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Abstract
Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions
in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding
to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional
manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement
between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals
that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory
periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of
work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been
previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural
responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in
frequency discrimination acuity on an individual basis by examining the Fisher information from the neural
population with and without optogenetic manipulation. In the third line of work, we address the question of
what a neural population should encode given that its inputs are responses from another group of neurons.
Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data
and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last
line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli.
Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal
transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory
cortex. This work establishes and tests a variety of hypotheses that will be useful in helping to understand the
relationship between neural activity and behavior as recorded neural populations continue to grow.
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ABSTRACT 
 

UNDERSTANDING THE IMPLICATIONS OF NEURAL POPULATION ACTIVITY ON BEHAVIOR 

John Briguglio 

Vijay Balasubramanian, Maria Geffen 

 Learning how neural activity in the brain leads to the behavior we exhibit is one 

of the fundamental questions in Neuroscience. In this dissertation, several lines of work 

are presented to that use principles of neural coding to understand behavior. In one line of 

work, we formulate the efficient coding hypothesis in a non-traditional manner in order to 

test human perceptual sensitivity to complex visual textures. We find a striking 

agreement between how variable a particular texture signal is and how sensitive humans 

are to its presence. This reveals that the efficient coding hypothesis is still a guiding 

principle for neural organization beyond the sensory periphery, and that the nature of 

cortical constraints differs from the peripheral counterpart. In another line of work, we 

relate frequency discrimination acuity to neural responses from auditory cortex in mice. It 

has been previously observed that optogenetic manipulation of auditory cortex, in 

addition to changing neural responses, evokes changes in behavioral frequency 

discrimination. We are able to account for changes in frequency discrimination acuity on 

an individual basis by examining the Fisher information from the neural population with 

and without optogenetic manipulation. In the third line of work, we address the question 

of what a neural population should encode given that its inputs are responses from 

another group of neurons. Drawing inspiration from techniques in machine learning, we 

train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like 

filters, reminiscent of responses in primary visual cortex. In the last line of work, we 
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model the state of a cortical excitatory-inhibitory network during complex adaptive 

stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple 

non-linearities in the signal transferred from inhibitory to excitatory neurons can account 

for real neural recordings taken from auditory cortex. This work establishes and tests a 

variety of hypotheses that will be useful in helping to understand the relationship between 

neural activity and behavior as recorded neural populations continue to grow. 
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1. Introduction 
The central problem in neuroscience 
 Neuroscience concerns itself with understanding the brain, the organ most 

responsible for making us both, human and individuals. We are able to solve incredibly 

complex computational problems with little to no effort, including fixing our gaze on a 

particular object while moving our entire bodies and identifying objects in a complicated 

environment. There is something fundamentally interesting about trying to understand 

how we work. What does it mean to understand how the brain works? If the brain is a 

puzzle, we want to know the picture. The pieces, the things we have access to 

experimentally, are the small windows we have to view the picture. Developing an 

understanding of what the brain is doing may require only understanding what the larger 

picture is, and convincing ourselves that the pieces fit together to form such a picture. 

The importance of theory to neuroscience lies in its ability to draw specific pictures 

describing generically what the pieces may come together to form, regardless of the 

details of their individual shapes. That is, to turn knowing how the brain works into 

understanding how the brain works.  

 One recurring challenge encountered when trying to understand the brain relates 

to the general importance of abstraction. In early sensory systems, progress in 

understanding the neural code has been aided by the fact that we have some good sense 

about the type of representation we would expect to observe. For example, the retina has 

photoreceptors tiling the back of the eye (conceptually similar to the CCD mosaic in a 

camera), which leads to a natural guess that the representation used by early visual 

neurons may relate to the spatial patterning of the light. A model of the early visual 



	
	

2	

system where the light inputs are parameterized by their spatial distribution provides 

some of the canonical results in understanding the contributions from individual neurons. 

In the retina, for example, this model reveals that many neurons have a center-surround 

structure, while in primary visual cortex (V1), Gabor filters emerge. 

Unfortunately, natural parameterizations aren’t always so obvious for many of the 

problems the brain has to solve. For example, the encoding of value is inherently more 

difficult to quantify [1], but is essential in order for any organism to make wise decisions. 

More generally, the neural architecture evolution has stumbled upon to solve a particular 

problem may have no readily observed mapping into the kinds of algorithms we are 

accustomed to thinking about, despite using one. To illustrate this point, consider the 

problem of tracking your own hand position. One simple solution would be to encode a 

vector containing the angles of your shoulder, elbow, and wrist (as opposed to keeping 

track of the absolute spatial location). Any rotation of this vector would contain the same 

information as the original, but would obscure interpretations about the underlying 

representation. This makes the two representations difficult to distinguish by observing 

the neural responses, not because of any fundamental difference in the algorithms (in 

fact, there may be computational advantages of this kind of manipulation as it can 

information more diffusely available), but because recognizing the algorithm relies on 

our own ability to internally visualize it in a simple way. In light of this, keeping an open 

mind about the kinds of computations that may be going on is very important, since 

computational strategies that seem superficially dissimilar to biological ones may simply 

be embedded in a non-trivial way. 



	
	

3	

This dissertation presents several lines of work that use theoretical ideas about 

neural organization to predict behavior while avoiding issues with precise 

characterization of neural activity. By doing so, we are able to shed light on a number of 

issues of broad importance in computational neuroscience.  

In chapter 2, we extend ideas of the efficient coding hypothesis to explain human 

perceptual sensitivity to visual textures. By simply examining statistics of natural scenes, 

we are able to predict the relative sensitivity humans display to a variety of visual 

textures. We avoid complex issues of representation that arise from dense correlated 

visual features by predicting directly the effects on behavior. In doing so, we show that 

the efficient coding hypothesis is a guiding principle for cortical organization, and we 

shed light on the differences in constraints between central and peripheral sensory 

processing. The work presented in the first part of this chapter is published in [2]. 

In chapter 3, we quantify the role auditory cortex plays in frequency 

discrimination acuity in mice. Optogenetic manipulations of the auditory cortex directly 

change its neural activity, but also change the frequency discrimination acuity of the 

animal. By examining the information-theoretic limitations on discrimination 

performance, we make individual frequency-discrimination predictions for each mouse, 

regardless of the manipulation performed. By doing so, we find not only that behavioral 

changes correlate with neural limitations, but that individual variability to a fixed 

manipulation is explained by neural activity. This reinforces the importance of treating 

subjects as individuals, as differences between behavior of mice is accounted for by 

differences in their neural activity. At the time of writing, the paper containing this work 

is in preparation. 
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In chapter 4, we take steps towards addressing the question of how neural circuits 

in cortex should organize given the fact that the inputs are not the external world, but 

rather the world as filtered by the senses. We examine the response properties of 

elements of Deep Belief Networks trained on the output of a fake retina to find, among 

other things, Gabor-like receptive fields that are common in cortex. This reaffirms that 

these filters are one way of efficiently representing natural stimuli, and provides an 

alternative learning rule that can produce these types of filters. Additionally, this work 

establishes that retinal responses are conducive to producing this kind of representation. 

In chapter 5, we model excitatory-inhibitory network dynamics in auditory cortex 

and demonstrate that a single non-linearity in the inhibitory-to-excitatory synapse can 

account for a number of observed adaptive phenomena and optogenetic manipulations. 

This model establishes the simplest model that can account for the observed pyramidal 

neuron activity, and makes predictions about properties of the inhibitory neural 

population. The work presented in this section is published [3] [4]. 

In this following portion of this chapter, we will discuss relevant background 

information that provides context for the several of the subsequent chapters, including a 

discussion of the efficient coding hypothesis and a basic overview of neuronal function 

and the leverage optogenetic techniques provide to manipulate their activity. 

 

 



	
	

5	

The efficient coding hypothesis 
 One concrete theory that has proven to be a helpful way to think about neural 

coding is the efficient coding hypothesis, first postulated by Barlow in 1961 [5]. The 

hypothesis states that evolution favors organisms more capable of sensing their 

environment. Put more precisely, the cost of neural resources to an organism will invoke 

selective pressure that favors individuals who maximize the mutual information their 

sensory organ provides about the environment. In some cases, this means that neurons 

have to remove redundancies in their input. In other cases, it means that noisy signals 

need to be combined in a manner that improves odds of detection. In all cases, the idea 

requires a “natural signal”, and efficiency cannot be defined without it. In fact, the 

existence of a stable “natural signal” has to exist on evolutionary timescales in order for 

the organism to adapt to it, and so a number of timescales are at play. For example, if one 

computes the Fourier power spectrum of urban “natural” images and ones in nature, one 

will notice an overabundance of horizontal and vertical edges [6], likely resulting from 

e.g. buildings. Should we be more sensitive to these features by virtue of existing in 

modern society? While this may not have been present on evolutionary timescales, it is 

possible that evolution favored some degree of flexibility, and we have mechanisms in 

place that adapt to a number of different features in the world. It may be possible that we 

have adaptive processes that are capable of making us more sensitive to these features in 

relation to their increased presence, but strictly speaking, the hypothesis has little to say 

about this. 

 The efficient coding hypothesis has a long history of providing useful insight to 

early vision. The retina is a part of the brain whose output cells (retinal ganglion cells) 
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primarily lie on a single surface, making their responses relatively easy to access using 

multi-electrode arrays. Additionally, the optic nerve imposes a bottleneck on how much 

information the retina can pass to cortex, and therefore devote to any particular feature of 

the visual environment. Among mammals, the primate retina is unusual in that it is 

trichromatic, suggesting that the additional visual information was beneficial for us, and 

our day-to-day experiences tend to be visually dominated. The combination of ease of 

experimental access, evidence for selective pressure, and ease of controlling and 

measuring the input stimulus have made the retina a prime target for testing the efficient-

coding hypothesis. In a 1990 paper [7], Atick and Redlich analytically optimize a coding 

scheme to minimize channel capacity requirements while maintaining a fixed information 

rate for a variety of luminance ratios for encoding of natural images. In doing so, they 

found numerical solutions for filters that were remarkably similar to retinal ganglion cell 

response profiles—including center-on/surround-off type responses when the signals are 

reliable [i.e. high contrast], and pooling over a large area when signal are unreliable. In 

concluding remarks, they remark that calculating a global optimum with respect to 

efficient representation is challenging, or even impossible, and therefore from a neural 

coding perspective, it makes sense to compute such an optimum only for a restricted 

family of filters, allowing each successive stage to improve in representation compared to 

the previous. Since then, a variety of additional ideas regarding principles of neural 

coding have been tested in the retina [8] [9]. 

 The ideas of efficient representation have also been extended to try to explain 

cortical responses. As another example [10], Olshausen and Field examined in 1997 the 

idea that sparse representations may prove useful to better represent the underlying 
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structure of images, which has intuitive appeal because the images are generally 

composed of relatively few objects with particular boundaries. They present an algorithm 

for learning such sparse features, and when trained on natural images, the filters these 

structures derive resemble Gabor filters, characteristic of neural responses in V1. The 

idea of efficiently representing the environment appears helpful for making sense of 

cortical responses as well, although as we will show in chapter 4, these types of filters 

can emerge from other kinds models as well. One of the important takeaways is that it 

very well may not be the case that V1 is trying to optimize the cost function as explicitly 

written in one of these efficient coding papers, but the representation observed may 

nonetheless be highly efficient for a variety of similar cost functions. In chapter 2, we 

will examine other implications efficient coding has for behavior when applied to cortical 

coding. 

 Ideas of efficient coding have also been applied to the auditory pathway. In 2002 

[11], Lewicki showed that performing Independent Component Analysis (ICA) on short 

snippets of a variety of natural sounds results in filters that are characteristic of responses 

in the auditory fiber. One of the major criticisms of the efficient coding hypothesis is the 

argument that, to biological systems, not all information is equally important. For simple 

organisms, this is likely a large factor. For more complex organisms with structures in 

place for making high-level decisions, there is a great deal of flexibility afforded to the 

organism by virtue of having a sensory system providing as much information as 

possible, while the higher structure can decide what to throw away. It is likely, then, that 

these principles will remain useful for understanding peripheral processing. At some 

point in the pathway, decisions must be made, and behavioral relevance becomes 
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unequivocally important. In chapter 4, we discuss the importance of sensory limitations 

in this context, and the implications it has for behavior. 

Manipulating neural activity with optogenetics 
 Neurons are the fundamental units of computation within the brain. What makes 

neurons unlike most other cells is that their cell membranes are highly electro-chemically 

sensitive, containing many voltage-gated ion channels. When the voltage difference 

between the interior and exterior of the cell membrane crosses a certain threshold, it starts 

a chain reaction of ion channels opening. This causes an extremely pronounced, 

stereotyped voltage response from the cell itself, called a spike. What makes neurons 

useful for computation and action is that they also have an axon, a long, cylindrical 

extension of the cell membrane that shares the features of electro-chemical excitability 

with the body. The spiking activity in the cell body is propagated through the axon, 

which can travel long distances (~1 meter for the sciatic nerve, for example). The activity 

pattern is decidedly discrete, as generically the output of the axon is silence punctuated 

with a few short, obvious pulses when the neurons spikes. Although things like external 

voltage fluctuations near the cell body can have large effects on the observed spiking 

activity (therefore analog computations may be quite relevant in understanding neural 

responses), the output of the neuron to distant brain or motor areas is decidedly discrete. 

This is also the reason why, in neural coding studies, emphasis is generally placed on the 

spiking activity of neurons, rather than the raw voltage traces, and the output of neurons 

is frequently treated as a digital stream. The vast majority of neurons also have dendrites, 

membrane protrusions responsible for connecting with axons from other. These axon-
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dendrite interfaces, called synapses, are responsible for allowing neurons to receive 

electrochemical inputs from other neurons. In specialized cells, such as photoreceptors in 

the retina or inner hair cells in the inner ear, the inputs come from electrical or 

mechanical interactions with light and sound, allowing transduction of external signals. 

There are a number of different kinds of influences neurons can have on one another, and 

most neurons stereotypically excite or inhibit the ones that they form synapses with. 

Within cortex, roughly 80% of neurons are excitatory, and the remainder inhibitory. 

Since fibers projecting from one brain region to another typically contain bundles of 

axons from excitatory neurons, a useful simplified view is that excitatory neurons encode 

the results of any computation from a brain region, while the inhibitory neurons are 

necessary for the computation to take place. The inhibitory neurons in cortex can be 

divided into three subgroups called, PV (“parvalbumin”) , SOM (“somatostatin”), and 

VIP (“vasoactive intestinal polypeptide”) based on marker proteins they express, and 

represent ~40%, ~30%, ~30% of all inhibitory neurons in cortex, respectively [12]. We 

will primarily be concerned with the first one in chapter 3, and the first two in chapter 5. 

