .................................................................................................... 29 

2.5 Change in EEG Spectrum .............................................................................................. 31 



6 

 

2.6 Discussion ...................................................................................................................... 40 

2.6.1 Identification of Theta............................................................................................. 40 

2.6.2 Functional Meaning of the EEG Activity ............................................................... 40 

2.6.3 Limitations of the study .......................................................................................... 46 

2.6.4 Future Work ............................................................................................................ 49 

3 Extended Review of Literature and Extended Methodology ................................................ 51 

3.1 Extended Literature Review ........................................................................................... 51 

3.1.1 The Brain and its Functions .................................................................................... 51 

3.1.2 Neurons and Brain Signals...................................................................................... 52 

3.1.3 Electroencephalography (EEG) .............................................................................. 54 

3.1.4 Analysis of Brain Activity ...................................................................................... 55 

3.1.5 Signal Processing of EEG Data .............................................................................. 60 

3.2 Extended Methodology .................................................................................................. 63 

3.2.1 Data Acquisition System......................................................................................... 63 

3.2.2 Artifact Removal ..................................................................................................... 67 

3.2.3 Spectral Analysis .................................................................................................... 75 

4 Appendix ............................................................................................................................... 77 

4.1 Code: Preprocessing for Artifact Removal (GUI).......................................................... 77 

4.1.1 Function: selectData(…) ......................................................................................... 95 

4.1.2 Function: ploteeg(…) .............................................................................................. 96 

4.1.3 Function:  wICA(…) ............................................................................................... 97 

4.1.4 Function: RemoveStrongArtifacts(…) .................................................................... 98 



7 

 

4.2 Code: Theta Rhythm .................................................................................................... 100 

4.2.1 Main Script: thetaRhythm.m ................................................................................. 100 

4.3 Code: Spectral Analysis ............................................................................................... 102 

4.3.1 Main Script: spectralAnalysis.m ........................................................................... 102 

4.3.2 Function: test2SD(…) ........................................................................................... 112 

4.3.3 Function: test22SD(…) ......................................................................................... 113 

4.4 Script readAndSaveData.m .......................................................................................... 115 

4.5 Function: readFiles() .................................................................................................... 116 

4.6 Function: psdbinswitherr(…) ....................................................................................... 117 

4.7 Function: setColorbar(…) ............................................................................................ 118 

5 Bibliography ....................................................................................................................... 119 

 

  



8 

 

List of Tables 

Table 1. List of experimental conditions for one trial. ................................................................. 23 

Table 2. Brain regions and their functions.14 ................................................................................ 52 

Table 3. The five distinguished brain rhythms identifying different states of consciousness and 

their properties.38........................................................................................................................... 57 

 

List of Figures 

Figure 2-1. Electrode placement of the original and modified neuroheadset according to the 

International 10-20 system.47 The 14 electrodes include anterior-frontal (AF), frontal (F), frontal-

central (FC), temporal (T), parietal (P), and occipital (O) channels, while the two reference 

electrodes CMS and DRL are placed in the parietal positions equivalent to P3 and P4. Odd 

numbers refer to the left hemisphere, whereas even numbers refer to the right hemisphere. ...... 24 

Figure 2-2. Representative raw (a) and preprocessed (b) EEG data from all channels after 

removing strong artifacts manually. The preprocessing using wICA to remove artifacts was done 

for all experimental conditions over the A-B-A-B phases............................................................ 28 

Figure 2-3. Spectral mean power for resting condition (left) and interaction condition (right) 

during first baseline (red=high mean power, blue=low mean power). The vertical axis represents 

the 14 different channels (odd numbers: left hemisphere, even numbers: right hemisphere), while 

the horizontal axis represents the 10 sub-bands between 2.0 and 12.0 Hz. The red square in the 

right panel marks the region of high power during Interaction condition. ................................... 29 

Figure 2-4. Average percentage change from Resting 1 condition to Interaction condition during 

the first baseline. The highest increase is noted between 3.0 and 6.0 Hz for left frontal and 

temporal channels (F3, FC5,T7). .................................................................................................. 30 

Figure 2-5. PSD of each channel of the left hemisphere during Resting 1 condition. Examples of 

the second week (w2) of each phase (A1, B1, A2, and B2) are shown. ....................................... 31 

Figure 2-6. PSD of each channel of the right hemisphere during Resting 1 condition. Examples 

of the second week (w2) of each phase (A1, B1, A2, and B2) are shown.................................... 32 

Figure 2-7. Mean PSD for each sub-band and channel represented by the color (red=high, 

blue=low). This is an example for the second week (w2) of each phase (A1, B1, A2, and B2). . 33 

Figure 2-8. Significant increase (red) and decrease (blue) in spectral mean power for each sub-

band in respect of the first baseline (A1) for each subsequent phase (B1, A2, and B2). The upper 

panels illustrate the significance score (s-value) for each sub-band and channel, while only s-

values >= 2 or s-values <=-2 are displayed. The lower panels show the percentage change for 

significant changes in each sub-band and channel. The shown data was recorded during Resting 

1 condition. ................................................................................................................................... 34 



9 

 

Figure 2-9. Significant increase (red) and decrease (blue) in spectral mean power for each sub-

band in respect to the first intervention phase (B1) for each subsequent phase (A2, and B2). The 

upper panels illustrate the significance score (s-value) for each sub-band and channel. The lower 

panels show the percentage change for significant changes in each sub-band and channel. The 

shown data was recorded during Resting 1................................................................................... 35 

Figure 2-10. Significant increase (warm colors) and decrease (blue colors) in spectral mean 

power for each sub-band with respect to the first baseline (A1) for each subsequent phase (B1, 

A2, and B2). The upper panels illustrate the significance score (s-value) for each sub-band and 

channel, while only s-values >= 2 or s-values <=-2 are displayed. The lower panels show the 

percentage change for significant changes in each sub-band and channel. The shown data was 

recorded during Resting 2. ............................................................................................................ 36 

Figure 2-11. Significant increase (warm colors) and decrease (blue colors) in spectral mean 

power for each sub-band with respect to the first intervention phase (B1) for each subsequent 

phase (A2, and B2). The upper panels illustrate the significance score (s-value) for each sub-

band and channel. The lower panels show the percentage change for significant changes in each 

sub-band and channel. The shown data was recorded during Resting 2. ..................................... 37 

Figure 2-12. Significant increase (warm colors) and decrease (blue colors) in spectral mean 

power for each sub-band and channel of Resting 2 with respect to Resting 1 in each phase (A1, 

B1, A2, B2). The colors illustrate the significance score (s-value) for each sub-band and channel, 

while only s-values >= 2 or s-values <=-2 are displayed. ............................................................ 38 

Figure 2-13. Significant increase and decrease in spectral mean power for each sub-band and 

channel of Resting 2 with respect to Resting 1 in each phase (A1, B1, A2, B2). The colors 

illustrate the percentage change for significant changes in each sub-band and channel. ............. 39 

Figure 3-1. Original Emotiv EPOC© neuroheadset with 14 electrodes and acquisition unit.116 .. 63 

Figure 3-2. Solidworks drawing of the designed electrode adapter.............................................. 64 

Figure 3-3. The wireless acquisition unit of the Emotiv EPOC© neuroheadset with amplifier, pre-

processer, transmitter, and battery. ............................................................................................... 65 

Figure 3-4. Plastic enclosure containing the wireless acquisition unit. A 25-pin D-sub connector 

allows the connection to the gold cup electrodes. The black USB dongle serves as the receiver of 

the streamed data........................................................................................................................... 65 

Figure 3-5. The 16 gold cup electrodes with 25-pin D-sub connector to the wireless acquisition 

unit. The prototype version of the electrode adapter is also shown. ............................................. 66 

Figure 3-6. The final version of the modified Emotiv EPOC© system showing the cap with the 

mounted electrodes, the wireless acquisition unit and USB  receiver. ......................................... 66 

Figure 3-7. Mean percentage increase of SNR and correlation R2 after applying the seven 

different ICA algorithms to artificial test signal. Ten different files with a 14-channel test signal 

were tested. ................................................................................................................................... 72 



10 

 

Figure 3-8. Mean percentage increase of SNR and correlation R2 after applying the seven 

different ICA algorithms to real EEG data. Six different files, each containing real 14-channel 

EEG data. ...................................................................................................................................... 73 

Figure 3-9. An example of real EEG data used for the evaluation of the algorithms. .................. 74 

Figure 3-10. The EEG data shown above after applying the JADE algorithm. As already implied 

by the test measures, the JADE algorithm seems to reduce the artifacts only slightly. ................ 74 

Figure 3-11. The EEG data shown above after applying the wavelet enhanced InfoMax 

(wIM125) algorithm. wIM125 obviously reduces the artefacts more than the JADE algorithm, 

which was identified as unstable applying it to real EEG data regarding the test measures. ....... 75 

 

  



11 

 

1 INTRODUCTION 

This pilot study was a collaboration between the Department of Physical Therapy (Dr. Lisa 

Kenyon), the Department of Psychology (Dr. Naomi Aldrich), the School of Engineering (Dr. 

John Farris and Dr. Samhita Rhodes), and the Statistics Department (Dr. Paul Stephenson) of 

Grand Valley State University (GVSU). This group has been working since 2008 with children 

who have multiple, severe disabilities; embracing and encouraging the use of power mobility 

devices in order to improve the mobility, independence, quality of life, and general well-being of 

children who have multiple, severe disabilities. To provide these children the opportunity to 

explore and practice power mobility, the group designed and built the Power Wheelchair Trainer 

(PWCT).1,2 The PWCT is a motorized platform on which any manual wheelchair can be 

mounted temporarily such that individuals can practice using power mobility and explore their 

environment under safe and controlled conditions.  

Preliminary data indicate that the self-generated locomotion effects not only the children’s 

physical but also cognitive abilities positively.3–5 Intensive power mobility training may result in 

positive changes in quality of life and qualitative improvements in areas related to psychosocial 

issues including behavior, temperament, motivation, and environmental awareness.1–3,6,7 Due to 

the inability of the children to demonstrate motor and verbal responses, parental report measures 

are primarily used to assess the child’s improvements during the training.3,8,7 Using 

electroencephalography (EEG), this study sought to develop a method to support these 

observations with an objective report measure.  
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1.1 PURPOSE 

The ability to move and explore the environment has immense impact on the development and 

psychology of children.3–6,9 Self-generated locomotion in infancy and early childhood enhances 

the learning and maintaining of cognitive processes such as attention to distal events, spatial 

awareness, social interaction, language development and differential attentiveness.5 The lack of 

independent and autonomous mobility is, therefore, a clear disadvantage for the overall 

development of children with multiple severe disabilities. Having access to a power mobility 

device may remedy this deficiency and provide these children with the opportunity to explore 

their environment voluntarily, and thus play a crucial role for their overall development, mental 

health and quality of life.2,3,7 Typically developing children start to use self-generated 

locomotion between 8-16 months of age.10 Similarly, appropriate power mobility training allows 

the introduction of power mobility to infants as young as 7 months of age successfully.3 

Although the benefit of power mobility for children with severe disabilities has been 

suggested,2,3 the findings are primarily based on parent report measures. The present study 

attempted to overcome this problem by the employment of EEG. 

1.2 SCOPE 

This study attempted to identify a change in brain activity when children with multiple, severe 

disabilities are using power mobility. This change was assumed to represent a change of the 

children’s emotional, and cognitive state due to the participation in power mobility trainings. 

Whether or not and how these changes can be detected is a question that has not been addressed 

in the literature. Therefore, we studied the feasibility of various techniques and methods to 

process the collected EEG data and to detect a change in brain activity. In order to address this 

problem we had identified the following specific aims. 
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1.2.1 Aim 1 

Recording the brain activity of typically developing children and developing an appropriate 

signal processing framework for the EEG data analysis. 

In order to complete this aim we collected EEG data using a modified version of the Emotiv 

EPOC© (Emotiv, Inc., San Francisco, CA) neuroheadset. Various techniques to remove artifacts 

and process the data were implemented in a MATLAB (The MathWorks, Inc., Natick, MA) 

program in order to find an appropriate method to identify a change in the EEG spectrum.  

1.2.2 Aim 2 

Investigating brain activity of one child with multiple, severe disabilities when using a PWCT. 

In order to complete this aim, we conducted a single-subject study with an A-B-A-B design. The 

subject was a three year, 2-month old girl with spastic, quadriplegic cerebral palsy, 

microcephaly, and a cortical visual impairment. The study occurred over 16 week including two 

baseline and two intervention phases with each phase consisting of a four week period. The same 

EEG acquisition system as mentioned in Aim 1 was used for data collection, whereas the 

analysis was performed with the same MATLAB program. 

Eventually, the findings of this pilot should provide insights into 1) whether the used EEG 

acquisition system and the applied signal processing algorithms can detect a change in the EEG 

spectrum of children with multiple, severe disabilities, and 2) whether power mobility training 

influences their brain activity in short-term or long-term. 

1.3 ASSUMPTIONS 

Based on previous research,5 we believe that self-generated locomotion is an important factor in 

the development of typically developing children as well as in children with disabilities. This 

presupposes plasticity of the children’s brain structure affected greatly by the experience of 
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locomotion during infancy and childhood. This implies that the impact of self-generated 

locomotion on the developing brain does not originate in the acquisition of motor control itself, 

but rather in the concomitant experience of exploring the environment. We assume that children 

with disabilities may be able to gain this experience through power mobility training, similar to 

the learning of crawling, walking, and running in typically developing children. Thus, power 

mobility training may also have an impact on the developing brain of children with severe 

disabilities. 

1.4 HYPOTHESIS 

Although parental report measures indicate a correlation between the learning of self-generated 

locomotion and child development, these findings lack support by physiological measurements. 

Since EEG has become a commonly used technique to measure electrophysiological changes in 

the adult and young brain, we believe that this measure is able to detect changes in brain activity 

related to locomotor experiences, if these changes are in fact present. 

Hence, we hypothesize that intensive power mobility training has similar effect on the cognitive 

functions of children with multiple severe disabilities as it is observed in typically developing 

children when they start to explore their environment by crawling or walking. Since literature 

suggests that a person’s EEG changes based on physical or mental activity,11–15 mood or 

emotion,15–17 we expect that the change in brain activity induced by self-generated locomotion is 

measurable using EEG. The change might be detected during or immediately after using the 

Power Wheelchair Trainer, or might manifest itself with regular practice over a prolonged 

period.  
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1.5 SIGNIFICANCE 

Due to the great variety of factors that influence the developing brain, isolation of changes in 

brain activity originating from locomotion in typically developing children is very challenging. 

Hence, there is a great lack of EEG studies investigating the impact of locomotor experience on 

child development. In contrast, the effect of self-generated locomotion on brain activity of 

children with severe disabilities, who cannot move without assistance, can be investigated more 

easily since self-generated locomotion is not part of their daily activities. Positive results of the 

present study would give evidence for previous findings in development research and provide an 

objective report measure for the effect of power mobility training on brain activity in children 

with severe disabilities. More importantly, a positive outcome of our investigation would support 

the hypothesis that power mobility training benefits children with severe disabilities and their 

overall development, even if fully independent and autonomous use of power mobility cannot be 

achieved in the long term.  
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2 MANUSCRIPT 

Abstract 

Literature suggests that self-generated locomotion in infancy and early childhood enhances the 

development of various cognitive processes. Thus, having access to a power mobility device may 

play a crucial role for the overall development of children with multiple severe disabilities who 

have limited motor control. This study investigates the feasibility to use electroencephalography 

(EEG) as an objective measure for changes in brain activity in these children due to power 

mobility training. We collected EEG data with a modified wireless neuroheadset using a single-

subject A-B-A-B design consisting of two baseline phases (A) and two intervention phases (B). 

One trial consisted of three different activities during baseline phase; resting condition at the 

beginning (Resting 1) and at the end (Resting 2) of the trial, interaction with adults, and passive 

mobility. The intervention phase included a forth activity, the use of power mobility, while 

power mobility training was performed within the same week of data collection. The EEG 

spectrum between 2.0 and 12.0 Hz was analyzed for Resting 1 and Resting 2 condition in each 

phase. We found significant increase of theta power and decrease in alpha power during all three 

phases following the first baseline. In comparison to previous findings, these observations may 

be related to an increase in alertness and/or anticipation. Analysis of the percentage change from 

Resting 1 to Resting 2 condition revealed decrease in theta and increasing alpha power during 

the first intervention phase, which could be associated with increasing cognitive performance 

immediately after the use of power mobility. Whether the observed changes may have been 

influenced or enhanced by power mobility training remains unclear and warrants further 

investigation.   
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2.1 INTRODUCTION 

The most common cause of severe physical disability in childhood is cerebral palsy (CP),18 of 

which the overall estimated prevalence in children of 3-10 years old is about 2.2 per 1000 

children.19 CP describes a range of non-progressive brain lesions with progressive syndromes of 

posture and motor impairment that is caused by irreversible damage to the brain, brainstem, or 

spinal cord, resulting from an injury in the developing central nervous system occurring within 

the first two years of life.19 While 50% of CP patients  are able to walk without any assistance, 

25% cannot walk, and 30% have cognitive limitations.20,21 Also neurological disorders such as 

seizures, sensory impairment of the arms, impairment of visual perception, and learning 

disabilities are common concomitants of CP.22 Children that show severe manifestations of CP 

(categorized as Level V in the Gross Motor Function Classification System,23 Communication 

Function Classification System,24 and Eating and Drinking Ability Classification System25) are 

unable to walk or communicate even basic needs, and may or may not  have cognitive 

limitations. However, the ability to move around and explore the environment has immense 

impact on the development and psychology of typically developing children.3 

Self-generated locomotion in infancy and early childhood enhances  the development  of 

cognitive processes such as attention to distal events, spatial awareness, social interaction, 

language development and differential attentiveness.5,4,6,9 Typically developing children start to 

use self-generated locomotion between 8-16 months of age.10 The lack of independent and 

autonomous mobility is, therefore, a clear disadvantage for the overall development of children 

with multiple severe disabilities. Having access to a power mobility device may remedy this 

deficiency and provide these children with the opportunity to explore their environment 
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voluntarily, and thus play a crucial role for their overall development, mental health and quality 

of life.3 

 Although the benefit of power mobility for children with severe disabilities has been suggested 

in the limited literature on the topic,3,2 the findings are primarily based on subjective measures. 

The present study attempts to overcome this problem using objective, frequency-domain 

measures from EEG recordings taken in the course of the experimental protocol.  

This objective presents two main challenges: 1) Studies have shown that the individual alpha 

peak frequency (IAF), varies as a function of age, neurological diseases, memory performance, 

and task.26,27 However, since the target population of the present study does not respond to verbal 

instructions, identifying the IAF is not easy. 2) Due to the limited number of studies that have 

looked at changes in EEG of children with cerebral palsy, very little is known about the 

characteristics of their brain activity.28–32 General findings show differences in the EEG spectrum 

and in interhemispheric and intrahemispheric coherence in children with CP.29,30,32,33 In general, 

children with CP showed increased delta and decreased alpha power and hypoconnectivity 

between left and right hemisphere compared to typically developing children.28 Despite these 

significant challenges, we hypothesize that EEG spectral analysis will be able to provide 

objective measures of improvements in cognitive function with power mobility training in this 

particular population of children. 

EEG signals have a fairly wide frequency spectrum, which ranges from 1 Hz to 40 Hz or higher 

and is usually split in five different frequency bands (rhythms); delta (1-4Hz), theta (5-7Hz), 

alpha (8-13Hz), beta (13-30Hz), and gamma (> 30Hz).34,35 Lower frequencies indicate the less 

responsive states, whereas higher frequencies indicate increased alertness. For example, the delta 

rhythm is associated with sleep, while beta and gamma rhythm represent a waking state which is 
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associated with active thinking and attention.36 Wave patterns vary not only as a function of state 

of consciousness but also according to where on the scalp they are recorded.34 Thus, the alpha 

rhythm is typically observed in occipital, parietal, and posterior temporal areas, while theta 

oscillations occur predominantly in central-frontal areas.34,37 In general, the amplitude of the 

EEG signal decreases with increasing frequency, which is also valid within the frequency band 

such that the lower alpha component has a higher amplitude than the higher alpha 

component.34,38 

The most prominent rhythm is the alpha rhythm, best seen with eyes closed and during physical 

relaxation and relative mental inactivity in the occipital cortex. It has been acknowledged that the 

alpha rhythm reflects an idling state of primary cortical areas, which results in a decrease of 

alpha power when engaging in a task such as perceptual judgment or increased attentiveness.39–42 

Studies indicate involvement of alpha power in cognitive processes and memory, observing 

positive correlation of alpha power and awareness, which leads to the theory that non-essential 

processing is inhibited in order to facilitate performance of the actual task or support working 

memory processes.39,43,44 In the context of cognitive and memory performance, a reciprocal 

relationship between alpha and the lower theta activity has been identified.26 It was suggested 

that the power of the alpha rhythm is positively related to cognitive performance and brain 

maturity, whereas theta power is negatively related.26,45 This theory was supported by the 

findings of Orekhova et al.14 who examined the involvement of theta in cognitive and emotional 

processes of infants and preschool children. The observed phasic increase in theta power and 

simultaneous decrease in high alpha power in both age groups led to the conclusion that theta 

oscillations are strongly related to behavioral states with considerable attentional and emotional 

load and may reflect engagement of different brain networks in control and behavior.14 
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Based on these findings, a gradual increase in alpha power and simultaneous decrease in theta 

power would support our hypothesis that power mobility training enhances cognitive functions in 

children with multiple severe disabilities. 

2.2 METHODS AND MATERIALS 

2.2.1 Subject 

The subject of the present study was a three year, 2 month-old child (female) from the Grand 

Rapids area. Parental permission was obtained. The subject was diagnosed with spastic 

quadriplegic cerebral palsy, microcephaly, cortical visual impairment, and a seizure disorder. 

The subject was classified as Level V according to the Gross Motor Function Classification 

System,23 the Communication Function Classification System,24 as well as the Eating and 

Drinking Ability Classification System25 (feeding occurs through a gastrostomy-tube, nothing by 

mouth) and had significant limitations in the ability to manipulate objects even with assistance. 

