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Abstract 
 
This paper is intended to investigate the effect of heat transfer on the peristaltic flow of 
Rabinowitsch fluid in a channel with permeable wall. The Navier-Stokes equations that 
governs the channel flow are constituted with Rabinowitsch fluid model. Corresponding 
equations are solved by utilizing approximations of the long-wavelength and small Reynolds 
number. The expressions for axial velocity, temperature distribution, pressure gradient, friction 
force, stream function is obtained. The influence of different physical parameters on velocity, 
pressure gradient, friction force, temperature and pumping action is explored via graphs. 

Keywords:  Peristaltic motion; Rabinowitsch fluid model; permeable wall; heat transfer; 
pressure; friction force 

MSC 2010 No.: 76Z05, 76A05, 35C05 

 

1.  Introduction 

Recently biologists, researchers, and scientists show deep interest in studying the problems of 
peristaltic flow of non-Newtonian fluid in tube/channel because of its increasing importance 
and extensive range of applications in a physiological, environmental, geophysical, and 
industrial process. In physiology, peristalsis plays a vital role in various situations such as urine 
transport from the kidney to bladder through the ureter, blood circulation in the small blood 
vessels, the transport of spermatozoa in the duct’s afferents of the male reproductive tract, 
swallowing food through the esophagus, movement of chime in the gastro-intestinal tract, 
sanitary and corrosive fluids transport, and etc. 
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It is understood that in a physical and physiological phase, the filtration and mass transfer occur 
as fluid flows through a permeable tube. It is attributable to a great deal of application in real 
life, such as desalination by reverse osmosis, lymphatic drainage, and nephron tubules inflow. 
The pressure and velocity in these situations vary from the ordinary flow of Poiseuille in an 
impermeable tube since the fluid in contact with the wall may penetrate through the pores of 
the wall. 

Due to its diverse applications in petroleum reservoir rocks, slurries, sedimentation, and sand 
beds the flow through porous medium received considerable attention by researchers and 
scientists. Examples of a porous medium in the human body include small blood vessels, 
human lungs, stone gallbladder, bile ducts, etc. Applying generalized Darcy's law peristaltic 
flow through a porous medium has been investigated by several researchers. Shehawey et al. 
(2000) studied the peristaltic motion of a generalized Newtonian fluid through a porous 
medium. The peristaltic pumping of a fluid with a varying viscosity in a non-uniform tube with 
a permeable wall has been reviewed by Vijay raj et al. (2005). Vajravelu et al. (2007) 
investigated the heat transfer on peristaltic flow of Newtonian fluid in a vertical porous annulus. 
A study of ureteral peristalsis in cylindrical tube through a porous medium is discussed by 
Rathod et al. (2011). Bhatti et al. (2016) investigated the effect of slip and magnetic field on 
Jeffrey fluid peristaltic flow in a porous medium. Sankad et al. (2016) examined the influence 
of permeable lining wall on the peristaltic flow of Herschel Bulkley fluid in a non-uniform 
inclined channel. The peristaltic flow of pseudoplastic fluid bounded by permeable walls with 
suction and injection was studied by Suresh Goud et al. (2017). Lakshminarayana et al. (2018) 
investigated the slip effect on a peristaltic flow of Bingham fluid in an inclined porous tube 
with joule heating. Rathod et al. (2011) studied the effect of thickness of the porous material 
on the peristaltic pumping of Jeffrey fluid with a non-erodible porous lining wall.  

Numerous researchers studied the peristaltic flow through porous media with heat transfer due 
to its broad biophysical application. Vajravelu et al. (2007) studied peristaltic flow and heat 
transfer in a vertical porous annulus under long-wavelength approximation. Srinivas et al. 
(2009) investigated the influence of heat and mass transfer on MHD peristaltic flow through a 
porous space with a complaint wall. The influence of heat transfer on the peristaltic transport 
of a Jeffrey fluid in a vertical porous stratum has been investigated by Vajravelu et al. (2011). 
Vasudeva et al. (2011) addressed the effect of heat transfer on peristaltic flow of Jeffery fluid 
through a porous medium in a vertical channel. The influence of induced magnetic field and 
heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable 
channel is reported by Noreen Sher Akbar et al. (2015). Tripathi (2013) examined the transient 
peristaltic heat flow through a finite porous medium. Rathod et al. (2014) investigated the 
interaction of heat transfer and peristaltic pumping of fractional second-grade fluid through a 
vertical cylindrical tube. Vajarvelu et al. (2016) analyzed heat transfer due to the nonlinear 
peristaltic transport of a Jeffrey fluid through a finite vertical porous channel.  

