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ABSTRACT 

It is estimated that about 35-40% of adults in the U.S. suffer from insufficient sleep. 

Chronic sleep deprivation has become a prevalent phenomenon because of contemporary 

lifestyle and work-related factors. Sleep deprivation can reduce the capabilities and efficiency of 

attentional performance by impairing perception, increasing effort to maintain concentration, as 

well as introducing vision disturbance. Thus, it is important to understand the neural mechanisms 

behind how chronic sleep deprivation impairs sustained attention. 

In recent years, more attention has been paid to the study of the integration between 

anatomically distributed and functionally connected brain regions. Functional connectivity has 

been widely used to characterize brain functional integration, which measures the statistical 

dependency between neurophysiological events of the human brain. Further, evidence from 

recent studies has shown the non-stationary nature of brain functional connectivity, which may 

reveal more information about the human brain. Thus, the objective of this thesis is to investigate 

the effects of chronic sleep deprivation on sustained attention from the perspective of dynamic 

functional connectivity. 

A modified spatial cueing paradigm was used to assess human sustained attention in 

rested wakefulness and chronic sleep deprivation conditions. Partial least squares approach was 

applied to distinguish brain functional connectivity for the experimental conditions. With the 

integration of a sliding-window approach, dynamic patterns of brain functional connectivity were 

identified in two experimental conditions. The brain was modeled as a series of dynamic 

functional networks in each experimental condition. Graph theoretic analysis was performed to 
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investigate the dynamic properties of brain functional networks, using network measures of 

clustering coefficient and characteristics path length. 

In the chronic sleep deprivation condition, a compensation mechanism between highly 

clustered organization and ineffective adaptability of brain functional networks was observed. 

Specifically, a highly clustered organization of brain functional networks was illustrated with a 

large clustering coefficient. This organization suggested that brain utilizes more connections to 

maintain attention in the chronic sleep deprivation condition. A smaller impact of clustering 

coefficient variation on characteristics path lengths indicated an ineffective adaptability of brain 

functional networks in the chronic sleep deprivation condition.  

In the rested wakefulness condition, brain functional networks showed the small-world 

topology in general, with the average small-world topology index larger than one. Small-world 

topology was identified as an optimal network structure with the balance between local 

information processing and global integration. Given the fluctuating values of the index over 

time, small-world brain networks were observed in most cases, indicating an effective 

adaptability of the human brain to maintain the dominance of small-world networks in the rested 

wakefulness condition. On the contrary, given that the average small-world topology index was 

smaller than one, brain functional networks generally exhibited random network structure. From 

the perspective of dynamic functional networks, even though there were few cases showing 

small-world brain networks, brain functional networks failed to maintain the dominance of 

small-world topology in the chronic sleep deprivation condition. 

In conclusion, to the best of our knowledge this thesis was the first to investigate the 

effects of chronic sleep deprivation on sustained attention from the perspective of dynamic brain 

functional connectivity. A compensation mechanism between highly clustered organization and 
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ineffective adaptability of brain functional networks was observed in the chronic sleep 

deprivation condition. Furthermore, chronic sleep deprivation impaired sustained attention by 

reducing the effectiveness of brain functional networks’ adaptability, resulting in the disrupted 

dominance of small-world brain networks.
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CHAPTER 1: INTRODUCTION 

Sleep has been identified as an adaption of dormancy that benefits human cognition in 

terms of insight formation (Wagner et al., 2004), novel-language perception (Fenn et al., 2003), 

visual discrimination (Stickgold et al., 2000), memory consolidation (Walker et al., 2003), and 

motor skills (Walker et al., 2002). Similarly, studies have demonstrated that sufficient sleep 

would ensure comprehensive levels of arousal, attention (Lim & Dinges, 2008), cognitive 

performance (Durmer & Dinges, 2005) and neurobehavioral effectiveness (Banks & Dinges, 

2007), and help to avoid potentially adverse health outcomes (Buxton et al., 2012).  

Cognitive studies have suggested that adults require around eight to nine hours of sleep in 

order to maintain normal brain function during the day (Van Dongen et al., 2003). However, 

according to a survey, about 35-40% of adults in the U.S. obtains less than seven hours of sleep 

on weekday nights (Basner et al., 2007). Contemporary lifestyle and work-related factors are 

responsible for the prevalence of sleep deprivation, which lowers the capacity for and efficiency 

of attention by impairing perception, increasing effort needed to concentrate, as well as 

introducing visual disturbance (Orzeł-Gryglewska, 2010). For example, sleep deprivation has 

been found as a vital factor behind accidents for those occupations requiring continuous attention, 

including truck drivers, air traffic controllers, and health care providers (Jung et al., 2011; 

Rosekind, 2005).  

Drowsy driving following sleep deprivation has been identified as an important factor in 

most vehicle accidents (Connor et al., 2001). Recent surveys further reveals that the number of 

road accidents is significantly influenced by the sleep duration and quality of drivers (Stutts et al., 

2003). These sleep deprivation related accidents may result from falling asleep while driving 
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(Carskadon, 1990; Knipling & Wang, 1994; Pack et al., 1995), impaired ability to assess a 

situation (Kahn-Greene et al., 2006; Muzur et al., 2002), and risky behavior such as inattention to 

increase driving speed (Peters et al., 1999). In addition, the neurobehavioral impairments 

following sleep deprivation have been also observed in intoxicated individuals (Arnedt et al., 

2001; Dawson & Reid, 1997; Dinges & Kribbs, 1991; Fletcher et al., 2003; Lamond & Dawson, 

1999; Maruff et al., 2005; Williamson & Feyer, 2000). However, there are no legal restrictions 

for sleep deprived drivers, who may also pose a potential hazard to other traffic participants 

(Orzeł-Gryglewska, 2010). 

Health care providers have been identified as a typical occupation that requires high 

standard of performance, but also suffers habitually from chronic sleep deprivation. Landrigan et 

al. (2004) have demonstrated that health care residents with a “traditional schedule” make 36% 

more serious medical errors than those under an “intervention schedule”. On the other side, 

increased muscle tonus has been observed as a compensatory effect for the decreased attention 

following sleep deprivation (Wilkinson, 1962). The increased tonus will dramatically impact task 

performance, especially for surgeons that require continuously accurate movements (Arihara & 

Sakamoto, 1999; Morrison et al., 2005). 

Given the negative consequences of sleep deprivation, it is important to understand how 

sleep deprivation impairs human cognition. Previous studies have provided various evidence of 

impaired sustained attention following sleep deprivation. However, the neural basis of such 

impairment has not been clearly understood. Thus, this thesis aims to investigate the effects of 

chronic sleep deprivation on sustained attention as manifested by brain dynamics. 
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CHAPTER 2: LITERATURE REVIEW 

Previous studies about the effects of sleep deprivation on both human cognitive 

performance and brain activity are demonstrated in this section. Chronic sleep deprivation has 

exhibited different effects on human cognition when compared with total sleep deprivation. 

Impaired sustained attention has been observed in the sleep deprivation condition. The neural 

mechanism behind attention and attentional control is discussed as well. Brain functional 

integration is then introduced with the concept of functional connectivity. A graph theoretic 

analysis is discussed to investigate the property of brain functional networks. 

2.1 Total vs. Chronic Sleep Deprivation 

The first published study about the effects of sleep deprivation on human cognitive 

performance was conducted by Patrick and Gilbert (1896). Three adults experienced 90 hours of 

sustained wakefulness in this study (Patrick & Gilbert, 1896). Impaired cognitions were observed 

in the sleep deprivation condition, including attention span and memory (Patrick & Gilbert, 

1896). 

There are three types of studies widely discussed in this area: 1) long-term total sleep 

deprivation (>45 hours); 2) short-term total sleep deprivation (45 hours); and 3) chronic sleep 

deprivation (<7 hours/24hours) (Durmer & Dinges, 2005). Although it has been demonstrated 

that total sleep deprivation and chronic sleep deprivation have similar impairments of behavioral 

and neurocognitive performance (Philip et al., 2012), studies have shown that chronically sleep-

deprived subjects require more time for full recovery than those in total sleep deprivation (Cao & 

Guilleminault, 2012). This may result from long-term neuron modulatory changes in brain 
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physiology, induced by chronic sleep deprivation (Basner et al., 2013). In the chronic sleep 

deprivation condition, studies have observed a linear relationship between the impaired alerting 

and the number of days with insufficient sleep (Belenky et al., 2003; Van Dongen et al., 2003).  

2.2 Impairments of Sustained Attention in the sleep deprivation condition 

Sustained attention has been identified as a cognitive function sensitive to sleep loss 

(Durmer & Dinges, 2005; Graw et al., 2001; Jewett et al., 1999; Sadeh et al., 2011). Studies 

about sustained attention have demonstrated that sleep deprivation lowers the capacity for and 

efficiency of attentional performance by impairing perception, increasing effort needed to 

maintain concentration, and introducing visual disturbance (Orzeł-Gryglewska, 2010).  

Behavioral studies have shown impaired performance during sustained attention tasks in 

both children and adults following sleep deprivation (Dinges et al., 1997; Peters et al., 2009; 

Sadeh et al., 2002; Van Dongen et al., 2003; Weaver, 2001). Among these studies, reaction time 

tasks (e.g., psychomotor vigilance task) have been widely used to assess the psychological 

processes of attention (Jung et al., 2011). Yerkes (1904) has defined reaction time (or response 

time, RT) as the time between the brain reacting to a sensory stimuli and make a motor response. 

Attentional lapse has been defined as a response error with slow response times, usually longer 

than 500ms (Weissman et al., 2006). 

In general, sleep deprived subjects have shown slow response times (i.e., mean RTs, 

media RTs, reciprocal RTs, slowest 10% of RTs, and fastest 10% of RTs), increased number of 

attentional lapses, and larger variance of response times (Beaumont et al., 2001; Dinges & 

Powell, 1989; Doran et al., 2001; Jung et al., 2011; Kjellberg, 1977; Lim & Dinges, 2008; 
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Pilcher & Huffcutt, 1996; Williams et al., 1959). Specifically, the slowest 10% of RTs has been 

measured as response times in the lapses domain; and researchers have described the fastest 10% 

of RTs as the optimum response time (Jung et al., 2011). Large variance of response times has 

revealed the instability of attentional state in the sleep deprivation condition (Jung et al., 2011).  

2.3 Neural Basics of Attention and Attentional Control 

The emergence of neuroimaging techniques has enabled researchers to study the neural 

activity of the human brain. Functional magnetic resonance imaging (fMRI) measures brain 

activity through identifying associated changes of blood-oxygen-level-dependent (BOLD) 

contrast. This technique has been widely used to investigate the neural basics of attention and 

attention control.  

2.3.1 Attention 

Attention is defined as a cognitive process of selecting relevant information from 

environments and ignoring the irrelevant (Broadbent, 1958; Desimone & Duncan, 1995; Neisser, 

1967; Treisman, 1960). Two types of attention have been widely discussed: endogenous 

attention and exogenous attention (Purves et al., 2008). Specifically, endogenous attention is the 

ability to voluntarily allocate attention to certain features, objects, or regions in space depending 

on one’s goals, expectations, and/or knowledge (Purves et al., 2008; Spreng & Schacter, 2012). 

