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Abstract
While behavioral, genetic and psychological markers can provide important information about brain
health, research in that area over the last decades has much focused on imaging devices such as
magnetic resonance tomography (MRI) to provide non-invasive information about cognitive processes.
Unfortunately, MRI based approaches, able to capture the slow changes in blood oxygenation levels,
cannot capture electrical brain activity which plays out on a time scale up to three orders of magnitude
faster. Electroencephalography (EEG), which has been available in clinical settings for over 60 years, is
able to measure brain activity based on rapidly changing electrical potentials measured non-invasively
on the scalp. Compared to MRI based research into neurodegeneration, EEG based research has, over
the last decade, received much less interest from the machine learning community. But generally,
EEG in combination with sophisticated machine learning offers great potential such that neglecting
this source of information, compared to MRI or genetics, is not warranted. In collaborating with
clinical experts, the ability to link any results provided by machine learning to the existing body of
research is especially important as it ultimately provides an intuitive or interpretable understanding.
Here, interpretable means the possibility for medical experts to translate the insights provided by a
statistical model into a working hypothesis relating to brain function. To this end, we propose in our
first contribution a method allowing for ultra-sparse regression which is applied on EEG data in order
to identify a small subset of important diagnostic markers highlighting the main differences between
healthy brains and brains affected by Parkinson’s disease. Our second contribution builds on the idea
that in Parkinson’s disease impaired functioning of the thalamus causes changes in the complexity of
the EEG waveforms. The thalamus is a small region in the center of the brain affected early in the
course of the disease. Furthermore, it is believed that the thalamus functions as a pacemaker – akin
to a conductor of an orchestra – such that changes in complexity are expressed and quantifiable based
on EEG. We use these changes in complexity to show their association with future cognitive decline.
In our third contribution we propose an extension of archetypal analysis embedded into a deep neural
network. This generative version of archetypal analysis allows to learn an appropriate representation
where every sample of a data set can be decomposed into a weighted sum of extreme representatives,
the so-called archetypes. This opens up an interesting possibility of interpreting a data set relative to
its most extreme representatives. In contrast, clustering algorithms describe a data set relative to its
most average representatives. For Parkinson’s disease, we show based on deep archetypal analysis,
that healthy brains produce archetypes which are different from those produced by brains affected by
neurodegeneration.
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1 Introduction

1.1 General Motivation

Accordingst to statistics compiled by Dell EMC, healthcare institutions have seen a 878% health
data growth rate since 2016 compared to 2018. Quantifying the storage needs, this translates into
healthcare institutions throughout the world having to manage an average of 8.41 petabytes of data
in 2018 which is almost a ninefold increase within two years. More importantly, this trend continuous
unbroken, making it all the more important for adequate data analysis tools to keep up with the
ever increasing demand. Naturally, data collection has increased especially in domains related to
imminent health threats such as neurodegenerative diseases. While the global increase of average
life expectancy is without a doubt a major social achievement, it comes at the price of confronting
societies across the globe with age related diseases such as Alzheimer’s disease (AD) or Parkinson’s
disease (PD) in ever increasing case numbers. According to Dorsey and Bloem [2018], the growth rate
of PD has now surpassed that of AD. Still, with over 50 million people globally suffering from AD and
around 6 million suffering from PD, the trend points toward a slow pandemic of neurodegeneration – a
pandemic which cannot be controlled through vaccination. Given these prospects, i. e. an increasing
need for better diagnostic, monitoring and treatment options in neurodegeneration and the currently
unfolding data deluge, it is high time for the medical and the machine learning community to join
forces in every aspect – from basic medical research and clinical research down to the daily clinical
workflow. But while basic medical research is often eager to embrace new statistical methods and
even drives their development by putting out new data sets, increased proximity to the patient seems
to correlate with an increased reluctance to adopt new methods. While regulatory issues and personal
responsibilities within the clinical setting certainly play a major role, models proposed by the machine
learning community often neglect the importance of offering an intuitive or interpretable access to
clinicians. An example is the publication by Biswal et al. [2019] where an electro-encephalographic
recording (EEG) serves as the input of a deep learning pipeline with the diagnostic report as its
output. From the machine learning point of view this is an exciting achievement, but unfortunately
unlikely to find much support form the clinical community as no clinician would sign a diagnostic
report without the possibility to check why the diagnosis is what it is. Similar examples can be found
all over the intersection of machine learning and medicine – albeit not always justified. In essence,
for bridging the gap between machine learning and the practice of medicine, proposed statistical
models need to take into account the need of medical experts to comprehend an automated decision
making process without having to become an expert of machine learning themselves. To that end, a
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promising approach is to design models with interpretability in mind. But as this concept still defies a
general formal definition, the best practical approach is working in close cooperation with experts in
the field as models attractive to medical practitioners are likely those models showing a high degree
of interpretability. Nevertheless, from a machine learning perspective well established methods with
the potential to increase interpretability are readily available. A classical approach includes sparsity
inducing penalties such as the `1-norm which has become very popular due to lasso [Tibshirani, 1996].
More recently, deep latent space models [Kingma and Welling, 2013] which identify low-dimensional
representations of the data, often provide possibilities of understanding a statistical model without
requiring a detailed understanding of the underlying statistical method.
The present work focuses on the intersection between machine learning and electrophysiology, a

Figure 1.1.1 – Comparison of popular devices for analyzing brain structure and/or dynamics.

subfield of neurology. At the point of writing, no known drug is commercially available for slowing
down or even stopping neurodegenerative processes in Alzheimer related disorders (ARD) or PD – in
other word: beyond treating the symptoms there exists no standard of care to speak of. This certainly
explains the heightened interest in any kind of modality able to provide – preferably noninvasively –
measurements related to brain structure and dynamic brain activity. Figure 1.1.1 shows a collection
of popular devices used for this purpose. Furthermore, for each device its temporal as well as
spatial resolution is indicated along with a rough estimate of the cost of each device. The least
expensive devices are electroencephalography (EEG), functional near infrared spectroscopy (fNIRS)
and ultra sound (US) followed by computer tomography (CT) and positron emission spectroscopy
(PET). Among the most expensive devices are magnetic resonance tomography (MRI), functional
magnetic resonance tomography (fMRI), single photon emission computer tomography (SPECT) and
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magnetoencephalography (MEG). Despite its low spatial resolution, EEG is a device that is especially
attractive as it is non-invasive, not even requiring any contrast agent, inexpensive and mobile, and
allows for extended periods of measurement. As EEG is a tool to study functional aspects of the
nervous system it provides potentially massive amounts of data in form of multiple continuous wave
forms. Considering that the established clinical practice for EEG analysis is visual inspection by
a human, EEG offers much room for computer-aided analysis based on modern machine learning
methods. Moreover, as EEG has been essential to the practice of neurology for over 60 years, there is
a large body of research to rely on for developing automated solutions. But the long standing history
of EEG makes it also necessary for new statistical models to build on pre-existing practices in order
to be accepted by the medical community. This begins by possibly using band power as features for
analyzing EEG, upon which the last fours decades of EEG research have been mainly focused, and
mandates caution when proposing models which cannot be interpreted in the sense that a connection
to previous clinical research cannot easily be established.

1.2 Interpretability and Challenges with Neurodegenerative
Diseases

The whole spectrum of neurodegenerative diseases poses many challenges – from diagnosis, especially
early diagnosis, to monitoring disease progression and potential treatment and to predict future
cognitive health based on presently available brain measurements. As with many diseases, the root
of this problem lies with its complexity: Both genetic predisposition as well as lifestyle may play
important roles. But while neurodegenerative diseases ultimately impact the brain their origin might
be elsewhere. PD for example, is currently believed to originate in the gut and might thus be present
in an individual many years before inducing functional or structural changes in the brain [Kalia and
Lang, 2016]. In PD, it is also the drastic heterogeneity of the disease which makes the development
of biomarkers – for whatever task – a difficult undertaking with uncertain outcome but worthwhile
nevertheless. In a review article of biomarker research for PD over the last two decades Yilmaz et al.
[2019] conclude that “[d]espite intensive effort, biomarker research for the detection of prodromal
stage, diagnosis and progression of Parkinson’s disease . . . falls short of expectations.” They go on by
stating that “[a]lthough several biomarkers are currently available, none of them is specific enough for
diagnosis, prediction of future PD or disease progression”. A likely conclusion would be that successful
biomarkers for PD will have to be compound biomarkers based on multiple modalities of which EEG
might be one. But in more general terms – not specific to PD – the design of interpretable models
poses an additional challenge in case of brain derived measurements which might be summarized in
the following question: How strong is the foundation on which interpretability is built if the causal
mechanisms underlying brain function remain obscured? In cardiology – although not without problems
– machine learning algorithms characterizing electrocardiographic waveforms might be interpreted in
light of the main function of the heart and the associated mechanical activity. But the brain has not
a singular well defined function that could be considered its main function. Therefore, interpretable
models of machine learning for electrophysiology might have an added layer of complication as not
only black box algorithms should be avoided but because the system of interest itself – the brain –
is to a large extent still a black box. This position is debated in an article with the title “Could a
neuroscientist understand a microprocessor?” where the authors [Jonas and Kording, 2017] posit that
if at all times the inputs and outputs of a microprocessor would be measured and made available
for subsequent analysis it would still remain impossible to derive from these measurements alone a
meaningful description of the hierarchy of information processing in the microprocessor.
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1.3 Contributions and Outline of the Thesis

The thesis is divided into three parts. In the first part a method for non-convex regression is proposed
based on the log-norm which is a parametric family of functions where the parameter γ is used to
interpolate between the `1-norm and the `0-pseudonorm. This allows for the exploration of models
of different complexity, trading off model bias and variance. In principle, model selection can then
include the γ parameter along with the parameter λ which regulates the strength of the penalization
for a given γ parameter. Effectively this makes the parameter space 2-dimensional which of course
impacts on the time required for potential cross validation but on the other hand, it allows exploring
a large range of sparsity patterns, approximating best subset selection for γ→+∞. With a variable
transformation the non-convex log-penalty is mapped onto the convex `1 penalty while ensuring that
the same transformation applied onto the convex objective function leads to a transformed objective
where all stationary points are guaranteed to be global minimizers. As a result, standard algorithms of
convex penalized regression can be applied to this non-convex problem. Following the “bet on sparsity
principle”, we show an application example based on spectral EEG features can provide a very sparse
set of predictors highlighting important differences between a group of healthy controls and patients
suffering from Parkinson’s disease. With the possibility to explore sub-`1 penalties, increased sparsity
directly impacts an the perceived level of interpretability by clinical experts.
The second part presents an extension of archetypal analysis [Cutler and Breiman, 1994]. While the
original method describes a data set as a convex mixture of extreme representatives, where this mixture
occurs in data space, the proposed extension learns an appropriate latent representation on which to
perform archetypal analysis. This is especially important for image-like data where a convex mixture
of images could not provide adequate results. As a solution to this problem, a deep learning approach
based on an information bottleneck architecture is used to learn a latent representation allowing
for additive mixing of latent representatives. As a result, the decoded images can be interpreted as
mixtures of those images associated with the latent archetypes. This method of deep archetypal
analysis is then applied on different data sets. Application cases include a task of sentiment analysis
based on different facial expressions and a task of identifying archetypal molecules. Furthermore, EEG
scalp topographies based on spectral features are analyzed in order to identify archetypes associated
with cognitive decline in Parkinson’s disease. This application highlights a promising approach in
dealing with high dimensional time series EEG data while providing an intuitive understanding based
on a highly structured latent space.
The third part presents an analysis where a measure of signal complexity of EEG waveforms, recorded
at baseline, is used to predict cognitive decline over 3 years in patients with Parkinson’s disease. It is
shown that low complexity of EEG waveforms in the frequency range between 4−8Hz are associated
with cognitive decline over a period of 3 years. Interestingly, this association is significant only if EEG
is measured in eyes open condition while eyes closed condition remains inconclusive. Considering that
different brain networks are active depending on whether visual information is processed or not, this
result is in agreement with similar research [Miraglia et al., 2016] where eyes open condition contained
more information about brain health.

1.4 List of Publications

• Cognitive decline in Parkinson’s disease is associated with reduced complexity of EEG at baseline
SM Keller, U Gschwandtner, A Meyer, M Chaturvedi, V Roth, P Fuhr
Accepted for publication in Brain Communications 2020.

4



1.4. List of Publications

• Learning Extremal Representations with Deep Archetypal Analysis
SM Keller, M Samarin, F Arend Torres, M Wieser, V Roth
Accepted for publication in International Journal of Computer Vision, 2020.

• Tsallis entropy of EEG correlates with future cognitive decline in patients with Parkinson’s
disease: 1219
SM Keller, A Meyer, J Bogaarts, U Gschwandtner, P Fuhr, V Roth
Movement Disorders 34, 2019.

• Deep Archetypal Analysis [oral, best paper runner up]
SM Keller, M Samarin, M Wieser, V Roth
German Conference on Pattern Recognition, 171-185, 2019.

• Computational EEG in Personalized Medicine: A study in Parkinson’s Disease
SM Keller, M Samarin, A Meyer, V Kosak, U Gschwandtner, P Fuhr, V Roth
Machine Learning for Health, ML4H: a workshop at NeurIPS 2019.

• Invexity Preserving Transformations for Projection Free Optimization with Sparsity Inducing
Non-convex Constraints [oral]
SM Keller, D Murezzan, V Roth
German Conference on Pattern Recognition, 682-697, 2018

• Interfacial exchange interactions and magnetism of bilayers
R Yanes, E Simon, SM Keller, B Nagyfalusi, S Khmelevsky, L Szunyogh, U Nowak
Physical Review B 96 (6), 064435, 2017.

• Bayesian markov blanket estimation
D Kaufmann, S Parbhoo, A Wieczorek, SM Keller, D Adametz, V Roth
International Conference on Artificial Intelligence and Statistics, PMLR 51:333-341, 2016.

• Copula archetypal analysis [oral]
D Kaufmann, SM Keller, V Roth
German Conference on Pattern Recognition, 117-128, 2015.
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2 Related Work

In this chapter, related work on sparse regression under convex constraints is discussed, highlighting
important models and algorithms as they relate to the proposed method for ultra-sparse regression
under non-convex constraints. Furthermore, a short summary of important concepts of information
theory are summarized which are the basis for understanding the information bottleneck principle and
the deep information bottleneck. The variational autoencoder framework is also discussed as it shares
computational and architectural similarities with the deep information bottleneck. The chapter closes
with a brief introduction to electroencephalography, EEG for short, as electrophysiology will be the
domain of various applications.

2.1 Statistical Learning With Sparsity

Machine learning models are mathematical models containing statistical assumptions about the
data-generating process. If only a small fraction of the model parameters are non-zero such models
are referred to as a sparse models. In statistics, one of the most prominent sparse models is the Lasso
Tibshirani [1996]. In deep learning, inducing sparsity has helped design more compact architectures
resulting in more efficient computation at test time Alvarez and Salzmann [2016].
While the initial motivation for turning to sparsity was improved interpretability, both statistical and
computational efficiency have been recognized as possible benefits emerging from the paradigm of
sparse modeling.

2.1.1 Regularization for Sparsity

Regularization is the process by which certain explanations, i.e. models, are favored relative to others.
A very general preference to introduce to the model selection process relates to the philisophy of
“William of Ockham”1 and is known as Occam’s razor or lex parsimoniae. In the context of model
selection, Occam’s razor states that one should not use more parameters than necessary, which
indicates a trade-off between the complexity of a model and its explanatory power. It also gives rise
to the notion of parsimonious models, i. e. models with optimal parsimony or models with just the
right amount of predictors needed to explain the data well. Candidate parsimonious models are found
by penalyzing the more complex models and then sorting potential models from least overfit on a

1English Franciscan friar William of Ockham (c. 1287–1347), a scholastic philosopher and theologian
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test set to greatest. Finally, models with lowest overfitting score are usually the best candidates for
models with optimal parsimony. In practice, sparsity regularizers are often used for model selection in
order to identify the optimal complexity-vs-predictability trade-off. Especially regularization based on
the `1 norm seems to be ubiquitous throughout many fields of mathematics and engineering.

Linear Regression Models and Least Squares

Let y ∈ Rn be a response vector and X ∈ Rn×p be a matrix of predictors. The problem of linear
regression is commonly written as

β̂= min
β∈Rp

{
1

2

N∑
i=1

(
yi −β0 −

p∑
j=1

xi jβ j

)2}
, (2.1)

where β0 is an intercept term. The unknown parameters or coefficients β j are typically estimated
based on a set of training data (x1, y1) . . . (xN , yN ). For solving problems of the form given in eq. 2.1,
least squares is the most widely used estimation method, in which the coefficients β= (β0,β1, . . . ,βp )T

are found by minimizing the residual sum of squares (RSS):

RSS(β) =
N∑

i=1
(yi − f (xi ))2, (2.2)

with f (xi ) =β0 +∑p
j=1 xi jβ j . As long as the observations (xi , yi ) used for training, represent indepen-

dent random draws from their population, minimizing the residual sum of squares remains a reasonable
approach.

Subset selection

Often the least squares estimate β̂ in eq. 2.1 has not the highest prediction accuracy possible. This is
due to least squares estimates usually exhibiting a low bias/large variance characteristic. But this
also implies that prediction accuracy may be improved by trading-off some of the bias in order to
reduce the variance of the predicted values. In statistics, this is known as the bias-variance trade-off.
Practically, it means shrinking or setting some of the coefficients βi to zero. As a result the overall
prediction accuracy may improve.
Subset selection methods retain only a subset psub < p of the total number p of variables. Least
squares estimation is then applied only on the variables remaining in the subset in order to estimate
the coefficients of β̂. Effectively, this means setting p −psub coefficients βi to zero.

Best subset selection For low-dimensional problems a brute-force strategy can be applied where
all possible subsets are evaluated. Although strategies have been proposed to perform best subset
selection without having to try all possible subsets Furnival and Wilson [1974], such an approach
remains limited in its ability to scale to very high dimensional problems.

Forward stepwise selection This approach refrains from examining all possible subsets of
meaningful predictors and rather builds-up a “good” solution in a successive manner, starting from an
empty set. Consequently, stepwise methods cannot guarantee optimality of the inferred solution under
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any criterion function, but in practice they tend to provide useful results. While stepwise methods
are not a brute-force strategy, they are greedy in the sense that they produce a nested sequence of
models.
While different variants of forward stepwise selection exist, they generally start by adding an intercept
term ȳ to the empty active set. In subsequent steps, predictors are sequentially added if they improve
the overall model fit. After having added a new predictor to the model, forward stepwise usually
adjusts the current model by checking whether variables already in the active set need to be removed
in light of the new predictor that has just been added. With this strategy of building up a final model,
forward stepwise algorithms are in fact performing a combination of backward elimination and forward
selection. Advantages over subset selection methods include (i) a reduced computational burden as
well as (ii) lower variance, implying potentially improved prediction accuracy. Especially for a large
number of predictors where computational cost would prohibit the use of subset selection methods,
stepwise approaches present a viable alternative.

Incremental Forward Stagewise FSε

Unlike forward stepwise selection, forward stagewise adds variables to the model without adjusting
the variables that have already entered the model in previous steps. It can therefore be considered an
even more constrained strategy compared to forward stepwise selection. Forward stagewise also starts
with an empty set and then proceeds to update the variable most correlated with the current residual.
The update strategy of forward stagewise can be described as “slow fitting” as updates are performed
in small increments of ε. The update procedure is continued till none of the variables have correlation
with the residuals. With step counter k, and initialization r 0 = y and β0 = 0, FSε is computed as follows:

Compute jk ∈ argmax
j∈{1,...,p}

∣∣(r k )T X j
∣∣ and update:

1. βk+1
jk

←βk
jk
+ε · sg n

[
(r k )T X j k

]
2. r k+1 ← r k −ε · sg n

[
(r k )T X j k

]
X j k

where βk
jk

is the j th
k coordinate of βk . With the following sparsity properties [Freund et al., 2013]:

||βk ||1 ≤ k ·ε and ||βk ||0 ≤ k

FSε is attractive from a statistical point of view due to its ability to provide regularized solutions.

Breiman’s nonnegative garotte

While any form of subset selection effectively sets some of the coefficients βi to zero by excluding
them from the set of predictors, the nonnegative garotte both shrinks and zeroes coefficients to
improve on the least squares estimate based on the full set of predictors. The nonnegative garotte
estimator proposed in Breiman [1995] is optimizing the following objective:

β̂= min
β∈Rp

{
1

2

N∑
i=1

(
yi −β0 −

p∑
j=1

c j xi j β̂
LS
j

)2

+λ
p∑

j=1
c j

}
(λ> 0) (2.3)
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This estimator takes as input the least squares solution β̂LS based on the full set of predictors and
chooses c1, . . . ,cp with c j ≥ 0 for all j ∈ {1, . . . , p} in order to scale the least squares estimate. As some
of the c j might be zero, the garotte is implicitely selecting a subset of relevant predictors. While the
results achievable with the garotte are simpler equations that often show better predictive accuracy
(unless a large portion of the true predictors are non-negligible), it is not defined for p > N as it relies
on the least squares estimate β̂LS .

Tibshirani’s lasso

The least absolute shrinkage and selection operator proposed by Tibshirani [1996], or “lasso” for short,
is an estimator directly motivated by the nonnegative garotte [cite canada]. But in contrast to the
garotte, which is defined only in case of N < p, the lasso estimator is also defined for N > p. In
principle, this was made possible by removing the dependence on the least squares estimator and by
introducing an absolute value constraint to the regression problem:

β̂l asso = min
β∈Rp

{
1

2

N∑
i=1

(
yi −β0 −

p∑
j=1

xi jβ j

)2

+λ
p∑

j=1
|β j |

}
(λ> 0) (2.4)

In the years since its inception, the lasso estimator has become the alternative to subset regression for
obtaining a sparse or parsimonious model. Mathematically, the `1-penalized least squares problem
in equation 2.4 is a convex problem, and together with the sparsity of the final solution this can be
leveraged to greatly improve computational efficiency.

2.1.2 Invexity

Over time, a large class of optimization algorithms for solving convex optimization objectives over
convex feasible regions has been established. However, while these assumptions often lead to a
convenient treatment of the problem, many mathematical formulations of practical problems exist,
where these requirements are not fulfilled. For such problems, finding common characteristics with
convex problems would often help to establish theoretical results or develop algorithms. The strategy
to generalize the definition of convexity while keeping – if possible – properties of interest, has lead to
an important generalization of convex functions, establishing the notion of invexity. Invex functions
have the property that all stationary points are global minimizers. The relation of convex and invex
functions, as well as other extensions of convexity, are shown in figure 2.1.1a. Formally, invexity is
defined as follows [Mishra and Giorgi, 2008]:

Definition 1. Assume X ⊆Rn is an open set. The differentiable function f : X →R is invex if there
exists a vector function η : X ×X →Rn such that f (x)− f (y) ≥ η(x, y)T ∇ f (y), ∀x, y ∈ X .

The particular case of a (differentiable) convex function is obtained from definition 1 by choosing
η(x, y) = x − y . Invex functions and quasi-convex functions are, according to figure 2.1.1a, two classes
with only partial overlap. An example of an invex function which is not quasi-convex is shown in
figure 2.1.1b: Clearly, the levelsets of that function are not convex but every stationary point is a
global minimizer, making it an invex function.
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(a) Relation between properties (b) Invex but not quasi-convex

Figure 2.1.1 – Invexity is an extension of convexity where all stationary points are required to
be global minimizers.

2.2 Concepts from Information Theory

Information theory traditionally revolves around three core questions: (i) what is information, (ii) how
much information does a signal contain and (iii) how much information can be reliably transmitted
over a channel? With regard to machine learning, especially questions (ii) and (iii) establish a strong
link between information theory and core tasks of machine learning. In principle, this relation can be
understood through the lens of “source coding” and “channel coding” [Duchi, 2016].

Source coding Source coding refers to question (ii) and can be seen as a data compression problem
where information provided by a source S is first compressed, and then decompressed with the goal to
recover the original information. In machine learning terms, this problem is similar to observing a
sequence of data points X1, . . . , Xn , distributed according to an unknown distribution p(X ). A core
task of machine is then to construct a model that efficiently encodes that data, i. e. estimating an
empirical version p̂ of the unknown distribution p. In doing so, it is generally hoped to gain insights
into the data generating mechanism.

Channel coding Channel coding refers to question (iii) and describes the data transmission
problem of information theory. It is similar to source coding except that in between the compression
and decompression step, a channel is introduced which provides an additional source of noise. As this
channel is distorting the compressed information to be reconstructed during the decompression step,
channel coding essentially studies redundancies necessary in order to ensure the recovery of the original
information content. Through the lens of machine learning, an unknown compressor f transforms a
sequence of data points X1, . . . , Xn resulting in noisy observations f (X1), . . . , f (Xn). These observations
are transmitted via a channel p(Y | f (X )) to the decompressor, such that the original information has
to be reconstructed from a sequence X1, . . . , Xn). The goal of machine learning – when performing
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estimation or inference – is usually estimating f (·) or any other aspects of the probability distribution
of the source S. An important difference compared to information theory is that in machine learning
the unknown compression function f is not a matter of choice but a given.

2.2.1 Information and Entropy

The central concept of information theory is entropy, which is closely linked to information. In the
following, we give an axiomatic definition of information [Effenberger, 2013]. The concept of entropy
of a random variable will then be introduced as the expected amount of information contained in a
realization of that random variable.

Information Given a probability space (Ω,Σ,P ), i. e. a space consisting of (i) a sample space Ω
which contains all possible outcomes, (ii) an event space, i. e. a set of events Σ and (iii) a probability
measure P assigning each event σ ∈Σ a probability between 0 and 1. How can the information content
of an event contained in that space be defined? The following four axioms will lead to a natural
definition of the information content h of an event. Here, natural refers to the fact that a unique
mapping between the probability of the occurrence of an event and the non-negative real numbers
will emerge, which will define the information content.

Axioms:

• h is non-negative: h :Σ→R+

• h is sub-additive: For any two messages ω1,ω2 ∈Σ we have h(ω1 ∩ω2) ≤ h(ω1)+h(ω2), where
equality holds if and only if ω1 and ω2 are independent

• h is continuous and monotonic with respect to the probability measure P

• Events with probability 1 are not informative: h(ω) = 0 for ω ∈Σ with P (ω) = 1

For a mapping h(·) to fulfill these requirements simultaneously, the only choice is the logarithm, which
leads to the following definition of information:

Definition 2. Let (Ω,Σ,P ) be a probability space. Then the information h of an event σ ∈Σ is defined
as

h(σ) := h(P (σ)) =− logb(P (σ)),

where b denotes the basis of the logarithm.

By choosing the basis of the logarithm to be b = 2 or b = e, the unit of h if fixed, leading to the unit
of information of “bit” or “nat”, respectively.
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Entropy Generally, entropy is the expected information content. For a discrete random variable the
entropy is defined as follows:

Definition 3. Let X be a random variable on some probability space (Ω,Σ,P ) with values in the
integer or the real numbers. Then its entropy H (X ) is defined as the expected amount of information
of X ,

H(X ) := E[h(X )].

Assuming a random variable X which takes on integer values only, the entropy H (X ) given in definition
3 can be evaluated to:

H(X ) =Σx∈ZP (X = x)h(P (X = x)) =−Σx∈ZP (X = x) log(P (X = x)) (2.5)

For a real-valued, continuous random variable X , the so–called differential entropy is obtained, which
is given as:

H(X ) =
∫
R

P (X = x)h(P (X = x))d x (2.6)

Possible interpretations of entropy There are three general perspectives concerning the in-
terpretation of entropy. (i) Entropy measures the average amount of information one expects to
obtain from a given random variable X , if realized. (ii) Entropy is the average information missing if
realizations of the random variable X are unknown. (iii) Entropy quantifies the average reduction of
uncertainty about the possible values of a random variable X having observed one or more realizations.

