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Abstract: This special issue took this opportunity to invite researchers to contribute their original
research work and review articles to this Special Issue on “Recent Trends in Coatings and Thin Film:
Modeling and Application” to be published in Coatings. The goal of this Special Issue was to address
challenges and current issues that either advance the state-of-the-art of experimental, numerical,
and theoretical methodologies, or extends the bounds of existing methodologies to new contributions
that are related to coatings and thin film containing whichever, magnetic, multiphase, material science,
nanotechnology, surfaces, interfaces, and mechanical sensing properties. In response to the call
for papers, a total of 58 papers were submitted for possible publication. After comprehensive peer
review, only 27 papers qualified for acceptance for final publication. The rest of 31 papers could not
be accommodated. The submissions may have been technically correct, but were not considered
appropriate for the scope of this special issue. The authors are from 17 geographically distributed
countries, such as China, Spain, Romania, Turkey, Saudi Arabia, Pakistan, Malaysia, Abu Dhabi,
UAE, Vietnam, Korea, Taiwan, Thailand, Lebanon, Egypt, India, and Kuwait, etc. This reflects the
great impact of the proposed topic and the effective organization of the guest editorial team of this
Special Issue.

Keywords: development and characterization of coatings; applications of thin films; nanostructured
materials; surfaces and interfaces; applications of multiphase fluids; mathematical modeling on
biological applications; electronics; magnetics and magneto-optics; droplet impact modelling;
impedance analysis; rain erosion; ultrasound measurements; viscoelastic modelling; wind turbine
blades; computational modelling

1. Introduction

The process of covering the surface of an object or substrate with a very thin layer is known as
Coating. This layer can be of some sort of a thin polymer sheet, paint, or lacquer, which can be utilized
for protective/decorative purposes. Most of industrial products get-up-and-go through the process
of coating not only to prevent corrosion but to make them attractive. As the coating involves the
development of a thin film layer that can be lacquer or polymeric on a fabric or substrate etc. Therefore,
if the substrate starts and ends the process wound up in a roll, the process can be termed “roll-to-roll”
or “web-based” coating. Due to multiple usages of coatings, several theoretical and experimental
attempts have been devoted and this special issue is one of them. We hope that this issue will not only
address the current challenges, but will also provide an overall picture and up-to-date findings to
readers of the scientific community that ultimately benefits the industrial sector regarding its specific
market niches and end users.

Coatings 2020, 10, 777; doi:10.3390/coatings10080777 www.mdpi.com/journal/coatings1
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2. Methodologies and Usages

Two-dimensional, incompressible asymmetric peristaltic propulsion coated with Synovial fluid
(non-Newtonian model) with mass transport was investigated in [1]. Because of the coating of the
same base-fluid at the surface of the channel, the boundaries become non-porous and exert no slip
on the fluid particles. Two illustrative models for the viscosity, namely, shear-thinning (Model 1)
and shear-thickening (Model 2), are considered, which reveal the presence and integrity of coating.
The perturbation method has been applied to linearize the complicated differential equations. Model 1
predicted higher viscosity values and more significant non-Newtonian behavior than Model 2. It is also
observed that the shear-thinning model behaved in quite the opposite manner for the shear thickening
model. The converse behavior of Models 1 and 2 occurs due to a curvature of the flow domain.
Moreover, Model 1 is not able to capture the correct exponential viscosity dependence on concentration
for the whole range of shear rates. On the other hand, the second model shows a strong relationship
with accurate power. Solutions are attained for velocity field, concentration profile, and pressure
gradient. The novelty of all the essential parameters is analyzed through graphical results. Furthermore,
streamlines are also drawn in order to determine the trapping mechanism. The present analysis is
beneficial in the study of intrauterine fluid dynamics; furthermore, it is applicable in vivo diagnostic;
drug delivery; food diagnostics; protein chips; and, cell chips and packaging, i.e., smart sensors.

Ellahi et al. [2] devoted their efforts to investigate the shiny thin film with a metallic tactile covering
of nanoparticles over the surface of a rotating disk. To decorate, glowing silver and gold particles
were chosen. Four illustrative base liquids, namely (i) ethanol, (ii) methanol, (iii) ethylene-glycol,
and (iv) water were considered with different geometries, which have great importance in industrial
use. An emphasis on comparative multi nanofluid analysis was used to make a sound judgment on
which one of the fluids best suited the metallic glittering process of spin coating. The film thickness
process highly depends on the process of evaporation, which takes some time to settle on the disk’s
surface. It was found that of the base fluids, the best choices were ethanol alloys with silver. Hence,
one can conclude that, from an experimental point of view, if silver alloy is used for coating, then only
those liquids can be considered that exhibit ethanol-like properties. The impact of pertinent parameters
with different aspects are graphically illustrated in each case

Lu et al. examined the flow of hybrid (nickel–zinc ferrite and ethylene glycol) nanoliquid with
entropy optimization and nonlinear thermal radiation coatings past a curved stretching surface [3].
Analysis was carried out in the presence of magnetohydrodynamic, heat generation/absorption,
and convective heat and mass flux conditions. A solution of the modeled problem was attained
numerically using MATLAB built-in function bvp4c. Impacts of prominent parameters on betrothed
distributions were depicted through graphs and they were well supported by requisite discussions.
Numerically calculated values of Sherwood number were established in a tabulated form and were
scrutinized critically. An excellent concurrence was achieved when the results of the presented model
were compared with previously published result; hence, dependable results are being presented. It was
observed that concentration field diminished with increasing values of curvature parameter, though the
opposite trend was noticed for velocity and temperature distributions. Further, it was detected that
Nusselt number decreased with augmented values of radiation and curvature parameters.

Investigation [4] is carried out on the thin film flow of Reiner-Philippofffluid of boundary-layer type.
We have analyzed the flow of thin films of Reiner–Philippoff fluid in the changeable heat transmission
and radiation over a time-dependent stretching sheet in two-dimensions (2D). The time-dependent
governing equations of Reiner–Philippoff fluid model are simplified with the help of transformation of
similarity variables. To investigate the behavior of the Reiner-Philippoff fluid with variable stretching
surface for different physical effects, we considered thermophoresis and Brownian motion parameters
in the flow. The Homotopy Analysis Method is implemented in the reduced model in order to achieve
a solution of the original problem. A numerical convergence of the implemented method is also
analyzed. The behavior of temperature, velocity, and concentration profiles have been investigated
with the variation of skin friction, Nusselt number, and Sherwood number. A comparative graphical
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survey is presented for the velocity gradient, under different parameters. An analytical analysis is
presented for the time-dependent parameter over thin film flow. The results that we obtained are better
than the previously available results. For the survey, the physical representation of the embedded
parameters, are discussed in detail and plotted graphically.

The thin film flow of micropolar fluid in a porous medium under the influence of thermophoresis
with the heat effect past a stretching plate is analyzed in [5]. Micropolar fluid is assumed as a base
fluid and the plate is considered to move with a linear velocity and subject to the variation of the
reference temperature and concentration. The latitude of flow is limited to being two-dimensional
and it is steadily affected by sensitive fluid film size with the effect of thermal radiation. The basic
equations of fluid flow are changed through the similarity variables into a set of nonlinear coupled
differential equations with physical conditions. The suitable transformations for the energy equation is
used and the non-dimensional form of the temperature field are different from the published work.
The effects of radiation parameter are shown graphically and discussed.

The modern optical fiber required a double-layer resin coating on the glass fiber to provide
protection from signal attenuation and mechanical damage. The most important plastics resin
used in the coating of fiber optics are plasticized polyvinyle (PVC), low/high density polyethylene
(LDPE/HDPE), nylon, and polysulfone. Due to abounded application, the polymer flow during optical
fiber coating in a pressure type coating die has been simulated under non-isothermal conditions in [6].
The flow dependent on the wire or fiber velocity, geometry of the die, and the viscosity of the polymer.
The wet-on-wet coating process is an efficient process for two-layer coating on the fiber optics. In the
present study, the constitutive equation of polymer flow satisfies viscoelastic Phan–Thien–Tanner
(PTT) fluid, is used to characterize rheology of the polymer melt. Based on the assumption of the
fully developed incompressible and laminar flow, the viscoelastic fluid model of two-immiscible
resins-layers modeled for simplified-geometry of capillary-annulus where the glass fiber drawing
inside the die at high speed. The equation describing the flow of the polymer melt inside the die was
solved, analytically and numerically, by the Runge–Kutta method. The effect of physical characteristics
in the problem has been discussed in detail through graphs by assigning numerical values for several
parameters of interest. As a first attempt, the model PTT fluid as a coating material for double-layer
optical fiber coating using the wet-on-wet coating process is considered. At the end, the present study
is compared with the published work as a particular case, and good agreement is found.

The main objective of [7] is to elaborate the characteristics of heat transport and
magneto-hydrodynamics finite film flow of human blood with Carbon Nanotubes (CNTs) nanofluids
over a stretchable upright cylinder. Two kinds of CNTs nanoparticles, namely (i) SWCNTs (single
walled carbon nanotubes) and (ii) MWCNTs (multi walled carbon nanotubes), are used with human
blood as a base liquid. In addition, a uniform magnetic field has been perpendicularly conducted to the
motion of nanoliquid. The transformation of the partial differential structure into a non-linear ordinary
differential structure is made by using appropriate dimensionless quantities. The controlling approach
of the Homotopy analysis method has been executed for the result of the velocity and temperature.
The thickness of the coating film has been kept variable. The pressure distribution under the variable
thickness of the liquid film has been calculated. The impacts of different variables and the rate of spray
during coating have been graphically plotted. The coefficient of skin friction and Nusselt number have
been presented numerically. In addition, it is noticed that the thermal field of a nanoliquid elevates
with rising values of φ and this increase is more in SWCNTs nanofluid than MWCNTs nanofluid.

Lu et al. proposed the unsteady flow and heat transfer analyses of a viscous-based nanofluid over
a moving surface emerging from a moving slot [8]. A new form of boundary layer flow resembles with
the boundary layer flow over a stretching/shrinking surface depending on the motion of the moving
slot. The governing partial differential equations are transformed to correct similar form using the
Blasius–Rayleigh–Stokes variable. The transformed equations are numerically solved. The existence of
dual solutions is observed for a certain range of moving slot parameter. The range of dual solution is
strongly influenced by Brownian and thermophoretic diffusion of nanoparticles.

3
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In [9], the three-dimensional nanofluid thin-film flow of Casson fluid over an inclined steady
rotating plane is examined. A thermal radiated nanofluid thin film flow is considered with
suction/injection effects. With the help of similarity variables, the partial differential equations
are converted into a system of ordinary differential equations. The obtained ODEs are solved by the
homotopy analysis method with the association of MATHEMATICA software. The boundary-layer
over an inclined steady rotating plane is plotted and explored in detail for the velocity, temperature,
and concentration profiles. Additionally, the surface rate of heat transfer and shear stress are described
in detail. The impact of numerous embedded parameters, such as the Schmidt number, Brownian
motion parameter, thermophoretic parameter, and Casson parameter, etc., were examined on the
velocity, temperature, and concentration profiles, respectively. The essential terms of the Nusselt
number and Sherwood number were also numerically and physically examined for the temperature
and concentration profiles. It was observed that the radiation source improves the energy transport
to enhance the flow motion. The smaller values of the Prandtl number, augmented the thermal
boundary-layer and decreased the flow field. The increasing values of the rotation parameter decreased
the thermal boundary layer thickness. These outputs are examined physically and numerically and are
also discussed.

This study of [10] aims to scrutinize the thin film flow of a nanofluid comprising of carbon
nanotubes (CNTs), single and multi-walled i.e., (SWCNTs and MWCNTs), with Cattaneo-Christov heat
flux and entropy generation. The time-dependent flow is supported by thermal radiation, variable
source/sink, and magneto hydrodynamics past a linearly stretched surface. The obtained system of
equations is addressed by the numerical approach bvp4c of the MATLAB software. The presented
results are validated by comparing them to an already conducted study and an excellent synchronization
in both results is achieved. The repercussions of the arising parameters on the involved profiles are
portrayed via graphical illustrations and numerically erected tables. It is seen that the axial velocity
decreases as the value of film thickness parameter increases. It is further noticed that, for both types of
CNTs, the velocity and temperature distributions increase as the solid volume fraction escalates.