During this study, the subject was taking Cytra K in order to prevent kidney stones, Sabril® for 

seizures and infantile spasms, and Omeprazole® for gastro-esophageal reflux, as well as a multi 

vitamin and a probiotic. 

2.2.2 Power wheelchair trainer (PWCT) 

The PWCT was developed as part of the Grand Valley Power Mobility Project and was designed 

and prototyped in the School of Engineering at Grand Valley State University in Grand Rapids, 

MI.2,1 The current version of the PWCT is a motorized platform, on which any customized, 

manual wheelchair can be mounted and temporarily converted into a power wheelchair. This 

permits individuals with multiple, severe impairments to practice using power mobility and 

begin to explore their environment while optimally and safely positioned in their own 
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customized seating systems and under the supervision of a licensed physical therapist. The 

PWCT can be adapted to the individual trainee’s abilities and power mobility can be controlled 

with one button, multiple buttons, or a joystick. For safety reasons, the PWCT is also equipped 

with a shared control that allows the supervising therapist monitoring the training to intervene 

with an additional joystick while the subject is using the device. The subject of the present study 

was using 1-3 buttons, each for a single direction (forward, left, right). Throughout this 

document, the use of the PWCT will be addressed as ‘power mobility’. 

2.2.3 Experimental Conditions 

The present study investigates the impact of power mobility training on the EEG spectrum of 

children with multiple severe disabilities. This research problem is a typical case for a single-

subject research design (SSRD), which is commonly used in developmental medicine and 

rehabilitation sciences.46 SSRD attempts to ascertain if a change in the baseline target variable 

can be causally related to the intervention. In this study, the target variable is EEG activity at rest 

while the intervention is power mobility. This study represents the first, to our knowledge, that 

uses the SSRD protocol in combination with EEG spectral analysis. 

There are several types of SSRD, of which the alternating treatment design, so called A-B-A-B 

design, was applied. ‘A’ represents the baseline phase, while ‘B’ represents the intervention 

phase. The A-B-A-B design represents a more rigorous design compared to the A-B design, but 

also allows the comparison of changes in the EEG spectrum in two baseline phases. The 

experiment was conducted once a week, while each phase lasted four weeks. The total duration 

of the study was 16 weeks. 
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Both baseline phases of the present study consisted of four experimental conditions during EEG 

data collection for one day per week– resting, interaction, and passive mobility, resting. During 

resting condition, the subject was sitting quietly in her wheelchair with minimal visual and 

auditory stimuli. Interaction involved close interaction with adults such as singing different 

songs and touching (holding hand or feet). During passive mobility, the subject sitting in the 

wheelchair was pushed in her own wheelchair in random directions, while playing and 

interacting with adults.  

The baseline phase was alternated with the intervention phase. The intervention phase included 

two sessions on two different days each week. The first session was dedicated to power mobility 

training for 45 minutes, whereas the second session consisted of all the same conditions as in 

baseline phase, with addition of power mobility use. Passive mobility was followed by power 

mobility using the PWCT – resting, interaction, passive mobility, power mobility. The resting 

condition was repeated after passive (baseline) or power (intervention) mobility in order to 

capture the potential changes occurring immediately after using power mobility.  

Table 1 summarizes the three conditions performed during one experimental trial. Each 

condition lasted 5 minutes during which EEG was recorded continuously along with 

simultaneous video recording to monitor the subject’s facial expressions for non-verbal 

behavioral cues. The 5 minute time interval was chosen to balance out data analysis needs along 

with realistic constraints regarding the limited attention span of the subject. 
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Table 1. List of experimental conditions for one trial. 

Number Condition Description 

1 Resting 1 Sitting quietly in own wheelchair (no interaction or other stimuli) 

2 Interaction Sitting in own wheelchair, singing and interacting with adults 

3 Passive Mobility 
Sitting in own wheelchair, playing and interacting with adults using 

passive mobility 

4* Power Mobility 
Sitting in own wheelchair on PWCT, playing and interacting while 

using power mobility 

1b Resting 2 Sitting quietly in own wheelchair (no interaction or other stimuli) 

 

*only during intervention phase 

 

2.2.4 EEG Recording 

The EEG was recorded with a modified wireless Emotiv EPOC© (Emotiv, Inc., San Francisco, 

CA) neuroheadset. Our modified headset replaces the original system’s 14 electrodes, including 

two reference electrodes, with gold cup disc electrodes (MVAP Medical Supplies Inc., Newbury 

Park, CA) mounted on a custom sized EasyCap (EASYCAP GmbH, Herrsching, Germany). The 

electrode placement of the original headset (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 

F8, AF4, referenced to CMS (P3) and DRM (P4)) according to the International 10-20 system as 

shown in Figure 2-1 was used.47  

The data were recorded using the Emotiv’s proprietary acquisition system at a sampling rate of 

2048 Hz and notch filtered at 50 Hz and 60 Hz using a built-in digital 5th order Sinc filter. The 

resulting signal bandwidth was 0.2-45.0 Hz. The electrode impedance was kept below 20 kΩ by 

applying Nuprep Skin Prep Gel at the electrode sites and dampening the subject’s hair (the low 
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frequency artifacts induced by cross-bridges between the electrodes were filtered out as 

explained in the next section). 

 

Figure 2-1. Electrode placement of the original and modified neuroheadset according to the International 10-20 

system.47 The 14 electrodes include anterior-frontal (AF), frontal (F), frontal-central (FC), temporal (T), parietal (P), 

and occipital (O) channels, while the two reference electrodes CMS and DRL are placed in the parietal positions 

equivalent to P3 and P4. Odd numbers refer to the left hemisphere, whereas even numbers refer to the right 

hemisphere. 

 

The signal was transmitted with the Bluetooth® SMART 4.0 LE protocol from the EasyCap 

(EASYCAP GmbH, Herrsching, Germany)  to a Lenovo X1 Carbon laptop (Lenovo, Morrisville, 

NC), where the data was acquired in TestBenchTM software (Emotiv, Inc., San Francisco, CA).  

Prior to transmission, the signal is down sampled to 128 Hz. The low sampling rate poses a 

major challenge to subsequent signal analysis and limits spectral resolution. 

Video was recorded with a Microsoft LifeCam (Microsoft Corporation, Redmond, WA) in order 

to capture the subject’s movement and facial expression during data collection. EEG data were 

tagged to indicate the first frame of the video which allowed for data synchronization.  
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2.2.5 Preprocessing 

The EEG data were referenced to average reference by subtracting the average over all 

electrodes from each electrode for each time point,48 and was filtered using a high pass 7th order 

Butterworth filter with a cut-off at 2Hz.  This was done to account for any cross-bridges that may 

formed between electrodes. Recall that the subject’s hair was dampened to provide a good 

connection between electrode and scalp. However, this dampening results in electrode-electrode 

connections called cross-bridges that result in low-frequency artifacts (oscillations of 2 Hz or 

lower).49,50 The data were visually inspected and periods of large amplitude artifacts due to 

electrode movement and were removed from the data.  

A wavelet enhanced independent component analysis (wICA51) was applied using the InfoMax52 

algorithm in order to remove ocular artifacts. The advantages of this method are that it is 

automated and thereby more objective, and it avoids the complete removal of ICs containing 

artefactual data. The ICA algorithms InfoMax, JADE, and SOBI, as well as wavelet enhanced 

InfoMax and JADE, were tested for their performance of artifact removal while retaining 

relevant EEG signal, and the wICA algorithm using InfoMax achieved best results and stability.  

For each experimental condition an artifact-free record of 35 seconds was randomly selected 

from the pre-processed data. 

2.2.6 Spectral Analysis 

The data was Fourier53 transformed using the Welch’s method54 with a smoothed Hanning-

window of 2.5 seconds and 50% overlap, in order to obtain the power spectral density (PSD). 

Orekhova et al.14 found that the frequency range of the brain rhythms in children is usually lower 

than the typical range as it is found in adults, and depends strongly on the children’s age. Hence, 

the partition of the spectrum into narrower bands instead of conventional bands is 
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recommended.26,14 In the present study, this was realized by dividing the frequency range into 

narrow sub-bands of 1 Hz in width (1 Hz = 4 samples with 512-point FFT). The mean (average) 

across the 4 samples in each sub-band was computed and normalized to the total mean power 

across channels and frequencies. Only the sub-bands falling into the range between 2.0 Hz and 

12.0 Hz were considered for further analysis in respect of previous findings by Orekhova et al.14 

and for exclusion of myogenic artifacts with a typical frequency distribution above 11Hz,55 

which were abundant in several recordings. 

2.2.6.1 Identification of Theta 

The identification of the different rhythms (delta, theta, alpha, beta, and gamma) is crucial for the 

interpretation of their functional meaning. Therefore, the first step of the analysis was to find the 

frequency limits of the functional brain rhythms in the subject’s frequency spectrum. Orekhova 

et al.14 associated high theta power in frontal areas with exploratory behavior and posterior theta 

with attention to social stimulation. Based on these findings, one may expect an increase in theta 

power during social interaction in comparison to resting condition, which would allow us to 

identify the theta range of the subject in the present study. Thus, the comparison of the power in 

the EEG spectrum during Resting 1 condition and power in the EEG spectrum during Interaction 

in the first baseline phase was of special interest. Therefore, the percentage change in PSD 

magnitude was computed using following formula: 

𝑃𝑆𝐷𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑃𝑆𝐷𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 − 𝑃𝑆𝐷𝑟𝑒𝑠𝑡1

𝑃𝑆𝐷𝑟𝑒𝑠𝑡1
∙ 100% 

where 𝑃𝑆𝐷𝑟𝑒𝑠𝑡1 refers to the PSD of the data recorded during Resting 1 condition and 

𝑃𝑆𝐷𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡 refers to the PSD of data recorded in Interaction condition. The results were 

averaged across trials.  
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2.2.6.2 Changes in EEG Spectrum 

For each channel, the mean PSD of each 1Hz-sub-band between 2.0 and 12.0 Hz for Resting 1 

and Resting 2 were obtained. In addition, the percentage change in PSD magnitude from Resting 

1 to Resting 2 was also computed using following formula: 

𝑃𝑆𝐷𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑃𝑆𝐷𝑟𝑒𝑠𝑡2 − 𝑃𝑆𝐷𝑟𝑒𝑠𝑡1

𝑃𝑆𝐷𝑟𝑒𝑠𝑡1
∙ 100% 

where 𝑃𝑆𝐷𝑟𝑒𝑠𝑡1 refers to the PSD of the data recorded during Resting 1 condition and 𝑃𝑆𝐷𝑟𝑒𝑠𝑡2 

refers to the PSD recorded during Resting 2 condition. 

2.2.7 Statistical Analysis 

Due to the serial dependency of data points in single-single subject studies, conventional 

statistical procedures such as ANOVA and t-test are rarely used.56 An acknowledged method for 

analyzing single-subject data is the two-standard deviation band method.57 The two-standard 

deviation band method compares the mean of the first baseline phase with subsequent data 

points.57 Based on this technique, significance was measured by the number of data points falling 

outside of ±2 standard errors from the mean of the first baseline. The standard error was used due 

to the previous averaging in the Fourier transform.54 With a maximum of 4 data points in each 

phase, the significance score (s-value) ranged from 0 to 4 for positive changes and from 0 to -4 

for negative changes. An s-value greater or equal to 2 (positive change) and smaller or equal to -

2 (negative change) was considered as significant (p<0.05).57 This statistical procedure has the 

advantage of being sensitive to changes in variability across all phases of a single-subject 

design.57 
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2.3 RESULTS 

Figure 2-2 (a) shows the representative raw data from all channels over 13 seconds during 

Resting 1 in the first baseline phase while Figure 2-2 (b) shows the same data after preprocessing 

to remove artifacts using the wICA51 algorithm.  

 

Figure 2-2. Representative raw (a) and preprocessed (b) EEG data from all channels after removing strong artifacts 

manually. The preprocessing using wICA to remove artifacts was done for all experimental conditions over the A-B-

A-B phases. 

a) 

b) 
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Note that high amplitude artifacts with low frequency (e.g. channel O2 around 21.3 sec) as well 

as high (e.g. O2 around 25.3 sec) frequency character are removed after applying wICA. This 

data preprocessing step was done for all experimental conditions (Resting 1, Interaction, Passive 

Mobility, Power Mobility, and Resting 2) over the A-B-A-B phases. 

2.4 IDENTIFICATION OF THETA 

To identify the subject’s theta band, EEG data of the first baseline phase (A1) during resting 

condition before the trial (Resting 1) and during social interaction (Interaction) was analyzed. 

The mean PSD in each sub-band was obtained for each channel and trial. The sub-band values 

were averaged across trials during A1, while the first trial was disregarded due to strong 

distortion.  

 

Figure 2-3. Spectral mean power for resting condition (left) and interaction condition (right) during first baseline 

(red=high mean power, blue=low mean power). The vertical axis represents the 14 different channels (odd numbers: 

left hemisphere, even numbers: right hemisphere), while the horizontal axis represents the 10 sub-bands between 2.0 

and 12.0 Hz. The red square in the right panel marks the region of high power during Interaction condition. 
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Figure 2-3 illustrates the mean of the PSD in each sub-band during Resting 1 condition (left 

panel) and Interaction condition (right panel) over all channels. In resting condition, higher 

power is clustered around the peak in 4.0-5.0 Hz sub-band of the right occipital channel (O2). 

The peak shifts to the left hemisphere (O1) for Interaction condition, while higher power values 

spread primarily across a range from 3.0 to 6.0 Hz in left occipital, parietal, temporal, and 

frontal-central as well as right occipital and parietal regions. This region is marked in the right 

panel of Figure 2-3 with red square. 

The computation of percentage change between the two conditions indicates a predominant 

increase in frontal-temporal regions in the left hemisphere from 3.0 to 6.0 Hz, while a 

predominant decrease in power is observed for the entire right hemisphere. 

 

Figure 2-4. Average percentage change from Resting 1 condition to Interaction condition during the first baseline. 

The highest increase is noted between 3.0 and 6.0 Hz for left frontal and temporal channels (F3, FC5,T7). 

The change from Resting 1 to interaction condition was also tested for significance (p<0.05) with 

the two-standard deviation band method. However, no significance was achieved for any of the 



31 

 

sub-bands and channels. However, these initial trend suggests the presence of a distinct theta 

band in the 3.0-6.0 Hz range for our subject. 

2.5 CHANGE IN EEG SPECTRUM 

For each channel, the PSD was computed for resting condition in the beginning of the trial 

(Resting 1) and at the end of the trial (Resting 2). In addition, the percentage change in PSD 

magnitude from Resting 1 to Resting 2 condition was also computed. Figure 2-5 (left 

hemisphere) and Figure 2-6 (right hemisphere) give an example of the computed PSD of each 

channel for the second week of each phase – first baseline (A1), first intervention (B1), second 

baseline (A2), and second intervention (B2). 

 

 

Figure 2-5. PSD of each channel of the left hemisphere during Resting 1 condition. Examples of the second week 

(w2) of each phase (A1, B1, A2, and B2) are shown. 
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Figure 2-6. PSD of each channel of the right hemisphere during Resting 1 condition. Examples of the second week 

(w2) of each phase (A1, B1, A2, and B2) are shown. 

An example of the PSD divided in sub-bands is given in Figure 2-7 corresponding with the data 

shown in Figure 2-5 and Figure 2-6. Each panel in Figure 2-7 illustrates the results of one trial in 

the frequency range from 2.0 to 12.0 Hz. 
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Figure 2-7. Mean PSD for each sub-band and channel represented by the color (red=high, blue=low). This is an 

example for the second week (w2) of each phase (A1, B1, A2, and B2). 

In order to detect changes in the EEG spectra of the different trials, the means of each 1Hz-band 

between 2.0 and 12.0 Hz of each channel were compared. The comparison was tested for 

significance using the two-standard deviation band method. The analysis was performed for the 

three cases, Resting 1 condition, Resting 2 condition, and percentage change from Resting 1 to 

Resting 2 condition.    
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Figure 2-8. Significant increase (red) and decrease (blue) in spectral mean power for each sub-band in respect of the 

first baseline (A1) for each subsequent phase (B1, A2, and B2). The upper panels illustrate the significance score (s-

value) for each sub-band and channel, while only s-values >= 2 or s-values <=-2 are displayed. The lower panels 

show the percentage change for significant changes in each sub-band and channel. The shown data was recorded 

during Resting 1 condition. 

For the Resting 1 condition, significant increase in power was found for 3.0-5.0 Hz sub-bands of 

parietal, temporal and frontal channels (AF3, F7, F3, P7, P8, T8, FC6, F4, F8, AF4) with highest 

s-values in the right hemisphere during phase B1. The increase is most pronounced in the 3.0-4.0 

Hz band as seen in the lower panel showing the percentage change from phase A1 to B1. A 

decrease in power is most significant in occipital channel O2 and frontal channel F3 between 7.0 

and 9.0 Hz, along with a cluster that spans over occipital, parietal, temporal and frontal regions 

from 7.0 to 12.0 Hz.  

Referring to the left lower panel, occipital regions decrease most in magnitude; this decrease is 

blunted towards the frontal areas. In phase A2, temporal and frontal channels (AF3, F7, F3, T8, 

F8, AF4) show most significant increase between 3.0 and 5.0 Hz. Decreasing power with highest 

s-values are found in left temporal, right occipital, and right frontal-central channels between 5.0 
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and 12.0 Hz, while a cluster of high power spanning over occipital, parietal, temporal, and 

frontal regions is noted with predominance in the right hemisphere.   

The percentage change plot in the middle lower panel shows similar results as found in phase 

B1. The power increase is most pronounced between 3.0 and 4.0 Hz for frontal channels, while 

the decrease is marked in occipital regions getting successively smaller towards frontal regions 

between 5.0 and 12.0 Hz. A pattern did not emerge in the increased power during B2 which can 

occur in  arbitrary channels and sub-bands in the observed frequency range from 2.0 to 12.0 Hz. 

Decreasing power, however, occurs only in left parietal and temporal channels and right occipital 

channel O2 in the range from 5.0 to 12.0 Hz. 

 

Figure 2-9. Significant increase (red) and decrease (blue) in spectral mean power for each sub-band in respect to the 

first intervention phase (B1) for each subsequent phase (A2, and B2). The upper panels illustrate the significance 

score (s-value) for each sub-band and channel. The lower panels show the percentage change for significant changes 

in each sub-band and channel. The shown data was recorded during Resting 1. 
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Figure 2-9 shows changes in phase A2 and B2 in comparison to intervention phase B1 for 

Resting 1 condition. In phase A2, The s-value indicates an increase in power in the left frontal 

channels F7 and F3 which spans from 2.0 Hz up to 12.0 Hz, while a decrease in power is denoted 

predominantly in the occipital and right frontal channels across the entire range from 2.0 to 12.0 

Hz. Phase B2, however, shows a power decrease in the 2.0-3.0 Hz sub-band for left frontal (F7), 

temporal (T7), and the right frontal (FC6, F4, AF4) channels. Between 6.0 and 12.0 Hz the 

power increases in left frontal (AF3, F7, F3, FC5) and right temporal (T8) regions. 

 

Figure 2-10. Significant increase (warm colors) and decrease (blue colors) in spectral mean power for each sub-band 

with respect to the first baseline (A1) for each subsequent phase (B1, A2, and B2). The upper panels illustrate the 

significance score (s-value) for each sub-band and channel, while only s-values >= 2 or s-values <=-2 are displayed. 

The lower panels show the percentage change for significant changes in each sub-band and channel. The shown data 

was recorded during Resting 2. 

Analysis of Resting 2 data revealed a significant broadband (2.0-12.0 Hz) power increase for 

temporal and frontal channels, primarily in the right hemisphere (T8, FC6, F4, F8, AF4) for all 

phases. Highest percentage change occurs in right frontal channels (F8, AF4) between 2.0 and 

5.0 Hz. In phase B1, decreasing power is observed in the left occipital channel (O1) between 
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10.0 and 12.0 Hz and in the right occipital channel (O2) between 3.0 and11.0 Hz. Additionally, 

power decrease is found right parietal channel P8 between 6.0 and 9.0Hz. The decrease is most 

significant for right parietal and occipital channels in the 8.0-9.0 Hz band. Phase A2 shows 

considerable decrease between 4.0 and 12.0 Hz for occipital and right parietal regions (O1, O2, 

P8), while predominant power decrease in phase B2 is limited to the right occipital channel O2, 

but spans from 3.0 to 12.0 Hz.  

 

Figure 2-11. Significant increase (warm colors) and decrease (blue colors) in spectral mean power for each sub-band 

with respect to the first intervention phase (B1) for each subsequent phase (A2, and B2). The upper panels illustrate 

the significance score (s-value) for each sub-band and channel. The lower panels show the percentage change for 

significant changes in each sub-band and channel. The shown data was recorded during Resting 2. 

Also for Resting 2, phase A2 and B2 were compared to intervention phase B1. As shown in 

Figure 2-11, the power for the left frontal channels increases significantly from 2.0 to 12.0 Hz in 

phase A2. The percentage change of power (shown in left lower panel), however, is most 



38 

 

prominent between 2.0 and 6.0 Hz. Additionally, the power decreases between 5.0 and 12.0 Hz 

for left parietal, occipital, right temporal and frontal channels (P7, O1, O2, P8, T8, F4). The 

power changes in phase B2 in respect to B1 do not have any specific clusters but low percentage 

increases and decreases are concentrated between 5.0 and 12.0 Hz for the channels F3, FC5, T7, 

P7,O1, O2, T7, FC6, F4. 

During phase A1, frontal and left temporal channels (F3, T7, FC6, F4, F8, AF4) show a power 

decrease from Resting 1 to Resting 2 condition, while occipital channels (O1, O2) and P8 have 

slightly increasing power as is noted in Figure 2-12 and Figure 2-13. 

 

 

Figure 2-12. Significant increase (warm colors) and decrease (blue colors) in spectral mean power for each sub-band 

and channel of Resting 2 with respect to Resting 1 in each phase (A1, B1, A2, B2). The colors illustrate the 

significance score (s-value) for each sub-band and channel, while only s-values >= 2 or s-values <=-2 are displayed. 
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Figure 2-13. Significant increase and decrease in spectral mean power for each sub-band and channel of Resting 2 

with respect to Resting 1 in each phase (A1, B1, A2, B2). The colors illustrate the percentage change for significant 

changes in each sub-band and channel. 

