
University of Memphis University of Memphis 

University of Memphis Digital Commons University of Memphis Digital Commons 

Electronic Theses and Dissertations 

12-6-2017 

FiberBlender: A Realistic Computer Model of Nerve Bundles for FiberBlender: A Realistic Computer Model of Nerve Bundles for 

Simulating and Validating the Acquisition of Diffusion Tensor Simulating and Validating the Acquisition of Diffusion Tensor 

Imaging Imaging 

Teddy Salan 

Follow this and additional works at: https://digitalcommons.memphis.edu/etd 

Recommended Citation Recommended Citation 
Salan, Teddy, "FiberBlender: A Realistic Computer Model of Nerve Bundles for Simulating and Validating 
the Acquisition of Diffusion Tensor Imaging" (2017). Electronic Theses and Dissertations. 1784. 
https://digitalcommons.memphis.edu/etd/1784 

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has 
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of 
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu. 

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F1784&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/1784?utm_source=digitalcommons.memphis.edu%2Fetd%2F1784&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu


 

 

FIBERBLENDER: 

A REALISTIC COMPUTER MODEL OF NERVE BUNDLES FOR SIMULATING AND 

VALIDATING THE ACQUISITION OF DIFFUSION TENSOR IMAGING 

  

by 

Teddy Salan 

 

A Dissertation 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Doctor of Philosophy 

 

Major: Electrical and Computer Engineering 

 

 

The University of Memphis 

December 2017 

  



 

ii 

 

 

 

 

 

 

 

 

Copyright© Teddy Salan 

2017 

All rights reserved 

 



 

iii 

DEDICATION 

This dissertation is dedicated to all cancer survivors, including my mother, and to the rest of 

my family for their love and support.  

  



 

iv 

ACKNOWLEDGMENTS 

First, I want to convey my deepest gratitude to my major supervisor Dr. Eddie L. Jacobs for 

his immense support and patience throughout my graduate studies. 

I would like to thank all my teachers at the department of Electrical and Computer 

Engineering, especially Dr. Chrysanthe Preza and Dr. Madhusudhanan Balasubramanian who 

devoted their precious time to serve on my dissertation committee and give me guidance in my 

research. 

I would like to thank Dr. Wilburn Reddick from St. Jude Children’s Research Hospital who 

also served on my committee and made this research possible. 

Lastly, I am forever thankful to my family for their never-ending encouragement.  

   



 

v 

PREFACE 

This research was supported in part by the National Cancer Institute under grant CA090246. 

Content from Chapter 3 was published in the Conference Proceeding of the IEEE Engineering in 

Medicine and Biology Society (EMBS), and presented at the 39th International Conference of the 

IEEE Engineering in Medicine and Biology Society. Content from Chapters 3 and 4 was 

submitted to IEEE Transactions on Biomedical Engineering and is currently under review.  

  



 

vi 

ABSTRACT 

 

Salan, Teddy. PhD. The University of Memphis. December 2017. FiberBlender: A realistic 

computer model of nerve bundles for simulating and validating the acquisition of diffusion tensor 

imaging. Major Professor: Dr. Eddie L. Jacobs. 

 

Diffusion Tensor Imaging (DTI) is a powerful medical imaging technique that provides a unique 

method to investigate the structure and connectivity of neural pathways. DTI is a special magnetic 

resonance imaging (MRI) modality that combines the principles of magnetic resonance with 

molecular diffusion to trace the motion of water molecules. In the central nervous system, where 

nerve fibers are packed in highly-directional bundles, these molecules diffuse along the orientation 

of the fibers. Hence, characterizing the motion of water with DTI delivers a non-invasive in vivo 

technique to capture the connectivity of nerves themselves. Despite its promises and successful 

clinical applications for nearly thirty years, problems with validation and interpretation of 

measurements still persist. Most validation studies attempt to generate ground-truth data from 

animal models, phantoms, and computer models. This dissertation proposes a novel validation 

system, FiberBlender, capable of reproducing three-dimensional fiber structures and simulating 

the diffusion of water molecules to generate ground-truth synthetic DTI data. In particular 

FiberBlender contributes to: (i) creating more biologically accurate representations of fiber 

bundles with the inclusion of myelin and glial cells, (ii) examining the effect of demyelination and 

gliosis on DTI measurements, (iii) optimizing acquisition sequences, and (iv) evaluating the 

performance of multi-tensor models for the study of crossing fibers. FiberBlender strays away 

from the “one size fits all” approach taken by previous studies and uses computer algorithms in 

conjunction with  some limited manual operations to produce brain-like geometries that take into 

account the random spatial location of axons and correct distributions of axon diameters, myelin 

to axon radius, and myelin to glia ratio. In this way no two models are the same and the system is 
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capable of generating structures that can potentially represent any region of the brain and 

encompass the heterogeneity between human subjects. This feature is essential for optimization as 

the performance of DTI acquisition sequences may vary among subjects and the type of scanner 

used. In addition to better accuracy, the system offers a high degree of flexibility as the geometry 

can be modified to simulate events that cause drastic changes to the fiber structure. Specially, this 

dissertation looks at demyelination (an extensive loss of myelin volume), gliosis (a proliferation 

of glial cells), and axon compaction (a condensation of axons due to a loss of total brain volume) 

to determine their effects on the observed DTI signal. Simulation results confirm that axon 

compaction and partial remyelination have similar characteristics. Results also show that some 

standard clinically used acquisition sequences are incapable of capturing the effects of 

demyelination, gliosis and compaction when performing longitudinal studies. A novel sequence 

optimization technique based on Shannon entropy and mutual information is proposed to better 

capture demyelination. Optimized sequences are tested on a number of non-identical models to 

confirm their validity and can be used to improve the quality of DTI diagnostics.  Finally this work 

looks at crossing fibers for the validation of multi-tensor models in their ability to characterize 

crossing diffusion profiles.  The performance of multi-tensor models from CHARMED, Q-ball 

and spherical deconvolution that are widely used in both research and clinical settings are 

evaluated against ground-truth data generated with FiberBlender. The study is performed on a 

number of different crossing geometries and preliminary results show that the CHARMED model 

is the most comprehensive approach. 
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I. INTRODUCTION 

1.1 Overview 

Since its inception, magnetic resonance imaging (MRI) revolutionized medicine by enabling 

a non-invasive in vivo examination of the human body that did not require the harmful use of 

ionizing radiation such as X-ray and tomography. Conventional MRI exploits the property of 

nuclear magnetic resonance (NMR) which stipulates that under a strong magnetic field, atomic 

nuclei can absorb and emit radio frequency (RF) signals. While any nucleus could potentially be 

used, MRI targets hydrogen as it is the most abundant in the body and forms water molecules. 

Diffusion tensor imaging (DTI) is a special MRI technique that combines this property with the 

principles of molecular diffusion to obtain magnetic resonance signals that are sensitive to the 

movement of water molecules. DTI’s advent was particularly useful for examining the brain 

where the natural random motion of water molecules is constrained by nerve axons, glial cells, 

and macromolecules such that the net flow of water follows the direction of nerves. In other 

words, DTI uses the diffusing molecules as probes to obtain microscopic details about the 

structure and orientation of the fibers themselves. 

In the last 25 years, the medical community has been primarily interested in DTI in one of 

two, yet not necessarily distinct ways. The most innovative application is certainly that of fiber 

tracking which enables the visualization and mapping of the entire neural connectivity in the 

human brain [1, 2]. This led to numerous ambitious projects such as the Human Connectome 

Project that aim at building network maps with unprecedented detail to understand the functional 

connectivity of the brain [3]. A more direct clinical application is the use of DTI measurements 

as biomarkers to examine the integrity of nerve fiber tracts for the study and diagnosis of 

neurodegenerative conditions that cause abnormalities in the central nervous system (CNS). 
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DTI’s clinical capacity has been proven for the categorization of ischemic strokes, tumors, 

Alzheimer’s disease, Multiple sclerosis (MS), traumatic brain injury, and chemotherapy induced 

neurotoxicity [4-7]. 

 

1.2 Problem Definition 

Validation in diffusion tensor imaging (DTI) is the problem of establishing an agreement 

between scanned measurements and the true anatomical properties of the tissue under 

investigation. Despite its potential some technical and hardware limitations affect DTI data 

acquisition. The most apparent problem lies with a discrepancy in scale between the observed 

signal on the scale of millimeters, and the microscopic tissue properties being measured, causing 

uncertainty in measurements [8]. In other words, DTI properties obtained from a single 

millimetric voxel are statistical parameters that result from the integration of the combined 

diffusions at the microscopic scale. This assumes homogeneity of molecular displacements and 

fiber orientation within a voxel. For this reason the extent to which DTI reveals the true 

anatomical properties remains the subject of intensive research. The main questions driving DTI 

validation studies are: How do aberrations in tissue geometry affect the measured signal? And 

what are the exact physiological events that cause certain measurements? 

 

1.3 Current State of Scholarship 

The gold-standard method for validation is to compare DTI measurements with histological 

evidence from microscopy [9, 10]. Electron microscope images as illustrated in Fig. 1.1 can 

reveal microstructural details of a fiber bundle with a high degree of accuracy. The axons 

depicted show a clear sign of myelination with multiple layers of myelin covering them and glial 

cells in between. However, this approach is not always applicable if DTI is to be used as a  
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Fig. 1.1: Electron microscope cross-section image of nerve fibers. A myelin sheath wraps around 

the axon body in several layers with glial cells located between the axons (Credit K. A. Nave / 

Max Planck Institute for Experimental Medicine [16]). 

 

biomarker for the real-time progression of brain damage and diseases in living patients. Ongoing 

advances towards intravital microscopy are making it possible to image beyond superficial 

tissues [11, 12], but they remain far from becoming practical to the human deep brain without 

surgical procedures. Additional problems lie with the difficulty to reproduce three-dimensional 

morphology of fibers from two-dimensional slices [13]. 

Another validation method is modeling the fiber tracks of the brain to synthetically produce 

ground-truth data. These techniques range from ex vivo measurements using post-mortem animal 

models and physical phantoms, to analytical models and computer simulations. Given the large 

variety of validation techniques and solutions that are offered, the main issues that have not been 

addressed in previous research are summarized as follows: 
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 Models often rely on simplistic representations of axonal geometries that do not account 

for complex configurations as seen in Fig. 1.1, and therefore cannot adequately represent 

the tortuosity and unpredictable nature of diffusion [14]. 

 Few studies have considered the presence of a myelin sheath around the axons and to the 

author’s best knowledge, no adequate attempt to model glial cells and their contribution 

to water diffusion has been published. 

 Few studies take into account the presence of water in different compartments (i.e. intra-

axonal, myelin, and extra-axonal water). 

 No existing methods have attempted to model the plasticity of the fiber structure by 

simulating conditions that cause drastic changes to the geometry (i.e. demyelination, 

gliosis, and axon compaction) and characterize their effect on the DTI signal [15]. 

 No robust optimization method has been proposed that provides a metric to compare 

acquisition methods independently of DTI parameters. 

This dissertation investigates these crucial aspects in diffusion and proposes a novel 

modeling and simulation system to accurately represent brain-like fibers, simulate water 

diffusion, and synthetize ground truth data that can be used to validate and optimize DTI 

acquisition schemes. 

 

1.4 Approach 

The last two decades have seen remarkable advances in the development of powerful 3-D 

graphics and modeling software. Despite the extensive use of such systems, most notably 

computer-aided design (CAD) systems in engineering design and simulations, few efforts have 

taken advantage of this progress for biological modeling in general and nerve representation in 
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particular. The most widely used tools for scientific simulations include Computational Fluid 

Dynamics (CFD) systems such as Comsol and Ansys, or systems with Finite Element (FE) 

methods such as CAD and Abaqus. The work presented herein takes a different approach by 

using Blender, a free open source software offering a complete 3D creation pipeline, including 

modeling, simulation, rendering and motion tracking. Although mainly intended for graphic 

design, computer animation, and gaming its effectiveness for biological modeling has been 

demonstrated with BioBlender [17], a tool developed for visualizing the surface of moving 

proteins and understanding the dynamical forces governing molecular interactions. 

For the purpose of DTI, the system needs to accomplish two goals: model the fiber geometry 

and simulate the diffusion of water molecules. Blender delivers many advantages in both areas. 

As a modeling tool Blender provides more control over the geometry of individual objects and 

meshes. This allows for more accuracy in representing fibers in non-conventional shapes and 

configuration, and improves the flexibility of the system as objects can be easily modified and 

tuned to simulate demyelination, gliosis, or axon compaction. This is essential to modeling both 

the tortuosity and plasticity of the axon structure. As a simulation tool, a key feature in Blender 

is its particle system primarily used to simulate phenomena such as fire, dust, clouds, smoke, or 

in this case liquid particles. Unlike CFD and FE methods Blender relies on Bullet Physics, a 

powerful physics engine commercially used in games and movies, to calculate particle motion 

and collision with other interacting objects. Developed in 2006, Bullet uses the Sequential 

Impulse algorithm [18] to solve constrained rigid body systems and collisions. Extensive 

comparisons of commonly used physics engines [19, 20] suggested that Bullet Physics displays 

better accuracy and algorithm convergence in calculating an object’s motion, but has lower 
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predictability, i.e. small changes in the initial conditions yield large variations in the output. This 

is an acceptable tradeoff in the context of simulating the random diffusion of water molecules. 

A scripting option in Blender allows users to programmatically generate objects and simulate 

events using custom Python scripts. In the presented work, all the simulations have been 

implemented in Python within the Blender environment while post-processing computations to 

obtain DTI signals are performed with MATLAB. 

 

1.5 Contribution Statement 

The trend in recently published DTI validation methods is to simulate water diffusion to 

extract synthetic ground-truth data. However the validity of simulations relies on the accuracy of 

the models in use. Therefore the primary contribution of this work is to provide more realistic 

representations of fiber bundles that also include myelin, and glial cells. In particular the 

proposed FiberBlender system strays away from the “one-size-fits-all” approach taken by 

previous approaches and offers models with a random spatial location of axons to account for the 

tortuosity of the fiber structure.  In addition to better accuracy, spatial randomness allows 

FiberBlender to generate various models such that no two are the same. This novel feature is 

essential as most validation techniques are model specific and do no account for the substantial 

variations among human subjects.  Consequently, many published DTI optimization procedures 

are also model specific and may be sub-optimal or even unfeasible for different subjects or with 

a different scanner [21]. 