 The innovation of optogenetics revolutionized the kind of control experimentalists 

have over neurons. In green algae, channelrhodopsin is a protein that functions as a 

photosensitive ion channel used by green algae to “see”, allowing it to move in the 

response to the presence of light. During the 2000’s, a series of innovative approaches 

demonstrated techniques allowing neurons in other animals to express channelrhodopsin, 

allowing experimenters to control the activity of the neuron by shining visible light on it. 

Since its inception, significant improvements to temporal response, channels that allow 

activation or suppression of neurons, and genetic mouse (among other animals) lines 



	
	

10	

have been developed, allowing for very precise control of highly specific neural 

populations. In that past two sentences, I have trivialized a large body of work that is 

almost certainly Nobel prize-worthy. This is an incredibly rich field in its own right, and 

more information can be found in reviews such as [13]. One common usage of these 

techniques is to probe and elucidate the role specific neuronal subtypes play in cortical 

processing, as is the perspective we take in chapter 5 to examine the implications of the 

adaptive responses in auditory cortex on excitatory-inhibitory network state. In chapter 3, 

we take a slightly different perspective of their utility. We leverage the fact that each 

manipulation provides a different perturbation of the network to test a broad hypothesis 

about the role auditory cortex plays in frequency discrimination.    
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2. Behavioral evidence for efficient coding using visual 
textures 

Principles of higher-order vision 
 It has been colloquially said that the visual world is made up of “things” and 

“stuff”, where “things” generically refer to obviously identifiable objects, and “stuff” is 

everything else. The point of this phrasing is that differentiating between what comprises 

a specific “object” and what comprises a “texture” is difficult, and not particularly well-

defined. Most of our visual world is comprised of a series of objects of varying in size 

from large to small occluding one another. For example, a person may identify leaves on 

a front lawn in a close-up photograph as individual objects, but in a zoomed out picture 

of an entire house, leaves on grass may be better described as a visual texture. Visual 

textures can be thought of as patterns of localized statistics within an image that are 

repeated to cover a larger patch. In this example, the relevant statistical properties are 

contained within a length-scale approximately the size of a leaf, but are repeated to cover 

the size of the yard. One interesting feature about such large-scale image features is that 

the early cortical representation must be quite diffuse, as such texture can generally span 

a region much larger than the receptive field of early cortical neurons. We consider this 

complication a feature, rather than a concern, as most natural stimuli likely require 

activity from many neurons to encode/decode. We will see that efficient coding 

nevertheless makes useful predictions about the behavior that reflects the distribution of 

resources cortex devotes to various higher-order image features. This provides a different 

type of prediction from many of the previous efficient coding studies mentioned in the 
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introduction, one that may prove to be helpful in understanding coding of complex 

stimuli in other sensory modalities as well. 

 Previous work within our own collaboration has shown that high-order statistics 

that are predictable from lower-order ones are not encoded by cortex [14], which is 

consistent with suggestions proposed by van Hateren [15]. The intuition for the principle 

we will establish here is that, among natural signals that are unpredictable from lower-

order ones, those with higher variability can better serve to differentiate between objects, 

materials, environments, etc. In order to measure this in correspondence in detail, we will 

first discuss the various regimes of efficient coding, and the implications they have for 

resource allocation in any coding population. With this established, we will examine a 

specific class of visual textures in order to establish that we can create and measure 

images containing specific, well-defined “texture” signals. With this well-defined signal 

in hand, we will then discuss how to characterize a natural image database using these 

signals. Then we will discuss the psychophysical measurements made in order to test 

human sensitivity to these textures. We will then compare the results of the natural image 

analysis to the behavioral results, keeping in mind the predictions made by the efficient 

coding hypothesis. After discussing the implications of this published work, we will show 

unpublished work with preliminary results extending these analyses to a larger class of 

visual textures and discuss the new questions that arise. 

Two regimes of efficient coding 
 The efficient coding hypothesis states that the neural circuitry should operate in a 

manner that maximizes the mutual information of the neural response about the 
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environment. We will examine the analytical results of a simple encoding problem to 

show two of the interesting coding regimes which arise. 

 

Figure 1: Schematic of optimization problem. In this problem we are constrained to 
encode signals 𝑠" in the presence of input and output noise with some linear filters, 

denoted 𝐿". 

As in Figure 1, assume 𝑠" are the variance of Gaussian signals (indexed by 𝑘) we 

wish to encode using some type of linear filter, denoted 𝐿", in the presence of sampling 

(input) noise, channel (output) noise, with a limited bandwidth. Without loss of 

generality, we can take the sampling and channel noise to be unity, as we may rescale the 

signal size for the former and the total dynamic range size for the latter. We expect the 

sensitivity of the system to a particular signal to scale like the gain, |𝐿"|. We are still 

constrained by the total output power of the system, 𝑃, and so the problem can be 

formulated seeking to extremize the quantity 𝐼 = 𝐼"" + 𝛬𝑃. Here 𝐼 is the quantity to be 

extremized with respect to 𝐿", 𝐼" is the mutual information between the channel input and 

output, and 𝛬 is the Lagrange multiplier used here to enforce the power constraint. Non-

trivial solutions occur for 0 < 𝛬 < 1, and as 𝛬 moves from 0 to 1, the constraints switch 
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from being dominated by input-noise to being dominated by output-noise. This is worked 

out in detail in [15] by setting 𝜕𝐼/𝜕𝐿" = 0	and 𝜕𝐼/𝜕𝛬 = 0. The solutions are given by 

𝐿" 1 = 	
− 2 + 𝑠"1 + 𝑠"4 + 4𝑠"1/𝛬

2(1 + 𝑠"1)
 

when the quantity is positive, and 0 otherwise.  This quantity is positive as long as 𝑠" >

𝛬/(1 − 𝛬). This captures the intuition that sufficiently small signals are not worth 

encoding. For 0 < 𝛬 < 1, when 𝛬 is near 1, the critical value of 𝑠" becomes infinite, 

which corresponds to the transmission-limited, or output-noise limited regime. This 

implies nothing but the largest of signals are worth encoding at all. When 𝛬 is near 0, this 

critical value of 𝑠" approaches 0, which corresponds to the transmission limited, or input-

noise limited regime. In this situation, virtually all signals are worth encoding. Numeric 

solutions depicting the resulting gain as a function of the signal strength are plotted in 

Figure 2. 

 In the transmission-limited regime (𝛬 near 1), signals below the threshold value 

have zero gain, and for large signal values, the asymptotic limit of the gain equation for 

large signal strengths is given by 

𝐿" 1~
1/𝛬 − 1
1 + 𝑠"1
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Figure 2: Numeric depiction of different efficient coding regimes. Plots show the optimal 
gain, |𝐿"|, as a function of signal strength for varying levels of 𝛬, the Lagrange multiplier 
which enforces the output power constraint. Whenever 𝑠" < 𝛬/	(1 − 𝛬), the signal is 

not encoded. Panel A depicts 𝛬 near 1, the transmission limited regime, where the gain of 
a signal is inversely proportional to the signal strength (|𝐿"|~1/𝑠"). Panel B depicts 𝛬 
near 0, the sampling limited regime, where the gain of a signal is inversely proportional 

to the signal strength (|𝐿"|~ 𝑠"). 
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This can be understood with the intuition that when signals are highly reliable, it is 

optimal to spend an equal amount of bandwidth encoding each one. The gain here is 

matched to compress the signal to fit into a fixed amount of bandwidth ( 𝐿" ~1/𝑠"). 

There is also a very sharp transition between the signals which are encoded according to 

this bandwidth-equalizing intuition, and those which are not worth encoding at all. This is 

depicted numerically in Figure 2A. 

In the sampling-limited regime (𝛬 near 0), signals below the threshold value still 

have zero gain, but there is a much larger transition region between the signals which are 

not encoded and the reliable signals. The asymptotic form of the gain equation under the 

conditions of 𝛬 near 0 is 

𝐿" 1~
𝑠"

1 + 𝑠"1
1
𝛬 

If we examine the region 𝛬 < 𝑠" < 1, where the signal is smaller than the sampling 

noise, but larger than the threshold for encoding, we see that the gain increases with the 

signal size (𝐿"~𝑠"
:/1𝛬;:/4). This is plotted in Figure 2B. This regime quantifies the 

intuition that, when signals are relatively unreliable, more resources should be spent on 

those which are more reliable. For the purposes of analyzing signals which inherently 

possess significant sampling limitations, this regime is likely to be more relevant. 

Consider, for example, visual textures. The relevant properties have significant statistical 

structure which needs to be averaged over some large homogeneous spatial region in 

order to have a measurement with small error, but spatial variations are significant in 

natural scenes, and the extent of homogeneity unpredictable (a priori). In order to retain 
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the important spatial variations, measurements of such statistics will be inherently noisy. 

This motivates our hypothesis that human perceptual sensitivity to a visual texture 

(quantified by a signal computed from images) should grow with the variability 

(measured from natural visual scenes) of its signal. 

Parameterizing a tractable set of visual textures 
 One of the powerful implications of the efficient coding hypothesis involves the 

sensitivity of the population which encodes the relevant features of the natural world. 

This sensitivity is something which any population, regardless of the particular encoding 

scheme, should achieve. It is therefore possible, as long as we have a well-controlled 

stimulus, to test the efficient coding hypothesis without knowing anything about the 

actual underlying representation. By simply examining behavioral sensitivity to a well-

parameterized stimulus, and comparing the behavioral sensitivities to the presence of 

these signals in natural images we can test predictions of the efficient coding hypothesis 

at a macroscopic level. Our collaboration has previously tested this by looking at specific 

patterns and classifying them as either informative (belonging to the coding region) or 

uninformative (belonging to the zero gain region) based on whether or not they are 

informative about natural scenes [14]. Our goal here is to probe these predictions in 

greater depth by comparing the sensitivities to multiple patterns which are all predicted to 

be encoded by the sensory system. 

 Generically, visual textures are motifs with a particular small-scale structure that 

is repeated over a large region of the visual environment. The number of parameters one 

must keep track of for arbitrary visual textures grows exponentially with both the size and 
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the possible colorings of the regions. It is therefore most prudent to start with the simplest 

tractable subset of these textures which can capture important two-dimensional spatial 

structure. We therefore constrain ourselves to considering 2x2 pixel motifs containing 

only black and white pixels. There are 21×1 = 16 possible configurations such a grid can 

take, and a visual texture of this class can be described by the probabilities of each 

coloring. Probability summing to 1 and translation invariance reduce the number of free 

parameters to 10. A convenient basis to describe these is given by the general discrete 

Fourier transform and contains one first-order coordinate (𝛾), four second-order 

coordinates (𝛽;, 𝛽|, 𝛽/, 𝛽\), four third-order coordinates ( 𝜃∟ and rotations), and one 

fourth-order coordinate (𝛼). For more details about this showing this is a complete 

representation, see [16]. For any patch, computing these quantities is straightforward. 

Each of these coordinates has a specific configuration of pixels, and the value it takes for 

one example configuration is given by the parity of the pixels contained, taking black to 

be -1 and white to be +1. The coordinate value describing an image patch is the average 

across every matching configuration contained in the image patch. So −1 1
1 −1  has 

𝛽; = −1, as there are two horizontal pixel configurations with the values 𝛽; −1 1 =

−1 and 𝛽; 1 −1 = −1.  



	
	

19	

 

Figure 3: Visualizing 2x2 binary textures with single coordinates specified. Midline is 
white noise, and moving up or down in each column corresponds to increasing or 

decreasing the average value of the indicated coordinate. The emergent structures are 
easily visible at the extreme ends of the spectrum. 

 
Figure 4: Visualizing 2x2 binary textures with multiple coordinates specified. Center 

point is white noise, and moving outward the patterns generated use increasingly strong 
coordinates. The emergent structures are easily visible at the extreme ends of the 
spectrum, and the combination of two coordinates provides significantly different 

patterns from only specifying one. There exist restricted regions (e.g. gray region of right 
panel) where no realizable pattern can give such statistic combinations. 
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It is possible to generate image samples which are maximum entropy subject to the 

constraint of having 1 or 2 coordinates specified [16] , and examples of the appearance of 

these patterns appear in Figures 3 and 4. To provide some intuition for this algorithm, 

consider the simple case of specifying single coordinates. It is easy to identify a boundary 

which contains only uncoupled pixels, which may be generated randomly. From here, the 

relevant template shape may be shifted in such a way that only one pixel is undefined. 

The pixel color is chosen from the Boltzmann distribution, enforcing the constraint on the 

average coordinate value for the image. For example, specifying the 𝛽; coordinate leaves 

independent rows, and so in each row, we may randomly generate the left-most pixel. We 

may sequentially generate pixel 𝑖 + 1 according to the distribution 𝑝 𝑐HI: =

:
J
𝑒;LMLNO	(PQ)RSRSTU. The functional form of this equation is identical to a formulation of 

the one-dimensional Ising model that specifies the spin-spin correlation rather than the 

coupling strength. 