In contrast, stimuli arising from the environment attracts attention automatically, which is called 
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exogenous attention (Purves et al., 2008). During exogenous attention tasks, subjects are asked to 

respond to sensory stimuli directly (Corbetta & Shulman, 2002).  

Attention has been conceptualized as an organization made up of three separate 

functional systems: alerting, orienting, and executive control (Posner & Petersen, 1989). Alerting 

subsumes the capability to achieve and maintain a general state of activation in the cognitive 

system (Martella et al., 2011). This function enables the capacity to increase attention to an 

approaching stimulus, by changing the internal state to perceive the stimulus (Fan et al., 2009). 

The alerting function has been associated with the thalamic, parietal, and frontal brain regions 

(Chee & Tan, 2010; Chee et al., 2008; Drummond et al., 2005a; Tomasi et al., 2009); and it can 

be influenced by the brain’s norepinephrine system that emergents from the midbrain nucleus 

locus coeruleus (Coull et al., 1996; Marrocco et al., 1994). Sleep deprivation has also been 

characterized as a powerful way of reducing alertness (Killgore, 2010; Lim & Dinges, 2008).  

The orienting function selectively allocates attentional focus to the specific information 

among numerous sensory inputs (Fan & Posner, 2004; Martella et al., 2011). The orienting 

function for visual events has been associated with the superior and inferior parietal lobule, 

frontal eye field, and subcortical areas such as the superior colliculus of the midbrain and the 

pulvinar and the reticular nucleus of the thalamus (Corbetta et al., 2000; Corbetta & Shulman, 

2002; Posner et al., 1982; Posner, 1980; Posner & Cohen, 1984).  

The effects of sleep loss on attentional orienting are still not clear, with conflicting results 

(Bocca & Denise, 2006; Casagrande et al., 2006; Martella et al., 2011; Trujillo et al., 2009; 

Versace et al., 2006). Specifically, researchers found no significant effects on attentional 

orienting after 24 hours of sustained wakefulness, but general decrease in alertness (Casagrande 
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et al., 2006). In contrast, Versace et al. (2006) suggested the impaired reorienting mechanism in a 

partial sleep restriction condition.  

Executive control is described as the ability of behavioral control to achieve intended 

goals through resolving conflicts among alternative responses (Martella et al., 2011). This 

function involves more complex mental operations, and has been most needed in decision 

making or planning tasks (Fan & Posner, 2004). This function has been associated with the 

anterior cingulate cortex and lateral prefrontal cortex (Benes, 2000; Matsumoto & Tanaka, 2004).  

Studies about the effects of sleep deprivation on higher executive functions have also 

revealed inconsistent results (Killgore, 2010). For instance, Stenuit and Kerkhofs (2008) have 

reported a diminished orienting performance following sleep deprivation; however, different 

studies have failed to confirm this observation. Furthermore, researchers have demonstrated 

conflicting results about the effects of sleep deprivation on executive control, even using the 

same tasks (Hsieh et al., 2007; Martella et al., 2011; Murphy et al., 2006; Tsai et al., 2005). 

These inconsistent results could be attributed to the high inter-subject variability of the effects of 

sleep deprivation (Banks & Dinges, 2007; Van Dongen et al., 2004).  

In addition, studies have early found the reduced metabolic rate in the distributed cortico-

thalamic network (i.e., thalamic, parietal, and prefrontal regions) using positron emission 

tomography (PET).This network has been observed to mediate attention and other high-order 

cognitive processes during prolonged sleep loss (Thomas et al., 2000; Thomas et al., 2003). This 

observation has been supported by fMRI studies (Poudel et al., 2010; Tomasi et al., 2009). 
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2.3.2 Attentional Control 

The most prevalent model of attentional control was proposed by Corbetta and Shulman 

(2002), especially for visual attention control. Attention is controlled by two partially segregated 

neural systems: top-down control and bottom-up control (Corbetta & Shulman, 2002). These two 

systems carry out different functions but interact extensively to support attentional control. 

The top-down control system is associated with preparing and applying selections of 

goal-directed sensory stimuli and responses (Corbetta & Shulman, 2002; Purves et al., 2008); in 

other words, this control system mainly focuses on endogenous attention. This system is 

associated with parts of the intraparietal cortex and superior frontal cortex (Purves et al., 2008). 

In the sleep deprivation condition, studies have shown a loss of top-down attention control with 

attenuated functional connectivity between regions of the parietal lobe and parahippocampal 

region (Chee & Tan, 2010; Lim et al., 2010). On the other hand, attentional lapses have been 

related to decreased thalamic activation and attenuated fronto-parietal activation (Chee et al., 

2008; Tucker et al., 2011). These observations may reveal a break-down in top-down attentional 

control following sleep deprivation(De Havas et al., 2012). 

The bottom-up control system specializes in detecting behaviorally relevant sensory 

events, particularly for salience and unattended stimuli (Corbetta & Shulman, 2002; Purves et al., 

2008). This system is also referred to as stimulus-driven control, consisting of the 

temporoparietal and ventral frontal cortex, mainly on the right hemisphere of the brain (Corbetta 

& Shulman, 2002). 
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2.4 Brain Functional Connectivity 

Most of the functional magnetic resonance imaging studies have focused on the altered 

brain response to cognitive tasks following sleep deprivation (Chee & Choo, 2004; Drummond 

& Brown, 2001; Drummond et al., 2000; Drummond et al., 1999; Portas et al., 1998; Poudel et 

al., 2013). For instance, Poudel et al. (2010) observed decreased activity in the occipital cortex, 

superior parietal cortex, and primary motor areas during a visuomotor tracking task in the 

chronic sleep deprivation condition; meanwhile, increased activity in the thalamic, anterior 

cingulate, and medial frontal areas have been reported. The first fronto-parietal network has been 

linked with the ability to maintain sustained attention (Corbetta & Shulman, 2002); and the latter 

thalamo-cortical network has been related to arousal (Sturm et al., 1999).  

These studies have assumed that the anatomically segregated cortical regions can be 

attributed to specific cognitive functions, in terms of brain functional segregation (Friston, 2011). 

However, researchers have realized that it is difficult to localize a specific function to cortical 

areas, because of the interdependent cerebral activity among brain regions (Phillips et al., 1984). 

According to functional segregation, a specific function is localized with anatomically 

segregated cortical areas (Friston, 2011). However, the union of these cortical areas may be 

mediated through the functional integration among these areas (Friston, 2011). In this way, 

Friston (2011) has demonstrated that functional segregation can be meaningful only in terms of 

functional integration, since a single function may result from the integration of multiple cortical 

areas. In recent years, the emphasis of researches has been shifting from functional segregation 

to the integration of the anatomically distributed but functionally connected brain regions 

(Friston, 2011; Lynall et al., 2010).  
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2.4.1 Functional Connectivity 

Functional connectivity has been widely used to characterize brain functional integration, 

which measures the statistical dependencies among neurophysiological events of the human 

brain (Friston, 2011). This concept is based on the assumption that statistical dependencies 

between time series of neuronal or metabolic activity represent the functional interaction 

between brain regions (Stam & Reijneveld, 2007). With fMRI data, functional connectivity is 

calculated as the correlation coefficient between BOLD signals of brain regions acquired during 

tasks or in the resting state (Park & Friston, 2013). Even the underlying brain anatomical 

structure may restrict the patterns of functional connectivity; such dependency measures may 

reveal more information beyond the anatomical structure of the brain (Stam & Reijneveld, 2007). 

Researchers have observed two brain instinct networks with functional connectivity, the 

default mode network (DMN) and its anti-correlated network (ACN). The default mode network 

has been described as a brain functional network that consistently deactivates when tasks require 

external orientation (Raichle et al., 2001; Shulman et al., 1997), and activates when tasks involve 

in internal orientation (Bar, 2007; Binder et al., 2009; D'Argembeau et al., 2005; Hassabis & 

Maguire, 2007). This network is mainly associated with brain regions, including the posterior 

cingulate cortex and retrosplenial cortex, precuneus, the dorsal and ventral medial prefrontal 

cortex, inferior parietal lobule, lateral temporal cortex, and hippocampal formation (Buckner et 

al., 2008; Fox et al., 2005; Gusnard et al., 2001; Raichle & Snyder, 2007; Shulman et al., 1997).  

The anti-correlated network shows activation in response to externally oriented tasks 

(Andrews-Hanna, 2012; Corbetta & Shulman, 2002; Fox et al., 2005). This network composes 

such brain regions as the frontal eye filed, intraparietal sulcus, middle temporal region, 
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supplementary motor area , inferior parietal lobe (also referred to as the temporoparietal junction 

(Corbetta & Shulman, 2002)), dorsolateral prefrontal cortex, and Insula (Fox et al., 2005). In 

addition, these two brain networks are also mediated through functional connectivity (Greicius et 

al., 2003). 

Studies have observed both altered regional activation and functional connectivity of the 

default mode network and the anti-correlated network in the human brain after sleep loss (De 

Havas et al., 2012; Gujar et al., 2010; Sämann et al., 2010). Specifically, task-induced 

deactivation in brain regions of the default mode network (e.g., midline anterior and posterior) 

has been observed after one night of sleep loss (Gujar et al., 2010). Researchers have 

demonstrated that sleep deprivation is associated with the decline of functional connectivity in 

the default mode network and its anti-correlated network, as well as the functional connectivity 

between these two networks (De Havas et al., 2012; Sämann et al., 2010).  

2.4.2 Dynamic Functional Connectivity 

Most of the fMRI studies have assumed that the functional connectivity was constant 

over time during task-free experiments, which provided a convenient way to examine and 

interpret results (Hutchison et al., 2013a). However, researchers have argued that this assumption 

may oversimplify the assessment of brain activity (Allen et al., 2014). Recent work on both task-

induced and resting-state brain activity has shown the fluctuated functional connectivity, 

suggesting a non-stationary property of brain functional connectivity (Handwerker et al., 2012; 

Hutchison et al., 2013b; Kang et al., 2011; Kiviniemi et al., 2011; Li et al., 2014; Majeed et al., 

2011). Specifically, Hutchison et al. (2013a) have demonstrated that functional connectivity was 
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varying over time due to task demands (Esposito et al., 2006; Fornito et al., 2012; Fransson, 

2006; Sun et al., 2007), learning (Albert et al., 2009; Bassett et al., 2011; Lewis et al., 2009; 

Tambini et al., 2010), and state transitions such as sleep (Horovitz et al., 2009; Horovitz et al., 

2008). Furthermore, the dynamics of functional connectivity have revealed the time-varying 

property of both connectivity strength and directionality (Chang & Glover, 2010; Hutchison et 

al., 2013c; Kiviniemi et al., 2011). Such time-varying property may show greater information 

about the fundamental properties of brain functional networks (Friston, 2011; Hutchison et al., 

2013a). 