Joint and conditional entropy Extending the definition of entropy given in definition 3 to two
or more variables leads to the so–called joint entropy which quantifies the expected uncertainty in a
joint distribution of random variables. Alternatively, joint entropy can be interpreted as quantifying
the expected information of that joint distribution of random variables, as described in the previous
paragraph.

Definition 4. Let X and Y be discrete random variables on some probability spaces. Then the joint
entropy of X and Y is given by

H(X ,Y ) =−EX ,Y [logP (x, y)] =−ΣX ,Y P (x, y) logP (x, y),

where PX ,Y denotes the joint probability distribution of X and Y and the sum runs over all possible
values x and y of X and Y , respectively.

The definition of entropy can also be extended to a conditional form H(X |Y ), where the conditional
entropy of two random variables X and Y quantifies the expected uncertainty (or the expected
information, depending on interpretation), remaining in a random variable X under the condition that
Y was observed. By observing Y , the expected uncertainty in X might be reduced:
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Definition 5. Let X and Y be discrete random variables on some probability spaces. Then the
conditional entropy of X given Y is given by

H(X |Y ) =−EX ,Y [logP (x|y)] =−ΣX ,Y P (x, y) logP (x|y),

where PX ,Y denotes the joint probability distribution of X and Y .

2.2.2 Quantifying shared information

Information can be shared between two (or more) random variables. Mutual information is an entropy-
based measure quantifying the mutual dependence of random variables. Stated differently, mutual
information measure how far two (or more) random variables are from being independent. In the
following, the point-wise mutual information i is introduced. An expression for the mutual information
of two random variables is then obtained as the expected value of the point-wise mutual information
of all realizations.

Point-wise mutual information An expression for the shared information content of two events
can be obtained based on the axioms and the definition of information given at the beginning of
section 2.2.1. The definition of point-wise mutual information i is as follows:

Definition 6. Let x and y be two events of a probability space (Ω,Σ,P ). Then their point-wise mutual
information i is given as:

i (x; y) := − log

(
P (x, y)

P (x)P (y)

)
(2.7)

= − log

(
P (x|y)

P (x)

)
(2.8)

= − log

(
P (y |x)

P (y)

)
(2.9)

where the sums are taken over all possible values x of X and y of Y .

Mutual information The expectation value of the point-wise mutual information of two random
variables is the mutual information and quantifies the amount of shared information between the two
variables:

Definition 7. Let X and Y be two discrete random variables. Then the mutual information I (X ;Y )

is given as the expected point-wise mutual information,

I (X ;Y ) := EX ,Y [i (x; y)] (2.10)

= ΣyΣx P (x, y)i (x; y) (2.11)

= −ΣyΣx P (x, y) log

(
P (x, y)

P (x)P (y)

)
(2.12)
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where the sums are taken over all possible values x of X and y of Y .

The extension to the continuous case in order to obtain the differential mutual information is
straightforward. Generally, mutual information is both symmetric and non-negative but cannot be
interpreted as a metric as it does not fulfill the triangle inequality. It is interpreted as the information
(i. e. entropy) shared by the two variables. As I (X ; X ) = H(X ), entropy can be interpreted as
“self-information”.

Multi-information and conditional mutual information Mutual information can naturally
be extended to cases of more than two random variables using conditional entropies. Mutual information
of the multivariate case is often referred to as multi-information. For three random variables X1, X2, X3

the multi-information is given by

I (X1; X2; X3) := I (X1; X2)− I (X1; X2|X3). (2.13)

The last term in the above expression is the so–called “conditional mutual information” of X1 and X2

given X3 and is defined as follows:

I (X1; X2|X3) := EX3 [I (X1; X2)|X3] (2.14)

A possible interpretation of I (X1; X2|X3) is as a quantification of the average common information
shared by X1 and X2 that is not contained in X3. While the extension of mutual information to more
than two variables is easily possible, the multivariate case might not be as straightforward to interpret:
Mutual information I (X ;Y ) is a non-negative quantity, but multi-information can also take on negative
values.

2.2.3 Kullback-Leibler divergence

Given two probability distributions on the same base space Ω, the Kullback-Leibler divergence (KL-
divergence) [Kullback and Leibler, 1951] is a measure for how one probability distribution is different
from the second, defined as the reference probability distribution. The KL-divergence is also called
relative entropy :

Definition 8. Let P and Q be two discrete probability distributions over the same base space Ω.
Then the KL-divergence of P and Q is given by

DK L(P ||Q) :=Σω∈ΩP (ω) log P (ω)
Q(ω)

Properties of the KL-divergence: (i) non-negative DK L(P ||Q) ≥ 0; non-symmetric DK L(P ||Q) 6=
DK L(Q||P ).

As the KL-divergence is non-symmetric and does not fulfill the triangle inequality, it does not constitute
a measure in the mathematical sense. Definition 8 can also be written as EP [logP − logQ] which
implies an interpretation as “expected distance of P from Q”, measured in terms of the information
content. Alternatively, DK L(P ||Q) is the average number of extra bits needed to code samples from P

15



Chapter 2. Related Work

using a code book based on Q. Expressing the KL-divergence in terms of entropies allows for the
following equality:

DK L(P ||Q) =−EP [log q(x)]+EP [log p(x)] = H cr oss (P,Q)−H(P ) (2.15)

Herein, H cr oss (P,Q) is the so–called corss entropy of P and Q, defined as follow:

H cr oss (P,Q) =−EP [logQ] (2.16)

Based on cross entropy, a closed form of the KL-divergence can be obtained for many families
of probability distributions: Given two normal distributions P ∼ N (µ1,σ2

1) and Q ∼ N (µ2,σ2
2), the

analytic form of the KL-divergence is as follows:

DK L(P ||Q) = (µ1 −µ2)2

2σ2
2

+ 1

2

(
σ2

1

σ2
2

− log
σ2

1

σ2
2

−1

)
(2.17)

2.3 Variational autoencoder

Given a data set of high dimensional inputs {X1, X2, . . .} the task in generative modeling usually implies
learning the distribution P (X). But after successfully approximating P (X) the output of such a model
would be a probability assignment for each input datum, which might limit the range of useful
applications of such a model. Arguably, a more interesting model would allow the sampling of new
data which follows the learned distribution P (X). Variational autoencoders [Kingma and Welling, 2013,
Rezende et al., 2014] attempt to solve this problem by explicitly modeling P (X |z;θ), where z is a
latent space variable and θ contains the parameters of the model. Assuming a distribution of z ∼ P (z)

from which can easily be sampled, the data distribution P (X) can be written as follows:

P (X) =
∫

P (X|z,θ)P (z)dz (2.18)

The goal then becomes finding the parameters θ which maximize P (X), where the approximation of
P (X) is performed based on samples of z, such that:

P (X) ≈ 1

n

n∑
i=0

P (X|zi) (2.19)

The problem with the approximation of P (X) described in equation 2.19 is that a maximum likelihood
method would require a large amount of samples and furthermore, as most P (X|z) ≈ 0, such an
approach would not be computationally efficient. The problem that the variational autoencoder (VAE)
has to solve, is to learn a distribution Q(z) where z ∼Q(z) generates P (X|z) À 0.

Assuming that such a distribution Q(z) can be learned, the overall goal still remains the approximation
of P (X) in equation 2.19. But while calculating

P (X) = Ez∼P (z)P (X|z) (2.20)
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is still unpractical, with the distribution Q(z) generating P (X|z) À 0, the following problem would be
more efficient to compute:

P (X) = Ez∼Q(z)P (X|z). (2.21)

This leads to the question how Ez∼P (z) and Ez∼Q(z) are related? The answer is provided by the following
relationship, which is derived in [Kingma and Welling, 2013]:

logP (X)−DK L[Q(z)||P (z|X)] = Ez∼Q [logP (X|z)]−DK L[Q(z)||P (z)], (2.22)

where DK L[Q(z)||P (z|X)] = Ez∼Q [logQ(z)− logP (z|X)] is the Kullback-Leibler divergence introduced in
definition 8. This relation provides a path to solving the problem of maximizing P (X) with respect to
the model parameters θ. As the KL-divergence between two random variables is always non-negative,
it follows from the above relation that logP (X) > logP (X)−DK L[Q(z)||P (z|X)]. The solution is thus to
maximize the lower bound in order to get an estimate of P (X). This leaves open the question how to
obtain Q(z) in the right side of equation 2.22? But instead of modeling Q(z), we will think of this
distribution as conditioned on X, such that a neural network will in fact learn the distribution Q(z|X).
Assuming Q(z|X) to be spherical Gaussian, i.e. Q(z|X) =N (µ;0,I), the neural network will output a
mean µ, and a diagonal covariance matrix. The distribution Q(z|X) is the so–called encoder, as it
encodes the input datum X into its latent representation z.

The distribution left to learn is P (X|z), shown on the right side of equation 2.22, which will also be
modeled by a neural network. Let f (z) be the output of that network, and assume P (X|z) to be
i.i.d. Gaussian. Then the datum X is given as X = f (z)+η, where η∼N (0,I). This leads to a simple
`2-training loss of ||X− f (z)||2. The distribution P (X|z) is the so–called decoder, as it decodes the
latent representation z into a reconstruction of the original input X̃.
It was already shown in equation 2.17, that under certain circumstances, the KL-divergence can have
closed form solutions. By choosing the prior distribution P (z), shown in the right side of equation 2.22,
to be N (0,I), the expression DK L[Q(z|X)||P (z)] has in fact a closed form solution. Together with the
relation Ez∼Q(z|X) logP (X|z) ∝||X− f (z)||2 this leads to the following loss function for the variational
autoencoder:

LossVAE = ||X− f (z)||2 −λ ·DK L[Q(z)||P (z)], (2.23)

where the first term refers to the loss between X and its reconstruction f (z) = X̃ while the second term
acts as a regularizer whose influence can be moderated via λ.

Note: While training the decoder network simply involves standard backpropagation, training the
encoder is more intricate, as it is not obvious how to apply gradient descent through the latent samples
z ∼N (µ,σ). The problem lies with the sampling of the latent z, which is stochastic in nature. A
solution known as the “reparametrization trick” is presented in [Kingma and Welling, 2013]. Essentially,
it allows for the encoder term DK L[Q(z)||P (z)] = Ez∼Q [logQ(z)− log(p(z))] to express the gradient of
the expectation as the expectation of a gradient.
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2.4 The information bottleneck principle

The information bottleneck principle proposed by Tishby et al. [2000c] is a variational principle and
designed to identify the relevant information in a signal x ∈ X . In that context, relevant information is
defined as being the information contained within X that provides information about another signal
y ∈ Y . For example, identifying the person shown on a facial image or simply identifying the gender
of the person shown on that same image certainly involves different combinations of facial features.
Generally, the goal of the information bottleneck (IB) is to find a short code for the signal X that
preserves the maximum information about Y . The method itself is an information-theoretic approach,
solving the following optimization problem:

min
P (T |X )

I (X ;T )−βI (T ;Y ), (2.24)

where X , Y and T are random vectors. The result of the optimization is the vector T which maximally
preserves information about Y while simultaneously compressing X . The positive parameter β balances
the trade-off between compression of X and preservation of Y : a high mutual information I (X ;T )

corresponds to a low compression while a high value of I (T ;Y ) indicates more relevant information
about Y is preserved within T . As T , the compressed representation of X , is a function of X it is
independent of Y given X , i. e. T ⊥⊥ Y |X . Consequently, the three variables can be written as the
Markov chain T − X −Y . This implies that T cannot contain more information about Y than the
original data X . The formulation of the IB given in equation 2.24 is general and does not depend on
the type of the X ,Y distribution. In the following, special cases of the IB assuming Gaussian random
variables will be introduced along with an extension of the IB principle to deep neural networks.

2.4.1 Gaussian information bottleneck

In general, the IB problem in equation 2.24 cannot be solved analytically. But assuming X and Y to
be joint multivariate Gaussian variables, Chechik et al. [2005] has shown that the problem becomes
analytically tractable. From the assumption that

(X ,Y ) ∼N

(
0,

(
ΣX ΣX Y

Σ>
X Y ΣY

))
, (2.25)

it follows that the solution T of equation 2.24 is also Gaussian distributed. The compressed represen-
tation T can be written as T = AX + e, where e ∼N (0,Σe ) is independent of X . This implies that
T ∼N (0, AΣX A>+Σe ) and leads to the following optimization problem of the Gaussian information
bottleneck:

min
A,Σe

I (X ; AX +e)−βI (AX +e;Y ) (2.26)

It can be shown that the Gaussian information bottleneck problem has in fact an analytical solution:
for a fixed β, equation 2.26 is minimized for Σe = I while A admits to an analytic expression given in
[Chechik et al., 2005].
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2.4.2 Sparse Gaussian information bottleneck

Sparsity of the compression variable T in the Gaussian IB in equation 2.26 can be promoted – without
imposing any norm penalty – by requiring the matrix A to have diagonal form, i. e. A = diag(a1, . . . , an).
Following [Rey et al., 2014], the sparsity requirement allows to rewrite equation 2.26 as a minimization
problem over a diagonal matrix D, where di i > 0 and D = A>A = diag(a2

1, . . . , a2
n). The objective of

the sparse information bottleneck is as follows:

min
A>A=diag(a2

1 ,...,a2
n )

I (X ; AX +e)−βI (AX +e;Y ) (2.27)

where e ∼N (0, I ) is independent of X .

2.4.3 Deep information bottleneck

The deep information bottleneck is a variational approximation to the original information bottleneck
of [Tishby et al., 2000c]. It was proposed by [Alemi et al., 2016] and allows to parameterize the
information bottleneck model in equation 2.24 using a neural network. This leads to the following
optimization problem

min
φ,θ

Iφ(X ;T )−λIφ,θ(T ;Y ), (2.28)

where a parametric form of the conditionals Pφ(T |X ) and Pθ(Y |T ) is assumed and λ controls the
degree of compression. This problem admits to a similar structure as the objective of the variational
autoencoder in equation 2.23. Consequently, this problem can be solved using a similar network
architecture, given appropriate expressions for the mutual information terms I (X ;T ) and I (T ;Y ).
Following [Wieczorek and Roth, 2020], these take the form:

I (X ;T ) = EP (X )DK L(P (T |X )||P (T )) (2.29)

I (T ;Y ) = EP (X ,Y )EP (T |X ,Y ) logP (Y |T )+H(Y ) (2.30)

= EP (X ,Y )EP (T |X ) logP (Y |T )+H(Y ) (2.31)

Similar to the variational autoencoder, the conditional in P (Y |T ) is obtained by sampling from the
latent representation T .

2.5 Electroencephalography (EEG)

The electric time-dependent potential, measured non-invasively on the scalp, is a robust correlate
of dynamic neocortical function. On average, a single electrode captures signals generated by tissue
masses containing between roughly 100 million and 1 billion neurons [Nunez et al., 2006]. By
homogeneously covering the scalp with electrodes, a spatially resolved picture of brain function can
be provided. As a clinical tool, scalp EEG is used in monitoring and treating illnesses such as brain
tumors, strokes, epilepsies, infectious diseases, mental retardation, severe head injury, drug overdose,
sleep and metabolic disorders, and ultimately brain death.
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2.5.1 The origin of human scalp EEG

Figure 2.5.1A shows the three primary divisions of the human brain, according to [Nunez et al., 2006]:
(i) brainstem, (ii) cerebellum and (iii) cerebrum:

• brainstem: structure through which nerve fibers relay signals between spinal cord and higher
brain centers (bidirectional)

• thalamus: relay station and important integrating center for all sensory input to the cortex,
except for smell

• cerebellum: fine control of muscle movements in addition to a potential role in cognition

Figure 2.5.1 – (A) The three primary divisions of the human brain are brainstem, cerebellum
and cerebrum. Scalp EEG originates mainly in the outer portion of the cerebrum, known as
the cerebral cortex. (B) Section of cerebral cortex. Assemblies of pyramidal cells, which are
the cortical generators of EEG, are shown as a layer of directed dipoles. (Source: Nunez et al.
[2006])

The thalamus is embedded into the cerebrum, the largest of the three primary divisions of the
human brain, which divides almost equally into two halves. The cerebral cortex, with a surface area
between 1600 to 4000cm2, is the structure which likely generates most of the electric potentials
measured by EEG. It is a layer of varying thickness, between 2 to 5 mm, representing the outer
portion of the cerebrum. In humans, the cortex (also known as neocortex) contains about 1010 densely
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inter-connected neurons, with the number of connections per neuron estimated between 104 to 105.
Colloquially, the cells of the cortex are referred to as gray matter – although they turn gray only
post-mortem when stained by anatomists. Just below the cortical layer begins the white matter
which is composed of nerve fibers, also known as axons. In humans, white matter volume outweighs
that of gray matter. Different regions of the cortex are connected through white matter fibers or
corticocortical axons. Only a small percentage of white matter fibers connect the thalamus to the
cortex. These are known as thalamocortical axons. In lower mammals, thalamocortical fibers are much
more numerous compared to humans. Nevertheless, changes in human scalp EEG can be observed
as thalamocortical connections are impeded, e. g. Parkinson’s disease is associated with a loss of
dopaminergic neurons in the substantia nigra, a region in the midbrain, impacting the functioning of
basal ganglia-thalamocortical circuits.
Pyramidal neurons, shown in figure 2.5.2, have a pyramidal shaped cell body and are named accordingly.
They form the most numerous excitatory cell type in mammalian cortical structures. Pyramidal cells
have two distinct dendritic trees – the basal dendrites emerge from the base and the apical dendrites
from the apex of the pyramidal cell body. Dendrides receive signals from other neurons and relay
them to the cell body, while axons relay signals originating from the cell body to dendrides of other
neurons. As pyramidal neurons are oriented parallel to each other they give the cortex a columnar
structure. Importantly, this highly ordered arrangement potentially allows the summation of individual
neuronal potentials such that a summed positive effect could reach the recordable range of a few
microvolts. However, this also requires pyramidal cells to discharge synchronously. It was estimated
in [Nunez et al., 2006] that 60,000,000 pyramidal neurons must be synchronously active in order to
produce scalp potentials that can be recorded with non-invasive EEG. These cortical generators of
EEG can be thought of as dipole layers with source strength varying as a function of cortical location
as shown in figure 2.5.1B.
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Figure 2.5.2 – Typical pyramidal neurons in different brain regions. (A) Pyramidal neuron in
the rat somatosensory cortex. (B) Pyramidal neuron in the rat hippocampus. (C) Pyramidal
neuron in the primary olfactory cortex of the mouse. The overall morphology is comparable in
humans. (Source: Bekkers [2011])
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3 Ultra-sparse Model Identification
and Learning with Invexity

Machine learning methods are increasingly introduced as the future paradigm of data analysis even
in areas characterized by high complexity and low fault tolerance, such as precision medicine, drug
development and autonomous driving. But with low fault tolerance and the potentially high cost
of individual errors (e. g. misdiagnosis or loss of life), the ability to understand – from a human
perspective – the decision-making process of a trained machine learning model becomes an important
requirement. The goal of understanding these decisions is often related to more tangible outcomes,
e. g. ensuring safety, avoiding unethical decision-making or increasing fairness. The common basis
for reaching these goals, and ultimately the enabler of understandable decision-making in machine
learning, is interpretability. According to Biran and Cotton [2017], “interpretability is the degree to
which a human can understand the cause of a decision”. Typically, interpretability in machine learning
is thought of as being a continuum where a higher degree of interpretability correlates with a better
human understanding of why a model makes certain decisions. Unfortunately, a formal framework for
evaluating or benchmarking machine learning models does not exist, mainly due to a lack of consensus
regarding a formal definition of interpretability [Doshi-Velez and Kim, 2017]. However, the need for
interpretable machine learning, especially when equating interpretability with accountability, remains
undisputed. This is especially true for clinical decision-making, where possible “high stakes” scenarios
are abundant and, as a consequence, the deployment of machine learning encounters considerable
resistance. Interpretability might help overcome that resistance by offering a possibility for clinicians
to interrogate, understand, debug and even improve machine learning models [Ahmad et al., 2018].
The qualitative definition of interpretability adopted here, refers explicitly to “the degree to which a
human can understand the cause of a decision”. The reference to a “human-in-the-loop” when defining
interpretability implies a general assumption about the class of systems for which a decision-making
process can be made interpretable: Social sciences have shown that explanations preferred by humans
are “contrastive” [Lipton, 1990], i. e. humans tend not to ask why a certain decision was made, but
rather why the decision made was taken instead of any other possible decision. This contrastive way
of human thinking can provide satisfying explanations, and therefore interpretability, only in cases
where potential underlying causes influencing the outcome are few. Otherwise, the sheer number
of potential contrasts would quickly make it too confusing for humans to extract explanations that
would also be considered interpretable. Consequently, humans “need to hope that the world is not as
complex as it might be” [Hastie et al., 2015] in order to find interpretable explanations or, in more
statistical terms, that the underlying data generating process is sparse. Constraining machine learning
models to produce sparse solutions has proven to be a very successful approach in recent decades
[Tibshirani, 1996, Friedman et al., 2001, Hastie et al., 2015]. The basic idea of these constraints is to
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promote the estimation of model parameters having at most q ¿ p nonzero coefficients, where p is
the dimensionality of the data. However, sparsity promoting constraints have also found successful
application in low-rank matrix completion [Candès and Tao, 2010], structured sparsity [Jenatton et al.,
2011] or sparse PCA [Mattei et al., 2016].
In this chapter, sparsity promoting constraints are explored in order to recover the underlying signal in
a given data set. We focus on linear regression with a total of N observations of an outcome variable
yi=1...N and p associated predictor variables xi = (xi 1, . . . xi p )T . In sparse linear regression our goal is
to predict the outcome variable Y with high accuracy while using only a subset of the p predictor
variables. In the following model of linear regression with noise term ei ,

yi =β0 +
p∑

j=1
xi jβ j +ei , (3.1)

providing a sparse estimate of β means identifying those dimensions j of the predictor variables X
which can be ignored, i. e. set to zero, for the task of accurately predicting Y.
Generally, contrastive explanations allow humans to ignore the complete explanation for a given
decision and to concentrate on the differences between two explanations leading to two different
decisions, i. e. two different contrasts. For example, a physician might want to know why a certain
medication showed success in one patient but failed in another. An explanation highlighting the most
prominent differences, e. g. the non-responding patient had a certain combination of genes making
the drug less effective, would certainly be easy for a human to understand. With only a small number
of nonzero predictors and only linear relations between predictor and outcome variables, promoting
sparsity in linear regression models provides a setting in which formulating contrastive explanations is
facilitated. Therefore, linear models, in combination with sparsity constraints, promote interpretability.

The problem solved by lasso [Tibshirani, 1996] is the following:

min
β

1

2
||y−Xβ||2 +λ||β||p=1 (3.2)

The lasso penalty, i. e. the `1-norm, promotes sparse solutions by setting coefficients βi to be exactly
zero or shrinking them towards zero. As such, lasso performs both variable selection and regularization.
Nevertheless, it is often thought of as a convex surrogate for best-subset selection,

min
β

1

2
||y−Xβ||2 +λ||β||p=0, (3.3)

where the `0-pseudonorm penalizes any non-zero coefficients of β. However, the surrogate `1-norm
can be sub-optimal for model selection as it both shrinks and selects, potentially leading to overly
dense models [Zhang, 2010, Friedman, 2012]. In turn, this implies that improvements are possible
compared to lasso, such that the same or even better prediction accuracies might be reached while
simultaneously increasing the degree of sparsity of the estimated solution. Given the link between
sparsity and interpretability, i. e. sparser solutions are potentially better interpretable, going below the
`1-norm holds much promise. On the other hand, the optimization problem in equation 3.2 becomes
non-convex when replacing the `p=1-norm with a “sub `1” penalty. In that case, a major disadvantage
is that computationally attractive algorithms such as forward stagewise and Frank Wolfe, both popular
gradient based projection free optimization algorithms, cannot be used anymore due to their reliance
on convex constraints.
In this chapter we propose a method to extend the applicability of these algorithms to problems of
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the form

min
x

f (x) s.t . g (x) ≤ κ, (3.4)

where κ ∈R, x ∈Rp , f (x) is a differentiable invex objective function and g (x) is an arbitrary, typically
non-convex constraint. The forward stagewise algorithm is especially of interest due to its close
relation to lasso: it can be shown that incremental forward stagewise regression solves the monotone
lasso problem, a version of the lasso that enforces monotonicity [Hastie et al., 2007]. In this context,
monotonicity refers to the coefficient paths which are constrained to be monotone non-decreasing.
According to [Hastie et al., 2007], “[t]hese monotone paths are exactly equivalent to the paths of
the forward-stagewise algorithm”. But comparing the original lasso problem [Tibshirani, 1996] to
forward stagewise regression it turns out that these problems optimize different objectives: forward
stagewise tries to minimize the arc-length of the solution path while lasso optimizes the cost function
at each point of the solution path. Consequently forward stagewise produces smoother solution paths
compared to lasso, while retaining most of its properties (incremental forward stagewise solutions
converge to monotone lasso solutions as the increment or step size ε tends towards zero [Hastie et al.,
2007]). A generalized version, which works for generic convex problems, is described in [Tibshirani,
2015]. Frank-Wolfe was introduced in [Frank and Wolfe, 1956]. But contrary to forward stagewise,
Frank Wolfe is a point-estimator and will therefore not construct a solution path. Both forward
stagewise and Frank-Wolfe linearise the target function at each step and need a constraint for which
the linearized problem is easily solved in order to be efficient. This is usually only the case for convex
constraints. The concept of invexity, which is a generalization of convexity and ensures that all local
optima are also global optima, was introduced in [Ben-Israel and Mond, 1986] – with a minor correction
provided by Giorgi [1995] – and described in detail in [Mishra and Giorgi, 2008]. Overall, invexity is a
concept not very well known to the machine learning community, although it is occasionally applied in
the domain of optimization, e.g. [Dinuzzo et al., 2011, Li et al., 2014].

In the following, we focus on problems of the form of equation 3.4. We will provide a theorem
which defines a class of monotone component-wise transformations xi = h(zi ). Applied to the non-
convex constraint g (x), these transformations produce a convex constraint G(z) = g (h(z)). Assuming
invexity of the original function f (x) as in equation 3.4, that same transformation h(·) produces a
transformed objective F (z) = f (h(z)) which is also invex. As a consequence, for algorithms relying
on a non-zero gradient ∇F to produce new update steps, invexity ensures that these algorithms will
move forward as long as a descent direction exists. Here, we specifically focus on constraints g (x)

which can be made quasi-convex in a new variable z ∈Rp by way of coordinate-wise transformations
x j = h(zi ), j = 1, . . . , p. This subset of problems is still relatively large. For instance, many prob-
lems in sparse regression with “sub `1”-penalties fall into this class. The main advantage of having
quasi-convex constraints in the new variables is that certain optimization techniques, which rely on a
convex feasible region, can now be applied. In particular, we focus on projection-free algorithms of
the forward stagewise type or on the highly related class of Frank Wolfe algorithms. These algorithms
have properties which make them interesting in light of practical applications. For instance, forward
stagewise methods are closely related to well-studied boosting algorithms, they are conceptually
simple and computationally efficient, and they allow a dense sampling of the whole solution path –
i. e. the set of all solutions for a sequence of increasing constraint values – without any additional
computational costs. Frank-Wolfe algorithms, on the other hand, are well studied from a theoretical
point of view, and (local) convergence guaranties for problems involving non-convex functions f are
available. In case the full solution path is of interest, and arguably in most practical applications
this is the case (e. g. performing model selection for the constraint value κ), the use of variable
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transformations t : Rp → Rp , x 7→ z might induce local extrema in the minimization problem in eq.
(3.4). This in turn would pose a problem for gradient-based optimization strategies. We will show that
this problem can be circumvented for transformations h−1 :Rp →Rp , x 7→ z that fulfill certain criteria
– basically invertability and smoothness of both h an h−1. Such transformations keep the function
F (z) = ( f ◦h)(z) = f (h(z)) invex in the new variable z. This means that gradient-based methods
evaluating ∇z F (z) cannot get stuck in local minima. And assuming a sufficiently relaxed constraint
value, the constructed solution path will indeed end at the unconstrained solution minz F (z), provided
that the minimum exists. Despite the fact that F (z) has this invexity property, we cannot guarantee
joint invexity of F (z) and G(z) = g (h(z)), which would be necessary to prove that the solution path
connects pointwise-optimal solutions. Panels (a) and (b) of Figure (3.0.1) show a Gaussian function
f (x) (solid lines) where the positions of the respective minima differ only slightly. The problem is
minimizing the function f (x) over the depicted non-convex feasible region g (x) (dotted lines). The
result of the variable transformation, the functions F (z) and G(z), are shown in panels (c) and (d)
where the constraint has now become convex. Minimization is performed in the z-space where one
observes that the solution paths have changed considerably for only minor changes in the location of
the minimum. In general, it would not be realistic to expect a guarantee of reconstructing the optimal
solution path for a non-convex optimization problem. Nevertheless from a practical point of view the
correctness of both the starting point and the end point of the solution path is of considerable value
as all solution paths will eventually converge towards the same end point as the constraint is relaxed.
A proof is provided in the appendix A.1.1. Furthermore any local extrema or saddlepoints of F (z)

introduced at the border of the constraint region can always be escaped as κ is increased and no
“re-starts” will ever become necessary. This too is a direct consequence of the invexity of F (z). The
solution path in the original variable is obtained by transforming back into x-space.