Characterizing the “natural” visual environment using visual textures 
The efficient coding hypothesis claims that sensory systems of organisms have 

evolved in order to be able to efficiently represent the types of stimuli they naturally 

encounter. In order to remain faithful to this claim, we use images from the UPenn 

Natural Image Database. The images are taken from natural baboon habitats in Botswana 

using a camera calibrated to faithfully capture the responses that L, M, and S cones of 

primates [17], although we cross-checked our work with another popular image 

database(the van Hateren Image Database). Since we will be eventually making a 

comparison to binary textures, we will consider the overall luminance at each point in the 
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image as the most relevant element, though certainly more generic visual textures of 

interest contain more generic color patterns. But what is the most sensible way to retain 

the structure of a grayscale image after converting to a binary image? Natural images 

have well-documented long-range correlations, which can be understood to a large extent 

by the properties of translation-invariance and scale-invariance [18]. The former can be 

understood by virtue of the fact that shifting a natural scene, for example to the left or to 

the right, yields another natural scene. The intuition explaining the notion of scale-

invariance in natural images is as follows: if a particular environment or set of objects 

constitutes one natural image, then so does the same set of objects as viewed from either 

half the distance or twice the distance. These seemingly simple observations have 

powerful implications about the statistical properties of natural images, including the 

typical pair correlation between pixels. The fact that natural images have long-range 

pixel-pixel correlations implies that simply binarizing the grayscale image by itself (e.g. 

about the pixel intensity median) leaves large regions of the image either entirely black or 

entirely white and removes much of the small-scale structure of the image. This is a 

property which holds across the ensemble of images, and is itself unhelpful in 

distinguishing individual images from one another. By only removing the average pair 

correlation across the entire database (a procedure called whitening), we leave excess 

correlations that exist in specific images, and therefore don’t lose any information that 

can be used to distinguish images. The difference in these two methods is illustrated in 

Figure 5. The whitening filter has a center-surround structure reminiscent of some retinal 

ganglion cells, and we have discussed arguments that the purpose of some early visual 

processing is to decorrelate the visual input in a similar way. 
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Figure 5: Comparing binarized images with and without removing average pair 
correlation. In panel A, the original image of a baboon’s face slightly obscured by some 

brush. In panel B, the image has been filtered in order to remove the average pair 
correlation from the dataset. The significant features of the image are still visible. In 
panel C, the original image (panel A) has been binarized by setting all pixels with 

luminance higher than the median to 1, and all other to zero. Information about many 
local features, such as fur texture, are completely absent due to the strength of long-range 

correlations. In panel D, the whitened image (panel B) has been binarized about its 
median pixel intensity. Much more local information, such as the grass’s countour and 

the hair texture, remains visible. 
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In order to check that scale does not affect the results, we introduce the block-

average factor 𝑁 which sets the scale of the image by shrinking the image by a factor of 

𝑁 in each direction, whose pixel values are the average of the corresponding 𝑁×𝑁 block 

in the original image. We do not assume scale invariance holds in the natural images, so 

we will remove the average pair correlation computed empirically from the natural image 

dataset used. This is done by flattening the average Fourier power spectrum, which relies 

on translation invariance.1 To reliably estimate the pair-correlation for an image with 𝑃 

pixels, we need approximately 𝑃1 images (or 𝑃 images if we assume translation-

invariance). Since our nice-sized databases have ~1000 images with ~1 Megapixels each, 

it is obvious that we will not have enough data to compute these quantities for full-sized 

images. Instead, we cut the original images into image patches of size 𝑅×𝑅 to form a 

larger database of smaller images. With these choices in image processing parameters, we 

can additionally test the results to see whether or not the scale of the image analyses has 

any bearing on the texture representations. The full processing procedure is pictured in 

Figure 6.  

                                                
1	Another way to achieve this result is by computing the principle components of the 
dataset and rescaling the image, as represented in the principle-component basis, by the 
inverse square-root of its variance. This also leaves pixels uncorrelated on average, and 
does not rely on the translation-invariance assumption, but is numerically unstable. 
Inevitably for large vector spaces like this, there will be principle components with 
variances near zero. These principle components that explain almost nothing about the 
data will be amplified by a numerically unstable amount using this method.	
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Figure 6: Depiction of image processing procedure. We first take an ensemble of images 
and make new pixels by averaging blocks of 𝑁×𝑁 pixels to make effective pixels in 

order to test the analysis across scales. We then divide the new image into patches of size 
𝑅×𝑅 in order to be able to have enough samples to make meaningful ensemble statistics. 

This provides another check on scale invariance for the estimation of statistics. The 
image patches are then whitened in order to remove the mean pair-correlation. The 

whitened image is binarized at its pixel-intensity median, yielding a binary image which 
contains much of the structure at all length scales. The binarized image patches are used 

to compute the distribution of texture parameter values across natural images. 

 
Once we have these image patches, we may compute the distributions of the 

various texture parameter values (in the manner described above) in order to see which 

are the most informative ones about natural scenes, and therefore, the ones to which we 

expect people to be most sensitive. We compute the mean of each of the texture 

parameters in each image patch, and our distribution contains one such vector for each 

image patch in the analysis. The standard deviation of this distribution, which we 

consider here to represent the strength of the signal from the above efficient coding 

calculation, is plotted for single coordinates in Figure 7. A single scale factor for the 

overall vector length was used for each set of image processing parameters. This can 

account for overall variance differences that can arise due to larger image patches having 

inherently smaller variances. Interestingly, non-trivial structure has already begun to 

emerge. We can see that the horizontal and vertical two-point correlations are the 
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Figure 7: Normalized standard deviation of single coordinates. Here, we see the 
horizontal and vertical two-point correlations are most prominent, followed by diagonal 

two-point correlations. Four-point correlations are more prominent than three-point 
correlations of any orientation. Despite the apparent overlap in the cloud of points, rank 

ordering is preserved for each individual analysis. 

 
strongest, followed by diagonal two-point correlations. Three-point correlations are the 

least prominent, with smaller variance than the four-point correlation. Performing this 

analysis on white noise yields equal standard deviation in each coordinate direction, 

suggesting that these are indeed novel features characterizing natural images. 

Characterizing human sensitivity to visual textures 
 To draw an analogy to the efficient coding hypothesis above, we interpret the 

ideal amount of gain to apply to a signal to be proportional to the sensitivity a subject 

displays to the signal. This means that we do not need to measure from the entire neural 

population to make a guess about the amount of neural resources devoted to the texture 
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signals, but rather we know the effective gain applied by measuring the psychophysical 

sensitivity. Additionally, it is worth noting that neural representations supporting 

discrimination of this kind of visual texture do not emerge until, at the earliest, secondary 

visual cortex (V2) [19]. In order to test human sensitivity to these visual textures, we use 

a four-alternative forced-choice task (see Figure 8A), in which a strip with a specific set 

of parameter values is placed in one of four locations (top, bottom, left, or right) and the 

rest of the image is filled with white noise.  More specifically, the subject is asked to 

fixate at a point on a screen, after which the image changes to the structured target on 

white noise background for 120ms, before a white noise washout image is displayed to 

prevent the user from utilizing the afterimage. The task reflects the ability of the subject 

to distinguish the texture from white noise. This is done for a variety of coordinate values 

(specifying single and dual coordinate values), from which a threshold is defined as the 

strength of a parameter required for a subject to distinguish the location of the texture 

with an accuracy of 62.5% (halfway between chance and perfect) as schematized in 

Figure 8, panel B. An early observation about the psychophysical sensitivities shows that 

human subjects are symmetrically sensitive to positive correlations as negative 

correlations. There is no reason that this needs to be the case, although it is a property 

that an ideal observer would exhibit. The results from single-coordinate measurements 

feature the same rank-ordering as in the natural image analyses, β;, β| > 	β/, β\ > α > θ. 

Here, due to the indistinguishability of thresholds for some classes of texture parameters, 

single values were reported to represent sensitivity to that  
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Figure 8: Depiction of psychophysical experimental procedure. The task (schematized in 
A) requires the subject to fixate on the center of the screen before the structured image is 
displayed. After 120ms, a white noise image is displayed to prevent burn in. The subject 

has to identify the location of the structured part of the image (top/bottom/left/right). This 
is done for a variety of texture parameter values, allowing the calculation of a threshold 
(where the subject reaches halfway between chance and perfect) for each coordinate, as 

well as oblique directions in each 2-dimensional subplane(panel B). The results for 
single-coordinates are displayed in panel C, featuring the same rank-ordering as found in 
the natural image analyses. Here, symmetries in psychophysical sensitivities suggested 

reporting single values for texture classes with indistinguishable thresholds. 
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class, as seen in Figure 8, panel C. This is very different from what an ideal observer 

would display, which would be equal sensitivity in each single coordinate direction [16]. 

Each subject performed 4320 trials per plane, totaling 47520. For more details about the 

psychophysical experimental procedures, see [20]. 

Comparing natural image statistics to human psychophysical sensitivities 
 Since we expect the sensitivity to grow with the signal strength, and the 

psychophysical threshold to be small for parameters to which we are very sensitive, we 

should compare the standard deviations found in natural images to the inverse of the 

psychophysical threshold. After allowing for a single overall scale factor for each set of 

image processing parameters, plotting these quantities against one another (see Figure 

9A) shows a striking degree of similarity. In addition to the robustly preserved rank-

ordering, the relative magnitudes of the standard deviations match the relative 

magnitudes of the psychophysical sensitivities. It is also interesting to observe that the 

variability between image analysis parameters is similar to the variability between 

subjects. 

 Seeing this striking level of agreement for individual coordinates is very 

interesting, but our choice of single coordinates was simply using a convenient basis, 

rather than describing a fundamental set of independent parameters. We therefore need to 

examine the covariance structure of these signals, and compare the thresholds predicted 

by the inverse covariance matrix given from the natural image statistics to the threshold 

ellipses measured from human subjects. A comparison of these ellipses is shown in 

Figure 9B, for a single set of image processing parameters to reduce clutter, although 
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Figure 9: Comparing natural image statistics to psychophysical sensitivities. In panel A, 
the psychophysical sensitivity, given by 1/threshold, is plotted in red. Natural image 

standard deviations, plotted in green-blue, have each been allowed a single scale factor 
for each set of processing parameters, since the overall magnitudes need not directly 
reflect the psychophysical sensitivity. The degree of variability in image analyses is 

similar to the degree of variability between subjects. In panel B, the threshold ellipses for 
each subject are plotted in red along with the threshold ellipse predicted from the natural 

image statistics.  
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although results are similar across image analyses as well (for more detailed 

measurement, see [2]). We quantified the elliptical parameters, eccentricity and tilt, to 

measure the agreement (see Figure 10) between the ellipses, but note that when 

eccentricity is small, tilt becomes meaningless. Note that for the elliptical parameters, 

there is no scale factor at all, and the prediction made here has no free parameters, as the 

scale factor only affects the overall size of the ellipse. 

 

Figure 10: Quantifying elliptical agreement. Angular tilt (top) and eccentricity (bottom) 
plotted for a variety of image processing parameters and each human subject. The 

eccentricities and tilts agree to a large extent. This comparison is parameter free, as the 
scale factor only affects the overall size (area) of the ellipse. 
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Discussion of binary results 
 Here, we have proposed an idea governing the organization of neural circuits that 

makes predictions at the level of human behavior. This is a very powerful statement 

about the nature of neural circuit organization. For the purposes of this study, we did not 

even need to make direct measurements of cortical activity. The intuition behind the 

suggested coding scheme is that for signals which have relatively high uncertainty, it is 

worth devoting more resources to looking at signals that are more variable. In this case, 

sampling limitations for local texture features imply that signals with larger variability 

are more useful in distinguishing between natural images. It is interesting to note that a 

strength of the comparison made here is between a set of artificial textures and statistics 

computed from natural scenes. A strength of this study is that, despite the seemingly 

unnatural structure of the artificial stimuli, we were able to predict their salience to 

human subjects based on observations about how the texture parameters characterize 

natural images. 

 It is also interesting to note that the perceptual thresholds likely arise from cortical 

processing, as this implies that the efficient coding hypothesis is not only a useful tool to 

apply in the extreme sensory periphery, but can useful for understanding central 

processing as well. The stimuli contrast was very high, and the pixels were easily visible 

(14 arcmin), meaning that retinal limitations for contrast sensitivity and spatial resolution 

were not limiting factors for the discrimination. It has also been shown that cat retinal 

populations show no sensitivity to the four-point correlations, but simultaneous visual 

cortex field potential measurements do [21]. Similarly, neurons in macaque visual cortex 

elicit responses to three- and four-point correlations [19]. Furthermore, the efficient 
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coding regime that makes these predictions has input-noise as the dominating parameter 

limiting performance, which differs from the one traditionally applied to understand 

peripheral vision. In peripheral vision, the optic nerve applies a heavy constraint to output 

power, and output noise is the limiting factor. The ‘whitening’ regime, as it is called, 

calls for neural resources to be devoted with an inverse relation to the variability. For 

example, the retina has greater sensitivity for low spatial frequencies than high spatial 

frequencies, reflecting the ~1/𝑓1 power spectrum observed in natural images. This 

difference in coding constraints observed for peripheral and cortical vision could provide 

important insights into coding strategies used elsewhere in cortex. 

 It is also interesting to note that we observed more evidence for scale invariance 

in natural images. Image analysis parameters changing the scale of the scene (block 

average factor) did not significantly alter any of the significant findings of these texture 

statistics, which suggests scale invariance is a useful way of thinking about natural scenes 

in more ways than just predicting the frequently observed 1/𝑓1 power spectrum. 

 This work is building on a larger class of studies examining the role of neural 

coding for visual texture perception. Previous studies within our own collaboration [14] 

have shown that certain high-order correlations that are present in natural scenes are not 

perceptually salient at all, finding that their presence in natural scenes is entirely 

explainable from shorter-range correlations. Other studies [22], have found manipulations 

to higher-order statistics in images that deform images in a manner that are undetectable 

to a fixating human(but readily observed when your gaze wanders). Both of these studies 

have quite a similar flavor, and are consistent with the coding model presented here as 
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elements which fit into the non-coding region. We have taken this a step further and 

shown that, for higher-order correlations that humans are sensitive to, we seem to be 

sensitive to them in proportion to their variability. 

 Another interesting implication of this line of work applies to situations that rely 

on human experts to examine highly unnatural images. In medical imaging, for example, 

it can be very difficult for an untrained eye to spot a defect or a fracture, particularly in a 

small bone or the appearance of a small tumor. It may be possible that these types of 

images, which certainly have highly different statistics from natural images, have a 

significant amount of information stored in local correlations that are difficult for humans 

to detect. If it were possible to effectively ‘rotate’ the coordinates so that the informative 

ones align with the ones humans are naturally sensitive to, it may make diagnoses based 

on medical image data much easier and more reliable. Some research in this direction has 

already begun. 

Extension to grayscale images 
 It is of course natural to want to extend these kinds analyses to grayscale images, 

as our experience of the world has nearly a continuum of luminance values, rather than 

just black and white. Analogous grayscale textures can be computed using the methods 

established in [16]for finite grayscale levels. We will start by examining textures with 3 

grayscale levels in the same 2x2 pixel block. The basis we will use is related to the 

number theoretic Fourier transform, and spending some time describing this will be 

useful. In a 2x2 grid, we can label the pixels starting at the top left and going clockwise 

A, B, D, C. The manner of describing the relevant textural configuration is using these 
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letters, so 𝐴𝐵 will denote a horizontal 2-point correlation, while 𝐵𝐶𝐷 denotes a 3-point 

correlation in a configuration that excludes the top-left corner. Previously, with only two 

grayscale levels, we used the parity of the block. Now, it is helpful to think of the patterns 

with respect to arithmetic mod 3, where a black pixel is labelled 0, a gray pixel labelled 1, 

and a white pixel labelled 2. Since each of these individual patterns is well-defined, we 

can deconstruct it into probabilities that the sum of individual grayscale values is equal to 

a specific value. For example, the 𝐴𝐵:1 coordinate has probabilities associated with 

𝑃(𝐴 + 2𝐵 = 0	𝑚𝑜𝑑	3), 𝑃(𝐴 + 2𝐵 = 1	𝑚𝑜𝑑	3), and 𝑃(𝐴 + 2𝐵 = 2	𝑚𝑜𝑑	3). These 

probabilities must sum to 1, and so there are only two free parameters describing this 

coordinate subspace. In the binary case, we had only a single value to describe these 

coordinates because there were two possible values the combined coloring could take. 