The study [11] is about the pressure-driven heated bi-phase flow in two slippery walls.
The non-Newtonian couple stress fluid is suspended with spherically homogenous metallic particles.
The magnetic susceptibility of Hafnium allures is taken into account. The rough surface of the wall
is tackled by lubrication effects. The nonlinear coupled partial differential equations along with the
associated boundary conditions are first reduced into a set of ordinary differential equations using
appropriate transformations and then numerical results were obtained by engaging the blend of
Runge–Kutta and shooting techniques. The sway of physical quantities is graphically examined.
Excellent agreement within graphical illustration and numerical results is achieved.

The aim of this research work [12] is to increase our understanding of the exhaustion of energy in
engineering and industrial fields. The study of nanofluids provides extraordinary thermal conductivity
and an increased heat transmission coefficient as compared to conventional fluids. These specific
sorts of nanofluids are important for the succeeding generation of flow and heat transfer fluids.
Therefore, the investigation of revolutionary new nanofluids has been taken up by researchers and
engineers all over the world. In this article, the study of the thin layer flow of Darcy–Forchheimer
nanofluid over a nonlinear radially extending disc is presented. The disc is considered as porous.
The impacts of thermal radiation, magnetic field, and heat source/sink are especially focused on.
The magnetic field, positive integer, porosity parameter, coefficient of inertia, and fluid layer thickness
reduce the velocity profile. The Prandtl number and fluid layer thickness reduce the temperature
profile. The heat source/sink, Eckert number, and thermal radiation increase the temperature profile.
The suggested model is solved analytically by the homotopy analysis method. The analytical and
numerical techniques are compared through graphs and tables, and they have shown good agreement.
The influences of embedded parameters on the flow problem are revealed through graphs and tables.

In the analysis [13], peristaltic flow was discussed for magnetohydrodynamic Newtonian fluid
through the gap between two coaxial tubes, where the viscosity of the fluid is treated as variable.
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In addition, the inner tube was considered to be at rest, while the outer tube had the sinusoidal wave
traveling down its motion. Further, the assumptions of long wave length and low Reynolds number
were taken into account for the formulation of the problem. A closed form solution is presented
for general viscosity while using the Adomian decomposition method. Numerical illustrations that
show the physical effects and pertinent features were investigated for different physical included
phenomenon. It was found that the pressure rise increases with an increase in Hartmann number,
and frictional forces for the outer and inner tube decrease with an increase in Hartmann number when
the viscosity is constant. It was also observed that the size of the trapping bolus decreases with an
increase in Hartmann number, and it increases with an increase in amplitude ratio when the viscosity
is parameter.

The magnetohydrodynamic flow of a micropolar nanofluid on an exponential sheet in
an Extended–Darcy–Forchheimer porous medium have been considered by Lund et al. [14].
The Buongiorno’s model is considered in order to formulate a mathematical model with different
boundary conditions. The governing partial differential equations of the nanofluid flow are changed
into a third order non-linear quasi-ordinary differential equation, using the pseudo-similarity variable.
The resulting equation of the boundary value problems are renewed into initial value problems using a
shooting method, and then the initial value problems are solved by a fourth order Runge–Kutta method.
The effects of various physical parameters on the profiles of velocity, temperature, microrotation
velocity, concentration, skin friction, couple stress coefficients, heat, and concentration transfer are
graphically demonstrated. A stability analysis has been performed in order to show the stability of the
solutions; only the first solution is stable and physically possible, whereas the remaining two solutions
are not stable.

The magnetohydrodynamic flow over a shrinking sheet and heat transfer with viscous dissipation
has been studied in [15]. The governing equations of the considered problem are transformed into
ordinary differential equations while using similarity transformation. The resultant equations are
converted into a system of fractional differential boundary layer equations by employing a Caputo
derivative, which is then numerically solved using the Adams-type predictor-corrector method.
The results show the existence of two ranges of solutions, namely, dual solutions and no solution.
Moreover, the results indicate that dual solutions exist for a certain range of specific parameters which
are in line with the results of some previously published work. It is also observed that the velocity
boundary layer decreases as the suction and magnetic parameters increase.

The aim of [16] is to present an analytical and numerical treatment of a two-dimensional peristaltic
channel along with the coating of laminar layers of nanoparticles with non-Newtonian (Williamson) base
liquid. In addition to this, convective heat transfer and magnetic field effects also take into consideration.
The geometry is considered as an asymmetric two-dimensional channel experiencing sinusoidal waves
propagating across the walls. The walls are supposed to have heat convection at the upper wall and
the lower wall is having no temperature gradient. The problem is manufactured under the theory
of lubrication approach. The mathematical models are evolved using appropriate transformations.
The obtained nonlinear differential equations are solved analytically. Graphical features are presented
to find the influence of emerging physical parameters on the stream function, velocity of the nanofluid,
heat transfer, nanoparticles concentration, pressure gradient, and pressure increase. It is found that the
velocity decreases in the lower part while increasing in the upper side of the channel in the presence of
nanoparticles. The temperature is becoming large with increasing amount of nanoparticles and heat
convection at the boundaries. It is also observed that nanoparticle concentration is getting higher with
Brownian motion parameter, but fluid becomes less thermal against the thermophoresis parameter.
The streamlines phenomenon clearly reflects the asymmetry of the channel. The characteristics of
viscous fluid can be recovered by switching the Weissenbureg number) to zero.

The impact of second-order slip with thermal and solutal stratification coatings on
three-dimensional Williamson nanofluid flow past a bidirectional stretched surface and analytically
envisages it by Ramzan et al. [17]. The novelty of the analysis is strengthened by Cattaneo–Christov
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heat flux accompanying varying thermal conductivity. The appropriate set of transformations is
implemented to get a differential equation system with high nonlinearity. The structure is addressed
via the homotopy analysis technique. The authenticity of the presented model is verified by creating a
comparison with the limited published results and finding harmony between the two. The impacts
of miscellaneous arising parameters are deliberated through graphical structures. Some useful
tabulated values of arising parameters versus physical quantities are also discussed here. It is observed
that velocity components exhibit an opposite trend with respect to the stretching ratio parameter.
Moreover, the Brownian motion parameter shows the opposite behavior versus temperature and
concentration distributions.

The peristaltic flow of velocity second slip boundary conditions and inclined magnetic field
of Jeffrey fluid by means of heat and mass transfer in asymmetric channel was inspected by
Saleem et al. [18]. Leading equations that described the existing flow were then simplified under
lubrication approach. Therefore, exact solutions of stream function, concentration and temperature
were deduced. Further, the numerical solutions of pressure rise and pressure gradient were computed
while using Mathematica software. Furthermore, the effect of the second slip parameter was argued
via graphs. It has been depicted that this kind of slip is mandatory and very imperative to foresee the
physical model. On the other hand, false results will be obtained.

The importance of Hall current coatings in the establishment of Cattaneo–Christov heat flux
model in an unsteady aqueous-based nanofluid flow comprising single (SWCNTs) and multi-walled
(MWCNTs) carbon nanotubes (CNTs) amid two parallel rotating stretchable disks in reported in [19].
The novelty of the presented model is strengthened with the presence of homogeneous-heterogeneous
reactions and thermal stratification effects. The numerical solution of the system of coupled differential
equations with high nonlinearity is obtained by applying the bvp4c function of MATLAB software.
To corroborate the authenticity of the present envisioned mathematical model, a comparison table
is added to this study in limiting case. An excellent harmony between the two results is obtained.
The effects of numerous parameters on involved distributions are displayed graphically and are argued
logically in the light of physical laws. Numerical values of coefficient of drag force and Nusselt number
are also tabulated for different parameters. It is observed that tangential velocity (function of rotation
parameter) is increasing for both CNTs. Further, the incremental values of thermal stratification
parameter cause the decrease in fluid temperature parameter.

Alghmdi et al. [20] explored the magnetohydrodynamic stretched flow of viscoelastic nanofluids
with heterogeneous–homogeneous reactions. Attention in modeling has been specially focused to
constitutive relations of viscoelastic fluids. Thermophoresis and Brownian dispersion are utilized to
explore the heat and mass transport process. Resulting nonlinear systems are computed for numerical
solutions. Findings for temperature, concentration, concentration rate, skin-friction, local Nusselt,
and Sherwood numbers are analyzed for both second grade and elastico-viscous fluids.

The role of mixed convective 3D nanoliquid flow by a rotating disk with activation energy and
magnetic field is explored in [21]. Flow was created by a rotating disk. Velocity, concentration,
and temperature slips at the surface of a rotating disk were considered. The impacts of Brownian
diffusion and thermophoretic were additionally accounted for. The non-linear frameworks are
simplified by suitable variables. The shooting method is utilized to develop the numerical solution
of resulting problem. Plots were prepared just to explore that how concentration and temperature
are impacted by different pertinent flow parameters. The Sherwood and Nusselt numbers were
additionally plotted and explored. Furthermore, the concentration and temperature were enhanced for
larger values of Hartman number. However, the heat transfer rate (Nusselt number) diminishes when
the thermophoresis parameter enlarges.

A liquid coating of bubbly flow with peristaltic motion inside elastic walls was investigated
by Ijaz et al. [22]. The proposed model is constructed using the two-fluid approach with the most
distinctive collaboration among gas, fluid, pressure, and drag forces. The variation in pressure leads to
a change in void fraction. The differential controlling conditions affected by the long wavelength of the
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peristaltic wave and the slow movement are taken into account. Analytical results of the simplified
governing equations are obtained using the homotopy perturbation method (HPM). The features of
the significant parameters are shown and examined graphically.

As nanofluids have great potential to enhance thermophysical properties and heat transfer
performance. Also double diffusion convection plays an important role in natural processes and
technical applications. The effect of double convection by diffusion is not limited to oceanography,
but is also evident in geology, astrophysics, and metallurgy. For such a vital role of such factors
in applications, Alolaiyan et al. [23] have presented the analytical solutions of pumping flow of
third-grade nanofluid and described the effects of double diffusion convection through a compliant
curved channel. The model used for the third-grade nanofluid includes the presence of Brownian
motion and thermophoresis. Additionally, thermal energy expressions suggest regular diffusion and
cross-diffusion terms. The governing equations have been constructed for the incompressible laminar
flow of the non-Newtonian nanofluid along with the assumption of long wavelength. The obtained
analytical expressions for velocity, temperature, and nanoparticle concentration have been sketched for
various considerable parameters. The effects of regular buoyancy ratio, buoyancy parameter, modified
Dufour parameter, and Dufour-solutal Lewis number have been analyzed along with wall properties
and pumping characteristics. This study concludes that fluid becomes hotter with an increase in
regular buoyancy ratio and a modified Dufour parameter, but a decrease in temperature is observed
for the buoyancy parameter. Moreover, the solutal concentration is behaving inversely against the
Defour–Solutal Lewis number.

A mathematical illustration of an application to endoscopy by incorporating hybrid nanoparticles
and an induced magnetic field with a rheological fluid model in inspected by Awais et al. [24] for
more realistic results. Rheological fluid behavior is characterized by the Ostwald-de-Waele power-law
model. A hybrid nanofluid mechanism is considered comprising platelet-shaped nanoparticles,
since nanoparticles are potential drug transportation tools in biomedical applications. Moreover, ciliary
activity is encountered regarding their extensive applications in performing complex functions along
with buoyancy effects. An endoscope is inserted inside a ciliated tube and peristalsis occurred due
to ciliary activity in the gap between tube and endoscope. A non-Newtonian model is developed by
mathematical formulation, which is analytically tackled using homotopy analysis. The outcomes are
interpreted graphically along with the pressure rise and streamlining configuration for the case of
negligible inertial forces and long wavelength. A three-dimensional graphical interpretation of axial
velocity is also studied. Moreover, tables are prepared and displayed for a more physical insight.

In [25], the authors developed the mathematical model for entropy generation analysis during
the peristaltic propulsion of Jeffrey nanofluids passing in a midst of two eccentric asymmetric annuli.
The model was structured by implementation of lubrication perspective and dimensionless strategy.
Entropy generation caused by the irreversible influence of heat and mass transfer of nanofluid and
viscous dissipation of the considered liquid was taken into consideration. A powerful analytical
technique handled the governing equations. The comparison of total entropy with the partial entropy
was also invoked by discussing Bejan number results. The influence of various associated variables
on the profiles of velocity, temperature, nanoparticle concentration, entropy generation, and Bejan
number was formulated by portraying the figures. Mainly from graphical observations, they analyzed
that, in the matter of thermophoresis parameter and Brownian motion parameter, entropy generation
is thoroughly enhanced while inverse readings were reported for the temperature difference parameter
and the ratio of temperature to concentration parameters.

