1,901 research outputs found

    Understanding The Implications Of Neural Population Activity On Behavior

    Get PDF
    Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in frequency discrimination acuity on an individual basis by examining the Fisher information from the neural population with and without optogenetic manipulation. In the third line of work, we address the question of what a neural population should encode given that its inputs are responses from another group of neurons. Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory cortex. This work establishes and tests a variety of hypotheses that will be useful in helping to understand the relationship between neural activity and behavior as recorded neural populations continue to grow

    Transcriptomic evidence that von Economo neurons are regionally specialized extratelencephalic-projecting excitatory neurons.

    Get PDF
    von Economo neurons (VENs) are bipolar, spindle-shaped neurons restricted to layer 5 of human frontoinsula and anterior cingulate cortex that appear to be selectively vulnerable to neuropsychiatric and neurodegenerative diseases, although little is known about other VEN cellular phenotypes. Single nucleus RNA-sequencing of frontoinsula layer 5 identifies a transcriptomically-defined cell cluster that contained VENs, but also fork cells and a subset of pyramidal neurons. Cross-species alignment of this cell cluster with a well-annotated mouse classification shows strong homology to extratelencephalic (ET) excitatory neurons that project to subcerebral targets. This cluster also shows strong homology to a putative ET cluster in human temporal cortex, but with a strikingly specific regional signature. Together these results suggest that VENs are a regionally distinctive type of ET neuron. Additionally, we describe the first patch clamp recordings of VENs from neurosurgically-resected tissue that show distinctive intrinsic membrane properties relative to neighboring pyramidal neurons

    Quantitative MRI correlates of hippocampal and neocortical pathology in intractable temporal lobe epilepsy

    Get PDF
    Intractable or drug-resistant epilepsy occurs in over 30% of epilepsy patients, with many of these patients undergoing surgical excision of the affected brain region to achieve seizure control. Advances in MRI have the potential to improve surgical treatment of epilepsy through improved identification and delineation of lesions. However, validation is currently needed to investigate histopathological correlates of these new imaging techniques. The purpose of this work is to investigate histopathological correlates of quantitative relaxometry and DTI from hippocampal and neocortical specimens of intractable TLE patients. To achieve this goal I developed and evaluated a pipeline for histology to in-vivo MRI image registration, which finds dense spatial correspondence between both modalities. This protocol was divided in two steps whereby sparsely sectioned histology from temporal lobe specimens was first registered to the intermediate ex-vivo MRI which is then registered to the in-vivo MRI, completing a pipeline for histology to in-vivo MRI registration. When correlating relaxometry and DTI with neuronal density and morphology in the temporal lobe neocortex, I found T1 to be a predictor of neuronal density in the neocortical GM and demonstrated that employing multi-parametric MRI (combining T1 and FA together) provided a significantly better fit than each parameter alone in predicting density of neurons. This work was the first to relate in-vivo T1 and FA values to the proportion of neurons in GM. When investigating these quantitative multimodal parameters with histological features within the hippocampal subfields, I demonstrated that MD correlates with neuronal density and size, and can act as a marker for neuron integrity within the hippocampus. More importantly, this work was the first to highlight the potential of subfield relaxometry and diffusion parameters (mainly T2 and MD) as well as volumetry in predicting the extent of cell loss per subfield pre-operatively, with a precision so far unachievable. These results suggest that high-resolution quantitative MRI sequences could impact clinical practice for pre-operative evaluation and prediction of surgical outcomes of intractable epilepsy

    FiberBlender: A Realistic Computer Model of Nerve Bundles for Simulating and Validating the Acquisition of Diffusion Tensor Imaging