Saleem et al. (2020)  utilized a hybrid nanofluid to depict the peristaltic component within a 
curved tube with a ciliated wall. Sadaf and Nadeem (2020) examined the fluid flow and heat 
transfer of cilia beating in a curved channel in the presence of a magnetic field. Saleem et al. 
(2021) presented a computational research on the flow of heated non-Newtonian fluid within a 
sinusoidal elliptic duct. Saleem et al. (2021) investigated the peristaltic flow of Bingham 
viscoplastic micropolar fluid inside a microchannel with electro-osmotic effects. Saleem et al. 
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(2021) reported the physiological flow of a non-Newtonian fluid with variable density via a 
ciliated symmetric channel with a compliant wall 

Rabinowitsch fluid is a class of pseudo-plastic fluids attracted much by the investigators; the 
application of this fluid model in peristalsis is very useful in physiology and biomedicine. 
Recently, Singh et al. (2013, 2014) have exhaustively studied about this fluid. Thanesh Kumar 
et al. (2017) investigated the influence of slip effects on the peristaltic flow of Rabinowitsch 
fluid in a non-uniform tube. 

The Rabinowitsch fluid model was used to study the peristaltic flow in a channel with heat 
transfer by Singh et al. (2018). Akbar et al. (2014) discussed the Rabinowitsch fluid 
applications in peristaltic motion. Maraj et al. (2015) considered a curved channel to study the 
peristaltic flow of Rabinowitsch fluid. Existing literature indicates that little effort is made to 
study the peristaltic flow of Rabinowitsch fluid in a channel/tube. 

Motivated by these studies, the heat transfer in the peristaltic motion of Rabinowitsch fluid in 
a channel with a permeable wall is investigated in this paper. The velocity, pressure rise, 
frictional force, temperature distribution, the stream function, and the volume flow rate are 
obtained. Some deductions are made, and results are found to agree with the earlier works. 

Highlights and Novelty of the study  

• The flow characteristics, trapping phenomenon, and heat generation of peristaltic flow 
of non-Newtonian fluid in a channel/tube with a permeable wall are analyzed. The 
Rabinowitsch model is incorporated in the study, and this model gives the flow 
characteristic of peristaltic transport in the channel/tube. 

• The current study gives the bio fluid rheology of the complex flow through a tube with 
a muscular wall qualitatively. The study also predicts physiological flow characteristics 
(in particular blood) through a tube/channel with a permeable (muscular) wall. 

• Further, this investigation provides qualitative information to regulate the flow and the 
temperature of the body by taking variables as control parameters with a suitable range. 
 

2.  Mathematical formulation 

The peristaltic flow of Rabinowitsch fluid that is incompressible under the influence of 
permeable walls is considered. The flow is created by sinusoidal wave trains, which propagate 
along the channel walls with constant speed. Using a fixed frame as rectangular coordinates, 
Figure 1 presents a schematic diagram of the problem. 
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The geometry of the wall surfaces is defined as 

  H(X, t′) = 𝑎𝑎 + b sin �2π(X−ct′)
λ

� ,                                                                                   (1) 

where   𝜆𝜆  is the wavelength, 𝑡𝑡′  is time, 𝑎𝑎  is the half of the channel width, 𝑏𝑏  is the wave 
amplitude. 

A well-established approach to analyze the non-Newtonian character of the fluid is the 
Rabinowitsch fluid model. For the Rabinowitsch fluid model, the shearing stress and shearing 
strain are related by the relationship as given below   

𝑆𝑆𝑌𝑌𝑌𝑌 + 𝛾𝛾 𝑆𝑆3𝑌𝑌𝑌𝑌 = �𝜇𝜇 𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌
� ,                                                                                                   (2) 

where  𝛾𝛾  is the dimensional form of the parameter of the pseudo plasticity. The equations 
governing the flow in fixed frame of reference are given by: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌

= 0 ,                                                                                                                                                                                         (3) 

𝜌𝜌 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡′

+ 𝑈𝑈 𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌

+ 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌
� = − 𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌
+ 𝜕𝜕𝑆𝑆𝑋𝑋𝑋𝑋

𝜕𝜕𝑌𝑌
+ 𝜕𝜕𝑆𝑆𝑌𝑌𝑋𝑋

𝜕𝜕𝑌𝑌
 ,                                                                       (4) 

𝜌𝜌 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡′

+ 𝑈𝑈 𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌

+ 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌
� = −𝜕𝜕𝜕𝜕

𝜕𝜕𝑌𝑌
+ 𝜕𝜕𝑆𝑆𝑌𝑌𝑋𝑋

𝜕𝜕𝑌𝑌
+ 𝜕𝜕𝑆𝑆𝑌𝑌𝑌𝑌

𝜕𝜕𝑌𝑌
 ,                                                                       (5) 

𝜌𝜌𝑐𝑐𝜕𝜕 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡′

+ 𝑈𝑈 𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌

+ 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌
� = 𝐾𝐾 �𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑌𝑌2

+ 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑌𝑌2

� + 𝑆𝑆𝑌𝑌𝑌𝑌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌

+ 𝑆𝑆𝑌𝑌𝑌𝑌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌

+ 𝑆𝑆𝑌𝑌𝑌𝑌 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑌𝑌
� .                (6) 

In the above equations, U and V are components of velocity in (X , Y) directions respectively in 
fixed reference frames, 𝜌𝜌  is density, 𝑝𝑝  is pressure, 𝑇𝑇  is temperature, 𝐾𝐾  is thermal 
conductivity, 𝑐𝑐𝜕𝜕 is specific heat at constant pressure, 𝑡𝑡′ is time,  𝑆𝑆𝑌𝑌𝑌𝑌 ,𝑆𝑆𝑌𝑌𝑌𝑌,𝑆𝑆𝑌𝑌𝑌𝑌 are stress tensor 
components. 