Furthermore, the produced models are flexible with easily modifiable geometries to account 

for the plasticity of fiber bundles. This feature is exploited to simulate demyelination and study 

its effect on the observed DTI signal. Gliosis and axon compaction are additional examples of 

plasticity examined in this work that have not been addressed in the literature. 
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The FiberBlender system is also capable of generating models in any desired configuration to 

potentially mimic different regions of the brain. Specifically this dissertation looks at the 

problem of crossing fibers and evaluates the performance of non-tensor based diffusion models. 

The novelty of FiberBlender is its capacity to isolate the particle systems originating from each 

fiber direction to obtain ground-truth diffusion profiles as a benchmark to compare diffusion 

models. This step is fundamental for fiber tracking as many simulations show that even the most 

sophisticated tractography algorithms do not perform consistently well since their accuracy 

depends on the type of diffusion model used [22]. 

Finally a novel optimization method is introduced. In the author’s assessment of the 

literature, the problem of optimization in DTI is not well defined since most presented methods 

are model-specific and it not clear what parameters need to be optimized. In other words, there 

needs to be a clear metric independent of scanned measurements to quantitatively assess and 

enhance the quality of scans. This dissertation introduces the notion of optimization based on 

Shannon entropy and mutual information. While the idea of maximum entropy is commonly 

used for image registration problems in general as well as for MRI registration, it has not been 

used in the study of DTI acquisitions. 

 

1.6 Organization 

The remainder of this manuscript is organized as follows. Chapter 2 presents a 

comprehensive chronological synopsis of the emergence of DTI, beginning with the original 

discoveries on particle diffusion and magnetization up until the modern applications of the 

technology, and ends with a literature review of the state of the art and its limitations. Chapter 3 

begins with a description of the biological properties of axons, myelin and glial cells as 

requirements for correct modeling strategies, then introduces the FiberBlender simulation system 
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with all its components, i.e. fiber modeling, particle diffusion, signal acquisition, and baseline 

experiments. Chapter 4 takes a closer look at the problem of demyelination and its relationship to 

gliosis and axon compaction to characterize their effect on DTI measurements. The chapter also 

proposes an optimized DTI acquisition scheme based on mutual information. Chapter 5 provides 

a comparative study of the most commonly used multi-tensor based diffusion models to evaluate 

their performance with crossing fibers. The comparison is performed on ground-truth data 

generated with FiberBlender. 
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II.   EVOLUTION OF DIFFUSION TENSOR IMAGING 

 

In 2003, Paul C. Lauterbur and Sir Peter Mansfield jointly received the Nobel Prize in 

Physiology or Medicine for their pioneering contributions that led to the application of magnetic 

resonance in medical imaging. The decision however did not come without controversy from the 

scientific community for the exclusion of Raymond V. Damadian considered by many to be the 

true inventor of MRI. Regardless of this verdict, MRI and its extension to DTI are complex 

multidisciplinary subjects that resulted from decades of research and development in several 

fields of science and engineering. The purpose of this chapter is to present a historical overview 

of the emergence of DTI as a way of introducing all the concepts, terms, and equations relevant 

to later discussions, leading up to the current state of the art in DTI validation and its limitations. 

The chapter begins with a brief summary of the laws governing the diffusion of molecules, 

followed by a description of the nuclear magnetic resonance phenomenon due to the interaction 

of a nucleus with an external magnetic field that led to the invention of MRI. Combining the two 

ideas, the following sections examine the use of magnetic gradients to produce diffusion 

weighted magnetic resonance signals and the emergence of DTI as a measure of molecular 

diffusivity. The final sections shed light on the current limitations with DTI acquisitions and the 

tensor model, examine the state of the art in current validation techniques, and clarify the need 

for further improvement. 

2.1 On Brownian Motion 

The random erratic movement of pollen grains in a fluid was first observed in 1827 by 

botanist Robert Brown. The driving force behind this phenomenon, later known as Brownian 

motion, puzzled physicists for many decades until Adolf Fick introduced the notion of  diffusion 
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as one of two fundamental methods of fluid transport [23], the other being advection. Inspired by 

Fourier's law for heat conduction and Ohm's law for the transport of electric charge, Fick arrived 

at a simple law that linearly relates the diffusion flux 𝑱 to the concentration gradient of a 

substance expressed as 

𝑱 =  −𝐷∇𝑪 (1) 

where 𝐷 is the diffusion coefficient and 𝑪 is the concentration of a substance per unit volume. 

The negative sign signifies that a solute will diffuse from a region of high concentration to a 

region of low concentration across a concentration gradient. 

Fick’s law clarified the macroscopic diffusion process, yet his findings predate the discovery 

of particles and molecules to explain the individual self-diffusion of water molecules at the 

atomic level. This description would come later in 1905 when Einstein observed that particles in 

a solution move erratically due to their thermal kinetic energy [24]. Einstein provided a method 

to statistically measure the displacement of molecules based on the diffusion coefficient such 

that the mean-square displacement of particles < 𝑥2 > is given by 

< 𝑥2 >= 𝑛𝐷∆𝑡 (2) 

for a diffusion time ∆𝑡, and 𝑛 = 2, 4, or 6 for one, two, or three dimensions respectively. At a 

body temperature of 37 ̊C, water molecules diffuse at a rate of 𝐷 = 2.3×10-3mm2/s. Assuming 

three dimensional diffusion (𝑛 = 6), the average molecular displacement for a period of ∆𝑡 = 

10ms is given by the square root of (2), which yields 𝑥 = 11.75×10−3mm. However diffusion 

coefficients measured in biological tissues are generally smaller due to the viscosity of the water 

in tissue and the interaction of molecules with anatomical structures. 
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Fig. 2.1: A particle precessing along its main axis. 

 

2.2 Nuclear Magnetic Resonance 

In particle physics, atomic and subatomic particles, i.e. protons, electrons, and neutrons, all 

possess a fundamental property known as spin [25]. Although not entirely accurate, the spin of a 

particle is often compared to the angular momentum of a precessing gyroscope as demonstrated 

in Fig. 2.1, keeping in mind that a particle is not actually spinning or rotating. Similar to the 

precession frequency of a gyroscope that depends on its mass and strength of the gravitational 

field, the precession frequency of a particle depends on its gyromagnetic constant (𝛾) and the 

strength of the magnetic field (𝑩0). This is called the Larmor frequency given by 𝜔0 = 𝛾𝑩0, and 

is specific to each particle type. In the context of MRI that deals with hydrogen (1H) contained in 

water molecules, the nucleus is made of a single particle, a proton, with a Larmor frequency of 

~267.53×106 rad/s/T. In the literature related to MRI and DTI, the terms nuclei, particles, 

protons, and spins are often used interchangeably (noting that a spin is not equivalent to a 

particle but a property of it). To avoid confusion, and to remain consistent with Blender’s 

terminology, from hereinafter this text will refer to them as particles. 

When placed in an external magnetic field 𝑩0 (Fig. 2.2), a particle ensemble assumes 

equilibrium state corresponding to the direction of the main magnetic field. The application of a  
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Fig. 2.2: (a) An ensemble of particles. (b) Equilibrium, the particles align along the main 

magnetic field 𝑩0. (c)  Excitation, the magnetizations flip in the direction of the RF signal 𝑩1(𝑡). 

 

time dependent RF signal as seen in Fig. 2.2-c irradiates the particles, such that 𝑩1(𝑡) is 

orthogonal to the main field and modulated at a resonance frequency that corresponds to the 

hydrogen Larmor precession [27]. This phase called excitation results in a flip of magnetization 

to a direction perpendicular to 𝑩0 – or along 𝑩1(𝑡) – and produces a magnetic flux that can be 

detected as a small electrical current induced in the receiver coils. This is the signal measured in 

MRI and is a realization of Faraday's law of induction wherein a changing magnetic field 

generates an alternating current in a nearby conductor at the Larmor frequency. The flip angle 𝜃 

between equilibrium and excitation is dependent on the shape and duration of the RF pulse and is 

given by 

𝜃 = ∫ 𝛾𝑩1(𝜏)𝑑𝜏
𝑡

0

 
(3) 

This effect was first observed in 1946 by Felix Bloch [28], then two years later by Nicolaas 

Bloembergen and his colleagues [29], who recorded transient fluctuations as the system passed 

through resonance and named it a nuclear induction signal. They also noted that the signal dies 

after the RF field is stopped as the system of particles returns to equilibrium or the relaxation 

phase. Bloch introduced the mathematical formulation of this process used to calculate the net 



 

13 

change in magnetization and the intensity of the signal. The Bloch equations as they would 

become known formed the basis of all MRI studies. 

 

2.3 Bloch Equations 

Considering an ensemble of particles with net magnetization vector 𝑴 = (𝑀𝑥, 𝑀𝑦, 𝑀𝑧), the 

effect of the external fields 𝑩0 and 𝑩1(𝑡) during excitation is described by 

𝑑𝑴

𝑑𝑡
= 𝛾𝑴 × (𝑩0 + 𝑩1(𝑡)). 

(4) 

In MRI scanners 𝑩0 is only applied in the 𝑧 direction corresponding to the bore of the scanner. 

This directional frame of reference is used by all researchers and manufacturers. Therefore the 

strength of the field is given as 𝑩0 = 𝐵0𝑧̂ ignoring the 𝑥𝑦 plane, and (4) is often written as 

𝑑𝑴

𝑑𝑡
= 𝛾𝑴 × 𝑩(𝑡), 

(5) 

where 𝑩(𝑡) = (𝑩1𝑥̂(𝑡) + 𝑩1𝑦̂(𝑡) + ∆𝑩𝑧̂(𝑡)). When the RF pulse is stopped the magnetization 

vector returns to its equilibrium position along the direction of the main field, or the 𝑧 direction. 

This is described by two relaxation mechanisms. The spin-lattice relaxation is the process by 

which the longitudinal component 𝑀𝑧 of the magnetization vector recovers exponentially 

towards equilibrium and is characterized by 𝑇1, the time required for 𝑀𝑧 to reach (1 − 1/e) or 

63% its maximum value (Fig. 2.3-a). Conversely, the transverse component 𝑀𝑥𝑦 decays 

exponentially to zero and is called the spin-spin relaxation characterized by 𝑇2, the time required 

for 𝑀𝑥𝑦 to fall to approximately (1/e) or 37% of its initial value (Fig. 2.3-b). The relaxation terms 

can now be added to (5) for the complete formulation of the Bloch equation 

𝑑𝑴

𝑑𝑡
= 𝛾𝑴 × 𝑩(𝑡) −

𝑀𝑥𝑥̂ + 𝑀𝑦𝑦̂

𝑇2
−

𝑀𝑧𝑧̂ − 𝑀0

𝑇1
. 

(6) 

Solutions to (6) for the longitudinal direction 𝑧 and the transverse plane 𝑥𝑦 are given as 
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𝑀𝑧(𝑡) = 𝑀0(1 − 𝑒−𝑡 𝑇1⁄ ), 

𝑀𝑥𝑦(𝑡) = 𝑀0𝑒−𝑡 𝑇2⁄ . 

(7) 

(8) 

 

Fig. 2.3: (a) Longitudinal magnetization recovery and (b) transverse magnetization decay. 

 

Time constants 𝑇1 and 𝑇2 are properties of tissues and in general 𝑇2 ≪ 𝑇1. Table 1 shows 

longitudinal and transverse relaxation times for different tissue types in the body obtained from 

the literature measured at 37̊C for 1.5 and 3T [30]. Note that cerebrospinal fluid (CSF) and 

blood, also present in the brain have much higher relaxation times, for this reason MRI and DTI 

studies can distinguish them from water contained in white matter (WM) and gray matter (GM). 

 

Table 1. 𝑇1 and 𝑇2 relaxation times at 1.5T and 3T measured at 37°C. 

Tissue 𝑻𝟏-3T (ms) 𝑻𝟐-3T (ms) 𝑻𝟏-1.5T (ms) 𝑻𝟐-1.5T (ms) 

WM 1084 ± 45 69 ± 3 884 ± 50 72 ± 4 

GM 1820 ± 114 99 ± 7 1124 ± 50 95 ± 8 

CSF 69 ± 3 69 ± 3 69 ± 3 69 ± 3 

Blood 1932 ± 85 275 ± 50 1441 ± 120 290 ± 30 

Liver 812 ± 64 42 ± 3 576 ± 30 46 ± 6 

Heart 1471 ± 31 47 ± 11 1030 ± 34 40 ± 6 
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2.4 Pulsed Sequences 

Bloch and Bloembergen employed a continuous 𝑩1(𝑡) wave with fixed RF field and could 

only record small oscillations from the 𝑇2 transverse signal. Meanwhile Erwin Hahn, working 

simultaneously on NMR was investigating pulsed RF techniques [31, 32]. 

 

Fig. 2.4: Formation of a spin echo by two RF pulses. 

 

With an RF pulse, Hahn observed a transient sine wave oscillating at Larmor frequency and 

decaying exponentially, naming it the nuclear induction decay which today is commonly referred 

to as the free induction decay (FID) signal. With the application of a second consecutive 90° RF 

pulse at time 𝑡 = 𝜏 (Fig. 2.4), Hahn also witnessed the formation of a second FID and named it 

the spin echo formed at echo time (𝑡 = TE) such that 𝜏 = TE/2. He noted that the difficulty in 

measuring the first FID signal was due to a loss of coherence of particle phases from the inherent 

inhomogeneity of the background magnetic field. Although Hahn first used a 90°-90° pulse pair, 

most sequences today use a second pulse at 180° (Fig. 2.5-c) as this maximizes the intensity of 

the spin echo. The second RF pulse inverts the phase accumulated by particles and restores the 

coherence to form a more measureable echo signal (Fig. 2.5-d). Hahn remarked that the loss of 

coherence was also due to the diffusivity of particles, thus setting the stage for the development 

of diffusion MRI. 
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Fig. 2.5: (a) Magnetization flip after the application of a 90° 𝑩1(𝑡) pulse at t = 0. (b) Dephasing 

after 𝑩1(𝑡) is turned off. (c) Second 180° 𝑩1(𝑡) pulse applied at 𝑡 = 𝜏 initiates re-phasing. (d) 

Re-phasing is complete and a measurable spin echo signal is generated at time 𝑡 = TE. 