Figure 3.0.1 – The minimum of the Gaussian function f (x) in panel (a) is located at (2.0/1.0)
and at (1.8/1.0) in panel (b). After transforming f (x) and the feasible region g (x) into the new
variable z, F (z) = ( f ◦h)(z) = f (h(z)) has become invex whereas G(z) = (g ◦h)(z) = g (h(z))
is now convex (panels c,d). Using the forward stagewise algorithm which requires a convex
feasible region, optimization is performed in z-space. Due to the differently located minima,
the solution path for panels (a,c) is constructed by including first the dimension x1 (A) into
the active set followed by x2 (B) once the correlation of x1 with the residual has become
small enough. In panels (b,d) the reverse sequence is observed: first x2 (A’) is included
followed by x1 (B’). From points C, C’ onwards the weights of both dimensions is increased in
alternating fashion till the minimum is reached for a sufficiently relaxed constraint value κ.
The difference in solution paths reflects the non-convex nature of the optimization problem
and illustrates that solution paths in such a setting can in general not be guaranteed to
connect pointwise-optimal solutions.
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3.1. Transformations ensuring invexity of the objective

Constraint g (x)
Transformation Transformed
x j = h(z j ) Constraint g (z)

Log Penalty
∑

j log(γx j +1) x j = 1
γ (exp(z j )−1)

∑
j z j

Log-Group Lasso
∑

i wi log(γ||xIi ||∞+1) x j = 1
γ (exp(z j )−1)

∑
i wi ||zIi ||∞

Inverse Tangent Penalty
∑

j atan(
1+2γx jp

3
)− π

6 x j =
p

3 tan(z j+ π
6 )−1

2γ

∑
j z j

Rational Polynomials
∑

j
x j

1+γx j /2 x j = 2z j

γz j−2

∑
j z j

Table 3.1 – Overview of non-convex constraints, element-wise transformations and convex
transformed constraints. It is assumed that x j ≥ 0 ∀ j and z j ≥ 0 ∀ j for the log and group
log penalties, π

3 ≥ z j ≥ 0 ∀ j for the inverse tangent penalty and 2
γ ≥ z j ≥ 0 ∀ j for the rational

polynomials penalty.

3.1 Transformations ensuring invexity of the objective

Invexity, as defined in definition 9, is an extension of convexity, i. e. every convex function is also
an invex function. To recover the usual definition of a differentiable convex function one has to set
η(z, z ′) = z − z ′ in definition 9.

Definition 9. Let Z ⊆Rp be an open set. The differentiable function F : Z →R is invex if there exists
a vector function η : Z ×Z →Rp such that F (z)−F (z ′) ≥ η(z, z ′)T ∇z F (z ′), ∀z, z ′ ∈ Z .

An alternative definition of invexity is given by Ben-Israel and Mond [1986] in the following theorem:

Theorem 1. F is invex if and only if every stationary point is a global minimum.

The proof can be found in [Ben-Israel and Mond, 1986]. We now define a class of transformations
h(·) under which the invexity property of function f is preserved.

Theorem 2. Let X , Z ⊆ Rp be open sets, and let f : X → R be invex and differentiable. Let
h be a differentiable bijective function h : Z → X , z 7→ x with differentiable inverse h−1. Then
F (z) = ( f ◦h)(z) = f (h(z)) is invex on Z .

Proof. Invexity of f = F ◦h−1 and the chain rule imply

(F ◦h−1)(x)− (F ◦h−1)(y) ≥ η(x, y)T ∇(F ◦h−1)(y)

= η(x, y)T ∇F (h−1(y))∇h−1(y).

If ∇z F (z?) = 0, there exists an y ∈ X s.t. h(z?) = y and h−1(y) = z?. It follows that (F ◦h−1)(x) ≥
F (z?) ∀x ∈ X . Since h is one-to-one, F (z) ≥ F (z?) ∀z ∈ Z . Hence, every stationary point of F yields a
global minimum on Z , so F is invex on Z .

Note: As the proposed optimization method with non-convex constraints relies on every stationary
point of the unconstrained objective function being a guaranteed global minimum, the class of quasicon-
vex functions is in general not permissible here. Furthermore the class of invex functions and the class
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of quasiconvex functions have only partial overlap, e.g. f1(x) = x3, x ∈R, is quasiconvex, but not invex,
since x = 0 is a stationary point which is not a minimum point whereas f2(x, y) = x3 +x −10y3 − y is
invex as no stationary points exist, but not quasiconvex: following Definition 9 and choosing z ′ = (0,0),
x = 2 and y = 1, yields f (x, y)− f (z ′) < 0 but (x − y)∇ f (z ′) > 0. On the other hand, the class of
pseudoconvex functions presents an unnecessary restriction as every pseudoconvex function is invex
whereas the reverse is not true [Giorgi, 2008].

A particular sub-class of bijective functions h(·) on Z ⊆Rp consists of strictly monotone increasing
functions that are defined in a coordinate-wise manner, i.e. h j = h(z j ), j = 1, .., p and map 0 onto
itself1, i.e. h(0) = 0. We will restrict ourselves to this type of coordinate-wise transformations for the
remainder of this chapter.

Application Example I: Logarithmic Constraints for Sparse Regression.

In the context of regression, one possibility to ensure interpretability is to enforce sparsity of the
coefficients. We now discuss transformations h(·) for families of constraint functions that are frequently
used in the context of sparsity (for a list of example functions, see Table 3.1). One interesting class
of non-convex constraints uses the concavity of the logarithm. These logarithmic constraints arise
naturally as a means to interpolate between the `0-pseudonorm and the `1-norm:

g (x;γ) =∑p
j=1 log(γ|x j |+1). (3.5)

Used as a regularizer, such a constraint will likely increase the sparsity of the solution of a linear
regression problem even in comparison to lasso. The major problem for the application of our method
to a regression setting is the domain of the x j . Due to the required monotonicity of the constraint
function g (·) (see theorem 2), it is not possible to use penalties containing the absolute value function |·|
on domains other than R≥0. This prevents the direct applicability of the method to regression and other
settings where negative values can naturally occur. For regression, this problem can be circumvented
by doubling the number of predictors as described in the monotone lasso [Hastie et al., 2007]. There
x is replaced by x+

j = 1
2 (|x j |+ x j ) and x−

j = 1
2 (|x j |− x j ) which implies that x+

j ≥ 0, x−
j ≥ 0 ∀ j . The

problem is thus redefined as f (x = x+−x−) s.t. g (|x| = x++x−). This leads to a regression problem
which is entirely defined on R≥0. Applied to least squares regression with a log-constraint, we obtain

min
x

n∑
i=1

(bi − [
p∑

j=1
ai j x+

j −
p∑

j=1
ai j x−

j ])2 (3.6)

s.t.
p∑

j=1
log(γ(x+

j +x−
j )+1) ≤ κ and x+

j ≥ 0, x−
j ≥ 0∀ j = 1, . . . , p. (3.7)

If one analyses the KKT conditions of this problem, it can be seen that x+
j > 0 implies x−

j = 0. A
detailed proof for general f (x) and g (x) can be found in the appendix A.1.2. This allows us to write

1This is a crucial property in the context of sparse regression, as only then the sparsity patterns in x- and
z-space are identical.
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3.1. Transformations ensuring invexity of the objective

g (x++x−) = g (x̃) with x̃ = [x+, x−]:

p∑
j=1

log(γ(x+
j +x−

j )+1) =
2p∑
j=1

log(γx̃ +1) ≤ κ. (3.8)

By substituting x̃ j = h(z̃ j ) = 1
γ [exp(z̃ j )−1] in eq. (3.8) this expression is transformed to the convex

lasso constraint on R2p
≥0, i.e. G(z̃;γ) =∑2p

j=1 z̃ j , while the loss function in eq. (3.6) goes from convex to
being invex. Theorem 2 requires the existence of the gradient of F (z) at all points, which is not the
case for F (z = 0) if we consider only the closed set R2p

≥0. However, we can always fulfill this requirement
by simply enlarging the domain of h−1 to include the neighbourhood of 0 (this requires f to be
differentiable at 0, but we already stated this condition previously). This is always possible, since
h−1(x̃) = log(γx̃ +1) is well-defined and differentiable at x = 0. Note that this argument would not be
valid for `p -pseudonorms with 0 < p < 1, since these functions are not differentiable at zero.

Application Example II: Sparse Information Bottleneck.

The information bottleneck was introduced by Tishby et al. [2000a]. Its goal is to compress a random
variable X into a variable T , such that the mutual information I (X ;T ) is minimized while the mutual
information with a target variable Y , i.e. I (Y ;T ), is maximized. In the Gaussian IB, one considers
jointly Gaussian random vectors X ∈Rp and Y ∈Rq . It follows that the optimal compression T is a
noisy projection, T = AX +η with independent standard normal noise η∼ N (0, I ) [Chechik et al., 2005].
The original formulation only allowed for discrete variables, but [Chechik et al., 2005] extended the
method to Gaussian variables while [Rey and Roth, 2012] proposed an extension to variables with
a joint Gaussian copula. The problem we want to improve upon, with the proposed method, is the
sparse meta-gaussian information bottleneck discussed in [Rey et al., 2014], which also introduces
sparsity to the compressed variable T . In this variant of the Gaussian IB, the actual optimization
problem can be formulated as follows

mina log |PX |Y Da + I |− log |PX Da + I | s.t . log |PX Da + I | ≤ κ, (3.9)

where PX is the correlation matrix of X , and PX |Y denotes the conditional correlation of X , given Y .
Note that for the case PX = I , the penalty in equation 3.9 reduces to

gγ(x) =∑p
j=1 log(γx j +1) (3.10)

on the non-negative reals, which in turn allows for an element-wise transformation x j = h(z j ;γ) =
1
γ (exp(z j )−1). In general, the transformed constraint has a more complicated form with curved level
sets, for which we propose a solution in section 3.2.1. A visual representation of the level-sets is shown
in figure A.1.1 of the appendix.

Group-sparse constraints.

The group lasso method is a generalization of the lasso to allow for sparsity on the level of grouped
variables [Yuan and Lin, 2006]. One frequently used version of the group lasso uses a `1,∞ “block norm”
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g (x) =∑
j ‖y j ‖∞, where a vector y j contains a group of variables. The constraint families in equations

3.5, 3.14, 3.15 are all of the form g (x) =∑
j h−1(x j ) and can be extended to group-sparse versions

that are “below” the group-lasso block-norm, if we substitute x j by ‖y j ‖∞. Since the infinity-norm of
the group is defined as the maximum within the group, and since we assume that we operate on the
non-negative reals, for a group y j containing l variables we have ‖y j ‖∞ = max{y j 1, . . . , y j l }. By using
a strictly monotone increasing element-wise transformation y j i = h(z j i ) we arrive at

h−1(‖y j ‖∞) = h−1(max{h(z j 1), . . . ,h(z j l )}) (3.11)

= h−1(h(max{z j 1, . . . , z j l })) (3.12)

= max{z j 1, . . . , z j l }, (3.13)

which again is simply the non-negative version of the group-lasso constraint.

Other suitable non-convex constraints

In applications like image denoising, several authors, e. g. [Lanza et al., 2015], have proposed to use
sparsity penalties that either involve the inverse tangent function or rational polynomials.

gγ(x) =∑p
j=1 atan(

1+2γ|x|p
3

). (3.14)

gγ(x) =∑p
j=1

|x|
1+γ|x|/2

. (3.15)

Together with the augmentation trick in equation 3.7, and similar to the log-penalties discussed above,
both versions can be transformed to lasso constraints with variable transformations h(·) whose inverses
are differentiable at zero.

3.2 Algorithms

Before discussing the algorithms, we make the following remarks.

1. The algorithms we are presenting require a convex constraint G. We consider non-convex
constraint functions g which are transformed into convex functions G = g (h(·)) by a mapping
h(·) that fulfills the requirements of theorem 2. For an initially invex function f , invexity of the
objective function F = f (h(·)) is preserved under that same mapping h.

2. The algorithms presented here will perform update steps as long as there is a non-zero gradient.
The existence of a continuation criterion for the presented algorithms is guaranteed by the
invexity of the objective function: As the algorithms only consider ∇F , update steps are
performed as long as the constraint remains active.
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3.2. Algorithms

3.2.1 Forward Stagewise

General forward stagewise procedures

For two convex functions f (x) and g (x) the general form of the forward-stagewise method is described
in [Tibshirani, 2015]. Here we assume g to be non-convex. Applying the doubling of predictors
x 7→ x̃ = [x+, x−] described in “Application Example I” and substituting x̃ j = h(z j ) in f , we obtain
the invex function F (z) = ( f ◦h)(z) and the convex function G(z) = g (h(z)). It is now possible to use
projection-free optimization methods like forward stagewise to find the minimum of F (z) constrained
by G(z). The general forward stagewise procedure is:

Initialize z(0) = 0. Repeat while G(z) < κ:

L( j ) = ∇F (z)
∣∣

z=z( j ) , (3.16)

∆β = argmin
β

βt L( j ) s.t . G(β) ≤ ε and β≥ 0, (3.17)

z( j+1) = z( j ) +∆β. (3.18)

In some cases, the increment ∆β can be found analytically. Tibshirani [2015] provides a general
discussion of penalty functions that have this property. For the lasso constraint on the non-negative
reals, i. e. G(z;γ) = g (h(z;γ)) =∑

j z j , the increment has the form:

Initialize z(0) = 0. Repeat while G(z) < κ and L( j )
i < 0 for any i :

L( j ) = ∇F (z)
∣∣

z=z( j ) , (3.19)

i = argmin
i

L( j )
i , (3.20)

z( j+1) = z( j ) +ε ·ei , (3.21)

where ei is the unit vector for dimension i . Note that log-constraints for sparse “sub-lasso” regression
in equation 3.5, as well as inverse tangent penalties and rational polynomials given in table 3.1, can
be easily transformed to this non-negative lasso setting.

Forward stagewise with first order Taylor approximation

In some cases, however, the transformed constraint G(z) is convex but has a more complicated
structure compared to the `1-region. For this case we propose the Forward stagewise with first order
Taylor approximation. With ε¿ 0 we are allowed to replace G(β) in Eq. 3.17 with its Taylor expansion
around zero. If the transformation h(·) has succeeded in mapping the non-convex constraint onto a
convex constraint close to the `1 shape, truncating the series after the linear term is often sufficient to
obtain a good approximation. For instance in case of the “Sparse Information Bottleneck”, using only
the linear term, the increment ∆β is approximated as follows log |PD + I | ≈ tr ace(PD) = tr ace(D).
The latter identity follows from P being a correlation matrix with ones on the diagonal. In practice, this
approximation leads to virtually indistinguishable results when compared to the numerically computed
“true” solution of ∆β, but at a considerable computational speed-up. We demonstrate this in the
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experiment section, figure 3.3.5.

3.2.2 Frank-Wolfe algorithm

Frank-Wolfe was introduced in Frank and Wolfe [1956]. Recently it has increased in popularity due
to its ability to efficiently solve a wide range of problems, as reviewed in [Jaggi, 2013]. Contrary to
forward stagewise, Frank Wolfe is a point-estimator and will not construct a solution path. Both
forward stagewise and Frank-Wolfe linearise the objective function at each step and need a constraint
for which the linearised problem is easily solved in order to be efficient. This is usually only the case
for convex constraints. Formally, Frank-Wolfe algorithms use simple modifications of the general
forward-stagewise update steps. In particular, the computation of the increment in equation 3.17 is
modified to include the whole constraint region {β : G(β) ≤ κ}:

∆β = argmin
β

βt L( j ) s.t . G(β) ≤ κ and β≥ 0 (3.22)

Further, the update in equation 3.18 has a slightly modified form using convex mixtures of the old
value and the new increment ∆β

z( j+1) = (1− t )z( j ) + t∆β. (3.23)

Due to this high formal similarity, the use of variable transformations h(·) has the same implications
for algorithms of the Frank-Wolfe type as it has for forward stagewise algorithms. However, it should
be noted that Frank-Wolfe algorithms cannot be directly used to compute a solution path. A potential
“path”-variant is discussed in [Tibshirani, 2015], but compared to forward-stagewise, this variant has
a dramatically increased computational cost. On the other hand, Frank-Wolfe methods have some
local convergence guarantees which are not available in this form for forward-stagewise methods. The
choice between the two algorithms therefore depends on the actual requirements. Important to note
is that all guarantees provided by forward stagewise and Frank Wolfe [Jaggi, 2013] apply only to
the transformed problem where the constraint is convex. These guarantees have no meaning in the
original problem, as neither forward stagewise nor Frank Wolfe are applicable in a non-convex setting.
Nevertheless, the progress, i. e. the decrease in the loss function along the solution path, will be
identical for the original and the transformed problem as shown in equation 3.24. For an optimization
problem of the form of equation 3.4, the minimization is performed in z-space and the following holds:

F (z)−F (z ′) = ( f ◦h)(z)− ( f ◦h)(z ′)

= f (h(z))− f (h(z ′))

= f (x)− f (x ′). (3.24)

This means that for an algorithm constructing a series of intermediate solutions the difference between
two such solutions will be the same in both spaces.
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3.3. Experiments

Figure 3.3.1 – Plots of two dimensional forward stagewise solution path (left) and Frank Wolfe
optimization path (right). The red paths depict the solution or optimization paths, the blue
dashed lines denote the boundaries of the constrained regions and the green surfaces show
the area for which all values of the loss function are smaller than the solution found by the
algorithm. Left to Right: Panels 2 and 4 show the transformed loss over the `1 norm, while
panels 1 and 3 depict the least squares loss with the log-penalty. Plots are based on γ= 5.0
and κ= 1.

3.3 Experiments

3.3.1 Topographic plots of two dimensional solution paths

Figure 3.3.1 shows the optimization path generated by Frank Wolfe for a two dimensional problem
and the solution path produced by forward stagewise for that same problem. The penalty used is
given in equation 3.5. As can be seen, the boundary of the constrained region has a non-convex shape
in the original problem, while the region of the transformed problem has a `1 shape. For forward
stagewise, the sparsity of the path is expressed by its course parallel to the coordinate axis: first, the
w2 dimension is included into the model, followed by the w1 dimension. All points on the path are
intermediate solutions corresponding to different values of κ. Intermediate points of the Frank Wolfe
algorithm, on the other hand, do in general not correspond to a specific value of κ.

3.3.2 Solution paths in dependence of γ

In Figure 3.3.2, we compare the solution paths generated by forward stagewise for different values of
γ, based on the log penalty given in equation 3.5. The data set used to generate these plots consists
of n = 100 samples, p = 300 predictors and the coefficients x = [5,5,5,5,5,0, ...,0,−1,−1,−1,−1,−1].
Thus, there are 10 non-zero coefficients. The correlation matrix Σ is generated by Σi j = mi n(i , j )∗ 1

p ,
which means the negative coefficients are highly correlated while the positive ones are uncorrelated.
We add Gaussian noise with σ2 = 50 to the response values. The top panels show the size of the
coefficients in dependence of the training loss while the bottom panels show the test loss as a function
of the training loss. The red vertical line depicts the minimum loss on the test set. The two leftmost
panels use the log-penalty with a small γ value of 0.001. This corresponds approximately to the `1

regularization, and the coefficient paths look like a typical lasso path. The right and centre panels also
use the log-penalty, but with a γ value of 0.5 respectively 3.0. We see that the coefficient paths with
higher γ values are generally sparser. The test error for the best model as well as the number of active
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Figure 3.3.2 – From left to right: Solution paths for log penalty with γ= 0.001, γ= 1 and
γ= 5. Top panels depict the size of coefficients, bottom panels the error on the test set. On
the y axis, the training loss is given. Each point on the y axis corresponds to a valid model.
The panel on the left side approximates the lasso problem. The center and right panels show
increased sparsity compared to the lasso solutions.

coefficients decrease as γ increases. Generally, a higher γ value implies that new coefficients enter the
model at a later stage and consequently, already selected coefficients will have higher absolute values
as they would have had using a smaller γ.

3.3.3 Monotone increasing solution paths for forward stagewise

Hastie et al. [2007] show that the path optimized by forward stagewise differs from a solution path
computed by the lasso in case of highly correlated predictors. We reproduce their experiment and
show that similar observations can be made for non-convex penalties. For comparison, we use the
sparsenet package by Mazumder et al. [2011], available in the R-repository. Sparsenet also constructs
a path for non-convex penalties, although in their case they use the MC+ penalty proposed in [Zhang,
2010]. The experimental setup is as follows: The data consists of 60 samples with 1000 dimension.
The dimensions are divided into 20 groups of the same size. Samples are drawn from a multivariate
Gaussian, where the correlation between each member of a group is ρ = 0.95, while members of
different groups remain uncorrelated. For each group there is a non-zero coefficient in the solution
vector. Each coefficient is drawn from a standard Gaussian. Gaussian noise is added to the output
variable with a standard deviation of σ= 6. We plot the obtained solution paths in figure 3.3.3. One
observes that the effect of the monotonicity of the forward stagewise path carries over to the sparse
version (γ= 5), while the sparsenet coefficients fluctuate much more. This is explained by the different
objectives these algorithms optimize: Forward stagewise optimizes the arc-length of the paths, and
therefore produces a much smoother appearance, i. e. these paths do not change drastically between
subsequent solutions. Lasso, on the other hand, optimizes the cost function at each point of the
solution path. In addition, sparse forward stagewise is more efficient in computing the solution path
compared to forward stagewise, when a similarly dense solution path is requested (15 seconds for
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Figure 3.3.3 – Solution paths for Lasso, Sparsenet, Forward Stagewise, Sparse Forward
Stagewise. As one can see, the monotonicity of the coefficient paths can be observed both in
the forward stagewise and the sparse forward stagewise procedure. Both lasso and sparsenet
show bigger variations in the solution paths due to the impact of correlated coefficients. This
can be explained by the fact that forward stagewise minimizes the arc-length of the solution
path, which adds smoothness to the coefficient paths.

sparse forward stagewise vs 45 seconds for sparsenet on a 2.9 GHz Intel Core i5).

3.3.4 Regression on artificial data

In this experiment, the goal is to assess if an increase in sparsity can help to find a better model
compared to lasso regression or forward stagewise. For this purpose, a data set consisting of 50
features and 40 samples is created. In the underlying data generating process, only four coefficients
are related to the target. In figure 3.3.4, the two first and the two last coefficients have a coefficient
size of [-20, -10, 10, 20]. Noise with a standard deviation of σ= 15 is added to the result. All input
features are correlated to each other with a correlation coefficient of 0.1. Figure 3.3.4 shows the
result of this experiment. All models use cross validation to select the optimal level of sparsity. The
top left panel shows lasso regression (calculation performed based on the sklearn library [Pedregosa
et al., 2011]), the middle panel shows forward stagewise and the bottom panel shows sparse forward
stagewise (with γ= 5). All models are tested on a test set and the scores on training and test set
can be seen on the right. Overall, sparse forward stagewise leads to better test performance with a
slightly worse training performance. If we look at the coefficients, it is apparent that sparse forward
stagewise includes less spurious features as the other two models and comes closet to recovering
the magnitude of the true coefficients. This result is within expectations, as the ability of a model
to better approximate the `0-pseudonorm implies generally less shrinkage. This experiment can be
considered as an ideal application case of the proposed method: A situation where more features
than samples are available and only a small amount of correlation between input variables exists,
which favours a model abtle to perform feature selection while recovering the true magnitude of the
coefficients without bias.
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Figure 3.3.4 – Coefficient boxplots for `1 regularized logistic regression (L1), forward stagewise
(FS) and sparse forward stagewise with γ = 5 (SFS). For better visualization, only 15 of
the 40 coefficients are shown here (the two first and the two last, as well as eleven other).
Coefficients not shown all have a median of zero with some outliers, similar to the coefficients
in the center part of the 3 panels shown on the left.

3.3.5 Sparse Gaussian Information Bottleneck

We use the forward-stagewise algorithm with first order Taylor approximation introduced in section
3.2.1 for computing the solution path of the sparse Gaussian information bottleneck, i. e. we compute
the evolution of the sparse compression coefficients a when the constraint κ is relaxed. The original
algorithm proposed in [Rey et al., 2014] uses a log-Barrier method and traverses the solution path
in the opposite direction: for a very large initial constraint value, this original algorithm starts at
a feasible point a with strictly positive coefficients, which are then successively shrunk to zero by
tightening the constraint. Typically, we are interested in sparse solutions, and this reverse traversal of
the solution path is rather inefficient in practice. However, our forward-stagewise algorithm starts
with the empty vector a = 0 and successively includes new positive components when the constraint is
relaxed. This conceptual difference leads to a huge difference in computational workload. On artificial
data containing three “informative” features (i. e. dimensions in X which indeed have nonzero mutual
information with Y ), and many other noisy dimensions, our proposed forward-stagewise algorithm
improves the run-time by several orders of magnitude, as shown in the left panel of figure 3.3.5. The
new algorithm will introduce an error to the solution, as only the first order approximation is used,
nevertheless, as one can see in the right panel of figure 3.3.5, this approximation error is negligible
compared to the exact solution.