Figure 1. Flow geometry 
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 The transformation between wave and the fixed frame is defined by: 

𝑢𝑢′ = 𝑈𝑈 − 𝑐𝑐, 𝑣𝑣′ = 𝑉𝑉,                                                                                                          (7) 

𝑥𝑥′ = 𝑋𝑋 − 𝑐𝑐𝑡𝑡′,𝑦𝑦′ = 𝑌𝑌,                                                                                                       (8) 

where  𝑢𝑢′, 𝑥𝑥′, 𝑣𝑣′,𝑦𝑦′  axial velocity, axial coordinate, transverse velocity, and transverse 
coordinates are respectively in wave frame. 

The transformations used in the above equations are in scale: 

𝑢𝑢 =
𝑢𝑢′

𝑐𝑐
, 𝑣𝑣 =

𝑣𝑣′

𝑐𝑐𝑐𝑐
, 𝑥𝑥 =

𝑥𝑥′

𝜆𝜆
,𝑦𝑦 =

𝑦𝑦′

𝑎𝑎
,ℎ =

𝐻𝐻
𝑎𝑎

, 𝑐𝑐 =
𝑎𝑎
𝜆𝜆

,𝑝𝑝 =
𝑝𝑝′𝑎𝑎2

𝜇𝜇 𝑐𝑐 𝜆𝜆 
,𝑅𝑅𝑅𝑅 =

𝜌𝜌 𝑐𝑐 𝑎𝑎
𝜇𝜇

,𝜃𝜃 =
𝑇𝑇 − 𝑇𝑇0
𝑇𝑇0

,  

𝑡𝑡 = 𝑐𝑐𝑡𝑡′

𝜆𝜆
,𝑃𝑃𝑃𝑃 = 𝜇𝜇 𝑐𝑐𝑝𝑝

𝐾𝐾
,𝐸𝐸𝑐𝑐 = 𝑐𝑐2

𝑐𝑐𝑝𝑝𝜕𝜕0
,𝜙𝜙 = 𝑏𝑏

𝑎𝑎
, 𝑆𝑆𝑥𝑥𝑥𝑥 = 𝑎𝑎 𝑆𝑆′𝑥𝑥𝑥𝑥

𝑐𝑐𝜇𝜇
, 𝑆𝑆𝑥𝑥𝑥𝑥 = 𝑎𝑎 𝑆𝑆′𝑥𝑥𝑥𝑥

𝑐𝑐𝜇𝜇
,𝛼𝛼 = 𝑐𝑐2𝜇𝜇2

𝑎𝑎
𝛾𝛾,                       (9) 

where 𝑐𝑐 is the wavenumber, 𝑃𝑃𝑃𝑃 is the Prandtl number, 𝐸𝐸𝑐𝑐 is the Eckert number, 𝜙𝜙  is the 
amplitude ratio, and 𝛼𝛼 is the pseudo-plasticity parameter, respectively. 

Using the above non-dimensional quantities of equations (7) - (9) and taking long wavelength 
(𝑐𝑐 ≪ 1) and low Reynolds number approximations (𝑅𝑅𝑅𝑅 ≈ 0), equations (1) - (6) reduces to: 

𝑆𝑆𝑥𝑥𝑥𝑥 + 𝛼𝛼 𝑆𝑆3𝑥𝑥𝑥𝑥 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 ,                                                                                                                (10) 

ℎ = 1 + 𝜙𝜙 sin (2𝜋𝜋𝑥𝑥),                                                                                                             (11) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝑆𝑆𝑥𝑥𝑥𝑥
𝜕𝜕𝑥𝑥

 ,                                                                                                                             (12) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 0 ,                                                                                                                                (13) 

𝜕𝜕2𝜃𝜃
𝜕𝜕𝑥𝑥2

= −𝐵𝐵𝑃𝑃 𝑆𝑆𝑥𝑥𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

  ,                                                                                                                (14) 

 where 𝐵𝐵𝑃𝑃 = 𝐸𝐸𝑐𝑐𝑃𝑃𝑃𝑃 is the Brinkman number. 