 

2.5 Spatial Localization and the First Scanners 

The work presented by Bloch, Bloembergen, and Hahn laid the foundation for MRI, and in 

1952 Herman Carr produced the first one dimensional MRI image [33]. Yet all the experiments 

so far were performed on water and other fluids, not on human or animal bodies. This idea would 

first come 1971 when Raymond Damadian [34] proposed that tumors and normal tissue can be 

distinguished by their relaxation times with in vivo NMR. However the feasibility of generating 

2D pictures from a scan was not determined. Two problems remained unanswered to produce 

such images. First is the problem of spatial localization in order to receive an NMR signal from a 

specific region of interest (ROI) in the body, and second is the problem of performing scans in 

realistic time. In 1973, Paul Lauterbur proposed a revolutionary technique using magnetic 

gradients to spatially modify the Larmor frequencies of particles, and capture the NMR signal 

using a Fourier frequency decomposition of the spin echo [35].  Since the Larmor frequency is 

relative to the strength of the magnetic field, gradients can be used to spatially modify the 

frequency such that only particles from a particular point in space will emit an NMR signal. 

While this proved crucial to obtaining spatial specificity it still required hour long scans. In 1975  
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Fig. 2.6: (a) Diagram showing an example of slice selection (red plane) along the 𝑧 axis (b) Pulse 

sequence timings of spatially encoding gradients with slice selection pulse 𝐺𝑧, phase encoding 

pulse 𝐺𝑦 and frequency encoding pulse 𝐺𝑥. 

 

Peter Mansfield developed an echo planar echo imaging (EPI) technique to cover a 2D slice with 

a single FID readout greatly reducing scan times [36]. 

A demonstration of this procedure is shown in Fig. 2.6-a. A gradient 𝐺𝑧 is used 

simultaneously with the RF pulses to create a spatial variation of Larmor frequencies along the z-

axis. Therefore when the RF pulses are applied, only a single slice of particles with 

corresponding frequency will get magnetized. 𝐺𝑧 is called the slice selection pulse. After slice 

selection (Fig. 2.6-b), two more gradients are used to spatially encode particles in the sample. A 

phase encoding gradient in the y direction is applied for a range of amplitudes to record the rate 

of change of particle phases, then at t = TE a gradient in the x direction is applied to frequency-

encode the particles. This method allows MRI data to be directly mapped to a spatial frequency 

domain called k-space with frequency and phase corresponding to the 𝑘𝑥 and 𝑘𝑦 axes 

respectively. Image acquisition is therefore reduced to resolving the 2-D inverse Fourier 

transform of the k-space data.  
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Peter Mansfield’s EPI technique uses phase and frequency pulse trains to rapidly traverse the 

k-space in a single scan thereby reducing scan times from several hours to a few minutes. In 

1977 the first image of vivo human anatomy was performed by Mansfield on his colleague’s 

finger, and in 1980 the Mark 1, the first fully functional and non-experimental MRI scanner, 

obtained the first clinically useful MRI image of a patient’s internal tissues. 

 

2.6 Diffusion Sensitization 

Although the application of diffusion MRI would not see the light of day until the 1980’s, the 

initial mechanisms were first introduced by Henry C. Torrey in 1956 [37]. Torrey extended the 

Bloch equations and introduced a diffusion term such that 

𝑑𝑴(𝑟, 𝑡)

𝑑𝑡
= 𝛾𝑴(𝑟, 𝑡) × 𝑩(𝑟, 𝑡) −

𝑀𝑥𝑥̂ + 𝑀𝑦𝑦̂

𝑇2
−

𝑀𝑧𝑧̂ − 𝑀0

𝑇1
+ ∇ ∙ (𝐷∇𝑴). 

(9) 

In this formulation, the magnetization 𝑴 and field strength 𝑩 are functions of both time and 𝑟 

the displacement of a particle and 𝐷 is the particle diffusion coefficient introduced at the 

beginning of this chapter. Stejskal and Tanner in 1965 [38] developed a solution for (9) by 

introducing magnetic gradient pulses, in a similar fashion to spatial encoding gradients, but for 

the purpose of sensitizing the NMR signal to diffusion and measuring 𝐷. 

The diffusion weighted Stejskal-Tanner sequence in Fig. 2.7, more commonly known as the 

pulse gradient spin echo (PGSE), remains one of the most commonly used sequences for routine 

clinical DTI image and data acquisition. A typical PGSE sequence contains two periods of equal 

duration 𝑇 for a total echo time TE = 2𝑇. Similar to the Hahn sequence, at 𝑡 = 0, a 90º RF pulse 

magnetizes the particles, followed by a gradient pulse at an arbitrary time 𝑡1 with strength 𝑔 and 

duration 𝛿. The pulse dephases the magnetization of particles along its direction. In the next 

period, a 180º RF pulse refocuses the spins, and a second gradient pulse of equal strength and 
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duration but opposite direction rephases the magnetization of the spins. The second gradient is 

separated from the first by duration Δ. 

 

Fig. 2.7: Pulse gradient spin echo (PGSE) sequence with pulse strength 𝑔, width 𝛿, and distance 

between the two pulses 𝛥. 

 

The original solution to the Bloch equation given in (4) and (5) along the longitudinal direction 

and transverse plane can be combined as,  

𝑆0 = 𝑀0(1 − 𝑒−𝑡 𝑇1⁄ )𝑒−𝑡 𝑇2⁄ , (10) 

such that 𝑆0 is the NMR signal without diffusion as detailed in previous sections. Factoring in 

the diffusion sensitizing gradients, Stejskal and Tanner observed an attenuation of that signal. 

The solution to the Torrey-Bloch equation (9) becomes 

𝑆 = 𝑀0(1 − 𝑒−𝑡 𝑇1⁄ )𝑒−𝑡 𝑇2⁄ 𝑒−𝐷𝑏, (11) 

simplified as 

𝑆 = 𝑆0𝑒−𝐷𝑏, (12) 

where 𝐷 is the diffusion coefficient and 𝑏 is the degree of sensitization to diffusion given by the 

gyromagnetic ratio of hydrogen 𝛾, and the characteristics of the gradient pulse 𝑔, 𝛿, 𝛥 such that 
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𝑏 = 𝛾2𝑔2𝛿2 (∆ −
𝛿

3
). 

(13) 

To fully understand the effect of diffusion gradients on the signal attenuation, consider the 

diagram depicted in Fig. 2.7. Since the Larmor frequency of precession is proportional to the 

strength of the magnetic field, the precession rate in the absence of magnetic gradients is uniform 

(Fig. 2.8-a).  The application of the first gradient dephases the precessions and particles start to 

precess at different rates depending on their spatial position along the gradient (Fig. 2.8-b). The 

second pulse rephrases the particles (Fig. 2.8-c). For non-diffusing particles, the phase change 

induced by both gradient pulses will cancel out and the NMR signal is not affected. However, 

when a particle moves, there will be a phase difference resulting in an attenuation of the NMR 

signal proportional to the distance travelled along the direction of the gradient. 

 

Fig. 2.8: Diagram showing dephasing and rephrasing due to magnetic gradients. (a) With no 

gradients all particles precess at the same rate given by the uniform field 𝑩0. (b) The first 

gradient dephases the particles by modifying the rate of precession. (c) Particles rephrase if they 

maintain the same position. 



 

21 

2.7 Diffusion Tensor Imaging 

The application of the diffusion gradients to imaging did not attract attention until the mid-

1980’s when Le Bihan’s seminal work incorporated the Stejskal-Tanner sequence to produce the 

first in vivo diffusion weighted MRI images of the brain [39, 40]. Le Bihan introduced the notion 

of an apparent diffusion coefficient (ADC or 𝐷𝑎𝑝𝑝), replacing 𝐷 to indicate that water diffusion 

in the brain is not free, but is restricted by nerve fibers. ADC can be quantitatively measured 

from (12) by obtaining both the baseline signal without diffusion gradient (𝑆0) and signals with 

gradients applied (𝑆) to solve for 

𝐷𝑎𝑝𝑝 = −
ln (𝑆/𝑆0)

𝑏
. 

(14) 

With this approach, ADC maps can be produced as a measure of diffusivity in each image 

pixel to create diffusion contrast in MRI images. Potential clinical applications of diffusion MRI 

were suggested very early, with the most successful application in ischemic strokes [41 - 43], 

and tumors [44, 45]. Building on Le Bihan’s results, in 1994 Basser introduced a diffusion tensor 

and tensor-based metrics to better describe the diffusivity of particles [46, 47]. Basser’s method 

reformulated the ADC, no longer as a single scalar, but as a 3×3 tensor (Fig 2.9-b) fully 

describing molecular diffusion in all directions such that 

𝑆 = 𝑆0𝑒−𝑏 𝑔T𝐃𝑔, (15) 

with 

𝐃 = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

]. 

(16) 

Because the tensor has 6 components, a minimum of 6 signals are required from different non-

collinear gradients directions 𝑔𝑘 (𝑘 = 1,…,6; 𝑘 ≥ 6) with corresponding signals 𝑆𝑘 in addition to 
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the gradient-free signal 𝑆0 used a reference. The eigenvalue and eigenvector decomposition of 

the tensor (λ1, λ2, and λ3 in Fig. 2.9) give the amount of diffusion along the principal axes with 

λ1 as the main axial diffusivity (AD) and λ2, λ3 as the amount of radial diffusivity (RD) while 

the mean diffusivity (MD) is used as the measure in all directions. Another tensor-derived 

parameter and perhaps the most widely used is Fractional Anisotropy (FA) calculated as a 0 to 1 

scalar describing the degree of anisotropy in a ROI. A value of 0 denotes an isotropic diffusion 

equal in all directions, in contrast a value of 1 denotes a highly anisotropic diffusion confined to 

a single direction. 

Basser’s tensor model further opened the door to new applications for DTI. Interest quickly 

grew for the study of neurodegenerative disease such Alzheimer’s [48, 49], and MS [50 - 52] by 

recording variations in AD, RD and FA to understand how diseases affect neural tracts. More 

recently attention turned to studies on chemotherapy [53, 54]. In parallel, DTI based tractography 

gained momentum and by 1999 the first representations of in vivo tractography successfully 

reconstructed well-known fiber bundles in the human and animal brain [55 - 57]. 

 

Fig. 2.9: (a) Diagram showing the trajectory of a particle hindered by fibers. (b) The diffusion 

tensor outlining the particle’s main directions of movement with λ1as the main axial diffusivity 

component and λ2, λ3 as the radial diffusivity components. 
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2.8 Problems with DTI and the Need for Validation 

Despite the promises of DTI-based studies, concerns regarding the accuracy of measurements 

developed early [58]. As highlighted in the previous chapter, the main limitation in DTI is the 

discrepancy between the scale of a voxel and the biological features to be measured. The 

diffusion tensor is a macroscopic statistical displacement profile of all the combined microscopic 

diffusions and assumes homogeneity within a voxel. This becomes particularly problematic 

when considering fibers in multiple orientations (i.e., crossing, kissing, and bending).  Resolution 

limits are due to MRI hardware. The highest clinically feasible diffusion voxel resolutions are 

about 1.4×1.4×1.4mm, or about 8 times the resolution of conventional MRI [59]. Higher 

resolutions can be obtained along a specific plane by using non-isotropic voxels (e.g. 

0.4×0.4×7mm), but this approach heavily biases the measured diffusivity along the orientation of 

the voxel [60] and negatively impacts signal to noise ratio (SNR) and spatial specificity, 

requiring significantly longer acquisition times [58]. Low SNR also biases measurements and 

over-estimates FA values in tissues [61]. Imaging artifacts from head motion, eddy currents, and 

inhomogeneity in the magnetic field are additional intrinsic problems to DTI that depend not 

only on the voxel size but also on the choice of pulse sequence parameters and gradient 

orientation [39, 62].  

In addition, water particles are contained in several tissue compartments with different 

diffusion profiles, i.e. water within the axon (intra-axonal), in between axons (extra-axonal), and 

myelin water. It is generally understood that particles in the extra-axonal space undergo a 

hindered diffusion, and move more freely than in the intra-axonal space under restricted 

diffusion [63]. However, the contribution of particles in myelin water to the observed DTI signal 

remains unclear since current processing techniques lack tissue specificity and many models 
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assume that myelin water has no direct signal contribution because of its low density and short 

𝑇2 relaxation time [64]. 

These obstacles create inconsistencies between DTI-derived measurements and the true 

anatomical properties of tissues. Nevertheless, DTI is likely to remain a widely used tool in 

neuroscience as it is currently the only noninvasive method that allows visualization of WM 

pathways in vivo [58]. For this reason, there has been growing interest in recent years to provide 

methods that can quantitatively validate DTI acquisition. 

 

2.9 State of the Art in DTI Validation 

DTI’s unique in vivo and non-invasive quality propelled its success. Conversely, this has also 

made it difficult to validate measurements. Histological validation normally considered gold-

standard is not always applicable for longitudinal studies of the pathological evolution of disease 

and abnormalities in the CNS. Another direction is modeling brain fibers and simulating DTI to 

produce ground-truth synthetic data and validate clinical observations. These methods largely 

fall under four categories: Analytical models, animal models, phantoms, and computer 

simulations. The last 10 years in particular have witnessed an increasing interest in computer 

simulation using a Monte-Carlo (MC) process to simulate particle diffusion. The following 

sections take a deeper look at each of these approaches. 

2.9.1 Animal Models 

Animal studies account for much of the medical progress in understanding the dynamics of 

diseases, infections and toxicities. This is no different to DTI and animal experiments began 

early, usually relying on rat models and non-human primates [65 - 70]. The procedure involves 

injecting axonal tracers in fiber tracts, typically manganese ion, followed by post-mortem ex 

vivo data acquisition. Animal models have the clear advantage of using real biological tissues 
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and early testing was successful. Studies in [66] and [67] demonstrated DTI’s precision in 

identifying the effects of demyelination and ischemia on FA, AD and RD measures, and in 2001 

Lin [68, 69] performed the first validation experiments of DTI tractography using animal models 

confirming accuracy by superimposing DTI images with manganese-enhanced MRI tracts. 

However animal WM structures, specifically from rat brains, cannot capture the complexity of 

fiber arrangements that exist in human brains [71], and thus may not be sufficient to evaluate the 

inherent limitations of diffusion tensor models with respect to tractography and resolve complex 

fiber configurations. These models also lack the plasticity to tune geometric parameters for a 

progressive study of demyelination and other structural variations. Furthermore, this method 

relies on the intravenous injection of tracer and post-mortem acquisitions invalidating DTI’s 

noninvasive and in vivo property. 