3.4 Conclusion

Our contribution is threefold: We first demonstrated how popular optimization algorithms of the
forward stagewise and Frank Wolfe type can be applied to non-convex constraints by means of
mapping the non-convex constraints onto convex ones. Assuming invexity of the initial objective
function, the proposed mapping preserves this property such that the transformed objective is again
invex. For gradient based optimization algorithms that require convex constraints and rely only on the
gradient of the objective function to produce an update step, invexity ensures that there always exists
an optimization direction as long as there is a descent direction. Secondly, we have shown that several
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Figure 3.3.5 – (Left) Runtime experiments for the sparse meta-Gaussian information bottleneck.
The data always contained 2000 samples, the dimensionality of Y was 20. There are three
informative dimensions in X , and a varying number of additional noise dimensions (x-axis).
Blue points/curve: algorithm proposed in [Rey et al., 2014], line is linear regression fit. Red:
our proposed forward-stagewise algorithm, stopped after 10 variables have been selected. Note
that this is a log-log plot. (Right) Comparison of information curves between the log-barrier
method and forward stagewise with first order Taylor approximation. As one can see, forward
stagewise induces a certain error into the solution, but compared to the exact solution, the
error is negligible.

popular non-convex constraints can be mapped onto the `1 constraint, for which forward stagewise
and Frank Wolfe are extremely efficient. Finally, in situations where non-convex penalties cannot be
mapped onto the `1 region but onto a convex region close to `1, we proposed a forward stagewise
approach with first order Taylor approximation. In the experiment section, we have demonstrated that
in a log-constrained regression setting, the generalization performance can potentially be improved by
trading-off less shrinkage for more sparsity, compared to lasso. Furthermore, we have shown that a
log-constraint optimization problem, which arises naturally in the context of the sparse information
bottleneck, can be solved more efficiently. This was possible by transforming the non-convex constraint
in such a way that forward stagewise, a convex optimization algorithm, could be applied. Our approach
was able to outperform the previous algorithm by several orders of magnitude.
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4 Deep Archetypal Analysis for
Interpretable Machine Learning

Previously, we used non-convex log-pseudonorms in order to perform ultra-sparse regression analysis
and to identify relevant predictors X from a larger set of possible candidates. Generally, the goal of
regression models is to infer the conditional probability of the target Y , given an observation x, i. e.
estimating P (Y |X = x). Models promoting sparsity of regression estimates are usually motivated by (i)
reducing the prediction error, (ii) improving the generalization capability of the model and (iii) making
the model more “interpretable”. While a general consensus of how to formalize interpretability is still
lacking, we think of interpretable models as those which maximize the degree to which a human can
consistently explain why a model makes certain errors. While sparsity will not guarantee interpretable
models, it will certainly reduce the number of non-zero predictors, and having fewer predictors is
likely to increase interpretability. From the user perspective, interpretability is naturally evaluated
with respect to the task or purpose of the model. However, in unsupervised machine learning targets
Y are not available. Consequently, a learning task is often – implicitly or explicitly – defined with
respect to the estimation of the joint probability density P (X ) over the inputs X . With respect to
interpretability this begs the question how estimating P (X ) can provide interpretable explanations
of the data? A classical examples of unsupervised learning is k-means clustering [MacQueen et al.,
1967]. Generally, the goal of unsupervised clustering is to group objects into classes of similar objects,
given an appropriate measure of similarity. In exploratory data analysis, clustering algorithms are
often used with the expectation to recover an underlying natural grouping that might be hidden in
the data. By exposing this inherent structure a possible path to interpretability is provided as, in
the above defined sense, errors made by the model might be explained in a more consistent manner.
K-means clustering is a special case of a Gaussian mixture model (GMM) with uniform prior weights
and unit covariance. The optimized GMM will then provide the probability density of each data
point xi as pθ(xi ) = 1

Z exp(−0.5||xi −µc ||2) with normalization constant Z , parameters θ and cluster
means µc . These cluster means, also known as prototypes, derive their meaning from the assumption
that a natural grouping exists in the first place, thereby justifying the use of clustering methods.
If such a natural grouping does not exist, the structure of the data manifold is better explained
through alternative models which respect the continuous nature of the data. Principal component
analysis (PCA) [Pearson, 1901] is one such technique which aims to identify a lower-dimensional set
of coordinate axes capturing the main directions of variation of the data. By reducing the initial
dimensionality of the data, while identifying and discarding of directions with low variation, PCA
potentially increases interpretability. For a data matrix X, PCA identifies a rotation matrix PT such
that a change of basis on the data can be performed according to Y = PT X, where P is chosen so
that the covariance matrix of Y is diagonal. Dimensionality reduction is achieved by performing the
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change of basis while ignoring those columns of P which are associated with directions of low variation.
Compared to other unsupervised, linear dimensionality reduction techniques such as non-negative
matrix factorization (NMF) [Lee and Seung, 1999] or independent component analysis (ICA) [Comon,
1994], the constraints governing PCA are still quite general. This has implications for the interpretabil-
ity of PCA as including additional constraints, and thereby encoding prior knowledge, often helps
specify an expectation with regard to possible interpretations of the data. A model closely related to
PCA but governed by additional constraints was proposed by Cutler and Breiman [1994] and became
known under the name of “Archetypal Analysis” (AA). Being a special type of NMF, AA aims to
decompose the data matrix X into a row-stochastic weight matrix A and a matrix Z containing the
so–called archetypes. With the additional constraint that the archetype matrix Z decomposes into
the product of a row-stochastic weight matrix B and the original data matrix X, AA approximates
the data convex hull based on a polygon whose edges are the coordinates of the archetypes zi . With
the decomposition X ≈ ABX = AZ, every data point inside the convex polygon can be written as a
weighted sum of the archetypes. Dimensionality reduction in AA is achieved by varying the number
of edges, i. e. the number of archetypes, used to define the polygon which approximates the data
convex hull. Archetypes are strongly connected to the kind of interpretability this model offers: As
archetypes are extreme representatives of the data, inspecting the archetypes provides a sense of the
variation contained within the data. Furthermore, due to the constraint that all data points xi must
decompose into a non-negative, weighted sum of the archetypes, a representation in terms of basic
types is provided.
Since its conception, AA has known several advancements: In [Stone and Cutler, 1996] the authors
propose an archetype model able to identify archetypes in space and time, named “Archetypal Analysis
of spatio-temporal dynamics”. A similar problem is addressed in “Moving archetypes” by Cutler
and Stone [1997]. Model selection is the topic of [Prabhakaran et al., 2012], where the authors
are concerned with the optimal number of archetypes needed to characterize a given data set. An
extension of the original Archetypal Analysis model to non-linear kernel Archetypal Analysis is proposed
by Bauckhage and Manshaei [2014], Mørup and Hansen [2012]. In [Kaufmann et al., 2015], the
authors use a copula based approach to make AA independent of strictly monotone transformations
of the input data. The reasoning is that such transformations should in general not influence which
points are identified as archetypes. A probabilistic version of Archetypal Analysis was introduced
by Seth and Eugster [2016], lifting the restriction of Archetypal Analysis to real–valued data and
instead allowing other observation types such as integers, binary, and probability vectors as input.
Although AA did not prevail as a commodity tool for pattern analysis, several applications have used
it very successfully. In [H. P. Chan et al., 2003], AA is used to analyse galaxy spectra which are
viewed as weighted superpositions of the emissions from stellar populations, nebular emissions and
nuclear activity. For the human genotype data studied by Huggins et al. [2007], inferred archetypes
are interpreted as representative populations for the measured genotypes. In computer vision, AA has
for example been used by Bauckhage and Thurau [2009] to find archetypal images in large image
collections or by Canhasi and Kononenko [2015] to perform the analogous task for large document
collections. In combination with deep learning, Wynen et al. [2018] apply an archetypal style analysis
to learned image representations in order to realize artistic style manipulations.
Archetypal analysis, as proposed by Cutler and Breiman [1994], has several shortcomings which we
attempt to address: (i) It is a linear method and cannot integrate any additional information about
the data, e.g. labels, that might be available. (ii) The feature space in which AA is performed is
spanned by features that had to be selected by the user based on prior knowledge. (iii) As mixing
of archetypes is performed directly on the input data, linear AA requires additivity of the input,
which is a strong assumption unlikely to hold e.g. in case of image data. To address these problems,
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we propose learning an appropriate latent feature space while simultaneously identifying suitable
archetypes. We thus introduce a generative formulation of the linear archetype model, parameterized
by neural networks. By introducing the distance-dependent archetype loss, the linear archetype model
can be integrated into the latent space of a deep variational information bottleneck and an optimal
representation, together with the archetypes, can be learned end-to-end. Moreover, the information
bottleneck framework allows for a natural incorporation of arbitrarily complex side information during
training. As a consequence, learned archetypes become easily interpretable as they derive their meaning
directly from the included side information. Applicability of the proposed method is demonstrated by
exploring archetypes of female facial expressions while using multi-rater based emotion scores of these
expressions as side information. A second application illustrates the exploration of the chemical space
of small organic molecules. By using different kinds of side information we demonstrate how identified
archetypes, along with their interpretation, largely depend on the side information provided. The
majority of the work presented in this chapter is based on [Keller et al., 2019] and [Keller et al., 2020].

Colloquially, both the words “archetype” and “prototype” describe templates or original patterns
from which all later forms are developed. However, the concept of a prototype is more common in
machine learning and for example encountered as cluster-centroids in classification, where a query point
x is assigned to the class of the closest prototype. In an appropriate feature space such a prototype is
a typical representative of its class, sharing all traits of the class members, ideally in equal proportion.
By contrast, archetypes are characterized as being extreme points of the data, such that the complete
data set can be well represented as a convex mixture of these extremes or archetypes. Archetypes
thus form a polytope approximating the data convex hull. Based on the historic Iris flower data set
[Anderson, 1935, Fisher, 1936], Figure 4.0.1 illustrates the different perspectives both approaches
provide in exploring the data. In Figure 4.0.1a the cluster means as well as the decision boundaries in
a 2-dimensional feature space are shown. The clustering was calculated using the k-Means algorithm.
Each cluster mean is an average representative of its respective class, the aforementioned prototype.
According to this clustering, the prototypical Iris virginica has a sepal width of 3.1cm and a sepal
length of 6.8cm. On the other hand, Figure 4.0.1b shows the positions of the three archetypal Iris
flowers, which represent extreme manifestations of the Iris species of the respective classes. The
archetypal Iris virginica has a sepal width of 3.0cm and a sepal length of 7.8cm. All flowers within the
simplex are characterized as convex mixtures of these archetypes. As flowers outside of that simplex
will also be described as convex mixtures, the linear archetype model will approximate their location
in feature space by normal projections onto the simplex’ surface. With an increasing number of
archetypes the approximation of the data convex hull will improve but interpretation of the individual
archetypes might become more difficult. In general, a clustering approach is more natural if the
existence of a cluster structure can be presumed. Otherwise, Archetypal Analysis might offer an
interesting perspective for exploratory data analysis.

4.1 Exploring Data Sets Through Archetypes

Archetypal analysis (AA) was first proposed by Cutler and Breiman [1994]. It is a linear procedure
where archetypes are selected by minimizing the squared error in representing each individual data
point as a mixture of archetypes. Identifying the archetypes involves the minimization of a non-linear
least squares loss.
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(a) k-Means clustering with marked prototypes (b) Archetypal Analysis with marked archetypes

Figure 4.0.1 – Result of a clustering procedure as well as an Archetypal Analysis, performed
on the Iris data set. For clustering, the k-means algorithm was used, which is an unsupervised
clustering algorithm identifying the average representatives of a data set, i.e. the cluster-
centroids or prototypes. Archetypal Analysis on the other hand, seeks to identify extremes in
the data set with the goal to represent individual data points as weighted mixtures of these
extreme points, the so-called archetypes.

4.1.1 Archetypal Analysis

Linear AA is a form of non-negative matrix factorization where a matrix X ∈Rn×p of n data vectors is
approximated as X ≈ AB X = AZ with A ∈Rn×k , B ∈Rk×n , and usually k < min{n, p}. The so-called
archetype matrix Z ∈Rk×p contains the k archetypes z1, ..,z j , ..,zk with the model being subject to
the following constraints:

ai j ≥ 0 ∧
k∑

j=1
ai j = 1, b j i ≥ 0 ∧

n∑
i=1

b j i = 1 (4.1)

Constraining the entries of A and B to be non-negative and demanding that both weight matrices are
row stochastic implies a representation of the data vectors xi=1..n as a weighted sum of the rows of Z

while simultaneously representing the archetypes z j=1..k themselves as a weighted sum of the n data
vectors in X :

xi ≈
k∑

j=1
ai j z j = ai Z , z j =

n∑
i=1

b j i xi = b j X (4.2)

Due to the constraints on A and B in Eq. 4.1 both the representation of xi and z j in Eq. 4.2 are
convex combinations. Therefore the archetypes approximate the data convex hull and increasing the
number k of archetypes improves this approximation. The central problem of AA is finding the weight
matrices A and B for a given data matrix X and a given number k of archetypes. The non-linear
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optimization problem consists in minimizing the following residual sum of squares:

RSS(k) = min
A,B

‖X−ABX‖2 (4.3)

= min
a,b

n∑
l=1

∥∥∥∥∥xl −
k∑

j=1
ai j

n∑
i=1

b j i xi

∥∥∥∥∥
2

(4.4)

In their original publication, Cutler and Breiman [1994] propose an alternating least squares approach
for finding the archetypes: After a random initialization of the b’s, Eq. 4.4 is solved for the a’s. Then,
given the a’s, Eq. 4.4 is solved for the b’s. This alternating optimization, which provably converges
towards a local minimum, can be implemented using common solvers for quadratic programming.
Using an active set algorithm, together with smarter initialization strategies, higher convergence rates
are achieved by the archetype algorithm proposed by Bauckhage and Thurau [2009]. The Rapid
Archetypal Analysis algorithm by Bauckhage et al. [2015] is based on a greedy Frank-Wolfe procedure
and avoids, unlike the previously mentioned algorithms, the rather costly quadratic optimization
routines. The example shown in Figure 4.0.1b was calculated based on our own implementation of this
algorithm, which is – to our knowledge – the most efficient algorithm for solving the linear archetype
problem available today.
A probabilistic formulation of linear AA is provided by Seth and Eugster [2016] where it is observed
that AA follows a simplex latent variable model and normal observation model. The generative process
for the observations xi in the presence of k archetypes with archetype weights ai is given by

ai ∼Dirk (α) ∧ xi ∼N (ai Z , ε2I), (4.5)

with uniform concentration parameters α j =α for all j , and weights summing up to ‖ai‖1 = 1. That is,
the observations xi are distributed according to isotropic Gaussians with means µi = ai Z and variance
ε2.

4.1.2 A Biological Motivation for Archetypal Analysis

Conceptionally, the motivation for Archetypal Analysis is purely statistical but the method itself
always implied the possibility of interpretations with a more evolutionary flavour. By representing
an individual data point as a mixture of pure types or archetypes, a natural link to the evolutionary
development of biological systems is implicitly established. The publication by Shoval et al. [2012]
entitled ’Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space’ made
this connection explicit, providing a theoretical foundation of the ’archetype concept’. In general,
evolutionary processes are multi-objective optimization problems and as such subject to unavoidable
trade-offs: If multiple tasks need to be performed, no (biological) system can be optimal at all tasks
at once. Examples of such trade-offs include those between longevity and fecundity in Drosophila
melanogaster where long-lived flies show decreased fecundity [Djawdan et al., 1996] or predators
that evolve to be fast runners but eventually have to trade-off their ability to subdue large or strong
prey, e.g. cheetah versus lion [Garland, 2014]. Such evolutionary trade-offs are known to affect the
range of phenotypes found in nature [Tendler et al., 2015]. In [Shoval et al., 2012] it is argued
that best-trade-off phenotypes are weighted averages of archetypes while archetypes themselves are
phenotypes specialized at performing a single task optimally. An example of an evolutionary trade-off
in the space of traits (or phenospace) for different species of bats (Microchiroptera) is shown in
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Figure 4.1.1 – Phenospace of different species of Microchiroptera. The dominant food habit of
each species, and thereby the ability to procure this food source, is linked to the morphology
of the animals, e.g. a higher Wing Aspect Ratio corresponds with the greater aerodynamic
efficiency needed to chase high flying insects. Archetypes are extreme types, optimized to
perform a single task. Proximity of a species to an archetype quantifies the level of adaptation
this species has undergone with respect to the optimization objective or task. Reprinted from
[Shoval et al., 2012] with permission.

Figure 4.1.1. Based on a study of bat wings by Norberg et al. [1987], each species is represented
in a two-dimensional space where the axis depict Body Mass and Wing Aspect Ratio. The latter is
the square of the wingspan divided by the wing area. Table 4.1 gives an account of the task the
archetypes indicated in Figure 4.1.1 have evolved to performing optimally. The trade-off situation can
be interpreted using Pareto optimality theory [Steuer, 1986], which was recently used in biology to
study trade-offs in evolution [Schuetz et al., 2012, El Samad et al., 2005]. All phenotypes that have
evolved over time lie within a restricted part of the phenospace, the so-called Pareto front, which is
the set of phenotypes that cannot be improved at all tasks simultaneously. If there were a phenotype
being better at all tasks than a second phenotype, then the latter would be eliminated over time by
natural selection. Consequently phenotypes on the Pareto front are the best possible compromise
between the different requirements or tasks.

4.2 Method

4.2.1 Deep Variational Information Bottleneck

We propose a model to generalise linear AA to the non-linear case based on the Deep Variational
Information Bottleneck framework since it allows to incorporate side information Y by design and
is known to be equivalent to the VAE in the case of Y = X , as shown in [Alemi et al., 2016]. In
contrast to the data matrix X in linear AA, a non-linear transformation f (X ) giving rise to a latent
representation T ∈Rd of the data suitable for (non-linear) Archetypal Analysis is considered. I.e. the
latent representation T takes the role of the data X in the previous treatment.
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Archetype Phenotype Specialization

1
low aspect ratio,

small body
hunting small insects

near vegetation

2
high aspect ratio,
medium body

hunting high flying
large insects

3
low aspect ratio,

large body
hunting animals
near vegetation

Table 4.1 – Inferred specialization of the archetypal species of Microchiroptera indicated
in Figure 4.1.1. From an evolutionary perspective, the phenotype is a consequence of the
specialization, for details see [Shoval et al., 2012].

The DVIB combines the information bottleneck (IB) with the VAE approach [Tishby et al., 2000b,
Kingma and Welling, 2013]. The objective of the IB method is to find a random variable T which,
while compressing a given random vector X , preserves as much information about a second given
random vector Y . The objective function of the IB is as follows

minp(t|x)I (X ;T )−λI (T ;Y ), (4.6)

where λ is a Lagrange multiplier and I denotes the mutual information. Assuming the IB Markov
chain T −X −Y and a parametric form of Eq. 4.6 with parametric conditionals pφ(t|x) and pθ(y|t),
Eq. 4.6 is written as

max
φ,θ

−Iφ(t;x)+λIφ,θ(t;y). (4.7)

As derived in [Wieczorek et al., 2018], the two terms in Eq. 4.7 have the following forms:

Iφ(t;x) = DK L
(
p(t|x)p(x)‖p(t)p(x)

)
=

∫
p(t,x) log pφ(t|x)dxdt

−
∫

p(x|t)p(t) log p(t)dxdt

=
∫

pφ(t|x)p(x) log
pφ(t|x)

p(t)
dxdt

= Ep(x)DK L
(
pφ(t|x)‖p(t)

)
(4.8)
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and

Iφ,θ(t;y) = DK L

([∫
p(t|y,x)p(y,x)dx

]
‖p(t)p(y)

)
=

∫
pφ(t|x,y)p(x,y) log

pθ(y|t)p(t)

p(t)p(y)
dtdxdy

= Ep(x,y)

[∫
pφ(t|x,y) log pθ(y|t)dt

]
−Ep(x,y)

[
log p(y)

∫
pφ(t|x,y)dt

]
≥ Ep(x,y)Epφ(t|x) log pθ(y|t)+h(Y ).

(4.9)

Here h(Y ) =−Ep(y) log p(y) denotes the entropy of Y in the discrete case or the differential entropy in
the continuous case. The models in Eq. 4.8 and Eq. 4.9 can be viewed as the encoder and decoder,
respectively. Assuming a standard prior of the form p(t) =N (t;0, I ) and a Gaussian distribution for
the posterior pφ(t|x), the KL divergence in Eq. 4.8 becomes a KL divergence between two Gaussian
distributions which can be expressed in analytical form as in [Kingma and Welling, 2013]. I (T ; X ) can
then be estimated on mini-batches of size m as

Iφ(t;x) ≈ 1

m

∑
i

DK L
(
pφ(t|xi )‖p(t)

)
. (4.10)

As for the decoder, Ep(x,y)Epφ(t|x) log pθ(y|t) in Eq. 4.9 is estimated using the reparametrisation trick
proposed by Kingma and Welling [2013], Rezende et al. [2014]:

Iφ,θ(t;y) = Ep(x,y)Eε∼N (0,I )
∑

i
log pθ

(
yi |ti

)
+const.

(4.11)

with the reparametrisation

ti =µi (x)+diag (σi (x))ε. (4.12)

As mentioned earlier, in the case of Y = X the original VAE is retrieved [Alemi et al., 2016]. In our
applications, we would like to predict not only the side information Y but also reconstruct the input
X . Similar to the approach proposed in [Gomez-Bombarelli et al., 2018], we use an additional decoder
branch to predict the reconstruction X̃ . This extension requires an additional term Iφ,ψ(t; x̃) in the
objective function Eq. 4.7 and an additional Lagrange multiplier ν. The mutual information estimate
Iφ,ψ(t; x̃) is obtained analogously to Eq. 4.11.

4.2.2 Deep Archetypal Analysis

Deep Archetypal Analysis can then be formulated in the following way. For the sampling of ti in Eq.
4.11 the probabilistic AA approach as in Eq. 4.5 can be used which leads to

ti ∼N
(
µi (x) = ai (x)Z ,σ2

i (x)I
)

, (4.13)

where the mean µi given through ai and variance σ2
i are non-linear transformations of the data

point xi learned by the encoder. We note that the means µi are convex combinations of weight
vectors ai and the archetypes z j=1..k which in return are considered to be convex combinations of the
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means µi=1..m and weight vectors b j .1 By learning weight matrices A ∈Rm×k and B ∈Rk×m which are
subject to the constraints formulated in Eq. 4.1 and parameterised by φ, a non-linear transformation
of data X is learned which drives the structure of the latent space to form archetypes whose convex
combination yield the transformed data points. A major difference to linear AA is that for deep AA
we cannot identify the positions of the archetypes z j as there is no absolute frame of reference in
latent space. We thus position k archetypes at the vertex points of a (k −1)-simplex and collect these
fixed coordinates in the matrix Zfixed. These requirements lead to an additional distance-dependent
archetype loss of

`AT = ||Zfixed−B AZfixed||22 = ||Zfixed−Zpred||22, (4.14)

where Zpred = B AZfixed are the predicted archetype positions given the learned weight matrices A

and B . For Zpred ≈ Zfixed the loss function `AT is minimized and the desired archetypal structure is
achieved. The objective function of deep AA is then given by

max
φ,θ

−Iφ(t;x)+λIφ,θ(t;y)+νIφ,ψ(t; x̃)−`AT. (4.15)

A visual illustration of deep AA is given in Figure 4.2.1. The constraints on A and B can be guaranteed
by using softmax layers and deep AA can be trained with a standard stochastic gradient descent
technique such as Adam [Kingma and Ba, 2014]. Note that the model naturally allows to be relaxed
to the VAE setting by omitting the side information term λIφ,θ(t;y) in Eq. 4.15.

Figure 4.2.1 – Illustration of the deep AA model. Encoder side: Learning weight matrices A
and B allows to compute the archetype loss `AT in Eq. 4.14 and sample latent variables t as
described in Eq. 4.13. The constraints on A and B in Eq. 4.1 are enforced by using softmax
layers. Decoder side: Z fixed represent the fixed archetype positions in latent space while
Z pred are given by the convex hull of the transformed data point means µ during training.
Minimizing `AT corresponds to minimizing the red-dashed (pairwise) distances. The input
is reconstructed from the latent variable t. In the presence of side information, the latent
representation allows to reproduce the side information Y as well as the input X .

1Note that i = 1..m (and not up to n), which reflects that deep neural networks usually require batch-wise
training with batch size m.
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4.2.3 Selecting the Number of Archetypes

In the proposed model the dimension d of the latent space and the number of archetypes k are related
through the equation k = d +1. The coordinates of the k archetypes coincide with the vertices of a
regular d-simplex located on the unit sphere centered around the origin. Therefore, every vertex of the
simplex has the same distance to the origin. Together with a spherical Gaussian prior p(t) =N (t;0, I ),
this geometric construct ensures that no latent space directions is preferred over any other. Thus, in
the absence of prior knowledge, this agnostic setting makes all archetypes equally important.
In principal, decoupling k and d is a valid option. But by increasing the number of archetypes k in
a latent space of fixed dimension, every data set can be explained in an increasingly trivial manner.
The idea of Archetypal Analysis, however, is to tolerate some noise in the generative process and to
approximate the convex hull with only a limited number of vertex points. Within the framework of
a variational information bottleneck, choosing k = d +1 thus allows to identify the most compact
latent code for a given data set. Consequently, model selection is performed by observing at which
latent dimensionality the predictive mutual information, i.e. the reconstruction loss, saturates. In
section 4.3.4, we demonstrate the model selection process using a held-out test set in the experiments
based on the QM9 data set of small organic molecules. Additionally, in section 4.3.5, we explore an
alternative prior conceptually closer to the original formulation of Archetypal Analysis.

4.2.4 The Necessity for Side Information

The goal of deep AA is to identify meaningful archetypes in latent space which will subsequently
enable an informed exploration of the given data set. The meaning of an archetype, and thereby the
associated interpretation, can be improved by providing so-called side information, i.e. information in
addition to the input data. For non-linear latent variable models parametrized by neural networks,
an interpretation of the latent space structure – depending on the data set – is often difficult, as
input dimensions can be mapped to arbitrarily complex non-linear curves in latent space. In general,
more non-linearity leads to more flexibility in the mapping of an input onto its latent code, which
in turn leads to more ambiguity when interpreting that latent code. Supplementing the training
process with additional information – which we call side information – can facilitate the interpretation.
Consequently, the function of the side information is that of a regularizer as it restricts the class of
potential mappings. If the input datum is for example an image, additional information could simply
be a scalar- or vector-valued label. Using richer side information, e.g. additional images, is of course
possible. In more general terms, the fundamental idea is that information about what constitutes an
archetypal representative might not be information that is readily present in the input X but dependent
on – or even defined by – the side information. Taking a data set of car images as an example, what
would be an archetypal car? Certainly, the overall size of a car would be a good candidate, such that
smaller sports cars and larger pick-ups might be identified as archetypes. But introducing the fuel
consumption of each car as side information would put sports cars and pick-ups closer together in
latent space, as both car types often consume above average quantities of fuel. In this way, side
information guides the learning of a latent representation which is informative with respect to exactly
the side information provided. Consequently, whether a data point is identified as an archetype, is not
an inherent property of the data alone, but rather a function of the side information made available
during training. And the selection of appropriate side information can only be linked to the questions
the user of a deep AA model is interested in answering.
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4.3 Experiments

4.3.1 Archetypal Analysis: Dealing With Non-linearity

Data generation. For this experiment, data X ∈Rn×8 is generated that is a convex mixture of k

archetypes Z ∈Rk×8 with k ¿ n. The generative process for the datum xi follows Eq. 4.5, where ai is
a stochastic weight vector denoting the fraction of each of the k archetypes z j needed to represent the
data point xi . A total of n = 10000 data points is generated, of which k = 3 are true archetypes. The
variance is set to σ2 = 0.05 and the linear 3-dim data manifold is embedded in a n = 8 dimensional
space. Note that although linear and deep Archetypal Analysis is always performed on the full data
set, only a fraction of that data is displayed when visualizing results.

Linear AA – non-linear data. Data is generated as described above and an additional non-
linearity is introduced by applying an exponential to one dimension of X which results in a curved
8-dimensional data manifold. Linear Archetypal Analysis is then performed using the efficient Frank-
Wolfe procedure proposed by Bauckhage et al. [2015]. For visualization, PCA is used to recover the
original 3-dimensional data submanifold which is embedded in the 8-dimensional space. The first three
principal components of the ground truth data are shown in Figure 4.3.1a as well as the computed
archetypes (connected by dashed lines). The positions of the computed archetypes occupy optimal
positions according to the optimization problem in Eq. 4.3 but due to the non-linearity in the data it
is impossible to recover the three ground truth archetypes.