The patterns generated by this 𝐴𝐵:1 are that 𝐴 = 𝐵, so no change as pixels move in the 

horizontal direction [000…/111…/222… depending on initial value] when 

𝑃 𝐴 + 2𝐵 = 0	𝑚𝑜𝑑	3 = 1; the cyclic pattern [0210210…] when 𝑃 𝐴 + 2𝐵 =

1	𝑚𝑜𝑑	3 = 1; and the cyclic pattern [012012…] when 𝑃 𝐴 + 2𝐵 = 2	𝑚𝑜𝑑	3 = 1. The 

subspace of values these three probabilities can take lies within a triangle bounded by the 

three probabilities taking values between 0 and 1, and summing to 1. Overall, there are 33 

different patterns, each with two degrees of freedom, totaling 66 dimensions (2 first-

order, 16 second-order, 32 third-order, 16 fourth-order).  

We can compute these quantities for natural images following a very similar 

processing pipeline as before, but instead of binarizing at the pixel intensity median, we 

“trinarize” with equal number of white, black, and gray pixels. This gives us the 
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distributions of these parameters in natural images. Psychophysical measurements have 

been carried out to analyze human sensitivity to several subspaces [23]. We will compare 

some our analyses of these natural scene statistics to the psychophysical measurements. 

Comparing the thresholds predicted using the same analyses to a subset of the planes 

containing 2-point correlations (plotted in Figure 11), we see agreement in the orientation 

and eccentricity of the ellipses for two subplanes (𝐴𝐵:1 and 𝐴𝐷:1), but a lack of such 

strong agreement in two other less eccentric planes (𝐴𝐵:: and 𝐴𝐷::). This is an 

interesting finding in its own right, and remains to be seen why agreement exists in some 

ways, but not in others. One possibility is that the neural mechanisms for encoding these 

highly complex features are heuristic, and therefore unable to capture every detail of the 

distribution, but prioritize coding the most important and salient features. 

To further analyze this data, it is useful to use principle component analysis 

(PCA) to analyze where the bulk of the distribution is concentrated. Upon doing so, the 

first interesting feature that pops up is the eigenvalue spectrum (plotted in Figure 12A). 

There are 99 principle components because the covariance analysis here is performed 

using the full probability values, but 35 dimensions are null. This is expected because 

normalization reduces the number of free parameters to 66, and our “trinarization” 

process fixes the probability of having each, black, white and gray colored pixels. Then, 

we observe that the bulk of the eigenvalues are quite small compared to the variance of 

the first few components. In fact, nearly 75% of the variance in the dataset is contained 

within the first 10 principle components. These first 10 principle components are 

primarily composed of second-order statistics, with a few contributions from third- and 
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fourth-order statistics. This is consistent with the psychophysical observation that many 

second-order statistics are salient, but few third- and fourth-order ones are. Furthermore, 

the principle components provide insight into the natural structure of visual scenes, and 

may provide insight into the kinds of symmetries we may expect to observe 

psychophysically. As an example, plotted in Figure 12B, are coefficients of three of the 

first five principle components. The first column corresponds to the probability that the 

sum is equal to zero, the second column to the sum being one, the third to the sum being 

two. The principle component that contains the largest amount of variance in the data 

contains has the most significant contributions occurring equally from 𝐴𝐵:1, 𝐴𝐶:1, 𝐵𝐶:1, 

and 𝐴𝐷:1 (and the relevant sum equaling zero), all with positive coefficients. An 

interesting feature of this vector is that it is approximately symmetric under rotating the 

underlying image by 𝜋/4. Two more of the first few principle components contain 

similar contributions from two-point correlations that span a similar subspace as the most 

significant component, but differ in that positive and negative coefficients imply that this 

element is actually antisymmetric under the operation of rotating the image by 𝜋/4. This 

natural symmetry may manifest itself in an important way, and suggests that one non-

trivial two-dimensional subspace of interest is, for example, the 𝑃 𝐴𝐵:1 = 0 −

𝑃(𝐴𝐶:1 = 0) plane, because we have strong predictors along oblique directions within 

this plane. This analysis would additionally shed light on the role of this underlying 

approximate symmetry of natural images has on perception. 
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Figure 11: Comparing single-coordinate thresholds. Each plot is a projection of the 
coordinate space 𝑃 𝑋 = 𝑖	𝑚𝑜𝑑	3 , where 𝑋 is the relevant coordinate equation (labelled 
to the left). The bottom left corner, right corner, and top left corner correspond to 𝑃 = 1 
when 𝑖 = 0, 1, and 2, respectively. Psychophysical measurements are plotted for a single 
subject, though are representative of other subjects. We see agreement in the 𝐴𝐵:1 and 
𝐴𝐷:1 subplanes, but a noticeable lack of agreement in 𝐴𝐵:: and 𝐴𝐷:: subplanes. 
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Figure 12: Features of principle components. In panel A, variance is plotted for each 

principle component (labelled in ascending order of variance), showing there are likely 
relatively few dimensions in the space where behavioral sensitivity is measurable. In 
panel B, we see the structure of some of the most significant principle components 
(labelled in descending order of variance) respects intuitive transformations of the 
environment. The largest principle component is approximately symmetric under 

rotations of 𝜋/4, while the third and fifth span a similar subspace, but are approximately 
antisymmetric under rotations of 𝜋/4. 
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Here we have taken steps in the direction of extending these analyses towards 

grayscale measurements, and we have seen that as the size of the space increases, the 

importance of natural image analysis is more important. Brute force cannot be used to 

measure thousands of 2-dimensional subspaces, so it is important to identify particularly 

important ones to look within, especially when we expect that few will be detectable at 

all. We have shown that the ideas formulated at the beginning of this analysis still 

provide useful predictions using more complex stimuli, but may have stumbled upon 

some instances where our theory begins to break down. This is where we may learn new 

things—whether it is about some kind of change in the coding scheme our visual system 

employs, or features of human perception limited by heuristic solutions used by our 

visual system, following our theory until it fails leads us to learn something new. 
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3. Neural populations predictive of frequency 
discrimination behavior in mice  

 

Large neural populations and information encoding 
An important step toward understanding the neural code is establishing limitations 

it provides for behavior. In the previous chapter, this was exemplified using natural 

images as the source. In this chapter, we inspect neural responses in auditory cortex to 

different tone frequencies in order to see whether or not this activity can explain 

behavioral limitations of the animal. Previous studies have tried to address similar 

questions for identifying heading direction [24] and for sound localization [25], but no 

direct link has been drawn for frequency tuning. In fact, the role auditory cortex plays in 

frequency discrimination has a few subtleties to it. For example, some studies have found 

that pharmacological suppression [26] and lesions of human AC [27] impair frequency 

discrimination. However, other lesioning [28] and pharmacological [29] studies have 

shown little effect. Many neurons in the auditory cortex are frequency tuned, and respond 

more strongly to some frequencies than others. Moreover, this frequency tuning can be 

changed by learning [30] [31] [32] [33] [34]. Recent work within our lab has shown that 

optogenetic manipulations of auditory cortex change the behavioral frequency 

discrimination performance of mice. More specifically, activating PV interneurons in 

auditory cortex on average led to improvements in frequency discrimination performance, 

while suppressing them led to impaired performance [3]. It is quite interesting that a 

manipulation improved performance, because that rules out the possibility that the neural 

circuitry in auditory cortex is tuned to optimize performance in this kind of sensory task. 
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If this were the case, any manipulation of the circuitry would impair performance. This 

information suggests that, even though auditory cortex is not necessary for frequency 

discrimination, it still plays an important modulatory role. We will examine this role on 

an individual-by-individual basis, and our work suggests that individual differences in 

frequency discrimination performance may be tied to differences in the underlying 

activity of the AC. 

In order to establish a link between neural activity and behavioral frequency 

discrimination, there are several challenges to overcome. Neural recordings significantly 

subsample the population (there are ~105 neurons in mouse auditory cortex), and there is 

no clear mapping from the subset of neurons in one mouse to those in another. The way 

we control for this effect is by using the same neural responses, and taking advantage of 

the fact that optogenetic manipulations of neurons in AC lead to changes in (i) the 

behavioral thresholds exhibited by individual mice and (ii) the neural responses exhibited 

to tones. We can therefore make a direct comparison between the thresholds predicted 

from the population and the behavioral thresholds in both, light-on and light-off 

conditions. Although the absence of recordings for many neurons from the population 

may make predicting the absolute behavioral threshold challenging, the change in 

threshold should be similar if we have the same subset of neurons embedded in the same 

population, so long as the changes in the subpopulation are representative. We will first 

present the methods for computing the limitations the neural activity gives for frequency 

decoding. We then discuss characterization of neural responses in AC, and how they may 

be used to calculate an empirical estimate of frequency discrimination performance. 

Methods for measuring behavioral frequency discrimination follow. We then compare the 



	
	

42	

thresholds found neurometrically to those found behaviorally, and discuss the 

implications of our findings. Finally, the chapter closes by proposing follow-up work that 

could shed light on the role AC plays in learning and the implications these sensory 

limitations have on behaviorally relevant stimuli. 

Computing Fisher information from a neural population 
 How can one quantify the discriminability between two inputs from something 

which encodes them? For example, if we know the neural response (including variability 

in the response) to two different tones, we should be able to be able to estimate how well 

the neural activity can distinguish them. For two randomly selected tones in the auditory 

spectrum, the neural responses will most likely be drastically different, allowing one to 

easily determine which tone was played using the neural responses. However, if the two 

tones happen to be quite close to one another, we need a way of estimating the 

distinguishability of the tones. Fisher information is a useful quantity to examine 

whenever the underlying signal is naturally described as a continuous variable (tone 

frequency, orientation of a bar, or velocity of moving object, to name a few), and is 

defined by: 

𝐼f 𝑓 = 	 𝑃(𝑛|𝑓)
𝜕
𝜕𝑓 log 𝑃(𝑛|𝑓)

1

k

 

where 𝑓 is the signal being encoded (frequency for the uses in this chapter), 𝑛 is the 

vector denoting the response of neural population (where each dimension represents a 

neuron in the population, and its entry is an integer specifying the number of times it 

spiked), and 𝑃(𝑛|𝑓) is the likelihood function describing the probability that a particular 

spiking pattern is observed given that the signal input is f. The Fisher information is large 
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wherever the probability distribution changes quickly, which captures the intuition that 

distinguishing nearby frequencies requires the neural response to change rapidly as the 

frequency shifts. In fact, any unbiased estimator 𝑓 based on the neural responses will 

have a lower bound on its variance calculable from the Fisher information, 𝑉𝑎𝑟 𝑓 ≥

	 :
pq(r)

 . In other words, this quantity sets the length scale in signal space of how far apart 

another frequency must be for any criterion level of detection, and therefore bounds the 

optimal performance. The neurometric threshold, which describes the length-scale in 

signal space for a criterion performance, is therefore defined to be 𝐼f 𝑓 ;:/1.  

 But how do we apply this to the responses of neural populations? One useful 

approximation is to assume that neurons respond independently of one another. This is 

clearly untrue in general, as most neurons are excited directly by other neurons, but when 

considering a set of neurons with inputs dominated by inputs from a different brain 

region, it is not a bad one. If neural responses to the input are independent, we can write 

𝑃 𝑛 𝑓 = 	 𝑃(𝑛H|𝑓)
H

 

where 𝑃 𝑛H 𝑓  is the probability that neuron 𝑖 will spike 𝑛H times in response to the 

frequency. This quantity is much easier to measure experimentally. This additionally 

makes computation of the Fisher information simpler, because the sum factors into a sum 

of the Fisher information of individual neurons. Without independence, 𝑘s probabilities 

must be computed, where 𝑘 is the maximum number of spikes possible during the time 

period of interest and 𝑁 is the number of neurons. With the assumption of independence, 
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only 𝑁 ∗ 𝑘 probabilities must be computed, allowing the analyses to scale for reasonably 

large populations. 

Another useful approximation is that individual neurons respond with Poisson 

statistics, which is the case when a neuron receives inputs that bias it to fire at a certain 

rate, but the individual spiking events rely on a stochastic process to occur. 

Mathematically, this means 

𝑃 𝑛H|𝑓 =
𝑒;uS(r)𝜇H(𝑓)k

𝑛!  

where 𝜇H(𝑓) is the mean number of spikes expected in response to stimulus 𝑓. One 

property of the Poisson distribution is that the Fano factor, defined as the ratio of the 

variance to the mean of the response, is equal to one. It has been observed that though it 

is a good approximation, this does not always hold for real neurons [35], and many 

neurons have larger Fano factors than this. We will ultimately be interested in relaxing 

this constraint, and so we will also use the generalized Poisson distribution, defined by 

𝑃 𝑛H 𝑓 =
𝛼H(𝑓) 𝛼H(𝑓) + 𝑛H𝜆H k;:𝑒; yS(r)IkSzS

𝑛H!
 

where the additional parameters 𝛼H 𝑓  and 𝜆H are related to the moments of the 

distribution. More specifically, 𝐸 𝑁H = yS(r)
:;zS

 and 𝑉𝑎𝑟 𝑁H = yS(r)
:;zS |

. 𝜆H can be expressed 

in terms of the Fano factor, 𝐹H as 𝜆H = 1 − 𝐹H
;:/1, which leaves 𝛼H 𝑓 = 𝜇H 𝑓 ∗ 𝐹H

;:/1	. 

When 𝜆H is zero, this reverts to the standard Poisson distribution, but allows an extra 

degree of freedom to control the ratio of variance to mean, allowing us to capture more 

realistic properties of real neural populations. With these tools, we able to compute from 

a neural population what the limits on its performance will be. This will allow us to test 



	
	

45	

the hypothesis that the ability to decode frequency from responses in auditory cortex 

predicts the behavioral thresholds exhibited.  