Positive changes were observed in phase B1 for frequencies above 8.0 Hz in the right 

hemisphere for occipital (O2), temporal (T8), and frontal channels (FC6, AF4), while power 

decreased in channel O1, P8, T8, FC6, and F8 from 2.0 to 4.0Hz, and in left frontal region (AF3, 

F7, F3, FC5) from 2.0 to 8.0 Hz. In phase A2, broadband positive changes occurred for frontal 

areas in the right hemisphere, along with some power increase in left frontal, temporal, parietal 

regions below 9.0 Hz. Left parietal channel P7 and the left occipital channel O1 also show a 

negative change in power between 9.0 and 11.0 Hz. Significant negative power change is 

predominant in left frontal and temporal (AF3, F7, F3, FC5, T7) as well as in right occipital, 

temporal, and frontal regions (O2, T8, F8) between 2.0 and 12.0 Hz.  
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2.6 DISCUSSION 

2.6.1 Identification of Theta 

The goal of this part of the analysis was to identify a cluster of adjacent frequency bins that could 

be associated with the properties of the theta band.14 Previous research has defined the theta band 

for typically developing infants (8-12.4 months) from 3.6 to 5.6 Hz and for preschool children 

(three years 8 months to six years 11 months) from 4.0 to 7.6 Hz.14 For the subject of the present 

study (3 years and 2 months) with microcephaly and CP, an increase in spectral power from 

Resting 1 condition to Interaction condition was primarily observed in frontal-temporal regions 

in the left hemisphere from 3.0 to 6.0 Hz. The frequency range as well as topography of 

increased brain activity are in accordance with the results of Orekhova et al.14 for infants during 

social stimulation. The inconsistency in age may be attributed to the abnormal brain development 

of the subject. Additionally, the subject’s cognitive abilities are unknown and limited 

communication makes classification of her stage of maturity difficult.  

The lack of statistical significance in change of brain activity due to social interaction may be 

attributed to the limited number trials. Additionally, the level of distortion in the analyzed 

signals, which is unknown but regarded as high even after artifact removal, may also contribute 

to higher variability in the signal and lead to distortion of the results. 

Despite these confounding factors, our data suggest that the theta frequency band for our subject 

is 3-6 Hz and the alpha band, which typically has a bandwidth of 5 Hz, is 6 – 11 Hz. 

2.6.2 Functional Meaning of the EEG Activity 

First, data are compared to A1, the first baseline phase. For Resting 1 condition in phase B1, 

significant increase in power was found particularly in the 3-4 Hz band in left frontal and right 

frontal, temporal and parietal regions. Theta activity is typically associated with emotional and 
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attentional processes during a specific task.26,14 Specifically, infants and children have shown 

increased theta power during exploration of toys and social stimulation.14 However, the subject is 

not performing a specific task during Resting 1 condition, so the observed increase in theta 

power contradicts the findings of previous studies. In addition, the spectral power in the 7.0 - 

12.0 Hz band decreases significantly in the occipital, parietal, and frontal regions. The subject’s 

alpha band lies in a range from 6.0 to 11.0 Hz, which implies a decrease in alpha power for 

Resting 1 condition.  

This opposing trend in theta and the alpha rhythms has been observed before.26 Klimesch26 

related spontaneous increase in theta and decreasing alpha power in adults with decrease of 

cognitive performance or the transition from wakefulness to sleep. However, very little is known 

about tonic changes of theta in children.58 Klimesch26 also found alpha suppression during 

relaxed but alert wakefulness in an anticipatory situation. Hence, one could argue that the 

observed decrease in alpha power may not be related to diminishment of cognitive performance 

but rather reflect anticipation of the upcoming trial. Additionally, theta has been associated with 

highly focused attention and engagement of neural networks in a highly focused mode of 

processing.14 Even if the subject was not involved in a specific task during resting condition, the 

theta increase may be related to recruitment of additional cortical resources and enhancement of 

cognitive and attentional processes during rest. 

Similar patterns were observed for phase A2 and B2, however, with diminished theta activity 

only in frontal regions. The power increase in the left frontal channels F7 and F3 during phase 

A2, and in the frontal channels AF3, F3, F8 and temporal channel T8 during phase B2 is not 

limited to the theta band and spreads across the entire frequency window from 2.0 to 12.0 Hz. A 

broadband increase does not comply with any known functional meaning and is rather attributed 
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to artefactual data, imbalances of the data acquisition system, or daily condition of the subject, to 

which the applied statistical procedure in combination with the small sample size of four trials 

may not be sufficiently robust.  

Phase A2 shows a more pronounced alpha activity that spreads also over temporal regions in 

both hemispheres. Again, these observations could be related to diminished cognitive 

performance or anticipation. The latter explanation is more plausible after eight weeks of 

repeated trials. Although less pronounced in phase B2, some of the sub-bands assigned to the 

alpha band show a decrease in spectral power in the left parietal and temporal as well as right 

occipital regions. After twelve weeks, the subject may have become familiar with the weekly 

procedure which could lead to a ‘thinning’ of the anticipatory response before trials. The 

consistency of theta power, and the clear demarcation of the alpha rhythm across all three phases 

imply once more that the broadband increase in frontal channels during phase A2 and B2 may 

not have neural but rather artefactual origin. 

Phases A2 and B2 were also compared to the first intervention phase B1. The changes from B1 

to A2 range from 2.0 12.0 Hz and denote an increase of power in the left hemisphere and a 

broadly distributed decrease in power of the right hemisphere. However, the changes do not 

seem to be related to the subject’s theta or alpha activity, and therefore inferences about the 

subject’s underlying cognitive brain activity are not possible. The change from phase B1 to B2, 

however, shows a power decrease in the range 3.0-4.0 Hz, which is associated with the subject’s 

theta band, accompanied by an increase in the subject’s alpha band from 6.0 to 12.0 Hz in left 

frontal and right temporal regions. Decreasing theta and simultaneous increase in alpha power 

has been observed in previous studies and has been associated with an increase in cognitive 

performance.26 From these results, one could infer that phase A2 did not have an effect on 
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cognitive performance, but phase B2 may enhance the subject’s cognitive functions in 

comparison to phase B1. However, it remains unclear whether any changes in cognitive brain 

function in phase A2 are indeed missing or just masked by artefactual noise. 

In all three phases of Resting 2 condition, a predominant power increase from 2.0 to 12.0 Hz 

appears in frontal-temporal channels of the right hemisphere. The origin of this broadband power 

increase is unknown and literature suggests that this pattern may be caused by ocular artifacts.59 

Focusing on the presumably unaffected channels of the posterior areas and left hemisphere, the 

results of Resting 2 condition seem more arbitrary than in Resting 1 condition, but might still be 

worth an attempt for interpretation. Phase B1 shows a power increase in the theta band (3.0-4.0 

Hz) in frontal and parietal regions and also for the upper alpha band (8.0-11.0 Hz) in the 

temporal and right frontal channel. Power increase in the upper alpha band has been associated 

with an increase in cognitive performance, but was found to bring along a decrease in the theta 

band.60 A decrease in the theta range appeared in the left frontal channel F3 in the 5.0-6.0 Hz-

bin. Due to the lack of topographically clustered changes, however, these observations do not 

support any association to a functional meaning of these result. A more typical pattern is found 

during the second baseline phase A2, where a cluster of decreasing alpha power appears in 

occipital and parietal channels. Ranging predominantly from 6.0 to 12.0 Hz, the power decrease 

leaks into the theta band down to 4.0 Hz for the right occipital channel. Since the bands may 

overlap, this should not be of any concern for further interpretation of the alpha rhythm. 

Increased theta power is observed in frontal regions from 3.0 to 5.0 Hz, along with presumably 

artefactual activity in channel F7 from 2.0 to 8.0 Hz. As stated earlier, these observations could 

be associated with increased alertness and expectancy.26 Since the data was recorded at the end 
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of the trial, it seems more plausible to relate the power changes to increased alertness than 

anticipation.  

In phase B2, increased theta power of the left hemisphere is reduced to only the temporal 

channel T7, while alpha activity occurs in left temporal channel T7 and right parietal channel P8 

with broadband decrease from 3.0 to 12.0 Hz in the right occipital channel (O2). As mentioned 

earlier, this ‘thinning’ of alpha activity may be attributed to increasing familiarity with the 

performed tasks and environment and diminish the cognitive load to process new 

information.26,14 

Comparison of phase A2 and B2 to first intervention phase B1 reveals a broadband power 

increase in the left frontal channels, while the percentage change is most pronounced in the theta 

band. The power decreases in the alpha range for parietal and occipital regions as well as frontal 

areas in the right hemisphere. These observations are consistent with the results obtained in 

comparison with the first baseline A1. The changes from phase B1 to B2 do not show any 

association with the subject’s functional rhythms and therefore no plausible inferences can be 

drawn from these results. 

The change from Resting 1 to Resting 2 did not reveal any obvious patterns that might be 

associated with any functional meaning in phase A1 and B2. The significant changes are 

scattered arbitrarily in a wide topographical and frequency range. This measure is also influenced 

by the noted artefactual properties of the Resting 2 data of the right hemisphere, which may 

explain the broad band power increase of the right frontal channels in phase A2. In contrary to 

the lack of clear demarcation of theta and alpha during phase A1 and B2, the intervention phases 

B1 and A2 show interesting clusters. In phase B1, left frontal and occipital channels as well as 

right parietal, temporal, frontal channels denote a power decrease in the theta band, while the 
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alpha power increases for right occipital, temporal, and frontal channels. The phenomenon of 

decreasing theta and increasing alpha power was found to be associated with an increase in 

cognitive performance in typically developing children and adults.26 This may imply that using 

power mobility induced short term activation of cortical resources that allows enhancement of 

cognitive processing.  

In phase A2, the theta activity increases, while alpha decreases in the upper alpha band (9.0-11.0 

Hz) in the left parietal and occipital channels. Alpha power also increases between 6.0 -9.0 Hz in 

left frontal and temporal channels. The pronounced broadband increase in power in the right 

hemisphere is likely the result of artifacts in Resting 2 data. The clusters of increasing and 

decreasing power in phase A2 are localized in a small topographical range. Decreased alpha 

power in parietal and occipital regions implies enhancement of visual processing, while increase 

in theta power in temporal regions may be attributed to recruitment of cortical resources for 

emotion, memory, and audition.61 However, due to the subject’s brain damage, the topography of 

the different brain functions is unknown. 

In summary: 

 The theta rhythm of the subject was identified in the range from 3.0 to 6.0 Hz, while the 

alpha rhythms was assumed to fall into the band from 6.0 to 11.0 Hz.  

 Significant increase of theta power and decrease in alpha power were observed for 

Resting 1 condition during all three phases following the first baseline A1. Comparison to 

the first intervention phase B1 revealed changes in the second intervention phase B2, 

which may derive from enhancement in cognitive performance.26 

 The results of Resting 2 condition showed similar characteristics, while considerable 

distortion by ocular artifacts or other factors are assumed in right frontal-temporal 
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channels due to the broadband distribution of power increase. With respect of previous 

findings,26,14 these observations may be related to an increase in alertness and/or 

anticipation. Since there is no significant difference between baseline phase and 

intervention phase, there is no evidence for a long term impact of power mobility 

training. The observed changes in the subject’s EEG spectrum could also be explained by 

the unusual engagement in specific tasks and social interaction as well as the progress of 

the overall development of the subject during the study. Whether these changes may have 

been influenced or enhanced by power mobility training is unknown and warrants further 

investigation.  

 Analysis of the percentage change from Resting 1 to Resting 2 condition did not reveal a 

clear difference between baseline and intervention phase. The observed decrease in theta 

and increasing alpha power during the first intervention phase could be associated with 

increasing cognitive performance immediately after the use of power mobility.26 This 

implies a short term impact of power mobility training on the subject’s EEG spectrum, 

while it remains unclear whether the observed changes are caused by the use of power 

mobility or by general learning of a new task.  

2.6.3 Limitations of the study 

2.6.3.1 Equipment and Artifacts 

The EEG was recorded with a modified wireless Emotiv EPOC© neuroheadset that has been 

successfully used before.62–64. The original headset was found to be inappropriate for children, 

which was addressed by using a custom sized cap instead of the rigid headset frame and 

replacing the original electrodes with gold cup disc electrodes. Despite previous validation of 

this modification,65 different electrodes and the use of skin prep gel instead of the moistened felt 
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pads could have effected signal strength and quality. A short set-up time was required in order to 

be tolerated by the subject. Thus, the subject’s hair was moistened before administering the cap 

to achieve better connection from the electrodes through the hair to the scalp. This, however, 

formed contact bridges between electrodes, similar to so called ‘sweat bridges’ which are known 

to induce low frequency artifacts below 1 Hz. Although a high pass filter with cut-off at 2 Hz 

was applied, the contact bridges may have caused imbalances in signal strength among the 

different channels. 

The original electrode placement of the Emotiv EPOC© system was adopted, but might still 

might not have been ideal. At the periphery, brain activity is less but muscular artifacts are 

stronger and more frequent,55 whereas an even electrode distribution would also increase the 

spatial resolution of central and posterior regions of the scalp.  

It was established that the major problem with the used data acquisition system was artifact 

contamination due to electrode and cable movement, which was induced primarily by head 

motion of the subject but also by only light vibration of the subject’s wheelchair. These artifacts 

had to be removed manually from the recording, and reduced, in some cases, the amount of 

analyzable data considerably from 5 min to a minimum of 35 seconds. Head motion and facial 

muscle activity such as laughing and coughing contaminated the data additionally with muscular 

artifacts that are not easy to distinguish from the neural signal. Although a wavelet enhanced 

independent component analysis was applied to reduce muscular and ocular artifacts, there are 

not any known reliable measures to assess the efficacy of this method. Hence, residual artifacts 

in the data must be considered in the analysis. Visual inspection and rejection of the independent 

components instead of the use of an automated method might have led to better results and may 

be considered for future work. Since ocular artifacts were quite abundant and distorted a 
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considerable part of the data, additional processing may be needed in order to achieve an artifact 

free signal. Various techniques have been developed for removal of ocular artifacts such as eye 

blinks and eye movement over the past years.66–69   

The EEG data was acquired with a sampling frequency of 2048 Hz but down sampled to 128 Hz 

for wireless transmission, although modern EEG acquisition systems usually use a sampling rate 

of 500 Hz or higher.70 Besides the low temporal resolution, data quality was also limited by the 

spatial resolution of only 14 channels, which is lower than the typically used minimum of 32 

channels. The low spatial resolution limited the application of certain filtering and source 

localization techniques that are based on signal interpolation between electrode sites.43,71–74 

Moreover, the low spatial resolution does not give a good sample of the measured 

electrophysiological signal. Except for the frontal channels, the used system provides only one 

single channel for the temporal, parietal, or occipital region of each hemisphere. Statistically, this 

is equivalent to only one sample of each of these regions and might not give a reliable measure 

of the underlying neural activity. 

2.6.3.2 Study design and Statistics 

The findings of the present study are based on a very small number of trials, only four trials or 

less during each phase. Since EEG is very sensitive to variations in the experimental setup and 

the subject’s cognitive and emotional state during the trial, the small sample size may play a 

significant role in the outcome of the analysis. Cohen75 recommends 50 trials or more for one 

condition in order to guarantee replication standards for time-frequency analysis of cognitive 

electrophysiological data. Such a high number of trials may not be feasible for the target 

population in this study, however, 4 trials are objectively insufficient. 
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In respect of the single-subject A-B-A-B design, however, an increase of the number of trials, 

would require to either shorten the inter-trial intervals or prolong the phases. Shorter inter-trial 

intervals could mean a great strain to the subjects and their parents or guardians, while extension 

of the phases could bring about other problems such as undesired changes in EEG activity due to 

the plasticity of the developing brain. Therefore, the single-subject A-B-A-B design must be 

further assessed in terms of its suitability for the analysis of electrophysiological data. 

2.6.3.3 EEG Analysis 

One crucial factor of EEG data analysis is the identification of the boundaries of the different 

brain rhythms, which show considerable inter- and intra-individual differences, especially related 

to age.26,41,14 Little is known about the characteristics of the EEG spectrum in children, which 

makes identification of individual brain rhythms in each subject indispensable before any 

inferences can be drawn. The alpha peak frequency is typically used as a reference for the alpha 

rhythm in adults, which requires the subject to be in relaxed wakefulness while the eyes are 

closed;27 a state that cannot possibly demanded from infants and very young children. However, 

Orekhova et al.14 showed that social stimulation and manipulation of toys can be reliably 

associated with the theta rhythm. It may be good practice to incorporate this knowledge into the 

study design and use the theta rhythm as reference for the interpretation of the EEG spectrum in 

children. Consequently, the application of the conventional bands has no value for EEG 

spectrum analysis of children, and the use of narrow frequency bands is recommended. 

2.6.4 Future Work 

In conclusion, we found that power mobility training does not have any observable effect on the 

EEG spectrum in the within the four month of data collection, but may have an impact in the 

short term. The observed changes during the intervention phases suggest that power mobility 
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training may bring about enhancement of cognitive processes. However, further research is 

necessary in order to verify these findings. The present study was considerably limited by 

various technical problems and the study design used. For future work, improvement of the EEG 

equipment and pre-processing techniques as well as revision of the study design are 

indispensable. Higher temporal and spatial resolution of the data acquisition and more reliable 

and controlled artifact removal must be achieved. The applied single-subject design was found to 

be inappropriate for an EEG study due to the low number of subjects and trials, and thus, it is 

highly recommended to revise the current design. An inclusive study design might be able to 

consider the special characteristics of EEG data as well as the challenges that come along with 

the needs and limitations of the target population. Also, adjustments of the study design may 

allow the exclusion of influencing factors which currently hinder conclusive interpretation of the 

results.  

Although the results of the present study does not support the hypothesis that EEG can be used 

as an objective measure for the impact of power mobility training on child development, our 

findings suggest that there are spectral changes with power mobility training that cannot be 

accounted for in the literature. The use of better equipment and an appropriate study design may 

elucidate these spectral changes. 
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3 EXTENDED REVIEW OF LITERATURE AND EXTENDED 

METHODOLOGY 

3.1 EXTENDED LITERATURE REVIEW 

3.1.1 The Brain and its Functions 

The brain is composed of three parts: the cerebrum, the cerebellum, and the brainstem.14 

Functions such as coordinating movements, maintaining posture, and balance are processed in 

the cerebellum, which is located under the cerebrum.15 The brainstem consisting of the midbrain, 

pons, and medulla, acts as a relay center connecting the cerebrum and cerebellum to the spinal 

cord and performs many automatic body functions such as breathing, heart rate, body 

temperature, wake and sleep cycles, and digestion.15 

The cerebrum, the largest and most important part of the brain, comprises the left and the right 

hemisphere and performs higher functions like interpreting touch, vision and hearing, speech, 

reasoning, emotions, memory, and fine control of movement.14 The surface of the cerebrum, the 

so called cortex, is folded into ridges, so called gyri, and grooves called sulci or fissures. The two 

hemispheres are divided into four lobes (frontal, temporal, parietal, and occipital), of which the 

frontal lobe is the largest and most anterior. The frontal lobe accommodates the part of the motor 

system and is involved in the production of language, motivation, comportment, and executive 

function. The temporal lobes bring about comprehension of language, promote memory and 

emotion, and receive primary auditory input, while the parietal lobes receive tactile input, and 

are involved in visuospatial processing as well as reading and calculation skills.  The most 

posterior and smallest lobe is the occipital lobe, which receives primary visual input, and 

processes visual perception.14 
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Table 2. Brain regions and their functions.14  

Lobe Function 

Frontal Motor system 

Language production (left) 

Motor prosody (right) 

Comportment 

Executive function 

Motivation 

Temporal Audition 

Language comprehension (left) 

Sensory prosody (right) 

Memory 

Emotion 

Parietal Tactile sensation 

Visuospatial function (right) 

Reading (left) 

Calculation (left) 

Occipital Vision 

Visual perception 

 

The cortex contains about 70% of the 100 billion nerve cells, called neurons, in the human brain, 

which form the grey matter.15 Beneath the cortex and between the hemisphere are about 300 

billion axons connecting to these neurons, which allow interhemispheric exchange of 

information and communication to structures found deep in the brain.14,15 The next section 

explains the structure of neurons and the physiological processes, which allow neurons to 

interconnect and pass information packages to each other. 