2.9.2 Phantoms 

Phantoms are another example of broadly used models and can be categorized as physical (or 

hardware) phantoms and software phantoms. Similar to animal models, physical phantoms can 

provide experimental data through conventional DTI scans, but offer more flexibility in 

modifying the geometry. Physical phantoms are usually produced as hollow capillaries [72 - 76] 

or synthetic fibers [77 - 81] with each type presenting different material properties. Hollow 

capillaries have the advantage of capturing both intra-axonal and extra-axonal diffusions but 

cannot be used to build complex configurations such as crossing and bending fibers. On the other 

hand synthetic fibers are more flexible with tunable axon sizes and can be formed with 

geometries similar to WM bundles, but they are limited to simulating the extra-axonal 

compartment. In addition neither of the above materials has modeled myelin formation around 

the axons and cannot represent the properties of biological tissues in terms of compartment 
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permeability and viscosity. Moreover, manufacturing hardware phantoms with suitable 

complexity can be very challenging therefore another approach is to use software phantoms. An 

advantage with software is the ability to test DTI acquisition degradation (e.g. simulate 

acquisitions at different SNR levels) which is impossible with hardware phantom since the data 

is acquired by an MR scanner in the first place. Although existing software phantoms are 

generally very flexible [82 - 85], most of them are not accurate in terms of spatial geometry, WM 

bundle organization, or acquisition protocol in a unified framework. More recently, the Fiberfox 

phantom [86] released in 2013 and D-BRAIN phantom [87] released in 2015 tackled some of 

these problems and are able to provide far more realistic fibers and generate data following 

standard DTI acquisition protocols. However Fiberfox requires extensive manual operations and 

expert neuroanatomical knowledge since fiber strands are drawn by a user making it impractical 

and time-consuming, whereas D-BRAIN requires almost no manual intervention by 

reconstructing WM structures from DTI data but is susceptible to errors if the input DTI data 

itself is corrupted during acquisition. Another disadvantage with software based DTI acquisitions 

is the difficulty to correctly model the underlying mechanisms of water diffusion in neural 

tissues, specifically with different water compartments. 

2.9.3 Analytical Models 

Some analytical modeling studies provided insight into intra-axonal and extra-axonal 

diffusions by using different diffusion coefficient following Gaussian mixture models to predict 

particle diffusion in each compartment, or by estimating water exchange rate between 

compartments [88, 89]. However due to the difficulty in representing axons at random locations, 

analytical models are not widely used and typically rely on simple hexagonal or “honeycomb” 

organization with uniform axon diameters (Fig 2.10) since analytical expressions for complicated 
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geometries may not exist. While this is optimal for compactness, the repeating pattern creates 

periodicity in the displacement of molecules in sharp contrast to the tortuosity of more realistic 

arrangements. For this reason analytical models can only model parallel axons and cannot be 

used in studies on crossing fibers and tractography. 

 

Fig. 2.10: Example of a hexagonal array or honeycomb of axons. 

 

2.9.4 Computer Simulations 

Most recently, computer simulations have been the most widely chosen approach to generate 

synthetic DTI using MC methods to simulate particle diffusivity like the systems described in 

[64], [71], and [90 - 98]. Similarly to software phantoms these models offer high flexibility; the 

simulations performed by Yeh [71], Wang [91], and Landman [92] in particular can manipulate 

their geometries to simulate swelling and axonal damage. Simulations based on MC method also 

have the potential to remove most of the assumptions regarding particle motion inherently 

required by software simulations and analytical approaches. Yet the most intrinsic challenge is 

that they require an adequately large sample size (the number of particles) in order to ensure the 

stability and reliability of the results that can prove to be demanding in terms of computing 

power. In 2013 Yeh, Le Bihan, and their collaborators introduced Diffusion Microscopist 

Simulator (DMS) [71] which offers the most comprehensive system to date. DMS is capable of 

rendering 3D axonal structures in any combination of crossing, beading, and bending geometries; 
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generate diffusion data based on standard clinical acquisition protocols using a number of 

different gradient sequences; and synthetize MR images. Particle diffusion is modeled on MC-

based simulations and uses an octree structure to partition the simulation space for better 

computing efficiency. Still, as with other computer approaches, DMS relies on a simple 

hexagonal configuration (Fig. 2.10) and cannot produce realistic brain-like WM bundles. Hall 

and Alexander [96] even proved that models using hexagonal axon arrays can be easily 

reproduced analytically, questioning the purpose of using computer simulations the first place. 

Among the computer systems mentioned only a few were able to generate fibers at random 

locations. However in Fieremans’ model [98] all the axons have the same diameter and overall 

poor compactness. The studies reported by Harkins [64] and Hall [96, 97] were capable of 

producing non-uniform diameter distribution in addition to randomized locations to create a 

realistic tortuous simulation space, but they can only generate parallel axons conforming to a 

single distribution, and only Harkins [64] and Mauconduit [90] include myelinated fibers. 

Harkins provides the only simulation system that encompasses randomly located and myelinated 

axons with separate inter-axonal, myelin and extra-axonal water diffusion profiles, as well as 

water exchange between compartments. 

Each of these techniques offers advantages in some area while suffering from disadvantages 

in others. The most common problem is that few models consider myelinated fibers and those 

that do don’t take into account the non-uniformity of myelin to axon diameter ratio, or the 

different water diffusion profiles between intra-axonal, myelin, and extra-axonal compartments. 

Computer models can either represent fibers in a honeycomb arrangement with potentially 

crossing geometries, or represent randomly distributed parallel fibers but not both. In addition no 

work published so far has modeled glial cells, with the sole exception of DMS, but it does not 
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clarify how they are included in the geometry, i.e. spatial distribution and axon-to-glia ratio, and 

how they affect DTI acquisition. Finally, while some software phantoms and computer methods 

offer high flexibility in tuning the geometry, no studies made use of this feature to simulate 

demyelination, gliosis and axon compaction. The FiberBlender system presented in the next 

chapter will address all of these challenges. 
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III.     FIBERBLENDER SIMULATION SYSTEM 

 

Recreating an anatomically accurate computer representation of a nerve bundle with all its 

intricate details is a daunting task that requires making several assumptions about the 

microstructure. Nevertheless, for the purpose of simulating particle diffusion, the problem can be 

reduced to only modeling the different components affecting the diffusion i.e., axons, myelin, 

and glial cells. FiberBlender takes a similar approach to the Fiberfox phantom with user drawn 

fibers and glia. However this manual operation is limited to only producing small base models 

that are in turn used as building blocks to programmatically generate the complete structure, and 

it does not require extensive neuroanatomical knowledge as long as the base models meet a set of 

baseline criteria in terms of cell shape, distribution, density, and geometry. For this reason, the 

chapter begins with a description of the anatomy of axons, myelin, and glial cells as design goals 

for modeling strategies. This is followed by an overview of the complete FiberBlender 

framework from modeling, to diffusion simulation, and NMR signal acquisition. The final 

sections describe some baseline simulation experiments to assess the validity of the system. 

3.1 Properties of Basic Elements 

3.1.1 Axons 

From Fig. 3.1-b, the primary observations to make about a fiber bundle are the compactness 

of the geometry and the random spatial location of axons. While some existing models were 

capable of reproducing some of those aspects, they generally rely on a single axon distribution 

profile and do not account for either the variation in axon diameter, or the presence of a myelin 

sheath and glial cells. Axon density and size distributions not only depend on the region of the 

brain but can also vary between subjects further increasing the complexity of the system [99].  
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Fig. 3.1: (a) Basic elements of a fiber bundle with neurons (orange), myelin (blue), and glial cells 

(green and blue) [104]. (b) Example of an electron microscopy image of the mouse corpus 

callosum [101]. 

 

Once again the most reliable data is collected from microscopy images on humans, primates and 

rats [100 - 103]. Studies have shown that axon diameters tend to follow a gamma or Gaussian 

distribution, although measurements reported by Sepehrband [101] show that in certain regions 

of the brain diameters follow a generalized extreme value distribution. The largest axons are 

located in the center of the corpus callosum (CC) with mean diameters above 6μm whereas in 

other regions mean diameters may be as small as 0.5μm. Axon density also varies with typical 

axon volume fractions comprising between 50% and 60% for combined axon and myelin. The 

intra-axonal space, or axoplasm, is not entirely hollow and contains neurofilaments, 

microtubules, and mitochondrion but these elements can be ignored as they do not have a 

significant role in the intra-axonal diffusion [63]. Therefore in the context of diffusion, axons are 

represented as hollow oblong shaped cylinders.  
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3.1.2 Myelin 

The myelin sheath is a vital component in many mature neurons and is fundamental to the 

efficiency of neural transmissions by acting as an electrical insulator to speed up action potential 

conduction [105]. Its degeneration (demyelination) or abnormal formation (dysmyelination) 

afflicts the conductivity of neural transmissions and leads to poorer cognitive performance 

generally seen with MS patients and in post-chemotherapy. Myelin is formed by different types 

of glial cells, in the CNS their growth is supplied by oligodendrocytes (Fig. 3.1-a), whereas in 

the peripheral nervous system this role is assumed by Schwann cells. However, not all axons in 

the brain are myelinated, and similarly to axon diameters, the degree of myelination and the 

relationship between myelin thickness and axon size varies between different brain regions as 

well as among subjects. Studies even suggest that neural tracts experience rapid myelin changes 

as the brain reinforces certain connections due to learning and memory formation as evidence of 

the plasticity of neurons [107]. The g-ratio (Fig. 3.2-a) defined as the ratio between the inner and 

outer diameter of an axon is typically used to measure the degree of myelination in an ROI [106, 

108]. For normal neurons in the CNS, mean g-ratio ranges from 0.6 to 0.68 but the correlation 

between axon diameter and myelin thickness is non-linear [109]. This relationship is shown in 

Fig 3.2-b with data sampled from several macaque brains [106]. For the smallest axons ( < 1μm) 

the g-ratio is around 0.5 or 50% of the total axon diameter, then from 0.6 to 0.8 in the mid-range 

(1-4μm), and is around 0.8 for the largest axons ( > 4μm) or 20% of the total axon diameter. The 

myelin sheath is not a single layer but is made up of a spiraling arranged lamellae wrapping 

around the axon. However in FiberBlender as with other models, their representation is 

simplified as a single layer since the nature of radial water diffusion between myelin layers is not 
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well understood. The myelin sheath can be modeled as a second concentric cylinder around the 

main axon. 

 

Fig. 3.2: (a) Representation of a myelin sheath wrapping around an axon. (b) Correlation 

between axon diameter and myelin g-ratio [109]. 

 

3.1.3 Glials 

There are two types of glial cell in the CNS, microglia and macroglia of which 

oligodendrocytes (Fig. 3.1-a) and astrocytes are the largest and most abundant [110], therefore 

only these two will be modeled in FiberBlender. These cells are star shaped because of their 

numerous processes radiating in all directions that extend up to 50μm. Oligodendrocytes spread 

their processes around axons and are responsible for the development of the myelin sheath as 

shown in Fig. 3.1-a. Astrocytes have numerous functions including axon repair. Consequently 

they serve a key role in the brain despite being often overlooked or misunderstood. For the 

purpose of diffusion, only the soma (cell bodies) need to be modeled and can be represented as 

oblong ellipsoids. The size of glial cells and their ratio with respect to axons varies between 

different regions of the brain and has long been misunderstood by researchers. The soma of 
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oligodendrocytes in cerebellar white matter is generally accepted to be around 10μm whereas 

astrocytes are slightly smaller (~5μm) [111]. However the number of glial cells in the brain is 

still the subject of debate with older experiments showing a 10:1 glia to neuron ratio (GNR) 

whereas more modern estimates put this much lower to a 1:1 relationship with statistics heavily 

dependent on the region of the brain under investigation [110]. 

 

3.2 Building Fiber Bundles 

The problem of generating an axon bundle inside a cubic voxel can be likened to filling a 

square with a maximum number of circles without overlaps. In algorithms this is known as the 

two-dimensional circle packing problem and is easily solvable, one optimal solution is a 

hexagonal array of circles which is used in other modeling strategies. However this becomes 

much more complex when considering circles with arbitrary diameters. This is known as the 

Arbitrary Sized Circle Packing Problem (ACP) and is a classic example of non-deterministic 

polynomial-time or NP hard optimization problem. While some solutions have been proposed for 

ACP using heuristic approaches, none have been defined with the following additional 

constraints: 

 Oblong-shaped circles. 

 Random spatial locations. 

 Circle diameters must following a specific distribution. 

The exact mathematical definition for each of these constraints is difficult to determine and 

indeed a computational solution may not even exist. Yet in order to overcome the shortcomings 

of previous modeling strategies and create more realistic axon bundles, FiberBlender models of 

axon and glial cells must meet these criteria. For this reason the system relies on custom drawn 
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base models that can represent the above restrictions and are used as the primary building blocks 

to generate larger axon configurations. 

3.2.1 Base Models 

Base models consist of small bundles of axons and glia created manually with Blender. 

These models are comprised of hollow oblong-shaped cylinders and ellipsoids to represent 

myelinated axons and glial cells respectively (Fig 3.3). They can be combined and reshaped to 

form voxels with larger structures in any desired configuration. An initial set of 20 base models 

is created with axon sizes in ascending order such that each model forms a bin of a certain 

diameter. For example the first two models contain axons with diameters between 0 and 1μm, the 

next two contain axons with diameters between 1μm and 2μm and so on. In practice a diameter 

of 0 is not possible so the smallest axons are 0.2μm in diameter with dimensions given in terms 

of total diameter (combined axon and myelin). All base models are 10x10x10μm, two examples 

are shown in Fig. 3.3 for two base models with differently sized axons. The originality of this 

approach is that no two base models and in fact no two axons in the set are alike. The base 

models are also designed in this fashion to exemplify both the compactness and random spatial 

location of axons and glia. This randomness is extrapolated when generating larger structures to 

account for the tortuosity of the fibers, and to generate diverse models representing the 

variability among subjects. On average the combined axon, myelin, and glia volume fraction is 

around 68% while the extra-axonal volume fraction is 32% for all models. Myelin volume 

fraction controlled by the g-ratio is a user defined variable. Other variables are the distribution of 

axon diameters and the glia to axon ratio initialized as 1:1 in the base models but can be 

increased as needed. These values are set when forming the larger structure. 
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Fig. 3.3: Example of two base models (6μm left column and 3μm right column). Axons, myelin, 

and glial cells are highlighted in red, blue, and green respectively. 
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3.2.2 Generating the Structure 

Fiber generation is an iterative process where base models are combined to form a voxel. It 

begins by selecting M samples from the set of 20 base models such that the sample set 

corresponds to user defined input variables. These are: i) the dimensions of the voxel (d𝑥, d𝑦, d𝑧) 

that determine the sample size (M = d𝑦 × d𝑥/10), ii) the distribution type of axon diameters 

with corresponding parameters as one of Gaussian (mean 𝜇, standard deviation 𝜎), gamma 

(shape 𝛼, scale 𝛽), or generalized extreme value (location 𝜇, scale 𝛼, and shape 𝛽), iii) the 

myelin g-ratio that determines the myelin volume fraction, iv) the glial to axon ratio (GNR). The 

models are sampled such that the axon diameters from all M samples correspond to the target 

distribution. Models are initially placed adjacent to one another in the 𝑦𝑧 plane, or along the 𝑥 

direction, and can be rotated by a factor of 0̊, 90̊, 180̊, or 270̊ to further increase the randomness 

of the structure. This forms a layered axon structure as shown in Fig. 3.4. This example contains 

~1400 axons, with the main body and myelin highlighted in red and blue respectively, and ~2800 

glial cells uniformly distributed across the space highlighted in green. 