Deep AA – non-linear data. For data that has been generated as described in the previous
paragraph, a strictly monotone transformation in form of an exponentiation should in general not
change which data points are identified as archetypes. But this is clearly the case for linear AA as it is
unable to recover the true archetypes after a non-linearity has been applied. Using that same data to
train the deep AA architecture presented in Figure 4.2.1 generates the latent space structure shown in
Figure 4.3.1b, where the three archetypes A, B and C have been assigned to the appropriate vertices of
the latent simplex. Moreover, the sequence of color stripes shown has been correctly mapped into the
latent space. Within the latent space data points are again described as convex linear combinations
of the latent archetypes. Latent data points can also be reconstructed in the original data space
through the learned decoder network. The network architecture used for this experiment was a simple
feedforward network (2 layered encoder and decoder), training for 20 epochs with a batch size of 100
and a learning rate of 0.001.

4.3.2 Archetypes in Image-based Sentiment Analysis

The Japanese Female Facial Expression (JAFFE) database was introduced by Lyons et al. [1998] and
contains 213 images of 7 facial expressions (6 basic facial expressions + 1 neutral). The expressions
are happiness, sadness, surprise, anger, disgust and fear. All expressions were posed by 10 Japanese
female models. Each image has been rated on 6 emotion adjectives by 60 Japanese subjects on a
5 level scale (5-high, 1-low) and each image was then assigned a 6-dimensional vector of average
ratings. For the following experiments the advice of the creator of the JAFFE data set was followed
to exclude fear images and the fear adjective from the ratings, as the models were not believed to be
good at posing fear. All experiments based on the JAFFE data set are performed on the following
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(a) Linear AA is unable to recover the true archetypes.

(b) Latent space embedding of non-linear artificial data.

Figure 4.3.1 – While linear Archetypal Analysis is in general unable to approximate the convex
hull of a non-linear data set well, deep AA learns an appropriate latent representation where
the ground truth archetypes can correctly be identified.

architecture2:

2The code is available via https://github.com/bmda-unibas/DeepArchetypeAnalysis
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Encoder:
Input: image x (128×128)
→ 3×

[
64 Conv. (4×4) + Max-Pool. (2×2)

]
→ Flatten + FC100
→ A, B, σ2

Decoder (Image Branch):
Input: latent code t
→ FC49
→ 3×

[
64 Conv. Transpose (4×4)

]
→ Flatten + FC128×128
→ FC128×128 → 128×128 reconstruction x̃

Decoder (Side Information Branch):
Input: latent code t
→ FC200-5 → side information ỹ

ReLU activations are used in-between layers and sigmoid activations for the image intensities. The
different losses are weighted as follows: we multiplied the archetype loss by a factor of 80, the side
information loss by 560, and the KL divergence by 40. In the setting where only two labels are
considered, the weight for archetype loss is increased to 120. The network was trained for 5000 epochs
with a mini-batch size of 50 and a learning rate of 0.0001. For training a NVIDIA TITAN X Pascal
GPU was used, where a full training sessions lasted approximately 30 minutes.

JAFFE: Latent Space Structure

Emotions conveyed through facial expressions are a suitable case to demonstrate the interpretability of
learned latent representation in deep AA. First, the existence of archetypes is plausible as there clearly
are expressions that convey a maximum of a given emotion, i.e. a person can look extremely/maximally
surprised. Second, facial expressions change continuously without having a clearly defined cluster
structure. Moreover, these expressions lend themselves to being interpreted as mixtures of basic
(or archetypal) emotional expressions – a perspective also enforced by the averaged ratings for each
image which are essentially weight vectors with respect to the archetypal emotional expressions.
Figure 4.3.2a shows the learned archetypes “happiness”, “anger” and “surprise” while expressions
linked to the emotion adjective “sadness” are identified as mixtures between archetype 1 (happiness)
and archetype 2 (anger). Figure 4.3.2b shows the positions of the latent means where the color
coding is based on the argmax of the emotion rating, which is a 5-dimensional vector. An analogous
situation is found in case of “disgust”, which, according to deep AA, is a mixture between archetype 2
(anger) and archetype 3 (surprise). Towards the center of the simplex, expressions are located which
share equal weights with respect to the archetypes and thus resemble a more “neutral” facial expression.

JAFFE: Expressions As Weighted Mixtures

One advantage of deep AA compared to the plain Variational Autoencoder (VAE) is a globally
interpretable latent structure. All latent means µi will be mapped inside the convex region spanned
by the archetypes. And as archetypes represent extremes of the data set which are present to some
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(a) Archetype latent space of the JAFFE data set. (b) Location of emotion adjectives in latent space.

Figure 4.3.2 – Deep AA with k = 3 archetypes identifies sadness as a mixture mostly between
happiness and anger while disgust lies between the archetypes for anger and surprise.

percentage in all data points, these percentages or weights can be used to explore the latent space in
an informed fashion. This might be especially of advantage in case of higher-dimensional latent spaces.
For example, the center of the simplex will always accommodate latent representations of input data
that are considered mean samples of the data set. Moreover, directions within the simplex have
meaning in the sense that when “walking” towards or away from a given archetype, the characteristics
of that archetype will either be enforce or diminished in the decoded datum associated with the actual
latent position. This is shown in the Hinton plot in Figure 4.3.3 where mixture 1 is a mean sample, i.e.
with equal archetype weights. Starting at this position and moving on a straight line into the direction
of archetype 3 increases its influence while equally diminishing the influence of both archetypes 1
and 2. This results in mixture 2 which starts to look surprised, but not as extremely surprised as
archetype 3. In the same fashion mixture 3 and 4 are the results of walking straight into the direction
of archetypes 2 or 1 which results in a sad face (mixture 3) and a slightly happy facial expression
(mixture 4).

JAFFE: Deep AA Versus VAE

Deep AA is designed to be a model that simultaneously learns an appropriate representation and
identifies meaningful latent archetypes. This model can be compared to a plain VAE where a latent
space is learned first and subsequently linear AA is performed on that space in order to approximate
the latent convex hull. Figure 4.3.4a shows the interpolation in the deep AA model between two
images, neither of them archetypes, from “happy” to “sad”. Compared to Figure 4.3.4b, which shows
the same interpolation in a VAE model with subsequently performed linear AA, the interpolation
based on deep AA gives a markedly better visual impression. In case of deep AA, this is explained by
the fact that all data points are mapped into the simplex which ensures a relatively dense distribution
of the latent means. On the other hand, the latent space of the VAE model has no hard geometrical
restrictions and thus the distribution of the latent representatives will be less dense or even “patchy”,
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Figure 4.3.3 – Knowing the archetypes allows for an informed exploration of the latent space
by not directly sampling latent space coordinates but by specifying a desired mixture with
respect to the known archetypes.

i.e. with larger empty areas in latent space. Especially with small data sets such as JAFFE, of which
less than 200 images are used, interpolation quality might be strongly affected by the unboundedness
of the latent space of VAE models.

4.3.3 Stability of Inferred Archetypes: Bootstrapping Experiment

In order to demonstrate the stability of the inferred archetypes with respect to their interpretation, we
evaluate our method on 40 distinct sets of bootstrap samples of the JAFFE data set. The general
setup is identical to section 4.3.2. The weights of the archetype and side information loss are 1e2
and 2e2, respectively, while the weight of the reconstruction loss is set to 0.4. The weight of the
KL divergence is initialized with 5e3 and then slowly decreased until it reaches the target weight of
4e1. Figures 4.5.1 and 4.5.2 show the true input images that were mapped closest to the vertices
of the latent simplex when mapping the whole data set (i. e. including the bootstrap hold-out set)
into the latent space at test time. The scatter plots also show the latent distribution of the whole
data set. Colors indicate the argmax of the five emotion scores, which were used as side information
during training. We can see that the inferred archetypes – here: the closest true input images –
consist of three distinct “extreme” emotions for the majority of the runs. Importantly, some images
are recognized as archetypal through multiple runs even though the training data sets had different
compositions each time. Figure 4.3.6 shows the distribution of the different combinations of inferred
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(a) Interpolation based on deep AA. (b) Interpolation based on VAE (with lin. AA).

Figure 4.3.4 – Interpolation between the two input images marked in red. The interpolation
in the latent space of the deep AA model is qualitatively better compared to the VAE model
as latent points are mapped more densely due to the simplex constraints.

archetypal emotions. We note that the predominant combination contains the emotions “surprised”,
“happy” and “angry”.

Side Information for JAFFE. The JAFFE data set contains facial expressions posed by 10
Japanese female models. Based solely on the visual information, i.e. disregarding the emotion scores,
these images could meaningfully be grouped together in a variety of ways, e.g. head shape, hair style,
identity of the model posing the expressions etc. The interpretability of archetypes, in general, rests
on providing side information with respect to which the learned representation shall be informative.
The latent space shown in Figure 4.3.5 has been learned while providing only the emotion ratings for
“sadness” and “disgust”. This result illustrates how side information is shaping the structure of the
learned latent representation: Comparing Figure 4.3.5 with Figure 4.3.2a, where the emotion ratings
for “anger”, “surprise” and “sadness” were provided as side information during training, makes clear
that archetypes are not necessarily a property of the data. The final structure of the latent space is
determined to a large extend by the side information and thus by the intent of the user when selection
which information to provide.
While it is obvious to learn typical emotion expressions in case of JAFFE, most applications are
arguably more ambiguous. In section 4.3.4, a chemical experiment is discussed, where each molecule
can be described by a variety of properties. The side information introduced to the learning process
will ultimately be the property the experimenter is interested in, and the learned representation will be
informative with respect to that property.

4.3.4 The Chemical Universe Of Molecules

In the following section the application of deep AA to the domain of chemistry is explored. Starting
with an initial set of chemical compounds, e.g. small organic molecules with cyclic cores [Visini et al.,
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Figure 4.3.5 – Latent structure of the JAFFE data set when trained on a subset of the side
information containing only the emotion ratings for “sadness” and “disgust”.

2017], and iteratively applying a finite number of reactions, will eventually lead to a huge collection of
molecules with extreme combinatorial complexity. But while the total number of all possible small
organic molecules has been estimated to exceed 1060 [Kirkpatrick and Ellis, 2004], even this number
pales in comparison to the whole chemical universe of organic chemistry. In general, the efficient
exploration of chemical spaces requires methods capable of learning meaningful representations and
endowing these spaces with a globally interpretable structure. Prominent examples of chemistry data
sets include the family of GDB-xx data sets (generic database), e.g. GDB-13 [Blum and Reymond,
2009], which enumerates small organic molecules of up to 13 atoms, composed of the elements C, N,
O, S and Cl, following simple chemical stability and synthetic feasibility rules. With more than 970
million structures, GDB-13 is the largest publicly available database of small organic molecule to date.

Exploring the Chemical Space. As discussed in section 4.1.2, Archetypal Analysis lends itself
to a distinctly evolutionary interpretation. Although this is certainly a more biological perspective,
the basic principle is applicable to other fields. In chemistry, the principle of evolutive abiogenesis
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Figure 4.3.6 – Distribution of combinations of inferred archetypal emotions based on 40
bootstrap runs.

describes a process in which simple organic compounds increase in complexity [Miller, 1953]. In the
following experiment a structured chemical space is learned using as side information the heat capacity
Cv which quantifies the amount of energy (in Joule) needed to increase 1 Mol of molecules by 1 K
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Figure 4.3.7 – Model selection on the QM9 data set: Mean absolute error (reconstruction
loss) vs. number of archetypes on the test set.
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(a) (b)

Figure 4.3.8 – Both panels illustrate a comparison between archetypal molecules, where the
underlying latent representation is informative with respect to the molecular property heat
capacity. Each row contains the three molecules of the test set that have been mapped closest
to a specific vertex of the latent simplex. Panel (a) compares archetypal linear molecules
characterized by a short chain structure versus long chained molecules. Panel (b) compares
archetypal molecules with similar masses but different geometric configuration, i.e. with and
without a cyclic structure.

at constant volume. A high Cv number is important e.g. in applications dealing with the storage of
thermal energy [Cabeza et al., 2015]. In the following, all experiments are based on the QM9 data
set [Ramakrishnan et al., 2014, Ruddigkeit et al., 2012], which contains molecular structures and
properties of 134k organic molecules. Each molecule is made up of nine or less atoms, i.e. C, O, N,
or F, without counting hydrogen. The QM9 data set is based on ab-initio density functional theory
(DFT) calculations.

Figure 4.3.9 – Interpolation between two archetypal molecules produced by deep AA. The
labels display the heat capacity of each molecule. Here, only a single example is shown but
similar results can be observed for other combinations of archetypes.

Experiment Setup. A total of 204 features were extracted for every molecule using the Chemistry
Development Kit [Steinbeck et al., 2003]. The neural architecture used has 3 hidden FC layers with
1024, 512 and 256 neurons, respectively, and ReLU activation functions. For all experiments, the
model was trained in a supervised fashion by reconstructing the molecules and the side information
simultaneously. In Experiment 1, model selection was performed by continuously increasing the number
of latent dimensions. Based on the knee of the mean absolute error (MAE), the appropriate number
of latent archetypes was selected. In Experiments 2 and 3, the number of latent dimensions was fixed
to 19, corresponding to the optimal number of 20 archetypes from the model selection procedure.
During training, the Lagrange multiplier λ was steadily increased by increments of 1.01 every 500
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iterations. For training, the Adam optimizer [Kingma and Ba, 2014] was used, with an initial learning
rate of 0.01. A learning rate decay was introduced, with an exponential decay of 0.95 every 10k
iterations. The batch size was 2048 and the model was trained for a total of 350k iterations. The
data set is divided in training and test set with a 90%/10% split. For visualization, the 3-dimensional
molecular representations haven been created with [Jmol, 2019].

Experiment 1: Model Selection. The mean absolute error is assessed while varying the number
of archetypes. The result is shown in Figure 4.3.7. Model selection is performed by observing for
which number of archetypes the MAE starts to converge. The knee of this curve is used to select
the optimal number of archetypes, which is 20. Obviously, if the number of archetypes is smaller,
it becomes more difficult to reconstruct the data. This is explained by the fact that there exists a
large number of molecules with very similar heat capacities but at the same time distinctly different
geometric configurations. As a consequence, molecules with different configurations are mapped to
archetypes with the similar heat capacity, making it hard to resolve the many–to–one mapping in the
latent space.

Experiment 2: Archetypal Molecules. Archetypal molecules are identified along with the heat
capacities associated with them. A fixed number of 20 archetypes is used for optimal exploration-
exploitation trade-off, in accordance with the model selection discussed in the previous section. In

chemistry, the heat capacity at constant volume is defined as Cv = dε

dT

∣∣
v=const where ε denotes the

energy of a molecule and T its temperature. This energy can be further decomposed into different
parts, such that ε= εTr +εR +εV +εE . Each part is associated with a different degree of freedom of the
system. Here, Tr stands for translational, R for rotational, V for vibrational and E for the electronic
contributions to the total energy of the system [Atkins and de Paula, 2010, Tinoco, 2002]. With this
decomposition in mind, the different archetypal molecules associated with a particular heat capacity
are compared in Figure 4.3.8. In both panels of that figure, the rows correspond to the three molecules
in the QM9 data set (test set) that have been mapped closest to a vertex of the latent simplex and
have thus been identified as being extremes with respect to the heat capacity. Out of a total of 20
vertices, molecules in close proximity to four of them are displayed here. Panel 4.3.8a shows the
configuration of six archetypal molecules. The upper three are all associated with a low heat capacity
while the lower three all have a high heat capacity. This result can easily be interpreted, as the lower
heat capacity can be traced back to the shorter chain length and the higher number of double bonds
of these molecules, which makes them more stable and results in a lower vibrational energy V and
subsequently in a lower heat capacity. The inverse is observed for the linear archetypal molecules
with higher heat capacities, which show, relative to their size, a lower number of double bonds and a
long linear structure. Panel 4.3.8b shows both linear (lower row) and non-linear archetypal molecules
(upper row) but with similar atomic mass. Here, the non-linear molecules containing a cyclic structure
in their geometry, are more stable and therefore have an overall slightly lower heat capacity compared
to their linear counterparts of the same weight, shown in the second row.

Experiment 3: Interpolation Between Two Archetypal Molecules. Interpolation is per-
formed by plotting the samples from the test set which are closest to the connecting line between the
two archetypes. As a result, one can observe a smooth transition from a molecule with a ring structure
to a linear chain molecule. Both the starting and the end point of this interpolation is characterized
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by a similar heat capacity, such that these archetypes differ only in their geometric configuration but
not with respect to their side information. As a consequence, any molecule in close proximity to that
connecting line can differ only with respect to its structure, but must display a similarly high heat
capacity. Figure 4.3.9 shows an example of such an interpolation.

Experiment 4: The Role of Side Information and the Exploration of Chemical Space.
Deep AA structures latent spaces both according to the information contained in the input to the
encoder as well as the side information provided. As a consequence, any molecule characterized as a
true mixture of two or more archetypes, given a specific side information such as heat capacity, might
suddenly be identified as archetypal should the side information change accordingly. In the following,
archetypal molecules with respect to heat capacity as the side information are compared to archetypes
obtained while providing the band gap energy of each molecule as the side information. In Figure
4.3.10a archetypal molecules with both the highest and the lowest heat capacities are displayed while
4.3.10b shows archetypes with highest and lowest band gap energies. The archetypes significantly
differ in their structure as well as their atomic composition. For example, archetypal molecules with
low heat capacity are rather small, with only few C and O atoms, while archetypal molecules with a
low band gap energy are characterized by ring structures containing N and H atoms. This illustrates
the essential role of side information for learning and subsequently enabling the interpretation of the
latent representation.

(a) (b)

Figure 4.3.10 – Panels (a) and (b) compare archetypal molecules identified using different
side information: Here, the labels correspond to the heat capacity (panel a) and the band gap
energy (panel b). The rows contain the three molecules of the test set closest to the given
archetype.

4.3.5 Alternative Priors For Deep Archetypal Analysis

The standard normal distribution is a common choice for the prior distribution p(t) due to its simplicity
and closed form expression for the KL divergence. However, alternative priors might influence the
inferred archetypes or prove beneficial when learning the structure of the latent space. Leaving aside
the wide range of well explored priors for vanilla VAEs, we explore a hierarchical prior that directly
corresponds to the generative model of linear AA presented in Eq. 4.5, i.e. isotropic Gaussian noise
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around a linear combination of the archetypes:

m ∼Dirk (α= 1) ∧ t ∼N (mZfixed,I) (4.16)

The estimation of the KL divergence given in Eq. 4.8 is based on Monte-Carlo sampling. In order
to qualitatively compare the standard normal prior and the sampling Dirichlet prior, we train the
respective deep AA model on the JAFFE data set with k = 4 archetypes, implying a 3-dimensional
latent space. The architecture used is similar to the previous experiments but we additionally learn
the variance of the decoder. The Lagrange parameters or weights in Eq. 4.15 are set to 1×103 for
the archetype loss and to 1×102 for the KL divergence.
Finally, Figure 4.3.11 shows examples of the inferred archetypes for the standard normal prior (panel a)
and the sampling Dirichlet prior (panel b). In conclusion, different priors do not seem to strongly affect
the inferred archetypes. However, the structure of latent spaces do differ, which can be seen when
projecting them onto the first two principal components as shown in Figure 4.3.12. As a reference, a
uniformly filled simplex would result in a triangular shaped projection. The difference seen here is
caused by large gaps in the higher-dimensional simplex when using the hierarchical prior, which we
assume is mainly due to the high variance estimation of the KL divergence.
In our experience, the choice of the prior is not of primary concern for finding meaningful archetypes,
as long as it encourages the latent space to be spread out inside the simplex, be that via a standard
normal, a uniform or – as in this case – a hierarchical prior.

(a) Archetypes learned using the standard normal
prior.

(b) Archetypes learned using the sampling Dirichlet
prior.

Figure 4.3.11 – Deep AA with k = 4 archetypes using two different priors, which both identify
similar archetypes.

4.4 Practical Considerations for using Deep AA

In the following, we provide general aspects worth considering when deciding whether the use of deep
AA might be appropriate, given a specific data set.
Linear Archetypal Analysis relies on the additivity assumption, as data points are described as a
weighted sum of the archetypes, with the weights constrained to be non-negative. This mixing
procedure is performed directly on the input data. In deep AA, on the other hand, the mixing is
performed only on the latent representation of the input data. This allows more flexibility regarding
the type of input data, e.g. text, images etc., but it also relaxes the additivity assumption, as the
encoder learns a representation on which this assumption is (approximately) valid. Nevertheless, for
the interpretation of the archetypes, convex mixing should a priori be a justifiable assumption. In
general, for data without explicit cluster structure (deep) AA poses an interesting possibility. On the
ten digits in MNIST for example, a clustering might be more appropriate while deep AA could provide
additional insight when applied on a single digit class. The goal of deep AA is to optimize for the most

60



4.5. Conclusion

(a) JAFFE latent space with standard normal prior. (b) JAFFE latent space with sampling Dirichlet prior.

Figure 4.3.12 – Latent spaces for the two different priors projected onto the first two principal
components. The explained variances are: (a) 0.74 and (b) 0.757.

compact latent code such that interpretability of the archetypes – on a qualitative level – remains
possible. Having too many archetypes would likely obfuscate the meaning of an individual archetype.
Furthermore, as deep AA relies on the latent simplex as a geometrical structure, Euclidean distances
need to be meaningful with respect to the dimensionality of the latent space, generally encouraging
low dimensionality. But this is of course true for all flavors of AA. In practice, inspecting the local data
density in the neighborhood of the inferred archetypes in latent space is an important post-processing
step. If an archetype appears to have no latent samples close to it, it might be considered an outlier.

4.5 Conclusion

In this chapter, we introduced an extension of linear Archetypal Analysis, a technique for exploratory
data analysis and interpretable machine learning. By performing Archetypal Analysis in the latent
space of a deep information bottleneck, we have demonstrated that the learned representation can be
structured in a way that allows it to be characterized by its most extremal or archetypal representatives.
As a result, each observation in the data set can be described as a convex mixture of these extremes.
Endowed with such a structure, a latent space can be explored by varying the mixture coefficients
with respect to the archetypes, instead of exploring the space by uniform sampling. Furthermore,
we have demonstrated the need for including side information into the process of learning latent
archetypal representations. Extremeness can only be understood with respect to a given property.
Therefore, providing such a property through side information is essential in order to learn interpretable
latent archetypes. In contrast to the original archetype model, our method offers three advantages:
First, our model learns representations in a data-driven fashion, thereby reducing the need for expert
knowledge. Second, our model can learn appropriate transformations to obtain meaningful archetypes,
even if non-linear relations between features exist. Third, the incorporation of side information.
The application of this new method is demonstrated on a sentiment analysis task, where emotion
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archetypes are identified based on female facial expressions, for which multi-rater based emotion scores
are available as side information. A second application illustrates the exploration of the chemical
space of small organic molecules and demonstrated how crucial side information is for interpreting the
geometric configuration of these molecules.
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Figure 4.5.1 – JAFFE archetypes and latent distribution trained on 20 distinct bootstrap data
sets.
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Figure 4.5.2 – JAFFE archetypes and latent distribution trained on 20 distinct bootstrap data
sets.
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5 Applications in Neurophysiology

Neurophysiology is a subfield of neuroscience whose subject is the study of functional aspects of the
nervous system (as opposed to structural aspects). EEGs are recordings of large-scale electric signals
from the nervous system, and as such belong to the branch of electrophysiology. In this chapter,
we introduce two applications; the first illustrates the potential of clinical EEG for the prognosis of
cognitive decline in Parkinson’s disease, the second shows how Deep Archetypal Analysis can provides
insights into functional changes associated with the progression of Parkinson’s disease.

5.1 Preprocessing of EEG data

A standard clinical EEG is obtained by placing electrodes onto the scalp of the patient and with
sampling rates of usually > 250Hz the recorded signal is amplified and stored digitally. Although the
goal of EEG is to accurately capture the neural activity of the subject, the recorded signal is inevitably
contaminated by a range of bioelectrical and external signals not originating in the brain. The

Figure 5.1.1 – A standard pre–processing pipeline for EEG recordings.

contamination of the signal of interest is caused by eye movement, cardiac activity, muscular activity,
e.g. involuntary body movements, respiration and transpiration. In addition, external contaminants
like power line noise, switching noise and other electronic devices are potentially captured during
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the recording of the EEG. As the cortical electric activity recorded on the scalp resides in a range
between < 1Hz – 45Hz, which overlaps with the frequency range of many of the contaminating sources,
it is impossible to unambigousley differentiate signals of cortical origin from non–cortical signals.
Nevertheless, a clean EEG, i.e. an EEG associated with a high degree of certainty of containing
mostly signals of cortical origin, is of tremendous importance for downstream analyses. The EEG
pre–processing pipeline shown in figure 5.1.1 is designed to suppress non-cortical signals and to output
cleaned EEG recordings. In the following, important aspects of this pipeline are highlighted.

5.1.1 Filtering

Filtering is often the first step in any EEG pre–processing pipeline as it allows for improved visual
inspection before continuing further processing of the signal. EEG recorded on the scalp reliably
records neural activity up to the γ-band, i. e. up to 45Hz, and possibly beyond. Filtering is performed
offline, using a finite impulse response filter (FIR filter). A high–pass and a low–pass were combined
in order to obtain a pass-band filter. Figure 5.1.2 shows a raw EEG recording sampled at 19 different

Figure 5.1.2 – Segment of a raw EEG sampled at standard 10–20 electrode locations with a
sampling frequency of 250Hz. The last channel shows the patient’s heart beat. Comparing
the amplitude of neural and cardiac activity, one can see that brain activity signals have on
average much lower amplitudes.

scalp locations covering the scalp with an average inter-electrode distance of ≈ 7cm.
For a signal decomposed into its various sine and cosine components of different frequencies, filtering
is the process by which each of these components get attenuated differently, depending on their
frequency. Frequencies within the user-defined passband would – ideally – pass the filter unchanged
while frequencies falling into the range of the stopband would be completely attenuated. At the
cut-off frequency, the demarcation between passband and stopband, this would imply an infinitely
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sharp fall-off of gain together with a perfectly flat amplitude characteristic in both the passband and
the stopband. Unfortunately, these ideal filter characteristics can only be approximated, trading-off
several properties like the steepness of the change of attenuation in the transition band, amplitude
of the ripples in passband and stopband, and others. Figure 5.1.3 shows the frequency response

Figure 5.1.3 – Frequency response of the FIR filter used in the pre-processing pipeline. With
a narrow transitionband, close-to-unit gain over the passband and strong attenuation in
the stopband, ideal filter characteristics are well approximated. The inlays show the small
frequency-dependent ripples around the transistionband.

of the FIR filter used for band pass filtering the raw EEG in figure 5.1.2 between 0.5Hz and 70Hz.
The characteristics of an ideal filter are well approximated for the given task as the filter shows
almost constant unit gain over the passband, with a quick fall-off, i. e. a narrow transistionband,
while strongly attenuating the signal within the stopband. However, looking at the inlays, which
show a zoomed-in view of the transition zone between pass- and transistionband (upper inlay) and
between the transistionband and the stopband (lower inlay), small ripples (filter ringing) are clearly
visible. Close to the transistionband the deviations from the ideal filter characteristics are maximal.
Nevertheless, the frequency-dependent gain associated with these ripples is only around one-tenth of a
percent, which is more than acceptable for use in the EEG pre-processing pipepline. The trade-off for
FIR filter designs with low ripple effects and narrow transistionband is a large filter delay: Any signal
filtered with a FIR filter experiences a constant shifting of its phase, independent of frequency. The
closer ideal filter characteristics are approximated, the larger the delay will be. But for the subsequent
analyses presented here, a large delay is of no consequence as the typical length of resting state EEG
recordings is of several minutes and, in contrast to evoked potentials, there are no stimuli relative to
which a neural response time would need to be measured.
Figure 5.1.4 shows the filtered EEG after applying the FIR filter of figure 5.1.3 to the raw EEG shown
in figure 5.1.2. Generally, the advantage of FIR filters are (i) the constant delay over all frequencies
such that the signal shape is not influenced by the phase shifts and (ii) their stability, as FIR filters are
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non-recursive filters (in contrast to infinite impulse response (IIR) filters). But if large filter delays are
problematic or computationally efficient filtering, e. g. for real-time applications, is necessary, then
FIR filters are not recommended.