3.1.2 Neurons and Brain Signals 

A neuron consists of a cell body, a dendrite, an axon, and a synapse.16 The cell body contains 

organelles that are responsible for the maintenance of the cell structure and cell function, such as 

the nucleus. On one end of the cell body (soma), the dendrites are located, which increase the 

receptive surface of the neuron. The axon emerges from the opposite side and terminates in the 

synapse, which connects the neuron to the dendrite of another neuron.77  
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The main function of a neuron is to receive neural information with the receptors of the dendrites 

and transmit it through the axon to the synapse.78 Neural information is encoded in electrical 

impulses, so called action potentials, which is a rapid change in the membrane potential of a 

neuron. The magnitude of the resting potential of a neuron depends on the differences in specific 

ion concentrations in the intracellular and extracellular fluid, as well as on the differences in 

membrane permeability to the different ions. The ions which contribute most to the resting 

potential are sodium (Na+) and potassium (K+). The sodium and potassium concentrations in the 

intracellular and extracellular fluid define a resting potential of -70mV. Voltage-gated channels 

inlayed in the membrane of neuron allow the change from the resting potential to an action 

potential. The action potential is induced by an initial depolarization in the dendrites, which 

stimulates the opening of voltage-gated Na+ channels. The influx of sodium ions into the nerve 

cell leads to an increase of the membrane potential. As soon as a critical threshold potential is 

reached, a positive feedback loop is induced, which causes a rapid depolarization of the 

membrane potential such that the membrane becomes positive on the inside and negative on the 

outside. The cycle of the positive feedback loop is broken by the inactivation of the Na+ 

channels. At this point the action potential reaches its peak at +30mV and the influx of potassium 

through voltage-gated K+ channels, which have opened in the meantime, brings the membrane 

potential back to its resting potential. This process is called repolarization and it is terminated by 

the closing of the voltage-gated K+ channels through a negative feedback. The nerve cells require 

a so called refractory period of approximately 2 ms before a stimulus can generate another action 

potential. The action potential in the initial segment of the neuron depolarizes the adjacent region 

of the membrane of the axon, which brings the membrane to the threshold potential and induces 

another action potential. This causes the action potential to travel from the dendrite through the 
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axon to the axon terminal. The movement of the action potential through a brain cell (neuron) 

produces a current, which generates a magnetic field measurable by magnetoencephalography 

(MEG) and a secondary electrical field over the scalp measurable by electroencephalogram 

(EEG).78  

3.1.3 Electroencephalography (EEG) 

EEG is the record of electrical activity generated in the brain and is nowadays a commonly used 

tool in neuroscience to study cognitive processes.79 An EEG acquisition system consists of 

multiple electrodes attached to the head, which pick up the electrical signals of the neurons in the 

brain and transmit them to a machine that records those signals as the EEG.78 In many studies the 

electrodes are positioned according to the international 10-20 electrode setting.47 Whereas the 

original 10-20 electrode setting considers 21 electrodes, other systems are used for higher 

electrode density, such as the 10-10 system for 74 electrodes and the 10-5 system for up to 345 

electrodes.36 

Since the current of a single neuron is too weak to be measured with EEG or MEG, the detected 

signal rather represents the synchronous activity of a neuronal population.36 The location of the 

firing neurons is crucial for the interpretation of these signals.80 However, the estimation of these 

locations is a basic problem in EEG and MEG. The estimation of neuronal sources based on the 

distribution of electrical potentials or magnetic fields recorded on the scalp is called the inverse 

problem.79 Since there is not a unique solution for this problem, several methods are used to 

estimate the location of the current source.74,81–85 One simple way to circumvent the inverse 

problem is using a Surface Laplacian filter.71 This method interpolates the distribution of 

electrical activity between the measured potentials and estimates the current source density by 
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differentiation.71 An advantage of surface Laplacian filtering is the effect of noise reduction in 

the processed EEG data.73 

3.1.4 Analysis of Brain Activity 

3.1.4.1 Event-related and spontaneous brain activity 

Brain activity can be studied with a variety of experimental approaches, which can be divided in 

event-related and continuous approaches.30 Event-related experiments typically study changes in 

activity, which are induced by events such as sensory stimuli.30 Studied exclusively in the time 

domain, these changes are called event-related potentials (ERPs) and are assumed to occur with a 

relatively fixed time-delay to the stimulus.31 Averaging methods are used in order to detect the 

ERPs and enhance the signal-to-noise ratio.87 Additionally, stimuli can also evoke a 

reorganization of the phases of the ongoing EEG signal, which require frequency analysis for 

their extraction.31 These changes in the frequency domain become manifest in decrease and 

increase of power in given frequency bands, which can be measured by computing the event-

related spectral perturbations (ERSPs).88 

In contrast to event-related experiments, continuous experiments study changes in brain activity 

which are not time-locked.86,89 There are several reasons to choose such an experiment design. 

Specific tasks or controlled stimuli might be absent, which leads to the investigation of the 

“resting-state” of the brain.30 The identification of a general resting-state has been subject of  

numerous studies in the past.83,90–92 Another reason for neglecting the time domain might be the 

investigation of one or more continuous tasks that can last over a longer time period.30 The time 

domain may also be irrelevant for studies that use repeated short stimuli, which entrain brain 

oscillations.30 The analysis of continuous paradigms typically tries to identify dominant patterns 

in the frequency domain or connectivity between brain regions.30 
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Spontaneous brain activity can reveal important properties of the current brain state such as 

attention, alertness, drowsiness, etc..93 For example, a previous study showed that the power 

spectrum of EEG data recorded with only two electrodes provides information about the level of 

alertness, whereas the power increases with decreasing alertness.94 Spontaneous brain activity at 

rest with eyes closed and/or eyes open can be considered as resting state and can be used as 

baseline for investigating changes in brain activity.42 

3.1.4.2 EEG Spectrum Analysis 

EEG signals have a fairly wide frequency spectrum which ranges from 0.5 Hz to 40 Hz or 

higher.38 This range can be split in five different frequency bands, the so called delta (0.5-4Hz), 

theta (4-7.5Hz), alpha (8-13Hz), beta (14-26Hz), and gamma (> 30Hz) rhythms. Lower 

frequencies indicate the less responsive states, whereas higher frequencies indicate increased 

alertness. Thus, the delta rhythm is primarily associated with deep sleep, but can also be present 

during waking state. Delta waves are difficult to distinguish to from myogenic artifacts 

originating in the activation of neck and jaw muscles. The theta rhythm is presumed of thalamic 

origin and appears during the transition from drowsiness to consciousness. Theta oscillations are 

typically associated with access to unconscious material, creative inspiration, and deep 

mediation, while they also seem to be related to level of arousal. Furthermore, theta waves play 

an important role in infancy and childhood, whereas predominant appearance in adults is 

considered as pathological. Alpha oscillations appear in the posterior half of the brain, mainly in 

occipital regions. The alpha wave is the most prominent rhythm and has been thought of an 

indicator for relaxed awareness without any attention or for concentration.38 The alpha rhythm is 

of special interest for various reasons which is why the next section will discuss its special 

meaning more in detail. The beta rhythm, typically found in frontal and central regions, indicates 
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usual waking state.38 It is associated with active thinking, active attention, focus on the outside 

world, or solving concrete problems. Gamma oscillation rarely occur and are of very low 

amplitude, but have been proved to indicate event-related synchronization of the brain.38  

In general, the amplitude decreases with increasing frequency, i.e. for example the alpha rhythm 

has a higher amplitude than the beta or gamma rhythm34. This is also valid within the frequency 

band such that the lower alpha component has a higher amplitude than the higher alpha 

component38. 

 

Table 3. The five distinguished brain rhythms identifying different states of consciousness and their properties.38 

 Delta Theta Alpha Beta Gamma 

Frequency 0.5-4 Hz 4-7.5 Hz 8-13 Hz 14-26 Hz > 30 Hz 

State of 

Consciousness 

Deep Sleep Consciousness 

/ Drowsiness 

Relaxed 

awareness 

without 

attention or 

concentration 

Waking state Waking state 

Association Sleep Access to 

unconscious  

material, 

creative 

inspiration, 

deep 

meditation 

Is eliminated 

by opening 

eyes, hearing 

unfamiliar 

sounds, 

anxiety, 

mental 

concentration 

or attention  

Active 

thinking, 

active 

attention, 

focus on the 

outside world, 

problem 

solving 

Active 

thinking, 

active 

attention, 

focus on the 

outside world, 

problem 

solving 

Brain Region  Frontal regions Posterior half 

of the head, 

occipital 

region 

Frontal and 

central regions 

Frontal and 

central regions 

Other Factors Likely to be 

confused with 

artefact signals 

due to muscle 

activity 

Important role 

in infancy and 

childhood, may 

be pathological 

in adults 

most 

prominent 

rhythm 

Found in 

normal adults, 

can be blocked 

by motor 

activity or 

tactile 

stimulation 

Rare 

occurrence, 

confirmation 

of certain 

brain diseases, 

well-localized 

activity 
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3.1.4.3 Special Meaning of Alpha Rhythm 

The most prominent rhythm is the alpha rhythm, which occurs at 8-13 Hz during wakefulness, 

best seen with eyes closed and during physical relaxation and relative mental inactivity in the 

occipital cortex.34 When the eyes are opened, the amplitude of the alpha peak observed with 

closed eyes, is reduced, which is known as “Berger effect” or reaction of activation.95 It has been 

acknowledged that the alpha rhythm reflects an idling state of primary cortical areas.39 This 

results in a decrease of alpha power when engaging in a task such as perceptual judgment or 

increased attentiveness.41,42 There are several different “alpha rhythms” associated with different 

meanings within the alpha band.40 Alpha rhythms related to motor control are called mu rhythms 

of which two types can be distinguished.40 Both are blocked before and during movement and 

occur either at lower frequency (8-10 Hz) in a widespread manner, or at higher frequency (10-13 

Hz) showing more focused patterns.40 The former is associated with unspecific movements, i.e. 

the responses to finger and foot movements are similar, while the latter is specific and different 

for different limbs.40 Lower alpha desynchronization is also observed in response to various non-

task-specific factors and may be understood as general “attention”.40  Studies39,43,44 indicate 

involvement of alpha power also in cognitive processes and memory. The observation of positive 

correlation of alpha power and awareness leads to the theory that non-essential processing is 

inhibited in order to facilitate performance of the actual task or support working memory 

processes.39  

Although the alpha band typically ranges from 8 to 13 Hz, differences between subjects should 

be considered.41,60 For example, whereas the individual alpha peak frequency increases from 

early childhood to puberty, it is decreasing again with increasing age.60 
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3.1.4.4 Brain Activity and Brain Performance 

Klimesch has examined and discussed the alpha rhythm and its functional meaning thoroughly in 

the last decade.12,26,39,96 His findings identify a reciprocal relationship between alpha and the 

lower theta activity in the context of cognitive and memory performance.26 

Two types of EEG phenomena were linked to good performance whereas a tonic increase in 

alpha and a decrease in theta power and a large phasic (event-related) decrease in alpha and 

increase in theta were observed. Also, a decrease in alpha power and simultaneous increase of 

theta power was noticed during the transition from waking to sleeping state. Klimesch suggests 

that the power of the alpha rhythm is positively related to cognitive performance and brain 

maturity, whereas theta power is negatively related. However, during actual task demands alpha 

power is negatively related to cognitive (and memory) performance, whereas again the opposite 

holds true for the theta range. Klimesch also mentions that alpha reactivity can be an indicator 

for performance. Alpha or theta reactivity is usually thought as the comparison of a resting 

period (eyes open or closed) with a test period.26 Klimesch also references studies that showed 

that learning disabled children and Alzheimer patients showed less task-related alpha attenuation 

than the control group.96 

Mathewson et al.97 demonstrated a correlation between resting alpha power and video game 

learning rate. The higher the individual alpha power before the training, the steeper the 

improvement in score during the training. The same study showed also that in addition to resting 

alpha oscillations, alpha and delta  ERSPs can be used as predictors for the amount of skill 

improvement in tasks.97 

Orekhova et al.14 who examined the involvement of theta in cognitive and emotional processes 

of infants and preschool children supporting the previous findings by Klimesch26. The observed 
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increase in theta power and simultaneous decrease in high alpha power in both age groups led to 

the conclusion that theta oscillation are strongly related to behavioral states with considerable 

attentional and emotional load and may reflect engagement of different brain networks in control 

and behavior.14 

3.1.5 Signal Processing of EEG Data 

3.1.5.1 Artifacts 

There is a variety of different factors, which might contaminate or imitate EEG recording, and 

might lead to misinterpretation of the underlying brain activity. There are anatomical and 

physiological factors such as the conductivity of the head tissue (bone, brain, skin, etc.), cerebral 

blood flow, hormones, and muscle activity which influence EEG recordings.55,98,99 Also, 

topographical factors such as montage choice of the electrodes and the spatial resolution can 

influence subsequent analysis of the EEG data.41,100 However, the major sources of 

contamination of EEG data are muscular or electromyogram (EMG) artifacts, and 

electrooculogram (EOG) artifacts because they cause a change in the electric fields over the 

scalp.55,69 EMG of skeletal muscle, which is recorded from the skin, has a broad frequency 

distribution reaching from 0 Hz to over more than 200 Hz with distinct frequency components at 

0-5 Hz, and at 10 Hz.55 Facial muscle shows a broad frequency response with two peaks at 20-30 

Hz and 35-60 Hz. Due to its broad frequency distribution EMG contaminates alpha, beta, and 

delta rhythms.55 Eye blinks and eye movement are expected to cancel by averaging methods, but 

they will increase the variability in the averaged data.101 It is also known that EOG artifacts 

increase the spectral power of EEG data, particularly for the slow bands delta and theta.67 

There exist several less or more sophisticated methods to detect contaminated EEG data or 

remove the artifacts from the data.100,102–104 While in the past, artifacts were identified by eye and 
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then manually rejected, nowadays more and more automated methods are available to detect 

artifacts in EEG data more efficiently.105–107 One simple way to do this is to measure the 

amplitude within a certain range of data points.56 For the EEG, amplitudes above 100 µV are 

considered as noise resulting from movement and electrode artifacts, which can be detected and 

removed by simple thresholding.55 The disadvantage of this method is that it results in data loss 

of the affected region or channel.55 

The employment of spectral filtering can be very useful when the artifact manifests itself in a 

specific frequency range, but this is only recommended when the contaminated frequency range 

is narrow since it will attenuate also EEG activity in this range.108 Spatial and temporal filtering 

has been used successfully for EEG-based communication, but this method is only applicable in 

situations of voluntary motor control by the subject.109  

Jung et al.104 demonstrated that Independent Component Analysis (ICA) can detect EMG 

contamination effectively. ICA identifies the components of a signal, which are statistically 

independent of each other, such that artifacts are represented as a separate component of the 

signal.110 The component which is associated with muscle activity such as eye blinks can be 

completely removed or processed before the signal is composed again to a signal without those 

artifacts.52,110–112 This method has been expanded and improved in various ways over the last 

decade combining ICA with other methods such as wavelet transform and blind source 

separation.51,104,106 

3.1.5.2 Transformation to Frequency Domain 

Various methods are available in order to transform the recorded EEG data to frequency domain 

for spectral analysis.86 The most common are non-parametric methods such as Fourier transform, 
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wavelet transform, and Hilbert transform. Parametric spectral estimation is typically based on 

autoregressive modelling such as the Yule-Walker method.86 

The Fourier Transform typically uses the short-time Fourier method, which computes the power 

spectrum considering shorter overlapping time windows.86 Tapering, such as the use of a 

‘Hanning’ window, is used in order to reduce leakage. The absolute value of the obtained 

complex frequency spectrum can be averaged over several trials for noise reduction. The 

disadvantage of the Fourier transform is the dependency of frequency resolution on time 

resolution, which is a reciprocal relation, i.e. higher time resolution results in lower frequency 

resolution. The use of wavelet functions can address this problem by constructing the oscillatory 

basis of the transform from a prototypical ‘mother wavelet’. The most commonly used wavelet 

function is the Morlet or Gabor wavelet. Since the wavelet length decreases for higher 

frequencies, the wavelet spectral estimates have better temporal resolution for higher 

frequencies.86,113,114 Another useful tool for spectral analysis is the Hilbert transform which 

allows computation of instantaneous phase and amplitude.86 However, band-pass filtering is 

required since the phase and amplitude estimates are only interpretable for narrow-band signals. 

Combined with Empirical Mode Decomposition (EMD), the so called Hilbert-Huang transform, 

high spectral resolution for arbitrary frequencies is obtained. For EEG however, clinical mode 

decomposition (CMD) is more useful since the spectrum is decomposed in components 

corresponding to partitions of the clinical spectrum. HT and CMD allow high temporal 

resolution of rapid changes in frequency, phase, and amplitude of a signal.86,115 
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3.2 EXTENDED METHODOLOGY 

3.2.1 Data Acquisition System 

The EEG was recorded with a modified wireless Emotiv EPOC© (Emotiv, Inc., San Francisco, 

CA) neuroheadset. The original Emotiv EPOC© system consists of a headset with 14 electrodes 

with moistened felt pads for good connection to the scalp and an integrated acquisition unit 

containing amplifier, pre-processer, and Bluethooth® transmitter. Internally, the data are sampled 

at 2048Hz and notch filtered at 50 Hz and 60 Hz using a built in digital 5th order Sinc filter with 

a resulting signal bandwidth is 0.2-45 Hz. The data is streamed with a sampling rate of 128 Hz to 

a USB receiver via Bluethooth® SMART 4.0 LE protocol. The data were acquired in 

TestBenchTM software (Emotiv, Inc., San Francisco, CA). 

 

Figure 3-1. Original Emotiv EPOC© neuroheadset with 14 electrodes and acquisition unit.116 

 

The Emotiv EPOC© neuroheadset was tested beforehand with three children of about 3 years of 

age with multiple severe disabilities. All three participants were wheelchair users. Since the 

Emotiv EPOC© neuroheadset is designed for adolescents and adults, the size of headset was not 

appropriate for the head circumferences of the participating children. The headset was too lose 
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which caused uncontrolled shifting and moving of the electrodes. Additionally, the arc, which 

enclosed the wireless acquisition unit, was disturbing for the children due to its position at the 

backside of the head. In order to overcome these problems, the Emotiv EPOC© neuroheadset was 

modified for the present study. The 14 electrodes and the two reference electrodes of the original 

system were replaced with gold cup disc electrodes mounted on a custom sized EasyCap 

(EASYCAP GmbH, Herrsching, Germany), which was delivered with pre-cut holes for the 

electrode placement. The electrode placement of the original headset (AF3, F7, F3, FC5, T7, P7, 

O1, O2, P8, T8, FC6, F4, F8, AF4 referenced to CMS (P3) and DRM (P4)) according to the 

International 10-20 system was retained.47 Plastic adapters for holding the electrodes in position 

were designed and 3D-printed at Grand Valley State University. The electrode adapters consist 

of a bottom part and a lid. A groove in the bottom part allows the attachment to the cap, while a 

slot holds the electrode. The electrode is kept in place by a lid that is fixated through a screw 

mechanism.  

 

Figure 3-2. Solidworks drawing of the designed electrode adapter. 

 

The wireless acquisition unit consisting of amplifier, pre-processer, wireless transmitter, and 

battery, was removed from the original frame and placed into a plastic enclosure. The enclosure 
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was also designed and 3D-printed at Grand Valley State University. It provides three slots, one 

for the power button, one for the USB connector, and one for the 25-pin D-sub connector for the 

electrode bundle. 

 

Figure 3-3. The wireless acquisition unit of the Emotiv EPOC© 

neuroheadset with amplifier, pre-processer, transmitter, and battery. 

 

 

Figure 3-4. Plastic enclosure containing the wireless acquisition unit. A 25-pin D-sub connector allows the 

connection to the gold cup electrodes. The black USB dongle serves as the receiver of the streamed data. 
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Figure 3-5. The 16 gold cup electrodes with 25-pin D-sub connector to the wireless acquisition unit. The prototype 

version of the electrode adapter is also shown. 

 

 

Figure 3-6. The final version of the modified Emotiv EPOC© system showing the cap with the mounted electrodes, 

the wireless acquisition unit and USB  receiver. 
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3.2.2 Artifact Removal 

Urigüen et al.117 discusses the most recent and most commonly used methods for artifact removal 

from EEG data. In conclusion of the extensive review, independent component analysis (ICA) is 

regarded as the safest approach to correct EEG recordings without prior knowledge of the EEG 

signals and its contamination.75 ICA methods attempt to find a linear representation of non-

Gaussian data so that the resulting components are as independent as possible.110 ICA was 

originally proposed for blind source separation in order to recover independent source signals s 

(e.g. different speakers, different EEG channels, noise sources, etc.) after they are mixed by an 

unknown matrix A.104 This can be expressed as x = As, where x are N mixtures (e.g. recordings 

of voices, EEG recordings, etc.) of the original N sources. Except the N different mixtures x, 

nothing is known about the sources or the mixing process. The goal of ICA is to solve the 

equation x = As for s by finding the unmixing matrix W.104 The recovered sources are known as 

independent components. 

In the last two decades, various algorithms were developed to solve this problem, while 

nowadays the most commonly used are the second-order blind identification (SOBI118), 

(extended) InfoMax119, fastICA120, and adaptive mixture of independent component analyzers 

(AMICA121).117  

Regarding EEG recordings, the application of ICA is used to separate the multichannel EEG 

signal from artefactual signal.51 Typically, ICA components are inspected visually and the 

artefactual components are removed manually by zeroing those components. Since this 

procedure is very time consuming, a lot of research has been done with the goal to automate the 

removal of the contaminated components.107,122–125 Nonetheless, none of them has gained 
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acceptance and the manual rejection of artefactual components is still the most common 

technique. 

For the present study, two different approaches for an automatic selection of the relevant 

independent components were pursuit and evaluated. The first approach is based on a practice 

used in principle component analysis (PCA126). In contrary to ICA, PCA attempts to reduce the 

dimensionality of a data set by finding the most uncorrelated representation consisting of the 

principle component. By selecting only the first few components, which contain most of the 

information in the data, the dimensionality of the original data can be considerably reduced. A 

common way to identify these components, is to select a cumulative percentage, e.g. 95%, of 

total variation which one desires that the selected principle components contribute.126 We used a 

similar method in order to identify the independent components containing most of the neural 

signal. However, assuming that artefacts have a higher variability than the neural signal, we 

considered the components that add least to the total variance of the data. Thus, the variance of 

each component is measured using the mixing matrix W (inverse of unmixing matrix) and the 

original data X. 

 

𝜎𝑘
2 =

∑(𝑤𝑘)2(∑ 𝑥𝑘)2

𝑁𝑇 − 1
,   𝑓𝑜𝑟 𝑘 = 1,2, … 𝑁 (3-1) 

 

𝜎𝑘
2 is the mean variance of the kth component and 𝑤𝑘 is the kth column of the mixing matrix W, 

while 𝑥𝑘 denotes the kth channel of data X. N is the number of channels, while T represents the 

number samples.  
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Sorted from highest to lowest mean variance, the components with a cumulative percentage of 

95% of the total variance are zeroed before back-projection. Hence, only the components which 

contribute less than 5% of the total variance are retained. 