In case of crossing fibers each layer is rotated to correspond to a different direction, with 

additional inputs for the angle of crossing, and a second axon diameter distribution since each 

direction may have differently sized axons. 
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Fig. 3.4: Example of a 100×100×100μm fiber structure with highlighted axon body and myelin 

(red and blue top figure) and glial cells (green bottom figure). 
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3.3 Diffusion Simulation 

A key feature in Blender is its particle system. Particles are generated across the voxel and 

are located either in the extra-axonal space (between axons), within the myelin layer, or in the 

intra-axonal space (inside individual axons). Their spatial distribution however is not uniform 

with 60%, 30% and 10% of particles present in the extra-axonal, intra-axonal, and myelin 

respectively. A Brownian force causes them to move and interact with the surrounding axons and 

glia boundaries creating a hindered and restricted diffusion. The diffusion coefficient 𝐷 of water 

molecules ranges from 1 to 3 mm2/s at body temperature (37ºC). However in Blender there is no 

single variable to directly regulate the diffusion rate, this is controlled by a set of dimensionless 

parameters. In addition, the Sequential Impulse Solver algorithm that computes physics in 

Blender has low predictability and any small changes in the initial conditions of the system, such 

as a particle’s initial position, results in large variations. Therefore before each simulation is 

performed, the system needs to be properly calibrated in order achieve a desired diffusion rate. 

For this purpose a free diffusion calibration test is devised where particles move in an isotropic 

setting with no obstacles or boundaries. In this environment, the theoretical amount of particle 

displacement can be estimated from (2) < 𝑥2 >= 𝑛𝐷∆𝑡 using Einstein’s relation. For the 

calibration test, N particles are generated over the simulation space and are diffused over a 

period 𝛥𝑡. Each particle’s displacement vector 𝑥𝑖 is recorded, representing the total distance 

traveled by each particle 𝑖. The experimental < 𝑥2 >, also called the expectation value, can be 

calculated from 

< 𝑥2 >=
∑ 𝑥𝑖

2N
𝑖=1

N
. 

(16) 
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Using these definitions, Blender’s diffusion parameter can be calibrated such that the 

experimental expectation value closely approximates the theoretical value from (2) for a desired 

diffusion coefficient 𝐷. For example, to obtain a diffusion rate of 𝐷 = 2.6μm2/ms over 100ms 

with 𝑛 = 6, the square root expectation value from (2) yields < 𝑥2 > = 39.496, and Blender’s 

parameters are calibrated to approach the same value from (16). This is illustrated in Fig. 3.5 

where the system is calibrated to closely approximate a diffusion rate of 2.6mm2/s. 

 

Fig 3.5: Calibration of the experimental expectation value (blue curve) calculated from (16), to 

the theoretical value (red curves) obtained from (2). 

 

3.4 Extracting DTI Measurements 

With the working model and diffusion simulation in place, the next stage is to extract NMR 

signals to compute the ADC, the diffusion tensor, and other measurements. Within Blender’s 

framework, the system does not emit RF pulses to magnetize the particles, and the particles in 

turn do not possess a spin to get magnetized and emit NMR signals, they simply act as inert 

objects with infinitesimal size diffusing inside the simulation space. Therefore signals cannot be 

simulated or measured by the conventional approach. Stejskal and Tanner’s method showed that 

the attenuation in NMR signal, calculated in (12), is due to a phase shift proportional to a 
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particle’s diffusion. Therefore, signals can be obtained by calculating each particle’s 

accumulated phase from the displacement vectors obtained during the simulation. 

3.4.1 Measuring the ADC 

Recalling the previous chapter’s discussion (Fig. 2.8), in the absence of gradients the 

magnetic field is uniform such that all the particles precess at the same rate and a particle’s phase 

is relative to the static field 𝑩0 such that φ(𝑡) = 𝛾𝑩0𝑡 [112].  When a gradient of strength 𝑔 and 

duration 𝛿 is applied, the distance 𝑟𝑖 traveled by each particle 𝑖 induces a phase shift given by 

φ𝑖(𝑡) = 𝛾𝑩0𝑡 + 𝛾𝑔 ∫ 𝑟𝑖(𝑡)𝑑𝑡
𝑡1+𝛿

𝑡1

. 
(17) 

With a PGSE sequence, two gradients are used producing a phase shift relative to each period. 

Therefore at the end of the sequence (𝑡 = TE) the total shift for each particle is given by 

φ𝑖(TE) = {𝛾𝑩0𝑡 + 𝛾𝑔 ∫ 𝑟𝑖(𝑡)𝑑𝑡
𝑡1+𝛿

𝑡1

} −  {𝛾𝑩0𝑡 + 𝛾𝑔 ∫ 𝑟𝑖(𝑡)𝑑𝑡
𝑡1+∆+𝛿

𝑡1+∆

} 

= 𝛾𝑔 {∫ 𝑟𝑖(𝑡)𝑑𝑡
𝑡1+𝛿

𝑡1

− ∫ 𝑟𝑖(𝑡)𝑑𝑡
𝑡1+∆+𝛿

𝑡1+∆

}. 

 

(18) 

Here 𝑟 refers to the longitudinal displacement measured along the direction of the gradient only, 

since a transverse translation does not result in any change in magnetization. Looking back at the 

PGSE sequence in Fig. 2.7, (18) shows how the first integral relates to the phase accumulated 

during the first gradient pulse, while the second integral relates to the phase accumulated during 

the second gradient pulse. For an ensemble of particles, the diffusion profile is generally 

approximated as Gaussian producing a Gaussian distribution of phases [112]. With these 

considerations, the normalized attenuation of the echo signal is calculated by 
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𝑆 = 𝑆0 ∫ P(φ, TE) cos φ 𝑑𝑡
∞

−∞

, 
(19) 

where P(φ, TE) is the phase distribution function. By definition it must be a normalized function 

such that ∫ P(φ, TE)𝑑𝑡 = 1
∞

−∞
. Therefore the integral in (19) is the expected value of the cosine 

of the phases, and assuming the distribution to be Gaussian, it is rewritten as 

𝑆 = 𝑆0

∑ cos 𝜑𝑖
N
𝑖=1

N
, 

(20) 

for a discrete number of particles N. The attenuation signal was defined as 𝑆 = 𝑆0𝑒−𝑏𝐷 in (12), 

hence the ADC is found by combining the right hand sides of (12) and (19), and performing the 

natural logarithm to solve for 𝐷𝑎𝑝𝑝 

𝑆0𝑒−𝑏𝐷𝑎𝑝𝑝 = 𝑆0

∑ cos 𝜑𝑖
N
𝑖=1

N
, 

 

𝐷𝑎𝑝𝑝 = −ln {
∑ cos 𝜑𝑖

N
𝑖=1

N
}  𝑏⁄ , 

(21) 

3.4.2 Calculating the Tensor and DTI Metrics 

To obtain a diffusion tensor, this process is repeated for at least six gradient directions by 

acquiring the ADC for each one. [113] introduces the vectors 

D̅ =  [𝐷𝑥𝑥  𝐷𝑦𝑦  𝐷𝑧𝑧  𝐷𝑥𝑦  𝐷𝑥𝑧  𝐷𝑦𝑧]
T

, (22) 

as a reformulation of the tensor in (16) and  

g̅𝑘 =  [𝑔𝑥
2  𝑔𝑦

2  𝑔𝑧
2  2𝑔𝑥𝑔𝑦  2𝑔𝑥𝑔𝑧  2𝑔𝑦𝑔𝑧]

T
, (23) 

corresponding to each gradient direction 𝑘. The tensor equation is now expressed as 

g̅𝑘
T ∙ D̅ = 𝐷𝑎𝑝𝑝𝑘

  (𝑘 = 1, … , 𝐾; 𝐾 ≥ 6). (24) 

This system can be rewritten in matrix form: 
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𝐀D̅ = 𝐁, (25) 

where 𝐀 is the 𝑘 x 6 matrix 

𝐀 = [
g̅1

T

⋮
g̅𝑘

T
] = [

𝑔1
2

𝑥
𝑔1

2
𝑦

𝑔1
2

𝑧

⋮ ⋮ ⋮
𝑔𝑘

2
𝑥

𝑔𝑘
2

𝑦
𝑔𝑘

2
𝑧

     

2𝑔1𝑥
𝑔1𝑦

2𝑔1𝑥
𝑔1𝑧

2𝑔1𝑦
𝑔1𝑧

⋮ ⋮ ⋮
2𝑔𝑘𝑥

𝑔𝑘𝑦
2𝑔𝑘𝑥

𝑔𝑘𝑦
2𝑔𝑘𝑦

𝑔𝑘𝑧

], 

(26) 

and 𝐁 is a 𝑘-dimensional vector of ADC values, 

𝐁 =  [𝐷𝑎𝑝𝑝1
 ⋯  𝐷𝑎𝑝𝑝𝑘

]
T

. 
(27) 

It is worth noting that matrix 𝐀 is solely dependent on the choice of gradient directions, while 𝐁 

is a vector of ADC maps. The solution to (25) is given by the pseudo-inverse of matrix 𝐀 

D̅ = 𝐀+𝐁 = (𝐀T𝐀)−𝟏𝐀T𝐁 (28) 

The diagonalization of the diffusion tensor yields three eigenvectors and three eigenvalues 

(λ1, λ2, and λ3) representing the magnitude of diffusivity in the axial direction (AD = λ1) and 

radial direction (RD = (λ2 + λ3) 2⁄ ), with the mean diffusivity given as the average of all three 

(MD = (λ1 + λ2 + λ3) 3⁄ ). The fractional anisotropy (FA) is calculated as 

FA = √
2

3
∙

√(𝜆1 − MD)2 + (𝜆2 − MD)2 + (𝜆3 − MD)2

√𝜆1
2 + 𝜆2

2 + 𝜆3
2

 

(29) 

 

3.5 Noise Propagation in MRI 

MRI scanners are susceptible to noise that propagates through the system starting from the 

patient’s body to the image formation. The origin of noise can be related to two components: 

noise from the scanner apparatus and noise from the patient‘s body inside the scanner [114]. Any 

electrical resistance generates a thermal noise called Johnson–Nyquist noise, which is also 

generated by the human body as a consequence of the ionic nature of body tissue and fluids.  To 
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be more specific about the sources of circuit resistance consider the equivalent circuit of an RF 

receiver coil in Fig. 3.6.  The coil typically made of copper has resistive losses, represented by 

𝑅𝑐, that produce electrical noise. In addition when a human subject is placed inside the scanner, 

the coil acquires additional resistance 𝑅𝑠. The magnetic flux from the particles induces the NMR 

signal represented as a sinusoidal voltage source 𝑉𝑠𝑖𝑔. This signal must compete with the noise 

voltage from the equivalent resistances 𝑉𝑛. 

 

Fig. 3.6: Circuit equivalent of a RF receiver coil L with noise producing resistances 𝑅𝑐 and 𝑅𝑠 

inducing a noise signal 𝑉𝑛. 

 

This essentially produces white noise with zero mean and Gaussian amplitude distribution. 

Consequently when mapped to the k-space frequency domain the noise signal follows the family 

of Rician distribution as many studies have shown [114]. In the FiberBlender noise can be added 

to the signal in (20) by a complex Gaussian term 𝜂 with mean zero, constant standard deviation 

and independent real and imaginary parts such that 

𝑆 = 𝑆0

∑ cos 𝜑𝑖
N
𝑖=1

N
+ 𝜂. 

(30) 

With this formulation, 𝜂 can be controlled to generate data for different levels of SNR which is 

defined as the ratio of mean 𝜇 to standard deviation 𝜎 of a signal acquisition, 
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SNR =
𝜇

𝜎
. (31) 

3.6 Baseline Experiment 

A baseline experiment is performed on the model produced in Fig. 3.4 to demonstrate the 

capacities of FiberBlender in reproducing true DTI data. The model represents a 

100×100×100μm cubic voxel with parallel axons following a gamma distribution with mean 

diameter of 3μm (shape parameter 𝛼 = 3 and a scale parameter 𝛽 = 1). The generated output 

volume contains ~1400 axons with diameter statistics in Fig. 3.7 and ~2800 glial cells. The 

simulation is run for 50,000 particles scattered across the volume such that particles in the extra-

axonal and intra-axonal space diffuse at a rate of 𝐷 = 2.5mm2/s, and myelin particles diffuse at a 

rate of 𝐷 = 1.2mm2/s. Data is acquired using a Stejskal-Tanner or PGSE sequence with the 

following parameters: TE = 120ms, 𝛿 = 19ms, 𝛥 = 56ms, and 𝑏 = 1000s/mm2 (from (13) this is 

the equivalent of applying a gradient strength of g = 29.77T/mm). 

 

Fig 3.7: Histogram of axon diameter distribution in the generated output volume. 
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When the simulation ends, the coordinates of each particle are recorded to calculate the 

displacement vectors 𝑟𝑖 and compute the ADC following the steps detailed in section 3.5. The 

simulation is then repeated for a total of 20 gradient directions with each direction using a new 

sample of particles starting at different initial locations. The data from 20 directions is used to 

calculate the diffusion tensor and DTI metrics with results displayed in Table 2 for different SNR 

levels. Since FiberBlender is able to isolate the particles from each water compartment, the 

noiseless tensor from each one is represented in Fig. 3.8. 

 

Table 2. DTI metrics for the baseline experiment. 