Top coating is usually moulded, painted, or sprayed onto the wind blade Leading-Edge surface
to prevent rain erosion due to transverse repeated droplet impacts. Wear fatigue failure analysis
based on Springer model has been widely referenced and validated to quantitatively predict damage
initiation. The model requires liquid, coating, and substrate speed of sound measurements as
constant input parameters to analytically define the shockwave progression due to their relative
vibro-acoustic properties. The modelling assumes a pure elastic material behavior during the impact
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event. Recent coating technologies applied to prevent erosion are based on viscoelastic materials
and develop high-rate transient pressure build-up and a subsequent relaxation in a range of strain
rates. In order to analyze the erosion performance by using Springer model, appropriate impedance
characterization for such viscoelastic materials is then required and it represents the main objective of
this work to avoid lack of accuracy. In [26], the authors have proposed a modelling methodology that
allows one to evaluate the frequency dependent strain-stress behavior of the multilayer coating system
under single droplet impingement. The computational tool ponders the operational conditions (impact
velocity, droplet size, layer thickness, etc.) with the appropriate variable working frequency range
for the speed of sound measurements. Moreover, this research defines in a complementary paper,
the ultrasonic testing characterization of different viscoelastic coatings and the methodology validation.
The modelling framework is then used to identify suitable coating and substrate combinations due
to their acoustic matching optimization and analyze the anti-erosion performance of the coating
protection system.

Under droplet impingement, surface leading edge protection (LEP) coating materials for wind
turbine blades develop high-rate transient pressure build-up and subsequent relaxation in a range
of strain rates. The stress-strain coating LEP behavior at a working frequency range depends on the
specific LEP and on the material and operational conditions, as described in this research in a previous
work. Wear fatigue failure analysis, based on the Springer model, requires coating and substrate speed
of sound measurements as constant input material parameters. It considers a linear elastic response
of the polymer subjected to drop impact loads, but it does not account for the frequency dependent
viscoelastic effects for the materials involved. The model has been widely used and validated in
the literature for different liquid impact erosion problems. In [27], an appropriate definition of the
viscoelastic materials properties with ultrasonic techniques is investigated. It is broadly used for
developing precise measurements of the speed of sound in thin coatings and laminates. It also allows
accurately evaluating elastic moduli and assessing mechanical properties at the high frequencies of
interest. In the current work, an investigation into various LEP coating application cases have been
undertaken and related with the rain erosion durability factors due to suitable material impedance
definition. The proposed numerical procedures to predict wear surface erosion have been evaluated in
comparison with the rain erosion testing in order to identify suitable coating and composite substrate
combinations. LEP erosion performance at rain erosion testing (RET) technique is used widely in
the wind industry as the key metric, in an effort to assess the response of the varying material and
operational parameters involved.

3. Future Trends in Fluid Mechanics

The material that advances the state-of-the-art experimental, numerical, and theoretical
methodologies or extends the bounds of existing methodologies through new contributions in coatings
is still insufficient, even with the completion of this Special Issue. The rheological characteristics with
thin films under the influence of different nanoparticles and shapes can help with the development of
better applications in industry.
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Abstract: This article aims to model two-dimensional, incompressible asymmetric peristaltic
propulsion coated with Synovial fluid (“non-Newtonian model”) with mass transport. Due to the
coating of the same base-fluid at the surface of the channel, the boundaries become non-porous and
exert no slip on the fluid particles. Two illustrative models for the viscosity, namely, shear-thinning
(Model 1) and shear-thickening (Model 2), are considered, which reveal the presence and integrity of
coating. The perturbation method has been applied to linearize the complicated differential equations.
Model 1 predicted higher viscosity values and more significant non-Newtonian behavior than Model 2.
It is also observed that the shear-thinning model behaved in quite the opposite manner for the shear
thickening model. The converse behavior of Models 1 and 2 occurs due to a curvature of the flow
domain. Moreover, Model 1 is not able to capture the correct exponential viscosity dependence
on concentration for the whole range of shear rates. On the other hand, the second model shows
a strong relationship with accurate power. Solutions are attained for velocity field, concentration
profile, and pressure gradient. The novelty of all the essential parameters is analyzed through
graphical results. Furthermore, streamlines are also drawn to determine the trapping mechanism.
The present analysis is beneficial in the study of intrauterine fluid dynamics; furthermore, it is
applicable in vivo diagnostic; drug delivery; food diagnostics; protein chips; and cell chips and
packaging, i.e., smart sensors.

Keywords: Synovial fluid; coating; shear-thinning and -thickening models; mass transport;
asymmetric channel; analytical solution

1. Introduction

Synovial fluid is secreted to the cavity by its inner membrane called Synovial [1]. It is
a biological fluid filling the Synovial joint-cavity’s several-micrometers-thick layer between the
interstitial cartilages [2]. The main component of Synovial fluid is ultrafiltration of the blood
plasma devoid of high-molecular proteins, blood cells, and aggressors. Synovial fluid supports
joints via high effective cartilage lubrication, while its essential component is an added lubricant called
hyaluronan/hyaluronic acid [3]. Several studies showed that the viscoelastic features of Synovial
fluid occur due to hyaluronic acid [4]. Hyaluronic acid is natively present in the Synovial fluid in
relatively high concentrations [5]. It is experimentally [6] confirmed that the viscoelastic features
of Synovial fluids strongly rely on a concentration of hyaluronic acid; therefore, the magnitude of
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polymerization is substantial, because the volume of hyaluronic random coils exhibits a momentous
role in the viscoelastic attributes of Synovial fluid [7,8].

Furthermore, Synovial fluid contains mixtures that reveal a viscoelastic fashion. When a Synovial
fluid is propagating with versatile conditions where there is no instantaneous input, then it performs
as a Stokesian fluid. When it is only subject to immediate input, then its viscoelastic charactersitics
manifests itself. Hron et al. [9] examined the flow analysis of three separate models that could be
referred to as Synovial fluid models. These models fit into the type of generalized viscous fluids,
whereas only one goes fits into the class of a shear-thinning model in which the power-law exponent
relies upon the concentration.

Moreover, incompressible non-Newtonian liquids have attracted great interest in recent years.
Perhaps this is due to academic curiosity and their several industrial applications including synthetic
lubricants, colloidal fluids, and liquid crystals. It is found that various physiological fluids
reveal non-Newtonian behavior. Non-Newtonian characteristics produce satisfactory results when
analyzing the mechanism of peristalsis propagating in lymphatic vessels, blood vessels, ductus
afferents, intestines, the motion of urine in the human body, food bolus moving through esophagus,
the movement of spermatozoa in a vas deferens, the blending of food material, Chyme motion, cilia
propagation, blood circulation, and the propagation of bile in a bile duct. A peristaltic movement is
a fluid transport that happens because of the contraction and extension of smooth walls. Recently,
many authors have determined the peristaltic mechanism in various boundary and initial conditions.
Notably, Mekheimer et al. [10] calculated the peristaltic phenomenon of magnetized couple-stress
fluid along with the effects of the induced magnetic field. He further achieved the exact analytics
solutions for the velocity profile. Srinivas and Kothandapani [11] examined the mass and heat transfer
impact on the peristaltic transportation of viscous liquid. They formulated the governing flow using
the lubrication approach and obtained the exact solution. Further, they assumed that fluid is travelling
in a porous medium having compliant walls. Riaz et al. [12] modeled the unsteady peristaltic flow
of Carreau fluid propagating through a small intestine and presented analytic solutions using the
perturbation method. Akram et al. [13] explored the behavior of lateral walls on the non-uniform,
peristaltic-propelled three-dimensional flow of the couple stress fluid model. Ellahi et al. [14] also
discussed the three-dimensional motion of Carreau fluid with an external uniform magnetic field.
They used the Homotopy perturbation scheme to obtain the solutions of the obtained non-linear
partial differential equations. They determined that the magnetic field is a significant factor in the
preservation of the flow field. Bhatti et al. [15] examined the behavior of the oblique magnetic field with
heat transfer on the uniform peristaltic motion containing small particles. They presented the exact
solutions for the fluid and particulate phases, whereas numerical integration was used to determine the
pumping characteristics. Sinha et al. [16] presented the peristaltic motion of viscous liquid containing
a variable viscosity under the inclusion of heat exchange and the static magnetic field with asymmetric
geometry. They obtained the perturbation solutions under the slip conditions and temperature
jump. Shit et al. [17] examined the asymmetrical motion of a micropolar fluid with the induced
magnetic field. They obtained exact results for micro-rotation components, magnetic force function,
the velocity profile, and the current density profile. A mathematical analysis of a micropolar fluid in
an artery having composite stenosis was measured by Ellahi et al. [18]. Bhatti et al. [19] evaluated the
peristaltic propulsion of magnetized solid particles in Biorheological fluids. They considered the model
of Casson fluid and obtained the exact results for liquid and particulate phase against velocity and
temperature profile. Peristaltic motion through a porous channel was presented by Maiti and Misra [20].
They discussed the bile flow with in ducts in the pathological state. Bhatti et al. [21] considered the
combined electric and magnetic field impact on the propulsion of the peristaltic third-grade fluid
model containing small particles. They further considered the heat transfer effects and obtained the
analytical results using Homotopy perturbation methods.

Furthermore, Kabov et al. [22] experimentally discussed the two-phase flow propagating through
a microchannel. Mekheimer and Elmaboud [23] addressed the impression of heat exchange and
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magnetic field on the viscous-fluid model stimulated in peristaltic fashion. They explained the influence
of endoscope and bioheat transfer. Elmaboud and Mekheimer [24] addressed the nonlinear peristaltic
motion of second-grade fluid propagating through a porous geometry. They further applied the
perturbation method to solve the velocity equations, whereas pumping features and friction forces were
evaluated by numerical integration. Khan et al. [25] studied the behavior of changeable viscosity of
the Jeffrey fluid model propagating through the asymmetric porous channel. Transient peristaltic flow
through a permeable finite channel was determined by Tripathi [26]. Chaube et al. [27] discussed the
peristaltic flow of the power-law model using the creeping flow regime. Shit et al. [28] also discussed
the role of velocity slip on the wavy motion of the couple stress fluid model. They mainly focused on a
peristaltic movement in the digestive system. Later, Shit et al. [29] governed the peristaltic biofluid flow
through a microchannel. Moreover, they also considered the EMHD (“Electro-Magnetohydrodynamic”)
and velocity slip due to a hydrophobic/hydrophilic collision between negatively charged walls.
Recently, Zeeshan et al. [30] addressed the behavior of the Sisko fluid model propagating across
a non-uniform peristaltic channel. They obtained the second order solution using the Homotopy
perturbation method. Some more useful studies related to the topic can be seen in [31,32].

According to literature surveyed, it is observed that no results have been presented yet to examine
the behavior of Synovial fluid on peristaltic propulsion through an asymmetric channel. According to
our knowledge, not a single mathematical model is given in the literature describing the behavior of
Synovial fluid for peristaltic flow. The governing fluid holds the properties of incompressibility and
irrotational and constant density. Furthermore, mass transport is also taken into account to discuss
the present flow. Mass transportation is also an important phenomenon in the propagation of mass
from one region to another region. Therefore, the primary theme of the current study is to present a
theoretical and mathematical analysis of the said topic to fill this gap in the literature. The graphical
results are presented for two different models of Synovial fluid.

2. Mathematical Modeling

The peristaltic (or “sinusoidal”) motion of Synovial fluid described by generalized incompressible
fluid possesses the Navier-Stokes equations with a viscosity depending on a shear rate and
concentration. We must couple this system with one extra convection-diffusion equation for a
concentration of hyaluronic acid. The fundamental equations of governing flow with synovial fluid
model are described in reference [8] as follows:

divV = 0 (1)

∂V
∂t

+ V · ∇V +
∇p
ρ

=
2
ρ

div(Θ) (2)

∂C
∂t

= div(F(C))− V · ∇C (3)

in above equation:
F(C) = DC∇C, Θ = μ(C, D) D (4)

in which ΔV(U,V) is velocity, μ is viscosity, D is symmetric part of velocity gradient, P is pressure,
ρ is density, F is concentration flux, C is concentration of hyaluronan/hyaluronic, and DC is
constant diffusivity.