    Get PDF
    Diffusion Tensor Imaging (DTI) is a powerful medical imaging technique that provides a unique method to investigate the structure and connectivity of neural pathways. DTI is a special magnetic resonance imaging (MRI) modality that combines the principles of magnetic resonance with molecular diffusion to trace the motion of water molecules. In the central nervous system, where nerve fibers are packed in highly-directional bundles, these molecules diffuse along the orientation of the fibers. Hence, characterizing the motion of water with DTI delivers a non-invasive in vivo technique to capture the connectivity of nerves themselves. Despite its promises and successful clinical applications for nearly thirty years, problems with validation and interpretation of measurements still persist. Most validation studies attempt to generate ground-truth data from animal models, phantoms, and computer models. This dissertation proposes a novel validation system, FiberBlender, capable of reproducing three-dimensional fiber structures and simulating the diffusion of water molecules to generate ground-truth synthetic DTI data. In particular FiberBlender contributes to: (i) creating more biologically accurate representations of fiber bundles with the inclusion of myelin and glial cells, (ii) examining the effect of demyelination and gliosis on DTI measurements, (iii) optimizing acquisition sequences, and (iv) evaluating the performance of multi-tensor models for the study of crossing fibers. FiberBlender strays away from the “one size fits all” approach taken by previous studies and uses computer algorithms in conjunction with some limited manual operations to produce brain-like geometries that take into account the random spatial location of axons and correct distributions of axon diameters, myelin to axon radius, and myelin to glia ratio. In this way no two models are the same and the system is capable of generating structures that can potentially represent any region of the brain and encompass the heterogeneity between human subjects. This feature is essential for optimization as the performance of DTI acquisition sequences may vary among subjects and the type of scanner used. In addition to better accuracy, the system offers a high degree of flexibility as the geometry can be modified to simulate events that cause drastic changes to the fiber structure. Specially, this dissertation looks at demyelination (an extensive loss of myelin volume), gliosis (a proliferation of glial cells), and axon compaction (a condensation of axons due to a loss of total brain volume) to determine their effects on the observed DTI signal. Simulation results confirm that axon compaction and partial remyelination have similar characteristics. Results also show that some standard clinically used acquisition sequences are incapable of capturing the effects of demyelination, gliosis and compaction when performing longitudinal studies. A novel sequence optimization technique based on Shannon entropy and mutual information is proposed to better capture demyelination. Optimized sequences are tested on a number of non-identical models to confirm their validity and can be used to improve the quality of DTI diagnostics. Finally this work looks at crossing fibers for the validation of multi-tensor models in their ability to characterize crossing diffusion profiles. The performance of multi-tensor models from CHARMED, Q-ball and spherical deconvolution that are widely used in both research and clinical settings are evaluated against ground-truth data generated with FiberBlender. The study is performed on a number of different crossing geometries and preliminary results show that the CHARMED model is the most comprehensive approach

    Interpretable Machine Learning for Electro-encephalography

    Get PDF
    While behavioral, genetic and psychological markers can provide important information about brain health, research in that area over the last decades has much focused on imaging devices such as magnetic resonance tomography (MRI) to provide non-invasive information about cognitive processes. Unfortunately, MRI based approaches, able to capture the slow changes in blood oxygenation levels, cannot capture electrical brain activity which plays out on a time scale up to three orders of magnitude faster. Electroencephalography (EEG), which has been available in clinical settings for over 60 years, is able to measure brain activity based on rapidly changing electrical potentials measured non-invasively on the scalp. Compared to MRI based research into neurodegeneration, EEG based research has, over the last decade, received much less interest from the machine learning community. But generally, EEG in combination with sophisticated machine learning offers great potential such that neglecting this source of information, compared to MRI or genetics, is not warranted. In collaborating with clinical experts, the ability to link any results provided by machine learning to the existing body of research is especially important as it ultimately provides an intuitive or interpretable understanding. Here, interpretable means the possibility for medical experts to translate the insights provided by a statistical model into a working hypothesis relating to brain function. To this end, we propose in our first contribution a method allowing for ultra-sparse regression which is applied on EEG data in order to identify a small subset of important diagnostic markers highlighting the main differences between healthy brains and brains affected by Parkinson's disease. Our second contribution builds on the idea that in Parkinson's disease impaired functioning of the thalamus causes changes in the complexity of the EEG waveforms. The thalamus is a small region in the center of the brain affected early in the course of the disease. Furthermore, it is believed that the thalamus functions as a pacemaker - akin to a conductor of an orchestra - such that changes in complexity are expressed and quantifiable based on EEG. We use these changes in complexity to show their association with future cognitive decline. In our third contribution we propose an extension of archetypal analysis embedded into a deep neural network. This generative version of archetypal analysis allows to learn an appropriate representation where every sample of a data set can be decomposed into a weighted sum of extreme representatives, the so-called archetypes. This opens up an interesting possibility of interpreting a data set relative to its most extreme representatives. In contrast, clustering algorithms describe a data set relative to its most average representatives. For Parkinson's disease, we show based on deep archetypal analysis, that healthy brains produce archetypes which are different from those produced by brains affected by neurodegeneration