For the second approach, a method proposed by Castellanos and Makarov51 was used, which 

recovers EEG signals by using wavelet transform for artifact detection. The proposed wavelet 

enhanced ICA (wICA) has the advantage to be fully automated and preserves also EEG signals 

leaking into components which are considered as artefactual. The method makes use of the 

differences in temporal and spectral properties between EEG signals and artifacts. While EEG 

signals are of low amplitude and have a broad band frequency spectrum, artifacts are of high 

magnitude (power) and are localized in the time and/or frequency domain. In order to identify 

these features, Castellanos and Makarov use discrete wavelet transform of the independent 

components. Expressed in mathematical form the wavelet transform would be 

𝑊𝑠(𝑑, 𝑏) =
1

√𝑑
∫ 𝑠(𝑡)𝜓𝑑,𝑏(𝑡)𝑑𝑡,      𝜓𝑑,𝑏 = 𝜓 (

𝑡 − 𝑏

𝑑
) , (3-2) 

where 𝑊𝑠(𝑑, 𝑏) is the wavelet representation of the independent component 𝑠(𝑡) and 𝜓 is the 

mother wavelet with discrete values b and d defining the time localization and scale. 𝑊𝑠(𝑑, 𝑏) is 

assumed to be the sum of artefactual and neural signal which can be expressed as 

𝑊𝑠(𝑑, 𝑏) = 𝑊𝑛(𝑑, 𝑏) + 𝑊𝑎(𝑑, 𝑏) ,  (3-3) 

where 𝑊𝑛(𝑑, 𝑏) and 𝑊𝑎(𝑑, 𝑏) are the wavelet coefficients of neural and artefactual parts of the 

independent component.  

Due to the spectral properties, the neural signal spreads almost homogenously over the whole 

spectrum of scales and localization, while the artifacts appear with high amplitude in long 

enough scales and localized in time windows. The neural signal is separated from the artifacts by 

thresholding and setting parts that exceed the threshold value in amplitude are set to zero. The 
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selection of the threshold value K is a crucial element of the algorithm. For removal of ocular 

and heartbeat artifacts, a fixed form threshold has provided good performance and is set to 

𝐾 = √2 log (𝑁𝜎) ,     𝜎2 =
𝑚𝑒𝑑𝑖𝑎𝑛(|𝑊(𝑑, 𝑏)|)

0.6745
 , (3-4) 

where N is the length of the data segment to be processed and 𝜎2 is the estimator of the 

magnitude of the neural signal part. After thresholding, the inverse wavelet transform is applied 

and the cleaned components are composed to the original signal. The wICA algorithm was 

validated with semi-simulated and real EEG recordings and shows significant improvement of 

artifact suppression in comparison to the conventional ICA method.51 The wICA method uses the 

ICA algorithm InfoMax by default, but Castellano and Makarov51 state that a different algorithm 

might be able to achieve better results.  

Variations in success for blind source separation depending on the signal content were also 

observed by Urigüen et al..117 The review examines the differences and suitability of the most 

popular algorithms for different types of signal contaminants. For ocular artifacts, muscular 

artifacts, and cardiac artifacts, SOBI was identified as the most reliable and successful algorithm, 

while also AMICA showed satisfactory results for muscular and cardiac artifacts. If a 

combination of different types of artifacts is present or the type of contamination is unknown, 

AMICA and InfoMax seem to be the best choices, while also SOBI performs successfully.117 

In order to identify the best algorithm for artifact removal of the EEG data in the present study, 

different types of ICA algorithms and artifact detection in the independent components were 

tested. Test subjects were the InfoMax, wavelet enhanced InfoMax with threshold of 1.00 

(wIM100), wavelet enhanced InfoMax with threshold of 1.25 (wIM125), the JADE127 algorithm, 

wavelet enhanced JADE with threshold of 1.00 (wJ100), wavelet enhanced JADE with threshold 
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of 1.25 (wJ125), and the SOBI algorithm. The SOBI algorithm and the wavelet enhanced method 

were not compatible due to the low amplitude of the SOBI components. 

Two measures for evaluating the performance of the different algorithms were used as proposed 

by Sweeney et al.128 Firstly, the signal-to-noise ratio (SNR) was measured in decibel using the 

following formula: 

𝑆𝑁𝑅 = 10 log10 (
𝜎𝑠

2

𝜎𝑎
2) (3-5) 

where 𝜎𝑠
2 is the variance of the noise-free (neural) signal and 𝜎𝑒

2 is the variance of the error 

(artefactual) signal. The noise-free signal is the estimated desired signal after application of the 

artifact removal algorithm, while the error signal was obtained by subtracting the noise-free 

signal from the noisy signal. For comparison, the percentage increase of SNR was computed. 

𝑆𝑁𝑅𝑑𝑖𝑓𝑓 =
𝑆𝑁𝑅𝑎𝑓𝑡𝑒𝑟 − 𝑆𝑁𝑅𝑏𝑒𝑓𝑜𝑟𝑒

𝑆𝑁𝑅𝑐𝑙𝑒𝑎𝑛 − 𝑆𝑁𝑅𝑏𝑒𝑓𝑜𝑟𝑒
∙ 100% (3-6) 

The second measurement for performance assessment was the percent correlation increase 

between artifact-free and estimated signal using following formula: 

𝑅𝑑𝑖𝑓𝑓 =
𝑅𝑎𝑓𝑡𝑒𝑟 − 𝑅𝑏𝑒𝑓𝑜𝑟𝑒

𝑅𝑐𝑙𝑒𝑎𝑛 − 𝑅𝑏𝑒𝑓𝑜𝑟𝑒
∙ 100% (3-7) 

𝑅𝑏𝑒𝑓𝑜𝑟𝑒 is the correlation calculated over the epochs of contaminated data, while 𝑅𝑎𝑓𝑡𝑒𝑟 is the 

correlation of the same data after artifact removal. 𝑅𝑐𝑙𝑒𝑎𝑛 is the correlation of known artefact-

free signal. 

In the first test run, 10 different artificial test signals were used. Each test signal consisted of 14 

channels, which were divided into two groups, namely, 7 clean channels and 7 noisy channels. 

The group of noisy channels differed from the groups of clean channels only by the addition of 

different levels and duration of random noise in order to simulate artefact contamination. The 
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percentage increase of SNR (SNRdiff) and correlation (Rdiff) were calculated for the seven 

contaminated channels of each file. The mean was computed across channels and files to obtain 

an overall score of the method. The analysis revealed that all the different algorithms achieve a 

minimum score of SNRdiff = +20.0 (±9.2) % and Rdiff = +19.1 (±10.8) %. The SOBI algorithm 

achieved the highest scores with SNRdiff = +69.6 (±5.8) % and Rdiff = +129.6 (±60.4) %. 

 

Figure 3-7. Mean percentage increase of SNR and correlation R2 after applying the seven different ICA algorithms 

to artificial test signal. Ten different files with a 14-channel test signal were tested. 

 

In the second test run, the algorithm were fed with real EEG data which consisted of 6 different 

files with 14 channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4). The 

underlying EEG signal was unknown, however, the strongest artifacts were identified in channel 

O1 and O2 (representing the artefactual signal), while the channels F7, T7, T8, and F8 were the 

cleanest ones (representing the signal of interest). For the SNR, the algorithms InfoMax, JADE, 

and SOBI show considerable decrease in SNR, and thus seem to add noise instead of removing 

it. The two wavelet enhanced algorithms wJ100 and wJ125 achieve the highest increase in SNR 
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with SNRdiff = +19.0 (±7.8) % and SNRdiff = +19.0 (±7.9) %. The same algorithms, however, do 

not perform well regarding the percentage increase of correlation. Only the two wavelet 

enhanced InfoMax algorithms, wIM100 and wIM125, achieve positive results in SNR as well as 

correlation. With SNRdiff = +12.9 (±11.9) % and Rdiff = +24.3 (±21.9) %, wIM125 performs 

slightly better than wIM100 with SNRdiff = +5.5 (±8.4) % and Rdiff = +21.5 (±20.5) %. 

 

Figure 3-8. Mean percentage increase of SNR and correlation R2 after applying the seven different ICA algorithms 

to real EEG data. Six different files, each containing real 14-channel EEG data. 

 

Due to these results, the wavelet enhanced InfoMax algorithm wIM125 was considered as the 

most stable one with good performance on artificial and real data. This was also visually 

confirmed, comparing the time series after artifact removal. 
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Figure 3-9. An example of real EEG data used for the evaluation of the algorithms. 

 

Figure 3-10. The EEG data shown above after applying the JADE algorithm. As already implied by the test 

measures, the JADE algorithm seems to reduce the artifacts only slightly. 
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Figure 3-11. The EEG data shown above after applying the wavelet enhanced InfoMax (wIM125) algorithm. 

wIM125 obviously reduces the artefacts more than the JADE algorithm, which was identified as unstable applying it 

to real EEG data regarding the test measures. 

3.2.3 Spectral Analysis 

After artifact removal the recorded EEG signal was Fourier transformed to frequency domain for 

further analysis using the Welch’s method.54 The Welch’s method uses K sequences of length L 

with typically an overlap D of 50% (i.e. L/2). The periodograms  

𝑃𝑘(𝑒𝑖𝜔) =
1

𝐿
|∑ 𝑤(𝑙) ∗ 𝑥𝑘(𝑙)𝑒−𝑖𝜔𝑛

𝐿−1

𝑙=0

|

2

 (3-8) 

of the subsequence 𝑥𝑘 of L samples formed with a window function 𝑤(𝑙) are averaged resulting 

in the power spectral density (PSD) with following equation: 

𝑃𝑥(𝑒𝑖𝜔) =
1

𝐾𝐿𝑈
∑ |∑ 𝑤(𝑙) ∗ 𝑥𝑘(𝑙 + 𝑘𝐷)𝑒−𝑖𝜔𝑛

𝐿−1

𝑙=0

|

2

,

𝐾−1

𝑘

 (3-9) 
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where  

𝑈 =
1

𝐿
∑ 𝑤2(𝑙)

𝐿−1

𝑙=0

. (3-10) 

Through averaging over multiple periodograms, the variance, and thus the noise, of Welch’s 

PSD estimate is considerably reduced.54 
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4 APPENDIX 

4.1 CODE: PREPROCESSING FOR ARTIFACT REMOVAL (GUI) 

function varargout = EEG_GUI_ArtRem(varargin) 

% EEG_GUI_ARTREM MATLAB code for EEG_GUI_ArtRem.fig 

%      EEG_GUI_ARTREM, by itself, creates a new EEG_GUI_ARTREM or raises the existing 

%      singleton*. 

% 

%      H = EEG_GUI_ARTREM returns the handle to a new EEG_GUI_ARTREM or the handle to 

%      the existing singleton*. 

% 

%      EEG_GUI_ARTREM('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in EEG_GUI_ARTREM.M with the given input arguments. 

% 

%      EEG_GUI_ARTREM('Property','Value',...) creates a new EEG_GUI_ARTREM or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before EEG_GUI_ArtRem_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to EEG_GUI_ArtRem_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

  

% Edit the above text to modify the response to help EEG_GUI_ArtRem 

  

% Last Modified by GUIDE v2.5 21-Jan-2016 14:06:29 

  

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @EEG_GUI_ArtRem_OpeningFcn, ... 

                   'gui_OutputFcn',  @EEG_GUI_ArtRem_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 

  

  

% --- Executes just before EEG_GUI_ArtRem is made visible. 

function EEG_GUI_ArtRem_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to EEG_GUI_ArtRem (see VARARGIN) 

  

% gabby's head radius is 6.266 cm 
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clc; 

initializeGUI(handles); 

  

% Choose default command line output for EEG_GUI_ArtRem 

handles.output = hObject; 

  

% Update handles structure 

guidata(hObject, handles); 

  

% UIWAIT makes EEG_GUI_ArtRem wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

  

  

% --- Outputs from this function are returned to the command line. 

function varargout = EEG_GUI_ArtRem_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Get default command line output from handles structure 

varargout{1} = handles.output; 

  

% --- Executes when figure1 is resized. 

function figure1_ResizeFcn(hObject, eventdata, handles) 

% hObject    handle to figure1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% ========================================================================= 

% SLIDERS 

% ========================================================================= 

  

% --- Executes on slider movement. 

function slider_display_Callback(hObject, eventdata, handles) 

% hObject    handle to slider_display (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'Value') returns position of slider 

%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 

  

updateGUI(handles); 

  

% --- Executes during object creation, after setting all properties. 

function slider_display_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to slider_display (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: slider controls usually have a light gray background. 

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor',[.9 .9 .9]); 

end 

  

% --- Executes on slider movement. 

function slider_epoch_Callback(hObject, eventdata, handles) 

% hObject    handle to slider_epoch (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'Value') returns position of slider 

%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 

  

global Fs 

  

% get epoch length from slider 

eLength = floor(str2double(get(handles.slider_epoch,'String'))); 

  

% set edit value for epoch to epoch length 

set(handles.edit_length,'String',sprintf('%.1f',eLength/Fs)); 
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% refresh GUI 

updateGUI(handles); 

  

% --- Executes during object creation, after setting all properties. 

function slider_epoch_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to slider_epoch (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: slider controls usually have a light gray background. 

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor',[.9 .9 .9]); 

end 

  

% ========================================================================= 

% PUSHBUTTONS 

% ========================================================================= 

  

% --- Executes on button press in pushbutton_load. 

function pushbutton_load_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton_load (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

global rawdata cleandata file icaEEG wicaEEG artdata filename resetdata ... 

    icaComp Fs 

  

% indicate loading status 

set(handles.text_loading,'String','Loading...'); 

dataLoaded = 0; % reset flag for loaded data 

  

% load file selected by user 

[filename,filepath,filteridx] = uigetfile({'*.edf','EDF-files (*.edf)';... 

    '*.csv','CSV-files (*.csv)';... 

    '*.mat','MAT-files (*.mat)';},'Select Data File'); 

file = strcat(filepath,filename); % concatenate file path and name 

  

% load data depending on file format 

switch filteridx 

    case 0 

    case 1 % loading edf file 

        % reset raw data 

        rawdata = []; 

         

        % read edf file 

        rawdata = readedf(file);    % read edf file 

        rawdata = rawdata([3:16 36],Fs+1:end-Fs); % extract channels of interest 

        % 3-16 eeg channels, 36 marker, remove first and last second from data 

         

        % set flag to data loaded        

        dataLoaded = 1; 

         

        % display file name on GUI 

        set(handles.text_file,'String',filename); 

  

        % indicate end of loading process 

        set(handles.text_loading,'String','Done.'); 

    case 2 % load csv file 

        % reset rawdata 

        rawdata = []; 

                                          

        % read csv file 

        rawdata = xlsread(file); 

        rawdata = rawdata(:,[3:16 36]); % extract channels of interest 

        % 3-16 eeg channels, 36 marker, remove first and last second from data 

         

        % set flag to data loaded        

        dataLoaded = 1; 
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% display file name on GUI 

        set(handles.text_file,'String',filename); 

  

        % indicate end of loading process 

        set(handles.text_loading,'String','Done.'); 

    case 3 

        % reset raw data 

        rawdata = []; 

         

        % load variable 

        vars = load(file); 

        varname = fieldnames(vars); % get variable name 

        load(file); 

         

        % read data from variable 

        rawdata = eval(char(varname{1})); 

         

        % add marker channel if channel # smaller than 15 

        rawdata = rawdata(1:14,:); 

        if size(rawdata,1)<15 

            n = 15-size(rawdata,1); % calculate missing channels 

            rawdata = [rawdata; zeros(n,size(rawdata,2))];  

            % add zeros for missing channles 

        end 

         

        % set flag to data loaded        

        dataLoaded = 1; 

         

        % display file name on GUI 

        set(handles.text_file,'String',varname); 

  

        % indicate end of loading process 

        set(handles.text_loading,'String','Done.'); 

end 

  

  

if (dataLoaded) 

    % search for first marker in data 

    ind = find(rawdata(15,:)>0,1,'first'); 

    if isempty(ind) % if no marker set indices to one 

        ind = 1; 

    end 

    % trim data to first marker 

    rawdata = rawdata(:,ind:end); 

     

    % get only eeg data 

    data = rawdata(1:14,:)'; 

    % remove DC value 

    data = detrend(data,'constant'); 

    % highpass at 2Hz 

    [b,a] = butter(7,[2/64],'high'); 

    filtdata = filtfilt(b,a,data); 

  

    % average reference 

    set(handles.text_process,'String','status: AvgRef processing...'); 

    avgRefEEG = avgReference(filtdata'); 

     

    % add markers 

    rawdata = [avgRefEEG; rawdata(15,:)]; 

    % save data in variables 

    cleandata = rawdata;    

    resetdata = cleandata; % save this data as reset data 

    % reset variables 

    artdata = nan(size(rawdata));    

    icaEEG = zeros(size(rawdata));  

    wicaEEG = zeros(size(rawdata)); 

     

    % indicate statuse on GUI 

    set(handles.text_process,'String','status: AvgRef done.'); 
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    % switch to clean data view 

    set(handles.popupmenu_view,'Value',2); 

     

    % refresh GUI 

    updateGUI(handles); 

else 

    % if no data loaded just refresh GUI with current data 

    updateGUI(handles); 

end 

  

% --- Executes on button press in pushbutton_video. 

function pushbutton_video_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton_video (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

global vidFile vidLoaded videoIdx 

  

% ask user for directory of video file 

[filename,filepath,filteridx] = uigetfile({'*.avi','AVI' },'Select Data File'); 

  

% concatenate file path and file name 

file = strcat(filepath,filename); 

  

% read video file 

vidFile = VideoReader(file); 

  

% get number of frames 

nFrames = vidFile.NumberOfFrames; 

  

% set video frame index 

videoIdx = 1:nFrames; 

  

% set flag that video loaded 

vidLoaded = 1; 

  

% refresh GUI 

updateGUI(handles); 

  

% --- Executes on button press in pushbutton_save. 

function pushbutton_save_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton_save (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

global cleandata filedir comp icaComp Fs wlength 

  

% ask user for directory 

filedirnew = uigetdir(); 

  

% save path in global variable 

if(~isempty(filedirnew)) 

    filedir = filedirnew; 

end 

  

% check if folder for spectra exists, create one if  not 

if ~exist([filedir '\spectra'],'dir') 

    mkdir(filedir, 'spectra'); 

end 

  

% check if folder for data exists, create one if  not 

if ~exist([filedir '\data'],'dir') 

    mkdir(filedir, 'data'); 

end 

  

% check if folder for components exists, create one if  not 

if ~exist([filedir '\components'],'dir') 

    mkdir(filedir, 'components'); 

end 
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% calculate optimal FFT length 

NFFT = 2^nextpow2(wlength+1); 

  

% initalize frequency vector 

freq=[]; 

  

% get clean data for saving in time domain 

savedata = cleandata; 

  

% initalize variable for fft spectrum 

savedata_fft=[]; 

  

% comput power spectral density with Welch's method, sliding window with 

% length of wlength and 50% overlap 

for c = 1:size(savedata,1)-1 

    [savedata_fft(c,:),freq] = pwelch(savedata(c,:),wlength,wlength/2,NFFT,Fs); 

end 

% get onesided spectrum 

savedata_fft = savedata_fft(:,1:NFFT/2+1); 

% normalize spectrum to total mean power 

normval = mean(sum(savedata_fft,2)); 

savedata_fft = savedata_fft/normval; 

  

% get file name for saving 

filenameSave = get(handles.edit_id,'String'); 

  

% save timeseries with file name 

filedata = [filedir '\data\' filenameSave '_data']; 

[pathstr,namedata,ext] = fileparts(filedata); 

subsetdata = genvarname(namedata); 

eval([subsetdata '= savedata;']) 

save(filedata,namedata); 

  

% save PSD with file name 

filespec = [filedir '\spectra\' filenameSave '_spec']; 

[pathstr,namespec,ext] = fileparts(filespec); 

subsetspec = genvarname(namespec); 

eval([subsetspec '= savedata_fft;']) 

save(filespec,namespec); 

  

  

% plot spectra for control purposes 

figure 

plotPSD(savedata_fft,freq) 

title('Power Spectrum Density') 

  

% compute spectra of components if ica components available 

% resest variable for spectra of ica components 

components_fft=[]; 

  

if ~isempty(icaComp) 

    freq = []; 

    k = 1; 

    % comput spectra of ica components with Welch's method and window 

    % length of wlength and 50% overlap 

    for c = comp(end)+1:size(icaComp,1) % iterate of components of interest 

        [components_fft(k,:),freq] = pwelch(icaComp(c,:),wlength,wlength/2,NFFT,Fs); 

        k = k+1; 

    end 

    % obtain onesided spectrum 

    components_fft = components_fft(:,1:NFFT/2+1); 

    freq = freq(1:NFFT/2+1)'; 

    % normalize to total mean power 

    normval = mean(sum(components_fft,2)); 

    components_fft = components_fft/normval; 

         

    % plot spectrum for control purposes 

    figure 

    plotPSD(components_fft,freq) 

    title('Power Spectrum Density (ICs)') 
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    % save spectra of ica components 

    filecompspec = [filedir '\components\' filenameSave '_comp_spec']; 

    [pathstr,namecompspec,ext] = fileparts(filecompspec); 

    subsetcompspec = genvarname(namecompspec); 

    eval([subsetcompspec '= components_fft;']) 

    save(filecompspec,namecompspec); 

end 

  

  

% --- Executes on button press in pushbutton_remove. 

function pushbutton_remove_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton_remove (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

global x Fs rawdata cleandata videoIdx vidFile vidLoaded resetdata 

  

% calculate samples of time selection 

xSmpl = round(x*Fs); 

xleft = min(xSmpl); % get left border of selection  

xright = max(xSmpl); % get right border of selection 

  

% cut and remove selection from raw and clean data 

if xright>size(rawdata,2)   % remove data from end 

    rawdata = rawdata(:,1:xleft); 

    cleandata = cleandata(:,1:xleft); 

elseif xleft<1              % remove data from start 

    rawdata = rawdata(:,xright:end); 

    cleandata = cleandata(:,xright:end); 

else 

    % remove data in the middle 

    rawdata = [rawdata(:,1:xleft) rawdata(:,xright:end)]; 

    cleandata = [cleandata(:,1:xleft) cleandata(:,xright:end)];    

  

end 

  

resetdata = rawdata; 

% cut and remove selection from video if available 

if vidLoaded 

    xFrames = round(x*vidFile.FrameRate); % calculate frames of selection 

    xvidleft = min(xFrames);    % get left border of selection 

    xvidright = max(xFrames);   % get right border of selection 

    if xvidright>length(videoIdx)   % remove frames at the end 

        videoIdx = videoIdx(1:xvidleft); 

    elseif xvidleft<1 

        videoIdx = videoIdx(xright:end); % remove frames at the beginning 

    else 

        % remove frames in the middle 

        videoIdx = [videoIdx(1:xvidleft+2) videoIdx(xvidright-2:end)]; 

    end 

end 

  