Measuring from a neural population in auditory cortex 
 The key to utilizing neural responses to predict something about behavioral 

frequency discrimination is to characterize the response to tones. Neural activity was 

measured in awake, head-fixed mice using 50 tones spaced logarithmically between 1 

and 80 kHz at 8 different sound intensity levels (from 10-80dB). Tones were presented 

pseudorandomly for a duration of 50 ms with 450 ms between them (Schematized in 

Figure 13A). The stimulus was counter-balanced to allow for an analogous measurement 

with optogenetic manipulation. For tones with optogenetic manipulation, the light was 

delivered for 200ms, starting 100ms prior to tone onset. From this, we computed the 

frequency response function of the neuron by averaging the firing rate to each frequency 

at the 3 highest sound pressure levels. This was then fit by a Gaussian frequency response 

function, as depicted in Figure 13B. After retaining only neurons where the Gaussian fit 

has 𝑅1 > .6, we pooled the neural population across each individual mouse. From this set 

of tuning curves, the Fisher information may be calculated (see Figure 13C), from which 

a predicted threshold may be derived (see Figure 13D). More details of recordings can be 

found in [3]. 
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Figure 13: Computing Fisher information from neurons in AC. In panel A, neural 
recordings from AC are performed while a presenting frequencies chosen pseudo-
randomly from 50 tones spaced logarithmically from 1-80kHz. Each neuron has a 

frequency response function (panel B) which is fit to a Gaussian (solid line). From the 
population of tuning curves for a particular mouse, we can compute the Fisher 

information (panel C), which sets a bound on the frequency discrimination profile 
possible from this population. The threshold is predicted by 𝐼f

;:/1, plotted in panel D. We 
will be interested in looking at a particular frequency, 𝑓:, which represents the frequency 

at which behavioral frequency discrimination acuity is measured. 
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Assessing behavioral discrimination in mice 
 In order to measure behavioral performance in mice, we used a pre-pulse 

inhibition procedure. Essentially, by playing a background tone, followed by a relatively 

loud burst of white noise, the animal exhibits a startle response. In order to utilize the 

startle response to measure frequency discrimination acuity (Figure 14A), while the 

animal is standing on a platform that measure paw pressure, we play “pre-pulse” tone for 

60ms (10.2, 12.6, 13.8, 14.7, 15.0 kHz) between the background tone (15kHz for a 

randomly chosen 10-20s) and the noise burst (100dB SPL broadband noise for 20ms). 

When the pre-pulse tone is indistinguishable from the background tone, there is no 

reduction in the startle response (Figure 14B), but when the pre-pulse tone becomes 

distinguishable, the startle response is suppressed. This reduction in startle response is 

termed pre-pulse inhibition (PPI). A sigmoid is fit to the PPI, which is computed from the 

acoustic startle response by 𝑃𝑃𝐼 𝑓 = ��� � ;���(r)
���(�)

 . A sigmoid is fit to the PPI curve, 

and the behavioral threshold is defined as the frequency difference that leads to 50% of 

the maximum PPI (Figure 14C).  A major advantage PPI has over other tasks that 

measure the same quantity, such as go/no-go or 2-alternative forced choice task, is that it 

is an innate response. The measured acuity is therefore not confounded by the ability of 

the animal to learn the task, as we will not mistake a decision-making error for a 

perceptual one. For more details about experimental measurements, see [3].  
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Figure 14: Measuring behavioral frequency discrimination. Animals stand on a platform 
that measure paw pressure while a series of three sounds are played (panel A). A 

background tone is played for 10-20s, followed by a tone of variable frequency, before 
finally a brief burst of broadband noise. The acoustic startle response (ASR) is reduced as 

the pre-pulse tone becomes increasingly different from the background tone (panel B). 
The pre-pulse inhibition (panel C) measures the ASR reduction as a function of 

frequency shift. The threshold is defined by the frequency difference yielding 50% of 
maximum PPI. 

Effects of optogenetic manipulations on behavior and recordings 
The broad hypothesis here states that regardless of the specifics of the 

manipulation, the effects that are salient to behavior will be captured by changes in Fisher 

information of the individual neurons. We used 3 different optogenetic manipulations, 

including expressing ChR2 in in PV+ interneurons, Arch in PV+ interneurons, and ChR2 

in pyramidal neurons. This allows us to excite PV+ interneurons (inhibiting typical 

pyramidal neurons), inhibit PV+ interneurons (disinhibiting typical pyramidal neurons), 

and excite pyramidal neurons, respectively. For more information on how the optogenetic 
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manipulations were performed in this case, see [3]. We observed salient changes in the 

baseline activity of neurons during optogenetic activation of each class of neurons. 

Activating PV interneurons tended to reduce the baseline activity of most recorded 

neurons (Figure 15A), while suppressing PV interneurons led to a slight increase in 

typical baseline activity (Figure 15B). Activation of pyramidal neurons led to primarily 

increases in neural activity (Figure 15C). We also observed changes in the behavioral 

thresholds between baseline and optogenetically modified conditions. Exemplar PPI 

curves for each type of optogenetic manipulation are plotted in Figure 15, panels D-F. 

Most animals with optogenetic activation of PV interneurons had improved 

discriminability (reduced threshold), but not all. In the small sample sizes reported here, 

animals with suppressed PV interneurons displayed increased and decreased thresholds, 

while the mice whose optogenetic manipulations activated pyramidal neurons displayed 

increased thresholds. The changes in frequency response function properties under the 

influence of optogenetic manipulations lead to changes in the Fisher information profile 

of the population, and therefore a change in the predicted threshold. The threshold curves 

predicted with and without optogenetic manipulations (assuming a Poisson noise model) 

are plotted along with the measured threshold in Figure 15 panels G-I. Note that the 

behavioral thresholds are much lower than the predicted neurometric thresholds. This is 

expected because the neural populations had between 10 and 100 neurons, a small 

fraction of the neurons in auditory cortex that contribute. Also note that the behavioral 

threshold is valid only where it was measured, at 𝑓:. In each of these three examples, we 

see that the change in the threshold of the neural population is in the same direction as the 
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changes in the behavioral thresholds. This is suggestive, but we still need to control for 

differing population sizes and actually measure how much the change in neural threshold 

correlates with the change in behavioral threshold. 
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Figure 15: Optogenetic manipulations change neural and behavioral responses. The left 
column corresponds to optogenetically activating PV interneurons, the middle column 

corresponds to optogenetically inhibiting PV interneurons, and the right column 
corresponds to optogenetically activating Pyramidal neurons. Panels A, B, and C show 

that activation of PV interneurons leads to a reduced baseline firing rate for most 
neurons, suppression of PV interneurons leads to a slight increase in baseline activity for 

most neurons, and activation of Pyramidal neurons leads to increases in the activity of 
most neurons. Panels D-F show exemplar mice from each type of manipulation. Most 
mice in the PV activation category displayed improved threshold with the optogenetic 
manipulation. Panels G-I show the Fisher information plots under both, light on and 

light-off conditions in comparison to their behavioral thresholds (measured in D-F). The 
curves are continuous because they are computed from Gaussian fits to neural responses, 

rather than directly to data. 
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Trends across mice 
 As previously explained, we do not expect neural thresholds to capture the full 

behavioral acuity due to the significant subsampling of cortical neurons. To compare 

predicted sensitivities across mice, since each mouse had a different number of neurons, 

we normalized the predicted threshold. Assuming independent neurons and that Fisher 

information per neuron was representative of the other neurons in the animal, Fisher 

information can be written as 𝐼f��� = 𝐼fHH = 𝑁 ∗ 𝐼f
���. The threshold is then given by 

𝑡k�� = 𝐼f
��� ;:/1 ∗ 𝑁;:/1. The number of neurons assumed about the population 

controls only the magnitude of the thresholds, and the average Fisher information 

controls the relative sizes. The resulting normalized neural thresholds are plotted 

assuming 400 neurons (chosen because it is approximately the number needed to 

reconcile the absolute magnitude of behavioral discrimination with the neural threshold 

predictions) in Figure 16A, which include a light-off and a light-on measurement for each 

mouse connected by a grey line. There is a statistically significant correlation between 

these quantities (C=.35, p=.03, N=38, including a light-off and light-on measurement for 

each mouse), which suggests that the neural thresholds predicted from individual neural 

measurements is informative about the behavioral acuity displayed by the animals. The 

correlation strength is not particularly strong, but it is surprising to see a significant effect 

at all because, in addition to the sampling limitations, there is no way to control for the 

subset measured corresponds in any meaningful way to the subset predicted elsewhere.  
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 A more salient effect is found by examining the index of change under the light-

off and light-on conditions, given by 𝐼R��k�� =
���;����
���I����

. This quantity is equal to zero 

when there is no change, and equal to 1 when the threshold with the optogenetic 

manipulation increases significantly. Note also that it is unaffected by the scale factor 

used to compare the absolute magnitude of predicted neural thresholds. This measure 

(plotted in Figure 16B) quantifies, in some sense, the size and direction of the grey lines 

in Figure 16A. The behavioral index of change is significantly correlated with the 

neurometric index of change (C=.59, p=.008, N=19). The line of best fit (plotted in gray) 

has a slope of .25, which may have implications for the type of decoding being 

performed. The index of change also has the advantage that we are comparing the same 

subset of neurons embedded within a population in the same manner. It is important to 

note that in several instances, the same optogenetic manipulation evokes different 

behavioral responses in different individuals, and this difference is often predicted by the 

neural population.  
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Figure 16: Comparing neurometric and behavioral thresholds across mice. In panel A, we 
have plotted the scaled neurometric threshold against the behavioral threshold. 

Neurometric threshold is scaled to reflect a population of 400 neurons with the same 
Fisher information density to account for differences between number of reliable units 

recorded for each mouse. Black ‘x’s correspond to the measurement of an animal without 
any optogenetic manipulation. Colored circles (attached to x of the same mouse by a light 

grey line) indicate the threshold measured during corresponding optogenetic 
manipulation. In panel B, we see the index of change, which is the difference in 

thresholds under light-on and light-off conditions divided by the sum. The top right 
quadrant exhibit higher thresholds with manipulation, while the bottom left quadrant had 

improved acuity with manipulation. The light grey line is the line of best fit. 
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Accounting for neural variability and correlations 
 The results presented so far have assumed independence in neural responses and 

Poisson-like variability in the number of spikes. This is not generally true in neural 

systems. It is important to measure these quantities to ensure that our approximation is a 

reasonable one for our dataset, and that these neglected feature are not important in 

explaining the observed phenomenon. Because our data had relatively few repeats of any 

specific stimulus (5 at each frequency and intensity), we will have to pool across trials 

which may have an underlying rate difference.  

 In order to calculate the Fano factor, which measures the ratio of variance in 

neural spike count to mean activity rate, we calculated the mean and variance of each 

recorded neuron at each frequency and intensity. We took the slope of these quantities to 

represent the effective Fano factor for the neuron in this population. These Fano factors 

were measured under both, light-off and light-on conditions, and the probability 

distribution is plotted for both conditions in Figure 17, panel A-C. None of the 

optogenetic manipulations made any significant differences to the Fano factor 

distributions. The mean Fano factor was about 1.2, which suggests that Poisson 

variability is a good approximation for this neural population. We also tested that none of 

the optogenetic manipulations had any systematic effects on the Fano factors measured 

(PV-Chr2: 𝑡��� = .4, 𝑝 = .69; PV-Arch: 𝑡�� = .92, 𝑝 = .36; Pyr-ChR2: 𝑡:�� = −.2, 𝑝 =

.84). 

Additionally, some studies have shown that neurons that are more active tend also 

to have higher variability [35]. This is relevant because a neuron with a larger Fano factor 

and all other response parameters the same has relatively less Fisher information (see 
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Figure 17G), and neurons with the highest firing rates tend to contribute most 

significantly to the Fisher information from the population. A bias towards over-

representing the information contribution of these neurons could lead to a systematic 

error in measurement of thresholds. Using the generalized Poisson model to include the 

measured Fano factors into the Fisher information calculation leads to a different set of 

threshold predictions that are quite similar. A plot comparing the neurometric thresholds 

computed using the generalized Poisson model against the thresholds found using the 

standard Poisson model is found in Figure 17H. The threshold values change very little. 

It is worth noting that all of the thresholds using the generalized Poisson model increased. 

This is guaranteed because the generalized Poisson model is only a well-defined 

probability distribution for variance-to-mean ratios greater than 1. It has been observed 

that most cortical neurons have a Fano factor greater than 1, and other models that 

attempt to take into account this increased variability, such as the negative binomial 

distribution, only allow for Fano factors greater than 1, as well. We therefore set any 

Fano factors measured to be less than 1 equal to 1 for the purpose of this calculation. 

Analogous plots to Figure N using the generalized Poisson model are not reproduced here 

due to redundancy—they are difficult to distinguish visually and correlation coefficients 

and p values differ by less than 3%. 