    Implications of Information Theory for Computational Modeling of Schizophrenia

    Get PDF
    Information theory provides a formal framework within which information processing and its disorders can be described. However, information theory has rarely been applied to modeling aspects of the cognitive neuroscience of schizophrenia. The goal of this article is to highlight the benefits of an approach based on information theory, including its recent extensions, for understanding several disrupted neural goal functions as well as related cognitive and symptomatic phenomena in schizophrenia. We begin by demonstrating that foundational concepts from information theory—such as Shannon information, entropy, data compression, block coding, and strategies to increase the signal-to-noise ratio—can be used to provide novel understandings of cognitive impairments in schizophrenia and metrics to evaluate their integrity. We then describe more recent developments in information theory, including the concepts of infomax, coherent infomax, and coding with synergy, to demonstrate how these can be used to develop computational models of schizophrenia-related failures in the tuning of sensory neurons, gain control, perceptual organization, thought organization, selective attention, context processing, predictive coding, and cognitive control. Throughout, we demonstrate how disordered mechanisms may explain both perceptual/cognitive changes and symptom emergence in schizophrenia. Finally, we demonstrate that there is consistency between some information-theoretic concepts and recent discoveries in neurobiology, especially involving the existence of distinct sites for the accumulation of driving input and contextual information prior to their interaction. This convergence can be used to guide future theory, experiment, and treatment development

    Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics

    Full text link
    Neural activity patterns related to behavior occur at many scales in time and space from the atomic and molecular to the whole brain. Here we explore the feasibility of interpreting neurophysiological data in the context of many-body physics by using tools that physicists have devised to analyze comparable hierarchies in other fields of science. We focus on a mesoscopic level that offers a multi-step pathway between the microscopic functions of neurons and the macroscopic functions of brain systems revealed by hemodynamic imaging. We use electroencephalographic (EEG) records collected from high-density electrode arrays fixed on the epidural surfaces of primary sensory and limbic areas in rabbits and cats trained to discriminate conditioned stimuli (CS) in the various modalities. High temporal resolution of EEG signals with the Hilbert transform gives evidence for diverse intermittent spatial patterns of amplitude (AM) and phase modulations (PM) of carrier waves that repeatedly re-synchronize in the beta and gamma ranges at near zero time lags over long distances. The dominant mechanism for neural interactions by axodendritic synaptic transmission should impose distance-dependent delays on the EEG oscillations owing to finite propagation velocities. It does not. EEGs instead show evidence for anomalous dispersion: the existence in neural populations of a low velocity range of information and energy transfers, and a high velocity range of the spread of phase transitions. This distinction labels the phenomenon but does not explain it. In this report we explore the analysis of these phenomena using concepts of energy dissipation, the maintenance by cortex of multiple ground states corresponding to AM patterns, and the exclusive selection by spontaneous breakdown of symmetry (SBS) of single states in sequences.Comment: 31 page

    Spatial Learning and Action Planning in a Prefrontal Cortical Network Model

    Get PDF
    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)
    corecore