The boundary conditions corresponding to Saffaman are given by: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 0 𝑎𝑎𝑡𝑡 𝑦𝑦 = 0,   𝑢𝑢 = −1 − √𝐷𝐷𝑎𝑎
𝜂𝜂

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

  𝑎𝑎𝑡𝑡 𝑦𝑦 = ℎ,                                                  (15) 

𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥

= 0 𝑎𝑎𝑡𝑡 𝑦𝑦 = 0,   𝜃𝜃 = 0  𝑎𝑎𝑡𝑡 𝑦𝑦 = ℎ ,                                                                        (16)   

where, 𝐷𝐷𝑎𝑎 is Darcy number and 𝜂𝜂 is the slip parameter. 
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3.  Solution of the problem 

Solving equation (12) using the boundary condition (15), we get 

𝑢𝑢 = �𝑥𝑥
2−ℎ2

2
� 𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥

+ 𝛼𝛼 �𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥
�
3

 �𝑥𝑥
4−ℎ4

4
� − √𝐷𝐷𝑎𝑎

𝜂𝜂
�ℎ 𝑑𝑑𝜕𝜕

𝑑𝑑𝑥𝑥
+ ℎ3 �𝑑𝑑𝜕𝜕

𝑑𝑑𝑥𝑥
�
3
𝛼𝛼� − 1 .                                   (17)  

Again, solving equation (14) using the boundary condition (16), we obtain           

𝜃𝜃 = 𝐵𝐵𝑃𝑃 �𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥
�
2
�(ℎ4−𝑥𝑥4)

12
+ 𝛼𝛼 (ℎ6−𝑥𝑥6)

30
�𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥
�
2
� .                                                                            (18) 

In terms of the stream function relationship, velocities can be defined as  𝑢𝑢 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

, 𝑣𝑣 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 . 

Integrating equation (17) and using the condition 𝜓𝜓 = 0 at 𝑦𝑦 = 0 we get 

𝜓𝜓 = �𝑥𝑥
3

6
− 𝑥𝑥 ℎ2

2
� 𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥

+ 𝛼𝛼 �𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥
�
3
�𝑥𝑥

5

20
− 𝑥𝑥 ℎ4

4
� − √𝐷𝐷𝑎𝑎 ℎ 𝑦𝑦

𝑑𝑑𝑝𝑝
𝑑𝑑𝑥𝑥�1+ℎ

2�𝑑𝑑𝑝𝑝𝑑𝑑𝑥𝑥�
2
𝛼𝛼�

𝜂𝜂
− 𝑦𝑦 .                       (19) 

The volume flow rate 𝑄𝑄′ in the fixed frame is given by: 

𝑄𝑄′ = ∫ 𝑈𝑈 𝑑𝑑𝑦𝑦𝐻𝐻
0 ,                                                                                                                    (20) 

The volume flow rate 𝑞𝑞′ in wave frame is defined as: 

𝑞𝑞′ = ∫ 𝑢𝑢 𝑑𝑑𝑦𝑦ℎ
0 .                                                                                                                      (21) 

 Using equation (7), one can finds that the two volume flow rates are related by 

𝑄𝑄′ = 𝑞𝑞′ + 𝑐𝑐𝐻𝐻,                                                                                                                      (22) 

The time mean flow over a period 𝑇𝑇 = 𝜆𝜆
𝑐𝑐
  at a fixed position 𝑋𝑋 is defined as 

 𝑄𝑄� = 1
𝜕𝜕 ∫ 𝑄𝑄�𝜕𝜕

0  𝑑𝑑𝑡𝑡,                                                                                                                   (23) 

which can be written, using equation (21) and (22) 

𝑄𝑄� = 𝑞𝑞′ + 𝑐𝑐𝑎𝑎 ,                                                                                                                             (24) 

Defining the dimensionless time-mean flow 𝑄𝑄 and 𝑞𝑞 in the fixed and wave frame respectively 
as 

 𝑄𝑄 = 𝑄𝑄�

𝑎𝑎 𝑐𝑐
  and  𝑞𝑞 = 𝑞𝑞′

𝑎𝑎 𝑐𝑐
 ,                                                                                                            (25) 

then making use of (25), equation (24) can be written as 

𝑄𝑄 = 𝑞𝑞 + 1,                                                                                                                           (26) 
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where 

𝑞𝑞 = ∫ 𝑢𝑢 𝑑𝑑𝑦𝑦,ℎ
0                                                                                                                                        (27) 

 Using equation (17) in equation (27), we get: 

𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥

+ 3
5

 𝛼𝛼 ℎ2 �𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥
�
3

+ 3 �𝑞𝑞+ℎ
ℎ3
� + 3 √𝐷𝐷𝑎𝑎

𝜂𝜂 ℎ3
�ℎ2 𝑑𝑑𝜕𝜕

𝑑𝑑𝑥𝑥
+ ℎ4 �𝑑𝑑𝜕𝜕

𝑑𝑑𝑥𝑥
�
3
𝛼𝛼� = 0.                                          (28)   

It is tedious to obtain the analytical solution of equation (28) due to nonlinearity. Thus, the 
solution is obtained by using regular perturbation method. In order to apply perturbation 
technique, we expand  𝑑𝑑𝜕𝜕

𝑑𝑑𝑥𝑥
 in terms of the pseudo-plasticity parameter(|𝛼𝛼| ≪ 1) as follows: 

𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥

= 𝑝𝑝0 + 𝛼𝛼 𝑝𝑝1 .                                                                                                                     (29) 