Correlation coefficients were also measured in both optogenetic conditions. Once 

again, due to limited samples for any specific stimulus input, we computed the 

correlation in two steps. and it was observed that they do not change significantly 

between light-on and light-off conditions (plotted in Figure 17D-F). First, we computed a 

reduced measure of deviation from the mean for each neuron: 
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𝑠H" 𝑓, 𝑑 = 	
𝑟H" 𝑓, 𝑑 − 𝑟�(𝑓, 𝑑)

𝐹H𝑟�(𝑓, 𝑑)
 

where 𝑘 denotes the repetition number (1-5), 𝑖 denotes the neuron, 𝑓 denotes the 

frequency, 𝑑 denotes the intensity, 𝑟 denotes the evoked response,  𝑟	denotes the average 

firing rate of a neuron to a particular frequency and intensity, and 𝐹 is the measured Fano 

factor for that neuron. This reduced measure is useful because, for a generalized Poisson 

process, it has zero mean and unit variance (because variance is proportional to the 

mean). The correlation between the neurons is computed by  

𝐶H,� = 𝑠H" 𝑓, 𝑑 𝑠�" 𝑓, 𝑑 ",r,�	 

The probability distribution of this correlation is plotted for light-off and light-on 

conditions with each optogenetic manipulation in Figure 17, panels D-F. We observed 

that correlations had a significant, non-zero mean (𝐶��;���1 = .09, 𝑡:��� = 28, 𝑝 =

4.6 ∗ 10;:4:; 𝐶��;��R� = .13, 𝑡�14 = 22, 𝑝 = 2.2 ∗ 10;��; 𝐶���;���1 = .13, 𝑡��1 = 32, 

𝑝 = 1.1 ∗ 10;:��). The distributions, however, had no systematic changes under the 

influence of optogenetic manipulations (paired t test ns: PV-ChR2 𝑡:��� = 	 .26, 𝑝 = .80; 

PV-Arch 𝑡�14 = 	−1.3, 𝑝 = .18; Pyr-ChR2 𝑡��1 = 	−1.7, 𝑝 = .09). Similar models 

attempting to assess the effect of correlations on discrimination threshold have found that 

they lead to small increases in the discrimination threshold computed from the population 

[24]. Between the lack of a systematic effect from optogenetics and the small effect 

observed previously, it is unlikely that changes in the correlations account for the 

differences in threshold changes when manipulating cortex. 
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Figure 17: Optogenetic manipulations do not change neural variability or correlation. In 
panels A-C, we see the probability distributions of neural Fano factor measured in light-

on (colored curves) and light-off (black curves) conditions. Fano factors have no 
systematic change from any optogenetic manipulation. Panels D-F show the correlation 

strength distribution measured in light-on and light-off conditions. Correlations tend to be 
slightly positive, and exhibit no systematic change under optogenetic manipulations. In 

panel G, we see the Fisher information for a single neuron decreases as Fano factor 
increases (amplitude = 8 spikes/s, center frequency 20kHZ, tuning width = 0.2 decades, 
baseline=spikes/s). Panel H compares thresholds computed with the generalized Poisson 

model to thresholds computed with a standard Poisson model, and demonstrates the 
additional variability parameter makes only a small difference to any threshold 

prediction. 
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Discussion 
 Here we have used Fisher information to quantify the discriminability in auditory 

cortex. Despite having too few neural units to accurately predict absolute behavioral 

discriminability, the change in behavior under the influence of optogenetic manipulations 

correlated well with the predicted change from neural computation. This is the first direct 

prediction about behavioral frequency discrimination acuity based on decoding a neural 

population in auditory cortex, though similar techniques have been used for studying 

sound localization [25]. The result suggests that there is a relevant measure for behavioral 

performance, namely frequency decoding threshold. This can be contrasted with the null 

hypothesis that AC is simply a part of the circuit responsible for processing spectral 

information, and therefore any manipulation can change the discrimination acuity of the 

animal in an unprincipled manner. 

 Our results also have important implications for the role of inhibitory neurons in 

the context of frequency encoding. It has been proposed that a number of important 

tuning properties of excitatory neurons are shaped by inhibition, including tuning width, 

response variability, magnitude of response, and strength of correlations between neurons 

[36] [37] [38]. We manipulated PV interneurons, the most common type of interneuron 

accounting for 40% of interneurons in cortex [12]. We observed no systematic changes in 

reliability (measured here as the Fano factor) or correlations between neurons as we 

manipulated the activity of interneurons. We observed changes in the response strength 

and tuning width for some units, which has been previously reported [3]. Despite the 

consistency in many of these observations, these same manipulations sometimes evoked 

opposite behavioral effects in different animals. It is possible that differences in 
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inhibitory properties within AC may contribute to differences in auditory behavior of the 

animals. 

 Another interesting observation was the slope of the index of change plot is only 

about .25, while true optimal Bayesian decoding from AC neurons would allow decoding 

at exactly the limits placed by a Fisher information, and therefore predict a slope of 

exactly 1. This does not strictly preclude decoding from AC consistent with an optimal 

Bayesian decoder because of the duration of the optogenetic manipulation. It is possible 

that achieving an optimal decoding scheme requires learning and utilizes plasticity on 

longer timescales than the optogenetic manipulation is applied. It is also possible that 

decoding is not optimal, and that another type of decoding is utilized that does not 

optimize information use. This is a very interesting question and will be accessible when 

the measured population sizes increase, as this will allow prediction of absolute 

frequency discrimination. Our recordings had between 10 and 100 frequency-tuned 

neurons per animal, and extrapolating from the measured population indicates that ~1000 

neurons are typically required to explain in order to account for behavioral discrimination 

acuity. Since the mouse cortex has ~105 neurons/mm3, the AC is ~1 mm3 in size, about 

30-50% of neurons are frequency tuned, and the tuning width is of order ~1/10 of the 

auditory spectrum, anatomically we would estimate order 103 neurons responding to any 

given tone. Discrepancies in absolute predicted and measured thresholds will be revealing 

about whether or not the animals are able to discriminate at the limit established by 

neural responses. 

 While many optogenetic studies emphasize the power of manipulating a specific 

type of neuron in order to trace and understand its role in cortex, here we emphasize a 
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different perspective. We seek to test a general theory about stimulus encoding in AC that 

depends on the state of neural circuitry during stimulus exposure, and we utilize the 

optogenetic manipulation as a way of altering the state of the neural circuitry while 

keeping other elements the same (including the physical neural network and the same 

subset of neurons sampled). This would be impossible to compare across animals because 

there is no one-to-one mapping between neurons for animals as complex as mice or 

humans. By changing the state of the auditory cortex while controlling other elements, 

we are able to test our hypothesis about AC function within an animal, despite having too 

few neurons to make a prediction about absolute thresholds. This perspective shows the 

utility of optogenetic techniques in providing robust, controlled tests of any model 

relating cortical activity to behavior. 

The circuitry within auditory cortex had unique responses to the optogenetic 

manipulations, which is demonstrated by the differences in behavioral effects between 

individuals and the differences in neurometric predictions between animals. Had we 

combined our results across individuals of a fixed manipulation, we would have seen 

small average effects and viewed variability across individuals as noise. This would have 

obscured the role of the auditory cortex in frequency discrimination because the 

correlations between individual circuit changes and individual behavioral changes would 

be missed. It because we treated the mice as individuals and tested a hypothesis that 

applies generically to neural responses under any optogenetic manipulation that we were 

able to observe the general role AC plays in behavioral frequency discrimination. 

Treating differences between individuals as a signal rather than as noise will become 
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more important as we are able to measure from larger neural populations, and therefore 

probe more explicitly the role cortex plays in shaping behavior.  

Toward understanding plastic changes in an environment with costs 
 Emotional and task-specific learning has been shown to cause changes in the 

spectral representations in auditory cortex [30] [31] [32] [33] [34]. It has also been shown 

to cause changes in behavioral frequency discrimination that can be altered with 

optogenetic manipulation [3] [39]. Asking whether or not changes in spectral 

representation within auditory cortex explain, by themselves, the difference in behavioral 

frequency discrimination acuity is natural follow-up question to these observations and a 

natural extension of the methods used here. This could be done using a similar strategy 

by recording responses from neurons before and after fear conditioning. Looking to see 

whether there an analogous correlation between change in neurometric threshold and 

change in behavioral threshold before and after fear conditioning would tell us whether 

the new thresholds are predicted from the change in neural responses alone. However, 

there are good reasons why this might not be the case. 

 Mice that are fear conditioned by applying footshock during presentation of a 

specific tone elicit freezing responses when tones are presented, even when those tones 

are well above their frequency discrimination threshold [3] [39]. This behavior is not 

entirely surprising, given that it is better to err on the side of caution, but it demonstrates 

that accounting for animal behavior requires more than simply establishing the limits on 

sensory system performance. In fact, limits on the sensory system can still serve to 
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constrain the performance, even when the behavior sits in the more complicated context 

of a cost landscape. 

 Let us consider the output of a sensory system trying to estimate some parameter 

of the environment associated with an appetitive or aversive stimulus. For example, the 

auditory system estimates the frequency of a tone to decide whether the tone it heard 

indicates that footshock is incoming (𝑓I) or not (𝑓;). The sensory system provides an 

estimate, 𝑓, of the frequency, and the probability of that estimator differs for the two 

tones( 𝑃(𝑓|𝑓I) ≠ 𝑃(𝑓|𝑓;) ) or else there is no information provided. If 𝑓I > 𝑓;, a simple 

decoding scheme is to set a threshold, 𝑓, and whenever 𝑓 > 𝑓, the animal freezes. It is 

useful to define the cumulative distribution function 𝛷I/;(𝑓) = 𝑃(𝑓¢|𝑓I/;)𝑑𝑓′
r
;¤ . If 

the + and − event occurs with probability 𝐴I and 𝐴;, respectively, then the probability 

of false-positive and false-negatives are given by 𝑃;,: 𝑓 = 𝐴;(1 − 𝛷;(𝑓)) and 

𝑃I,� 𝑓 = 𝐴I𝛷I(𝑓), where we have used 1 and 0 to denote the binary decision of the 

presence of the aversive stimulus. Since the actual presence of the aversive stimulus is 

uncontrollable, the only costs associated with this sensory system are with mis-

identifying the stimulus. In other words, the costs of misidentification are only relative to 

correct identification. During normal auditory exposure, it may be that misidentifying a 

tone as another is symmetric, and so the costs are the same. However, if the presence of 

one tone signifies an aversive stimulus, then this cost is asymmetric. The total cost is then 

given by: 

𝐶 𝑓 = 𝐶;,:𝑃;,: 𝑓 + 𝐶I,�𝑃I,� 𝑓 = 𝐶;,:𝐴; 1 − 𝛷; 𝑓 + 𝐶I,�𝐴I𝛷I(𝑓) 
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For simple distributions, we may extremize this quantity by setting the derivative equal to 

zero, which returns the simple solution 𝐶;,:𝐴;𝑃 𝑓|𝑓; = 𝐶I,�𝐴I𝑃(𝑓|𝑓I). If these 

distributions are Gaussian, which is a reasonable approximation given the large number 

of neurons relevant for decoding in conjunction with the central limit theorem, this can be 

reduced in terms of the Gaussian parameters: 

𝑓 − 𝑓I 1

2𝜎I1
−	

𝑓 − 𝑓; 1

2𝜎;1
+ log

𝐶;,:𝐴;𝜎I
𝐶I,�𝐴I𝜎;

 

Taking the standard deviations to be the same (because the useful insights are easier to 

glean), this is solved for 

𝑓∗ =
𝑓I + 𝑓;
2 +

𝜎1

𝑓I − 𝑓;
log

𝐶;,:𝐴;
𝐶I,�𝐴I

 

Plots of these quantities numerically solved for 𝑓I = 2, 𝑓; = 0, 𝜎 = 1, 𝐴; = 𝐴I = 1, 

𝐶I,� = 1, and 𝐶;,: = 2 are shown in Figure 18A, along with a mutual-information 

maximizing solution. First, we should observe that the cost is incorporated into the 

solution in the same way as the prior likelihood of the events occurring. Second, when 

the system is symmetric, the solution is information maximizing, but any asymmetry in 

the costs leads to a solution which no longer maximizes information. Third, the 

correction for asymmetric costs grows with the variance of the sensory signals. This last 

part is especially important, as it suggests that animals with more reliable sensory 

systems will be less likely to generalize their fear response. However, sufficiently 

aversive stimuli can cause overgeneralization. Whenever the cost is sufficiently large, the 

cost-optimizing threshold will be shifted so that any stimulus of this type will be treated 

like the aversive one, a condition with similarities to post-traumatic stress disorder. The 
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fact that this leads to a specific operating point on to optimize this kind of cost implies 

that there will be a specific false-negative rate associated with the false-positive rate (see 

Figure 18B). If we have a measure of the capacity of the sensory system, we can 

constrain the false-positive and false-negative rate. If we are able to control the relative 

costs of false-positives and false-negatives, we can make a prediction of exactly the false-

positive and false-negative rate. This could be tested using, for example, a two-alternative 

forced choice task where correctly guessing one tone leads a larger reward than the other. 
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Figure 18: Numerical calculation of cost optimization. In panel A, we see the mutual 
information (top row) and cost (middle row) as a function of the threshold. The 

probability distributions are plotted along with the information-maximizing and cost-
optimizing thresholds in the third row. In panel B, we see the curve that limits sensory 

discrimination performance, and the operating points predicted by information 
optimization and cost-optimization. Note that the cost-optimizing solution trades off a 

higher false-negative rate in exchange for a reduced false-positive rate. 

 
We have proposed ways to test the role auditory cortex plays in the frequency 

discrimination changes associated with neural plasticity in a more complex environment. 

Whether or not the auditory cortex can fully explain these using the methods established 

here is an interesting question in its own right, but having a measure of the discrimination 

ability of the sensory system will allow a detailed prediction of false-positive vs false-

negative rates when the animal is required to act in a complex environment with multiple 
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different costs. As we are able to access larger populations of these neurons, we will get 

closer and closer to unraveling the mysteries relating neural activity to behavior.  
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4. Learning features through neural input 

Cortical coding uses only neural inputs 
 So far, we have seen a number of theories that predict features of neural 

representation based on the input stimuli, and we have simultaneously improved our 

understanding of neural organization and behavior. However, real cortical inputs are not 

the stimuli, but rather neural responses from the preceding sensory neurons. An 

unanswered question is how neural circuits should organize in order to accommodate 

potentially diverse inputs. It may even be the case that many sensory cortices perform the 

same or similar procedures for representing their inputs, and the nature of the input layer. 

Some studies have suggested that some straightforward learning rules can lead to 

information maximizing and ICA-like representations of inputs [40]. However, it is not 

clear how representations in subsequent layers could progress if this type of learning 

would apply, as the inputs of the next layer would already be independent of one another, 

and no new information would be gained. 

 Tools within the machine learning community have shown promising and 

intriguing results over the course of the past 20 years in problems such as image 

recognition and speech recognition, and many of the techniques are inspired by biological 

neural networks. One advantage of some such approaches is that they intrinsically scale 

well to large input sizes. Computing full probability distributions in other traditional 

neural network models, such as the Ising model, tend to scale poorly, as there are 2s 

states if there are N neurons. Deep Belief Networks implicitly create a generative model 

of the data that may be efficiently sampled without strictly calculating the probability of 
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each state separately. This is a feature, as most specific patterns in a real neural system 

will never be observed in the lifetime of the organism. Naturally, these neural-inspired 

models have also been used to model real biological neural networks. In one study [41], a 

two-layer sparse deep belief network is trained on image patches from the van Hateren 

image database and they examine the resulting filters. In the first layer, filters look 

similar to V1 responses, and they show features learned by a second layer and claim 

similarities to V2 responses. We draw inspiration from these analyses, but instead turn 

our attention to ask what happens when the input to the system is more realistic—inputs 

from the retina itself. Given a different input, there is no guarantee that the same types of 

filters would be learned. The work in this chapter is unpublished. We will first talk about 

how we model the retinal responses that enter the deep belief network. We will then go 

on to discuss the details of what a Restricted Boltzmann machine (RBM) and Deep Belief 

Network (DBN) are, and how they are trained. We will then examine the filters that occur 

as a result of performing this training procedure on our simulated retinal responses. We 

will then discuss the implications this analysis has for real neural networks, and explain 

how future work utilizing this procedure can test the importance of subtle features of the 

neural code (such as the role of correlations or real neural variability). 

