1,089 research outputs found

    Experiment and theory in the Casimir effect

    Get PDF
    Casimir effect is the attractive force which acts between two plane parallel, closely spaced, uncharged, metallic plates in vacuum. This phenomenon was predicted theoretically in 1948 and reliably investigated experimentally only in recent years. In fact, the Casimir force is similar to the familiar van der Waals force in the case of relatively large separations when the relativistic effects come into play. We review the most important experiments on measuring the Casimir force by means of torsion pendulum, atomic force microscope and micromechanical torsional oscillator. Special attention is paid to the puzzle of the thermal Casimir force, i.e., to the apparent violation of the third law of thermodynamics when the Lifshitz theory of dispersion forces is applied to real metals. Thereafter we discuss the role of the Casimir force in nanosystems including the stiction phenomenon, actuators, and interaction of hydrogen atoms with carbon nanotubes. The applications of the Casimir effect for constraining predictions of extra-dimensional unification schemes and other physics beyond the standard model are also considered.Comment: 11 pages, 14 figure

    Efficient Evaluation of Casimir Force in Arbitrary Three-dimensional Geometries by Integral Equation Methods

    Full text link
    In this paper, we generalized the surface integral equation method for the evaluation of Casimir force in arbitrary three-dimensional geometries. Similar to the two-dimensional case, the evaluation of the mean Maxwell stress tensor is cast into solving a series of three-dimensional scattering problems. The formulation and solution of the three-dimensional scattering problem is well-studied in classical computational electromagnetics. This paper demonstrates that this quantum electrodynamic phenomena can be studied using the knowledge and techniques of classical electrodynamics.Comment: 9 pages, 2 figure

    Port-Hamiltonian systems: an introductory survey

    Get PDF
    The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian systems is based on the canonical symplectic structure of the phase space or on a Poisson structure that is obtained by (symmetry) reduction of the phase space, in the case of a port-Hamiltonian system the geometric structure derives from the interconnection of its sub-systems. This motivates to consider Dirac structures instead of Poisson structures, since this notion enables one to define Hamiltonian systems with algebraic constraints. As a result, any power-conserving interconnection of port-Hamiltonian systems again defines a port-Hamiltonian system. The port-Hamiltonian description offers a systematic framework for analysis, control and simulation of complex physical systems, for lumped-parameter as well as for distributed-parameter models

    Quantum control and long-range quantum correlations in dynamical Casimir arrays

    Get PDF
    The recent observation of the dynamical Casimir effect in a modulated superconducting waveguide, coronating thirty years of world-wide research, empowered the quantum technology community with a powerful tool to create entangled photons on-chip. In this work we show how, going beyond the single waveguide paradigm using a scalable array, it is possible to create multipartite nonclassical states, with the possibility to control the long-range quantum correlations of the emitted photons. In particular, our finite-temperature theory shows how maximally entangled NOONNOON states can be engineered in a realistic setup. The results here presented open the way to new kinds of quantum fluids of light, arising from modulated vacuum fluctuations in linear systems

    Pull-in control due to Casimir forces using external magnetic fields

    Full text link
    We present a theoretical calculation of the pull-in control in capacitive micro switches actuated by Casimir forces, using external magnetic fields. The external magnetic fields induces an optical anisotropy due to the excitation of magneto plasmons, that reduces the Casimir force. The calculations are performed in the Voigt configuration, and the results show that as the magnetic field increases the system becomes more stable. The detachment length for a cantilever is also calculated for a cantilever, showing that it increases with increasing magnetic field. At the pull-in separation, the stiffness of the system decreases with increasing magnetic field.Comment: accepted for publication in App. Phys. Let

    Coupling ultracold atoms to mechanical oscillators

    Get PDF
    In this article we discuss and compare different ways to engineer an interface between ultracold atoms and micro- and nanomechanical oscillators. We start by analyzing a direct mechanical coupling of a single atom or ion to a mechanical oscillator and show that the very different masses of the two systems place a limit on the achievable coupling constant in this scheme. We then discuss several promising strategies for enhancing the coupling: collective enhancement by using a large number of atoms in an optical lattice in free space, coupling schemes based on high-finesse optical cavities, and coupling to atomic internal states. Throughout the manuscript we discuss both theoretical proposals and first experimental implementations.Comment: 19 pages, 9 figure

    Casimir forces and non-Newtonian gravitation

    Get PDF
    The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false signals. We also propose a geometry-independent parameterization of all data in terms of the measurement of the constant c. Any Casimir force measurement should lead, once all corrections are taken into account, to a determination of the constant c which, in order to assess the accuracy of the measurement, can be compared with its more precise value known through microscopic measurements. Although the last decade of experiments has resulted in solid demonstrations of the Casimir force, the situation is not conclusive with respect to being able to discover new physics. Future experiments and novel phenomenological analysis will be necessary to discover non-Newtonian forces or to push the window for their possible existence into regions of the parameter space which theoretically appear unnatural.Comment: Also available at http://www.iop.org/EJ/abstract/1367-2630/8/10/23
    corecore