2.5 Graph Theoretic Analysis in Human Brain Networks 

Given that functional connectivity assesses the relationship between brain regions, the 

human brain can be represented as an interconnected network, which is referred to as brain 

functional network in the literature (Rubinov & Sporns, 2010). In brain functional networks, 

nodes represent the brain regions and edges represent the functional connectivity (Lynall et al., 

2010; Ma et al., 2014). Given the complexity of the human brain, researchers have applied graph 

theoretic analysis to brain functional networks, which has been widely used in complex network 

analysis (Rubinov & Sporns, 2010). The first attempt to apply graph theoretic analysis to fMRI  

was published by Dodel et al. (2002). Increasing number of studies have investigated brain 

network properties using graph theoretic analysis (Bassett & Bullmore, 2006; Bassett & 

Bullmore, 2009; Bullmore & Sporns, 2009; Fallani et al., 2014; Park & Friston, 2013; Rubinov 

& Sporns, 2010; Stam et al., 2007b). This analysis can reliably to characterized brain functional 



13 

 

networks, whose measures are easy to compute and interpret (Achard et al., 2006; Bassett & 

Bullmore, 2006; Hagmann et al., 2008; He et al., 2007; Sporns & Zwi, 2004). 

2.5.1 Construction of Brain Networks 

In graph theory, a complex system is represented with a collection of defined nodes 

interacting with each other through connected edges. Given the large-scale brain networks, the 

nodes usually represent brain regions, and the edges may represent the anatomical, functional, or 

effective connections (Friston, 1994). The nodes and edges in different brain networks are 

determined by the integration of brain mapping methods, anatomical parcellation methods, and 

measures of connectivity (Rubinov & Sporns, 2010). Nodes represent brain regions composed of 

neural elements that are connected with extrinsic anatomical or functional connections (Bassett 

& Bullmore, 2009).  

There are four types of edges determined by their weight measures and directionality: 

binary directed, binary undirected, weighted directed and weighted undirected. Binary edges 

show the presence or absence of connections. The weights of weighted edges describe the 

strengths of corresponding connections, which are determined by the measures of connectivity. 

Directed edges are mainly used with measures of effective connectivity. Binary undirected brain 

networks are the most widely used because of their simplicity (Rubinov & Sporns, 2010). 

However, researchers have demonstrated that the weighted edges may reveal somewhat different 

and complementary aspects of brain networks (Saramäki et al., 2007). 
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2.5.2 Network Measures in Brain Network 

Network measures have been widely used in previous studies, including degree 

distribution, clustering coefficient, and characteristic path lengths (Rubinov & Sporns, 2010; 

Tijms et al., 2013; Watts & Strogatz, 1998).  

Degree distribution is the most basic and important measure among those network 

measures. Degree is calculated as the number of neighbors of that node. In weighted networks, a 

variant of the degree, named as strengths or weighted degree, is defined as the sum of all 

neighbors’ edge weights. The degree distribution is composed of the degrees of all nodes in the 

network. Such a measure has been widely used to assess network development and resilience. 

The shape of degree distributions may characterize the brain networks. For instance, in the 

random networks all nodes are connected with equal probability, resulting in a systematically 

centered Gaussian distribution (Bullmore & Sporns, 2009). In the scale-free networks, the degree 

distributions follow a power law distribution, which has been related to the network’s robustness 

to failure. The scale-free networks have also been observed in the human brain (Achard et al., 

2006; Eguiluz et al., 2005; Stam & de Bruin, 2004; Stam & Reijneveld, 2007; van den Heuvel et 

al., 2008).  

Clustering coefficient has been widely used as a measure of functional segregation in 

brain networks. It is calculated as the ratio of the number of connections between the nearest 

neighbors of a node over the maximum number of possible connections in the network (Watts & 

Strogatz, 1998). Functional segregation shows the brain’s ability of specializing information 

processing (Rubinov & Sporns, 2010). Given the definition of clustering coefficient, the average 

clustering coefficient of a network represents the prevalence of clusters in the network. In brain 
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functional networks, the appearance of clusters suggests an organization of segregated neural 

processing(Rubinov & Sporns, 2010). 

Characteristic path length has been widely used as a measure of functional integration in 

brain networks (Watts & Strogatz, 1998). It is defined as the average shortest path length 

between all pairs of nodes in the network. Measures of functional integration assess the ease of 

communication between distinct regions through the functional connectivity (Rubinov & Sporns, 

2010). Characteristic path length is also related to another measure, known as the global 

efficiency, which is equal to the average inverse shortest path length between all pairs of nodes 

(Latora & Marchiori, 2001; Rubinov & Sporns, 2010).  

2.5.3 Topology of Brain Networks 

Studying the topology of interactions in brain networks suggests a comprehensive 

understanding of the complex phenomena, such as the emergence of cognition or disabled 

functions with brain lesions (Carter et al., 2012; Fallani et al., 2014; Varela et al., 2001). 

Researchers have linked topology changes of brain structural or functional networks to 

neurological and psychiatric disorders (Bassett et al., 2008; Leistedt et al., 2009; Ponten et al., 

2009; Stam et al., 2007a; Stam et al., 2009; Stam et al., 2007b; Wang et al., 2009). 

Three types of network topology have been widely discussed in previous studies (Figure 

1), including regular network, small-world network, and random network (Guye et al., 2010). 

Specifically, the regular network has many short distance connections but no long distance ones, 

resulting in a high clustering coefficient (C), and a long characteristic path length (L). Network 

of such topology has the maximal information segregation (Guye et al., 2010; Tijms et al., 2013). 
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In contrast, the random network shows a low clustering coefficient and a short characteristic path 

length, since each node has the same probability of connecting with the others. Thus, the random 

network shows the property of the maximal information integration (Guye et al., 2010; Tijms et 

al., 2013). By introducing few long distance connections, the regular network is changed to 

small-world network with a similar clustering coefficient, but a much shorter characteristic path 

length. Hence, the small-world topology is an intermediate topology between the regular network 

and the random network. As a result, the network of small-world topology shows an optimal 

balance between information segregation and integration (Guye et al., 2010; Tijms et al., 2013). 

 

Figure 1. Representation of Three Types of Network Topology with Associated Network Measures (Guye 

et al., 2010) 
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Recent studies have demonstrated that brain network intrinsically shows a small-world 

topology, which is responsible for high efficient information integration with a low cost of 

reconnecting (Bassett et al., 2009; Guye et al., 2010; Hsu et al., 2012; Latora & Marchiori, 2001; 

Lynall et al., 2010). Watts and Strogatz (1998) developed the first mathematical model of small-

world topology. This topology has been described as an optimal network structure associated 

with a balance between the information processing and global synchronization (Stam, 2004).  

Alterations in small-world topology of brain networks have been related to declining 

states of consciousness (Salvador et al., 2005), schizophrenia (Micheloyannis et al., 2006; 

Rubinov et al., 2009), Alzheimer’s disease (He et al., 2008; Sanz-Arigita et al., 2010; Stam et al., 

2007a; Stam et al., 2009; Stam et al., 2007b), and other cognitive disorders induced by aging 

(Achard & Bullmore, 2007; Meunier et al., 2009). In addition, Koenis et al. (2013) have reported 

the loss of brain small-world networks with electroencephalogram (EEG) data in the sleep 

deprivation condition. However, Liu et al. (2014) have demonstrated that sleep deprivation 

resulted in an enhanced brain small-worldness with resting state fMRI data, indicating a 

compensatory adaptation of the human brain. 
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CHAPTER 3: RESEARCH GAPS AND OBJECTIVE 

Researchers have demonstrated that sleep deprivation can impair sustained attention. 

Most studies about sustained attention mainly focused on the effects of total sleep deprivation, 

since experiments on chronic sleep deprivation take more time and are more expensive. However, 

different effects of total sleep deprivation and chronic sleep deprivation have been observed. 

Specifically, studies have revealed that the chronic sleep deprivation can induce much longer 

time of constant impairments in certain cognitive tasks, and require more time to recover (Basner 

et al., 2013; Belenky et al., 2003; Van Dongen et al., 2003). Given that chronic sleep deprivation 

has been observed more commonly in contemporary society than total sleep deprivation (Basner 

et al., 2007), it is more practical to study the effects of chronic sleep deprivation. Thus, there still 

exists a need to investigate how chronic sleep deprivation impairs human sustained attention. 

Previous studies mainly focused on the brain functional segregation through investigating 

neural activity changes of brain regions induced by sleep deprivation. However, given the 

interdependency of neural activity among brain regions, it is difficult to localize a specific 

function with anatomically segregated cortical areas. In addition, increasing attention has been 

given to study the functional integration of anatomically distributed but functionally connected 

brain regions (Friston, 2011; Lynall et al., 2010). Functional connectivity has been widely used 

to characterize brain functional integration, which measures the statistical dependencies among 

the neurophysiological events of the human brain (Friston, 2011). With fMRI data, functional 

connectivity is usually obtained as the correlation coefficients between BOLD signals of brain 

regions acquired during cognitive tasks or in the resting state (Park & Friston, 2013). Further, 

there is increasing evidence that functional connectivity is non-stationary, suggesting the 

dynamic property of brain functional networks. Such a dynamic property of brain networks may 
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reveal more information about the human brain. To the best of our knowledge, no previous study 

has investigated the effects of chronic sleep deprivation from the perspective of brain dynamic 

functional connectivity. 

Given dynamic functional connectivity, the human brain can be modeled as a series of 

functional networks. Graph theoretic analysis has been widely applied to investigate the 

properties of brain functional networks, with network measures of clustering coefficient and 

characteristic path length. However, no study has compared those network measures of brain 

dynamic functional networks between the rested wakefulness condition and the chronic sleep 

deprivation condition. Moreover, no published study has investigated the dynamic topology of 

brain functional networks during sustained attention in the sleep deprivation condition. The 

dynamic property of network measures (i.e., clustering coefficient and characteristic path length) 

and network topology need further investigation.  

Therefore, the objective of this thesis is to investigate the effects of chronic sleep 

deprivation on sustained attention from the perspective of brain dynamic functional connectivity. 
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CHAPTER 4: RESEARCH EXPERIMENT AND DATA  

The experiment was conducted by Department of Cognitive Neuroscience and 

Neuroergonomics at Jagiellonian University, Krakow, Poland (Fafrowicz, 2012). 

4.1 Participants 

Thirteen healthy female participants (mean age 23.4±2.0 years) completed this study. All 

of them met the experimental requirements, including right-handed, right-eye dominant, normal 

or corrected-to-normal visual acuity, no physical or psychiatric disorders, and no sleep related 

disorders. Two participants were excluded due to equipment problems. The average self-reported 

sleep duration was longer than 6.5 hours per night for the month before the experiment. All 

participants were provided with written consent and paid for their participation. This study was 

approved by the Bioethics Committee at Jagiellonian University. 

4.2 Experiment Protocol 

Participants completed the study with three visits: 1) a practice session, 2) after a week 

with unrestricted, fully restorative sleep - rested wakefulness session (RW), and 3) after a week 

of sleep curtailment by 30% - sleep deprivation session (SD). The order of experimental sessions 

(i.e., rested wakefulness session and chronic sleep deprivation session) was counterbalanced 

across all participants. The sessions were separated by at least two weeks to minimize the 

residual effects of sleep curtailment on cognitive performance when chronic sleep deprivation 

session proceeded the rested wakefulness session (Van Dongen et al., 2003). The participants 

spent experimental days in a controlled laboratory environment. A semi-constant routine 



21 

 

protocol was applied: room temperature and light intensity were kept constant. The caloric intake 

and the level of motor activity of all subjects were controlled. Caffeine intake was banned; 

alcohol consumption during the preceding week was restricted. 