Figure 5.1.4 – Filtered EEG between 0.5Hz and 70Hz based on the FIR filter design shown in
figure 5.1.3. The ECG signal has been rescaled for better visibility.

5.1.2 Channel selection

EEG can be sampled at different spatial resolutions depending on the number of electrodes available.
While a dense spatial sampling of the scalp is of importance especially for source reconstruction, it
generally allows for a better approximation of a reference electrode with a constant potential. This
is of great importance as electric potentials are always measured with respect to a reference which
has to be constant over time for EEG measurements to be reliable. Using the mean of all recording
channels at each time point, the quality in approximating an inactive reference increases with spatial
coverage, as the electrical potentials, integrated over the entire surface of the body, are constant.
Similarly, it is assumed that the potentials, integrated over the surface of the scalp, fluctuate less with
increasing spatial coverage.
Selecting an appropriate subset of electrodes for further analysis usually depends on the downstream
task. Figure 5.1.5 shows common subsets of electrodes based on high-density EEG with 257 electrodes.
The 10–20 system, a subset of electrodes commonly used in the clinical setting, is shown in panel
5.1.5c. Although high density EEG was used in the subsequent applications, the preprocessing pipeline
is described based on the 19 electrodes of the 10–20 system which makes the figures less convoluted.
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(a) 257 electrodes (b) 202 electrodes (c) 19 electrodes (10–20 system)

Figure 5.1.5 – Spatial sampling of the scalp with 257 electrodes implies an average inter-
electrode distance of 2cm. Depending on recording quality, electrodes placed on the neck, ears
and cheeks are sometimes excluded as they might show a higher portion of spurious signals,
leaving up to 213 electrodes, when including the mid-line electrodes. In clinical settings, a
subset of 19 electrodes is commonly used, known as the 10–20 standard.

5.1.3 Line noise removal & bad channel rejection

EEG recorded with a device connected to the electric power grid is usually contaminated by power-line
noise of 50Hz or 60Hz. Using a band-stop filter with a very narrow bandwidth, i. e. a high quality
factor, the narrow frequency band of the line noise can be suppressed while leaving the remaining
spectrum approximately unchanged. This special type of filter is known as a “notch filter”. Figure
5.1.6a shows the typical magnitude response of such a filter. After applying the 50Hz notch filter
to the EEG shown in figure 5.1.4 its spectrum is re-calculated and both spectra – before and after
notch-filtering – are compared in figure 5.1.6b. The high q-factor ensures a narrow bandwidth which
leads to distortions of the notch-filtered EEG only within a narrow band around 50Hz.
During EEG recording, it is also possible for electrodes to lose contact with the scalp due to head
movement or improper attachment. Also faulty contacts in the cables connecting the electrodes
to the recording device might go undetected. Especially in high-density settings with hundreds of
electrodes, it is important to detect and remove these “bad” channels. Based on a range of easily
computed features, such as the mean of the channel’s correlation coefficients with other channels, the
variance of the channel and the Hurst exponent of the channel, the quality of the individual channels
is assessed. It has become standard to reject channels with a Z-score> 3 with respect to any of the
aforementioned features [Nolan et al., 2010].

5.1.4 Independent Component Analysis

Electrical potential differences recorded on different electrodes positioned at different scalp locations
are the result of a mixing of underlying components of activity – not all of them originating in the
cortex. Common sources of electric activity beside neural generators, are eye blinks and eye movements,
muscle activity, breathing, cardiac rhythm, defective electrodes and defective cables, electric line noise
and unspecified external wireless signals. As only signals of cortical origin are of interest for further
analysis, we would like to identify the original components of brain activity while only being able to
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(a) Magnitude response (q-factor=50) (b) Influence of the notch filter on the spectrum

Figure 5.1.6 – A narrow bandwidth notch filter is used to remove power-line noise of 50Hz.
Signal distortions are kept at a minimum as can be seen by comparing the spectra before and
after notch filtering.

observe a mixture of the above components. In mathematical notation, assuming linear mixing in
accordance with the – also linear – Maxwell’s equations [Maxwell, 1865], the problem, referred to as
independent component analysis or ICA, is described as follows:

x = As =
n∑

i=1
ai si (5.1)

with the column vector x denoting the scalp EEG recording, whose elements are the mixtures x1, . . . , xn ,
and s containing the sources s1, . . . , sn . The matrix A ∈ Rn×n , with elements ai j , is the so–called
mixing matrix. Furthermore, we have assumed that we recorded n linear mixtures of n independent
components.
The problem is to estimate both A and s under as general assumptions as possible. The assumption
of ICA is that the components si are statistically independent. With an estimate of A obtained, its
inverse W can be computed, from which the estimate of the underlying sources s follows:

s = Wx (5.2)

As such, ICA is one method for performing blind source separation (BSS). One ambiguity of ICA
refers to the variances of the estimated sources which cannot be determined. With s and A both
being unknown, a multiplier c ∈R could always be canceled by dividing the corresponding column ai

of A by c. Another ambiguity concerns the order of independent components or sources, which is
impossible to determine. The reason for this is, that the order of the terms in the sum in 5.1 can
be changed freely as both A and s are unknown. Finally, there is also ambiguity with respect to the
sign of an independent component – multiplying any independent component by −1 (phase reversal)
would not affect the model in 5.1.
Figure 5.1.7 shows the corresponding segment of estimated sources for the bandpass-filtered EEG
shown in figure 5.1.4. ICA was performed based on the InfomaxICA proposed in [Bell and Sejnowski,
1995]. The estimated mixing matrix A for this EEG is shown in figure 5.1.8a while the topographical
distributions of the individual independent components, projected into electrode space, are shown
in figure 5.1.8b. These activation maps, through visual inspection, allow to attribute the activity

70



5.1. Preprocessing of EEG data

Figure 5.1.7 – Decomposition of an EEG recording into independent componenets using
InfomaxICA. The segment of source time series shown here, is a decomposition of the EEG
segment (in electrode space) shown in figure 5.1.4.

(a) Mixing matrix for the EEG in figure 5.1.4 (b) Topography associated with individual sources

Figure 5.1.8 – A visual inspection of activation maps reveals the likely origin of the electric
activity of a given source. Removing sources of non-cortical origin and reconstructing the
EEG signal in electrode space will yield a signal less affected by artifacts.

of individual sources to a likely point of origin. The topography shown in figure 5.1.8b associated
with independent component “ICA001” is, for example, a typical pattern produced by eye movement.
As such, removing the source time series “ICA001” and reconstructing the sensor space EEG signal
would yield an EEG (almost) free of eye movement artefacts. After setting to zero the source si=1 = 0,
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Figure 5.1.9 – After setting to zero the activity of non-cortical sources si of EEG in equation
5.1, a reconstruction of the signal in electrode space can be overlaid with the original signal in
order to evaluate the effect of discarding certain sources.

which corresponds to component “ICA001”, and additionally the sources si=15 = 0 and si=17 = 0, which
are likely related to eye blinks, muscular activity or impedance, the signal in electrode space can be
reconstructed. Figure 5.1.9 shows the original signal, with the corrected signal overlaid. The most
prominent differences after removing eye movement and eye blink related sources and reconstructing
the electrode time series, are visible on the frontal electrodes “FP1” and “FP2”. This is exactly where
one would expect eye activity related corrections to show the greatest impact.

5.1.5 Channel interpolation

One possibility to deal with channels identified as bad, according to section 5.1.3, is to replace them
with the time course estimated based on the activity and locations of other electrodes. Commonly,
such interpolation methods use weighted distance metrics such as nearest-neighbor, linear, or spline.
Of course an interpolation cannot provide new information, but often interpolation is preferred over
simply discarding bad channels as it makes subsequent processing more manageable. If, for example,
averaging across subjects is performed as a downstream task, it is usually easier to deal with subjects
when they all have an identical number of channels. Furthermore, some methods might provide more
robust results if interpolated channels are provided, e. g. spatial filters such as the surface Laplacian
or source reconstruction. Especially in high density settings with up to 300 electrodes, bad channels
will occur regularly, making dealing with this problem quite common. The disadvantage, of course, is
that interpolation reduces the rank of the data matrix which needs to be accounted for, e. g. when
calculating the inverse of such a matrix [Cohen, 2014].
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5.1.6 Re-referencing

Re-referencing refers to the process of changing the reference offline after recording. Physically, voltage
describes a potential difference, i. e. a voltage signal always refers to some set reference to which
that difference is measured. In EEG, this reference is often an electrode with central location (e. g.
FCz or Cz) or electrodes attached to the earlobes or mastoids. Generally, a reference electrode should
be as little as possible influenced by brain activity. But other considerations may play a role as the
choice of reference might amplify or reduce signals recorded at specific regions of the scalp, e. g. the
mastoid reference tends to amplify fronto–central components. The analysis described in the following
sections is based on EEG recordings that have all been re-referenced to a common average montage
using the average of all “cleaned” electrodes.

5.2 Predicting cognitive decline in Parkinson’s disease

Parkinson’s disease (PD) is a progressive neurodegenerative disorder which currently requires motor
signs for diagnosis, but shows more widespread pathological alterations from its beginning. Compared
to age-matched individuals without PD, patients have up to a six-fold increased lifetime risk of
developing dementia. Although a milestone study with 20 years follow-up of initially 136 newly
diagnosed patients [Hely et al., 2008] has shown that dementia was present in 83% of 20-year survivors,
onset of dementia varies considerably. According to Buter et al. [2008], the 4-year prevalence of
dementia was 52% while the 12-year prevalence was around 60% based on 233 patients with PD.
This combination of high risk of dementia together with the varied range of individual decline onset
makes the search for reliable prognostic biomarkers for assessing future cognitive deterioration in
early stages of PD an important one – both for individualized counseling and treatment but also
for study stratification when evaluating efficacy of pharmacological intervention. Because measures
based on electroencephalography (EEG) are safe, inexpensive, and widely available, they are attractive
candidate biomarkers.

5.2.1 Spectral EEG Biomarkers

Biomarkers derived from the spectral properties of EEG signals have a long standing history [Coben
et al., 1983] . With the advent of affordable compute power and the publication of the Fast Fourier
Transform (FFT), an efficient algorithm to compute the Discrete Fourier Transform [Cooley and Tukey,
1965], the “reformatting” of EEG data into its spectral components has lead to the identification of
many candidate diagnostic, predictive, prognostic, and therapeutic biomarkers for various neurological
disorders. The success of FFT in the analysis of quantitative EEG (qEEG) is due to the fact that
many pathological EEG patterns translate into pathological spectral patterns which can be easily
recognized [Matthies and Brödemann, 1981]. Because the frequency spectrum of EEG data shows
decreasing power at increasing frequencies, i. e. power ∼ 1/ f , it has become standard to analyze
spectral properties of EEG within five pre-defined frequency bands ranging roughly from 1−45Hz.
Higher frequencies up to 500Hz, so called “High Frequency Oscillations” (HFO), which have shown
to contain important neurological information, are blocked by the skull which acts as a low-pass
filter. HFO’s are of great interest e. g. when localizing the generators of epileptic seizures [Gotman,
2010]. In such cases, intra-cranial electrodes are used which are placed directly onto the cortex or,
in form of needles, inserted deep into the brain. For non-invasive scalp EEG, the frequency bands
of interest are given in table 5.1. As an example, figure 5.2.1 shows the spatial distribution of EEG
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(a) Band power normalized within each band

(b) Band power normalized to the δ-band which exhibits maximum power

Figure 5.2.1 – Intensity, spatial and temporal distribution of EEG power within the five
pre-defined bands may serve as the basis for deriving spectral biomarkers. With EEG power
distribution following a “1/ f ” shape, details in higher band, e. g. the γ-band, are visible
only with appropriate normalization. (Red: high power, Blue: low power; segment length: 3
seconds)

power for the five standard bands. The power distribution was obtained based on a randomly selected
3-second EEG segment. The time scale at which changes in power occur is of the order of several
milliseconds. Compared to fMRI, this is around three orders of magnitude faster. Most EEG based
spectral biomarkers are based on group differences with respect to EEG power within specific brain
regions and frequency bands [Cozac et al., 2016]. Temporal dynamic of EEG power, often requiring
more sophisticated statistical models, is less common to be used in the development of spectral
biomarkers. A well known model for EEG analysis which explicitly incorporates temporal dynamic is
“Microstate analysis” [Lehmann et al., 1987, Lehmann, 1971]. But traditionally, temporal aspects of
EEG remain under-explored.

5.2.2 Complexity based EEG Biomarkers

Beside spectral properties, the complexity of EEG signals provides another avenue in search of candidate
biomarkers for various neurological conditions. The motivation is that time series, in general, can
exhibit different levels of complexity while presenting (nearly) identical frequency distributions. The
hope is that complexity based features might offer a second, non-redundant perspective onto EEG
signals. While no single algorithmic quantification of EEG signal complexity has emerged as superior,
various examples can be found where, based on different quantification schemes, complexity measures
have shown great success. In [Zhang et al., 2001], the Lempel–Ziv compression algorithm [Lempel and
Ziv, 1976] is used to measure the depth of anesthesia for patients undergoing vascular surgery. The
analysis is based on a coarse-graining procedure of EEG signals, transforming them into a sequence
of only a few distinct symbols. Subsequently, Lempel–Ziv complexity is quantified by counting the
distinct patterns contained in a given sequence. In Alzheimer’s disease (AD), signal complexity has
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Designation Frequency range Amplitude

δ-band 1−4Hz > 100µV

θ-band 4−8Hz > 100µV

α-band 8−13Hz > 50µV

β-band 13−30Hz > 30µV

γ-band 30−45Hz very low amplitude

Table 5.1 – EEG signals are classified according to the frequency band in which they reside.
Historically, five pre-defined bands have emerged which form the bases of various biomarker
studies [Jatoi and Kamel, 2017].

successfully been used to distinguish a group of early stage AD patients from a healthy control group
[Houmani et al., 2015]. The complexity measure introduced and applied in this study was named
“Epoch-based Entropy” and reached a cross-validated classification accuracy of 83%. More recent
research is focused on combining genetic risk markers for AD with the estimated complexity of EEG
based brain connectivity [Vecchio et al., 2018]. In Parkinson’s disease (PD), where progression toward
dementia is on average slower compared to AD, EEG based diagnostic and prognostic biomarkers have
been less successful in terms of overall accuracy. Because of the generally more diverse manifestations
of PD compared to AD and the additional layer of difficulty that comes with that, it is not uncommon
to find computational methods that were successful in AD research also being evaluated for their
benefits in PD. A promising method for early diagnosis of AD has been proposed in [Sneddon et al.,
2005], where a group of 48 subjects (32 normal aging and 16 AD related disorder) has been classified
with an accuracy of 92%. The complexity measure used in this study is derived from Tsallis entropy
Tsallis [1988] and based on the ratio of local versus global variance estimates of the EEG time series.
Based on these results, we investigated whether this complexity measure has any benefit for predicting
cognitive decline in a group of PD patients.

Estimating Tsallis entropy of EEG signals

The q-entropy, also known as the Tsallis entropy (TE), was proposed by Tsallis [1988] and takes the
following form:

Sq (pi ) = 1−∑W
i=1 pq

i

q −1
(5.3)

The occurrence of event i is associated with the probability of occurrence pi . Due to the parameter
q ∈R, TE is a so-called parametric entropy where different values of q will result in different weighting
schemes of the probabilities pi . For q → 1 the well-known Shannon entropy is recovered. The total
number of possible events is given by W ∈N.
In this work, we focus on the TE for q = 2, which is approximated using an algorithmic procedure
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proposed in [Sneddon, 2007]:

TEq=2 = 1−
1
N

∑
s2

i

σ2 (5.4)

s2
i = 1

n

n∑
j=1

(x j −µi )2 (5.5)

with N : Number of bins; s2
i : variance within the i -th bin; µ2

i : mean of the i -th bin; σ2: variance of
entire signal.
TE is estimated by calculating the average variance within all bins s2

i (fast changes of the EEG signal)
divided by the variance of the entire signal (slow changes of the EEG signal). The estimation procedure
is as follows. For each electrode, the recorded time series is binned at local extrema, as shown in panel
A of figure 5.2.2. These bins are usually different in size and contain different amounts of sample
points. For example, bin 3 is wider than bin 11 and contains slightly more sample points. Then, for
each bin, the within-variance s2

i is calculated according to equation 5.5, where x j denotes a single
sample point and µi is the mean of all sample points within that given bin. The total number of
sample points within each bin is given as n. This operation is repeated for all N bins. The other
quantity needed to estimate the entropy TEq=2 is, according to equation 5.5, the variance of the
entire signal. This calculation is independent of the binning procedure.
Panel B of figure 5.2.2 shows the within-variance for each of the 12 bins. The bins are color-coded
from blue to yellow for low to high within-variance, and we assigned a variance of 100% to bin 12 as
it displays the highest variance of all 12 bins. In doing so, we then can give a percentage to quantify
the amount of variance in each bin relative to the variance of bin 12. For example, when comparing
bin 11 and bin 12, one can see that doubling the variance (bin 11: 48%, bin 12: 100%) does not
imply the signal in bin 11 to have half the height of the signal in bin 12 (see panel A).
Panels D and F of figure 5.2.2 show two histograms based on the same electrode location, but
measured on two different subjects. For a given signal, the variance σ of the entire time series is the
width of this distribution. With the sum of the within-variance and the variance of the entire signal,
an estimate of the TE for q = 2 can be computed according to equation 5.5. In panels C and D, the
within-variation of two EEG signals with a total duration of 15 minutes is displayed. The histograms
in panels D and F are based on the same signals. Both panels C and F were obtained in exactly the
same fashion as panel B. The only difference is the much higher number of bins such that single bins
is not visually distinguishable anymore.
At that point, this visual depiction of the variances within the different bins already qualitatively shows
that there is a marked difference between both EEG recordings, especially since panel C is based on
a recording from a patient suffering from PD, while panel E shows a recording based on a subject
of the control group. The total variation as well as the within-variation are indicated in both panels
C and E. TE can then easily be calculated, e. g. for panel C the entropy content of the signal is
1−1.231/1.331 = 0.075. A similar calculation reveals that the entropy content for the signal in panel E
is nearly twice as high.
In general, as entropies can take on only positive values, the quotient in equation 5.5 must never
be larger than 1 to ensure positivity of the estimated entropy. This in turn implies the sum of the
within-variance to be always smaller than the variance of the entire signal. From a purely mathematical
perspective, it is possible to create signals that in fact would produce negative entropy estimates
based on the estimator in equation 5.5. Such an occurrence is even likely if the estimator is applied
directly to a raw EEG signal, usually containing a multitude of artifacts, especially if these come in
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the form of severe signal distortions introduced by bad electrode contact with the scalp. However, an
EEG signal pre-processed as described in section 5.1 has, in our experience, never produced a negative
entropy estimate, which makes this estimator robust enough to be used in practice. Assuming an EEG
signal mostly free of artifacts, the variance of the entire signal will always be larger than the mean
variance over all bins. As a consequence, the quotient in equation 5.5 will always be a real positive
number in the interval (0,1), which in turn will restrict possible TEq=2 estimates to real positive values
between 0 and 1.

Figure 5.2.2 – (A) An EEG signal is binned at its extreme values. (B) For each of the twelve
bins, the percentage in variance is indicated with respect to bin 12 exhibiting the highest
variance, i.e. 100%. (C, E) For 15 minutes of EEG, the signal recorded at a single electrode
was binned, and for each bin the variance was calculated. The result is displayed in the same
manner as in panel (B). The signal in panel (C) exhibits a lower entropy than the signal in
panel (E). (D, F) The histogram over all measured voltages for the signal in panel (C) shows
a higher variance than the signal of panel (E). The signal in (C, D) is based on a patient from
the PD group, while the signal in (E, F) was recorded on a patient from the healthy control
(HC) group.

Tsallis entropy and relative band power provide non-redundant information

In the following analysis we demonstrate that the same neurological effect (Berger effect), captured
using (i) relative band power and (ii) signal complexity quantified by TEq=2, provides two distinct
perspectives. This is our first “piece of evidence” that analysis of EEG signal complexity might offer
insights not contained within the spectral characteristics of EEG signals. EEG spectral band power
reflects the number of neurons that discharge synchronously and is by far the most validated feature in
quantitative EEG [Buzsáki and Draguhn, 2004, Klimesch, 1999]. Based on the Berger effect [Berger,
1929], which describes a significant decrease in power of α-band oscillations when cognitively normal
subjects open their eyes, it can be shown that TEq=2 contains non-redundant information compared
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to relative band power (rBP). For 24 healthy subjects, TEq=2 as well as relative band power were
calculated in both “eyes closed” (EC) as well as “eyes open” (EO) condition for each of the 213
electrodes in the δ, θ, α, β and γ-band. Subsequently, the 213 TEq=2 and rBP values were grouped
into 10 non-overlapping regions (frontal, temporal, parietal, central and occipital, each left and right).
For each subject, the average within each region was calculated separately for the EC and the EO
condition. Then the differences were computed between the region-wise averages of both conditions,
i.e. EO minus EC. For each region, the mean response of the cohort, when transitioning from the EC
into the EO condition, is obtained by averaging over the individual mean TEq=2, respectively rBP
values. Quantitatively, it is then observed that the magnitude of change relative to the EC condition
is completely different for TEq=2 and rBP (p < 1e −60). Most notably, while the rBP of the θ-band is
unaffected by the transition from the EC into the EO condition, TEq=2 of that same band increases
considerably, especially in the frontal region. On the other hand, rBP of the α-band strongly decreases
during EO compared to EC condition, but TEq=2 increases. In summary, these observations show that
TEq=2, in the frequency range from 1−13Hz, is generally higher in EO condition, while for rBP the
same does not hold true. A visual comparison, including all five bands, is provided in figure 5.2.3.

Figure 5.2.3 – Electrodes were grouped into 10 regions (frontal, temporal, parietal, central and
occipital, each left and right). The upper row shows the change in TE of the EO condition
relative to the EC condition for the δ, θ, α, β and γ-bands (left to right). Blue (red) stands
for a lower (higher) entropy level in EO condition compared to EC condition. Color intensity
corresponds to the magnitude of change in TEq=2 relative to the EC condition. The lower
row shows the change in relative band power in the identical setting as for TEq=2 band.
All changes displayed are mean values taken over the 10 individual regions and based on
24 healthy subjects. Significance values indicate that for each band a significantly different
effect or reaction of the cortex is captured, depending on whether relative band power or
TEq=2 is observed. In conclusion, band power and Tsallis entropy capture different aspects of
electro-physiological change and are therefore non-redundant. A multiple testing correction
after Holm-Sidak, a step-down method, has been applied. Significance was tested using the
Mann-Whitney U-test, a non-parametric rank test.

78



5.3. Spectral differences between patients with PD and healthy controls

5.3 Spectral differences between patients with PD and healthy
controls

Parkinson’s disease (PD) may begin at any point during the lifetime of an individual. For many years
its continued progression might go undetected before becoming clinically manifest [Kalia and Lang,
2016]. As a consequence, early and robust indicators of PD could potentially facilitate research into
prevention and eventually allow for an earlier intervention in the time course of the disease. While
prodromal biomarkers, i. e. markers sensitive to the disease before the onset of overt symptoms,
might be genetic, chemical, histological or imaging based, electroencephalography based markers are
of special interest: The main reasons are the non-invasive nature of routine scalp EEG and its overall
low cost compared to other methods for assessing neurophysiological function. Consequently, EEG
offers the possibility of population wide screenings as part of a routine check-up for the population at
risk once reliable markers are validated. But given the heterogeneity of PD which can be observed
in many aspects of the disease [Yilmaz et al., 2019], from pathology to clinical phenotype including
disease progression, reliable biomarkers will likely be compound markers where EEG might provide
one “piece of the puzzle”.

5.3.1 Analysis

The following example demonstrates a potential application of ultra-sparse logistic regression described
in chapter 3 to EEG. This application example is based on a cohort of 42 patients with PD and 24
healthy controls, both recruited from the Movement Disorders Clinic of University Hospital of Basel.
The control group was matched for age, sex, and education. With a median disease duration of 2.5
years the patient cohort is in an early stage of the disease relative to the time point where symptoms,
i. e. mostly motor signs, become apparent allowing for a clinical diagnosis. EEG data was recorded
during eyes closed condition. After preprocessing the raw EEG data using the preprocessing pipeline
described in section 5.1, relative band power was calculated for the δ-, θ-, α-, β-, and γ-band. For each
band, the relative power was calculated separately for 10 regions of interest, i. e. frontal, temporal,
central, parietal and occipital on each hemisphere, resulting in a total of 50 relative band power values
in the range between 0 and 1. The total data set is thus comprised of n = 66 samples and p = 50

features. Spectral power was used to quantify information content of EEG due to its long standing
tradition in electrophysiology [Chaturvedi et al., 2017], allowing for a qualitative validation of the
result of the sparse logistic regression. By regulating the level of sparsity based on the log-norm, the
number of active predictors can gradually be reduced while trading-off (some) classification accuracy.
Given previous research, it is expected that not all frequency bands and scalp regions are equally
important in order to differentiate healthy controls from PD patients. Consequently, it is expected that
a small subset of the 50 derived relative band power features will suffice to perform this discrimination
task compared to a logistic regression based on the full set of available predictors. Based on 100
random training and test set splits with a ratio of 80/20, a `2 logistic regression and two sparse logistic
regressions with γ= 0.0001 and γ= 2.5 are performed. In each case, based on 5-fold cross-validation,
the best model is selected. For these 3 classifiers, trained on 100 random training sets, figure 5.3.1
shows boxplots over the coefficient sizes or weights associated with each of the 50 predictors.
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5.3.2 Discussion

The non-sparsity inducing `2-regularized logistic regression selects all predictors, as shown in the top
row of figure 5.3.1. While this classifier provides an average test set accuracy of ≈ 70%, is shows a
median coefficient size of zero for all predictors, making the identification of bands and regions of
interest impossible. Nevertheless, it can be seen that the left hemispheric predictors of the θ-band
show an increased negative first quartile, pointing at the possible importance of the 4−8Hz band.
The middle row shows the coefficient sizes based on sparse logistic regression with γ= 0.0001, which
essentially is the `1-lasso penalty. This classifier reaches an average test set accuracy of ≈ 67%

revealing 8 potentially important predictors, three of which have a non-zero median over the 100
randomly split training set. Finally, the bottom row shows an even sparser logistic regression with
γ= 2.5 which reveals two predictors with non-zero median, i. e. θ-power of the central left and β-power
of the parietal left region: In these regions, healthy individuals tend to have lower θ-activity while
having an increased β (13−30Hz) activity compared to PD patients. The average test set accuracy
for this sparsest version of logistic regression has decreased to ≈ 63% while providing potentially
improved possibilities of interpretation. Generally, research has shown that the classification accuracy
of PD vs healthy controls based on band power might be limited. In [Chaturvedi et al., 2017], the
authors shows that logistic regression based accuracies of up to median AUC= 76% are achievable
by additionally including the ratio of the α1- and θ-band (α1 : 8−10Hz). Their analysis is based
on a data set containing NHC = 41 healthy controls and NPD = 50 patients suffering from PD. This
highlights the aforementioned need for additional information complementing EEG in order to obtain
clinically relevant diagnostic biomarkers for PD.
While increased sparsity (γ= 2.5) has led to a loss of classification accuracy, it provided an important
regional difference between healthy controls and PD patients: Central and parietal regions on the left
hemisphere. This sparse result might not only be interesting for formulating further hypotheses but
might also hold practical implications. A relatively new method in the domain of EEG potentially
enabling a slowing of the disease progression is Neurofeedback. Neurofeedback uses online estimations
of spectral power in order to provide a feedback to the patient suffering from PD, with the goal to
actively learn to shift the power spectrum from lower to higher frequencies. With daily training, it is
hoped that patients learn to produce spectral characteristics of a healthy brain, thereby counteracting
the degenerative process associated with PD. But as home use neurofeedback devices only have a
very limited number of electrodes they cannot cover the whole scalp. It is therefor of importance to
know the optimal electrode posistions, i. e. the region, based on which feedback signals should be
generated in order to increase treatment outcome.
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Figure 5.3.1 – Based on 100 random training and test set splits a classification of healthy controls vs patients suffering from Parkinson’s
disease was performed. Shown here are the boxplots over coefficient sizes. The first row shows coefficients based on `2-penalized logistic
regression, the second row is a classification based on γ= 0.0001-penalized logistic regression, i. e. lasso, while the last row promotes sparsity
even stronger than lasso, with γ= 2.5. Features used here are relative band power values of the five standards bands, calculated for ten
distinct scalp regions leading to a total of 50 features.
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5.4 Cognitive decline in Parkinson’s disease is associated
with reduced complexity of EEG at baseline

In a case-control study, forty-two (42) cognitively normal individuals diagnosed with PD (median age
66.5 yrs., 18 females, median education 14 yrs.) were compared with 24 healthy control subjects
(HC) matched for age, sex, and education (median age 66.5 yrs., 9 females, median education 14
yrs.). Baseline EEG recordings were obtained while their eyes were open (EO) and closed (EC).
Tsallis entropy (TE) of the δ, θ, α, β and γ-band was evaluated. As the θ-band showed the most
pronounced differences between the PD and HC group, further analysis focused on this band. TE was
then compared across groups with 16 psychological test scores at baseline, and then with follow-ups
at 6-months and 3-years. Comparisons were repeated for relative band power (BP) as a predictor of
cognitive decline.
Compared to healthy controls, most patients with PD showed overall lower TE at baseline. Cognitive
deterioration at 3 years correlated significantly with baseline TE in EO condition (p ≤ 0.00079), while
correlation at 6 months after baseline was not significant. No significant correlation was observed
between baseline TE measured in the EC condition and cognitive deterioration over 6 months and 3
years. Additional predictors taken into consideration were age, education, sex, levodopa equivalent
dose (LED), disease duration and sleepiness of the patients. Age at baseline was significantly correlated
with 3-year cognitive decline only in case of BP but not for TE, both measured in EO condition (TE:
p ≤ 0.059; BP: p ≤ 0.016). Baseline sleepiness was not significant in predicting 3-year cognitive decline
based on either TE or BP.
In conclusion, the lower the EEG entropy levels at baseline measured in the EO condition, the higher
the probability of cognitive decline over 3 years. This makes TE a candidate for a prognostic biomarker
for dementia in PD. The ability of the cortex to execute complex functions underlies cognitive health,
while cognitive decline might clinically appear when compensatory capacity is exhausted.