Modeling retinal ganglion cell outputs 
 We use modeled retinal data, but we have designed the rest of the analysis so that 

the methods can be repeated using real retinal data. For preliminary analysis, using a 

retinal model gives us more control over what relevant features are included. To model 

the output of the retina, we use a common, simplified model of retinal outputs. We use a 
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linear-nonlinear model containing independent spatial and temporal kernels. The spatial 

structure is given by a difference of Gaussians, providing the prototypical center-

surround structure of retinal receptive fields. We take the surround size to be 3 times 

larger than the center. The center Gaussian was set to have a standard deviation of 5 

pixels for the purpose of convolving with natural movies in order to avoid sampling 

artifacts from smaller receptive field sizes. Receptive fields were arranged on a grid with 

separation equal to the standard deviation of the center. The grid was a 25 neuron square, 

totaling 625 neuron center-positions. We include a population with two neural 

populations: on-center and off-surround, and off-center and on-surround. This brings the 

total number of “neurons” to 1250. On/off and off/on cells were arranged with the same 

center locations and receptive field sizes. The temporal kernel used is biphasic, and given 

by the equation 

𝐾 𝑡, 𝛼 = 𝛼 ∗ 𝑒;y�
𝛼𝑡 �

5! −
𝛼𝑡 �

7!  

and we take 𝛼 = 1/15		𝑚𝑠;:. This kernel has positive contributions at small times, and 

negative contributions at large times. The kernel is approximately negligible at times 

more distant than 250ms. Non-linearities were chosen so that there were approximately 

1-10 spikes/s, typical firing rates for retinal ganglion cells. 

 Receptive fields were convolved with natural movies provided by Stephanie 

Palmer of the University of Chicago, and included a movie of a butterfly flying, a tree 

blowing in the wind, and fly larvae wriggling, combining to be equivalent to hours of 

neural responses, sampled at ~60Hz. 
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Restricted Boltzmann machines and Deep Belief Networks 
 In this section, we will cover some basics about Restricted Boltzmann machines 

and Deep Belief Networks. More information and very helpful tutorials containing 

everything from practical uses to detailed mathematical explanations of the techniques 

can be found at Geoffrey Hinton’s website, www.cs.toronto.edu/~hinton/ . Restricted 

Boltzmann machines can be used as a generative model for a vector input. Consider two 

layers of nodes, an input layer that corresponds to the data to be modeled with responses 

denoted 𝑣 with size 𝑛, and a separate hidden layer that will be used to model the input 

layer with activity denoted ℎ with size 𝑚. For the purposes of our uses with neural 

networks, we will consider the case where the activity of these nodes are binary. Each 

element will contain its own bias to fire, which we will call 𝑎 for the visible units and 𝑏 

for hidden units. The connection weights 𝑊H� will be allowed only between individual 

elements of 𝑣 and ℎ, but importantly not within a single layer. The probability of a 

particular observed state is given by: 

𝑃 𝑣, ℎ =
1
𝑍 exp 𝑎 ⋅ 𝑣 +	𝑏 ⋅ ℎ +	𝑣

�𝑊ℎ  

This is illustrated in Figure 19. 
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Figure 19: Restricted Boltzmann Machines schematic. A typical connection topology has 
connections between the hidden units and visible units, but no connections within layers. 

 The technique we use to train the hidden layer in order to be able to provide a 

useful generative model of the data is called contrastive divergence, and was developed 

by Geoffrey Hinton [42]. It relies on being able to calculate the marginal probability 

distributions 𝑃 𝑣 ℎ  and 𝑃 ℎ 𝑣 , which can be expressed: 

𝑃 𝑣 ℎ = 𝑃 𝑣H ℎ
H

= 𝜎 𝑎H𝑣H + 𝑣H 𝑊H,�ℎ�
�H

 

𝑃 ℎ 𝑣 = 𝑃 ℎ� 𝑣
�

= 𝜎 𝑏�ℎ� + ℎ� 𝑣H𝑊H,�
H�

 

which relies on the fact that no intra-layer connections exist. This is important, as it 

allows the calculation to be performed by computing only 2𝑛 and 2𝑚 probabilities, 

instead of having to compute the full 2k and 2± probabilities required to describe a 

generic joint distribution. The basic method for training with contrastive divergence is 
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carried out by taking a raw data sample (corresponding, in our case, to the retinal 

response) , 𝑣(�), and select a hidden layer response, ℎ(�), by sampling from the hidden 

layer response probabilities implied by the visible state. Then, select a visible layer 

response, 𝑣(:), by sampling from the visible layer response probabilities implied by ℎ(�). 

Repeat this once more to compute ℎ(:). The weights will then be updated by: 

𝛥𝑊H,� = 𝜖 𝑣H
� ℎ�

� − 𝑣H
: ℎ�

:  

𝛥𝑎H = 𝜖 𝑣H
� − 𝑣H

:  

𝛥𝑏� = 𝜖( ℎ�
� − ℎ�

(:) ) 

where the expectation values are usually taken over small batches of data samples to 

stabilize the gradient calculation. This Markov sampling procedure approximates a 

gradient descent algorithm that tries to maximize the average log-probability of 

generating a sample from the original training set, and in principle needs to be repeated 

for several steps (rather than just 1) until the final states are decorrelated from the initial 

states (though in most cases, taking 1 step is sufficient). Gibbs sampling can be used to 

generate fake visible layer responses by simply treating 𝑣(k) as an “observation”. 

 Deep Belief Networks (DBNs) have multiple hidden layers, and hidden layer 𝑘 

serves as the hidden layer of an RBM to layer 𝑘 − 1, and the input layer to hidden layer 

𝑘 + 1. These are typically trained sequentially by first extensively training layer 2 on 

responses by layer 1 responses (the visible layer/data), then using a set of layer 2 

responses sampled from the visible layer responses as the “data” for training layer 3. This 

process is repeated for each layer, from which a trained DBN is formed. Having multiple 
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layers allows for more complex representations of the data to emerge. Not only does this 

allow for better representation of data, but it allows more complex features to emerge. 

 We trained our deep belief networks using fake retinal data and using a modified 

training algorithm that additionally encourages sparse activation of the hidden layer 

network, again to be consistent with realistic neural firing rates. We used several different 

hidden layer architectures to examine the resulting spatial receptive fields developed in 

higher layers. The spatial receptive fields in higher layers were calculated by convolving 

the connection weights with lower layers with the lower level’s spatial receptive field. 

The input layer had 1250 units, as previously described. We tested a compressive 

architecture containing 600 units in layer 2 and 150 units in layer 3, an expansive 

architecture containing 250 units in layer 2 and 500 units in layer 3, and an equal 

architecture containing 300 units in layer 2 and 300 units in layer 3. 

Emergent representations in DBNs 
 Broadly speaking, each network architecture and each layer developed spatial 

receptive fields that fell into one of three categories, with a few exemplars depicted in 

Figure 20. The first category describes spatial responses that are similar to Gabor filters, 

which are traditionally associated with neural responses in V1. These constitute 

approximately 10-25% of observed hidden layer filters. The second category contains 

neural responses that are diffusely responsive in alternating sign to large regions of the 

image. This kind of receptive field is similar to the principal components computed from 

a natural image ensemble [43], and accounts for approximately 10-25% of observed 

filters. The third type of receptive field classification contains receptive fields that look 
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similar to the center-surround structure of the individual receptive fields of the fake 

retinal responses, but have a larger associated length scale. These are most common in 

highly compressive stages, indicating that there may have been redundancy in 

representing the responses of nearby fake neural output. By placing a large compressive 

constraint, it became efficient to represent the data in a manner that pools spatially 

localized responses with similar sign. 

 Surprisingly, the various architectures had little effect on the representations used. 

There may have been changes in the relative frequency of each type of component, but 

the differences were relatively small. This may be in part due to the fact that, because of 

data limitations, it was necessary to include an initially compressive step in the DBN 

architecture. 
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Figure 20: Emergent representations of visual stimuli in DBNs. Training DBNs on fake 
retinal outputs leads to hidden units with spatial receptive fields that can typically be 
characterized as one of three types. Some form Gabor-like filters that are similar to 

protoypical V1 responses. Others form diffuse receptive fields pooling from a large area 
of the visual scene that are reminiscent of the principle components of natural scenes. 

The third category has a similar center-surround structure to the original retinal 
responses, but covers a larger area.  
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Discussion 

 Here we have seen that training a Deep Belief Network on data approximating 

retinal output naturally leads to features that have been previously established as 

important for representing visual scenes. One class of responses, Gabor filters, are 

prototypical responses of neurons in V1, and have been previously shown to emerge from 

using ICA on natural images. Other more diffuse filters emerge as well, and are similar in 

structure to the principal components describing natural images [43]. These features 

occur naturally when scale invariance is present in the natural world, and here we 

observed that these features are recoverable after retinal filtering of a dynamic 

environment. 

 Although the larger receptive fields containing a similar center-surround structure 

to the original retinal input may be expected from the presence of a compressive stage, it 

very well may persist when compression is not a necessary first step. With larger 

datasets, we will be able to probe this question more deeply. Assuming that they continue 

to exist for DBNs without compressive projections, another important question would 

arise. Do these arise from training on an actual dataset of real retinal responses? One 

important feature our retinal model lacked was any kind of correlation between neurons. 

If these receptive fields cease to appear when the same DBN is trained on real retinal 

responses, it is likely that the correlations between neurons in real retinal output serve to 

reduce this particular type of redundancy.  

 A number of other studies have found various algorithms that lead to efficient 

representations of natural scenes recover similar visual features to the early visual 
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system, but here we wanted to ask a different question. We wanted to address whether or 

not learning based on input from other neural networks can explain the features that 

visual cortex attempts to represent. This question is important for generalizing coding 

strategies employed by the visual system to the rest of the brain. Part of the reason the 

visual system is naturally tractable is that it is relatively easy to characterize the responses 

of neurons in terms of the stimulus. Many other parts of the brain, such as those that deal 

with cost or planning [1], receive inputs that are much more challenging to characterize 

using our anthropocentric perspective of the world. However, this does not mean that the 

strategies employed to efficiently represent our environment differ dramatically (and if 

they did, it would be of great interest!). This exploratory study is an example of the sort 

of thinking that can help connect research in superficially distinct brain regions, and 

moving forward, could be quite impactful for all of neuroscience. 
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5. Modeling adaptive activity of cortical networks 
Cortical network dynamics 
 Cortical networks have very interesting dynamic properties required for the kinds 

of stable activity patterns they exhibit. Balancing the inputs from excitatory and 

inhibitory neurons, for example, is of great interest for network stability. It has been 

observed that pharmacologically blocking inhibitory activity leads to epileptic activity in 

cortex [44]. It has also been observed that, in auditory cortex, the contribution of 

inhibitory inputs to pyramidal neurons almost exactly matches the excitatory inputs with 

a millisecond time delay, resulting in a temporal sharpening of the response [45]. 

Carefully modeling these phenomena can lead to important insights about the network 

structure and distill the essential components of what simple components allow the 

network to display the properties it has. In our lab, we have observed a number of 

interesting phenomena ranging from neural tone responses to differential responses based 

on how often a stimulus is presented. These experimental observations allowed us to, 

through the use of computational modeling, gain insight about underlying network 

parameters. More specifically, we will first present the basic equations that we use to 

describe the network activity that we observed experimentally. We will then move on to 

discuss the implications of experimental measurements due to optogenetic manipulation 

of PV interneurons and pyramidal neurons during tone response [3], and utilize these 

insights to model the observed data. We will then discuss results from a stimulus-specific 

adaptation experiment, in which different neural responses are observed in a stimulus that 

plays two tones regularly, tone A 80% of the time and tone B 20% of the time. When the 

tones are switched in proportion of presentations, it is observed that neural responses to 



	
	

80	

tone A are greater when it is infrequent than when it is frequent. This can contribute to 

novelty detection in the environment—an important cortical computation of obvious 

behavioral relevance. We will discuss and model experimental observations [4] that show 

the different role interneuronal subtypes contribute to this computation. 

Wilson-Cowan dynamics model 
In order to simplify the activity of the network, we will approximate the 

population response of each neuronal subtype (Pyramidal, PV+, and SOM) using Wilson-

Cowan dynamics. We allow the connections between the population of PVs and 

pyramidal neurons, and between the SOMs and pyramidal neurons in order to model the 

effects of each optogenetic manipulation. The equations describing the dynamics of the 

populations are: 

𝑑𝐸
𝑑𝑡 =

1
𝜏µ

−𝐸 𝑡 + 𝑘 − 𝑟 𝑆 𝑗¸H���;µ 𝑡 + 𝑗��k�;µ 𝑡 + 𝑆Hk� 𝑗pµ𝐼 𝑡  

𝑑𝐼
𝑑𝑡 =

1
𝜏p

−𝐼 𝑡 + 𝑘 − 𝑟 𝑆 𝑗¸H���;p 𝑡 + 𝑗��k�;p 𝑡 + 𝑗µp𝐸 𝑡  

where 𝐸(𝑡) represents the activity of the excitatory population, 𝐼 𝑡  represents the 

activity of the inhibitory population, 𝜏¹ are the synaptic timescales of excitatory and 

inhibitory networks (we take both to be 10ms), 𝑘 and 𝑟 correspond to the maximum and 

minimum “firing rates” (15 and 1, respectively), 𝑗¸H���;¹ is used to model the optogenetic 

inputs and vary according to the experiment, 𝑗��k�;¹ is used to model the inputs the 

neuron receives due to hearing the tone and varies according to the experiment, 𝑗pµ and 

𝑗µp are the synaptic transmission coefficients between excitatory and inhibitory 

populations, 𝑆(𝑥) is the transfer function between synaptic inputs and neural firing rate, 
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which for our purposes is linear for intermediate input values, but imposes minimum and 

maximum activation limits, and 𝑆Hk�(𝑥) is a non-linear transfer function describing the 

input the excitatory population receives as a function of the firing rate of the inhibitory 

population. We will use several candidate non-linearities, and discuss them more below. 