% refresh GUI 

updateGUI(handles); 

  

% --- Executes on button press in pushbutton_reset. 

function pushbutton_reset_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton_reset (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

global resetdata cleandata artdata 

  

% set clean data to reset data 

cleandata = resetdata; 

  

% reset detected artifacts 

artdata = nan(size(cleandata)); 

  

% set display to clean data 

set(handles.popupmenu_view,'Value',2); 
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% refresh GUI 

updateGUI(handles); 

  

% --- Executes on button press in pushbutton_test. 

function pushbutton_test_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton_test (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

global rawdata cleandata Fs filename 

  

rawdata = zeros(15,100*Fs); 

cleandata = zeros(15,100*Fs); 

  

a = -0.5; 

b = 0.5; 

  

rawdata(1:14,:) = a + (b-a).*randn(14,100*Fs); 

cleandata(1:14,:) = a + (b-a).*randn(14,100*Fs); 

  

rawdata(1:14,:)  = detrend(rawdata(1:14,:),'constant'); 

cleandata(1:14,:)  = detrend(cleandata(1:14,:),'constant'); 

  

filename = 'test-signal-randn'; 

updateGUI(handles); 

  

  

% --- Executes on button press in pushbutton_autoDetect. 

function pushbutton_autoDetect_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton_autoDetect (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

global rawdata cleandata artdata Fs concatdata 

  

% get selected datatype 

datatype = get(handles.popupmenu_view,'Value'); 

  

if datatype==1 

    % get rawdata 

    data = rawdata(1:14,:); 

else 

    % get cleandata 

    data = cleandata(1:14,:); 

end 

  

% initialize variable for detected artifacts 

artdata = nan(size(cleandata)); 

  

% indicate process status 

set(handles.text_process,'String','auto detect: processing...'); 

  

% get number of samples 

N = size(data,2); 

  

% define length of extension for detection 

L = Fs/2; 

  

% calculate standard deviation 

sd = std(data,[],2); 

  

% define threshold for detection 

thr1 = repmat(4*sd,[1, N]); 

% find indices of artifacts based on threshold 

[row,col] = find(abs(data) > thr1); 

% find indices of clean data 

idx = setdiff(1:N,col); 

% find indices of artifacts 

idx = setdiff(1:N,idx); 
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% extend regions of artifacts by length L left and right 

idx_ext = zeros(1,length(col)*(2*L+1)); 

for k=1:length(idx) 

    idx_ext((2*L+1)*(k-1)+1:(2*L+1)*k) = [idx(k)-L:idx(k)+L]; 

end 

% final indices of signal 

idx_sig = setdiff((1:N), idx_ext); 

% final indices of artifacts 

idx_art = setdiff((1:N), idx_sig); 

  

% remove artifacts - set to zero 

artchannel = data; 

data(:,idx_art) = 0; 

% mark artifacts for display 

artchannel(:,idx_sig) = NaN; 

artdata(1:14,:) = artchannel; 

  

% prepare timeseries without artifacts for rejection 

concatdata = []; 

for ch = 1:size(data,1); 

    % get snippets of good data 

    autosnips = struct2cell(regionprops(data(ch,:)~=0,... 

        data(ch,:), 'PixelValues')); 

    [elength] = cellfun('size', autosnips,2) ;  

    k=1; 

    concatchn = []; 

    % concatenate the good data 

    while k <= length(elength);       

            concatchn = [concatchn autosnips{k}]; 

            k = k+1; 

    end 

    concatdata = [concatdata; concatchn]; 

end 

concatdata = [concatdata; zeros(1,size(concatdata,2))]; % set marker channel 

  

% indicate process status 

set(handles.text_process,'String','auto detect: done.'); 

  

% set display to clean data 

set(handles.popupmenu_view,'Value',2); 

  

% refresh GUI 

updateGUI(handles); 

  

% --- Executes on button press in pushbutton_reject. 

function pushbutton_reject_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton_reject (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

global concatdata rawdata cleandata resetdata artdata 

  

rawdata = concatdata; % replace clean data with data without artifacts 

cleandata = rawdata; % replace clean data with data without artifacts 

resetdata = rawdata; 

  

artdata = nan(size(cleandata)); % reset detected artifacts 

  

% refresh GUI 

updateGUI(handles); 

  

% --- Executes on button press in pushbutton_runICA. 

function pushbutton_runICA_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton_runICA (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

global cleandata Fs icaEEG wicaEEG meanvar comp icaComp 

  

% get clean data without markers 

data = cleandata(1:14,:);  
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% run wavelet enhanced ICA 

icaMethod = get(handles.popupmenu_base,'Value'); % get ICA method 

  

% run wavelet enhanced ICA 

icaAlg = get(handles.popupmenu_algorithm,'Value'); % get ICA algorithm 

  

% indicate method and status of process 

nameMethod = {'status: ICA ','status: wICA '};  

set(handles.text_process,'String', [nameMethod{icaMethod} 'processing...']); 

  

% run ICA 

[artRemEEG,icaEEG,wicaEEG,meanvar,comp,icaComp] = ... 

    runICA(data,Fs,icaMethod,icaAlg); 

  

% indicate end of process 

set(handles.text_process,'String',[nameMethod{icaMethod} 'done.']); 

  

% update clean data 

cleandata(1:14,:) = artRemEEG; 

  

% set display to clean data 

set(handles.popupmenu_view,'Value',2); 

  

% refresh GUI 

updateGUI(handles); 

  

% ========================================================================= 

% POPUPMENUES 

% ========================================================================= 

  

% --- Executes on selection change in popupmenu_scale. 

function popupmenu_scale_Callback(hObject, eventdata, handles) 

% hObject    handle to popupmenu_scale (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_scale contents as cell array 

%        contents{get(hObject,'Value')} returns selected item from popupmenu_scale 

  

% refresh GUI 

updateGUI(handles); 

  

% --- Executes during object creation, after setting all properties. 

function popupmenu_scale_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to popupmenu_scale (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: popupmenu controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

% --- Executes on selection change in popupmenu_view. 

function popupmenu_view_Callback(hObject, eventdata, handles) 

% hObject    handle to popupmenu_view (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_view contents as cell array 

%        contents{get(hObject,'Value')} returns selected item from popupmenu_view 

  

% refresh GUI 

updateGUI(handles); 
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% --- Executes during object creation, after setting all properties. 

function popupmenu_view_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to popupmenu_view (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: popupmenu controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

% --- Executes on selection change in popupmenu_base. 

function popupmenu_base_Callback(hObject, eventdata, handles) 

% hObject    handle to popupmenu_base (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_base contents as cell array 

%        contents{get(hObject,'Value')} returns selected item from popupmenu_base 

  

  

% --- Executes during object creation, after setting all properties. 

function popupmenu_base_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to popupmenu_base (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: popupmenu controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), ... 

        get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

  

% --- Executes on selection change in popupmenu_algorithm. 

function popupmenu_algorithm_Callback(hObject, eventdata, handles) 

% hObject    handle to popupmenu_algorithm (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: contents = cellstr(get(hObject,'String')) returns popupmenu_algorithm contents as cell 

array 

%        contents{get(hObject,'Value')} returns selected item from popupmenu_algorithm 

  

  

% --- Executes during object creation, after setting all properties. 

function popupmenu_algorithm_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to popupmenu_algorithm (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: popupmenu controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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% ========================================================================= 

% EDIT TEXTS 

% ========================================================================= 

  

function edit_length_Callback(hObject, eventdata, handles) 

% hObject    handle to edit_length (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of edit_length as text 

%        str2double(get(hObject,'String')) returns contents of edit_length as a double 

global Fs 

  

% get epoch length from edit 

eLength = floor(str2double(get(handles.edit_length,'String'))*Fs); 

 

% set corresponding slider to value 

set(handles.slider_epoch,'Value',eLength); 

% refresh GUI 

updateGUI(handles); 

  

% --- Executes during object creation, after setting all properties. 

function edit_length_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit_length (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

function edit_id_Callback(hObject, eventdata, handles) 

% hObject    handle to edit_id (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of edit_id as text 

%        str2double(get(hObject,'String')) returns contents of edit_id as a double 

  

  

% --- Executes during object creation, after setting all properties. 

function edit_id_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit_id (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

  

% ========================================================================= 

% TEXT 

% ========================================================================= 

  

% --- Executes during object creation, after setting all properties. 

function text_file_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to text_file (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: popupmenu controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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% ========================================================================= 

% INTERACTIVE FEATURES 

% ========================================================================= 

  

% --- Executes on mouse press over axes background. 

function axes_display_ButtonDownFcn(hObject, eventdata, handles) 

% hObject    handle to axes_display (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

  

global x 

  

% get coordinates from mouse position 

[x,y,button] = ginput(2); 

 

 

% mark selection on data 

selection = patch([x(1) x(2) x(2) x(1)],[0 0 1600 1600],'r','EdgeColor','none'); 

alpha(selection,0.2); % adjust transparency 

  

% ========================================================================= 

% FUNCTIONS 

% ========================================================================= 

  

% function for initialize all GUI components 

% ------------------------------------------------------------------------ 

function initializeGUI(handles) 

  

global Fs rawdata  cleandata vidLoaded  artdata wlength 

  

% initialize variables 

Fs = 128;       % sampling frequency of 128 Hz 

wlength = 384;  % window length of 3 seconds (3*128 = 384 samples) 

vidLoaded = 0;  % reset flag for video loaded 

  

rawdata = zeros(15,100*Fs);     % initialize rawdata 

cleandata = zeros(15,100*Fs);   % initialize cleandata 

artdata = nan(15,100*Fs);       % reset dected artifacts 

  

% initialize GUI components 

set(handles.slider_display,'Value',1);      % set slider to fist data sample 

set(handles.slider_epoch,'Value',10*Fs);    % show epoch of 10 sec 

set(handles.popupmenu_scale,'Value',8)      % set scale to 100 

set(handles.popupmenu_view,'Value',1)       % show raw data 

set(handles.popupmenu_algorithm,'Value',1)       % show raw data 

set(handles.popupmenu_base,'Value',2)       % show raw data 

set(handles.axes_video, 'xtick',[],'ytick',[]);   % remove ticks from video axes 

set(handles.axes_video, 'xticklabel',[],'yticklabel',[]); % remove labels from video axes 

  

% update entire GUI 

updateGUI(handles); 

  

% function for updating all GUI components 

% ------------------------------------------------------------------------ 

function updateGUI(handles) 

  

global rawdata cleandata icaComp Fs vidFile vidLoaded videoIdx wicaEEG ... 

    meanvar comp  artdata 

     

% get length of data 

xmax = size(cleandata,2); 

  

% set slider maxima 

set(handles.slider_display,'Max',xmax); 

set(handles.slider_epoch,'Max',xmax); 

  

% get epoch length 

eLength = floor(get(handles.slider_epoch,'Value')); 

if eLength < 0.5 

    eLength = 0.5; 

end 
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if(eLength>xmax) 

    eLength = xmax; 

    set(handles.slider_epoch,'Value',xmax); 

end 

set(handles.text_eLength,'String',sprintf('%.1f sec',eLength/Fs)); 

set(handles.edit_length,'String',sprintf('%.1f', eLength/Fs)); 

  

% get epoch start in samples 

smpStart = round(get(handles.slider_display,'Value')); 

  

% prevent exceeding index 

if(smpStart < 1) 

    smpStart = 1; 

end 

if(smpStart>xmax) 

    smpStart = xmax-eLength-1;   

end 

% set slider to epoch start 

set(handles.slider_display,'Value',smpStart); 

  

% update textfield for time 

set(handles.text_time,'String',sprintf('Total time: %.2f sec',xmax/Fs)); 

  

% get scaling parameter 

contents = cellstr(get(handles.popupmenu_scale,'String')); 

scale = str2num(contents{get(handles.popupmenu_scale,'Value')}); 

  

% get display mode for view 

mode = get(handles.popupmenu_view,'Value'); 

  

switch(mode) 

    case 1 % rawdata 

        cla reset 

        data = rawdata; % get rawdata 

         

        % extract epoch from data 

        epoch = extractEpoch(data,smpStart,eLength); 

        % plot epoch 

        ChanTitles = {'AF3' 'F7' 'F3' 'FC5' 'T7' 'P7' 'O1' ... 

            'O2' 'P8' 'T8' 'FC6' 'F4' 'F8' 'AF4' 'Mkr'}; 

        Title = 'Raw EEG Data'; 

        set(handles.axes_display,'HitTest','off'); 

        PlotEEG(handles,epoch,Fs,smpStart,scale,ChanTitles,Title,'k'); 

        % reactivate mouse selection 

        set(handles.axes_display, 'ButtonDownFcn', ... 

            {@axes_display_ButtonDownFcn,handles}); 

    case 2 % clean data 

        cla reset 

        data = cleandata; % get clean data 

        art = artdata;    % get detected artifacts 

        % extract epoch from data 

        epoch = extractEpoch(data,smpStart,eLength); 

        epochart = extractEpoch(art,smpStart,eLength); 

         

        % plot epoch 

        ChanTitles = {'AF3' 'F7' 'F3' 'FC5' 'T7' 'P7' 'O1' ... 

            'O2' 'P8' 'T8' 'FC6' 'F4' 'F8' 'AF4' 'Mkr'}; 

        Title = 'Processed EEG Data'; 

        set(handles.axes_display,'HitTest','off'); 

        % plot data 

        PlotEEG(handles,epoch,Fs,smpStart,scale,ChanTitles,Title,'k'); 

        hold on 

        % mark detected artifacts 

        PlotEEG(handles,epochart,Fs,smpStart,scale,ChanTitles,Title,'r'); 

        hold off 

         

        % reactivate mouse selection 

        set(handles.axes_display, 'ButtonDownFcn', ... 

            {@axes_display_ButtonDownFcn,handles}); 
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    case 3 % ICA components 

        cla reset 

        [N,M] = size(icaComp);  % get number of components 

        dispComp = zeros(N+1,M); % initialize displayed components (no markers) 

        dispComp(1:N,:) = icaComp;  % get ica components 

        dispComp(end,:) = rawdata(end,:); % insert markers 

        % extract epoch from compoonents 

        data = dispComp; 

        epoch = extractEpoch(data,smpStart,eLength); 

        % plot epoch 

        ChanTitles = {'1' '2' '3' '4' '5' '6' '7' ... 

            '8' '9' '10' '11' '12' '13' '14' 'Mkr'}; 

        Title = 'Independent Components (ICA)'; 

        set(handles.axes_display,'HitTest','off'); 

        PlotEEG(handles,epoch,Fs,smpStart,scale,ChanTitles,Title,'k'); 

        set(handles.axes_display, 'ButtonDownFcn', ... 

            {@axes_display_ButtonDownFcn,handles}); 

    case 4 % wavelet based ICA components 

        cla reset 

        [N,M] = size(wicaEEG); 

        dispComp = zeros(size(rawdata)); % initialize displayed components 

        dispComp(1:N,:) = wicaEEG;       % get wavelet based ica components  

        dispComp(end,:) = rawdata(end,1:M); % get markers 

        % extract epoch from data 

        data = dispComp; 

        epoch = extractEpoch(data,smpStart,eLength); 

        % plot epoch 

        ChanTitles = {'1' '2' '3' '4' '5' '6' '7' ... 

            '8' '9' '10' '11' '12' '13' '14' 'Mkr'}; 

        Title = 'Independent Components (wICA)'; 

        set(handles.axes_display,'HitTest','off'); 

        PlotEEG(handles,epoch,Fs,smpStart,scale,ChanTitles,Title,'k'); 

        set(handles.axes_display, 'ButtonDownFcn', ... 

            {@axes_display_ButtonDownFcn,handles}); 

    case 5 % screen plot 

        cla reset 

        plot([1:length(meanvar)],meanvar,'b'),hold on 

        plot([1:length(comp)],meanvar(comp),'ok'); 

        title('SVD') 

        xlabel('components') 

        ylabel('singular values') 

end 

  

% show video if available 

if (vidLoaded) 

    % calculate frame for video display 

    vidFrame = floor(smpStart/Fs*vidFile.FrameRate)+1; 

    showVideo(handles,vidFile,vidFrame,videoIdx); 

end 

  

% function for plotting EEG data 

% ------------------------------------------------------------------------ 

 function PlotEEG(handles,data,Fs,start,Scale,ChanTitles,Title,col) 

  

% make display current axes 

axes(handles.axes_display); 

  

% get number of channels and samples of data 

[nChs,nPts] = size(data); 

  

% generate time vector 

t = (start:start+nPts-1)/Fs; 

  

% initialize variables 

Ct = {}; 

tt = {}; 

dt = floor(nPts/10); % define interval of time labels 
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% define time lables 

for tlabel = ((start:dt:start+nPts)/Fs) 

    tt = [tt; {sprintf('%.1f',tlabel)}]; 

end 

  

% plot EEG channels 

for k = 1:nChs-1, 

    plot(t, real((nChs - k)*Scale + data(k,:)),col); 

    hold on 

    if isempty(ChanTitles), 

        Ct = [Ct; {num2str(nChs - k + 1)}]; 

    else 

        Ct = [Ct; ChanTitles(nChs - k + 1)]; 

    end 

end 

  

% plot markers 

Marker = data(15,:); 

Marker(Marker>0) = 1500; 

mrkIdx = find(Marker>0); 

stem(t,Marker,'r','Linewidth',2,'Marker','none'); 

Ct = [Ct; ChanTitles(1)]; 

b = num2str(round(data(nChs,mrkIdx))); c = cellstr(b); 

dx = 0.1; dy = 0.1; % displacement so the text does not overlay the data points 

text(t(mrkIdx)+dx, Marker(mrkIdx)+dy, c,'color','r','FontWeight','bold') 

  

% adjust axes 

hold off; 

xlim([start start+nPts]/Fs); 

ylim([-1 nChs+1]*Scale); 

set(gca,'XTick',(start:dt:start+nPts)/Fs); 

set(gca,'XTickLabel',tt); 

set(gca,'YTick', (0:1:nChs-1)*Scale); 

set(gca,'YTickLabel',Ct); 

  

% set title and x-label 

title(Title); 

xlabel('Time (sec)') 

  

% function to show video 

% ------------------------------------------------------------------------ 

function showVideo(handles,vidfile,vidFrame,videoIdx) 

  

% get frame index 

frameIdx = videoIdx(vidFrame); 

% read video file at frame index 

vid = read(vidfile,frameIdx); 

% display frame 

image(vid,'parent',handles.axes_video); 

% remove axes for video 

set(handles.axes_video, 'xtick',[],'ytick',[]); 

set(handles.axes_video, 'xticklabel',[],'yticklabel',[]); 

  

% function to extract displayed epoch from data stream 

% ------------------------------------------------------------------------ 

function epoch = extractEpoch(data,start,length) 

  

% prevent over/underflow 

if ((start+length-1) > size(data,2)) 

    stop = size(data,2); 

else 

    stop = start+length-1; 

end 

% extract data from start to stop 

epoch = data(:,start:stop); 
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% function to re-reference data to average 

% ------------------------------------------------------------------------ 

function avgRefEEG = avgReference(data) 

  

avgCh = mean(data); 

for ch = 1:14 

    avgRefEEG(ch,:) = data(ch,:) - avgCh; 

end 

  

% function to remove artifacts using ICA (normal and wavelet based 

% ------------------------------------------------------------------------ 

function [artRemEEG,icaEEG,wicaEEG,meanvar,comp,icaComp] = ... 

        runICA(data,Fs,icaMethod,icaAlg) 

  

% initialize variables 

icaEEG = []; 

wicaEEG = []; 

icaComp = []; 

comp = []; 

meanvar = []; 

  

% obtain unmixing matrix 

switch(icaAlg) 

    case 1 

        [weight, sphere] = runica(data); % run InfoMax algorithm 

        W = weight*sphere;    % obtain unmixing matrix 

        Winv = inv(W); % obtain mixing matrix 

        icaEEG = W*data; % compute components 

         

        % set thrshold for wavelet artifact detection 

        threshold = 1.25; 

         

        % clean components with thresholding of wavelets 

        [wicaEEG, opt]= RemoveStrongArtifacts(icaEEG, 1:size(data,1),... 

            threshold, Fs); 

  

    case 2         

        W = jader(data); % run JADE algorithm 

        Winv = inv(W); % obtain mixing matrix 

        icaEEG = W*data; % compute components 

         

        % set thrshold for wavelet artifact detection 

        threshold = 1.25; 

         

        % clean components with thresholding of wavelets 

        [wicaEEG, opt]= RemoveStrongArtifacts(icaEEG, 1:size(data,1),... 

            threshold, Fs); 

  

    case 3 

        [Winv,icaEEG] = sobi(data); % run SOBI algorithm 

         

        % set wicaEEG variableto ica EEG (wavelet based removal not 

        % applicable) 

        wicaEEG = icaEEG; 

end 

  

% compute variances without backprojecting to save time and memory -sm 7/05 

[chans,frames] = size(data); 

meanvar = sum(Winv.^2).*sum((data').^2)/((chans*frames)-1); % from Rey Ramirez 8/07 

  

% sort variances from large to small 

[sortvar, windex] = sort(meanvar); 

windex = windex(chans:-1:1); % order large to small  

meanvar = meanvar(windex); 

  

 

% calculate number of components that contribute less than 95% to variance 

var95 = 0.95*sum(meanvar); 

svsum = meanvar(1); 

oldsvsum = 1; 

k = 1; 
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while (svsum<var95) && (k<length(meanvar) && (svsum-oldsvsum)/oldsvsum>0.2)  

    k=k+1; 

    oldsvsum = svsum; 

    svsum = sum(meanvar(1:k)); 

end 

comp = 1:k; % save "artifact" components 

  

% save sorted components 

icaComp = icaEEG(windex,:); 

  

% set "artifact" components to zero 

icaEEG(windex(1:k),:) = 0; 

  

% remix components to eeg channels using mixing matrix 

if icaMethod == 1 

    artRemEEG = real(Winv*icaEEG); 

elseif icaMethod == 2 

    artRemEEG = real(Winv*wicaEEG); 

end 

  

 