 Noise Free SNR = 30 SNR = 10 

MD (×10-3) mm2/s 0.823 0.842 0.832 

AD (×10-3) mm2/s 1.861 1.911 1.945 

RD (×10-3) mm2/s 0.327 0.323 0.293 

FA 0.791 0.805 0.832 

 

 

Fig. 3.8: Diffusion tensors for each water compartment measured in the baseline experiment. 
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A visual interpretation of the tensor demonstrates how the extra-axonal diffusion is hindered, 

and is therefore more isotropic than other compartments since particles can travel throughout the 

simulation space. In the case of myelin and intra-axonal water the diffusion is restricted, as 

outlined by the heavily directional tensors. One noticeable difference is that myelin water is less 

directional than intra-axonal since it can travel in more radial directions. This signifies that 

orientation information is mostly obtained from intra-cellular particles. Table 2 also 

demonstrates how low SNR biases diffusion measurements, especially the FA. 
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IV.     OPTIMIZING DTI ACQUISITION TO CAPTURE DEMYELINATION 

Chapter 3 laid the groundwork for the FiberBlender system, and this chapter takes a closer 

look at the case of demyelination, a common symptom for many neurodegenerative disorders. 

The chapter begins with a short physiological description of demyelination and how it affects the 

corpus callosum (CC) region of the brain. An acquisition sequence optimization is then 

introduced to better capture the effects of demyelination on DTI metrics with results shown for 

several non-identical models. Finally the chapter looks at gliosis and axon compaction which are 

often related to demyelination, and how to properly differentiate them.  

 

4.1 Demyelinating Diseases 

Myelin insulation around the axons plays an important role in cognitive performance as it 

maintains the conductivity and reliability of neural transmission. MS, an autoimmune disease 

damaging the CNS, is understood to be the most common cause of demyelination affecting 

millions worldwide. More recently attention turned to long term effects of chemotherapy as 

another source of delayed demyelination. Yet many more disorders are also known to result in 

demyelination (e.g. disturbances of blood flow, edema, brain injury), each having different 

underlying mechanisms [116]. For example MS is diagnosed as one of four types, the relapsing-

remitting (RR) case is the most common form found in approximately 85% of patients [117]. 

This is characterized by temporary episodes called relapses or flare-ups when symptoms appear 

for periods of at least 24 hours, followed by remissions when patients recover. Physiologically, 

these relapses are caused by attacks from the body’s immune system on oligodendrocytes that 

result in demyelination, while during remissions new oligodendrocytes and astrocytes are created 

to repair the damaged myelin and axons resulting in temporary gliosis and remyelination. On the 
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other hand, other types of MS are more chronic and exhibit steadily worsening symptoms and 

disease state without remission, with the implication that the demyelination is constant with no 

apparent gliosis or remyelination. This is similar to chemotherapy where toxins prevent the 

formation of new glial cells. Therefore many neurodegenerative disorders may cause 

demyelination in different manners and while conventional MRI imaging can reliably capture in 

vivo brain lesions from MS, the origin of symptoms can be often difficult to confirm since these 

signs may be similar to those of other medical conditions [118]. 

With DTI’s inception, research began on employing the new technology to observe 

demyelination with quantitative parameters such as FA and MD for a better assessment of the 

extent of tissue damage outside of plaques detected by conventional MRI. Multiple studies 

proved a significant association between increasing RD and decreasing FA on one side, and the 

amount of detectable lesions on the other, suggesting that the diffusion becomes more isotropic 

after myelin loss. Diffusivity measurements are usually accompanied by cognitive performance 

tests such as verbal fluency, math, reading, and memory, to establish a correlation between 

decreasing FA and overall lower cognitive functions as evidence of demyelination. 

The common interpretation is that higher FA is indicative of better myelin integrity and 

neurocognitive functions, while lower FA signifies the opposite. Yet comprehensive findings are 

hard to obtain as they require longitudinal studies spanning several years with multiple subjects 

and control groups. Some research even contradict the established consensus where higher FA 

did not correspond to better cognition, hypothesizing that FA changes might be resulting from 

gliosis or axon compaction but this is yet to be proven [119 - 120]. The goal of the experiments 

in this chapter is to simulate different demyelination, gliosis and axon compaction to differentiate 

these conditions to understand how each one affects DTI. 
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4.2 Demyelination Gliosis and Compaction in the Corpus Callosum 

Studies of demyelination are most common in the CC, a flat bundle of fibers connecting the 

two hemispheres of the brain (Fig. 4.1), since this indicates that the pathological mechanisms of 

demyelination are widespread and interrelated throughout the brain. The CC is generally divided 

into 3 sections shown in Fig. 4.2, the genu is closest to the front of the brain, the mid-section 

called isthmus or body which has the largest axons in the brain, and the splenium at the back.  

 

Fig. 4.1: Midsagittal view of the brain with the location of the CC highlighted in red. 

 

 

Fig. 4.2: Visual representation of axon diameter distribution in each section of the CC [102]. 
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Each section contains axons with a different size distribution; in the body axons are generally 

considered Gaussian distributed, while the genu and the splenium may have a gamma or 

generalized extreme value distribution. Therefore modeling the CC consists of generating 

parallel axons with the appropriate size distribution. Studies have also shown regional 

differences of glial cell numbers [121]. Glial cell density decreased for the genu and the body, 

while a minor increase is observed for the splenium. However the exact glia to axon numbers 

ratio could not be determined accurately with estimates around 2.5:1 and 4:1. Similarly, the 

myelin g-ratio is not constant across the CC with the most recent studies finding higher values in 

the splenium and lower values in the body and genu [122]. Thus in the forthcoming simulations, 

glia to axon ratios are maintained at 4:1 for the splenium and 3:1 for the body and genu, while 

the g-ratio is set at 0.72 for the splenium and 0.66 for the body and genu. Since these values are 

functions of human age and sex, they are in no way representative of every subject, but form an 

acceptable average. Furthermore, the goal of the simulations is to capture the relative change in 

myelin thickness and glia density not necessarily the exact figures. 

The rate of demyelination is the same for all axons regardless of size and location. A 

demyelination function in FiberBlender performs a stepwise percentage reduction of the original 

myelin width. Fig. 4.3 demonstrates a demyelination effect in a cross section of parallel axons 

where the thickness is reduced to 50% its original width. A noticeable consequence of this is the 

expansion of the extra-axonal space which will inadvertently alter the diffusion process and DTI 

measurements. Similarly, axon compaction is also stepwise function accomplished by moving 

the axons and glial cells progressively closer toward the voxel center until an overlap is detected. 

Gliosis is performed by duplicating each glial cell in the volume, and redistributing them in the 

longitudinal direction. 
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Fig. 4.3: (Top) Cross sectional view of axons demonstrating a demyelination from full myelin to 

50% original thickness. (Middle) Transverse view of gliosis where each glial cell duplicates. 

(Bottom) Cross sectional view of axon compaction. 
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4.3 Strategies for Optimization 

DTI optimization efforts have focused on improving image quality and SNR [123 - 125], 

enhancing the tensor and fiber orientation estimation [126 - 130], or refining the measurement of 

diffusion metrics (FA, MD, AD, and RD) [131, 132]. These can be made either with hardware by 

improving the sensitivity and design of coils, or with software by fine tuning sequence 

parameters. Yet most of the existing methods have considered these different aspects separately, 

only Gao et. al. [130] has taken a unified optimization approach to simultaneously consider all 

imaging parameters involved (i.e. SNR, b-value, timing parameters, gradient directions). In 

addition many methods simply rely on selecting different imaging parameters and comparing the 

results without defining a cost function with robust algorithms to describe the optimization 

procedure. This may be due to the difficulty in clearly defining which parameters need to be 

optimized as they can be specific to a certain scanner or certain model and may not be ideal in 

different conditions. For this reason optimization strategies must use a variable that is 

independent of imaging parameters that can quantify the quality of measurements. 

4.3.1 The Case for Entropy 

While maximizing SNR can be a straightforward goal, choosing imaging parameters that best 

describe the diffusivity in tissue is highly dependent on the subject and the scanner and in fact an 

optimal result does not exist under this definition. The question should not be “which parameters 

are best”, rather “which parameters reveal the most information”. Shannon [133] introduced the 

concept of information entropy as a way to quantify redundant information in communication 

operations. The entropy H(𝑋) of a stochastic information source described by a random variable 

𝑋 is the measure of uncertainty associated with 𝑋, and is a property of 𝑋’s probability 

distribution function. Mutual information (MI) quantifies the dependence between two random 
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variables (𝑋, 𝑌) in terms of information communicated by one variable giving knowledge of the 

other, and is related to the marginal H(𝑋), H(𝑌) and joint entropies H(𝑋, 𝑌) of both variables. 

MI has been used in many applications ranging from communication systems to data mining, as 

well as biological studies such as measuring redundancy in gene sequences, or resolving image 

registration in MRI and other medical imaging. 

In the context of demyelination, MI can be used to quantify the information between signals 

received from DTI scans at different levels of myelination. To understand this process, consider 

a voxel comprising an axon bundle generated with FiberBlender. As the system undergoes 

demyelination the distribution of phases accumulated by each particle changes. Letting {𝑋, 𝑌} be 

two discrete random variables representing the distribution of phases at two different states of 

myelination, 𝑋 and 𝑌 are independent and their MI, I(𝑋, 𝑌) represents the complementary 

information between each simulation. This is calculated by 

I(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) log (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑥Є𝑋𝑦Є𝑌

, 

 

(32) 

where p(x), p(y), and p(x,y) and the marginal and joint probability density functions of X and Y. 

Given a large sample of phases 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} obtained from a 

diffusion simulation, the densities can be estimated using kernel density estimators. Alternatively 

MI can be expressed in term of entropy such that 

I(𝑋, 𝑌) = H(𝑋) + H(𝑌) − H(𝑋, 𝑌). (33) 

Intuitively the change in myelin should result in a change in phase distribution. Therefore the 

goal of the optimization problem is to find an acquisition sequence that minimizes the amount of 

redundant information between simulations, 
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minimize    ∶     I(𝑋, 𝑌) 

subject to    ∶    𝛿 < 𝛥, 𝛿 + 𝛥 < TE, and 60 < TE < 120 

 

(34) 

Clearly I(X,Y) is not directly a function of sequence parameters 𝛿, 𝛥, and TE, but these 

values determine the resultant phase distributions p(x) and p(y). The constraints for TE are not 

theoretically necessary but are forced on the system since some acquisition parameters are 

physically unrealizable with some scanners. In addition 𝛿 and 𝛥 are dependent on the type of 

scanners and cannot be initialized to any arbitrary real value. Therefore these parameters are 

quantized into a finite set of industry standard values. In turn the solution search space is finite 

and solved heuristically rather than with an exhaustive minimization algorithm. Hence instead of 

a global solution for (34), a performance evaluation of different acquisition schemes is provided. 

 

4.4 Simulation Results 

Experiments are performed on several structures representing the different regions of the CC. 

Nine models are generated in total, using three for each region (genu, body, and splenium), with 

random axon locations as previously described such that no two models are identical. The 

structural input parameters used to generate each structure are chosen to represent a realistic 

brain-like environment with the largest axons found in the body and the smallest in the genu. 

Table 3 summarizes these parameters. 

 

Table 3. Structural parameters for the each region of the CC. 

 

Region Axon Distribution g-ratio GNR 

Genu Gamma 

(𝛼 = 1.5, 𝛽 = 1) 

0.66 3:1 

Isthmus (Body)  Gaussian 

(𝜇 = 7, 𝜎 = 1.5) 

0.66 3:1 

Splenium Generalized extreme value 

(𝜇 = 3.5, 𝛼 = 1, 𝛽 = 0.5) 

0.72 4:1 
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Simulations are performed using a constant diffusion coefficients of D = 2.6mm2/s for the 

extra-axonal and intra-axonal particles, and D = 1.4mm2/s for myelin, using a total of 50,000 

particles. Simulation duration is determined by the type of acquisition sequence. All simulations 

use a PGSE sequence with 30 gradient directions. Since timing parameters 𝛿 and 𝛥 are 

dependent on the type of scanners and manufacturer requirements, there is no formally defined 

method to regulate them and these values are obtained from sources in the literature [71, 86, 87]. 

In particular, three cases are explored in this study as demonstrated in Fig. 4.4: 

 Case A: Short δ short Δ. 

 Case B: Short δ long Δ. 

 Case C: Long δ short Δ. 

 

Fig. 4.4: PGSE sequences for cases A, B, and C. 

 

For each case TE values range from 60ms to 120ms with 20ms increments forming the timing 

input parameters listed in table 4. 

 

Table 4. Timing parameters for cases A, B, and C. 

 

TE 

Case A 

𝜹        𝜟 

Case B 

𝜹        𝜟 

Case C 

𝜹        𝜟 

120 18.9 50 22 63 37 54 

100 19 42 19 56 34.75 53.5 

80 17.5 31 18 49 31.75 40.75 

60 12.9 21.8 14.2 42 21.5 26.5 
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Experiments are initially obtained for a fixed b-value of 𝑏 = 1000s/mm2 resulting in a 

gradient amplitude g that depends solely on the choice of timing parameters (δ and Δ) obtained 

from (13). The effect of modifying the b-value, i.e. changing the amplitude 𝑔 while keeping 𝛿 

and 𝛥 fixed, is explored in later sections. Demyelination is performed on each model, starting 

with a fully developed myelin at 100% total width representing a subject in a healthy state, 

followed by a progressive demyelination where the width is reduced sequentially by 10% until 

the myelin is completely destroyed. DTI metrics are calculated at each level of demyelination 

and a pairwise MI is computed from (32) such that 𝑋 is the phase distribution obtained from a 

simulation for a healthy state (100% myelin) and 𝑌 is the distribution at each subsequent myelin 

level (90% - 0%), average MI can then be found to represent the amount of information 

delivered throughout the demyelination process. Optimization is performed by selecting the 

sequence in table 4 that results in the lowest average MI. 

4.4.1 Regional Analysis 

Tables 4, 5, and 6 summarize the calculated average MI of the different models of the 

splenium, genu and body respectively. Experimental results show that sequences for case B 

which uses shorter pulses 𝛿 and longer diffusion times 𝛥, perform generally better with a slight 

edge over case A. The difference is much more notable with case C.  

 

Table 4. Average Mutual Information for selected sequences in the CC splenium. 