The solution of equation (28) is given by: 

𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥

= −3� 𝑞𝑞+ℎ

ℎ3+  3 ℎ2√𝐷𝐷𝐷𝐷
𝜂𝜂 

� + 𝛼𝛼
81 (𝑞𝑞+ℎ)3�ℎ+ 5√𝐷𝐷𝐷𝐷

𝜂𝜂 �

5ℎ4�ℎ+3 √𝐷𝐷𝐷𝐷
𝜂𝜂 �

4   .                                                                       (30) 

Using equation (26) in equation (30), we get: 

𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥

= −3� 𝑄𝑄−1+ℎ

ℎ3+  3 ℎ2√𝐷𝐷𝐷𝐷
𝜂𝜂 

� + 𝛼𝛼
81 (𝑄𝑄−1+ℎ)3�ℎ+ 5√𝐷𝐷𝐷𝐷

𝜂𝜂 �

5ℎ4�ℎ+3√𝐷𝐷𝐷𝐷𝜂𝜂 �
4   .                                                                         (31) 

The results presented above corresponds to the results of Singh et al. (2018) as 𝐷𝐷𝑎𝑎 → 0.    
 
The pressure rise and friction force are respectively given by:  

∆𝑝𝑝 = ∫ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

1
0  𝑑𝑑𝑥𝑥 ,                                                                                                                   (32) 

𝐹𝐹 = ∫ ℎ �− 𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥
� 𝑑𝑑𝑥𝑥1

0 .                                                                                                            (33) 

4.  Results and Discussion 
 
In this section, we present a qualitative study of the results obtained in the previous sections by 
varying the parameters. Our parameters of interest are pseudo-plasticity 𝛼𝛼, amplitude ratio 𝜙𝜙, 
Darcy number 𝐷𝐷𝑎𝑎, and slip parameter 𝜂𝜂 and flow rate 𝑄𝑄 for Rabinowitsch fluid. The nature of 
the fluid is Newtonian for the parameter of pseudo-plasticity 𝛼𝛼 = 0, dilatants (Shear thinning) 
for 𝛼𝛼 < 0, and pseudoplastic (shear thickening) for 𝛼𝛼 > 0. 
 
Figures 2-5 are sketched to analyze the flow characteristics of a Newtonian and non-Newtonian 
fluid. Figure 2 shows variation of velocity profiles for various values of 𝑄𝑄 and 𝛼𝛼. In shear 

7

Channakote and Kalse: Heat Transfer in Peristaltic Motion of Rabinowitsch Fluid

Published by Digital Commons @PVAMU, 2021



1064 M.M. Channakote and D.V. Kalse 

thickening fluid it is observed that the flow rate favors the fluid motion by increasing the 
magnitude of the velocity while 𝑄𝑄 opposes the fluid motion in the case of shear thinning fluid. 
Here it is noted that for shear thickening fluid the magnitude of the velocity increases and 
decreases with an increase in flow rate for shearthinning fluid. The velocity magnitude for 
Newtonian fluid is noted to be maximum in the center of the channel this is due to the absence 
of the shear stress. The opposite conduct can be seen on the channel wall. A similar effect is 
observed in Figure 3 with an increase in the value of amplitude ratio on velocity profiles.   

Figures 4 and 5 are drawn to study the effect of the Rabinowitsch fluid parameter in the case 
of shearthinning and shearthickening on velocity distribution 𝑢𝑢 for different values of Darcy 
number and slip parameter. Figure 4 depicts that with an increase in the value of Darcy number 
the magnitude of velocity increases for shearthinning and shearthickening fluid while an 
opposite trend is observed for a Newtonian fluid. It is often shown that the opposite activity 
can be seen on the wall of the channel. 

From Figure 5 it is seen that the magnitude of velocity in the center of the channel is found the 
highest for a Newtonian fluid. The magnitude of velocity reduces for pseudo-plastic fluid and 
improves fluid consistency with an enhanced slip parameter for dilatant fluid. 

It is well known fact that the fluid flow with high velocity exerts a high-pressure gradient and 
the same results are restated in Figures 6 - 9 for Rabinowitsch fluid. Figures 6 and 7 represent 
pressure gradient behavior with a change in amplitude ratio and flow rate. Unrecognizable 
variability in the pressure gradient is observed for 𝑥𝑥 ∈ [0,0.5] when the value of 𝜙𝜙 changes. A 
comparative analysis shows that in the case of the shearthickening fluid the pressure gradient 
in the narrow channel component is greater than that of the shearthinning fluid. Moreover, it is 
seen that with the increase in 𝜙𝜙 the pressure gradient increases (see Figure 6). From Figure 7, 
it is clear that the pressure gradient starts decreasing when the flow rate 𝑄𝑄 increases. The 
pressure gradient is very small for 𝑥𝑥 ∈ [0,0.6], and a large pressure gradient occurs for 𝑥𝑥 ∈
[0.6,0.9].  