4.3 Tasks 

A modified spatial cueing task (Posner, 1980) was used to evaluate participants’ 

sustained attention in both the rested wakefulness condition and the chronic sleep deprivation 

conditions. Participants were instructed to direct their attention and gaze from fixation point to 

targets during three types of tasks. Figure 2 illustrates the procedure of a congruent task, in 

which a cue (the first red dot) appeared on the same side of target (the second red dot). In 

contrast, an incongruent task had a cue presenting on the opposite side of target, as shown in 

Figure 3. During these two tasks, the subjects were required to only gaze at the targets. In 

addition, there would be no cue presented during the third task. 

The task comprised of trials with cues congruent to a target (58%), the trials with cues 

incongruent to a target (15%), and trials without a cue (27%). The trial sequence was pseudo-

randomized to counterbalance the presentation of each trial type. Targets were presented for 500 

ms, whereas cues were presented for 300 ms. Average inter-stimulus interval was 550 ms 

(varying between 300-800 ms in steps of 100 ms), while the average inter-trial interval was 2800 

ms (varying between 1300 and 4300 ms in steps of 500 ms). To improve sampling rate of the 

hemodynamic response, the phase of the target was varied relative to the image acquisition 

(Josephs et al., 1997; Toni et al., 1999) resulting in the final temporal resolution of 100 ms. 

Participants performed their tasks during four magnetic resonance scanning sessions conducted 

in one day. Each session comprised of 598 trials and lasted about 40min. 
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Figure 2. Illustration of Congruent Task 

 

Fixation Point

Fixation Point with Cue

Fixation Point

Fixation Point with 

Target Stimulus

Fixation Point

1300-4300ms

300 ms

300-800ms

500 ms

1300-4300ms

Time
 

Figure 3. Illustration of Incongruent Task 
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4.4 Eye-tracking data collection and preprocessing 

The position of an eye was monitored using a Saccadometer Research MRI system 

(Ober-Consulting, Poland). The system registered right eye movements using direct near-infrared 

technology. It used 500 Hz sampling frequency, measuring range ±20 degrees of visual angle 

and average spatial resolution of 15 degrees. Stimuli generated by red laser diodes were 

presented in the horizontal axis on a panel integrated with the saccadometer system attached to 

the subject’s head approximately 3cm from the subject’s eyes, as shown in Figure 4. There were 

five diodes on the panel: central diode for fixation, left and right diodes at 5 degrees and 15 

degrees of visual angle for cue stimuli and target respectively. A calibration procedure before 

each session was conducted - the participants looked three times at each stimulus for a 1s period.  

Eye-tracking data were analyzed using Research Analyzer software (Ober-Consulting, 

Poland). Saccades were detected with the velocity criteria: the beginning of a saccade was 

marked when an eye movement was faster than 5 degrees per second and this movement was 

classified as a saccade only when its velocity reached 90 degrees per second. SRT was defined as 

a difference between target appearance and the beginning of a saccade. Reaction was classified 

as correct when a saccade reached a target during its presentation.  



24 

 

 

Figure 4. Eye Tracking System (Fafrowicz et al., 2010) 

4.5 fMRI data collection and preprocessing 

Magnetic resonance imaging (MRI) was performed using a 1.5 T Signa HDxt MRI 

scanner (GE Medical Systems, Milwaukee, USA). High-resolution whole-brain anatomical 

images were acquired using T1-weighted multi-echo volumetric MRI and a total of 60 axial 

slices were obtained (matrix size =512 512 ; time repetition TR = 25.0 s; time echo TE = 6.0 

ms; field of view FOV = 22 22  cm
2
; flip angle = 45 ). BOLD functional scans were acquired 

with a T2
*
-weighted EPI pules sequence (matrix size =128 128 ; TR = 3.0 s; TE = 60ms; flip 

angle = 90 ). Whole brain image was covered with 20 axial slices, taken at an interleaved fashion. 

All fMRI data were preprocessed using AFNI software. The first three volumes in each 

run were excluded because of the T1-equilibration effects. Data were corrected for order of slice-

dependent acquisition. The head motion was corrected within and across scans by reregistration. 
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CHAPTER 5: METHODOLOGY 

This section describes the methodology and procedure used in this thesis. First, an 

automated anatomical labelling atlas was used to segment the human brain into different regions. 

The activation of an individual region was estimated as the average of voxels’ activations within 

the given region. Then, sliding-window correlation coefficients were calculated to assess the 

relation between brain regions. Further, a partial least squares approach with sliding-window 

correlations was used, to determine significant functional connectivity related to the rested 

wakefulness condition and the chronic sleep deprivation condition. The functional connectivity 

was estimated as weighted correlation coefficients.  

With the estimated functional connectivity between brain regions by sliding-window, the 

brain was modeled as a series of dynamic functional networks in each experimental condition. 

Next, a graph theoretic analysis was performed to study and compare the properties of brain 

functional networks between the rested wakefulness condition and the chronic sleep deprivation 

condition. The network measures included clustering coefficient and characteristic path length, 

which have been widely used to measure network functional segregation and integration, 

respectively. Moreover, the topology of brain dynamic functional networks was assessed with 

small-world topology index in the rested wakefulness condition and the chronic sleep deprivation 

condition. 
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5.1 Automated Anatomical Labeling 

The fMRI data of individual subjects was corregistrated with corresponding anatomical 

data in the preprocessing procedure. This corregstrated functional data of the brain was then 

segmented into distinct regions with the automated anatomical labelling (AAL) atlas (Tzourio-

Mazoyer et al., 2002). The objective of this procedure was to simplify the fMRI data from voxel 

level to regional level.  

This segmentation procedure was conducted with a Matlab library developed by Singh et 

al. (2005). AAL is a macroscopical anatomical parcellation method that divided human brain 

into 90 anatomical regions of interest (Tzourio-Mazoyer et al., 2002).The three-dimension 

coordinates of single imaging voxel is used to determine which brain region this voxel belonged 

to.  

In this thesis, 20 labelled regions of interest were used because of imaging quality. The 

brain regions are listed in Table 1. The last column shows the order of brain regions used in the 

following analysis. The coordinates of each brain region represent the location in the human 

brain, according to the brain network visualization toolbox (Xia et al., 2013). 
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Table 1. List of AAL Brain Regions 

Lobe AAL Brain Regions 
Coordinates (mm) Region 

No. x y z 

Frontal Lobe 

Middle Frontal Left -30.65 50.43 -9.62 1 

Middle Frontal Right 33.18 52.59 -9.62 2 

Superior Frontal Left -16.56 47.32 -13.31 3 

Superior Frontal Medial Left -7.63 -25.36 70.07 4 

Superior Frontal Medial Right 7.48 -31.59 68.09 5 

Superior Frontal Right 18.49 48.10 -14.02 6 

Parietal Lobe 

Inferior Parietal Left -42.80 -45.82 46.74 7 

Inferior Parietal Right 46.46 -46.29 49.54 8 

Superior Parietal Left -23.45 -59.56 58.96 9 

Superior Parietal Right 26.11 -59.18 62.06 10 

Precuneus Left -7.24 -56.07 48.01 11 

Precuneus Right 9.98 -56.05 43.77 12 

SupraMarginal Left -55.79 -33.64 30.45 13 

Occipital Lobe 

Middle Occipital Left -32.39 -80.73 16.11 14 

Superior Occipital Left -16.54 -84.26 28.17 15 

Cuneus Left -5.93 -80.13 27.22 16 

Central Region 

Postcentral Left -38.65 -5.68 50.94 17 

Postcentral Right 41.37 -8.21 52.09 18 

Precentral Left -42.46 -22.63 48.92 19 

Precentral Right 41.43 -25.49 52.55 20 

 

The following figures illustrate the listed brain regions in the human brain. Different 

colors represent different brain lobes. 
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Figure 5. Illustration of Listed Brain Regions in the Frontal Lobe 

 

 
 

Figure 6. Illustration of Listed Brain Regions in the Parietal Lobe 
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Figure 7. Illustration of Listed Brain Regions in the Occipital Lobe 

 

 
 

Figure 8. Illustration of Listed Brain Regions in the Central Region 
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After segmenting, each region was composed of several imaging voxels. The activation 

of individual brain regions was estimated by averaging the BOLD signals across voxels within 

the given region. For instance, Figure 9 illustrates the procedure to estimate the activation of the 

left Inferior Parietal Region (the blue area). First, voxels within this region are selected through 

comparing their coordinates to AAL atlas. The yellow dots represent three examples of imaging 

voxels within this region. Then, the average of voxels’ time series BOLD signals is used to 

represent the activation of the left Inferior Parietal Region over time. 

 

Figure 9. An Example of Estimating Regional Activation after AAL Segmentation 
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5.2 Sliding-Window Pearson Correlation Coefficient 

The relationship between brain regions was measured as the Pearson correlation 

coefficient between regional BOLD signals. The correlation coefficient was calculated as follows: 

𝜌𝑥𝑦 =
𝑐𝑜𝑣(𝑥,𝑦)

𝜎𝑥𝜎𝑦
                                                                 (5.1) 

where 𝑥 and 𝑦 denoted series BOLD signals of two brain regions. This calculation 

required more than one point for both 𝑥 and 𝑦. In other words, the correlation coefficient 

represented the correlation between two brain regions during a given time interval. In this thesis, 

the correlation yielded a 20 × 20 matrix for each interval. For instance, for a given time interval, 

the correlation coefficient between Inferior Parietal Region (left) and Superior Frontal Region 

(left) is calculated and stored in the correlation matrix, as illustrated in Figure 10.  

 

Figure 10. An Example of Calculating Pearson Correlation Coefficient 
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To investigate the dynamic property of the human brain, a sliding-window approach was 

combined with Pearson correlation coefficient. The sliding-window approach has been used in 

the past to study dynamic functional connectivity of the human brain (Allen et al., 2014; Bassett 

et al., 2011; Chang & Glover, 2010; Handwerker et al., 2012; Hutchison et al., 2013b). In this 

approach, each window has a fixed length of time interval; and data within this window are used 

to calculate the correlation coefficients. Then the window is shifted in temporal dimension by a 

fixed length of time, whose length determines the overlap between successive windows.  

The correlation coefficient between two sliding-window series 𝑥 and 𝑦 is computed as 

follows: 

𝜌𝑥𝑦(𝑤) = 𝑐𝑜𝑟𝑟(𝑥[𝑤𝑡, 𝑤𝑡 + ∆𝑤], 𝑦[𝑤𝑡, 𝑤𝑡 + ∆𝑤])                                        (5.2) 

where 𝑤𝑡 represents the first scan of a given window and ∆𝑤 the length of shifted windows 

(Leonardi et al., 2013). According to the previous studies, cognitive states may be correctly 

estimated based on covariance matrices with window sizes around 30-60 scans (Hutchison et al., 

2013a; Shirer et al., 2012). In this thesis, sliding-window correlation coefficients were calculated 

with lengths of window equal to 30 scans (each scan took 3 seconds) and shifted by two scans 

for each step (Figure 11). With a total of 805 scans, 388 sliding-windows were used to further 

investigate the property of the human brain over time. 