5.4.1 Introduction

While Alzheimer’s disease is the most common neurodegenerative disorder, Parkinson’s disease (PD)
is the fastest growing one [Dorsey and Bloem, 2018]. According to conservative estimates based on
worldwide prevalence data from a 2014 meta-analysis [Pringsheim et al., 2014], the number of people
suffering from PD is expected to reach 14.2 million in 2040, which would effectively double the number
of cases compared to 2015. Despite being considered primarily a motor disorder, approximately 30% of
patients with PD have cognitive symptoms already at initial diagnosis, and up to 80% develop cognitive
symptoms at some point in their disease [Hely et al., 2008, Emre et al., 2007]. The prognosis for losing
independence or life currently depends much more on neuropsychiatric and cognitive deterioration
than on motor signs [Bäckström et al., 2018, Forsaa et al., 2010]. Moreover, cognition is an important
aspect of quality of life for patients as well as their caregivers [Lawson et al., 2017, 2016]. Therefore,
preservation and improvement of cognition in PD patients have recently become major goals for
therapeutic interventions and trials. Patient care and clinical trials regarding cognition currently
rely mainly on bedside assessments and psychological testing with its known difficulties, including
availability and reliability, including test-retest biases. In contrast, biomarkers are objective monitors
or predictors of the disease course and will improve making decisions for individual patients as well as
for defining optimal populations for clinical trials for cognitive decline in PD [Dodakian et al., 2013,
Cramer, 2010].
According to Stam [2014], normal cognition is characterized by electrical brain activity with an optimal
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degree diversity, order, and hierarchy. Analogously, normal consciousness is characterized by an optimal
entropy level of the EEG, while its reduction leads eventually to loss of consciousness and abnormal
increase in incoherent thinking, such as in a psychedelic state of consciousness [Carhart-Harris et al.,
2014]. Tsallis entropy (TE) of EEG, when measured during a recall task and characterized as a ratio
between frontal and parietal regions, resulted in a very high accuracy for detection and treatment
monitoring of mild cognitive impairment due to beginning Alzheimer’s disease [Sneddon, 2007, Sneddon
et al., 2005]. We therefore hypothesized a priori that TE of the EEG at baseline correlates with
cognitive deterioration over a period of 3 years. Moreover, we hypothesized a posteriori that the
decrease of entropy is a diffuse effect not attributable to a single location and that TE of the θ-band,
measured during EO condition, is significantly more informative about future cognitive performance
than the same band evaluated in EC condition. Furthermore, we hypothesized that BP as a predictor
for cognitive decline, is agnostic to the recording condition of EO versus EC.

5.4.2 Material and methods

Participant demographics

The study is based on a cohort of 42 patients with PD who were recruited from the Movement
Disorders Clinic of University Hospital of Basel from 2011 to 2016 by advertising in the magazine
of the Swiss Parkinson’s Disease Association. PD was diagnosed according to the United Kingdom
Parkinson’s Disease Brain Bank criteria [Gibb and Lees, 1988]. Neuropsychological assessment was
carried out in all individuals when they were admitted into the study (baseline), then at 6-month and
at 3-year follow-ups. Knowledge of the German language was a prerequisite for the inclusion to this
study. Patients with psychiatric or organic brain disease as well as patients with complete missing
data at years follow-up were excluded from the analysis. The complete consort schema is provided in
figure A.2.1 of the appendix.
A group of 24 healthy controls (HC) matched for age, sex, and education was recruited from the
Memory Clinic, University of Basel Center for Medicine and Aging, and from the University Hospital
of Basel. The demographic characteristics of the participants are shown in table 5.2. The studies
were approved by the local ethics committee (Ethikkommission beider Basel, ref. no: 135/11, 294/13,
260/09). All participants gave their written informed consent.
As all patients underwent comprehensive neuropsychological examinations, analyses showed that
patients who performed all tests scored significantly higher in the MMSE (Median score: 30 vs. 28;
W = 319; p ≤ 0.05), and had a lower disease duration (Median score: 2 vs. 4.5; W = 141.5; p ≤ 0.05)
than patients with incomplete data. No other differences in demographic or disease characteristics
were observed between the two groups.

Clinical neurological and neuropsychological assessments

A basic neurological examination was carried out in all individuals. All patients underwent comprehensive
neuropsychological examinations. The following cognitive domains were of interest for the present
study:

• Attention and psychomotor speed: Alertness (reaction time with and without sound) and
Divided Attention (reaction time to visual and auditive stimulus, number of omissions) of the
computerized “Test Battery of Attentional Performance” [Zimmermann and Fimm, 2007], the
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Age Edu Sex MMS UPDRS-III LED DisDur KSS

HC (24) 66.5 14 9f. 30 - - - -

1st Quartile 64 12 - 29 - - - -
3rd Quartile 68.5 17.25 - 30 - - - -

PD (42) 66.5 14 18f. 29 14.5 543 2.5 3

1st Quartile 63 12 - 28 5 305 1 2.875
3rd Quartile 72.75 16 - 30 21 1014 5 3.25

Table 5.2 – Values are presented as median values, along with values for the 25%- and
75%-quartiles. Age, education (edu), and disease duration (DisDur) are given in years. LED is
given in milligrams. MMS and UPDRS-III refer to standardized psychological tests. Sleepiness
(KSS) is rated according to the Karolinska Sleepiness Scale (1-extremely alert, 10-extremely
sleepy).

Trail Making Test Part A [Reitan, 1958]

• Executive functions and working memory: phonemic (s-words, [Thurstone and Thurstone, 1947])
and semantic fluency (animals, [Isaacs and Kennie, 1973]), TAP Working memory (number of
omissions), Digit span and Corsi Block (forward and backward) [Härting et al., 2000]

• Visuo-constructive abilities: Block Design Test [Tewes and D, 1991]

A Reliable Change Index (RCI) for each neuropsychological test was calculated for both the 6-month
and 3-year follow-up after baseline. The individual RCI values were then combined into an Overall
RCI for the 6-month and 3-year follow-up. As the RCI is a standardized measure, combining multiple
RCI values is done through simple averaging. The Overall RCI was used as the outcome variable.
The RCI for a single psychological test was calculated as the difference between the test score at
either 6-month or 3-year follow-up and the test score at baseline, divided by the standard error of the
difference [Jacobson and Truax, 1992]:

RCI= follow-up − baseline
Sdiff

(5.6)

with Sdiff =
√

2 ·SE2
M

and SEM = std(baseline) ·
p

1−RS

Here, SEM is the standard error of measurement, std(baseline) is the standard deviation of baseline
and Sdiff is the standard deviation of the errors of measurements. The reliability of measurement is
given by RS, a scalar between 0 and 1.
With approximately 5.5% of the neuropsychological data points missing, candidate values were
generated based on the multiple imputation method for both predictors and missing outcomes [Little,
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1992]. As a consequence, sample size was maintained and introducing potential biases, due to
systematically missing data, was avoided.

EEG recording and signal processing

A total of 20 minutes of EEG was recorded at wakeful rest for each patient by using a 256-channel
EEG System (Netstation 300, EGI, Inc., Eugene, OR). EEG recordings were done in the afternoons and
patients were seated comfortably in a relaxing chair, instructed to open and close their eyes at regular
intervals in the beginning, then closing their eyes for 15 minutes and opening them again towards the
end (5 minutes). A technician present in the recording room controlled for vigilance of the patients
and kept them alert. Before the EEG recording, patients were also asked to self-rate their sleepiness
level from 1 to 10 by using the Karolinska Sleepiness Scale [Åkerstedt and Gillberg, 1990, Kaida et al.,
2006, Miley et al., 2016]. All data were first separated into segments containing only recordings
in either EO or EC condition. Subsequently, these segments were processed in an automated way
by using the MATLAB based in-house software toolbox “TAPEEG” [Hatz et al., 2015], available at
https://sites.google.com/site/tapeeg. EEG were filtered (Firls: 0.5–70 Hz, 50 Hz notch) at a sampling
rate of 1000 Hz and an inverse Hanning window was used to stitch together shorter segments to have
at least 3 minutes of cleaned EEG data. The implementation of independent component analysis
(“runica”) used for pre-processing was originally part of the toolbox “EEGLAB” [Delorme and Makeig,
2004]. “TAPEEG”, which combines methods from “EEGLAB”, “FASTER” and “Fieldtrip”, was used
for the entire pre-processing of EEG. As “TAPEEG” is freely available (incl. handbook/tutorial), the
full pre-processing pipeline can easily be reproduced. “TAPEEG”, with default settings, was used in
order to detect bad channels/activations/segments. Furthermore, eye movement artifacts, traces of
sleep, eye blinking, ECG and muscle artifacts were detected and removed. The average of all “good”
channels was used to re-reference the EEG to a common average montage. Electrodes placed on
the neck, ears, cheeks were excluded to remove spurious signals, and 213 electrodes were mapped to
ten regions of interest: frontal left/right, central left/right, parietal left/right, temporal left/right,
and occipital left/right. For analysis, a total of 3 minutes of EEG in EC as well as EO condition was
available per patient. In 3 of 66 cases, less than 180 seconds, but more than 170 seconds of EEG data
were available, which did not affect TE estimates. The 66 artifact free segments were then filtered
into the following five bands: 1-4Hz (δ-band), 4-8Hz (θ-band), 8-13Hz (α-band), 13-30Hz (β-band)
and 30-45Hz (γ-band). For filtering, a zero-phase band pass FIR filter with Hann window was used.

Statistical Analysis

Calculation of TE was performed as described in [Sneddon, 2007]. The algorithm was implemented in
the Python (v3.5). R statistical software was used for analysis. For missing entries in test psychological
data, the multiple imputation method implemented in the “MICE” R-package [Buuren and Groothuis-
Oudshoorn, 2010] was used to generate a total of 20 imputed data sets. Imputation of missing
psychological test values are based on all available tests from baseline, 6-month and 3-year follow-ups.
Linear regression analyses were performed on each imputed data set and pooled, again using the
aforementioned R-package. Given the relatively small number of patients available, the number of
potential confounders was reduced by adopting a strategy proposed in (van Buuren, 2018), consisting
of a stepwise forward selection, performed on each imputed data set, in order to identify significant
confounders. This was followed by a majority vote over all 20 data sets in order to identify significant
confounders which appeared consistently, i.e. in the majority of imputed data sets. Finally, only
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confounders which appeared consistently were considered in the subsequent data analysis. Based on
the “relaimpo” R-package [Grömping et al., 2006], the relative importance of TE and BP as predictors
as well as the importance of the confounders was assessed. Alpha, the probability of a Type I error,
was 0.05. In case of multiple testing the significance threshold was adjusted according to Holm-Sidak.
Two-tailed hypothesis tests were considered throughout. If the requirements for the Welch t -test were
not fulfilled, the non-parametric Mann-Whitney U-test was used. For the extreme groups, significances
were not calculated. Following [Preacher et al., 2005], excluding already available data from the
analysis by applying an artificial threshold, would have resulted in inflated p-values.

5.4.3 Results

TE characterized the PD and HC group in the θ-band

With 42 PD patients, each patient’s EEG recorded with 213 electrodes, a total of 8,946 distinct
entropy values were computed for each given band and condition. For the HC group with 24 subjects,
a total of 5,112 entropy values were obtained per band and condition. For both groups, histograms
were plotted. To account for imbalance regarding group size, histograms were normalized to allow for
better visual. The TE histograms for each band and condition are shown in figure 5.4.1. The θ-band
in “eyes open” condition shows a significant difference between healthy controls and the patient group
(p ≤ 0.006). Moreover, this band displayed the least overlap between the patient and the control
group, with the EO condition showing a slightly larger separation than the EC condition. Based on this
assessment, and assuming that the same pathological process underlies general Parkinsonian pathology
as well as Parkinsonian cognitive decline, further investigations were focused on the θ-band. What
motivated the current research is the question of whether or not the difference in signal complexity of
EEG between the PD and HC group, quantified with TE, contains information about future cognitive
decline.

Figure 5.4.1 – Normalized Tsallis entropy histograms for the PD and the HC groups. Panels
A-E show the histograms for the δ, θ, α, β and γ-band (left to right) in EC condition,
while panels F-J show the histograms in the EO condition for the same bands. Given are
the uncorrected p-values, based on the non-parametric Mann-Whitney U-test. Significance
threshold is corrected after Holm-Sidak, a step-down method. The θ-band in “eyes open”
condition shows a significant difference between healthy controls and the patient group and
generally, this band displays the least overlap between both groups.
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Relative band power characterized the PD and HC group in the θ-band

Histograms were also calculated for the relative band power and are shown in figure 5.4.1. Calculations
were performed analogously to the calculations of the TE histograms. The same normalization
procedure used in case of TE histograms was also applied to the band power histograms. Similar to
the histograms of the TE, the most prominent distinction between the HC and PD groups is observed
in the θ-band (p ≤ 0.001). But while TE is reduced in PD patients compared to the HC group, the
inverse is true in case of relative BP.

Figure 5.4.2 – Normalized relative band power histograms for the PD and the HC group.
Panels A-E show the histograms for the δ, θ, α, β and γ-band (left to right) in EC condition
while panels F-J show the histograms in the EO condition for the same bands. A multiple
testing correction after Holm-Sidak, a step-down method, has been applied. Significance was
tested using the Mann-Whitney U-test. Indicated are the non-corrected p-values while the
label “not sign./significant” was given according to the corrected significance threshold.

Changes in relative BP correlated with changes in TE

The histograms for TE and rBP shown in figure 5.4.1 and 5.4.2 suggest that a change in band power
is strongly correlated to a simultaneous change in TE and vice versa. As a consequence, TE might
simply encode the same information as BP and not reveal new information. By assessing the degree
of correlation between TE and BP it is possible to determine whether the complexity of the EEG
signal and its relative power are in fact two degrees of freedom that can be regulated independently of
each other. Therefore, based on all 213 electrodes, the Pearson correlation between TE and BP was
calculated for each patient as well as the HC group. Figure 5.4.3 shows the result for each of the five
bands, in both the EO and EC condition. Generally, the correlation between TE and BP is stronger in
the PD group than HC group, which tends toward a closer-to-zero median correlation. Furthermore,
correlation is stronger in the lower bands, i.e. δ (p ≤ 0.0001) and θ (p ≤ 0.005), with the θ-band
showing the highest median correlation within the PD group. Except for the δ-band, which shows a
positive correlation between TE and BP, all other bands are characterized by either a close-to-zero or
an inverse relation between these two measures. On the group level, with respect to correlation, no
pronounced differences between EC and EO condition exist.
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Figure 5.4.3 – Correlation between Tsallis entropy and relative band power in EC and EO
condition for the patient group and the healthy controls. Except for the δ-band in panel A,
all other bands (panels B-E) show a negative correlation between TE and relative band power.
This relation is less pronounced for higher frequency bands. Generally, median correlation
between signal power and signal complexity of EEG is stronger in the patient group, especially
in the 1-8Hz range, implying that PD patients lose the ability to independently modulate power
and complexity of EEG. Significance levels are based on the t-test (Holm-Sidak corrected):
p > 0.005: n. s. – p ≤ 0.005: * – p ≤ 0.001: ** – p ≤ 0.0001: ***.

In groups, TE differentiates HC, MCI and DEM but not CN

For the participants of the study, the clinical diagnoses at baseline as well as at 3-year follow-up were
available. At baseline, the cohort was composed of 24 HC, 31 cognitive normal patients (PD-CN) and
11 patients suffering from mild cognitive impairment (PD-MCI). At 3-year follow-up only 24 patients
were PD-CN, 10 patients were suffering from PD-MCI and 5 patients were diagnosed with Parkinson’s
dementia (PD-DEM). Figure 5.4.4 shows each subject in a 2-dimensional plot with the baseline TE
level of the θ-band in EC and EO condition on its axes. For patients with PD, TE estimated in EC
condition shows a correlation of 69.7% with TE estimated in EO condition. This is considerably lower
than the 83.6% correlation between relative band power in EC and EO condition found for the same
patients. The different colors of the individual markers in figure 3 indicate the cognitive status at
3-year follow-up, where mostly patients with lower baseline TE have progressed to dementia. This
qualitative observation is statistically analyzed in the next section.

TE correlated with 3-year overall cognitive decline in the group of patients with PD

Here, cognitive decline is understood as an overall decline of cognitive abilities and is thus quantified
based on a combination of RCI scores from multiple cognitive domains. As the RCI is designed to
be a standardized score, combining multiple RCI domain scores reduces to an averaging procedure
over the individual RCI values. By combining the domain-wise RCI values for “attention”, “executive
function”, “visuo-constructive ability” and “working memory” an overall RCI for 6 months and 3 years
after baseline is obtained and evaluated for the 42 PD patients, in both EC and EO condition. The
evaluation is based on median TE and median relative BP of the θ-band, where the median was taken
over all 213 electrodes to obtain global median values. Figure 5.4.5 shows the Overall RCI for each
patient 3 years after baseline, dependent either on the patients’ global baseline TE or global relative
BP. Potentially significant confounders were age, education, sex, disease duration, LED and sleepiness.
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Figure 5.4.4 – TE of the θ-band at baseline in EC and EO condition, shown for each subject.
The different colours encode cognitive status of each subject at 3-year follow-up. PD patients
having developed overt dementia over the course of 3 years are mostly patients with lower
baseline TE of the θ-band. For the group of PD patients, the relatively low Pearson correlation
of 69.7% between TE in EC and TE in EO condition, points towards a sensitivity of TE with
respect to this condition.

After performing the stepwise selection on all 20 imputed datasets individually, followed by a majority
vote, the confounders to include in the final pooled regression, were identified (see table 5.3). As the
Overall RCI for the 6-month period was almost negligible, as is shown in figure A.2.2 of the appendix,
no meaningful regression analysis between either baseline TE or relative BP and the 6-month Overall
RCI could be performed. The result of the pooled regression analysis for the 3-year Overall RCI are
given in table 5.3. Relative θ-band power was significantly correlated with 3-year Overall RCI in both
EC and EO condition (p ≤ 0.0020 and p ≤ 0.0023 respectively). For TE measured in EC condition, the
correlation with 3-year Overall RCI was not significant (p ≤ 0.192), whereas the correlation of TE in
EO condition was highly significant (p ≤ 0.00079). In general, the main tendency of higher TE at
baseline making a 3-year decline less likely, is reversed in case of relative band power of the θ-band,
where high values indicated an increased risk of 3-year cognitive decline.

TE and Age explain over 40% of the variance of the 3-year Overall RCI

For all predictors of 3-year Overall RCI listed in table 5.3, their relative importance was calculated.
The results are shown in the panels C and F of figure 5.4.5. For TE in EC condition (panel A), the
association with the 3-year RCI was not significant, which is reflected both by the low explained
variance of TE in EC condition as well as the overall lower adjusted R-squared compared to the
other settings in table 5.3. For TE in EO condition (panel B) as well as relative band power in
both conditions (panels D and E), age was the second most important contributor to the variance
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Figure 5.4.5 – Overall reliable change index (RCI) at 3-year follow-up. Panels A-C: Tsallis
entropy at baseline and overall RCI are correlated significantly only in “eyes open” condition,
where approx. 30% of the variance is explained by Tsallis entropy. For Tsallis entropy
measured in EC condition the association is not significant. Panels D-F: For relative band
power, prediction of 3-year cognitive decline is not sensitive to EC/EO condition, where both
conditions explain approx. 30% of the variance. Note: The median entropy and median
relative band power values of the control group in the respective condition, are indicated in
the green boxes.

explained. According to Åkerstedt and Gillberg [1990], Kaida et al. [2006], the correlation between
relative θ-band power and self-assessed daytime sleepiness based on the KSS, is highly significant.
Based on the stepwise selection and the subsequent majority vote, both LED and sleepiness were
included in the analysis. But neither predictor was below the significance level of 0.05, and only less
than 10% of the variance could be explained by either LED or sleepiness.
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θ-band: median Tsallis Entropy ∼ compound RCI
Time Condition pVal: TE Adj. R2 pVal: Age pVal: Sleepiness (KSS) pVal: LED pVal: Education

3 years EC 0.192 0.42 0.043 0.023 Not incl. 0.037
EO 0.00079 0.48 0.059 0.118 Not incl. Not incl.

θ-band: median rel. Band Power ∼ compound RCI
Time Condition pVal: BP Adj. R2 pVal: Age pVal: Sleepiness (KSS) pVal: LED pVal: Education

3 years EC 0.0020 0.46 0.028 Not incl. 0.08 Not incl.
EO 0.0023 0.48 0.016 Not incl. 0.10 Not incl.

Table 5.3 – Pooled linear regression analysis for Overall RCI and θ-band TE or relative BP, both for EC and EO condition. The association of
TE in EO condition with Overall RCI is more significant than for relative BP in either condition. Significant confounding factors for BP in
both EC and EO condition was Age, while none of the confounders was significant in case of TE in EO condition. Confounders that were not
included into the final pooled regression, following stepwise selection and majority vote, are marked with “not incl.”.
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Extreme group behaviour

Global median entropy (θ-band, EO) within the cohort of 42 patients with PD was in the range of
[0.056; 0.161]. For the 10 patients showing the strongest decline (high Overall RCI values) over
a period of 3 years, the median of the global entropy was in the interval [0.056; 0.105]. The 10
patients with the least decline (lowest Overall RCI values) over that same period showed global entropy
values in the range of [0.071; 0.161]. Table 5.4 shows the baseline demographic of these two extreme
groups. Overall, the median age of the group of strong decliners was 8 years higher than for the

Age Edu Sex MMS UPDRS-III LED DisDur KSS

PD (10)
low 3Y RCI 65.5 13 6f. 29 16.5 487.5 2 3

1st Quartile 63.25 12 - 29 7.5 285 0.25 1
3rd Quartile 69.75 14 - 29 20.75 560 4.75 3

PD (10)
high 3Y RCI 73.5 16 3f. 28.5 15 624.5 2 3

1st Quartile 68.25 13.75 - 28 10 337.5 2 3
3rd Quartile 79.25 17.25 - 29 30.25 1335.5 7 6.25

Table 5.4 – Demographic at baseline of the ten most and least stable patients within the
cohort of 42 patients during the 3-year period from baseline. Given are the median values
along with the first quartile (25%) and third quartile (75%). Stability is quantified based on
patients’ overall RCI value, where a low RCI is indicative of cognitive stability while a high
RCI value indicates cognitive decline.

group of cognitively stable patients. Furthermore, the strong decliners had a 20% higher median
LED. Otherwise both groups showed similar characteristics. Regional differences in TE of EEG in EO
condition between the HC group and the two extreme groups of stable and declining patients, are
shown in figure 5.4.6. The extreme group of cognitively stable patients had TE levels in the same
range as the HC group across all regions. On the other hand, the group of extreme decliners showed
lower TE levels, again across all regions. Regional differences were thus not present, supporting the
hypothesis of decreasing TE in association with PD being a non-localized effect.

Stability of TE estimates and intra-subject variability

From a subset of patients, slightly more than 360 seconds of EEG were available after pre-processing,
corresponding to approximately double the epoch length of 180 seconds used in the present analysis.
For three such patients, global TE of the θ-band was re-calculated a total of 100 times in a random
resampling setting, where each randomly selected epoch had a length of exactly 180 seconds. Figure
5.4.7 shows the results of the resampling procedure. Overall, the global TE estimates show very
little variance over randomly selected epochs, which makes global TE, estimated with the procedure
proposed in [Sneddon, 2007], a robust measure of signal complexity of EEG.
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Figure 5.4.6 – Median entropy values are shown for the healthy controls (green, n=24) as
well as for the extreme groups of cognitively stable individuals (yellow, n=10) and cognitive
decliners (red, n=10). The most prominent difference involves a distinctly reduced TE at
baseline for patients showing a strong 3-year cognitive decline. The cognitively most stable
patients are indistinguishable from healthy controls based on their regional TE levels. With no
apparent regional differences, decreasing TE of the θ-band during the course of PD is likely a
global effect not attributable to a single location.

Figure 5.4.7 – For three study participants EEG with more than twice the epoch length of 180
seconds used in the present analysis was available. From these recordings, 100 epochs, each
with a length of 180 seconds, were randomly sampled and the global TE of the θ-band was
estimated. The results show a very low variance across TE of the different sample epochs,
making global TE of the θ-band a robust feature with low intra-subject variability.