Figure 8 shows the impact of Darcy number 𝐷𝐷𝑎𝑎 on the pressure gradient. It is seen that the 
pressure gradient decreases with an increase in Darcy number. The highest-pressure gradient 
is observed in the case of dilatant fluid and the lowest pressure gradient is found in the narrow 
part of the channel for pseudo plastic fluid. Figure 9 present the variation of 𝑑𝑑𝜕𝜕

𝑑𝑑𝑥𝑥
 over one 

wavelength for different values of slip parameter η. From Figure 9 we observe that the pressure 
gradient is relatively small in the wider part of the channel. It is examined that the pressure 
gradient increases with the rising values of 𝜂𝜂. 

Numerical integration is carried out in order to evaluate pumping characteristics and the results 
of variation of the pressure rise ∆𝑝𝑝 against the average time flow rate 𝑄𝑄, are shown in Figures 
10 - 13.  

From Figure 10 one can notice that the pressure rise increases for Newtonian fluid when ϕ 
increases in the area of the peristaltic pumping region (𝑄𝑄 > 0,∆𝑝𝑝 > 0) whereas pressure rise 
shows an opposite attitude in the co-pumping region (𝑄𝑄 > 0,∆𝑝𝑝 < 0). The fluid will be lean 
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when the pseudo-plasticity parameter is more, and a little pressure rise is noticed in the 
pumping area as compared to Newtonian and dilatant fluids. The maximum pressure rise 
observed for shearthinning fluid at zero flow rate. 

Figure 11 demonstrates the effect of amplitude ratio 𝜙𝜙  on pressure rise for the material 
parameters 𝛼𝛼 = −0.1, 0, 0.1 and 𝑄𝑄 = 0.3, 0.4. It is noted that, for a Newtonian and dilatant 
type of fluid, the pressure rise increases at a steady flow rate but for pseudo-plastic fluid, and 
the pressure rise increases first and then reduces afterward. The pressure rise decreases at zero 
amplitude ratio with no pumping region as the flow rate increases.  

Figure 12 shows the variation of ∆𝑝𝑝 with flow rate 𝑄𝑄 for various values of the parameter of 
pseudo-plasticity 𝛼𝛼 = −0.1,0,0.1 and 𝐷𝐷𝑎𝑎 = 0.001,0.002. We observe that the pressure rise 
decreases with an increase of 𝐷𝐷𝑎𝑎 in the pumping region(𝑄𝑄 > 0,∆𝑝𝑝 > 0) where as behavior is 
opposite in the augmented pumping region (𝑄𝑄 > 0,∆𝑝𝑝 < 0). An increase in Darcy number 
increases the permeability of the porous medium. Thus, ease with which the fluid flow is 
increased caused decrease in the pressure rise. 

The impact of slip parameter 𝜂𝜂 on the pressure rise for material parameters 𝛼𝛼 is presented in 
Figure 13. We observe that the pumping curves intersect at a point where 𝑄𝑄 = 0.25   
(approximately) in the pumping region (∆𝑝𝑝 > 0,𝑄𝑄 > 0). When Q is less than 0.25 the pumping 
rate increases by increasing slip parameter 𝜂𝜂. After a critical value of 𝑄𝑄 that is 𝑄𝑄 = 0.3, the 
pumping rate increases when 𝜂𝜂 is increased. Moreover, it is seen that increasing 𝜂𝜂  causes 
increase in pressure rise which is greater as compared to that of the Newtonian and dilatant 
case while its behavior is quite opposite in the augmented region (𝑄𝑄 > 0, ∆𝑝𝑝 < 0). 

Figures 14 - 17 display the difference in frictional force against flow rate. These Figures show 
that for all the relevant parameters, the frictional force has quite opposite features compared to 
pressure rise. 

The distribution of temperature is investigated and depicted through Figures 18-21. Figure 18 
shows the variation of temperature profile with 𝑦𝑦 for 𝐵𝐵𝑃𝑃 = 0.4, 0.5,𝛼𝛼 = −0.1, 0, 0.1,𝑄𝑄 = 0.8,
𝜙𝜙 = 0.4,𝐷𝐷𝑎𝑎 = 0.0001, 𝜂𝜂 = 0.1, 𝑥𝑥 = 0.2.The temperature profiles are found to increase with 
increasing Brinkman number values as seen in Figure 18. It is shown here that the temperature 
profile is an increasing feature for pseudoplastic, dilatant, and Newtonian fluids. There is a 
greater heat generation due to friction since higher values 𝐵𝐵𝑃𝑃 are used by shear in the flow that 
raises the temperature of the fluid. 

Figure 19 illustrates that the temperature profile is decreasing with increasing values of 
amplitude ratio for pseudoplastic fluids while increasing with increasing values of amplitude 
ratio for Newtonian and dilatant fluids. High temperature is observed in the center of the 
channel and decrease near the wall of the channel for Newtonian, pseudo-plastic, and dilatant 
fluids. 