TE Case A Case B Case C 

 Spl. 1 Spl. 2 Spl. 3 Spl.1 Spl. 2 Spl. 3  Spl. 1 Spl. 2 Spl. 3 

120 0.385 0.377 0.377 0.378 0.379 0.381 0.554 0.539 0.542 

100 0.448 0.445 0.428 0.383 0.376 0.388 0.54 0.541 0.545 

80 0.501 0.491 0.478 0.417 0.403 0.42 0.622 0.608 0.598 

60 0.507 0.522 0.505 0.425 0.41 0.408 0.618 0.616 0.587 
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Table 5. Average Mutual Information for selected sequences in the CC body. 

TE Case A Case B Case C 

  Genu 1 Body 2 Body 3 Body 1 Body 2 Spl. 3 Body 1 Body 2 Body 3 

120 0.426 0.427 0.416 0.409 0.391 0.382 0.609 0.599 0.615 

100 0.477 0.453 0.481 0.428 0.397 0.403 0.577 0.563 0.581 

80 0.561 0.553 0.542 0.453 0.42 0.433 0.663 0.652 0.674 

60 0.604 0.589 0.578 0.45 0.418 0.425 0.716 0.698 0.71 

 

Table 6. Average Mutual Information for selected sequences in the CC genu. 

TE Case A Case B Case C 

 Genu 1 Genu 2 Genu 3 Genu 1 Genu 2 Genu 3 Genu 1 Genu 2 Genu 3 

120 0.392 0.355 0.361 0.395 0.341 0.387 0.594 0.548 0.564 

100 0.424 0.387 0.396 0.39 0.339 0.43 0.553 0.528 0.539 

80 0.484 0.45 0.447 0.42 0.394 0.385 0.639 0.587 0.582 

60 0.505 0.476 0.498 0.383 0.362 0.392 0.613 0.589 0.625 

 

These results do not necessary signify that lesser performing sequences are unable to capture 

anatomical properties, rather that they are unsuitable to observe the relative change. A visual 

interpretation can be made by comparing changes in MD, AD, RD, and FA between an 

optimized sequence, and a poorly performing sequence. Fig. 4.5 and Fig. 4.6 show the change in 

DTI metrics at progressive stages of demyelination across all models and CC regions. When the 

myelin is fully developed the recorded AD is much higher than the radial and mean diffusivities, 

signifying that the diffusion is mainly confined to a single axial direction. As the width of myelin 

decreases the extra-axonal space increases giving the particles more free range to diffuse thereby 

reducing the directionality of movement and making the diffusion more isotropic (or less 

anisotropic). This effect is highlighted by a decrease in FA. The increasing in RD demonstrates a 

rise in particle movement in non-axial directions which also leads to a small rise in MD. The 

simulations don’t record any significant variations in AD as it tends to be variable in white 
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matter changes and pathology. The results also demonstrate that at a healthy state, MD and RD 

values are slightly higher for the body, whereas FA values are highest for the splenium, 

confirming observations recorded in the literature [134]. 

 

Fig. 4.5: DTI metrics for optimized sequence (TE = 100ms, 𝛿 = 19ms, 𝛥 = 56ms) 

 

Fig. 4.6: DTI metrics for a non-optimal sequence (TE = 80ms, 𝛿 = 31ms, 𝛥 = 44ms) 
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The non-optimal sequence (Fig. 4.6) clearly shows that it cannot adequately determine the 

change in DTI metrics, and sometimes indicates a contradicting increase in FA or decrease in 

MR or RD. On the other hand the chosen optimal sequence has smooth curves showing steady 

decreasing FA and increasing MD and RD. This may be due to the fact that the non-optimal 

sequence also over-estimates diffusivity measures. It is worth mentioning that the simulated 

demyelination process does not correspond to a specific timeline in real subjects. This effect can 

be recorded over a few days, as in the case of an acute MS flare-up or brain injury, or potentially 

several months or years in the case of longitudinal MS and chemotherapy studies. In the latter 

case axon formations may substantially change and reorder even in the same ROI which is not 

represented in this simulation. 

4.4.2 Compartmental Analysis 

The results showed thus far result from the combined diffusions from all water 

compartments. A compartmental analysis of data from a splenium model acquired using the 

optimized sequence   (TE = 100ms, 𝛿 = 19ms, 𝛥 = 56ms) reveals how the demyelination effect is 

mainly driven by the extra-axonal water while the other compartments are unchanged (Fig. 4.7). 

At full demyelination, the external particles exhibit an almost complete isotropic diffusion with 

measured FA at 0.2. As expected the directional diffusion is from the intra-axonal particles, with 

the highest AD and the lowest RD that remain near constant throughout the simulation. A small 

decrease in myelin diffusivity is observed but this may be explained by a reduction in myelin 

signal intensity instead of an actual change in diffusion. As the myelin thickness reduces the 

number of particles contained inside is transferred to the extra-axonal compartment reducing the 

sample size of myelin particles. Note that at 0% the myelin signal is unavailable since no myelin 

particles are present. 
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Fig. 4.7: DTI metrics for each water compartment. 

 

4.4.3 Effect of SNR and b-Value 

Additional simulations are performed to observe the effect of low SNR and modifying the b-

value. In each case the same experiment is executed on five different models of the CC body 

using a PGSE acquisition sequence with timing TE = 120ms, 𝛿 = 18.9ms, and 𝛥 = 50ms. 

For the b-value, timing parameters δ and Δ are fixed such that the change in b depends only 

on the gradient strength g from (13). Results in Fig. 4.8 show that lower b-values tend to 

overestimate the diffusivities, but do not seem to affect the FA for all stages of demyelination. 

With the case of noise, ground-truth noiseless data is compared with acquisitions at different 

levels of SNR. Results in Fig. 4.9 show a contrast to b-value, where average diffusivity measures 

are generally not affected, except for an increase in uncertainty for lower SNR. However FA 

measures are slightly overestimated with low SNR acquisitions, confirming this observation 
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made in several studies. Yet this only occurs for healthy subjects (myelin > 70%) and appears to 

be more arbitrary as demyelination increases. 

 

Fig. 4.8: DTI metrics for different b-values. 

 

 

Fig. 4.9: DTI metrics at different levels of SNR. 
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4.5 Beyond Demyelination 

While demyelination has been the most studied phenomenon as it is a common symptom for 

many brain injuries and abnormalities, gliosis and compaction are much less analyzed and in fact 

less understood by the medical community. Gliosis usually accompanies demyelination, but it is 

not always the case depending on what initiated the process. In some cases such as MS flares, 

demyelination is accompanied by gliosis quickly followed by a partial remyelination.  However 

in many cases of chemotherapy no gliosis is observed since the formation of glia progenitor cells 

is blocked. And in some studies [120] it has been hypothesized that a long term effect of 

chemotherapy, where remyelination does not occur, is a reduction in total brain volume such that 

axons become more compact in order refill extra-axonal volume. 

In this section various cases of demyeliation, gliosis, and compaction are simulated to 

observe and characterize their respective effects on DTI metrics. Four cases are studied, (i) total 

demyelination without gliosis or compaction as performed in the previous sections, (ii) 

demyelination with gliosis, (iii) demyelination with gliosis followed by partial remyelination, 

and (iv) total demyelination without gliosis followed by axon compaction. In the following 

simulations, demyelination occurs sequentially as outlined in the previous experiments from 

100% to 0%; gliosis happens as a response to demyelination in two stages, the number of glia 

doubles first at 50% demyelination then at 20%; remylination is in turn a response to gliosis 

starting at 20% and reverses the trend by increasing myelin thickness. In the final case axon 

compaction takes place at a later stage extending beyond demyelination. As pointed earlier these 

events do not necessarily correspond to a specific timeline or happen in the order presented 

herein. Each case is simulated on a model of the CC body, and data acquisition is performed with 

a PGSE sequence with timings TE = 120ms, 𝛿 = 18.9ms, 𝛥 = 50ms, and 𝑏 = 1200s/mm2 and 
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SNR at 30db. Results are reported in Fig. 4.10. From 100% to 50% myelin, all cases follow the 

same trend. Demyelination with and without gliosis highlighted by the red and green curves 

respectively are hardly discernable from one another indicating that gliosis does affect FA and 

diffusivity measures. Conversely the dark blue curve showing gliosis followed by a partial 

remyelination starting at 20% stopped the increase in MD and RD and slowly reversed the drop 

in FA. In the final case, axon compaction also reverses the observed trend with a sharp increase 

in FA and AD, and a drop in MD and RD with values comparable to remyelination. 

 

Fig. 4.10: DTI metrics for demyelination, gliosis, remyelination, and axon compaction. 

 

4.6 Interpretation and Significance 

The experiments above confirm that not all acquisition sequences are capable of correctly 

capturing demyelination. Fig. 4.5 demonstrates how optimized sequences can strongly 
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decorrelate the change in FA and diffusivity measures, signaling a loss of myelin, whereas non-

optimal sequences in Fig. 4.6 cannot capture those changes. Another observation is that the best 

performing sequences use shorter gradients pulses 𝛿. This suggests that variations in myelin 

thickness have more localized effects on particle diffusion. To understand this, consider the 

hypothetical path of a diffusing extra-axonal particle illustrated in Fig. 4.11. The shorter pulse 𝛿1 

records a shorter absolute distance traveled when compared with the longer pulse 𝛿2. This 

divergence in diffusivity measures is marked when comparing the optimal sequence (Fig. 4.5) 

with a non-optimal sequence (Fig. 4.6). Non-optimal sequences use longer pulses and diffusion 

times, which accounts for the higher recorded MD values driven by a higher AD and RD. As the 

myelin shrinks, the change in diffusion patterns is more pronounced when measuring distance 

over short durations. 

 
 

Fig. 4.11: Hypothetical diffusion path of an extra-axonal particle between myelinated axons, and 

the absolute measured distance with short and long gradient pulses 𝛿1 and 𝛿2 respectively. 

 

The final experiment comparing the influence of gliosis and compaction confirm that gliosis 

has no influence on DTI measurements. On the other hand, a white matter compaction of axons 

results in similar measures to a partial remyelination. In a study on survivors of childhood acute 
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lymphoblastic leukaemia, Edelmann et. al. [120] recorded increases in FA among subjects 

treated with chemotherapy accompanied by a reduction in WM volume. While increasing FA 

may suggest compensatory remyelination, survivors demonstrated significant long term 

deficiencies in neurocognitive functions refuting this argument. The proposed conjecture is that 

this was due to a compaction of axons in WM which may exhibits similar signs to remyelination. 

The results reported in this chapter validate those findings. 
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V.   MULTI-TENSOR MODELS TO RESOLVE COMPLEX STRUCTURES 

Limitations with the tensor model to represent the true orientation of fibers have been 

exposed early. The main objection is that a tensor can only express motion in three directions, 

whereas multiple bundles within a voxel can have many more. This chapter examines some of 

the most common alternative methods proposed to resolve this issue. In particular the models put 

to test are, Q-ball imaging analyzed with high angular resolution diffusion imaging (HARDI) 

data, spherical deconvolution (SD), and the composite hindered and restricted model of diffusion 

(CHARMED). The main contribution is that FiberBlender can produce ground-truth directional 

tensors that can be used as a basis for the evaluation of each model. The chapter begins with a 

structural description of crossing fiber models, their characteristics and location in the brain, 

followed by a review of diffusion models and their relevant equations, and finally provides a 

comparative performance result for each method. 

 

5.1 Crossing Fibers 

The issue of multi-tensor models most often comes when analyzing voxels with crossing 

fibers which, unlike the CC, are prevalent in the brain. These are most often seen when studying 

nerve connections in the frontal lobe and pyramidal tracts (Fig. 5.1) where single diffusion tensor 

based methods most often fail due to the complexity of fiber intersections [135]. These regions 

are essential to all cognitive studies as the frontal lobe controls important skills such as 

emotional expression, problem solving, memory, and language, while the pyramidal tracts are 

responsible for motor functions and muscle movement as they conducts nerve impulses from the 

center of the brain to the spinal cord. Multiple studies on human subjects [135 - 139] found that 

axon diameters in cortical white matter ranged from 0.3 to 9µm generally following a gamma  
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Figure 5.1: Midsagittal view of the brain with highlighted locations of the frontal lobe (blue) and 

pyramidal tracts (green). 

 

distribution. The pyramidal tracts contain the largest regional variations with axons well over 

5μm with relatively large g-ratios (> 0.7), often found in proximity or crossing with significantly 

smaller fibers (< 1µm) with a g-ratio scattered broadly around 0.6. In the frontal lobe axons are 

considerably smaller with average diameters between 0.5 and 0.9µm whereas the g-ratio is much 

higher than other regions (~0.8). While these measurements are not necessarily representative of 

every human brain, they are used to form FiberBlender crossing models. There is little ex-vivo 

and in-vivo histology data available in the literature for the measurement of regional glia density 

but it is generally considered to be lower than in the CC. Thus GNR is set at 2.5:1. In this 

chapter, the study will focus on 4 types of models representing four different cases of crossing 

fibers. The first three contain small axons (< 2µm average diameter) crossing at different angles 

of 30 ̊, 60 ̊ and 90 ̊ respectively (Fig. 5.2). The fourth model contains axons crossing at 60 ̊ but 

with a difference in size such that in one direction the same small axons from the first three 
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models are used, while in the second direction the average diameter is increased to 6µm. All 

models are formed as isotropic voxels with a fixed size of 120×120×120µm, to remove any bias. 

 

Figure 5.2: Example of a crossing model at a 30̊ angle. 

 

5.2 Multi-Tensor Models 

The main approach to resolving crossing fibers is to represent the diffusion not only by a 

single tensor, but as a mixture of multiple tensors, each characterizing a different fiber 

population. This results in the signal 𝑆 originally calculated from (12), now being obtained as a 

linear combination of multiple tensors such that, 

𝑆 = ∑ 𝑆𝑖𝑒
−𝐷𝑖𝑏. (35) 

The first successful results were introduced by Tuch [140] with the high angular resolution 

diffusion imaging (HARDI) model which in essence consists of measuring the diffusion signal 

using a much larger number of uniformly distributed gradient directions than required for DTI to 
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capture the higher angular frequency features of the signal that are not adequately modelled by a 

single diffusion tensor. The problem then becomes one of fitting multiple tensors to recover the 

fiber orientations that best explain the measured signal. The solution proposed in [140] using a 

mixture model decomposition of the signal suffered from a large number of parameters to fit the 

model that are prone to overfitting and require long computation times. Yet the HARDI signal 

acquisition process that specifies the number and directions of diffusion gradients became 

standard protocol for many multi-tensor models. 