Let us focus on two-dimensional peristaltic flows in an asymmetric channel containing width
d1 + d2 due to wave traveling in direction of flow with constant velocity c. The flow is discussed in
Cartesian coordinates. The mass concentrations upon the upper wall are C0, whereas on the bottom
wall they are C1. Peristaltic motion on the upper and lower internal surfaces is recognized as

H1(X, t) = Y = d1 + b1 cos 2π(X − ct)
1
λ

(5)
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H2(X, t) = Y = −d2 − b2 cos[(X − ct)2π+ λφ]
1
λ

(6)

To translate the coordinates, we use the same procedure that was used in [13].
The consequent relations of the boundaries of channel are described as

h1(x) = y − 1 = acos2πx (7)

h2(x) = y = −b cos(φ+ 2πx)− d (8)

Synovial Fluid Model

The peristaltic motion of viscous synovial fluid (see [33,34]) with thin film coating at the walls
is considered in a two-dimensional channel. The flow patterns corresponding to Models 1 and 2 are
markedly different. We shall ignore the detailed discussion here. However, fewer essential points
associated with the model are presented. The models under consideration present exciting features.
Model 1 is a simple generalized form of a power-law mathematical model for a shear-dependent
viscosity that is helpful to define various non-Newtonian fluids in biological and polymer fluid
mechanics, food rheology, and geology, to consider the basis of viscosity that affects the concentration
of a reactant. Model 2 describes that exponent is a function of concentration.

Model 1: The generalized power-law model and the viscosity are exponentially dependent on
concentration, then the Model 1 is written as:

μ(C, D) = μ0eαC
(

1 + γ2
∣∣∣D2
∣∣∣)n

(9)

Model 2: In this model, a shear-thinning index depends upon the concentration (i.e., zero concentration):

μ(C, D) = μ0

(
1 + γ2

∣∣∣D2
∣∣∣)n(C)

(10)

in which,

|D| =

√
2
(

∂u
∂x

)2
+ 2
(

∂u
∂y

)2
+

(
∂v
∂x

+
∂u
∂y

)2
(11)

and

n(C) = −eαC − 1
2eαC (12)

in which n is index of shear-thinning comprising values between −0.5 and 0. It is worth mentioning
that results of Newtonian fluid are obtained as a particular case of current fluid when n = 0.

The governing equations are too arduous to be acquiescent to stability analysis. Therefore, it is
necessary to simplify the modeled equations. Make sure that the simplification process is congruous
for such problems. Henceforth, we shall assume the long wavelength constraint, i.e., δ � 1 and less
Reynolds number Re ≈ O(1). Now, it is suitable to make the observing equations dimensionless by
defining the following ratios:

y =
y
d1

, α = α∗(C1 − C0), σ = C−C0
C1−C0

,μ = μ
μ0

, h = H
d1

, p =
d2

1 p
μcλ , δ = d1

λ , a = b1
d1

,

b = b2
d1

, d = d2
d1

, We = γc
d1

,
∣∣D∣∣ = d1

c |D|, Sc = μ
ρDC

, v = v
cδ , Re = ρd1c

μ , u = u
c , x = x

λ

(13)

In above expression, Sc denotes Schmidt number, Re stands for Reynolds number, α represents
concentration production, and γ is a material parameter.

The resulting non-dimensional governing equations along with Models 1 and 2 after exempting
bar symbols in a wave frame will observe the following form:

∂v
∂y

= −∂u
∂x

(14)
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∂p
∂x

=

⎧⎪⎪⎨⎪⎪⎩
1
2

∂
∂y

[
(1 + ασ)

{
1 + nWe2

(
∂u
∂y

)2
}

∂u
∂y

]
(Model 1)

∂2u
∂y2 − αWe2

2
∂

∂y

[
σ
(

∂u
∂y

)3
]

(Model 2)
(15)

Concentration equation for Models 1 and 2 is simplified to the following form:

1
Sc

∂2σ

∂y2 = 0 (16)

The no slip boundary conditions become:

u(h1) = −1 u(h2) = −1, σ(h1) = 0, σ(h2) = 1 (17)

3. Solution Procedure

The analytical solutions of Equations (15)–(17) have been determined by regular perturbation
method. To solve the problem under consideration, we presented the flow quantities wherein the velocity,
concentration, and pressure interns of small Weissenberg number (We) have the following form:

u(x, y) = u0, i + (We)2u1, i + (We)4u2, i + . . . , i = 1, 2. (18)

σ = σ0 + (We)2σ1 + (We)4σ2 + . . . (19)

K = (K)0,i + (We)2(K)1,i + (We)4(K)2,i + . . . , i = 1, 2, . . . (20)

in which K = dp
dx . After the implementation of above expressions in Equations (15)–(17) and

equating the exponents of We, one obtains the following systems of equations along with associated
boundary conditions.

3.1. Model 1

• System of Order Zero

K0, 1 =
1
2

(
α

∂σ0

∂y
∂u0, 1

∂y
+ (1 + ασ0)

∂2u0, 1

∂y2

)
(21)

1
Sc

∂2σ0

∂y2 = 0 (22)

Along with the boundary conditions:

u0, 1(h1) = −1, u0, 1(h2) = −1, σ0(h1) = 0, σ0(h2) = 1 (23)

• System of Order One

K1, 1 = 1
2

(
α ∂σ0

∂y
∂u1, 1

∂y + (1 + ασ0)
∂2u1, 1

∂y2

)
+ nα

2
∂σ0
∂y

(
∂u0, 1

∂y

)3

+ 3n
2 (1 + ασ0)

(
∂u0, 1

∂y

)2 ∂2u0, 1
∂y2

(24)

1
Sc

∂2σ1

∂y2 = 0 (25)

and the boundary conditions:

u1, 1(h1) = 0, u1, 1(h2) = 0, σ1(h1) = 0, σ1(h2) = 0. (26)

Obtaining the solutions of the above sets of equations by making use of mathematical software
Mathematica 7.0, we have the following results:
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• Zeroth Order Solution

u0, 1 =
1

α(ln(h2 − h1) − α ln(h2 − h1) (1 + α)

⎡⎢⎢⎣
(2(h1 − h2) K0, 1(h2 − y)− α) ln(h2 − h1)

−(2(−h2 + h1) K0, 1(h1 − y)− α)(α+ 1) ln(h2 − h1)

+2(h1 − h2)
2K0, 1 ln(h2 + yα− h1(1 + α))

⎤⎥⎥⎦ (27)

σ0 =
1 − y + a cos(2πx)

1 + d + a cos(2πx) + b cos(2πx +ϕ)
(28)

• First Order Solution

u1, 1 = 2(h2−h1)
α4 (h1 − h2 − h1α+ yα)

[
4h2

1nK3
0, 1 − 8h1h2nK3

0, 1 + 4h2
2nK3

0, 1

−K1, 1α
2]+ 4(h2−h1)

6n
α(−h1+h2+h1α−yα)2(ln[h1−h2]− ln[(h1−h2)(1+α)])3 K3

0, 1

+ 24(h2−h1)
5n

α2(−h1+h2+h1α−yα)(ln[h1−h2]−ln[(h1−h2)(1+α)])2 K3
0, 1

− 2(h2−h1) C1

α4
(
(1+α)2(ln[h1−h2]−ln[(h1−h2)(α+1)])3(ln[h2−h1]−ln[(h2−h1)(1+α)])

)×
K3

0, 1 +
1

α4
(
(1+α)2(ln[h1−h2]−ln[(h1−h2)(1+α)])3(ln[h2−h1]−ln[(h2−h1)(1+α)])

)[
2(−h1 + h2)

(
(−h1 + h2)

((
K3

0, 1C2 + K1, 1C3

)
ln[h2 − h1]

+
(

K3
0, 1C4 + K1, 1C5

)
(1 + α)2 ln[(h2 − h1)(1 + α)]

))]

(29)

σ1 = 0 (30)

here,

K0, 1 =
(1 + d + h2 − Q − h1)α

2(ln[h2 − h1]− ln[(h2 − h1)(1 + α)])

(−h2 + h1)
3(2α+ (α+ 2) ln[h2 − h1]− (2 + α) ln[(h2 − h1)(1 + α)])

(31)

K1, 1 = −((1 + d − Q)α2(ln[h1 − h2]− ln[(h1 − h2)(1 + α)]))/
((h1 − h2)

2(−2h1α+ 2h2α+ (h1 + h2)α ln[h1 − h2]−
2(h1 − h2 + h1α) ln[−h1 + h2]− h1α ln[(h1 − h2)(1 + α)]−
h2α ln[(h1 − h2)(1 + α)] + 2h1 ln[(−h1 + h2)(1 + α)]−
2h2 ln[(−h1 + h2)(1 + α)] + 2h1α ln[(−h1 + h2)(1 + α)]))

(32)

In above-presented equations, C1–C5 are some lengthy calculations that have particular values by
considering above-given boundary conditions and are defined in Appendix A.

3.2. Model 2

The same contrast as described for Model 1 along with solutions are summarized as:

• System of Order Zero

K0, 2 =
∂2u0, 2

∂y2 (33)

• System of Order One

K1, 2 =
∂2u1, 2

∂y2 − α

2
∂

∂y

(
σ0

(
∂u0, 2

∂y

)3
)

(34)

• Zeroth Order Solution

u0, 2 =
1
2

(
−2 + h1h2K0, 2 − h1K0, 2y − h2K0, 2y + K0, 2y2

)
(35)

• First Order Solution
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The solution of above equation is examined directly and is prescribed as:

u1, 2 = 1
160(h1−h2)

(h1 − y)(h2 − y)(−80h2K1, 2 + 9h3
1K3

0, 2α− h3
2K3

0, 2α−
6h2

2K3
0, 2yα+ 14h2K3

0, 2y2α− 16K3
0, 2y3α− h2

1K3
0, 2(h2 + 26y)α+

h1

(
80K1, 2 + K3

0, 2(9h2
2 − 16h2y + 34y2)α

)) (36)

here,

K0, 2 = −12(−1 − d + h1 − h2 + Q)

(h1 − h2)
3 (37)

K1, 2 = − 1
5(h1−h2)

7 12(−5h4
1(1 + d − Q)− 5h4

2(1 + d − Q) + h3
1(20h2(1 + d − Q)

−27α) + 27h3
2α+ 81h2

2(1 + d − Q)α+ 81h2(1 + d − Q)2
α+ 27(1 + d − Q)3

α+ h2
1(−30h2

2(1 + d − Q) + 81h2α+ 81(1 + d − Q)α) + h1(20h3
2(1 + d − Q)

−81h2
2α− 162h2(1 + d − Q)α− 81(1 + d − Q)2

α))

(38)

Pressure rise Δp over one wavelength in dimensionless format is obtained by

Δp =
∫ 1

0
Kdx (39)

The integral in Equation (41) is evaluated numerically using software package Mathematica 7.0.

4. Graphical Analysis

This study describes a critical analysis with which to approach two different fluid models that can
disclose the properties of Synovial fluid when there is no slip at the boundaries and thin-film coating
with non-Newtonian thick fluid (Synovial) is applied the walls. A non-linear coupled system of partial
differential equations subject to boundary conditions is solved for shear-thinning and thickening
models (Models 1 and 2). The complicated equations are solved by a regular perturbation method.
To analyze graphically, Figures 1–11 have been sketched to measure the behavior of emerging factors
on velocity distribution, pressure gradient profile, pressure rise, and trapping phenomena. Figures 1
and 2 show the effect of concentration parameter α and Weissenberg number We on the velocity
component u for both models, respectively. It is extracted that velocity behaves in an opposite manner
to shear-thinning and thickening models against multiple values of α. The Weissenberg number is
helpful to analyze viscoelastic flows. It is the ratio of elastic forces and viscous forces. In Figure 2,
we can understand that the velocity distribution of Model 1 behaves as an increasing quantity for
higher values of Weissenberg number. This behavior reveals that elastic forces are dominant over
viscous forces. However, the reaction of Model 2 is opposite as matched to Model 1. In Model 2,
it can be noticed that viscous forces are dominant over elastic forces. This implies that the nature
of shear thinning (Model 1) and the thickening (Model 2) are entirely different. Figure 3 displays
the dependence of velocity on the average volume flow rate, as expected increase in the value of Q
increases the flow velocity in both models.
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(a) (b) 

Figure 1. Effects of α on velocity profile with n = −0.28, Q = 2, x = 0, a = 0.1, b = 0.1, d = 0.8, ϕ = 0.1,
We = 0.05 for (a) Model 1 and (b) Model 2.

  
(a) (b) 

Figure 2. Effects of We on velocity profile with n = −0.28, Q = 1, x = 0, a = 0.1, b = 0.1, d = 0.8, ϕ = 0.1,
α = 0.9 for (a) Model 1 and (b) Model 2.