Figures 20 and 21 are drawn to study the effect of Rabinowitsch fluid parameter α on 
temperature distribution 𝜃𝜃 for various values of Darcy number 𝐷𝐷𝑎𝑎 and the slip parameter 𝜂𝜂. 
Figure 20 reveals that high temperature is observed at the center of the channel for all three 
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types of fluids. It is also observed the temperature field decreases with an increase in Darcy 
number. In Figure 21 we found that an increase in slip parameter 𝜂𝜂 results in the increase of 
temperature 𝜃𝜃 . It is found that in comparison with the Newtonian case, the magnitude of 
temperature for shear thickening fluid  (𝛼𝛼 < 0) is more than the shearthinning fluid  (𝛼𝛼 > 0).     

The next most interesting aspect of peristaltic flow is trapping which is taken into account by 
drawing streamlines against various physical parameters. The inviscid fluid streamlines are 
very helpful to understand the relationship between velocity and pressure. Figure 22 
demonstrates the effects of 𝛼𝛼 on the size and circulation of the trapped bolus. It is found that 
when the nature of the fluid changes gradually from pseudo-plastic fluid to dilatant the size of 
the bolus decreases. It is also analyzed that the number of boluses is more for Newtonian fluid 
as compared to pseudo-plastic and dilatant fluids. Streamlines are plotted in Figures 23 and 24 
to see the effect of Darcy number 𝐷𝐷𝑎𝑎 and slip parameter 𝜂𝜂. Evidently, the number and size of 
trapping bolus for Newtonian fluid is greater as compared to pseudo plastic and dilatant fluids. 
It can also be noted that the number of boluses decreases for increasing the Darcy number 𝐷𝐷𝑎𝑎 
but the number of trapped bolus increases for increasing slip parameter 𝜂𝜂. 

5.  Conclusions 
 
The peristaltic flow of Rabinowitsch fluid is considered in a channel, in the wave frame of 
reference moving with velocity of the wave. Long-wavelength and low Reynolds number 
approximation is applied to resolve the model. Solutions are obtained for velocity, pressure 
gradient, pressure difference 𝛥𝛥𝑝𝑝, frictional force, temperature 𝜃𝜃, and stream function. 
The main outcomes of present investigations are: 

• It is specifically observed that the magnitude of velocity for Newtonian fluid in the 
center of the channel is maximal and decreases with shearthinning fluid but increases 
with shear thickening fluid. 

• The pressure gradient decreases with an increase in Darcy number. 
• The of velocity increases with dilatant fluid and, with an increase in flow rate, reduces 

the pseudo-plastic quality of the fluid. 
• In shearthinning situations, the temperature profiles decrease and the opposite behavior 

is observed in dilatant and Newtonian fluids. 
• Temperature spectrum decreasing with rising Darcy number for all fluid types. 
• The temperature for all three fluids increases with increasing slip parameter values. 
• Frictional forces can be seen as having the opposite behavior to that of increasing 

energy. 
• As a consequence of the rising amplitude ratio, the size of the trapped bolus decreases. 
• In the case of shearthinning and shearthickening aspect of the stream, the size and 

quantity of the bolus are decreasing with an increase in Darcy value 
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APPENDIX 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 2. Velocity profile for various values of 𝑄𝑄,𝛼𝛼 at 𝐷𝐷𝑎𝑎 = 0, 𝜂𝜂 = 1,𝜙𝜙 = 0.4, 𝑥𝑥 = 0.75 
 
 
 
 
 

 
 
 

 
 

 
 
 
 
 
Figure 3. Velocity profile for various values of 𝜙𝜙,𝛼𝛼 at 𝐷𝐷𝑎𝑎 = 0.001, 𝜂𝜂 = 1,𝑄𝑄 = 0.1, 𝑥𝑥 = 0.75 
 
 

 
Figure 4. Velocity profile for various values of 𝐷𝐷𝑎𝑎,𝛼𝛼 at 𝜙𝜙 = 0.4 , 𝜂𝜂 = 1,𝑄𝑄 = 0.1, 𝑥𝑥 = 0.75 
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Figure 5.  Velocity profile for various values of 𝜂𝜂, at  𝜙𝜙 = 0.4 ,𝐷𝐷𝑎𝑎 = 0.001,𝑄𝑄 = 0.1, 𝑥𝑥 =

0.75 
 
 

 
Figure 6. Pressure gradient for different values of 𝜙𝜙,𝛼𝛼. at  𝑄𝑄 = 0.1, 𝐷𝐷𝑎𝑎 = 0, 𝜂𝜂 = 1 
 

 
Figure 7. Pressure gradient for different values of 𝑄𝑄,𝛼𝛼.at 𝜙𝜙 = 0.3, 𝐷𝐷𝑎𝑎 = 0.001, 𝜂𝜂 = 0.5 
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Figure 8. Pressure gradient for different values of 𝐷𝐷𝑎𝑎,𝛼𝛼. at  𝜙𝜙 = 0.3, 𝑄𝑄 = 0.1, 𝜂𝜂 = 0.2 

 

 
Figure 9. Pressure gradient for different values of 𝜂𝜂,𝛼𝛼. at 𝜙𝜙 = 0.3,𝑄𝑄 = 0.1, 𝐷𝐷𝑎𝑎 = 0.0001 