 It will be useful to discuss a simple model of synaptic depletion for two reasons: 

(1) it provides a simple mechanism and mathematical description for a non-linearity in 

the transfer function discussed above and (2) in the case of stimulus specific adaptation, 

the inputs to auditory cortex are reduced with successive tone presentations and we need 

to simulate them dynamically. If the synapses have some finite resources, for example 

neurotransmitter, which is depleted at a rate proportional to the activity of the neuron and 

replenished at a rate proportional to how depleted the resource is, we may write  

𝑑𝑔
𝑑𝑡 = −

𝑔𝑟
𝑇�
+
(𝑔� − 𝑔)

𝑇�
 

where 𝑟 is the presynaptic firing rate, 𝑔 is the synaptic conductance, 𝑔� is the maximum 

conductance, and 𝑇� and 𝑇� are, respectively, the time constants for depletion and 

replenishment. The post-synaptic current is then given by the product, 𝑔𝑟. The quasistatic 

solution can be written 

𝑔𝑟 =
𝑔�𝑟

1 + (𝑇�/𝑇�) ∗ 𝑟
 

which corresponds to a saturating non-linearity. There is a maximum output rate 

(𝑔�𝑇�/𝑇�), and the second derivative is negative for positive firing rates. 

 We will also find it useful to compare facilitation to depression. The difference 

between the two is that the former has a positive second derivative for some region of 
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activation. In order to compare these two, we will use a sigmoid to model facilitation, and 

a hyperbolic tangent (which is a qualitatively similar function, but contains only the 

region with the negative second derivative) to model depression: 

𝑆r�R 𝑟 =
1

1 + exp −𝑝 𝑟 − 𝜃  

𝑆��½ 𝑟 =
1 − exp[−2𝑟/𝑠]
1 + exp[−2𝑟/𝑠] 

We don’t worry about the fact that facilitation model does not have zero output for zero 

firing rates because this scenario is not realized in the data we model. 

Modeling the change in tone-evoked responses to optogenetics 
 As an important control for a variety of behavioral tasks, including emotional 

learning [3], it is important to understand the state of the excitatory-inhibitory network 

within the auditory cortex when the animal is exposed to tones. In order to do this we 

examined the tone-evoked responses of neurons in AC in the presence of three key 

optogenetic manipulations: activating PV interneurons with ChR2, suppressing PV 

interneurons with Arch, and activating Pyramidal neurons directly with ChR2. Because 

pyramidal neurons are more common in auditory cortex, results presented here primarily 

capture effects observed from them. Experimental results [3], shown below, indicating 

that manipulating PV interneurons changed the tone-evoked responses, measured as the 

difference between baseline firing rate and tone-evoked firing rate, but manipulating the 

pyramidal neurons directly did not. More specifically, optogenetically activating PV 

interneurons (Figure 21, panel A-B) increased the tone-evoked response, while 

optogenetically suppressing them (Figure 21, panel C-D) decreased the tone-evoked 
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response. Direct activation of pyramidal neurons (Figure 21, panel E-F) increased firing 

rate approximately the same amount under baseline and tone-evoked conditions, leading 

to no significant change in the tone-evoked response. 

 

Figure 21: Measuring effects of optogenetic manipulations on tone-evoked responses. In 
panel A, we see that activating PV interneurons reduces the activity of Pyramidal neurons 

under baseline and tone-evoked conditions, but the change is smaller during the tone-
evoked epoch. This is quantified in B by computing the difference in activity of the tone 
due to the background in both, the light-on and light-off conditions. The opposite results 
are found for suppressing PV interneurons (panels C-D)—that while there is generally an 
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increase in activity due to the manipulation, the tone-evoked response is reduced. Direct 
activation of Pyramidal neurons led to no significant change in the tone-evoked response 

(panels E-F). 

 
 The first significant piece of the model is that excitatory neurons themselves 

appear to exhibit the same tone-evoked responses even during optogenetic manipulations. 

The simplest explanation for this is that there is a linear response to the inputs. To 

understand the inhibitory manipulation, first recall the optogenetic manipulation evokes a 

smaller change in tone-evoked activity than baseline activity. Also, optogenetic 

manipulations effect a smaller change in the neural activity than the tone does (and can 

be thought of as a perturbation of the normal activity). The simplest model has symmetric 

inputs to both, the inhibitory and excitatory population (and there is evidence that many 

PVs have similar tuning properties to pyramidal neurons [45]). This suggests that the 

input from PV interneurons to pyramidal neurons is less affected by the optogenetic 

manipulation when the the PV neurons are most active (during tone presentation), which 

is a hallmark of a saturating non-linearity. We therefore decided to use the biologically-

inspired quasistatic nonlinearity. We modeled tone input using a decaying exponential. 

The results of this model under the right choice of parameters [3] are presented in Figure 

22. 
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Figure 22: Modeling effects of optogenetic manipulations on tone-evoked responses. The 
model used is illustrated in panel A, which has tone inputs to both populations, as well as 

currents from the optogenetic manipulations. Inputs are summed and a non-linearity is 
applied. We observed that no non-linearity is necessary to account for  the observations 
from activating pyramidal neurons, and a saturating non-linearity is the simplest way to 

account for observations for manipulating PV interneurons. Tone evoked firing rate 
traces are plotted in panel B. Tone-evoked responses are measured and plotted in panel 

C, and are observed to be consistent with the experimental findings. 

  



	
	

86	

Modeling Stimulus Specific Adaptation 
 A more sophisticated phenomenon we examined in detail is stimulus-specific 

adaptation. This phenomenon is inherently dynamic, as subsequent presentations of a 

stimulus reduce the neural response relative to its novel presentation. This kind of neural 

computation is more prominent in cortex than in earlier parts of the sensory periphery, 

and we want to understand how computations in cortex could contribute to the 

development of this representation. When a stimulus is presented frequently (standard), 

the neural response is smaller than when the stimulus is presented infrequently (deviant). 

Experiments [4] show that suppressing PV interneurons during standard tone presentation 

increases the tone-evoked activity by about the same amount as during the deviant tone, 

and this is more than the baseline increase (Figure 23, panels A-C). On the other hand, 

suppressing SOM interneuron activity affects the spontaneous activity and standard-tone-

evoked activity the same amount, but causes no change in the response to deviant tones 

(Figure 23, panels D-F). This is of particular interest, because it suggests that SOM 

interneurons may contribute directly to the differential response to standard and deviant, 

while the PV interneurons may play a role more similar to gain control of the overall 

circuit. We will therefore try to understand what kind of circuit level mechanisms can 

explain these different phenomena. 
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Figure 23: Measuring neural responses to standard and deviant tones. Optogenetically 
suppressing PV interneurons (panel A) leads to changes in the neural activity that differ 
for spontaneous response, standard response, and deviant response. For PV suppression, 

we see a larger increase in tone response than spontaneous activity (panel B), but the 
same change when the tone is the standard or the deviant. Individual neurons plotted in 

panel C. When suppressing SOM interneurons (panel D), we observe significant changes 
in spontaneous activity and activity in response to the standard tone, but not to the 

deviant tone (panel E). Individual points are plotted in panel F. 
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 In order to model the difference in inputs to the standard and deviant tones, we 

pass unitary pulses through a depressing synapse with the full dynamic synaptic 

depression equation described above. The deviant response is calculated using the first 

input, while the standard response is calculated once the response stops changing with 

subsequent presentations. Because suppression of PV interneurons has the same effect on 

pyramidal neuron response to both, the standard and deviant tone, a simple explanation is 

that the tone-evoked responses lie in a linear portion of the PV-Exc transfer function. The 

reduced change to baseline activity suggests that for low response levels, its contribution 

is actually increasing. This suggests a facilitating non-linearity. Because suppression of 

SOM interneurons does not appear to affect deviant responses, a simple explanation is 

that the neurons have already saturated their capacity to influence the excitatory neurons. 

The equal magnitude effect on standard activity and baseline activity suggests that the 

neuron may be operating in a linear regime at these response levels. For these reasons, we 

will model the PV population’s transfer function using a facilitating non-linearity (a 

sigmoid), and the SOM population using a depressing non-linearity (hyperbolic tangent) 

(see Figure 24, panel A). This model produces similar results to what are observed 

experimentally (see Figure 24, panels B-C). 
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Figure 24: Modeling neural responses to standard and deviant tones. The model, depicted 

in panel A, center, contains excitatory neurons connected to either PV interneurons or 
SOM interneurons. To explain the PV interaction, we use a facilitating non-linearity, 

while for SOM interneurons, we use a depressing non-linearity. The tone response curves 
are plotted in panel B for PV interneurons and panel D for SOM interneurons, and the 

hallmark finding about the changes in excitatory population activity is plotted in panel C 
for PV interneurons and panel E for SOM interneurons. 
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Discussion 
 Here we have seen that neural responses in auditory cortex to even surprisingly 

complex stimuli can be explained by fairly simple circuit architecture with simple, 

biologically plausible non-linearities. In one case, we saw that neural tone responses 

could be modulated by optogenetic manipulations, interestingly in a way that suggests 

that PV interneurons affect the size of the tone-evoked response of Pyramidal neurons, 

but not direct manipulation of the pyramidal neurons. We were able to capture these 

effects by using a model containing a linear contribution of both, the tone and the 

optogenetic manipulation, but with a non-linearity in the feedback the inhibitory 

population gives to the excitatory population. In another example, we looked at the 

contributions different interneurons made based on the frequency of a stimulus. We saw 

that SOM interneurons made no contribution to the tone-evoked response for rare tones, 

but a significant one for standard tones. We were able to capture this observation using a 

saturating non-linearity between SOM interneurons and pyramidal neurons. On the other 

hand, PV interneurons contributed equally to neural activity in response to both, the 

standard and deviant tones. This suggested a linear response, but the fact that the 

contribution to spontaneous activity was smaller implies that the best non-linearity to 

explain these phenomena was actually a facilitating one. We were then able to show 

using a rates model with Wilson-Cowan dynamics that these simple assumptions can 

account for the diverse experimentally observed results. It is also quite interesting that 

such rich adaptive behavior can be accounted for using only simple non-linearities. The 

model also makes explicit predictions about the activity level of the inhibitory 
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interneurons themselves—a prediction that can be tested by recording from more of these 

units directly. 

  
  



	
	

92	

6. Conclusions 
 
 In this dissertation, we have presented several lines of work that utilize well-

formulated theoretical ideas to predict and understand a variety of properties of neural 

organization. In the second chapter, we saw a formulation of efficient coding was able to 

predict human sensitivity to visual textures based on natural image statistics. In the third 

chapter, we saw that the Fisher information in auditory cortex provided a strong indicator 

of the behavioral performance in a frequency discrimination task. In the fourth chapter, 

we saw that deep belief networks trained on fake retinal data exhibit cortical-like 

responses. Chapter 5 showed excitatory-inhibitory network responses in an adaptive 

environment can be explained with simple network dynamics and a single non-linearity. 

While each of these lines of work may seems superficially distinct, opportunistic 

application of theoretical ideas has proven to be fruitful in a field with such a broad scope 

of fascinating questions. 

 An important similarity between many of the ideas presented here is that they are 

inherently forward looking. Though examining fine detail of individual cell responses has 

led to many landmark results in neuroscience, as the recorded population sizes continue 

to grow, we need to approach data analysis in new ways. In chapter 2, we saw that the 

efficient coding principle can be applied to understand many facets of behavioral 

response, even when the information is guaranteed to be spread across many neurons. In 

chapter 3, we showed how a model that contains only a few dozen neurons could 

accurately predict how a mouse’s frequency discrimination performance would change 

under optogenetic conditions. With a larger population, we would have been able to test 
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the absolute threshold for performance. In chapter 4, we proposed a model that allows for 

inputs from thousands of retinal cells, and showed the emergence of cortical-like 

responses. In each case, growing the neural population size is something that is handled 

gracefully. This is guaranteed to be important for analyzing future datasets, as neural 

recordings become possible and larger and larger scales. Instead of being paralyzed by 

larger data throughput, the predictions we make in these cases would actually be refined. 

 Another interesting commonality these lines of work is that, although by design 

they avoided having to address specific cortical representation issues, they still make 

predictions about resource distribution that will be empirically measurable with access to 

a significant fraction of the population. In the visual texture work, we applied the 

efficient coding hypothesis to predict the relative sensitivities to a variety of visual 

signals. The prediction for sensitivity was based on the gain of a filter, which must be 

encoded using cortical neurons. Although neurons may be responding diffusely to these 

higher order statistics, by knowing their responses to a variety of these stimuli, we can 

measure whether the neural population is itself as sensitive as we predict. Techniques 

presented in chapter 3 to predict cortical sensitivity to tones could be applied to this set of 

visual texture signals to test whether cortical sensitivities match the observed behavioral 

ones. This would create a closed-loop explanation, showing that natural image statistics 

predict the allocation of neural resources, which in turn explain behavioral sensitivity. 

 If our motivation for studying the brain is to unravel the mysteries of what makes 

us who we are, it is important to understand how the lessons we have learned can extend 

to teach us about other parts of the brain. While the primary motivation of studying 

sensory systems is that they are fundamentally tractable because of the level of control 
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we have over the inputs, each line of work presented here contributes to this broader goal 

in a unique way. In chapter 2, we used the efficient coding hypothesis to show not only 

that an organizing principle traditionally applied to the sensory periphery is useful in 

understanding cortical organization as well, but that the nature of cortical constraints may 

differ from those in the sensory periphery. In chapter 3, we used a generic tool to predict 

behavioral sensitivity based on neural responses that could apply to any sensory brain 

region. We also proposed future work that would probe how sensory information is 

deeply tied to behavior in a context-dependent manner. In chapter 4, we used machine 

learning techniques to understand how a brain region that sees nothing but neural inputs 

can organize to try to efficiently represent its inputs. In this case, the emergence of 

familiar receptive fields was of great interest not just as an explanation of observed 

activity in V1, but because the organization principle used could apply to any brain 

region whose inputs are other neurons (that is, any brain region in cortex). In chapter 5, 

we saw that complex novelty detection mechanisms can arise using very simple, 

biologically plausible network properties. The power of such simple non-linear 

transforms should not be underestimated when trying to understand the computation any 

brain region is responsible for. 

 As revolutionary new experimental techniques become available to probe larger 

and larger regions of the brain, we need to be ready with questions to ask and analysis 

techniques to address them. If we can do this as a field, the curiosities of the brain may 

cease to be mysteries. 
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