(a) (b) 

Figure 3. Effects of Q on velocity profile with n = −0.28, α = 0.5, x = 0, a = 0.1, b = 0.1, d = 0.8, ϕ = 0.1,
We = 0.05 for (a) Model 1 and (b) Model 2.

To compare the differences between two models, we include Figures 4–6 for pressure gradient
dp/dx. In Figures 4 and 5, it is noted that with an excess of α and Q pressure gradient rises. As one can
see, the prediction of the viscosity magnitude gets much larger values for the Model 2, unlike Model 1,
whereas Weissenberg number We acts in an opposite way, that is, the change in pressure becomes
larger throughout the flow and smaller for Model 2 than for Model 1 (see Figure 6).
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(a) (b) 

Figure 4. Effects of α on pressure gradient with n = −0.28, Q = 0.1, a = 0.1, b = 0.1, d = 2, ϕ = 0.1,
We = 0.05 for (a) Model 1 and (b) Model 2.

  
(a) (b) 

Figure 5. Effects of Q on pressure gradient with n = −0.28, α = 0.5, a = 0.5, b = 0.1, d = 2, ϕ = 0.1,
We = 0.05 for (a) Model 1 and (b) Model 2.

(a) (b) 

Figure 6. Effects of We on pressure gradient with n = −0.28, Q = 0.1, a = 0.5, b = 0.1, d = 2, ϕ = 0.1,
α = 0.5 for (a) Model 1 and (b) Model 2.

Figures 7–9 are plotted to determine the behavior of pumping rate in different regions.
The pumping features can be examined by the pressure rise (Δp) versus the average volume flow
rate/mean flux Q. The complete area is divided into four quarters [13]. Figure 7a describes the pressure
rise Δp under the variety in values of α. It is observed that pressure rise is linearly dependent on flow
rate, and free pumping is attained at Q = 0. It is evaluated here that while increasing α, the pressure
rise Δp decreases in Region II, whereas it increases in Region III. Figure 7b is plotted for Model 2, and
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one can easily infer from it that dependence is not linear other than in α = 0.1. This figure indicates that
with an increase in α, magnitude of Δp decreases in Region III and has opposite behavior in other two
regions. The effects of phase angle ϕ on Δp are depicted in Figure 8. For Model 1, we can visualize that
there is an increase of pressure rise in Region II when ϕ increases, while the reverse situation is found
in Region II and remains consistent in Region I. It is entirely possible that the opposite behavior of
Model 1 and Model 2 is due to the curvature in the flow domain. Figure 9a examines the influence of
Weissenberg number We on Δp for Model 1. It is noticed that Δp increases by increasing We in Regions
I and II, while the reduction in pressure rise is seen in Region III. On the other hand, the behavior of
pressure gradient for We is also noted in Figure 9b. Model 2 shows a continuous increase in the Region
I, hasty fall in Region II, and a drastic increase in Region III.

  
(a) (b) 

Figure 7. Effects of α on pressure rise with n = −0.28, a = 0.1, b = 0.1, d = 2, ϕ = 0.1, We = 0.05 for
(a) Model 1 and (b) Model 2.

 
(a) (b) 

Figure 8. Effects of ϕ on pressure rise with n = −0.28, a = 0.1, b = 0.1, d = 0.1, α = 0.4, We = 0.05 for
(a) Model 1 and (b) Model 2.

Trapping scheme is another important mechanism for analyzing flow pattern. However, in
peristaltic (or sinusoidal) motion, a closed contour of streamlines can be examined at time-averaged
flow rate and different values of amplitude. This phenomenon is known as trapping. According to
the physiological point of view, the fluids can be trapped due to continuing movements of smooth
boundaries, which are beneficial to adequately propel the working biological liquid from one point to
another point. Due to proper prorogation, the working organs can stay alive for a long time without
any difficulty. Therefore, the trapping phenomena can be observed by sketching stream functions
against the concentration parameter α and the volume flow rate Q. Figures 10 and 11 are drawn to
show the trapping phenomena. Figure 10a–c is illustrated for Model 1. It is observed that for changing
values of α, a large bolus is formed at the center that decreases in size and increases in α. For Model 2,
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Figure 10d–f shows as α increases the bolus formed above y = 0 decreases in size, whereas below
y = 0 it increases, and more boluses are obtained with large values of α. Figure 11 shows the effect
of variation of Q on trapping. It can be analyzed that with an increase in Q, bolus decreases and
increases in size above and below y = 0, respectively. The present investigation is also suggested for
three-dimensional flow configuration with appropriate assumptions and modifications.

  
(a) (b) 

Figure 9. Effects of We on pressure rise with n = −0.28, a = 0.1, b = 0.1, d = 0.1, ϕ = 0.1, α = 0.4 for
(a) Model 1 and (b) Model 2.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 10. Stream lines for different values of α, α = 3, 3.2, 3.4: (a–c) for Model 1, (d–f) for Model 2.
The other parameters are n = −0.2, a = 0.05, b = 0, d = 0.1, ϕ = 0.1, We = 0.05, Q = 5.
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 11. Stream lines for different values of Q = 2, 3, and 4: (a–c) for Model 1, (d–f) for Model 2.
The other parameters are n = −0.2, a = 0.05, b = 0, d = 0.1, ϕ = 0.1, We = 0.05, α = 3.

5. Conclusions

In the current analysis, we examined theoretically the peristaltic motion of Synovial fluid in the
two-dimensional asymmetric channel in the presence of coating on the walls exposing thin-film layers.
The Synovial fluid has viscoelastic material; it can be described under specific physical conditions
such as non-Newtonian fluid. We have considered two models for viscosity to capture shear-thinning
properties and viscosity dependence on the concentration of hyaluronic acid. Analytic solutions for
velocity, concentration, and pressure gradient are first produced using the regular perturbation method,
and then the behavior of pertinent parameters is examined and discussed graphically. The expression
of pressure rise is obtained numerically. The contours have also been drawn to explain the action of
the trapping bolus phenomenon. The model with the shear-thinning index is directly dependent on
the concentration of hyaluronic acid, which seems to be appropriate. According to our knowledge,
no studies have been presented before that can describe the concentration effects on shear-thinning
and thickening models for the peristaltic flow of Synovial fluid. Solutions are carried out for velocity,
concentration field, and pressure gradient. The behavior of all the governing parameters is shown and
scrutinized. The present analysis is also applicable for experimental investigation and assurance to
give reliance for the significance of the governing nonlinear-boundary value problem.
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Appendix A

C1 = −2h1
2 nα3 ln [h1 − h2] + 4h1h2 nα3 ln [h1 − h2]− 2h2nα3 ln [h1 − h2]− 12(h1 − h2)

2nα2

(1 + α) ln [h1 − h2] ln [−h1 + h2] + 4h1
2n(1 + α)3 ln [h1 − h2] ln [−h1 + h2]

3 − 8h1h2n(1 + α)3

ln [h1 − h2] ln[− h1 + h2]3 + 4h22n(1 + α)3 ln [h1 − h2] ln [−h1 + h2]
3 + 2(h1 − h2)

2nα3(1 + α)2

ln [(h1 − h2)(1 + α)] + 12(h1 − h2)
2nα2(1 + α)2 ln [−h1 + h2] ln [(h1 − h2)(1 + α)]

−4h1
2n(1 + α)2 ln [−h1 + h2]

3 ln [(h1 − h2)(1 + α)]

+8h1h2n(1 + α)2ln[−h1 + h2]
3 ln [(h1 − h2)(1 + α)]

−4h22n(1 + α)2 ln [−h1 + h2]
3 ln [(h1 − h2)(1 + α)] + 12h12nα2 ln [h1 − h2] ln[(−h1 + h2)(1 + α)]

−24h1h2nα2 ln [h1 − h2] ln[(−h1 + h2)(1 + α)] + 12h22nα2 ln [h1 − h2] ln[(−h1 + h2)(1 + α)]

+12h12nα3 ln [h1 − h2] ln[(−h1 + h2)(1 + α)]− 24h1h2nα3 ln [h1 − h2] ln[(−h1 + h2)(1 + α)]

+12h22nα3 ln [h1 − h2]ln[(−h1 + h2)(1 + α)]− 12h1
2n(1 + α)3 ln [h1 − h2] ln [−h1 + h2]

2

+24h1h2n(1 + α)3 ln [h1 − h2] ln [−h1 + h2]
2 ln [(−h1 + h2)(1 + α)]− 12h22n(1 + α)3 ln [h1 − h2]

ln [−h1 + h2]
2 ln [(−h1 + h2)(1 + α)]− 12(h1 − h2)

2nα2(1 + α)2 ln [(h1 − h2)(1 + α)]

ln [(−h1 + h2)(1 + α)] + 12h1
2n(1 + α)2 ln [−h1 + h2]

2 ln [(h1 − h2)(1 + α)] ln [(−h1 + h2)(1 + α)]

−24h1h2n(1 + α2) ln [−h1 + h2]2 ln [(h1 − h2)(1 + α)] ln[(−h1 + h2)(1 + α)] + ln [−h1 + h2]
2

ln [(h1 − h2)(1 + α)] ln [(−h1 + h2)(1 + α)] + 12h12n(1 + α)3 ln [h1 − h2] ln[− h1 + h2] ln[− h1 + h2]
ln [(−h1 + h2)(1 + α)]2 − 24h1h2n(1 + α)3 ln [h1 − h2] ln [−h1 + h2] ln [(−h1 + h2)(1 + α)]2

+12h2
2n(1 + α)3 ln [h1 − h2] ln [−h1 + h2] ln [(−h1 + h2)(1 + α)]2 − 12h1

2n(1 + α)2 ln [−h1 + h2]

ln [(h1 − h2)(1 + α)] ln [(−h1 + h2)(1 + α)]2 + 24h1h2n(1 + α)2 ln [−h1 + h2] ln [(h1 − h2)(1 + α)]

ln [(−h1 + h2)(1 + α)]2 − 12h22n(1 + α)2 ln [−h1 + h2] ln [(h1 − h2)(1 + α)] ln [(−h1 + h2)(1 + α)]2

−4h1
2n ln [h1 − h2] ln[(−h1 + h2)(1 + α)]3 + 8h1h2n ln[h1 − h2] ln[(−h1 + h2)(1 + α)]3

−4h22n ln[h1 − h2] ln[(−h1 + h2)(1 + α)]3 − 12h12nα ln[h1 − h2] ln[(−h1
+h2)(1 + α)]3+

24h1h2nα ln [h1 − h2] ln[(−h1 + h2)(1 + α)]3 − 12h22nα ln [h1 − h2] ln[(−h1 + h2)(1 + α)]3

−12h12nα2 ln [h1 − h2] ln[(−h1 + h2)(1 + α)]3 + 24h1h2nα2 ln[h1 − h2] ln[(−h1
+h2)(1 + α)]3

−12h22nα2 ln [h1 − h2] ln[(−h1 + h2)(1 + α)]3 − 4h12nα3 ln [h1 − h2] ln[(−h1 + h2)(1 + α)]3

+y8h1h2nα3 ln [h1 − h2] ln[(−h1 + h2)(1 + α)]3 − 4h22nα3 ln[h1 − h2] ln[(−h1
+h2)(1 + α)]3

+4h12n(1 + α)2 ln [(h1 − h2)(1 + α)] ln[(−h1 + h2)(1 + α)]3 − 8h1h2n(1 + α)2 ln[(h1 − h2)(1
+α)] ln [(−h1 + h2)(1 + α)]3

+4h22n(1 + α)2 ln [(h1 − h2)(1 + α)] ln [(−h1 + h2)(1 + α)]3

(A1)

C2 = −α2(1 + α)3 ln [h1 − h2] ln[− h1 + h2]3 + α2(1 + α)2 ln [−h1 + h2]3 ln [(h1 − h2)(1 + α)]

+3α2(1 + α)3 ln [h1 − h2] ln[− h1 + h2]2 ln [(−h1 + h2)(1 + α)]− 3α2(1 + α)2 ln [−h1 + h2]2

ln [(h1 − h2)(1 + α)] ln[(−h1 + h2)(1 + α)]− 3α2(1 + α)3 ln [h1 − h2] ln[− h1 + h2]
ln [(−h1 + h2)(1 + α)]2 + 3α2(1 + α)2 ln[−h1 + h2] ln[(h1 − h2)(1 + α)] ln[(−h1 + h2)
(1 + α)]2 + α2 ln[h1 − h2] ln[(−h1 + h2)(1 + α)]3 + 3α3 ln[h1 − h2] ln[(−h1 + h2)(1