 
 

 
Figure 10. Pressure rise vs. flow rate for different values of 𝜙𝜙,𝛼𝛼 at  𝐷𝐷𝑎𝑎 = 0.0001, 𝜂𝜂 = 0.5 

 
 

15

Channakote and Kalse: Heat Transfer in Peristaltic Motion of Rabinowitsch Fluid

Published by Digital Commons @PVAMU, 2021



1072 M.M. Channakote and D.V. Kalse 

 
Figure 11. Pressure rise vs. amplitude ratio for different values of Q,𝛼𝛼 at  𝐷𝐷𝑎𝑎 = 0.0001, 𝜂𝜂 =

0.5 
 
 

 
Figure 12.  Pressure rise vs. flow rate for different values of 𝐷𝐷𝑎𝑎,𝛼𝛼 at  𝜙𝜙 = 0.4 , 𝜂𝜂 = 0.5 

 
 

 
Figure 13.  Pressure rise vs. flow rate for different values of 𝜂𝜂,𝛼𝛼 at  𝜙𝜙 = 0.4 ,𝐷𝐷𝑎𝑎 = 0.0001  

 
 

16

Applications and Applied Mathematics: An International Journal (AAM), Vol. 16 [2021], Iss. 2, Art. 16

https://digitalcommons.pvamu.edu/aam/vol16/iss2/16



 AAM: Intern. J., Vol. 16, Issue 2 (December 2021) 1073 

 
Figure 14.  Frictional force vs. flow rate for different values of 𝜙𝜙,𝛼𝛼 at 𝐷𝐷𝑎𝑎 = 0.4 , 𝜂𝜂 = 0.5 

 
 

 
Figure 15.  Frictional force vs. flow rate for different values of 𝐷𝐷𝑎𝑎,𝛼𝛼 at 𝜙𝜙 = 0.4 ,𝑄𝑄 = 0.4, 𝜂𝜂 =

0.5 
 
 

 
Figure 16.  Frictional force vs. ampltude ratio for different values of 𝑄𝑄,𝛼𝛼 at  𝜙𝜙 = 0.4 ,𝐷𝐷𝑎𝑎 =

0.001, 𝜂𝜂 = 0.5 
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Figure 17.  Frictional force vs. flow rate for different values of 𝜂𝜂,𝛼𝛼 at  𝜙𝜙 = 0.4 ,𝐷𝐷𝑎𝑎 = 0.0001 

 
 
 

 
Figure 18.  Effect of 𝐵𝐵𝑃𝑃,𝛼𝛼 on temperature at 𝜙𝜙 = 0.3,𝑄𝑄 = 0.8, 𝑥𝑥 = 0.2,𝐷𝐷𝑎𝑎 = 0.001, 𝜂𝜂 = 0.2 
 
 

 
Figure 19.  Effect of 𝜙𝜙,𝛼𝛼 on temperature at 𝐷𝐷𝑎𝑎 = 0.001, 𝜂𝜂 = 0.1,𝑄𝑄 = 0.8, 𝑥𝑥 = 0.2, 𝐵𝐵𝑃𝑃 = 0.2 
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Figure 20.  Effect of 𝐷𝐷𝑎𝑎,𝛼𝛼 on temperature at 𝜙𝜙 = 0.4, 𝜂𝜂 = 0.1,𝑄𝑄 = 0.8, 𝑥𝑥 = 0.2,𝐵𝐵𝑃𝑃 = 0.2 
 

 
Figure 21.  Effect of 𝜂𝜂,𝛼𝛼 on temperature at 𝜙𝜙 = 0.4,𝐷𝐷𝑎𝑎 = 0.0001,𝑄𝑄 = 0.8, 𝑥𝑥 = 0.2,𝐵𝐵𝑃𝑃 =

0.2 
 
 

   
       (I) 𝛼𝛼 = 0             (II)𝛼𝛼 = 0.1             (III)𝛼𝛼 = −0.1 
 
Figure 22. Stream lines when 𝑄𝑄 = 0.8,𝜙𝜙 = 0.6, 𝐷𝐷𝑎𝑎 = 0, 𝜂𝜂 = 1 
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     (I) 𝛼𝛼 = 0                 (II)𝛼𝛼 = −0.1               (III)𝛼𝛼 = 0.1 
 
Figure 23. Stream lines when  𝐷𝐷𝑎𝑎 = 0.0001, 0.001, 0.01 for fixed value of 𝑄𝑄 = 0.8,𝜙𝜙 = 0.6 
 

 

   
      (I) 𝛼𝛼 = 0                 (II)𝛼𝛼 = −0.1               (III)𝛼𝛼 = 0.1 
 
Figure 24. Stream lines when  𝜂𝜂 = 0.4, 0.5, 0.6 for fixed value of 𝑄𝑄 = 0.8,𝜙𝜙 = 0.6,𝐷𝐷𝑎𝑎 =

0.001,  
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