302 research outputs found

    Recent Trends in Coatings and Thin Film–Modeling and Application

    Get PDF
    Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value

    (R1480) Heat Transfer in Peristaltic Motion of Rabinowitsch Fluid in a Channel with Permeable Wall

    Get PDF
    This paper is intended to investigate the effect of heat transfer on the peristaltic flow of Rabinowitsch fluid in a channel lined with a porous material. The Navier -Stokes equation governs the channel\u27s flow, and Darcy\u27s law describes the permeable boundary. The Rabinowitsch fluid model\u27s governing equations are solved by utilizing approximations of the long-wavelength and small number of Reynolds. The expressions for axial velocity, temperature distribution, pressure gradient, friction force, stream function are obtained. The influence on velocity, pressure gradient, friction force, and temperature on pumping action of different physical parameters is explored via graphs

    Analytical approach for entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium

    Get PDF
    The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-disciplinary progress and innovation in this direction, a thermo-fluid mechanical model is proposed to study the entropy generation and convective heat transfer of nanofluids fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water as the base fluid. The regime studied comprises heat transfer and steady, viscous, incompressible flow, induced by metachronal wave propulsion due to beating cilia, through a cylindrical tube containing a sparse (i.e. high permeability) homogenous porous medium. The flow is of the creeping type and is restricted under the low Reynolds number and long wavelength approximations. Slip effects at the wall are incorporated and the generalized Darcy drag-force model is utilized to mimic porous media effects. Cilia boundary conditions for velocity components are employed to determine analytical solutions to the resulting non-dimensionalized boundary value problem. The influence of pertinent physical parameters on temperature, axial velocity, pressure rise and pressure gradient, entropy generation function, Bejan number and stream-line distributions are computed numerically. A comparative study between SWCNT nanofluids and pure water is also computed. The computations demonstrate that axial flow is accelerated with increasing slip parameter and Darcy number and is greater for SWCNT- nanofluids than for pure water. Furthermore the size of the bolus for SWCNT-nanofluids is larger than that of the pure water. The study is applicable in designing and fabricating nanoscale and microfluidics devices, artificial cilia and biomimetic micro-pump

    Peristaltic transport of bi-viscosity fluids through a curved tube : a mathematical model for intestinal flow

    Get PDF
    The human intestinal tract is a long curved tube constituting the final section of the digestive system in which nutrients and water are mostly absorbed. Motivated by the dynamics of chyme in the intestine, a mathematical model is developed to simulate the associated transport phenomena via peristaltic transport. Rheology of chyme is modelled using the Nakamura-Sawada bi-viscosity non-Newtonian formulation. The intestinal tract is considered as a curved tube geometric model. Low Reynolds number (creeping hydrodynamics) and long wavelength approximations are taken into consideration.Analytical solutions of the moving boundary value problem are derived for velocity field,pressure gradient and pressure rise. Streamline flow visualization is achieved with Mathematica symbolic software. Peristaltic pumping phenomenon and trapping of the bolus are also examined. The influence of curvature parameter, apparent viscosity coefficient (rheological parameter) and volumetric flow rate on flow characteristics is described. Validation of analytical solutions is achieved with a MAPLE17 numerical quadrature algorithm. The work is relevant to improving understanding of gastric hydrodynamics and provides a benchmark for further computational fluid dynamics (CFD) simulations

    Magnetized suspended carbon nanotubes based nanofluid flow with bio-convection and entropy generation past a vertical cone

    Get PDF
    © 2019, The Author(s). The captivating attributes of carbon nanotubes (CNT) comprising chemical and mechanical steadiness, outstanding electrical and thermal conductivities, featherweight, and physiochemical consistency make them coveted materials in the manufacturing of electrochemical devices. Keeping in view such exciting features of carbon nanotubes, our objective in the present study is to examine the flow of aqueous based nanofluid comprising single and multi-wall carbon nanotubes (CNTs) past a vertical cone encapsulated in a permeable medium with convective heat and solutal stratification. The impacts of heat generation/absorption, gyrotactic-microorganism, thermal radiation, and Joule heating with chemical reaction are added features towards the novelty of the erected model. The coupled differential equations are attained from the partial differential equations by exercising the local similarity transformation technique. The set of conservation equations supported by the associated boundary conditions are worked out numerically by employing bvp4c MATLAB function. The sway of numerous appearing parameters in the analysis on the allied distributions is scrutinized and the fallouts are portrayed graphically. The physical quantities of interest including Skin friction coefficient, the rate of heat and mass transfers are assessed versus essential parameters and their outcomes are demonstrated in tabulated form. It is witnessed that the velocity of the fluid decreases for boosting values of the magnetic and suction parameters in case of both nanotubes. Moreover, the density of motile microorganism is decreased versus larger estimates of bio-convection constant. A notable highlight of the presented model is the endorsement of the results by matching them to an already published material in the literature. A venerable harmony in this regard is achieved

    Convective heat transfer for Peristaltic flow of SWCNT inside a sinusoidal elliptic duct

    Get PDF
    A mathematical model is presented to analyse the flow characteristics and heat transfer aspects of a heated Newtonian viscous fluid with single wall carbon nanotubes inside a vertical duct having elliptic cross section and sinusoidally fluctuating walls. Exact mathematical computations are performed to get temperature, velocity and pressure gradient expressions. A polynomial solution technique is utilized to obtain these mathematical solutions. Finally, these computational results are presented graphically and different characteristics of peristaltic flow phenomenon are examined in detail through these graphs. The velocity declines as the volume fraction of carbon nanotubes increases in the base fluid. Since the velocity of fluid is dependent on its temperature in this study case and temperature decreases with increasing volumetric fraction of carbon nanotubes. Thus velocity also declines for increasing volumetric fraction of nanoparticles