 
Figure 11. Sliding-Window Pearson Correlation Coefficient 
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5.3 Partial Least Squares Approach  

A partial least squares approach was used to identify functional connectivity in the rested 

wakefulness condition and the chronic sleep deprivation condition.  

Partial least squares (PLS) approach is a multivariate analysis that aims to investigated 

shared information, through determining the maximum covariance between two types of datasets 

(Tucker, 1958). The first application of partial least squares to neuroimaging data was conducted 

by McIntosh et al. (1996). This approach was then extended to spatio-temporal partial least 

squares with fMRI data in 2004 (McIntosh et al., 2004). This extension enables the inferences 

about relationships between brain activity and human behavioral performance or experimental 

designs across spatial and temporal dimensions (Lin et al., 2003). 

In the previous application of partial least squares to fMRI data, the objective was to 

determine brain activation patterns related to experimental designs or behavioral measures. A 

journal paper, which applied principal component analysis (PCA) to functional connectivity 

(Leonardi et al., 2013), provided the motivation for extending the application of PLS to 

identifying patterns of functional connectivity.  

5.3.1 Notation 

Matrices are represented by upper case bold letters (e.g., 𝐗), whereas column vectors are 

represented by lower case bold letters (e.g., 𝒙). The transpositions of matrices or column vectors 

are represented by an uppercase superscript T (e.g., 𝐗T). The uppercase italic letters (e.g., 𝐼) 

represent the total number of rows, columns, or subjects; and a given row, column, or subject is 

represented by a lower case italic letter (e.g., 𝑖).  
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5.3.2 Data Organization 

In partial least squares approach, input data were stored in two matrices, brain 

connectivity matrix (𝐗) and design matrix (𝐘). In both matrices, a row represented an 

observation of one subject in one of the experimental conditions. In this thesis, we had two 

experimental conditions (K=2) and 11 subjects (I=11). Thus, the degree of freedom in the 

experimental design was 𝐾 − 1 = 1.The design matrix (𝐘) was constructed as a 22 × 1 design 

contrast matrix as follows: 

 

Figure 12. Design Matrix (𝐘) of Partial Least Squares Approach 

 

Individual connectivity matrices (𝐂𝑖,𝑘) were created to construct the brain connectivity 

matrix. As demonstrated in Figure 13, a correlation matrix of sliding-window 𝑤𝑡 is vectorized 

into a column vector 𝐜𝑖,𝑡,𝑘, where i denotes the subject, t the sliding window, and k the 

experimental condition. For instance, 𝐜1,10,1 represents the first subject’s connectivity vector of 

the tenth sliding-window in the rested wakefulness condition.  
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When transforming the correlation matrix, only the upper triangular part was kept due to 

matrix symmetry, resulting in (𝑁2 − 𝑁)/2 pairs of connectivity, where 𝑁 represented the 

number of brain regions (𝑁 = 20). As a result, an individual connectivity matrix had dimensions 

of 190 × 388 in each condition, where 388 was the total number of sliding-windows. 

 
 

Figure 13. Illustration of Constructing Individual Connectivity Matrix with Sliding-Window Correlation 

Matrix 

 

The vectors of individual connectivity matrices were then extracted and reorganized 

within sliding-window blocks. As illustrated in Figure 14, connectivity vectors of subject 2 

(𝐜2,2,1) and subject 5 (𝐜5,2,1) in the second sliding-window are transformed and reorganized into 

row vectors of the second window block in the rested wakefulness condition.  
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Figure 14. Illustration of Constructing Brain Connectivity Matrix (𝐗) with Individual Connectivity Matrices 
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In this way, the brain connectivity matrix was composed of a series of window blocks, 

which contained correlation coefficients between pairs of brain regions. These blocks were 

ordered by experimental conditions. In Figure 15, where 𝐗t denotes a connectivity submatrix of 

sliding-window 𝑡, the brain connectivity matrix (𝐗) can be represented as a composition of these 

submatrices as 𝐗 = [𝐗1, 𝐗2, ⋯ , 𝐗388]. 

 
Figure 15. Data Organization of Brain Connectivity Matrix (𝐗) 

 

To simplify computation, the submatrix of the brain connectivity matrix (𝐗t) was used 

individually as input in the following analysis. Partial least squares approach can relate the 

submatrix to the design matrix for each sliding-window. Every step of singular value 

decomposition was repeated for all the sliding-windows, where 𝑇 = 388. 
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5.3.3 Singular Value Decomposition 

The brain connectivity submatrix (𝐗t) and design matrix (𝐘) were statistically centered 

and normalized in order to make the variables comparable. The normalized matrices were 

denoted as 𝐑𝐗𝑡 for brain connectivity and 𝐑𝐘 for experimental design. Then a cross-product 

matrix was calculated to relate the brain connectivity submatrix (𝐑𝐗𝑡) with the design matrix 

(𝐑𝐘), denoted as 𝐑𝑡: 

𝐑𝑡 = (𝐑𝐘)𝑇(𝐑𝐗𝑡)                                                              (5.3) 

The goal of partial least squares was to find a set of orthogonal latent variables with 

maximal covariance between two input data. Singular value decomposition (SVD) was used as a 

tool to identify those latent variables. This method decomposed matrix 𝐑𝑡 into three matrices: 

𝐑𝑡 = 𝐔𝑡∆𝑡𝐕𝑡
T                                                                   (5.4) 

The matrix ∆𝑡 was a diagonal matrix of nonzero values. Since the degree of freedom in 

design contrast was one (Figure 12), matrix ∆𝑡 contained only one nonzero singular value (𝛿𝑡). 

This value was eigenvalues that indicated the amount of the covariance between connectivity and 

the experimental design by each latent variable. 

The singular matrix 𝐔𝑡 was called design salience and 𝐕𝑡 the connectivity salience, which 

represented experiment profiles and brain connectivity respectively, with the best 

characterization of 𝐑𝑡. These two salience matrices were orthonormal matrices (i.e., 𝐔𝑡
T𝐔𝑡 =

𝐕𝑡
T𝐕𝑡 = 𝐈). When projecting the original matrices 𝐑𝐗𝑡 and 𝐑𝐘 onto their corresponding saliences, 

latent variable was obtained for brain connectivity (𝐑𝐗𝑡), called “connectivity scores”, as 

follows: 

𝐋𝑿,𝑡 = (𝐑𝐗𝑡)(𝐕𝑡)                                                              (5.5) 

and for experiment design (𝐑𝐘), called “design scores”, as follows: 
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𝐋𝒀,𝑡 = (𝐑𝐘)(𝐔𝑡)                                                              (5.6) 

Since the original design matrix (𝐘) contains both positive (rested wakefulness condition) 

and negative (chronic sleep deprivation condition) values (see Figure 12), connectivity salience 

is decomposed into two groups, as illustrated in Figure 16. The connectivity with positive 

salience is related to the rested wakefulness condition; while the connectivity with negative 

salience is related to the chronic sleep deprivation condition. In this way, the connectivity was 

identified for each experimental condition in each sliding-window. 

 
Figure 16. Example of Relating Connectivity to Experimental Condition through Design Scores 

 

The statistical significance of the decomposition was assessed using a permutation test. In 

this test, rows of connectivity submatrix (𝐑𝐗𝑡) were resampled without replacement to reassign 

experimental condition to subjects. In this thesis, 500 times permutation test was used for each 

sliding-window 𝑡, and the permutated connectivity submatrix was denoted as 𝐑𝐗𝑝𝑒𝑟𝑚,𝑡. Then 

SVD was re-performed with the new sampled matrix, as follows: 

𝐑𝑝𝑒𝑟𝑚,𝑡 = (𝐑𝐘)𝑇(𝐑𝐗𝑝𝑒𝑟𝑚,𝑡) = 𝐔𝑝𝑒𝑟𝑚,𝑡∆𝑝𝑒𝑟𝑚,𝑡𝐕𝑝𝑒𝑟𝑚,𝑡
T                                 (5.7) 
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The probability of significant decomposition was determined by the number of times that 

permutated eigenvalues (𝛿𝑝𝑒𝑟𝑚,𝑡) exceeded the original eigenvalue (𝛿𝑡) over total times of 

permutation: 

𝑝𝑡 =
𝑡𝑖𝑚𝑒𝑠(𝛿𝑝𝑒𝑟𝑚,𝑡>𝛿𝑡)

500
                                                      (5.8) 

This probability was calculated for each sliding window, and the corresponding decomposition 

was considered significant when 𝑝𝑡 < 0.05. 

5.3.4 Brain Functional Connectivity Estimation 

To estimate the functional connectivity, significant connectivity that was reliable with 

experimental conditions was selected. Bootstrap test was performed to determine the reliability 

of connectivity saliences through resampling rows of the connectivity submatrix (𝐑𝐗𝑡) with 

replacement. A bootstrap test was used 100 times for each sliding-window 𝑡, and the 

bootstrapped connectivity submatrix was denoted as 𝐑𝐗𝑏𝑜𝑜𝑡,𝑡. Then singular value 

decomposition was re-performed with new sampled matrix, as follows: 

𝐑𝑏𝑜𝑜𝑡,𝑡 = (𝐑𝐘)𝑇(𝐑𝐗𝑏𝑜𝑜𝑡,𝑡) = 𝐔𝑏𝑜𝑜𝑡,𝑡∆𝑏𝑜𝑜𝑡,𝑡𝐕𝑏𝑜𝑜𝑡,𝑡
T                                (5.9) 

Bootstrap ratio (BSR) of connectivity pairing 𝑗 was defined as the ratio between the 

original connectivity salience and the standard error of bootstrapped saliences: 

𝐵𝑆𝑅𝑗,𝑡 =
𝑣𝑗,𝑡

𝑆𝐸(∆𝑏𝑜𝑜𝑡,𝑡)
                                                          (5.10) 

In this way, BSRs would follow a distribution similar to T-distribution. Thus, significant 

connectivity was selected with the absolute value of bootstrap ratio larger than 2 (corresponding 

to 𝑝 < 0.05). This connectivity was considered to be significantly reliable with experimental 

conditions. 
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In this thesis, functional connectivity 𝑓𝑗,𝑡 was estimated as a weighted correlation 

coefficient 𝑥𝑗,𝑡 (after Fisher-transformation), whose weight was equal to the corresponding 

connectivity salience 𝑣𝑗,𝑡: 

𝑓𝑗,𝑡 = 𝑣𝑗,𝑡 ∙ 𝑥𝑗,𝑡                                                                 (5.11) 

where 𝑗 represented the pair of connectivity, and 𝑡 the sliding-window. If the connectivity was 

not significant in the bootstrap test, the weight of this connectivity was assigned to zero. 

5.4 Construction of Brain Dynamic Functional Networks 

With the application of partial least squares to brain connectivity, brain functional 

connectivity was estimated as a linear combination of connectivity salience and normalized 

correlation coefficients. In this way, the brain can be modeled as a complex network with 

weighted and undirected connections. The weights were equal to the estimated functional 

connectivity, and nodes represented brain regions.  

In addition, the sliding-window approach identified a series of functional connectivity 

patterns across sliding-windows in each experimental condition. The brain was modeled as a 

series of dynamic functional networks in the rested wakefulness condition and the chronic sleep 

deprivation condition. 