% function to plot spectrum (PSD) 

% ------------------------------------------------------------------------ 

function plotPSD(spec,f) 

  

hold off 

% define limits of plot 

xlim = [0 40]; 

ylim = [0 1.1*max(spec(:))]; 

  

% get number of channels 

num = size(spec,1); 

  

% define color vector 

cc = hsv(num); 

  

% plot spectra with changing colors 

for i=1:num 

    plot(f,spec(i,:),'color',cc(i,:)),hold on 

end 

axis([xlim ylim]) 

xlabel('Frequency [Hz]') 

ylabel('Spectral Density (Hz^{-1})'); 

  

% adjust labels on Y axis 

if num < 14 

    legendnr = {'1','2','3','4','5','6','7','8','9','10','11','12','13'}; 

    legend(legendnr(1:num),'fontsize',8); 

else 

    legend({'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 

        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8); 

end 
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4.1.1 Function: selectData(…) 

% Grand Valley State University, Master of Science in Engineering 
% ========================================================================= 
% author: Nadina Zweifel 
% date: 3/16/2016 
% advisor: Dr. Samhita Rhodes 
% ------------------------------------------------------------------------- 
% function: data = selectData(data,scale,Fs) 
% this function reads the user's mouse cursor position when a selection in 
% the data is made. 
% input: data, scale, Fs 
% data is a matrix with the time series where the rows are the channels and 
% the columns the samples. scale is the vertical scaling factor of the  
% displayed data plot. Fs is the sampling frequency of the data. 
% output: data 
% data returns the indexes for the selected region. 
% ------------------------------------------------------------------------- 

  
function data = selectData(data,scale,Fs) 

  
% get the mouse cursor position from the user 
[x,y] = ginput(2); 
% mark the user's selection in the data with a colored rectangle 
selection = patch([x(1) x(2) x(2) x(1)],[0 0 15 15]*scale,'r','EdgeColor','none'); 
% set the rectangle transparent 
alpha(selection,0.2); 
% convert the curser position to samples 
xSmpl = round(x*Fs); 
% determin left and right boundery 
xleft = min(xSmpl); 
xright = max(xSmpl); 

  
% return the indexes of the selected regions preventing that the indexes 
% exceed the dimensions 
if xright>size(data,2) 
    data = data(:,xleft:end); 
elseif xleft<1 
    data = data(:,1:xright); 
else 
    data = data(:,xleft:xright);  
end 
end 
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4.1.2 Function: ploteeg(…) 

% Grand Valley State University, Master of Science in Engineering 
% ========================================================================= 
% author: Nadina Zweifel 
% date: 3/16/2016 
% advisor: Dr. Samhita Rhodes 
% ------------------------------------------------------------------------- 
% function: ploteeg(data,Fs,start,scale,chanTitles,title,col) 
% function to plot the time series of EEG data. The function is based on  
% the code for wavelet enhanced ICA by Castellanos & Makarov 2006 
% input: data, Fs, start, scale, chanTitles, title, col 
% data is a matrix with the time series where the rows are the channels and 
% the columns the samples using the sampling frequency Fs. start is the 
% index of the first sample displayed in the figure. scale defines the 
% vertical scaling factor of the EEG data. chanTitles consists of cell 
% array with strings for labeling the channels on the vertical axis. col  
% contains the values for defining the color of the plot. 
% ------------------------------------------------------------------------- 

  
function ploteeg(data,Fs,start,scale,chanTitles,title,col) 

  
% check if at least data variable is an input 
if nargin < 1,  
    disp('No arguments'); 
    help PlotEEG 
    return; 
end 
% get dimensions of the data - nChns: # channels, nPts: # samples 
[nChs,nPts] = size(data); 

  
% check number of channels, if too high it's assumed to be time samples 
if nChs > 20,  
    disp('Too many channels (try to transpose the data)'); 
    return 
end 

  
% define time vector 
t = (start:start+nPts-1)/Fs; 

  
% initialize variables 
Ct = {}; 
tt = {}; 

  
% define time resolution on plot 
dt = floor(nPts/10); 

  
% define lables for time axis 
for tlabel = ((start:dt:start+nPts)/Fs) 
tt = [tt; {sprintf('%.1f',tlabel)}]; 
end  

  
% plot the data in the correct scaling defined by variable scale 
for k = 1:nChs, 
    plot(t, real((nChs - k)*scale + data(k,:)),col); 
    hold on 
    % add labels for channels 
    if isempty(chanTitles), 
        Ct = [Ct; {num2str(nChs - k + 1)}]; 
    else 
        Ct = [Ct; chanTitles(nChs - k + 1)]; 
    end 
end 

  
% add marker label to last row of data 
Ct = [Ct; chanTitles(1)]; 
hold off; 
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% define plot limits 
xlim([start start+nPts]/Fs); 
ylim([-1 nChs+1]*scale); 
% add title to plot 
title(title); 

  
% set time labels 
set(gca,'XTick',(start:dt:start+nPts)/Fs); 
set(gca,'XTickLabel',tt); 
% set channels labels 
set(gca,'YTick', (0:1:nChs-1)*scale); 
set(gca,'YTickLabel',Ct); 
% add label for x-axis 
xlabel('Time (sec)') 

 

4.1.3 Function:  wICA(…) 

%% For wICA the algorithm of Valeri A. Makarov was used: 
% This code is for illustration of the method described in:   
% N.P. Castellanos, and V.A. Makarov (2006). "Recovering EEG brain signals: Artifact  
% suppression with wavelet enhanced independent component analysis" 
% J. Neurosci. Methods, 158, 300–312. 
% 
% Requirements: runica from EEGLAB toolbox, and rwt - Rice Wavelet Toolbox 
% (both freely available in internet). 
% 
% This code is copyright © by the authors, and we hope you acknowledge our 
% work. We distribute it in the hope that it will be useful, but without any warranty.  
% 
% Author: Valeri A. Makarov 
% e-mail: vmakarov@opt.ucm.es 
% 
% 2006 
% 
% Find independent components 
% EEGLAB is required!!! You can also use other algorithms, e.g. fICA. 
% Note, the use of long (in time) data sets reduces the algorithm performance 
% see for details the abovementioned paper. 

  
function Data_wICA = wICA(Data,Fs) 

  
Fnyq  = Fs/2; 
% F_notch = 50; % Notch at 50 Hz 
% [b,a] = iirnotch(F_notch/Fnyq, F_notch/Fnyq/20);  
% Data  = filtfilt(b,a, Data); 

  
%% Conventional High Pass Filter 
% This is an optional step (suppress low <4Hz frequency noise)  
F_cut = 4; 
[b,a] = ellip(1, 0.5, 20, F_cut/Fnyq, 'high'); 
Data  = filtfilt(b,a, Data); 

  
%% Remove mean values from the channels and plot raw data 
Data  = detrend(Data,'constant'); 
% Transpose the data matrix to get (channel x time) orientation 
Data = Data';  

  
%% wICA 
[weight, sphere] = runica(Data, 'verbose', 'off'); 

  
W = weight*sphere;    % EEGLAB --> W unmixing matrix 
icaEEG = W*Data;      % EEGLAB --> U = W.X activations 

  
[icaEEG2, opt]= RemoveStrongArtifacts(icaEEG, (1:14), 1.25, Fs);  
Data_wICA = inv(W)*icaEEG2; 
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4.1.4 Function: RemoveStrongArtifacts(…) 

% This function denoise high amplitude artifacts (e.g. ocular) and remove them from the 
% Independent Components (ICs). 
% 
% INPUT: 
% 
% icaEEG - matrix of ICA components (Nchanel x Nobservations) 
% 
% Comp   - # of ICs to be denoised and cleaned (can be a vector) 
% 
% Kthr   - threshold (multiplayer) for denoising of artifacts 
%          (default Kthr = 1.15) 
% 
% F      - acquisition frequency 
%          (default F = 256 Hz) 
% 
% OUTPUT: 
%  
% icaEEG - matrix of cleaned indenpendent components 
% 
% opt    - vector of threshold values used for filtering of corresponding 
%          ICs 
% 
% NOTE: If a component has no artifacts of a relatively high amplitude 
%       the function will skip this component (no action), dispaly a 
%       warning and the corresponding output "opt" will be set to zero. 
% 
% Valeri A. Makarov, vmakarov@opt.ucm.es 
% ver 0.1 Sept. 2005 
% ver 0.2 May   2006 

  
function [icaEEG, opt] = RemoveStrongArtifacts(icaEEG, Comp, Kthr, F) 

  
if nargin < 2,  
    disp('At least two arguments are required!'); 
    help RemoveStrongArtifacts 
    return; 
end 
if nargin < 3 || isempty(Kthr), Kthr = 1.15; end 
if nargin < 4 || isempty(F), F = 256; end 
L = round(F*0.1);  
[Nchan, Nobser] = size(icaEEG); 
if Nchan > Nobser,  
    error('Problem with data orientation, try to transpose the matrix!');  
end 
 

N = 2^floor(log2(Nobser));  
h = daubcqf(6); 
opt = zeros(1,length(Comp)); 
for c=1:length(Comp), 
    Y = icaEEG(Comp(c),1:N);     % cth component from 1 to N 
    Sig = median(abs(Y)/0.6745); % get measure of data amplitude 
    Thr = 4*Sig;                 % determine threshold 
    idx = find(abs(Y) > Thr);    % find indices above threshold 
    idx_ext = zeros(1,length(idx)*(2*L+1)); % extend artifact part 
    for k=1:length(idx), 
        idx_ext((2*L+1)*(k-1)+1:(2*L+1)*k) = [idx(k)-L:idx(k)+L]; 
    end 
    id_noise=setdiff((1:N), idx_ext);   % indices of signal of interest 
    id_artef=setdiff((1:N), id_noise);  % indices of artifacts   
    if isempty(id_artef), 
        %disp(['The component #' num2str(Comp(c)) ' has passed unchanged']); 
        continue; 
    end 
    thld = 3.6;     % threshold for artifact removal 
    KK = 100; 
    LL = floor(log2(length(Y))); 
    [xl, xh] = mrdwt(Y, h, LL); % wavelet transform (without downsampling)   
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    while KK > Kthr,            % test vs. input parameter Kthr = 1.25 
        thld = thld + 0.5;      % adjust treshold 
        xh = HardTh(xh, thld);  % hard thresholding of detail coefficients 
        xd = mirdwt(xl,xh,h,LL); % backprojection of artifacts with inverse wt 
        xn = Y - xd;             % subtract artifacts 
        cn=corrcoef(Y(id_noise),xn(id_noise)); % calculate ratios 
        cd=corrcoef(Y(id_noise),xd(id_noise)); 
        ca=corrcoef(Y(id_artef),xd(id_artef)); 

         
        KK = ca(1,2)/cn(1,2); 
        KKnew = ca(1,2)/cd(1,2); 
    end 
    opt(c) = thld;          % save optimal threshold 
    Y = icaEEG(Comp(c),end-N+1:end);  % apply wavelet thresholding to rest of data 
    icaEEG(Comp(c),1:N) = xn; 
    LL = floor(log2(length(Y))); 
    [xl, xh] = mrdwt(Y, h, LL); 
    xh = HardTh(xh, thld); 
    xd = mirdwt(xl,xh,h,LL);  
    xn = Y - xd;  
    icaEEG(Comp(c),N+1:end) = xn(end-(Nobser-N)+1:end);  
%     disp(['The component #' num2str(Comp(c)) ' has been filtered']); 
end 
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4.2 CODE: THETA RHYTHM 

4.2.1 Main Script: thetaRhythm.m 

% Grand Valley State University, Master of Science in Engineering 
% ========================================================================= 
% author: Nadina Zweifel 
% date: 3/16/2016 
% advisor: Dr. Samhita Rhodes 
% ------------------------------------------------------------------------- 
% Master Thesis: Main script for finding the theta rhythm of the subject 
% ------------------------------------------------------------------------- 

  
clear all, clc, close all 

  
% load data from a file 
load('data.mat') 

  
% define frequency range limits 
lf = 2; 
hf = 12; 

  
% calculate sample points for limits 
lfsmp = floor(lf*4); 
hfsmp = ceil(hf*4); 

  
% define frequency subband width 
wsub = 4; 

  
% get number of sessions 
ntrials = size(data_rest1,2); 

  
% define normalization method: norm=1 normalizes spectrum with overall mean 
% power across channels and frequencies 
norm = 1; 

  
% compute spectra and sub the frequencies across wsub (=4) points 
for trial = 1:ntrials 
    % resting 1 
    [c_psd_rest1{trial},freq,psd_subs,err_subs,freq_subs] = ... 
        psdsubswitherr(data_rest1{trial},lf,hf,wsub,norm); 
    c_psd_subs_rest1{trial} = psd_subs; 
    c_err_subs_rest1{trial} = err_subs; 
    % interaction 
    [c_psd_interact{trial},freq,psd_subs,err_subs,freq_subs] = ... 
        psdsubswitherr(data_interact{trial},lf,hf,wsub,norm); 
    c_psd_subs_interact{trial} = psd_subs; 
    c_err_subs_interact{trial} = err_subs; 
end 

  
% transform the cell arrays to matrices 
psd_subs_rest1 = (cat(3,c_psd_subs_rest1{:})); 
psd_subs_interact = (cat(3,c_psd_subs_interact{:})); 
err_subs_rest1 = (cat(3,c_err_subs_rest1{:})); 
err_subs_interact = (cat(3,c_err_subs_interact{:})); 

  
% calculate the percentage change from resting 1 to interaction 
psd_change = 100*(psd_subs_interact-psd_subs_rest1)./psd_subs_rest1; 

  
% remove 1st trial due to artifactual data 
trials_a1 = [2 3 4]; 
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% calculate mean for first baseline phase over the 3 points 
mean_a1_interact = mean(psd_subs_interact(:,:,trials_a1),3); 
mean_a1_rest1 = mean(psd_subs_rest1(:,:,trials_a1),3); 

  
% calculate the percentage change of the means 
mean_a1_change = 100*(mean_a1_interact-mean_a1_rest1)./mean_a1_rest1; 

  
% test the change for significance using one standard error 
[psd_sig,psd_sig_mag,psd_mean,psd_change] = ... 
    test22SD(psd_subs_rest1,psd_subs_interact,err_subs_interact); 

  

  
%% display results 

  
% define limits of colorbar 
zmin = 0; 
zmax = 10; 
% define resolution colormap: continuous -> ncol=0 
ncol = 0; 
% define colorbar label 
cb_name = 'PSD (Vm^2)';  
% define frequency sub vector 
freq_subs = (lfsmp:wsub:hfsmp)/4; 

  
% get number of channels and subs 
[nchannels,nsubs] = size(mean_a1_rest1(:,:,1)); 

  
% resting 1 
figure 
imagesc(mean_a1_rest1) 
setColorbar(zmin,zmax,cb_name,0,ncol); 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',10) 
title('Spectral mean power A1 (resting 1)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  

  
% interaction 
figure 
imagesc(mean_a1_interact) 
setColorbar(zmin,zmax,cb_name,0,ncol); 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',10) 
title('Spectral mean power A1 (interaction)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  

  
%% display results for percentage change 
% define colorbar limits 
zmin = -70; 
zmax = 70; 
% define colorbar label 
cb_name = 'change (%)'; 
% define resolution colormap: continuous -> ncol=0 
ncol = 0; 
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% display figure 
figure 
imagesc(mean_a1_change) 
setColorbar(zmin,zmax,cb_name,1,ncol); 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',10) 
title('Change PSD: A1(resting 1) -> A1(interaction)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1]) 

  
% display results for significant percentage change 
figure 
imagesc(psd_sig_mag(:,:,1)) 
setColorbar(zmin,zmax,cb_name,1,ncol); 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',10) 
title('Significant change (rest1/interact) of mean PSD in 1st baseline (A1)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1]) 

 

4.3 CODE: SPECTRAL ANALYSIS 

4.3.1 Main Script: spectralAnalysis.m 

% Grand Valley State University, Master of Science in Engineering 
% ========================================================================= 
% author: Nadina Zweifel 
% date: 3/16/2016 
% advisor: Dr. Samhita Rhodes 
% ------------------------------------------------------------------------- 
% Master Thesis: Main script for spectral analysis of EEG data. The script 
% loads the files and transforms the time series to frequency domain for 
% spectral analysis. 
% ------------------------------------------------------------------------- 

  
clear all, clc, close all 

  
% load data from a file 
load('data.mat') 

  
% define frequency range limits 
lf = 2; 
hf = 12; 

  
% calculate sample points for limits 
lfsmp = floor(lf*4); 
hfsmp = ceil(hf*4); 

  
% define frequency sub width 
wsub = 4; 

  
% get number of sessions 
ntrials = size(data_rest1,2); 
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% define normalization method: norm=1 normalizes spectrum with overall mean 
% power across channels and frequencies 
norm = 1; 

  
% compute spectra and sub the frequencies across wsub (=4) points 
for trial = 1:ntrials 
    % resting 1 
    [c_psd_rest1{trial},freq,psd_subs,err_subs,freq_subs] = ... 
        psdsubswitherr(data_rest1{trial},lf,hf,wsub,norm); 
    c_psd_subs_rest1{trial} = psd_subs; 
    c_err_subs_rest1{trial} = err_subs; 
    % resting 2 
    [c_psd_rest2{trial},freq,psd_subs,err_subs,freq_subs] = ... 
        psdsubswitherr(data_rest2{trial},lf,hf,wsub,norm); 
    c_psd_subs_rest2{trial} = psd_subs; 
    c_err_subs_rest2{trial} = err_subs;     
    % interaction 
    [c_psd_interact{trial},freq,psd_subs,err_subs,freq_subs] = ... 
        psdsubswitherr(data_interact{trial},lf,hf,wsub,norm); 
    c_psd_subs_interact{trial} = psd_subs; 
    c_err_subs_interact{trial} = err_subs; 
end 

  
% transform the cell arrays to matrices 
psd_rest1 = (cat(3,c_psd_rest1{:})); 
psd_rest2 = (cat(3,c_psd_rest2{:})); 
psd_interact = (cat(3,c_psd_interact{:})); 

  
psd_subs_rest1 = (cat(3,c_psd_subs_rest1{:})); 
psd_subs_rest2 = (cat(3,c_psd_subs_rest2{:})); 
psd_subs_interact = (cat(3,c_psd_subs_interact{:})); 

  
err_subs_rest1 = (cat(3,c_err_subs_rest1{:})); 
err_subs_rest2 = (cat(3,c_err_subs_rest2{:})); 
err_subs_interact = (cat(3,c_err_subs_interact{:})); 

  
% calculate the percentage change from resting 1 to interaction 
psd_subs_change = (psd_subs_rest2 - psd_subs_rest1)./psd_subs_rest1*100; 

  
% save the workspace to a file 
% save('vars_6.mat') 

  

  
%% display results 

  
% define channel labels 
chnlabels = {'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
    'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'}; 

  
%% resting 1 

  
% apply two-standard deviation band method 
[psd_sig,psd_sig_mag,psd_mean] = test2SD(psd_subs_rest1,err_subs_rest1); 

  
% get number of channels and subs 
[nchannels,nsubs] = size(psd_sig(:,:,1)); 

  
% display results with significant score 

  
% define frequency vector 
freq_subs = (lfsmp:wsub:hfsmp)/4; 

  
% define margin around subplot 
margin = 0.06; 
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% define paramter for colorbar 
zmin = -4.5; 
zmax = 4.5; 
cb_name = 's-value'; 
% define resolution colormap: continuous -> ncol=0 
ncol = 8; 

  
figure 
% display change A1-B1 
h=subplot(131); 
% adjust margins of subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig(:,:,2)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% adjust graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Significance: A1->B1 (resting 1)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  

  
% display change A1-A2 
h=subplot(132); 
% adjust margins of subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig(:,:,3)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% adjust graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Significance: A1->A2 (resting 1)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  

  
% display change A1-B2 
h=subplot(133); 
% adjust margins of subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig(:,:,4)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% adjust graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Significance: A1->B2 (resting 1)') 
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xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1]) 

  
% display results with significant magnitude 
% set colorbar properties 
zmin = -300; 
zmax = 300; 
cb_name = 'Change (%)'; 
% define resolution colormap: continuous -> ncol=0 
ncol = 0; 

  
figure 
% display results for A1-B1 
h=subplot(131); 
% adjust margin of subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig_mag(:,:,2)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Change PSD: A1->B1 (resting 1)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  

  
% display results for A1-A2 
h=subplot(132); 
% adjust margins of subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% dislay result matrix 
imagesc(psd_sig_mag(:,:,3)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Change PSD: A1->A2 (resting 1)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  

  
% display results for A1-B2 
h=subplot(133); 
% adjust margins of subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig_mag(:,:,4)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
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set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Change PSD: A1->B2 (resting 1)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1]) 

  

  
%% display results for resting 2 

  
% apply two-standard deviation band method 
[psd_sig,psd_sig_mag,psd_mean] = test2SD(psd_subs_rest2,err_subs_rest2); 

  
% set colorbar properties 
zmin = -4.5; 
zmax = 4.5; 
cb_name = 's-value'; 
% define resolution colormap: continuous -> ncol=0 
ncol = 8; 

  
figure 
% display results with significant score 

  
% display results for A1-B1 
h=subplot(131); 
% adjust margins for subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig(:,:,2)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Significance: A1->B1 (resting 2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  

  
% display results for A1-A2 
h=subplot(132); 
% adjust margins for subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig(:,:,3)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Significance: A1->A2 (resting 2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  
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% display results for A2-B2 
h=subplot(133); 
% adjust margins for subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig(:,:,4)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Significance: A1->B2 (resting 2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1]) 

  
% display results for significant change (magnitude) 
% set colorbar properties 
zmin = -300; 
zmax = 300; 
cb_name = 'Change (%)'; 
% define resolution colormap: continuous -> ncol=0 
ncol = 0; 

  
figure 
% display results for A1-B1 
h=subplot(131); 
% adjust margin for subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig_mag(:,:,2)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Change PSD: A1->B1 (resting 2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  

  
% display results for A1-B2 
h=subplot(132); 
% adjust margins for subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig_mag(:,:,3)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 