    A numerical study of magnetohydrodynamic transport of nanofluids from a vertical stretching sheet with exponential temperature-dependent viscosity and buoyancy effects

    Get PDF
    In this paper, a mathematical study is conducted of steady incompressible flow of a temperature-dependent viscous nanofluid from a vertical stretching sheet under applied external magnetic field and gravitational body force effects. The Reynolds exponential viscosity model is deployed. Electrically-conducting nanofluids are considered which comprise a suspension of uniform dimension nanoparticles suspended in viscous base fluid. The nanofluid sheet is extended with a linear velocity in the axial direction. The Buonjiornio model is utilized which features Brownian motion and thermophoresis effects. The partial differential equations for mass, momentum, energy and species (nano-particle concentration) are formulated with magnetic body force term. Viscous and Joule dissipation effects are neglected. The emerging nonlinear, coupled, boundary value problem is solved numerically using the Runge–Kutta fourth order method along with a shooting technique. Graphical solutions for velocity, temperature, concentration field, skin friction and Nusselt number are presented. Furthermore stream function plots are also included. Validation with Nakamura’s finite difference algorithm is included. Increasing nanofluid viscosity is observed to enhance temperatures and concentrations but to reduce velocity magnitudes. Nusselt number is enhanced with both thermal and species Grashof numbers whereas it is reduced with increasing thermophoresis parameter and Schmidt number. The model is applicable in nano-material manufacturing processes involving extruding sheets

    Heat and mass transfer analysis of nonlinear mixed convective hybrid nanofluid flow with multiple slip boundary conditions

    Get PDF
    The current study focuses on the 3D nonlinear mixed convective boundary layer flow of micropolar hybrid nanofluid in the presence microorganism and multiple slip conditions across the slendering surface. The concentration and energy equations are developed in the occurrence of activation energy and joule heating effect. The aim of this research is to consider the Carbon nanotubes (CNTs) which are favored materials in the manufacture of electrochemical devices because of their mechanical and chemical stability, good thermal and electrical conductivities, physiochemical consistency, and featherweight. By keeping such extraordinary properties of carbon nanotubes in mind, we investigate the flow of hybrid nanofluid having MWCNT (multi-wall carbon nanotubes) and SWCNT (single-wall carbon nanotubes). Using an appropriate similarity variable, the flow model (PDEs) are converted into nonlinear ordinary differential equations. The bvp4c approach is utilized to tackle the coupled differential equations. The impact of emerging parameter on temperature distribution, velocity field, concentration distribution, and microorganism field are presented graphically. It is noted the stronger values of wall thickness parameter and Hartmann number produces retardation effect, as a result fluid velocity declines for both SWCNT (single-wall carbon nanotubes) and MWCNT (multi-wall carbon nanotubes) hybrid nanofluid. Furthermore, the transport rate of heat and mass improves by the higher values of for φ2 both simple and hybrid nanofluid.</p

    Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with Joule dissipation

    Get PDF
    Biomimetic designs are increasingly filtering into new areas of technology in recent years. Such systems exploit characteristics intrinsic to nature to achieve enhanced adaptivity and efficiency in engineering applications. Peristaltic propulsion is an example of such characteristics and in the current article it is explored as a feasible mechanism for deployment in electrokinetic pumping of nanofluids through a curved distensible conduit as a model for a bioinspired smart device. The unsteady mass, momentum, energy and nanoparticle concentration conservation equations for a Newtonian aqueous ionic fluid under an axial electrical field are formulated and simplified using lubrication approximations and low zeta potential (Debye H¨uckel linearization). A dilute nanofluid is assumed with Brownian motion and thermophoretic body forces present. The reduced non-dimensional conservation equations are solved with the symbolic software, Mathematica 9 via the NDSolve algorithm for velocity, temperature, nano-particle concentration distributions for low zeta potential. An entropy generation analysis is also conducted. The influence of curvature parameter, maximum electroosmotic velocity (Helmholtz-Smoluchowski velocity), inverse EDL thickness parameter, zeta potential ratio and Joule heating parameter on transport characteristics is evaluated with the aid of graphs and contour plots. Temperature profiles are elevated with positive Joule heating and reduced with negative Joule heating whereas the opposite behaviour is observed for the nano-particle concentrations

    Viscous flow between two sinusoidally deforming curved concentric tubes: Advances in endoscopy

    Get PDF
    Viscous flow between two sinusoidally deforming curved concentric tubes is mathematically investigated for the first time. Exact solutions are computed to analyse the flow between these two tubes and graphical outcomes are included for a thorough analysis of the solutions. The present article has prime applications in endoscopy as a novel peristaltic endoscope is introduced first time for a curved sinusoidal tube. This curved nature of outer sinusoidal tube with a flexible peristaltic endoscope placed inside it covers the topic of practical applications like endoscopy of human organs having curved shapes and the maintenance of complex machineries that involve complex curve structures. The usage of a flexible peristaltic endoscope inside a curved sinusoidal tube makes the process of catheterization more comfortable
    • …
    corecore