Neural activity patterns related to behavior occur at many scales in time and
space from the atomic and molecular to the whole brain. Here we explore the
feasibility of interpreting neurophysiological data in the context of many-body
physics by using tools that physicists have devised to analyze comparable
hierarchies in other fields of science. We focus on a mesoscopic level that
offers a multi-step pathway between the microscopic functions of neurons and
the macroscopic functions of brain systems revealed by hemodynamic imaging. We
use electroencephalographic (EEG) records collected from high-density electrode
arrays fixed on the epidural surfaces of primary sensory and limbic areas in
rabbits and cats trained to discriminate conditioned stimuli (CS) in the
various modalities. High temporal resolution of EEG signals with the Hilbert
transform gives evidence for diverse intermittent spatial patterns of amplitude
(AM) and phase modulations (PM) of carrier waves that repeatedly re-synchronize
in the beta and gamma ranges at near zero time lags over long distances. The
dominant mechanism for neural interactions by axodendritic synaptic
transmission should impose distance-dependent delays on the EEG oscillations
owing to finite propagation velocities. It does not. EEGs instead show evidence
for anomalous dispersion: the existence in neural populations of a low velocity
range of information and energy transfers, and a high velocity range of the
spread of phase transitions. This distinction labels the phenomenon but does
not explain it. In this report we explore the analysis of these phenomena using
concepts of energy dissipation, the maintenance by cortex of multiple ground
states corresponding to AM patterns, and the exclusive selection by spontaneous
breakdown of symmetry (SBS) of single states in sequences.Comment: 31 page