5.5 Graph Theoretic Analysis 

In this section, a graph theoretic analysis was used to investigate the network properties 

of dynamic brain functional networks. All the network measures were based on weighted and 
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undirected brain functional networks. In this thesis, a Brain Connectivity Toolbox with Matlab 

was used to implement the analyses described below (Sporns et al., 2004). 

5.5.1 Clustering Coefficient  

Clustering coefficient is a widely used network measure of functional segregation. It 

measures the prevalence of clusters in the network. To calculate this measure, first the definition 

of triangle has to be introduced. In graph theory, a triangle consists of three nodes that are 

connected by either two (open triangle) or three (closed triangle) undirected edges. In general, 

the number of triangles of node 𝑖 in a weighted and undirected network is calculated as: 

𝑡𝑖 =
1

2
∑ (𝑤𝑖𝑗𝑤𝑗ℎ𝑤𝑗ℎ)

1 3⁄

𝑗,ℎ∈𝑁                                               (5.12) 

where N represents the total number of nodes, and 𝑤𝑖𝑗 the weight of connection between node i 

and j (Rubinov & Sporns, 2010).  

The local clustering coefficient of node 𝑖 is measured as the fraction of triangles around 

this node: 

𝐶𝑖 =
2𝑡𝑖

𝑘𝑖(𝑘𝑖−1)
                                                             (5.13) 

where 𝑘𝑖 represents the degree of node 𝑖, which is calculated as: 

𝑘𝑖 = ∑ 𝑤𝑖𝑗𝑗∈𝑁                                                              (5.14) 

To measure the functional segregation of the entire network, the average clustering coefficient of 

network 𝐶̅ is calculated as: 

𝐶̅ =
1

𝑛
∑ 𝐶𝑖𝑖∈𝑁 =

1

𝑛
∑

2𝑡𝑖

𝑘𝑖(𝑘𝑖−1)𝑖∈𝑁                                           (5.15) 
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5.5.2 Characteristic Path Length  

Characteristic path length is widely used to measure the functional integration of 

networks. It measures the ease of communication between distinct nodes in the network. To 

calculate the characteristic path length, a concept of path must be introduced. In graph theory, 

paths are sequences of distinct nodes and edges. From the perspective of brain functional 

connectivity, paths represent sequences of statistical associations between pairs of brain regions. 

The shortest path length indicates stronger statistical associations for functional integration 

(Rubinov & Sporns, 2010). The shortest path length between a pair of nodes is calculated as 

follow: 

𝑑𝑖𝑗 = min (𝑙𝑖↔𝑗)                                                               (5.16) 

where 𝑙𝑖↔𝑗 represents all potential routes between node 𝑖 and node 𝑗. In this thesis, the length 

between a pair of connected nodes was estimated as the reciprocal of functional connectivity. 

The important connection with large weight was assumed to have a short communication 

distance. The average shortest path length of a network is defined as the characteristic path 

length: 

𝐿 =
1

𝑛
∑

∑ 𝑑𝑖𝑗𝑗∈𝑁,𝑖≠𝑗

𝑛−1𝑖∈𝑁                                                         (5.17) 

5.6 Small-World Topology of Brain Functional Networks 

Dynamic topology was used to investigate the comprehensive property of brain 

functional networks. Watts and Strogatz (1998) described the small-world network by measuring 

two network parameters, clustering coefficient ratio (𝛾) and characteristic path length ratio (𝜆).  
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To calculate the ratios, a similar random network has to be first created with the same 

distribution of degrees as the original network. For each sliding-window, a similar random 

network was created for brain functional networks in the rested wakefulness condition and the 

chronic sleep deprivation condition, respectively. To determine the network parameters, 

clustering coefficient (𝐶𝑛𝑒𝑡) and characteristic path length (𝐿𝑛𝑒𝑡) were compared with those of 

the corresponding random networks (𝐶𝑟𝑎𝑛𝑑𝑜𝑚 and 𝐿𝑟𝑎𝑛𝑑𝑜𝑚): 

𝛾 =
𝐶𝑛𝑒𝑡

𝐶𝑟𝑎𝑛𝑑𝑜𝑚
                                                                   (5.18) 

𝜆 =
𝐿𝑛𝑒𝑡

𝐿𝑟𝑎𝑛𝑑𝑜𝑚
                                                                    (5.19) 

The small-world topology index (𝛿) is defined as a ratio between clustering coefficient 

ratio 𝛾 and characteristic path length ratio 𝜆: 

𝛿 =
𝛾

𝜆
                                                                        (5.20) 

According to the property of small-world topology, networks of this structure show a 

higher level of clustering coefficient, while remaining around the same length of the 

characteristic path, compared with random network (Rubinov et al., 2009). Hence, if a network 

has small-world topology, the clustering coefficient ratio should be larger than one, while 

characteristic path length ratio should be close to one. As a result, the index ratio 𝛿 should be 

larger than one in a network of small-world topology.
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CHAPTER 6: RESULTS 

6.1 Performance Analysis 

In this thesis, subjects’ sustained attention was evaluated with two categories of 

behavioral measures: accuracy and response time (RT). Accuracy was defined as a ratio between 

the number of correct responses and the total number of trials. Response time was defined as the 

time difference between the appearance of the target and the beginning of the saccade, if subjects 

accomplished the task correctly. Lapses represented responses with response times longer than 

500ms. 

According to the results in Table 2, chronically sleep deprived subjects showed lower 

accuracy than those in the rested wakefulness condition (p=0.002). Specifically, the number of 

lapses was significantly larger than those under rested wakefulness (p=0.016). These 

observations indicated that chronic sleep deprivation impaired sustained attention by decreasing 

response accuracy. 

Table 2. ANOVA Results of Sustained Attention Performance 

Measure Rested Wakefulness Chronic Sleep Deprivation 

Accuracy (%) 81.76* ± 16.06 76.37* ± 16.34 

Number of Lapses 2.00* ± 3.15 3.77* ± 3.41 

Average RT (ms) 161.06  ± 19.81** 165.24 ± 26.98** 

10% of Fastest RT (ms) 80.05 ± 29.56 71.05 ± 35.01 

10% of Slowest RT (ms) 257.20* ± 47.59 276.82* ± 55.76 
*p<.05 in paired t-tests comparing means of measures in rested wakefulness and sleep deprivation 

**p<.05 in chi-square tests comparing variances of measures in rested wakefulness and sleep deprivation 

 

From the perspective of response time, the results showed that there was no significant 

difference of response time between the rested wakefulness condition and the chronic sleep 

deprivation condition (p>0.05). Furthermore, sleep deprived subjects even show slightly better 
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but not significant performance of the top 10% in response time (p>0.05). On the contrary, the 

result showed increased slowest response time in chronic sleep deprivation (p=0.004), which 

suggested that chronic sleep deprivation induced significant effects on slowest responses. In 

addition, the results showed larger variances of response time in the chronic sleep deprivation 

condition than those in the rested wakefulness condition (see Table 2).  

 

6.2 Estimated Brain Dynamic Functional Connectivity  

With the proposed methodology, brain dynamic functional connectivity was assessed 

using the weighted correlation coefficients. The decomposition of each sliding-window was 

significant with permutation tests (p<0.05). The bootstrap ratios were then used to select 

significant connectivity. Because of the characteristic of singular value decomposition, a given 

pair of connectivity must be either significant or not significant. If it was significant then, it must 

be shown in either the rested wakefulness condition or the chronic sleep deprivation condition 

(see Figure 17).  

In Figure 18, each subject has 190 pairs of functional connectivity between 20 brain 

regions over time. A given value in this figure shows the strength of estimated functional 

connectivity, as well as the related experimental condition. Connectivity with positive values is 

significant in the rested wakefulness condition; while connectivity with negative values is 

significant in the chronic sleep deprivation condition. The absolute values of estimated 

functional connectivity indicate the strengths of connectivity. 
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Figure 17. Illustration of Partial Least Squares Approach Outputs 

 

 
Figure 18. Estimated Dynamic Functional Connectivity  
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According to Figure 18, the color of each row varies over time, indicating that the 

strength of functional connectivity fluctuates dynamically. Especially, some functional 

connectivity is not stationary with the experimental condition that is changing between the rested 

wakefulness condition and the chronic sleep deprivation condition.  

Figure 19 illustrates an example of estimated functional connectivity 39. The vertical 

dimension represents the absolute value of estimated functional connectivity; and the color of 

line indicates the related experimental condition. The strength of this connectivity is changing 

over time. Further, this connectivity sometimes is shown in the rested wakefulness condition, but 

sometimes in the chronic sleep deprivation condition. These observations illustrated the dynamic 

patterns of functional connectivity in both experimental conditions. 

 
Figure 19. Example of Estimated Functional Connectivity Pair 39 

 

A brain network visualization tool was used to visualize brain dynamic patterns of 

functional connectivity in brain atlas (Xia et al., 2013). Examples of three sliding-windows are 

illustrated in Figure 20. The left side with blue connections shows brain functional connectivity 

in the rested wakefulness condition; the right side with red connections shows brain functional 
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connectivity in the chronic sleep deprivation condition. The results indicate that the brain has 

more connectivity in the chronic sleep deprivation condition. Further, a paired t-test showed that 

the number of functional connectivity in chronic sleep deprivation was significantly larger than 

that in rested wakefulness (p<0.001). 

 

 
 

Figure 20. Three Examples of Dynamic Functional Connectivity in Brain Atlas 
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6.3 Graph Theoretic Analysis 

With the estimated functional connectivity, brain was modeled as a series of weighted 

and undirected functional networks in the rested wakefulness condition and the chronic sleep 

deprivation condition, respectively. The nodes represented 20 brain regions as listed in Table 1, 

and connections represented estimated functional connectivity. In the previous section, the 

results showed dynamic brain functional connectivity over time. As a result, the structure of 

brain functional networks was changing dynamically. In this section, a graph theoretic analysis 

was applied to investigate the properties of brain functional networks. 

6.3.1 Clustering Coefficient of Brain Functional Networks 

Clustering coefficient was used as a network measure of functional segregation. The 

average clustering coefficients of brain functional networks were calculated and illustrated in 

Figure 21. The red dashed line represents the clustering coefficients in the sleep deprivation 

condition; while the blue line represents those in the rested wakefulness condition.  

According to the results, the average clustering coefficients of brain functional networks 

fluctuated over time. This observation indicated that the structures of brain functional networks 

kept changing dynamically in both experimental conditions. Furthermore, the average clustering 

coefficients of brain functional networks in the chronic sleep deprivation condition were 

significantly higher than those in the rested wakefulness condition (p<0.001). On the other side, 

an F-test showed larger variances of clustering coefficients in the chronic sleep deprivation 

condition compared with those in the rested wakefulness condition (F=1.85, p=0.023). 
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Figure 21. The Average Clustering Coefficients of Brain Functional Networks  

6.3.2 Characteristic Path Lengths of Brain Functional Networks 

Characteristic path length was used a network measure of functional integration. The 

characteristic path lengths of brain functional networks are illustrated in Figure 22. The results 

showed shorter characteristic path lengths of brain functional networks in chronic sleep 

deprivation than those in the rested wakefulness (p<0.001). An F-test showed that the variances 

of characteristic path lengths were significantly larger in the rested wakefulness condition 

compared with those in the chronic sleep deprivation condition (F=2.99, p<0.001).  