5.4.4 Discussion

Θ-band TE measured at baseline in EO condition correlates with cognitive outcome after 3 years in
groups of patients with PD, independently from age, education, sex, disease duration, sleepiness and
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LED. This effect is highly significant only in EO condition, while in EC condition the association with
3-year Overall RCI remains non-significant. In accordance with the a priori hypothesis, these results
indicate autonomous information is contained in TE. The fact that cognitive decline can be predicted
even in a cohort of patients with only a short median disease duration (2.5 yrs.) suggests sensitivity
of TE already early in the course of the disease.
Daytime sleepiness is an early sign of PD [Abbott et al., 2005, Wulff et al., 2010]; moreover, daytime
sleepiness in healthy people is associated with an increased θ-synchronization in EO condition [Acher-
mann et al., 2016]. However, clinical measures of sleepiness at baseline are not significantly correlated
with cognitive outcome after 3 years (see table 5.3). This result further supports the conclusion
that TE at baseline predicts cognitive decline over middle and long time periods independently from
any influence that daytime sleepiness might have on short-term outcome or present cognitive ability
[Goldman et al., 2014]. Moreover, in our cohort of patients with relatively short disease duration and
a comparatively long education, MMSE and low education are not risk factors for cognitive decline,
which suggests EEG has a role to play for prognosis of cognition in PD.
This idea is supported by related findings. For instance, Klassen et al. [2011] demonstrated that
background rhythm frequency and relative power in the θ-band were potential prognostic biomarkers
for PD. The EEG based biomarker for changes over time in PD cognitive decline proposed by Caviness
et al. [2015] is a δ-band power (2.5-4Hz) which correlated best with longitudinal neuropsychological
performance changes in PD. In [Zimmermann et al., 2015], the authors conclude that global EEG
slowing is a marker for overall cognitive impairment in PD.
Compared to TE, band power is influenced by a variety of unspecific factors, especially skull thickness
and distance from the electrical source. The cause of these dependencies lies in the frequency-dependent
attenuation by different materials like bone, galea, skin and other tissue types. Consequently, a
power spectrum depends on individual anatomical and physiological features. Under the assumption
that frequency-dependent attenuation only affects the amplitude of a signal, but leaves its frequency
approximately unchanged, it follows that TE estimates might be less affected by an individual’s
anatomy. This is a consequence of the method used to estimate TE [Sneddon, 2007], as it relies only
on the ratio between rapid changes (numerator) and slow changes (denominator) of the EEG signal
(see equation 5.5). As a result, these entropy estimates might be less sensitive to information encoded
in the amplitude of the EEG.
Moreover, as high variability of individual measurements of absolute band power usually preclude their
direct inter-individual comparison, it has become standard to compare relative band power, i.e. the
power in a frequency band as a percentage of the total power of the signal. While this normalization
of band power is the most obvious transformation in order to facilitate inter-individual comparisons, a
significant degree of variation will remain due to individual anatomical characteristics. For this reason,
Klimesch [1999] suggests an individual frequency adjustment based on individual α-frequencies as an
anchor point. In contrast to relative band power, comparing TE on an absolute scale is possible and
does not necessarily require any adjustments.
While power-based features have a long history in EEG research, connectivity measures leverage the
promising field of network neuroscience to find candidate biomarkers. M/EEG-based connectivity
measures as potential biomarkers of PD progression were investigated in [Olde Dubbelink et al., 2014],
while [Berendse and Stam, 2007] use M/EEG patterns of neural synchrony in PD patients to quantify
the stage of the disease. While connectivity studies provide a model for detailed understanding of
functional interdependency of different cortical areas and its alteration in dementia [Stam, 2014], the
determination of connections, and therefore of the graph structure, may be demanding, given the large
number of electrodes or sources and the different possible lengths of recording segments [Hardmeier
et al., 2014]. In contrast, TE might present a shortcut by considering only possible alterations of signal

94



5.4. Cognitive decline in Parkinson’s disease is associated with reduced complexity
of EEG at baseline

complexity as resulting from an alteration of the underlying graph structure, rather than characterizing
the graph in detail.
TE of the EEG quantifies the amount of information contained in this signal and corresponds to
the ratio between fast to slow oscillations [Sneddon, 2007]. Higher TE of the EEG reflects a higher
complexity of the oscillatory brain activity. Oscillations that can be recorded at the surface of the
head must come from synchronous discharges of more than 100 million neurons per scalp electrode
[Nunez et al., 2006] working under the influence of a common pacemaker. Complexity of the recorded
signal increases with the number of pacemakers, provided that the ability of the cortex to react to an
increasing number of pacemakers is maintained. For normal cognition or consciousness, an optimal
range of entropy of the EEG is a requirement [Carhart-Harris et al., 2014]. Abnormally increased
entropy of brain activity is observed e.g. in psychedelic states, while abnormally decreased entropy is
associated with reduced consciousness [Carhart-Harris et al., 2014, Zhang et al., 2001]. Decline of
cognition may arguably be considered as a first step into loss of consciousness and, therefore, may
also be associated with a decline of entropy.
Moreover, a slight reduction of entropy may precede a clinically evident decline of cognition, since at
the very first phase of cortical dysfunction, patients recruit all available functional reserves to maintain
apparently normal functioning [Peterson et al., 2015]. An example for this coping mechanism is the
observation that patients with mild cognitive dysfunction “stop walking when talking” [Nieuwhof et al.,
2017]. TE relates to the complexity of the cortical activity, and therefore, plausibly to the amount
or complexity of information that can be processed by the cortex, which in turn is an expression of
cognitive capacity. Interestingly, an artificial increase of entropy of oscillatory brain activity produced
an improvement in numeracy skills in adults [Kadosh et al., 2013, 2010]. In encephalopathic and
demented patients, partial or absent suppression of the EEG background activity (Berger effect) is
a frequent and relatively early finding [Könönen and Partanen, 1993]. Therefore, the difference in
EEG readings between HC and demented patients is greater when recorded in the EO than in the EC
condition. Interestingly, TE shares a similar behavior and shows significant differences only between
PD patients with and without cognitive decline over 3 years when recorded in the EO condition.
Moreover, the difference of explained variance by TE measured in the EO condition, as opposed to
the EC condition, points to an early deficiency of the “orienting response” [Sokolov, 1963] in the
development of Parkinson’s disease dementia (PD-D), which cannot be detected by BP based analysis
of the EEG or neuropsychological testing before cognitive decline occurs. Loss of capacity to detect
unexpected salient changes of environment may be at the base of both, the alteration of TE in EO as
well as beginning cognitive decline.
The correlation of TE with cognitive outcome is observed when using global EEG, but also when
the 10 regions are considered separately, as shown in figure 5.4.6. Upon visual inspection, the only
distinction between the two extreme groups is a shift toward lower TE values across all regions in
case of patients with a strong cognitive decline. The difference of the medians between the extreme
group of cognitive stable and the group of cognitive declining patients is approximately 0.05 across all
regions. Comparing the HC group and the extreme group of cognitively stable patients, no differences
become apparent: judging only by their TE levels across regions and interpreting TE as a measure of
cognitive health, the extreme group of cognitively stable PD patients appears as cognitively healthy
as the HC group. Following Obeso et al. [2004], when the capacity of cognitively stable PD patients
to compensate is exhausted, signal complexity in all regions will begin to drop, and eventually reach
levels below the median TE levels of HC. The results apply to groups, and may help to define study
populations for clinical trials, but cannot be applied in their present form for individual treatment
decisions or counseling.
Much effort has gone into the discovery of clinically relevant biomarkers for cognitive decline in
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PD [Cozac et al., 2016]. While this remains an active field of research, it is very likely that any
newly emerging biomarkers will be a composite biomarker, based on more than one physiological or
psychological measure. The composite prognostic biomarker for dementia in PD proposed by Liu
et al. [2017], for example, is based on age at disease onset, MMSE, years of education, MDS-UPDRS
III, sex, depression, and GBA mutation status. While psychological testing is affected by test-retest
reliability and learning effects, and while genetic testing for PD dementia is still insufficiently validated,
there is a practical advantage in having biomarkers derived from signals generally considered to be
easily accessible, such as quantitative EEG.

5.4.5 Significance of the study

Defining cohorts at very high risk of cognitive decline is important in clinical trials for reaching
significant results quickly with a relatively low number of patients. While the current results contribute
to group characterization and, therefore, might help alone, or in combination with other parameters,
to select the best groups for clinical trials, they cannot be used in their present form for individual
counseling.

5.4.6 Limitations & Strengths

Limitations of the current study include unknown reliability of TE. However, for processing the EEG,
we used the fully automated TAPEEG [Hatz et al., 2015] because its reliability has been demonstrated.
Moreover, only 5 of the 42 PD patients developed overt dementia over the period of observation
of three years, and the reliable cognitive deterioration was relatively small. Strengths of this study
include a carefully matched HC group regarding age, sex and education level, as well as comprehensive
neuropsychological testing of the patients with PD.

5.4.7 Conclusion

Currently, measures based on EEG for monitoring present cognition in PD, and predicting its future
development, are often derived from band power or connectivity estimates. However, TE is a new
measure of signal complexity that seems to be at least as sensitive, and possibly more robust against
influence of age, than spectral analysis for predicting cognitive decline in groups of patients, but not
individuals. Furthermore, in contrast to band power, TE is sensitive to EC/EO condition, with only the
EO condition containing information with respect to cognitive decline over a period of 3 years. This
might motivate new neuropsychological testing paradigms specifically designed to the EO condition.
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5.5 Archetypes of Parkinson’s disease

The analysis in section 5.4 has shown that the θ-band of EEG in eyes open (EO) condition is a
potential biomarker for cognitive decline based both on features quantifying signal complexity or
relative band power. The following experiment describes a proof-of-concept application based on these
insights but applies deep archetypal analysis to EEG in order to provide a more interpretable result.
The setting described in the following section allows to visualize an EEG sequence in latent space –
instead of averaging over the whole recording to obtain a single data point, the EEG of an individual is
segmented into short windows of 1 second duration with an overlap of 90% with subsequent windows
in order to obtain multiple data points per individual recording.

5.5.1 Cohort description

For the following experiment, which shows the potential of deep archetypal analysis for EEG, a reduced
cohort has been selected, composed of 16 patients suffering from Parkinson’s disease and 8 healthy
controls. Table 5.5 shows the patient demographic. From the 16 patients, half remain cognitively
stable over a period of 3 years while the other half shows signs of cognitive deterioration over the
same period.

Age Edu Sex MMS UPDRS-III LED DisDur

HC (8) 66.5 12.5 3f. 30 - - -

1st Quartile 64 11.75 - 29.5 - - -
3rd Quartile 67 16.25 - 30 - - -

PD (16) 68.5 13.5 6f. 29 14.5 487.5 2

1st Quartile 64.75 12.75 - 28 5.75 295 0.75
3rd Quartile 72.75 16.25 - 29 20.5 858 5.25

Table 5.5 – Values are presented as median values, along with values for the 25%- and
75%-quartiles. Age, education (edu), and disease duration (DisDur) are given in years. LED
is given in milligrams. MMS and UPDRS-III refer to standardized psychological tests.

5.5.2 Experiment

EEG of the patient cohort was preprocessed identically to the data used in section 5.4. For reducing
the computational resources, only 20 seconds of EEG per study participant were used. While this
might be sub-optimal for obtaining robust neurological insights, it is sufficient to demonstrate the
feasibility of the proposed method. With a total of 24 participant, 193
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Figure 5.5.1 – Sequence of relative EEG power of the θ-band from a healthy control subject.
Each topography is calculated based on a 1 second window of EEG. With a sliding factor of
0.1 seconds, the subsequent topography is calculated. The total sequence shown here is based
on 4.8 seconds of EEG.
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consecutive θ-power-based scalp EEG topographies were obtained using a sliding windows of 1 second
with 90% overlap. After applying an inverse distance interpolation between the relative θ-power values
at each electrode, this lead to a data set consisting of 4632 images of 100×100 pixel. Figure 5.5.1
shows an image sequence of 48 images for the θ-band power measured in EO condition from a healthy
control. With the parameters used for the sliding window, smooth appearance of the sequence of
scalp topography images is ensured: As can be seen in figure 5.5.1, most subsequent topographies
are evolutions of their immediate predecessors, while sudden jump-like changes may occur where
oscillatory activity switches into a different state more quickly. An example might be the first row of
figure 5.5.1, topography 2 → 3 or the last row, again topography 2 → 3. Generally, this should provide
an appropriate input to deep AA as smooth transitions within the data occur naturally.

Figure 5.5.2 – Learned latent space based on scalp topographies of relative EEG power of the
θ-band. Class labels are (i) healthy control, (ii) PD: 3-year stable and (iii) PD: 3-year decline.
The data set was comprised of 24 subjects, each providing 193 scalp topography images.
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5.5.3 Discussion

The learned archetypes are shown in figure 5.5.3. The meaning of these archetypes is interpreted
based on the structure of the latent space shown in figure 5.5.2. It shows the three classes (i)
healthy controls, (ii) PD: 3-year stable and (iii) PD: 3-year declining. Class separation is very low
as θ-power topographies produced by neural activity within a window of 1 second are most of the
time not representative of the general (future) health status (here: cognition). But a minority of
those topographies will exhibit a spatial distribution of θ-power that a healthy brain would be more
likely to produce than a brain in process of neural degeneration, and vice versa. The structure of
the depicted latent space in figure 5.5.2 shows that archetype 1 is clearly associated with spatial
distributions of θ-power associated with a 3-year cognitive decline, while archetype 3 is the extreme
representative of a θ-power distribution produced by a healthy brain. On the other hand, archetype 2
has no clear interpretation given the current labels as samples from all three classes are found close
to this archetype. Interestingly, the identified archetypes allow for a qualitative comparison to the

Figure 5.5.3 – Learned archetypes showing both local as well as global differences. Globally,
each archetype is associated with a different average level of θ-power: (i) archetyp 1: mid
power level, (ii) archetype 2: high power level and (iii) archetype 3: low power level. Locally,
archetype 1 has increased frontal power while archetype 2 has increased posterior power,
similar to archetype 3 but at a much higher level.

state of the art in EEG research for Parkinson’s disease (PD) [Klassen et al., 2011] where a consensus
has been established based on multiple independent studies stating that elevated θ-power is a marker
of neurodegeneration. Inspecting archetype 3 in figure 5.5.3, it is seen that it has the overall lowest
level of θ-power compared to the other two archetypes, which according to current research is a sign
of a healthy brain. It thus increases confidence in the learned latent space structure that mostly
samples from healthy controls are close to this archetype. More interesting, as it is unexpected, is the
comparison between archetypes 1 and 2: While archetype 2 shows overall the highest level of θ-power
among archetypes, PD patients with the prospect of cognitive decline produce samples accumulating
around archetype 1, which shows higher levels of θ-power compared to the levels of healthy controls,
but still considerably lower than the levels of archetype 2. A possible interpretation might be provided
by the archetypes themselves – upon closer inspection it is seen that they are each others inverse:
Archetype 1 has higher levels in the frontal regions and lower levels in the posterior regions while the
situation is inverted in case of archetype 2. A possible hypothesis can be formulated stating that both
the overall level of θ-power as well as the regional distribution play a role for future cognitive decline.
An additional observation is provided by observing the interpolation between archetype 1 and archetype
2 as increasing proximity to archetype 2 attracts samples from all three classes while increased proximity
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to archetype 1 attracts only samples from PD cognitive declining patients. Figure 5.5.4 shows samples

Figure 5.5.4 – Interpolation between archetype 1, which is associated with cognitively deterio-
rating patients, and archetype 2, which is not specific to any of the three classes.

decoded at equal distances on the connecting line between archetypes 1 and 2 in latent space. The
first two rows clearly show the same distribution of θ-band power, i. e. increased in the front and
reduced in the back, but at different overall power levels. Halfway into the middle row a transition is
slowly beginning shifting the front/back distribution to a left/right distribution. Clearly, the fourth row
now shows hemispheric imbalances in power distribution. Comparing with the latent space one could
hypothesize that hemispheric imbalances (low power left, high power right) might not necessarily be a
sign of deterioration compared to front/back imbalances with frontal high power and posterior low
power in the θ-band.

5.5.4 Limitations & Strengths

While this proof of concept showed interesting possibilities in interpreting scalp power distributions and
also opens up the possibility to analyze the dynamic behavior of EEG, the experiment in its current
form is limited by the small sample size of 24 patients as well as the small number of topographies
per participant of 193 images, based on only 20 seconds of EEG. Furthermore, the restriction to the
θ-band might be unnecessary, as deep AA is well able to take 3-dimensional input tensors such that
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further bands could be added – similar to having three channels for rgb-images, the input could be a 5
channel input, with each channel representing one of the five standard bands of EEG. Moreover, while
group effect were clearly visible, the goal of biomarker research in general lies in individual counseling.
Therefore, additional data for exploring individual latent EEG mappings would be an important next
step.
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A central question of this thesis was the design of new machine learning models appropriate for
the analysis of clinical resting state EEG data. What makes a model appropriate is the degree to
which the results it provides can be intuitively understood by a medical expert. This requirement
of interpretability in the wider sense motivated the use of dimensionality reduction either through
sparsity inducing penalties, effectively reducing the number of potential predictors, or making use
of latent space models in order to provide a low dimensional representation of a data set. With
neurodegenerative diseases on the rise, the clinical data used in this thesis consisted of noninvasive
resting state scalp EEG recordings from 24 healthy controls and 42 patients suffering from Parkinson’s
disease. Identifying differences at group level at time of recording as well as prediction of future
cognitive decline based on those recordings were questions of interest. But with a median disease
duration of 2.5 years the cohort had not progressed much into the overt phase of the disease. Together
with the large heterogeneity of Parkinson’s disease, the present data set was challenging and – based on
standard classification methods – expectations were moderate to identify strong group-wise differences
using spectral features.
Our first contribution describes a penalized regression method. Assuming a convex objective function,
the proposed method allows to interpolate between best subset selection (`0-pseudonorm) and lasso
(`1-norm) as the penalty. But with all penalties “below” `1 leading to non-convex optimization
problems, standard algorithms such as Forward stagewise and Frank–Wolfe cannot be used as they
require a convex feasible region. The proposed solutions is a transformation of the non-convex feasible
region into a convex one, such that the aforementioned algorithms become – in principle – applicable.
An important requirements of any such transformation is that it when applied on the convex objective,
no saddle points or extrema are induced by the transform. It can be shown that a transformation of the
penalty is possible in such a manner that the transformed objective becomes invex. Invexity ensures
that all every stationary point of the transformed objective is also a global minimum. Of course the
optimization target – the combination of invex objective and convex penalty – is itself a non-convex
optimization problem, but one that can be solved with standard convex optimization algorithms. In this
non-convex setting the guarantee that the coefficient paths for different values of the tuning parameter
still connect pointwise optimal solutions is lost. Nevertheless, the ability to produce coefficient paths
is in itself an important property for enabling model selection by cross-validation. We show several
application cases on artificial data and also analyze, in a setting of logistic regression, which spectral
features are most important in differentiating EEG from healthy controls from those recorded on
patients suffering from Parkinson’s disease. This result confirmed the importance of low frequency
oscillations in the 4−8Hz range as an important marker of neurodegeneration.
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Our second contribution deals with alternative features derived from EEG. Commonly, spectral features
are used to quantify EEG data. The majority of research relies on quantifying the relative power in
different frequency band in order to derive electroencephalographic biomarkers. But recently, the
quantification of the complexity of EEG wave forms has shown promise in establishing biomarks that do
not rely on spectral characteristics. We could show that complexity of EEG provides information about
brain status not obtainable through spectral analysis. Using baseline EEG recordings and cognitive
status measured 3 years after baseline, based on comprehensive psychological testing, complexity
measured in eyes open condition was significantly correlated with changes in cognition. Interestingly,
the eyes closed state was less informative regarding cognitive decline. With complexity measures
potentially showing sensitivity to different brain networks, this result motivates an interesting path for
future research.
Our third contribution provides a new method of analyzing EEG data based on a deep latent variable
model. By translating the multivariate EEG time series into a sequence of scalp topographies based
on spectral features, extreme spatial distributions of spectral power can be identified in order to obtain
information about brain states associated with neurodegeneration. By extending the classical model
of linear archetypal analysis to simultaneously learn an appropriate latent space along with extreme
representatives of spatial power distributions, EEG data can be utilized in a more efficient manner:
Instead of averaging the spectral power over the whole EEG sequence, power is estimated within
a short window. Sliding this windows over the whole time series provides a sequence of short-lived
brain states which form the input to the proposed deep archetypal analysis method. Applying this
method on a data set consisting of healthy controls and patients suffering from Parkinson’s disease, a
spectral distribution was obtained which is associated with future cognitive decline. It is characterized
by elevated power of the θ-band in the posterior brain region compared to the frontal region. The
spectral archetype associated with a healthy brain, on the other hand, shows an inverse distribution at
overall lower levels of θ-power: higher power in the front and lower power in posterior brain region.

6.1 Limitations

The major limitation – as is often the case when working on medical data – is the size of the available
data set. While it is a great achievement to collect longitudinal clinical data, especially if comprehensive
psychological testing is involved, data sets considers “big” by clinical standards are often perceived as
small from the machine learning community. Especially the present research, which involved a very
heterogeneous disease, poses statistical challenges for finding significant associations in diagnostic
and predictive settings. With the long-standing goal of machine learning providing the key to a more
personalized way to conduct medicine, large clinical data sets are an absolute requirement. Presently,
based on the available data, only group-wise characteristics could reliably be obtained. This is certainly
a step into the right direction but still a long way off from providing insights ultimately enabling
individual counseling. From a statistical point of view, the design of new models is usually followed by
an evaluation step in order to estimate their benefits compared to the status quo. This task would
also benefit from access to larger collections of data. Nevertheless, the presented contributions have
all been validated on alternative data, either artificial or natural, and provide interesting paths to
future work.
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6.2 Future Work

EEG in combination with machine learning, especially deep learning, is a very promising area of
research. With visual inspection being the clinical standard of analyzing EEG, there is still much
opportunity for providing learning based systems able to supplement in a meaningful way the daily
work of clinicians. Trends in EEG recording, especially long-term recordings over several hours or days,
are almost impossible to recognize based on visual inspection. The reason for this is that the largest
portion of EEG that can reasonably be displayed on a single screen at any given time has a duration
of 20 to 30 seconds. But even for short routine EEG recordings, which seldom last more than 30
minutes, much information remains inaccessible to the naked eye. Deep archetypal analysis revealed
the potential existence of brain states associated with cognitive decline, but as such states are short
lived and don’t make up the majority of the time series, automated methods seem very promising.
Several aspects of deep AA in combination with EEG would be worthwhile exploring: With the ability
to map the EEG sequence into latent space, the dynamic of EEG is mapped onto a 2-dimensional latent
path, which itself might contain interesting information, such as average path length or distribution
over path lengths. Of course, deep AA does not exclusively rely on spectral power based topographies
as the input data. An interesting multi-modal approach would be a combination of EEG and fMRI
data which has been recorded simultaneously. Generally, focusing more on dynamical aspects of EEG
based on deep learning methods such as deep AA, would be a natural aspect to include in future
work. With the well known model of microstate analysis of EEG [Lehmann et al., 1987] a model
for quantifying EEG dynamics has been proposed over 3 decades ago – continuing along these lines,
based on more sophisticated statistical models, certainly promises interesting insights.
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A Appendix

A.1 Ultra-sparse Model Identification and Learning with In-
vexity

A.1.1 Proof of consistent first coefficient selection for least squares re-
gression

Given a least-squares regression problem ||b − Ax ||22, we can assume w.l.o.g that zi ≥ 0 ∀ i , since
we can always solve the monotone version. Let A be the active set and AA be the active subset
of A, i.e. the matrix containing the columns which correspond to nonzero entries z j > 0. Assume
|A | = 1, A = {k}. Then, at a stationary point, the inequality constraint (assuming it is active) has the
form g (ẑk ) = ẑk = κ. Thus,

f (xk ) = ‖b − AA h(zk )‖2

= ‖b −a[·,k]h(κ)‖2

= ‖y −a[·,k]c‖2, where c := h(κ)

= bt b −2a t
[·,k]bc +a t

[·,k]a[·,k]c
2

Assume further that the inputs are standardized, i.e. a t
[·, j ]a[·, j ] = 1, ∀ j = 1, . . . ,2p. Then the minimum

value of f (zk ) is obtained for the index k ′ which maximizes a t
[·,k ′]b. The latter, however, can be

expressed as

k ′ = argmax
k

−∂ f (zk )

∂zk

∣∣∣
zk=0

.

This follows from

1

2
∇ f (z) = [−At b + At Ah(z)]◦ ∂h(z)

∂z

Note that this is exactly the first variable selected by the stagewise forward algorithm, and that the
selection of the first variable does not depend on any additional parameter of h(·). As long as x has
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only one nonzero component xk ′ and (∇ f (z))k ′ > (∇ f (z))k , ∀k 6= k ′, it holds that

(∇ f (z))k ′ = λ

(∇ f (z))k = λ−µk , with µk > 0∀k 6= k ′.

The path defined by the stagewise forward method now proceeds by increasing zk ′ until a second
variable becomes active. The transition point is determined by the first µk to become zero, and the
second variable becomes active if (∇ f )k > (∇ f )k ′ .

A.1.2 Proof of the implication x+
j > 0 ⇒ x−

j = 0

Given augmentation functions

s(x+, x−) = x+−x−

t (x+, x−) = x++x−

We analyse the augmented problem

min
(x+,x−)

f (s(x+, x−))

s.t. g (t (x+, x−)) ≤ κ, x+
j > 0, x−

j > 0

Replacing g (·) with h−1(·), the Lagrangian of the augmented problem is:

L (x+, x−) = f (s(x+, x−))+λh−1(t (x+, x−))

−
p∑

j=1
µ+

j x+
j −

p∑
j=1

µ−
j x−

j
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KKT conditions:

∂L

∂x+
j

= ∂ f

∂s

∂s

∂x+ −µ+
j +λ

∂h−1

∂t

∂t

∂x+ = 0

∂L

∂x−
j

= ∂ f

∂s

∂s

∂x− −µ−
j +λ

∂h−1

∂t

∂t

∂x− = 0

complementary slackness: µ+
j x+

j = 0

complementary slackness: µ−
j x−

j = 0

primal feasibility: ∀ j = 1, . . . , p : x+
j ≥ 0

primal feasibility: ∀ j = 1, . . . , p : x−
j ≥ 0

Note that ∂s
∂x+ = 1, ∂s

∂x− =−1 and ∂t
∂x+ = ∂t

∂x− = 1. It follows that x+
j > 0,λ> 0 implies x−

j = 0:

x+
j > 0,λ> 0 ⇒ µ+

j = 0

⇒ −∂ f

∂s
=λ∂h−1

∂t
> 0

⇒ µ−
j > 0

⇒ x−
j = 0.

Likewise x−
j > 0,λ> 0 implies x+

j = 0.
Step 2 follows from the fact that h is a strictly monotonically increasing function per definition in
section 3.

109



Appendix A. Appendix

A.1.3 Curved Level Sets for Information Bottleneck
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Figure A.1.1 – Contour-plot of the constraint function of the sparse IB problem in two
dimensions. The correlation between the two variables is 0.7. Left: original variables lead to
a concave constraint g (x). Right: transformed variables result in a constraint function g (z)
whose sublevel sets are convex.
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A.2. Reduced complexity of EEG in Parkinson’s disease predicts cognitive decline

A.2 Reduced complexity of EEG in Parkinson’s disease pre-
dicts cognitive decline

A.2.1 Consort Scheme

Figure A.2.1 – Consort scheme: Overview of patients who participated in the present study.
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A.2.2 Overall RCI at 6-month follow-up

Figure A.2.2 – Overall RCI for the 6-month period after baseline. Within this period the
cognitive decline is small compared to the statistical noise level. As a consequence, a
quantitative analysis is not advisable. Still, the least squares fit shows identical tendencies
compared to the 3-year RCI shown in figure 5.4.5, i.e. positive slope in case of TE, negative
slope in case of relative band power.
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