Then, multiple models have been proposed for the analysis of HARDI data, first by Tuch 

himself who introduced Q-ball imaging [141]. Q-ball employs the q-space method originally 

proposed by Callaghan [142], where no specific model of water diffusion is originally assumed. 

Instead the signal attenuation profile is calculated with respect to 𝑞 (𝑞 = 𝛾𝛿𝑔/2𝜋). In this way 

diffusivity measures do not use ADC modeling, but are based on the estimation of the probability 

density function of the average spin displacement of water molecules. Another popular approach 

based on q-space is CHARMED introduced by Assaf et. al. [143]. This approach relies on 

measuring the signal as a combination from different water compartments, each extracted as a 

non-linear least squares model fitting. Tournier et. al. [144] proposed spherical deconvolution 

(SD) as an alternative to calculate a fiber orientation distribution. This is based on the concept 

that the distribution of diffusion signals can be represented by fiber orientation distribution 

convoluted with its signal response. SD is one of the best approaches to achieve high angular 

resolution analysis, and doesn’t require model fitting. 

Each of these methods is popular and extensively used by researchers in the DTI community 

with their implementations offered in free and publicly available DTI analysis and reconstruction 

software such as FSL, DTI-studio, DTI-toolkit, and CAMINO. However these programs are 
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designed to work with direct MRI raw data files produced from scanners in NifTI format. In 

FiberBlender, the system produces text files representing the coordinates of particles which are 

used to calculate displacement vectors, phases, and so on. Therefore in this work Q-ball, SD and 

CHARMED are re-implemented with MATLAB to process HARDI diffusion data obtained with 

FiberBlender. CHARMED is implemented using in-house software, while the implementation of 

Q-ball and SD is based in part on publicly available software provided from [145]. 

5.2.1 Q-ball 

Tuch’s method aims at reconstructing the orientation distribution function (ODF) of a fiber 

population that characterizes the relative likelihood of water diffusion along any given angular 

direction 𝐮. Because both the ODF and the diffusion signal are defined on a spherical domain, it 

is convenient to normalize spherical points to unit magnitude and adopt a spherical coordinate 

system 𝐮(𝜃, 𝜙), where 𝜃 and 𝜙 denote elevation and azimuth respectively. Similar to the Fourier 

transform used to decompose images, this approach uses spherical harmonics (SH) as a way to 

decompose signals on the sphere. The implementation in this work is based on a simplification of 

the original method found in [146]. To obtain the values of the q-ball ODF at desired points, the 

acquired data is used to expand the diffusion signal 𝐸(𝐮) = 𝑆(𝐮)/𝑆0, over an order 𝐿 harmonic 

representation 

𝐸(𝐮) = ∑ ∑ 2𝜋𝑐𝑙
𝑚𝑌𝑙

𝑚(𝐮)

𝑙

𝑚=−𝑙

𝐿

𝑙=0

 

 

(36) 

where 𝑌𝑙
𝑚(𝐮) denotes spherical harmonics with order 𝑙 and phase factor 𝑚, and 𝑐𝑙

𝑚denotes the 

harmonic series coefficients. 
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5.2.2 CHARMED 

The CHARMED framework includes hindered and restricted compartments, allowing for N 

distinct fiber populations such that 

𝐸(𝑞, ∆) = 𝑓ℎ ∙ 𝐸ℎ(𝑞, ∆) + ∑ 𝑓𝑟
𝑗

𝑁

𝑗=1

∙ 𝐸𝑟
𝑗
(𝑞, ∆). 

 

(37) 

where 𝐸(𝑞, ∆) is the measured signal decay, 𝑓ℎ and 𝐸ℎ(𝑞, ∆) are the relaxation-weighted 

volume fraction and signal decay of the hindered part respectively, whereas 𝑓𝑟 and 𝐸𝑟(𝑞, ∆) are 

the relaxation-weighted volume fraction and signal decay of the restricted part respectively. The 

experimental data is fit to the model with a non-linear least-square estimation procedure utilizing 

Levenberg–Marquardt minimization. In the case of two directions of crossing fibers three signal 

decays are considered, one for the hindered compartment representing the extra-axonal space and 

two for the restricted compartments, 𝑁 = 2 in (36), of the intra-axonal space and myelin. 

5.2.3 Spherical Deconvolution 

SD methods have become very popular due to the fact that, as opposed to model-free 

techniques that estimate the diffusion ODF such as Q-ball, the output from SD is directly the 

fiber ODF itself. Similar to CHARMED the signal is a expressed as a linear combination from 

several water compartments.  

𝑆 = 𝑆0 ∙ ∑ 𝑓𝑖𝑒𝑥𝑝(−𝑏𝑖𝑔𝑖
𝑇𝐃𝑖𝑔𝑖)

𝑀

𝑖=1

 

 

(38) 

where M is the number of WM parallel fiber bundles, 𝑓𝑖 denotes the volume fraction of the i-th 

fiber bundle compartment so that ∑ 𝑓𝑖 = 1𝑀
𝑖=1 . In this formulation, 𝐃𝑖 denotes the anisotropic 

diffusion tensor of the j th fiber-bundle such that 𝐃𝑖 = 𝐑𝑖
𝑇𝐀𝐑𝑖 where 𝐑𝑖  is the rotation matrix 

that rotates a unit vector initially oriented along the 𝑥 axis toward the i-th orientation (θi, ϕi) and 
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𝐀 is a diagonal matrix containing information about the magnitude and anisotropy of the 

diffusion process inside that compartment 

𝐀 = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

]. 
 

(39) 

The measured signal in (38) can be re-evaluated in matrix form as 

𝐒 = 𝐇𝐟, (40) 

such that 𝐇𝑖𝑗 =  𝑆0. 𝑒𝑥𝑝(−𝑏𝑖𝑔𝑖
𝑇𝐃𝑗𝑔𝑖) is an 𝑁 × 𝑀 matrix where every column of length 𝑁 

contains the signal in (38) for a single fiber-bundle compartment oriented along one of the 𝑀 

directions, and 𝐟 the fiber ODF represented as a set of basis functions on the unit sphere. Solving 

the deconvolution problem given in (40) results in an ill-conditioned and ill-posed system of 

linear equations. Common algorithms to avoid such instabilities estimate the fiber ODF by 

constraining it to be non-negative and symmetric around the origin. In this study the Richardson-

Lucy algorithm is used [147]. 

 

5.3 Results 

Four simulations are performed, the first three to measure crossing at different angles, and 

the fourth compares crossing of differently sized fibers. In the first case all axons are generated 

following a gamma diameter distribution with mean 1μm, g-ratio is set at 0.8 and GNR at 2.5:1. 

In the final case the same parameters are used for the direction with small fibers, while the 

direction with larger fibers contains gamma distributed axons with mean 6μm, g-ratio 0.65 and 

similar GNR at 2.5:1. All voxels are120×120×120μm simulated with 50,000 particles diffusing 

at a rate of D = 2.6mm2/s for intra and extra-axonal, and 𝐷 = 2.6mm2/s for myelin particles. Data 

is acquired with a PGSE sequences using a uniform HARDI sampling scheme with 60 directions. 
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Sequence parameters are different for each method and are chosen based on values used in 

published studies [71, 141, 143, and 146]. One difference with [141] is that Tuch uses a twice 

refocusing spin echo (TRSE) acquisition sequence which can be thought of as a double PGSE 

with two periods, generally used to minimize Eddy current induced distortions. Single shell 

acquisition is performed with constant b-value at 𝑏 = 1200s/mm2 and timing parameters as 

reported in table 8. 

 

Table 8. Sequence parameters for crossing fiber analysis. 

Timing parameter (in ms) FiberBlender Q-ball CHARMED SD 

TE 100 120 200 120 

Δ 60 60 150 100 

δ 20 55 40 5 

 

The goal of this experiment is to find which method best describes the true directionality 

of the crossing fibers and the relative diffusivity in each direction. Data is acquired at high and 

low SNR (25db and 4db) with results in Fig. 5.3 and Fig. 5.4 respectively. 
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Fig. 5.3: Comparison of fiber crossing algorithm at SNR = 25. 
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Fig. 5.4: Comparison of fiber crossing algorithm at SNR = 4. 
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The first columns in Fig. 5.3 and 5.4 represent the ground-truth fiber orientations obtained 

with blender for separate water compartments (extra-axonal vs. intra-axonal and myelin). While 

this serves as a basis for comparison, these tensors are still prone to error since they rely on the 

accuracy of data generated with Blender. Three tensors are represented: one tensor for the 

hindered diffusion of extra-axonal particles, and two tensors for the restricted diffusion of 

particles in each of the two directions. When the crossing angle is low, the hindered tensor still 

maintains some directionality, but becomes steadily more isotropic as the crossing gets more 

perpendicular. Most of the orientation information comes from the restricted diffusion 

The following columns represent the fiber orientations estimated with Q-ball, spherical 

deconvolution, and CHARMED algorithms respectively. Results suggest that Q-ball and SD do 

not perform well for crossings at a low angle of 30̊ making the diffusion look almost confined to 

a single direction. The inability to resolve this may be due to the relatively small number of 

gradient directions used. Some studies use over 100 directions to get a better approximation 

making the simulation much more computationally demanding, or requiring longer scans to 

obtain clinical data.  All methods perform well at 60̊ where the difference in direction is more 

pronounced for both cases of crossing fibers with similar size and variable size. In the case of 

different diameters, the tensor produced by the smaller axons is much more anisotropic than with 

larger axons signaling a difference in FA values between the two directions. 

This high directionality is also observed when the fibers are perpendicular. This does not 

necessarily mean that absolute diffusivities are higher, but simply that the differences between 

hindered and restricted diffusivities are greater. For 90̊ SD was unable of resolving the correct 

fiber orientations. Although Tournier [73] observed a bias with SD for fibers with 90° crossings, 

it should still be capable of differentiating the orientation, and these results are not supported 
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anywhere in the literature. A more comprehensive study would need to be performed comparing 

Richardson-Lucy deconvolution with different SD algorithms including Tournier’s constrained 

spherical deconvolution method to determine the source of this error. 

In this study CHARMED is arguably the best performing approach for all crossing cases 

since it is based on both hindered and restricted compartment modeling, and the tensors most 

closely match those of FiberBlender. One noticeable difference is that the hindered tensor is near 

spherical for all cases and doesn’t capture any directionality and in the case of low SNR (Fig. 

5.4) the restricted diffusivities are under estimates. Most of these methods perform poorly with 

lower SNR with the exception of 60̊ crossing angle. While SNR is an important factor in 

direction estimation, another element is the size of the voxel. All the simulations have been 

performed on 120×120×120μm voxel that are in reality much smaller than actual scanner 

resolutions. Therefore it is not clear how these results can be extrapolated to larger voxels and 

further studies will be required with larger models to examine the influence of voxel resolution. 
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VI.     CONCLUSIONS AND FUTURE RESEARCH 

6.1 Contributions 

The main contributions of this work are detailed in chapters 3, 4, and 5. Chapter 3 introduces 

FiberBlender and all of its components as a novel DTI modeling and simulation system. This 

tool can be used to generate fiber bundles in potentially any desired configuration to mimic 

different regions of the brain. FiberBlender’s novelty is in its capability to reproduce brain-like 

fibers with high accuracy to capture the tortuosity of the axonal space such that axons are 

randomly placed in the simulation space while still accounting for correct diameter distribution 

and compactness of the axon structure. The problem of packing cylindrical axons in a cubic 

volume is approached using both manual operations and computer algorithms. The myelin sheath 

and glial cells are also represented with controllable size and density ratios respectively. With 

this framework FiberBlender can produce multiple models representing the regional contrasts 

between different brain regions as well as the contrast among human subjects. This is necessary 

to validate and optimize acquisitions schemes across multiple test subjects. Another innovation 

with this system is its ability to tune geometries in order to simulate axon and myelin damage; in 

particular the cases of demyelination, gliosis and axon compaction. 

Chapter 4 performs a study of these conditions with the aim of finding an optimized 

acquisition scheme that is best suited to capture the effect of demyelination on the observed DTI 

measurements. Since demyelination, gliosis and compaction result in a change in diffusivity, the 

innovative optimization process aims at finding the sequence that minimizes the mutual 

information obtained from an acquisition. Results suggest that PGSE sequences with short pulses 

𝛿 and longer diffusion times 𝛥 are the most valid. Optimized sequences are then used to examine 

the influence of noise and b-level values on demyelination measurements. The choice of b-value 
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heavily influences the measured diffusivity while keeping FA relatively constant; conversely 

SNR biases FA measurements. Lastly a comparative study of demyelination, gliosis and 

compaction suggested that gliosis does not affect the DTI signal, while axon compaction exhibits 

comparable measurements to a partial remyelination. This finding may confirm observations in 

cancer survivors who appeared to show signs of remyelination that did not correspond with any 

improvement in cognitive performance. This suggests that axon compaction is the more likely 

hypothesis. 

Finally in chapter 5, a comparison of the most widely used multi-tensor models is performed 

on CHARMED, SD, and Q-ball methods. The accuracy of each model is validated against 

ground-truth tensor data generated with FiberBlender. Preliminary results point to CHARMED 

as the most reliable method. Further investigation is needed to understand the effect of voxel size 

and why SD does not perform well in some cases. 

   

6.2 Future Work 

In the future, the FiberBlender system can be extended in one of two ways. The first 

improvement would be to produce much larger models to approximate real scanner dimensions 

with the potential of creating multiple sub-voxels. This enhancement would allow the study of 

crossing fiber not only for a single voxel but across an ROI with the possibility to perform 

tractography studies. In addition to crossing, other fiber configuration may be considered. Most 

notably, bending and Y-shaped, with a single multi-voxel model containing a mixture of fiber 

orientations could be investigated. 

Another approach is to go deeper in the study of myelin. Myelin water diffusion imaging is a 

recently proposed DTI approach with the potential of differentiating the myelin signal from other 
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water compartments and produce DTI images from myelin water only. In this context 

FiberBlender can be used to simulate and validate myelin specific acquisition sequences. 

Lastly, while Blender has proven to be a great tool for modeling axon structure, other 

simulation systems can be considered as an alternative, especially when simulating much larger 

volumes. Although Blender rendering uses CUDA for GPU powered parallel computing, physics 

and motion calculation as performed in this system is only GPU powered. Since Blender objects 

can be exported to other systems, the new framework can still use it for generating axon structure 

as detailed in this work but the particle diffusion simulation would be performed with another 

tool. 
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