The fluctuations of characteristic path lengths were a result of the changing structures of 

brain functional networks in the rested wakefulness condition and the chronic sleep deprivation 

condition. Thus, this result demonstrated the dynamic properties of brain functional networks, 

consistent with previous observations. 



52 

 

 
Figure 22. Characteristic Path Lengths of Brain Functional Networks  

6.4 Small-World Topology of Brain Functional Networks 

This section describes the topology of brain functional networks in the rested 

wakefulness condition and the chronic sleep deprivation condition. First, a series of similar 

random networks related to either the rested wakefulness condition or the chronic sleep 

deprivation condition were constructed. The small-world topology index (𝛿) was determined by 

two network parameters, clustering coefficient ratio (𝛾) and characteristic path length ratio (𝜆). 

6.4.1 Small-World Topology Index in the rested wakefulness condition 

For each sliding-window, 𝛾 was obtained as a ratio between the clustering coefficient of 

the brain functional network and that of the corresponding random network. The results in Figure 

23 illustrate that brain functional networks (𝐶𝑛𝑒𝑡,𝑅𝑊) have larger clustering coefficients than 

those of the corresponding random networks (𝐶𝑟𝑎𝑛𝑑𝑜𝑚,𝑅𝑊) in the rested wakefulness condition 
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(p<0.001). As a result, the average gamma ratio (𝛾𝑅𝑊) was larger than one in the rested 

wakefulness condition. 

 
Figure 23. Clustering Coefficients of Brain Functional Networks and Similar Random Networks in the 

rested wakefulness condition 

 

Lambda ratio was calculated as the characteristic path length of the brain functional 

network divided by that of the corresponding random network. The results are illustrated in 

Figure 24. The characteristic path lengths of brain functional networks (𝐿𝑛𝑒𝑡,𝑅𝑊) were not 

significantly different from those of random networks (𝐿𝑟𝑎𝑛𝑑𝑜𝑚,𝑅𝑊) in the rested wakefulness 

condition (p=0.99). The average ratio of characteristic path lengths (𝜆𝑅𝑊) was around one in the 

rested wakefulness condition. 
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Figure 24. Characteristic Path Lengths of Brain Functional Networks and Similar Random Networks in 

the rested wakefulness condition 

 

Small-world topology index was obtained as a ratio between gamma ratio of clustering 

coefficients and lambda ratio of characteristic path lengths. The values of index (𝛿𝑅𝑊) are 

observed to fluctuate around its mean (𝛿�̅�𝑊 = 1.9) (see Figure 25). A t-test showed that the 

average of 𝛿𝑅𝑊 was significantly higher than one in rested wakefulness (p<0.001), generally 

indicating the small-world topology of brain functional networks in the rested wakefulness 

condition.  

The topology of brain functional networks was changing over time with the fluctuating 

index values. Specifically, brain functional networks showed small-world topology in most cases: 

𝑝𝑅𝑊 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑤𝑖𝑡ℎ 𝛿𝑅𝑊>1 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
=

283

388
= 72.9%                            (6.1) 
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Figure 25. Values of Small-World Topology Index in the rested wakefulness condition 

6.4.2 Small-World Topology Index in the chronic sleep deprivation condition 

The average clustering coefficients of brain functional networks (𝐶𝑛𝑒𝑡,𝑆𝐷) and the 

corresponding random networks (𝐶𝑟𝑎𝑛𝑑𝑜𝑚,𝑆𝐷) in the chronic sleep deprivation condition are 

illustrated in Figure 26. The clustering coefficients of brain functional networks were 

significantly larger than those of similar random networks in the chronic sleep deprivation 

condition (p<0.001). The average clustering coefficient ratio (𝛾𝑆𝐷) was larger than one in the 

chronic sleep deprivation condition. 
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Figure 26. Clustering Coefficients of Brain Functional Networks and Similar Random Networks in the 

chronic sleep deprivation condition 

 

The characteristic path lengths of brain functional networks (𝐿𝑛𝑒𝑡,𝑆𝐷) and similar random 

networks (𝐿𝑟𝑎𝑛𝑑𝑜𝑚,𝑆𝐷) under chronic sleep deprivation, were calculated and plotted in Figure 27. 

The results showed that brain functional networks had longer characteristic path lengths when 

compared with those of the random networks in chronic sleep deprivation. The average 

characteristic path length ratio (𝜆𝑆𝐷) was larger than one in the chronic sleep deprivation 

condition. 

The small-world topology index (𝛿𝑆𝐷) of brain functional networks in the chronic sleep 

deprivation condition are illustrated in Figure 28. The values of 𝛿𝑆𝐷 fluctuated with only a few 

cases where the value exceeded one: 

𝑝𝑆𝐷 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 𝑤𝑖𝑡ℎ 𝛿𝑆𝐷>1 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠
=

40

388
= 10.3%                                  (6.2) 
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Figure 27. Characteristic Path Lengths of Brain Functional Networks and Similar Random Networks in 

the chronic sleep deprivation condition 

 

In the rest of sliding-windows, the values of 𝛿𝑆𝐷 were smaller than one. A t-test showed 

that the average of 𝛿𝑆𝐷was significantly smaller than one (𝛿�̅�𝐷 = 0.8) in the chronic sleep 

deprivation condition (p<0.001). This result indicated the random network topology of brain 

functional networks in the chronic sleep deprivation condition in general. 

 
Figure 28. Values of Small-World Topology Index in the chronic sleep deprivation condition 
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CHAPTER 7: DISCUSSION 

Partial least squares approach was applied to identify brain functional connectivity in 

both the rested wakefulness condition and the chronic sleep deprivation condition. With the 

integration of a sliding-window approach, the dynamic patterns of brain functional connectivity 

showed fluctuating connectivity strengths and changing structures of the brain network. 

The results of graph theoretic analysis suggested a compensation mechanism between 

highly clustered organization and ineffective adaptability of the brain functional network in 

chronic sleep deprivation. Further, in the rested wakefulness condition the results indicated the 

dominance of small-world brain networks. However, such dominance was disrupted in the 

chronic sleep deprivation condition, indicating the ineffective adaptability of the brain functional 

network to maintain an optimal network topology. 

7.1 Dynamic Patterns of Brain Functional Connectivity 

Partial least squares approach has previously been applied by McIntosh et al. (2004) to 

fMRI data to determine the patterns of brain activity. In this thesis, the application of partial least 

squares approach was extended to determine the pattern of brain functional connectivity. 

Singular value decomposition was performed to distinguish brain activity or connectivity by 

experimental conditions, as illustrated in Figure 16. With the integration of a sliding-window 

approach, partial least squares approach had successfully identified dynamic patterns of brain 

functional connectivity in the rested wakefulness condition and chronic sleep deprivation 

condition. In addition, this approach further estimated brain functional connectivity as a 
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weighted correlation coefficient. The weight of a given pair of brain functional connectivity 

indicated its reliability with the corresponding experimental condition.  

The patterns of brain functional connectivity were observed to change dynamically (see 

Figure 18). Specifically, the strength measure of brain functional connectivity varied over time. 

Further, in some cases brain functional connectivity was not stable within a given experimental 

condition. For instance, Figure 19 illustrates that functional connectivity pair 39 is occasionally 

significant in the rested wakefulness condition, whereas sometimes is in the chronic sleep 

deprivation condition. Given different patterns of brain functional connectivity, the structures of 

the brain functional network were changing over time. This change can result from the adaption 

of brain networks to accomplish the attention task. 

These observations demonstrated the non-stationary property of brain functional 

connectivity during sustained attention tasks in the chronic sleep deprivation condition, 

consistent with recent studies (Handwerker et al., 2012; Hutchison et al., 2013b; Kang et al., 

2011; Kiviniemi et al., 2011; Li et al., 2014; Majeed et al., 2011). Specifically, the non-stationary 

property of brain functional connectivity included not only the fluctuating strengths of 

connectivity, but also the structure changes of functional connectivity. Thus, the dynamic 

patterns of brain functional connectivity can help to reveal more information of how chronic 

sleep deprivation impairs sustained attention. 
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7.2 Graph Theoretic Analysis of Brain Dynamic Functional Networks 

Given the dynamic patterns of brain functional connectivity, graph theoretic analysis was 

performed to investigate the properties of brain dynamic functional networks using two network 

measures, i.e., clustering coefficient and characteristic path length. 

The results showed that in the chronic sleep deprivation condition, brain functional 

networks had larger clustering coefficients when compared with those in the rested wakefulness 

condition, illustrating a highly clustered organization of brain functional networks (see Figure 

21). This observation suggested that the human brain made more efforts to maintain sustained 

attention through utilizing more connections, as illustrated in Figure 20. Similarly, researchers 

have observed increased metabolism in some brain regions including the thalamus (Chee & Tan, 

2010; Chee et al., 2008; Portas et al., 1998), anterior cingulate (Poudel et al., 2013) and frontal 

parietal cortex (Chee et al., 2008; Poudel et al., 2013; Weissman et al., 2006) in the chronic sleep 

deprivation condition.  

On the other side, highly clustered organization may also result from the ineffectiveness 

of attentional inhibition in chronic sleep deprivation. Aron et al. (2014) have defined inhibition 

as the suppression of inappropriate responses and interfering memories during retrieval. It can be 

postulated that the brain fail to inhibit inappropriate reactions to visual stimuli under chronic 

sleep deprivation, resulting in a larger amount of brain connections. In terms of performance, 

ineffective inhibition may induce more response errors (i.e., lapses and errors) by failing to 

suppress incorrect responses. In addition, since the brain required more time to accumulate 

relevant information from excessive reactions, sleep-deprived subjects may have prolonged 

response time. 
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Characteristic path length of brain functional networks in the chronic sleep deprivation 

condition was significantly shorter than that in the rested wakefulness condition, indicating a 

shorter communication distance among brain regions (see Figure 22). This result was attributed 

to the highly clustered organization of the brain functional network in chronic sleep deprivation, 

which dramatically reduced the distance of communication between the distant regions. Given 

that characteristic path length is a widely used measure of global information integration, short 

characteristic path length may indicate fast response to sensory stimuli. Thus, the shorter 

characteristic path length of brain functional networks in chronic sleep deprivation was 

postulated to compensate for the effects of ineffective inhibitions, resulting in a non-significant 

increase of the average response times. 

The variance of the clustering coefficient can be attributed to the dynamic patterns of 

brain functional connectivity, indicating an adaption of the human brain to accomplish a given 

task. From the perspective of brain functional networks, such an adaption represents the 

network’s ability of achieving effective information synchronization through network 

reconfiguration. This is called the adaptability of brain functional networks. With an effective 

adaptability, the change of clustering coefficient of brain functional networks should effectively 

influence the characteristic path length. According to the results, in the sleep deprivation 

condition, the clustering coefficient of brain functional networks had large variances, resulting 

from disconnecting or reconnecting important connections with large weights (see Figure 21). 