+α)]3 + 3α4 ln [h1 − h2] ln[(−h1 + h2)(1 + α)]3 + α5 ln[h1 − h2] ln[(−h1 + h2)(1 + α)]3

−α2(1 + α)2 ln [(h1 − h2)(1 + α)] ln [(−h1 + h2)(1 + α)]3

(A2)

C3 = 2(h1 − h2)2nα3(2 + α) + 12(h1 − h2)2nα2(1 + α) ln [−h1 + h2] + 4h12n(1 + α)2 ln[−h1

+h2]3 − 8h1h2n(1 + α)2 ln [−h1 + h2]3 + 4h22n(1 + α)2ln[−h1 + h2]3 − 12(h1
−h2)2nα2(1 + α)

ln [(−h1 + h2)(1 + α)]− 12h12n(1 + α)2 ln [−h1 + h2]2 ln [(−h1 + h2)(1 + α)] + 24h1h2n
(1 + α)2 ln [−h1 + h2]2 ln [(−h1 + h2)(1 + α)]− 12h22n(1 + α)2 ln [−h1 + h2]2 ln[(−h1 + h2)

(1 + α)] + 12h12n(1 + α)2 ln [(−h1 + h2)] ln[(−h1 + h2)(1 + α)]2 − 24h1h2n(1 + α)2

ln [−h1 + h2] ln[(−h1 + h2)(1 + α)]2 + 12h22n(1 + α)2 ln [−h1 + h2] ln [(−h1 + h2)(1 + α)]2

−4h1
2n(1 + α)2 ln [(−h1 + h2)(1 + α)]3 + 8h1h2n(1 + α)2 ln [(−h1 + h2)(1 + α)]3

−4h22n(1 + α)2 ln [(−h1 + h2)(1 + α)]3 ln [h1 − h2 + h1α− yα]

(A3)
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C4 = α(−α2(1 + α)2 ln [−h1 + h2]3 + 3α2(1 + α)2 ln [−h1 + h2]2 ln [(−h1 + h2)(1 + α)]−
3α2(1 + α)2 ln [−h1 + h2] ln [(−h1 + h2)(1 + α)]2 + α2(1 + α)2 ln [(−h1 + h2)(1 + α)]3

ln [h1 − h2 + h1α− yα])
(A4)

C5 = (1 + α) ln [(−h1 + h2)(1 + α)] + 3(1 + α)2(−4h1
2 n + 8h1h2n − 4h2

2(1 + α) ln[(−h1

+h2)(1 + α)](1 + α) ln[(−h1 + h2)(1 + α)]

+3(1 + α)2(−4h1
2 n + 8h1h2n − 4h2

2 + α2).
ln [−h1 + h2]

2 ln [(−h1 + h2)(1 + α)] + (1 + α)2(−4h1
2 n + 8h1h2nα2) + α)

+3(ln [−h1 ln [(−h1 + h2)(1 + α)]3 + h2](4(h1 − h2)
2nα2 + (1 + α)

(A5)
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Abstract: The current effort is devoted to investigate the shiny thin film with a metallic tactile covering
of nanoparticles over the surface of a rotating disk. To decorate, glowing silver and gold particles
were chosen. Four illustrative base liquids, namely (i) ethanol, (ii) methanol, (iii) ethylene-glycol,
and (iv) water were considered with different geometries, which have great importance in industrial
usage. An emphasis on comparative multi nanofluid analysis was used to make a sound judgment on
which one of the fluids best suited the metallic glittering process of spin coating. The film thickness
process highly depends on the process of evaporation, which takes some time to settle on the
disk’s surface. It was found that of the base fluids, the best choices were ethanol alloys with silver.
Hence, one can conclude that from an experimental point of view, if silver alloy is used for coating,
then only those liquids can be considered that exhibit ethanol-like properties. The impact of pertinent
parameters with different aspects are graphically illustrated in each case.

Keywords: thin film; spin coating; rotating disk; nanoparticles; Newtonian fluids

1. Introduction

The mechanical process of covering the surface of an object/substrate with the help of a very
thin layer is known as “Coating”. This layer can be of some sort of paint, lacquer or a thin polymer
sheet, which may be used for protective or decorative purposes. Nowadays, most of the engineered
products go through the process of coating to prevent corrosion and to make them attractive [1,2].
From an industrial point of view, coating involves the development of a thin film layer (which can be
polymeric or lacquer) on a substrate or fabric etc. If the substrate starts and ends the process wound
up in a roll, the process may be termed “roll-to-roll” or “web-based” coating. Apart from a process
of simple coating, developing a uniform and thin film or covering to a spinning sample or substrate,
is called “spin coating”. In the latter sort of coating, a small amount of liquid solution is placed at
the center of the highly rotating disk, with the help of a pipette or syringe, resulting in the solution
spreading uniformly and evenly in all directions as elaborated in [3]. This is all because of centrifugal
forces, which cause liquid solution to spread across the surface uniformly. Application of spin coating is
mainly used to fabricate tiny structures, usually of micrometer size or even much smaller, known as the
microfabrication process. Manufacturing of solar cells, integrated circuits, insulators, nanomaterials,
compact disks, magnetic disk coating and microfluidic devices are a few examples of such technology,
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which depend upon the process of high quality spin coating. The simplicity and relative ease that
helps to process any set up is regarded as the main advantage of spin coating. The spinning causes
fast airflow around the rotating substrates or disks which results in quick drying of a thin layer of
coating. Hence, this saves time and reduces the consumption of energy but a consistent efficiency is
also achieved at the scale of nanolength or macroscopic level. Surprisingly, spin coating deals with
a process which involves single substrates. This leads to a major drawback of spin coating and puts
this on the back foot as compared to the “roll-to-roll” coating process. This disadvantage causes low
performance. Also, the fast-drying times mean the actual material usage in a spin coating process is
typically very low, around 10% or less, with the rest being flung off the side and wasted. Despite these
drawbacks, spin coating is usually the starting point and benchmark for most academic and industrial
processes that require a thin and uniform coating. Moreover, nanofluids can simply be termed as
the liquid containing the tiny metallic particles. These tiny particles are invisible to the naked eye,
for these range between 1 nm and 100 nm. In the later phase of the twentieth century, the concept of
nanoparticles was introduced by Choi and Eastman [4] as a supporting agent. The initial intention
was to obtain immense thermal conductivity of the base fluid. However, Buongiorno [5,6] performed
his role focusing on convective heat transfer involving nanoparticles in the concerned base liquids.
However, he negated some previous conclusions inferred by different researchers in their investigations.
Since then, nanoparticles are being in used in different ways by scientists in their endeavors [7–37].
One cannot deny the beneficial application of nanoparticles from electronics to electrical appliances,
from the energy sector to medical sciences working towards the remedy of some fatal disease, it is
all mainly due to the blessing of the perfect utility of nanoparticles. Primarily, nanoparticles were
meant to enhance the thermal features of a phenomenon involved in it, but recently, nanofluids are
being applied in a new dimension, which is in solar collectors. In this application, nanofluids are
employed for their tunable optical properties. Consequently, graphene-based nanofluid increases
the performance of polymerase chain reaction. As a matter of fact, in some cases nano-technology
has improved the performance of spin coating, which requires time to self-assemble or crystallize as
the nanoparticles such as gold, silver, zinc oxide, copper and aluminum have significant potential in
conductive metal as compared to conventional conductive materials. Especially, incorporating the
said nanomaterials into thin films would always pool together electrical and optical properties for
multipurpose features that play a key role in fabricating stretchable conductive thin films and coatings,
since their mechanical properties include greater flexibility, stretch ability and designed structures.
These materials can be easily incorporated into thin films with simple inexpensive solution-based
testimony techniques like spin coating, ink-jet printing and spray coating [38,39].

What makes this paper so special is that in this study more than one base fluids suspended
with a couple of different nanoparticles have been comparatively studied altogether which, so far,
is a novel innovation in the field of applying a thin film of spin coating. To form this shiny silver and
gold metallic layer of coating, four different types of base liquids (i.e., water, ethanol, methanol and
ethylene-glycol) were brought in to use. It was found that evaporation of the liquid suggested rapidly
settling down a shiny metallic layer of silver or gold on the surface of a rotating disk.

2. Formulation

Let V = [u(t, r, θ, z) v(t, r, θ, z) w(t, r, θ, z)] be the velocity of unsteady, incompressible and viscous
multi nanofluids axi-symmetrically rotating disk having an angular velocity Ψ, as shown in Figure 1.
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Figure 1. Physical configuration of the rotating disk.

The layer of nanofluid across the surface is evenly spread out; thus, appropriate assumptions can
be enlisted as:

i. The nanofluid is assumed to be diluted and an impact of evaporation of a thin layer of the
liquid is negligible as the solution is behaving “non-volatile”.

ii. The nanoparticles and the base fluid are in equilibrium, therefore, no slip condition
is considered.

The governing equations in components form are:

∂u
∂t

+
u
r
+

∂w
∂z

= 0 (1)

ρn f

(
∂u
∂t

+ u
∂u
∂r

+ w
∂u
∂z

− v2

r

)
= −∂p

∂r
+ μn f

{
∂2u
∂r2 +

∂

∂r

(
u
r

)
+

∂2u
∂z2

}
(2)

ρn f

(
∂v
∂t

+ u
∂v
∂r

+ w
∂v
∂z

+
uv
r

)
= −∂p

∂θ
+ μn f

{
∂2v
∂r2 +

∂

∂r

(
v
r

)
+

∂2v
∂z2

}
(3)

ρn f

(
∂w
∂t

+ u
∂w
∂r

+ w
∂w
∂z

)
= −∂p

∂z
+ μn f

{
∂2w
∂r2 +

w
r
+

∂2w
∂z2

}
(4)

(
ρCp
)

n f

(
∂T
∂t

+ u
∂T
∂r

+ w
∂T
∂z

)
= kn f

{
∂2T
∂r2 +

1
r

∂T
∂r

+
∂2T
∂z2

}
(5)

Initial and boundary conditions associated with Equations (1)–(5) are defined in the following
sub sections:

2.1. Initial Conditions

(i). u = 0,
(ii). v = 0,
(iii). w = 0,
(iv). T = T0,
(v). h

(
t
)
= h0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
; when t = 0 (6)

here, h, h0 and T0 represent thickness of the film, initial thickness of the film and room
temperature respectively.
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2.2. Boundary Conditions

• At the surface of the rotating disk

(i). u = 0,
(ii). v = r Ψ,
(iii). w = 0,

(iv). T = Ta − Tb
2 r2

⎫⎪⎪⎪⎬⎪⎪⎪⎭; when z = 0 (7)

• At the free surface of the rotating disk

(i). ∂h
∂t = w,

(ii). p + 2μn f
∂w
∂z = 0,

(iii). μn f

(
∂u
∂z + ∂w

∂r

)
= ∂T

∂r
∂σ
∂T

,

(iv). μn f

(
∂v
∂z

)
= ∂T

∂z
∂σ
∂T

,

(v). ∂T
∂z + L

(
T − Tg

)
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
; when z = h

(
t
)

(8)

where L denotes heat transfer coefficient and σ stands for surface tension.

By using suitable transformations [40], the governing equations can be obtained as:

2F +
∂W
∂z

= 0 (9)

Re∅1

(
∂F
∂t

+ F2 + W
∂F
∂z

)
=

∂2F
∂z2 + G2 (10)

Re∅1

(
∂G
∂t

− G
∂W
∂z

+ W
∂G
∂z

)
=

∂2G
∂z2 (11)

RePr∅2

(
∂Γ
∂t

− Γ
∂W
∂z

+ W
∂Γ
∂z

)
=

kn f

k f

∂2Γ
∂z2 (12)

RePr∅2

(
∂τ

∂t
+ W

∂τ

∂z

)
=

kn f

k f

(
∂2τ

∂z2 + 2Γ
)

(13)

(i). F(z, t) = 0,
(ii). G(z, t) = 0,
(iii). W(z, t) = 0,
(iv). Γ(z, t) = 0,
(v). τ(z, t) = 0,
(vi). H(t) = 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
; at t = 0 (14)

(i). F(z, t) = 0,
(ii). G(z, t) = 1,
(iii). W(z, t) = 0,
(iv). Γ(z, t) = 1,
(v). τ(z, t) = 0,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
; at z = 0 (15)

here, Re is the Reynolds number and Pr denotes the Prandtl number, whereas ∅1 and ∅2 represent
dimensionless constants.
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For free surface
(i). ∂F

∂z = α(1 − φ)2.5Γ,
(ii). ∂G

∂z = 0,
(iii). ∂Γ

∂z = 0,
(iv). ∂τ

∂z = 0,
(v). dH

dt = W.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
; at z = H(t) (16)

2.3. Thermophysical Properties

The present investigation is concerned with the development of a thin film of liquid on a rotating
disk with different metallic particles that require effective thermo-physical properties of nanofluids and
nanoparticles. Two distinctive models proposed by Khanafer and Vafai [41] were chosen to analyze
the density and specific heat of the nanofluids; whereas to estimate the thermal conductivity and
viscosity of fluids, the thermophysical model [42] is utilized. In view of the thermophysical model in
the presence of multi fluids containing two different types of nano-sized metallic particles, the realistic
properties were developed as follows:

2.3.1. For Water as the Base Fluid

The most significant and highly utilized fluid on this planet is water that contains 997.1 kg·m−3,
density, 0.89 mPa·S. viscosity, 4179 J/Kg m heat capacity and 0.569 W·m−1·K−1 thermal conductivity.