108 

 

title('Change PSD: A1->A2 (resting 2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  

  
% display results for A2-B2 
h=subplot(133); 
% adjust margins for subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig_mag(:,:,4)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Change PSD: A1->B2 (resting 2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1]) 

  
%% display results for rest1/resting 2 

  
% apply two-standard deviation band method to detect change from rest1- to 
% resting 2 
[psd_sig,psd_sig_mag,psd_mean,psd_change] = ... 
    test22SD(psd_subs_rest1,psd_subs_rest2,err_subs_rest2); 

  
% set margin parameter 
margin = 0.04; 

  
% display results for significance 
% set colorbar parameters 
zmin = -4.5; 
zmax = 4.5; 
cb_name = 's-value'; 
% define resolution colormap: continuous -> ncol=0 
ncol = 8; 

  
figure 
% display results for A1(rest1) - A2(rest2) 
h=subplot(221); 
% adjust margins for subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig(:,:,1)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Significance: A1(rest1)->A1(rest2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  
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% display results for B1(rest1) - B1(rest2) 
h=subplot(222); 
% adjust margins for subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig(:,:,2)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Significance: B1(rest1)->B1(rest2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  

  
% display results for A2(rest1) - A2(rest2) 
h=subplot(223); 
% set margins for subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig(:,:,3)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Significance: A2(rest1)->A2(rest2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1]) 

  
% display results for B2(rest1) - B2(rest2) 
h=subplot(224); 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
imagesc(psd_sig(:,:,4)) 
setColorbar(zmin,zmax,cb_name,1,ncol); 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Significance: B2(rest1)->B2(rest2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1]) 

  
% display significant change in magnitude 
% adjust colorbar parameters 
zmin = -300; 
zmax = 300; 
cb_name = 'Change (%)'; 
% define resolution colormap: continuous -> ncol=0 
ncol = 0; 
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figure 
% display results for A1(rest1) - A1(rest2) 
h=subplot(221); 
% adjust margins for subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig_mag(:,:,1)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Change PSD: A1(rest1)->A1(rest2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  

  
% display results for B1(rest1) - B1(rest2) 
h=subplot(222); 
% adjust margins for subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display results matrix 
imagesc(psd_sig_mag(:,:,2)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Change PSD: B1(rest1)->B1(rest2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1])  

  
% display results for A2(rest1) - A2(rest2) 
h=subplot(223); 
% adjust margins of subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display results matrix 
imagesc(psd_sig_mag(:,:,3)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Change PSD: A2(rest1)->A2(rest2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1]) 
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% display results for B2(rest1) -> B2(rest2) 
h=subplot(224); 
% adjust margins of subplot 
p = get(h, 'pos'); 
p([3 4]) = p([3 4]) + margin; 
set(h, 'pos', p); 
% display result matrix 
imagesc(psd_sig_mag(:,:,4)) 
% set colorbar 
setColorbar(zmin,zmax,cb_name,1,ncol); 
% set graph properties 
set(gca,'XTick',1:nsubs) 
xticklabel = cellstr(num2str(freq_subs',2)); 
set(gca,'XTickLabel',xticklabel,'fontsize',8) 
set(gca,'YTick',1:nchannels) 
set(gca,'YTickLabel',{'AF3', 'F7', 'F3', 'FC5', 'T7', 'P7', 'O1',... 
        'O2', 'P8', 'T8', 'FC6', 'F4', 'F8', 'AF4'},'fontsize',8) 
title('Change PSD: B2(rest1)->B2(rest2)') 
xlabel('Frequency sub-bands (Hz)') 
ylabel('Channels') 
pbaspect([1 1 1]) 
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4.3.2 Function: test2SD(…) 

% Grand Valley State University, Master of Science in Engineering 
% ========================================================================= 
% author: Nadina Zweifel 
% date: 3/16/2016 
% advisor: Dr. Samhita Rhodes 
% ------------------------------------------------------------------------- 
% function: [psd_sig,psd_sig_mag,psd_mean] = test2SD(psd,substd) 
% this function applies the two-standard deviation method to the input 
% data which contains data of different phases (baseline and intervention). 
% The function assumes that the phases consists of 4 data points and 
% consideres the first 4 points as the baseline. Significance is tested by 
% counting the data points exceeding the 2*SE band (SE=standard error). 
% Cases that exceed the band 2 times or more are considered as significant. 
% input: psd,substd 
% psd represents the power spectral density of the EEG data under 
% consideration. The input data is subned by taking the average across 
% data points in a particular frequency range. Hence, psd contains the 
% means of the subs while substd contains the standard deviation of each 
% sub. 
% output: psd_sig, psd_sig_mag, psd_mean 
% psd_sig is a matrix containing the significance score (s-value) for each 
% sub and channel in respect of the baseline. Unsignificant changes are 
% represented with a zero. The s-value is 2 or higher which is considered 
% as significant. psd_sig_mag is of the same type as psdsig but instead of 
% s-values it contains the percentage change score for signifcant changes. 
% psd_mean returns just the mean value for each sub and channel for each 
% phase. 
% ------------------------------------------------------------------------- 

  
function [psd_sig,psd_sig_mag,psd_mean] = test2SD(psd,substd) 
    [nchannels,nsubs,nsessions] = size(psd); 

     
    % calculate the baseline values in the first phase of the input data 
    psd_a1_mean = mean(psd(:,:,1:4),3);  % average across 4 trials 
    psd_a1_SE = std(psd(:,:,1:4),0,3); % standard deviation across 4 trials 
    psd_a1_SE = psd_a1_SE/sqrt(4); % standard error across 4 trials 

  
    % calculate bounderies for significance testing 
    lowlim = psd_a1_mean-2*psd_a1_SE; 
    highlim = psd_a1_mean+2*psd_a1_SE; 

  
    % iteration over channels and subs to determine significant changes 
    for ch = 1:nchannels 
        for b = 1:nsubs 
            p=1; 
            for ph = 1:4:nsessions 
                psd_tempcopy = psd(ch,b,ph:ph+3); % copy data of phase p 
                error = substd(ch,b,ph:ph+3);   % copy st.dev. of phase p 
                % test negative changes for significance                 
                psd_temp = psd_tempcopy+error; % add st.dev. to each trial 
                psd_temp(psd_temp>=lowlim(ch,b)) = 0; % set unsignificant changes to zero 
                psd_temp_sig = -logical(psd_temp); % set significant neg. changes to -1 
                % test positive changes for significance 
                psd_temp = psd_tempcopy-error;  % subtract std.dev. from each trial 
                psd_temp(psd_temp<=highlim(ch,b)) = 0; % set unsignificant changes to zero 
                psd_temp = logical(psd_temp); % set significant pos. changes to 1 
                psd_temp_sig = psd_temp_sig + psd_temp; % comsube neg. and pos. changes in matrix 
                psd_sig_sum(ch,b,p) = sum(psd_temp_sig(:)); % sum the significant scores in phase 
                psd_mean(ch,b,p) = mean(psd_tempcopy(:)); % take the mean value of phase 
                psd_change(ch,b,p) = (mean(psd_tempcopy(:))-psd_a1_mean(ch,b))... 
                    ./psd_a1_mean(ch,b)*100; % calculate percentage change in respect to baseline 
                p=p+1; 
            end 
        end 
    end 
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    % zero s-values outside of interval [-2,2] 

    psd_sig_sum(psd_sig_sum>-2 & psd_sig_sum<2) = 0; 

     
    % return result 
    psd_sig = psd_sig_sum; 

     
    % return significant changes percentage change score 
    psd_sig_mag = logical(psd_sig_sum).*(psd_change); 

     

      

4.3.3 Function: test22SD(…) 

% Grand Valley State University, Master of Science in Engineering 
% ========================================================================= 
% author: Nadina Zweifel 
% date: 3/16/2016 
% advisor: Dr. Samhita Rhodes 
% ------------------------------------------------------------------------- 
% function: [psd_sig,psd_sig_mag,psd_mean,psd_change] = test2SD(psd1,psd2,substd2) 
% this function applies the two-standard deviation method to the input 
% data which contains data of different phases (baseline and intervention). 
% The function assumes that the phases consists of 4 data points and 
% test for significance in respect of the first dataset. Significance is tested by 
% counting the data points exceeding the 2*SE band (SE=standard error). 
% Cases that exceed the band 2 times or more are considered as significant. 
% input: psd1, psd2, substd2 
% psd1 and psd2 represent the power spectral density of the EEG data under 
% consideration. The input data is subned by taking the average across 
% data points in a particular frequency range. Hence, psd1 and psd2 contain the 
% means of the subs while substd2 contains the standard deviation of each 
% sub in the second dataset psd2. 
% output: psd_sig, psd_sig_mag, psd_mean, psd_change 
% psd_sig is a matrix containing the significance score (s-value) for each 
% sub and channel in respect of the baseline. Unsignificant changes are 
% represented with a zero. The s-value is 2 or higher which is considered 
% as significant. psd_sig_mag is of the same type as psd_sig but instead of 
% s-values it contains the percentage change score for signifcant changes. 
% psd_mean returns just the mean value for each sub and channel for each 
% phase. psd_change contains the percentage change score without 
% significance testing. 
% ------------------------------------------------------------------------- 

  
function [psd_sig,psd_sig_mag,psd2_mean,psd_change] = test22SD(psd1,psd2,substd2) 
    [nchannels,nsubs,ntrials] = size(psd1); 

     
     % iteration over channels and subs to determine significant changes 
     for chn = 1:nchannels 
        for sub = 1:nsubs 
            phase=1; 
            for trial = 1:4:ntrials 

                 
                % calculate the baseline values in phase p of first dataset 
                psd1_mean = mean(psd1(chn,sub,trial:trial+3),3); % average across 4 trials 
                psd1_SE = std(psd1(chn,sub,trial:trial+3),0,3); % st.dev. across 4 trials 
                psd1_SE = psd1_SE/sqrt(4); % standard error across 4 trials 

                 
                % calculate bounderies for significance testing 
                lowlim = psd1_mean-2*psd1_SE; 
                highlim = psd1_mean+2*psd1_SE; 

                
                psd2_tempcopy = psd2(chn,sub,trial:trial+3); % copy phase p of second dataset 
                error = substd2(chn,sub,trial:trial+3); % copy error of phase p of second dataset 
                % test negative changes for significance                 
                psd2_temp = psd2_tempcopy+error; % add st.dev. to each trial 
                psd2_temp(psd2_temp>=lowlim) = 0; % set unsignificant changes to zero 
                psd2_temp_sig = -logical(psd2_temp); % set significant neg. changes to -1 
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                % test positive changes for significance 
                psd2_temp = psd2_tempcopy-error;  % subtract std.dev. from each trial 
                psd2_temp(psd2_temp<=highlim) = 0; % set unsignificant changes to zero 
                psd2_temp = logical(psd2_temp); % set significant pos. changes to 1 
                psd2_temp_sig = psd2_temp_sig + psd2_temp; % comsube neg. and pos. changes in 

matrix 
                psd_sig_sum(chn,sub,phase) = sum(psd2_temp_sig(:)); % sum the significant scores 

in phase 
                psd2_mean(chn,sub,phase) = mean(psd2_tempcopy(:)); % take the mean value of phase 
                psd_change(chn,sub,phase) = (mean(psd2_tempcopy(:))-psd1_mean)... 
                    ./psd1_mean*100; % calculate percentage change in respect to baseline 
                phase=phase+1; 
            end 
        end 
    end 

     
    % zero s-values outside of interval [-2,2] 
    psd_sig_sum(psd_sig_sum>-2 & psd_sig_sum<2) = 0; 

     
    % return result 
    psd_sig = psd_sig_sum; 

     
    % return significant changes percentage change score 
    psd_sig_mag = logical(psd_sig_sum).*(psd_change); 
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4.4 SCRIPT READANDSAVEDATA.M 

% Grand Valley State University, Master of Science in Engineering 
% ========================================================================= 
% author: Nadina Zweifel 
% date: 3/16/2016 
% advisor: Dr. Samhita Rhodes 
% ------------------------------------------------------------------------- 
% Master Thesis: Main script for reading the data and randomly pick an 
% epoch of 35 seconds. The data is saved to a mat-file which can be loaded 
% for further analysis. 
% ------------------------------------------------------------------------- 

  
clear all, close all, clc 

  
% define sample length for randomly picked epoch 
nsamples = 35*128; 

  
% define channels to analize 
nchannels = 1:14; 

  
% define filenames for resting 1 data 
filenames = {'b1_1_tsk1_wIM125_data.mat','b1_2_tsk1_wIM125_data.mat',... 
    'b1_3_tsk1_wIM125_data.mat','b1_4_tsk1_wIM125_data.mat',... 
    'i1_1_tsk1_wIM125_data.mat','i1_2_tsk1_wIM125_data.mat',... 
    'i1_3_tsk1_wIM125_data.mat','i1_4_tsk1_wIM125_data.mat',... 
    'b2_1_tsk1_wIM125_data.mat','b2_2_tsk1_wIM125_data.mat',... 
    'b2_3_tsk1_wIM125_data.mat','b2_4_tsk1_wIM125_data.mat',... 
    'i2_1_tsk1_wIM125_data.mat','i2_2_tsk1_wIM125_data.mat',... 
    'i2_3_tsk1_wIM125_data.mat','i2_4_tsk1_wIM125_data.mat'}; 

  
% read data files 
data_rest1 = readFiles(filenames,nchannels,nsamples); 

  
% define filenames for resting 2 data 
filenames = {'b1_1_tsk1b_wIM125_data.mat','b1_2_tsk1b_wIM125_data.mat',... 
    'b1_3_tsk1b_wIM125_data.mat','b1_4_tsk1b_wIM125_data.mat',... 
    'i1_1_tsk1b_wIM125_data.mat','i1_2_tsk1b_wIM125_data.mat',... 
    'i1_3_tsk1b_wIM125_data.mat','i1_4_tsk1b_wIM125_data.mat',... 
    'b2_1_tsk1b_wIM125_data.mat','b2_2_tsk1b_wIM125_data.mat',... 
    'b2_3_tsk1b_wIM125_data.mat','b2_4_tsk1b_wIM125_data.mat',... 
    'i2_1_tsk1b_wIM125_data.mat','i2_2_tsk1b_wIM125_data.mat',... 
    'i2_3_tsk1b_wIM125_data.mat','i2_4_tsk1b_wIM125_data.mat'}; 

  
% read data files 
data_rest2 = readFiles(filenames,nchannels,nsamples); 

  
% define filenames for interaction data 
filenames = {'b1_1_tsk2_wIM125_data.mat','b1_2_tsk2_wIM125_data.mat',... 
    'b1_3_tsk2_wIM125_data.mat','b1_4_tsk2_wIM125_data.mat',... 
    'i1_1_tsk2_wIM125_data.mat','i1_2_tsk2_wIM125_data.mat',... 
    'i1_3_tsk2_wIM125_data.mat','i1_4_tsk2_wIM125_data.mat',... 
    'b2_1_tsk2_wIM125_data.mat','b2_2_tsk2_wIM125_data.mat',... 
    'b2_3_tsk2_wIM125_data.mat','b2_4_tsk2_wIM125_data.mat',... 
    'i2_1_tsk2_wIM125_data.mat','i2_2_tsk2_wIM125_data.mat',... 
    'i2_3_tsk2_wIM125_data.mat','i2_4_tsk2_wIM125_data.mat'}; 

  
% read data files 
data_interact = readFiles(filenames,nchannels,nsamples); 

  
% save variables to mat-file 
save('data.mat'); 
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4.5 FUNCTION: READFILES() 

% Grand Valley State University, Master of Science in Engineering 
% ========================================================================= 
% author: Nadina Zweifel 
% date: 3/16/2016 
% advisor: Dr. Samhita Rhodes 
% ------------------------------------------------------------------------- 
% function: data = readFiles(filename,nchannels,nsamples) 
% input: filename, nchannels, nsamples 
% filename is a cell array with all the filenames to be loaded 
% nchannels fines the number of channels, while nsamples defines the length 
% of the epoch which is randomly picked from each file. 
% output: data 
% data returns a cell array with the loaded data and represents a randomly 
% picked epoch of the available data in the file. 
% ------------------------------------------------------------------------- 

  
function data = readFiles(filename,nchannels,nsamples) 

  
% get number of files 
nfiles = size(filename,2); 

  
% read files and pick random epoch of length nsamples 
for nf = 1:nfiles 
    file = filename{nf}; % get filename 
    load(file); % load file 
    [pathstr,name,ext] = fileparts(file); % get variable name 
    dataset = eval(name); % get values from variable 
    % pick epoch randomly from dataset 
    data{nf} = pickRandomEpoch(dataset,nchannels,nsamples); % save data in variable 
end 

  
% function to randomly pick an epoch of the input data 
function epoch = pickRandomEpoch(data,nchannels,nsamples) 

  
% determine length of input data 
Namples = size(data,2); 

  
% define right limit 
smpmax = Namples - nsamples; 

  
% prevent exceeding indexes 
if smpmax <= 0 
    tmin = 1; 
else 
    % get random index for left limit 
    tmin = randi(smpmax,1); 
end 

  
% return epoch between left and right limit 
epoch = data(nchannels,tmin:tmin+nsamples-1); 
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4.6 FUNCTION: PSDBINSWITHERR(…) 

% Grand Valley State University, Master of Science in Engineering 
% ========================================================================= 
% author: Nadina Zweifel 
% date: 3/16/2016 
% advisor: Dr. Samhita Rhodes 
% ------------------------------------------------------------------------- 
% function: [pxx,pxx_subs,pxx_error,freq_subs] = psdsubswitherr(data,llimit,hlimit,wsub,norm) 
% input: data, llimit, hlimit, wsub, norm 
% data is a matrix with the time series where the rows are the channels and 
% the columns the samples. llimit and hlimit define the frequency range in 
% Hz to be returned from the spectrum. wsub defines the sub with in samples 
% while norm is a flag value that determines the normalization method. 
% output: pxx, pxx_subs, pxx_error freq_subs 
% pxx returns the unsubned spectrum normalized by the method defined in 
% norm. pxx_subs returns the spectrum which is subned over the width of wsub 
% samples. pxx_error returns the standard error resulting from the sub width 
% wsub. freq_subs is frequency vector containing the left frequency value 
% in Hz. 
% ------------------------------------------------------------------------- 

  
function [pxx,freq,pxx_subs,pxx_error,freq_subs] = ... 
    psdsubswitherr(data,llimit,hlimit,wsub,norm) 

  
% calculate optimal FFT length 
Fs = 128;   % sampling frequency 
wlength= 320;   % window length for Welch's method in samples 
NFFT = 2^nextpow2(wlength+1); % calculate FFT length 

  
% convert frequency limits to samples 
lfsmp = floor(llimit*4); 
hfsmp = ceil(hlimit*4); 

  
% determine number of channels 
numch = size(data,1); 

  
% compute spectrum iterating over channels using the Welch's method with a 
% hanning window of wlength 
for ch = 1:numch 
    [pxxch,freq] = pwelch(data(ch,:),hanning(wlength),[],NFFT,Fs);  
     pxx(ch,:) = pxxch; 
end 

  
% normalize by channel mean power if norm=0 
if norm==0 
    pxx = pxx./repmat(mean(pxx,2),[1 size(pxx,2)]); 
%     disp('PSD normalized to channel power before subning'); 
end 

  
% normalize by overall mean power if norm=1 
if norm==1 
    pxx = pxx./mean(pxx(:)); 
%     disp('PSD normalized to overall power before subning'); 
end 

  
% compute the mean of each sub of width wsub between the frequency limits 
% lfsmp and hfsmp 
for ch = 1:numch 
    b=1; 
    for f = lfsmp:wsub:hfsmp-wsub 
        pxx_subs(ch,b) = mean(pxx(ch,f:f+3)); 
        pxx_error(ch,b) = std(pxx(ch,f:f+3))/sqrt(wsub); 
        b=b+1; 
    end 
end 
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% normalize to the channel mean power after subning if norm=2 
if norm==2 
    pxx_subs = pxx_subs./repmat(mean(pxx_subs,2),[1 size(pxx_subs,2)]); 
%     disp('PSD normalized to channel power after subning'); 
end 

  
% normalize to the overall mean power after subning if norm=3 
if norm==3 
    pxx_subs = pxx_subs/mean(pxx_subs(:)); 
%     disp('PSD normalized to overall power after subning'); 
end 

  
% return frequency vector for computed subs 
freq_subs = (lfsmp:wsub:hfsmp-wsub)/4; 

  

4.7 FUNCTION: SETCOLORBAR(…) 

% Grand Valley State University, Master of Science in Engineering 
% ========================================================================= 
% author: Nadina Zweifel 
% date: 3/16/2016 
% advisor: Dr. Samhita Rhodes 
% ------------------------------------------------------------------------- 
% function: setColorbar(zmin,zmax,cbname,split) 
% input: zmin, zmax, cbname, split, ncol 
% the inputs zmin and zmax represent the lower and upper limit of the 
% colorbar, while cbname is a string used for labeling the colorbar. The 
% variable split is either 1 or 0 and is defines whether the zero point of 
% the colorbar is set to white (1) or not (0). 
% ncol defines the resolution of the colormap with ncol colors, while ncol 
% = 0 is high resultion of 8192 colors using the OpenGL renderer. 
% ------------------------------------------------------------------------- 

   
function setColorbar(zmin,zmax,cbname,split,ncol) 

  
% reset colormap 
colormap default 

  
% create new colormap for change 
if ncol 
    newmap = jet(ncol+1); 
else 
    newmap = jet(8191); 
    set(gcf,'renderer','OpenGL') % this allows higher resolution for the colors 
end 

  
% set colormap limits 
caxis([zmin zmax]); 
% determine position of the zero point 
zeropos = (1-zmax/(zmax-zmin)); 

  
% if flag=1 set zero point to white 
if split 
    ncol = size(newmap,1);            
    zpos = ceil(ncol*zeropos); % find zeropoint of colorbar 
    newmap(zpos,:) = ones(1,3); %set that position to white 
    % activate new colormap 
    colormap(newmap);  
end 

  
% adjust settings of new colormap 
h = colorbar; 
set(get(h,'title'),'string',cbname,'fontsize',8); 

  
end 
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