However, the corresponding network characteristic path length has not changed significantly, 

indicating the ineffective adaptability of brain functional networks in the chronic sleep 

deprivation condition (see Figure 22). On the contrary, brain functional networks in the rested 

wakefulness condition showed an effective adaptability with small variance of the clustering 
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coefficient, but also large variance of characteristic path length. In addition, the ineffective 

adaptability of brain functional networks in chronic sleep deprivation can result in instability of 

performance. 

In the chronic sleep deprivation condition, highly clustered organization can compensate 

for the ineffective adaptability of brain functional networks to sustain attention. Previous studies 

have suggested the existences of similar compensation mechanics in the human brain. For 

instance, hyperactivation of the thalamus compensated for the deficits of parietal, indicating 

increased alertness effort in the sleep deprivation condition (Portas et al., 1998; Tomasi et al., 

2009). In addition, another compensation mechanism was observed between increased activity in 

the fronto-parietal area induced by attentional lapses and less efficient perceptual processing 

(Weissman et al., 2006). 

7.3 Dynamic Topology of Brain Functional Networks 

The small-world topology index was calculated to investigate the dynamic topology of 

brain functional networks. In the rested wakefulness condition, the brain functional network 

showed the small-world topology during the sustained attention task, with the average small-

world topology index larger than one (see Figure 25). The small-world brain network has been 

hypothesized to reflect an optimal network organization with a balance between information 

processing and global synchronization (Barabási & Albert, 1999; Bassett et al., 2009; Latora & 

Marchiori, 2001).  

Further, in terms of dynamic brain functional networks, the index values kept fluctuating 

over time in the rested wakefulness condition as illustrated in Figure 25. Although in some cases 
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brain functional networks exhibited the random network with index smaller than one, small-

world topology of brain functional networks was presented in most of the cases. This observation 

demonstrated that the brain successfully maintained the dominance of small-world brain 

networks in the rested wakefulness condition. Such results further suggested the effective 

adaptability of brain functional networks to dynamically preserve the optimal network structure 

in the rested wakeful ness condition. 

In the chronic sleep deprivation condition, brain functional networks exhibited the 

random network topology with the average index smaller than one. In general, the topology of 

brain functional networks was altered from the small-world network to the random network, with 

decreased local communication efficiency. Since the random network intended to connect nodes 

with equal probability regardless of the importance of the connection, such a structure can result 

from ineffective inhibition due to chronic sleep deprivation.  

Further, previous studies have indicated that the alteration of small-world brain networks 

can be linked to several brain diseases (He et al., 2008; Micheloyannis et al., 2006; Rubinov et 

al., 2009; Sanz-Arigita et al., 2010; Stam et al., 2009; Stam et al., 2007b; Wang et al., 2009). For 

instance, attention-deficit/hyperactivity disorder (ADHD) is identified by developing 

inappropriate responses of excessive inattention, impulsivity, and/or hyperactivity (Xia et al., 

2014). Studies have also demonstrated a disorder-related shift of the small-word networks to the 

regular networks, with increased local efficiency and decreased global efficiency (Wang et al., 

2009; Xia et al., 2014). Alzheimer’s disease (AD) is indicated as a disconnection syndrome of 

brain functional networks (Delbeuck et al., 2003). The random brain functional networks in 

Alzheimer’s disease can be attributed to losing global information synchronization (Sanz-Arigita 
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et al., 2010). The alteration of small-world brain networks to the random networks can contribute 

to the impairment of sustained attention in chronic sleep deprivation. 

From the perspective of dynamic brain functional networks, in the chronic sleep 

deprivation condition, brain networks still show small-worldness in a few cases. In other words, 

whilst randomization, there still existed subtle small-world topology in the underlying brain 

network structure. This observation illustrated that chronic sleep deprivation disrupted the 

dominance of small-world brain networks, rather than totally altering it. Such results further 

indicated that in the chronic sleep deprivation condition the brain fails to maintain the dominance 

of small-world topology, which may result from the ineffective adaptability of brain functional 

networks. 

7.4 Impaired Sustained Attention in the chronic sleep deprivation condition 

The results of performance analysis demonstrated that chronic sleep deprivation can 

impair human sustained attention. Such results can provide evidence to support the observations 

of graph theoretic analyses, in terms of attentional performance. 

A highly clustered organization of brain functional network in the chronic sleep 

deprivation condition may indicate the ineffectiveness of attentional inhibition (see section 7.2). 

The failure of attentional inhibition can increase the time that the brain needs to accumulate 

relevant information from excessive responses, resulting in a slower response speed. 

Furthermore, the inappropriate responses due to ineffective inhibition may also induce more 

responses errors. Such indications have been verified with the results of the performance analysis. 

Chronically sleep-deprived subjects had significantly lower response accuracy with more lapses, 
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compared with those in the rested wakefulness condition (Table 2). The low response accuracy 

resulted from increasing attentional lapses and responses errors.  

Attentional lapses described the slow responses of participants, usually with response 

times longer than 500ms (Weissman et al., 2006). Since the slowest 10% of response times 

represented the response times in the lapse domain (see Table 2), the prolonged slowest 

responses were consistent with the increasing number of lapses in chronic sleep deprivation. The 

lapses and slower response times have been related to the changes in cortical sensory, attentional 

and motor control pathways following sleep deprivation (Drummond et al., 2005b; Naito et al., 

2000). Studies have shown that lapses may result from transient disruption of top-down 

attentional control during selective attention tasks in the rested wakefulness condition (Padilla et 

al., 2006; Weissman et al., 2006). 

A shorter characteristic path length of brain functional networks has been observed in the 

chronic sleep deprivation condition. This observation suggests an efficient information 

integration resulting from a shorter communication distance under sleep deprivation. However, a 

highly clustered organization of brain functional networks due to ineffective inhibition may 

prolong the response times in the chronic sleep deprivation condition. The effects of these two 

opposite observations have been shown in the results of the performance analysis, that no 

significant differences of the response times has been found between the rested wakefulness 

condition and the chronic sleep deprivation condition.  

Furthermore, an ineffective adaptability of brain functional networks has been revealed in 

the chronic sleep deprivation condition. With ineffective adaptability, the brain may fail to 

maintain the stability of attentional performance during the task. The results of the performance 

analysis showed the decreased stability with large variances of response times in the chronic 
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sleep deprivation condition (Table 2). The ineffective adaptability of brain functional networks 

may result from the wake state instability, which described the competing effects between wake 

maintenance and sleep initiation (Dorrian et al., 2005; Durmer & Dinges, 2005; Lim & Dinges, 

2008). Several brain neurons have been related to the shift from wake to sleep, including brain 

stem, hypothalamus, basal forebrain, and ventral lateral preoptic nucleus (Saper et al., 2001; 

Szymusiak et al., 2007). With the spread of the wake-sleep shift to cortical areas, distributed 

changes in brain activation have been observed in lapses during sleep deprivation (Chee et al., 

2008). 

In addition, the results of performance analysis also showed a significant decrease of 

response accuracy and slightly prolonged response time in chronic sleep deprivation, as shown in 

Table 2. These observations may indicate a speed-accuracy tradeoff mechanism in which 

chronically sleep-deprived subjects intended to maintain their response speed through scarifying 

their response accuracy. The speed-accuracy tradeoff has been described as a strategic 

adjustment in the decision-making process to adapt the environmental demands (Bogacz et al., 

2010; Fitts, 1966; Wickelgren, 1977). The neural mechanism of the speed-accuracy tradeoff in 

chronic sleep deprivation requires further investigation. 
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CHAPTER 8: CONCLUSION 

This thesis aimed to investigate the effects of chronic sleep deprivation on sustained 

attention from the perspective of dynamic functional connectivity. The experiment was 

conducted by Department of Cognitive Neuroscience and Neuroergonomics at Jagiellonian 

University, Krakow, Poland. A modified spatial cueing tasks was used to assess human sustained 

attention in both the rested wakefulness condition and the chronic sleep deprivation condition.  

Performance analysis results demonstrated that chronic sleep deprivation can impair 

sustained attention, reflected by decreased response accuracy and increased attentional lapses. 

Variable performances, especially for response times with significantly large variance, indicated 

the instability of state in the chronic sleep deprivation condition. In addition, a speed-accuracy 

tradeoff mechanism was observed in which chronically sleep-deprived subjects intended to 

maintain response speed through scarifying the response accuracy. 

Partial least squares approach was applied to identify brain functional connectivity in 

both the rested wakefulness condition and the chronic sleep deprivation condition. With the 

integration of the sliding-window approach, the dynamic patterns of brain functional 

connectivity were observed with fluctuating connectivity strengths and changing structures of 

brain networks. The functional connectivity was estimated as a weighted correlation coefficient, 

whose weight indicates its reliability with the corresponding experimental condition. The brain 

was then modeled as a series of dynamic functional networks in each experimental condition, 

whose nodes represented twenty segregated brain regions, and the edges represented the 

estimated functional connectivity. A graph theoretic analysis was used performed to investigate 
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the dynamic properties of brain functional networks, using network measures of clustering 

coefficient and characteristics path length. 

In the chronic sleep deprivation condition, a compensation mechanism between highly 

clustered organization and ineffective adaptability of brain functional networks has been 

observed, in order to maintain sustained attention. Specifically, a highly clustered organization of 

brain functional networks has been found with a large clustering coefficient. This organization 

suggests that the brain utilizes more connections to maintain attention in the chronic sleep 

deprivation condition. Smaller impact of clustering coefficient variation on characteristics path 

lengths has indicated an ineffective adaptability of brain functional networks.  

In the rested wakefulness condition, brain functional networks showed the small-world 

topology in general, with the average small-world topology index larger than one. Small-world 

topology has been identified as an optimal network structure with the balance between local 

information processing and global integration. Given the fluctuating values of index over time, 

small-world brain networks have been observed in most cases, indicating an effective 

adaptability of the brain to maintain dominance of the small-world network in the rested 

wakefulness condition. On the contrary, given that the average small-world topology was index 

smaller than one, brain functional networks generally exhibit random network structure. From 

the perspective of dynamic functional networks, even though there were a few cases showing 

small-world brain networks, the brain has failed to maintain the dominance of small-world 

networks in the chronic sleep deprivation condition. 

This thesis was the first to investigate the effects of chronic sleep deprivation on 

sustained attention from the perspective of dynamic brain functional connectivity. To the best of 

our knowledge, the proposed methodology was also the first application of partial least squares 
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approach to identifying brain functional connectivity. The results have extended the current 

knowledge about the effects of chronic sleep deprivation in terms of dynamic brain functional 

networks. A compensation mechanism between highly clustered organization and ineffective 

adaptability of brain functional networks has been observed in the chronic sleep deprivation 

condition. Further, it was revealed that chronic sleep deprivation impairs sustained attention by 

reducing the effectiveness of brain functional networks’ adaptability, resulting in the disrupted 

dominance of small-world brain networks. 

In future work, regression analysis may be used to determine the relationship between 

cognitive performance measures and corresponding brain network measures. Such relationship 

may be different between the rested wakefulness condition and the chronic sleep deprivation 

condition, which can extend current understanding of the performance impairments due to sleep 

deprivation. In addition, other network measures (i.e., degree distribution) can be used to 

investigate the resilience of brain functional networks. 
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