• For gold nanoparticles

The mathematical expressions that describe the thermophysical properties of water and gold
nanofluids are given as:

ρn f = (1 − φ)ρ f − φρp (17)(
ρn f

)
water/gold

= 997.1(1 − φ)− 19300φ (18)

μn f =
(

1.013 + 0.092φ − 0.015φ2
)

μ f (19)(
μn f

)
water/gold

= 0.89
(

1.013 + 0.092φ − 0.015φ2
)

(20)

(ρCP)n f = (CP) f ρ f (1 − φ)− (CP)pφρp (21)

(ρCP)water/gold = (4179)(997.1)(1 − φ)− (126)(19300)φ (22)

kn f = (1.0204 + 0.0249φ)k f (23)(
kn f

)
water/gold

= 0.569(1.0204 + 0.0249φ) (24)

where the gold density is 19,300 kg·m−3 and heat capacity and thermal conductivity are 126 J/kg m
and 317 W·m−1·K−1, respectively.

• For silver nanoparticles

The thermophysical properties of water and silver nanofluids are given as:(
ρn f

)
water/silver

= 997.1(1 − φ)− 10490φ (25)

(
μn f

)
water/silver

= 0.89
(

1.013 + 0.092φ − 0.015φ2
)

(26)

(ρCP)water/silver = (4179)(997.1)(1 − φ)− (233)(10490)φ (27)(
kn f

)
water/silver

= 0.569(1.0204 + 0.0249φ) (28)
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where the density of silver is 10,490 kg·m−3 while heat capacity and thermal conductivity are
respectively 233 J/Kg m and 429 W·m−1·K−1

2.3.2. For Methanol as the Base Fluid

The features displayed by methanol at room temperature according to the System International (SI)
units is of density 790 kg·m−3 whereas viscosity takes the numerical value 0.543 mPa·S, heat capacity
is 2534 J/Kg m and thermal conductivity is 0.201 W·m−1·K−1.

• For gold nanoparticles

The mathematical expressions describing the thermophysical properties are given as:(
ρn f

)
methanol/gold

= 790(1 − φ)− 19300φ (29)

(
μn f

)
methanol/gold

= 0.543
(

1.013 + 0.092φ − 0.015φ2
)

(30)

(ρCP)methanol/gold = (2543)(790)(1 − φ)− (126)(19300)φ (31)(
kn f

)
methanol/gold

= 0.201(1.0204 + 0.0249φ) (32)

• For silver nanoparticles

For the methanol and silver nanofluids suspension, the physical properties of silver, heat capacity
and thermal conductivity are 10,490,790 kg·m−3, 233 J/Kg m and 429 W·m−1·K−1 respectively.
Thus, thermophysical properties corresponding to this model are:(

ρn f

)
methanol/silver

= 790(1 − φ)− 10490φ (33)

(
μn f

)
methanol/silver

= 0.543
(

1.013 + 0.092φ − 0.015φ2
)

(34)

(ρCP)methanol/silver = (2543)(790)(1 − φ)− (233)(10490)φ (35)(
kn f

)
methanol/silver

= 0.201(1.0204 + 0.0249φ) (36)

In order to make a methanol and gold nanofluids suspension, gold density is 19,300 kg·m−3.
The heat capacity and thermal conductivities are 126 J/Kg m and 317 W·m−1·K−1 respectively.

2.3.3. For Ethanol as the Base Fluid

The features displayed by ethanol at room temperature have a density of 789 kg·m−3. The viscosity
is 1.074 mPa·S, heat capacity is 2500 J/Kg m and thermal conductivity is 0.0235 W·m−1·K−1.

• For gold nanoparticles

For an ethanol and gold nanofluids suspension, the density of gold is 19,300 kg·m−3, and heat
capacity and thermal conductivity are 126 J/Kg m and 317 W·m−1·K−1, respectively. Mathematically,
it can be written as:

(ρn f )ethanol/gold
= 789(1 − φ)− 19300φ (37)

(μn f )ethanol/gold
= 1.074

(
1.013 + 0.092φ − 0.015φ2

)
(38)

(ρCP)ethanol/gold = (2500)(789)(1 − φ)− (126)(19300)φ (39)(
kn f

)
ethanol/gold

= 0.0235(1.0204 + 0.0249φ) (40)
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• For silver nanoparticles

To make an ethanol and silver nanofluids suspension, the density of silver is 10,490 kg·m−3,
heat capacity is 233 J/Kg m and thermal conductivity is 429 W·m−1·K−1. The mathematical expressions
can be written as: (

ρn f

)
ethanol/silver

= 789(1 − φ)− 10490φ (41)(
μn f

)
ethanol/silver

= 1.074
(

1.013 + 0.092φ − 0.015φ2
)

(42)

(ρCP)ethanol/silver = (2500)(789)(1 − φ)− (233)(10490)φ (43)(
kn f

)
ethanol/silver

= 0.0235(1.0204 + 0.0249φ) (44)

2.3.4. For Ethylene-Glycol as the Base Fluid

The density of ethylene-glycol at room temperature by System International (SI) units system
is 1101 kg·m−3. The viscosity takes the numerical value 0.0162 mPa·S, heat capacity and thermal
conductivity are respectively 2400 J/Kg m and 0.256 W·m−1·K−1.

• For gold nanoparticles

For an Ethylene-glycol and Gold nanofluids suspension, the physical property of gold density is
19,300 kg·m−3, heat capacity is 126 J/Kg m and thermal conductivity is 317 W·m−1·K−1. Accordingly,
the mathematical expression can be written as:(

ρn f

)
ethylene/gold

= 1101(1 − φ)− 19300φ (45)

(
μn f

)
ethylene/gold

= 0.0162
(

1.013 + 0.092φ − 0.015φ2
)

(46)

(ρCP)ethylene/gold = (2400)(1101)(1 − φ)− (126)(19300)φ (47)(
kn f

)
ethylene/gold

= 0.256(1.0204 + 0.0249φ) (48)

• For silver nanoparticles

For the suspension of ethylene-glycol and silver nanofluids the physical property of silver density
is 10,490 kg·m−3. The heat capacity and thermal conductivity are 233 J/Kg m and 429 W·m−1·K−1,
respectively. On the previous contrast, mathematical expression can be attained as:(

ρn f

)
ethylene/silver

= 1101(1 − φ)− 10490φ (49)

(
μn f

)
ethylene/silver

= 0.0162
(

1.013 + 0.092φ − 0.015φ2
)

(50)

(ρCP)ethylene/silver = (2400)(1101)(1 − φ)− (233)(10490)φ (51)(
kn f

)
ethylene/silver

= 0.256(1.0204 + 0.0249φ) (52)

For the best understating of readers, the realistic physical properties of base fluids and
nanoparticles are offered in Tables 1 and 2.
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Table 1. Thermo-physical properties of the base fluids.

Base Fluids
Density

ρ (kg·m−3)
Viscosity
μ (mPa·S)

Heat Capacity
Cp (J·kg−1·K−1)

Thermal Conductivity
k (W·m−1·K−1)

Water [43] (H2O) 997 0.89 4179 0.569
Ethanol [44] (C2H6O) 789 1.074 2500 0.0235
Methanol [45] (CH4O) 790 0.543 2534 0.200

Ethylene-Glycol [46] (C2H6O2) 1101 0.0162 2400 0.256

Table 2. Physical properties of the nanoparticles.

Nano Particles
Density

ρ (kg·m−3)
Heat Capacity

Cp (J·kg−1·K−1)
Thermal Conductivity

k (W·m−1·K−1)

Gold [47] (Au) 19300 126 317
Silver [48] (Ag) 10490 233 429

3. Analytical Results

Analytical solutions of nonlinear and coupled Equations (9)–(13) subject to (14)–(16) are obtained as:

F(z, t) = f1(t)z + f2(t)z2 + f3(t)z3 + f4(t)z4 + f5(t)z5 + f6(t)z6 + f7(t)z7 + f8(t)z8

+ f9(t)z9 + f10(t)z10 + f11(t)z11 + f12(t)z12 + f13(t)z13 + f14(t)z14

+ f15(t)z15
(53)

G(z, t) = 1 + g1(t)z +g2(t)z2 + g3(t)z3 + g4(t)z4 + g5(t)z5 + g6(t)z6 + g7(t)z7

+g8(t)z8 + g9(t)z9 (54)

W(z, t) = w1(t)z +w2(t)z2 + w3(t)z3 + w4(t)z4 + w5(t)z5 + w6(t)z6 + w7(t)z7 + w8(t)z8

+w9(t)z9 + w10(t)z10 + w11(t)z11 + w12(t)z12

+w13(t)z13 + w14(t)z14 + w15(t)z15 + w16(t)z16
(55)

Γ(z, t) = 1 + m1(t)z +m2(t)z2 + m3(t)z3 + m4(t)z4 + m5(t)z5 + m6(t)z6 + m7(t)z7

+m8(t)z8 (56)

τ(z, t) = n1(t)z +n2(t)z2 + n3(t)z3 + n4(t)z4 + n5(t)z5 + n6(t)z6 + n7(t)z7

+n8(t)z8 + n9(t)z9 + n10(t)z10 (57)

where the expressions f1, f2 . . . f15, g1, g2 . . . g9, m1, m2 . . . m8, n1, n2 . . . n10 and w1, w2 . . . w16 are given
in the Appendix A.

4. Discussion

The process of coating heavily depends upon the time taken by any fluid to settle down on the
surface of the material; a fluid can only be considered more suitable for the coating if it takes less time
to leave its effects on the surface. Moreover, the engaged nanoparticles are of very small size and of
a concentration of at most 2%. The effects on viscosity, thermal conductivity, density and heat capacity
are evaluated experimentally in many communications. It is now a well-established fact that in the
presence of such a small quantity of nanosized particles, the nature of fluid does not change but changes
in physical properties are evident. For that, many correlations are presented for different situations
and particles. To serve the purpose of this study, four different kinds of Newtonian fluids having
diverse physical and chemical properties are considered instead of non-Newtonian fluids because
coatings with such types of fluids would have a tremendous impact on the cost, volume, weight,
and mechanical properties of electronic, optoelectronic, and photovoltaic devices; thus, this portion is
dedicated to the parametric study of the proposed model in which four kinds of Newtonian fluids,
such as water, ethanol, methanol and ethylene-glycol are opted for as the base fluids. The gold and
silver nanoparticles are used to furnish the thin metallic and shiny coating on the surface of the
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rotating disk. The main reason to carry out this graphical work is to confirm whether or not the
obtained mathematical results are in complete coherence with the physical expectation of the spin
coatings. Moreover, the graphic illustrations will help to make a sound judgement about the role and
contribution of field variables. Major parameters which have been comprehensively focused on are the
concentration of the metallic particles and the thermocapillary parameter. Furthermore, the presented
parametric study unlike the customary results and discussion have been delicately divided into three
following sub sections to make this comparative analysis more clear and fathomable.

4.1. Thickness of the Film

The key emphasis in this article is on furnishing a shiny metallic layer of nanoparticles, suspended
with different base fluids displaying distinct physical and chemical features altogether. Here, the sole
aim is to decide which one of the base fluids is the best suitable choice for this metallic covering over
the disk with spin coatings that can quickly spread on the disk in a short span of time. As shown in
Figure 2, it can clearly be seen that ethanol is the sole liquid which shows a rapid action with both
metals as compared to the other base fluids. It is in accordance with their physical prospects, due to
their densities, which help them evaporate quickly and results in a shiny metallic nanoliquids coating
on the disk. On the other hand, silver particles’ coating is much faster than gold, as Figure 3 shows.

Figure 2. Behaviour of film thickness for different base fluids containing gold nanoparticles.

 
Figure 3. Behaviour of film thickness for different base fluids containing silver particles
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In Figures 4–7, thermocapillary parameters and the concentration of the metallic particles’
influence on nanofluid coating have been displayed. It is a well-recognized fact that the thicker
solution yields to the thicker layer of the film. The thermocapillary parameter depletes and attenuates
this metallic layer as shown in Figures 4 and 5. From the above given facts, it is inferred that ethanol
and silver particles share a great deal of mutual compatibility. Thickness of the film increases in size
upon the additional supply of metallic particles as shown in Figures 6 and 7. This confirms the above
preceding claim that an increase of the particles will enlarge the film thickness in size. Therefore, it can
be concluded that any fluids and particles which exhibit different characteristics like ethanol and silver
are regarded as the most suitable option for this metallic process of coating. Consequently, to see the
effects of thermal, radial and azimuthal velocity, ethanol was chosen as a base fluid.

 
Figure 4. Behaviour of film thickness for thermocapillary parameter for gold particles.

 
Figure 5. Behaviour of film thickness for thermocapillary for silver particles parameter.
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Figure 6. Effects of the concentration of particles on film thickness for the case of gold.

Figure 7. Effects of the concentration of particles on film thickness for the case of silver.

4.2. Radial Velocity and Azimuthal Velocity

In Figures 8–21, the radial and azimuthal velocities have been sketched for all base fluids,
the thermocapillary parameter and the concentration of the particles. In view of suitable transformation,
the mathematical expressions take the following final form:

U(z, t) = R F(z, t) (58)

V(z, t) = R G(z, t) (59)
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Figure 8. Behavior of radial velocity for each fluid comprising gold particles.

Figure 9. Behavior of radial velocity for each fluid comprising silver particles.

Figure 10. Behavior of radial velocity for the thermocapillary parameter comprising gold particles.
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Figure 11. Behavior of radial velocity for the thermocapillary parameter comprising gold particles.

 
Figure 12. Effects of concentration particles on radial velocity with gold particles.

Figure 13. Effects of concentration particles on radial velocity with silver particles.
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Figure 14. Behavior of azimuthal velocity for each fluid with gold particles.

Figure 15. Behavior of azimuthal velocity for each fluid with silver particles.

 
Figure 16. Behavior of azimuthal velocity for the thermocapillary parameter with gold particles.
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Figure 17. Behavior of azimuthal velocity for the thermocapillary parameter with silver particles.

 
Figure 18. Effects of concentration particles on azimuthal velocity for gold.

 
Figure 19. Effects of concentration particles suspended with ethanol on N for silver.
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Figure 20. Temperature effects of thermocapillary parameter.

Figure 21. Temperature effects of thermocapillary parameter.

In Equations (58) and (59), R = r
h0

is the initial thickness of the film. A similar trend in the
behavior of both types of velocities is observed in the presence of silver and gold particles.

In Figures 8–19, the behavior of ethanol is quite prominent for all cases. It is observed that the
radial velocity and azimuthal velocity increase for silver and gold. However, radial velocity and
azimuthal velocity react quite differently for the thermocapillary parameter and the concentration
of the particles. It is seen that temperature increases by increasing the values of thermocapillary
parameter, as shown in Figures 20 and 21. It is in accordance with the physical expectation because
radial velocity does not allow the fluid to move with full strength. However, the radial velocity is
supported by the thermocapillary parameter. On the other hand, a complete reverse trend can be
noted for the azimuthal velocity by varying both α and ϕ.

4.3. Thermal Analysis

In this section, the temperature of nanofluid was examined vertical to the disk. The mathematical
relationships for temperature and temperature gradient were respectively denoted by the following
relations:

T(z, t) =
R2

2
Γ(z, t) + τ(z, t) (60)

Tz(z, t) =
R2

2
Γz(z, t) + τz(z, t) (61)
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Here smooth and organized curves are drawn in Figures 22–27. It is found that an addition
of extra nanoparticles strengthens the drag force between the particles. However, thermocapillary
parameter α works altogether differently by reducing the heat of the nanofluid that ultimately affirms
the earlier preceding claim regarding the addition of metallic particles to the base fluid ethanol.

Figure 22. Temperature effects of concentration particles.

Figure 23. Temperature effects of concentration particles.

Figure 24. Variation of Tz for the thermocapillary parameter.
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Figure 25. Variation of Tz for the thermocapillary parameter.

Figure 26. Variation of Tz on concentration particles.

Figure 27. Variation of Tz on concentration particles.
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5. Conclusions

A comparative study for silver and gold nanoparticles was comprehensively carried out to
form a thin and shiny metallic layer over the surface of a rotating disk via spin coatings. Moreover,
a detailed analysis of nanofluids suspended with four different types of base fluids, namely water,
ethanol, methanol and ethylene-glycol has also been examined under the assumptions of nanofluids to
be diluted and non-volatile. Finally, a parametric study on the basis of obtained expressions of results
was made to apprehend the effects of the main parameters involved. Some significant findings are
enlisted below:

• Silver metallic coating quickly settles down on the surface of the disk than to develop
a gold coating.

• Thickness of the film increases with the addition of extra metallic particles.
• Radial velocity is hampered by adding more nanoparticles.
• Increase in the quantity of particles surges the thermal effects of the nanofluid.
• It is worth investigating that these results will help to choose the optimum base fluid with gold or

silver particles.
• The graphical results show depletion of the fluid layer with time and one can hardly find such

an evaluation in the available literature.
• Finally, it is concluded that the base fluid is the best choice for ethanol alloys with silver in the

process of coating. In this way, it can be concluded that from the experimental point of view
if silver alloy is used for coating then only such liquids should be considered which exhibit
ethanol-like properties. Now, this effort is available for further experimental studies for those
who are working in this regime for the validation of their lab results.
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Nomenclatures

h0 Initial film thickness
p Pressure
t Spinning time
U Radial velocity component
V Velocity
W Axial velocity component
z Axial coordinate
Pr Prandtl number
Re Reynolds number
h Film thickness
r Radial coordinate
T Temperature of nanofluid
T0 Initial room temperature
Tg Temperature in gas phase
u Radial velocity component
v Azimuthal velocity component
w Axial velocity component
kn f Thermal conductivity of nanofluid
k f Thermal conductivity of fluid
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Greek Symbols
θ Azimuthal coordinate of the velocity
Ψ Rotational velocity
ξ Constant
φ1 Dimensionless constant
ρp Density particle
(CP) f Heat capacity of base fluid
μn f Dynamic viscosity of nanofluid
μ Dynamic viscosity
α Thermocapillary parameter
σ0 Initial surface tension
σ Surface tension
φ Concentration of particles
φ2 Dimensionless constant
ρ f Density of fluid
(CP) f Heat capacity of particle
ρn f Density of nanofluid
(ρCP)n f Heat capacity of nanofluid
Subscripts
f Base fluid
nf Nanofluid

Appendix A

f1(t) = H + α(1 − φ)2.5 − 3H4Reφ1
4 +

3H5Reφ1
20 − H2 dH

dt Reφ1
2 +

131H5 dH
dt Re2φ1

60 − 53H6 dH
dt Re2φ1
72 +

H3( dH
dt )

2
Re2φ1

2 +
5H4 d2 H

dt2
Re2φ1

24 +
H3Reα(1−φ)2.5φ1

3 − 5H4Reα(1−φ)2.5φ1
4 − H4 dH

dt Re2α(1−φ)2.5φ1
2 +

63H5 dH
dt Re2α(1−φ)2.5φ1

20 +
31H7Re2φ2

1
45 − 293H8Re2φ2

1
2016 +

12869H9Re2φ2
1

90720 − 3751H10Re2φ2
1

151200 +
67H6 dH

dt Re2φ2
1

180 +

8H7 dH
dt Re2φ2

1
315 +

1607H7Re2α(1−φ)2.5φ2
1

1260 − 131H8Re2α(1−φ)2.5φ2
1

1120 +
18679H9Re2α(1−φ)2.5φ2

1
90720 +

7H5 dH
dt Re2α(1−φ)2.5φ2

1
60 −

7H6 dH
dt Re2α(1−φ)2.5φ2

1
72 − 4H6Re2α2(1−φ)5φ2

1
45 +

667H7Re2α2(1−φ)5φ2
1

630 − 4303H8Re2α2(1−φ)5φ2
1

10080 +
121H12Re2φ3

1
1296 −

407H13Re2φ3
1

11340 +
1369H14Re2φ3

1
396900 +

55H10 dH
dt Re2φ3

1
432 − 37H11 dH

dt Re2φ3
1

1512 +
25H8( dH

dt )
2
Re2φ3

1
576 − 11H11Re2α(1−φ)2.5φ3

1
120 +

38573H12Re2α(1−φ)2.5φ3
1

113400 − 703H13Re2α(1−φ)2.5φ3
1

11340 − H9 dH
dt Re2α(1−φ)2.5φ3

1
16 +

95H10 dH
dt Re2α(1−φ)2.5φ3

1
432 +

9H10Re2α2(1−φ)5φ3
1

400 − 19H11Re2α2(1−φ)5φ3
1

120 +
361H12Re2α2(1−φ)5φ3

1
1296 ;

f2(t) = − 1
2 ;

f3(t) =
H2Reφ1

3 − H3Reφ1
9 +

dH
dt Reφ1

6 − 5H3 dH
dt Re2φ1
6 +

7H4 dH
dt Re2φ1
24 − H( dH

dt )
2
Re2φ1

6 − Re2φ1 H2 d2 H
dt2

12 +

H2Reα(1−φ)2.5φ1
3 +

H2 dH
dt Re2α(1−φ)2.5φ1

6 − 7H3 dH
dt Re2α(1−φ)2.5φ1

6 − 8H5Re2φ2
1

45 − H6Re2φ2
1

108 − 8H7Re2φ2
1

315 +
H8Re2φ2

1
160 −

5H4 dH
dt Re2φ2

1
36 − 23H5Re2α(1−φ)2.5φ2

1
90 − 5H6Re2α(1−φ)2.5φ2

1
54 − 11H7Re2α(1−φ)2.5φ2

1
270 − 8H5Re2α2(1−φ)5φ2

1
45 +

7H6Re2α2(1−φ)5φ2
1

108 ;

f4(t) = − HReφ1
12 +

H2Reφ1
12 − Reα(1−φ)2.5φ1

12 +
HReα(1−φ)2.5φ1

12 − H4Re2φ2
1

12 − H5Re2φ2
1

144 +
7H6Re2φ2

1
2160 − H3 dH

dt Re2φ2
1

24 −
29H4Re2α(1−φ)2.5φ2

1
144 − 13H5Re2α(1−φ)2.5φ2

1
360 − H2 dH

dt Re2α(1−φ)2.5φ2
1

24 +
H3Re2α2(1−φ)5φ2

1
36 − 3H4Re2α2(1−φ)5φ2

1
16 ;
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f5(t) =
Reφ1

60 − HReφ1
30 +

H dH
dt Re2φ1

15 − H2 dH
dt Re2φ1
30 +

d2 H
dt2

Re2φ1

120 − Reα(1−φ)2.5φ1
60 +

H dH
dt Re2α(1−φ)2.5φ1

15 +
H4Re2φ2

1
16 −

H5Re2φ2
1

80 +
H2 dH

dt Re2φ2
1

24 − H3Re2α(1−φ)2.5φ2
1

36 +
17H4Re2α(1−φ)2.5φ2

1
120 − 3H5Re2α(1−φ)2.5φ2

1
400 +

H2 dH
dt Re2α(1−φ)2.5φ2

1
40 −

H3Re2α2(1−φ)5φ2
1

60 +
H4Re2α2(1−φ)5φ2

1
16 − 9H8Re2φ3

1
320 +

9H9Re2φ3
1

800 − 9H10Re2φ3
1

8000 − 3H6 dH
dt Re2φ3

1
80 +

3H7 dH
dt Re2φ3

1
400 −

H4( dH
dt )

2
Re2φ3

1
80 +

H7Re2α(1−φ)2.5φ3
1

40 − 79H8Re2α(1−φ)2.5φ3
1

800 +
3H9Re2α(1−φ)2.5φ3

1
160 +

H5 dH
dt Re2α(1−φ)2.5φ3

1
60 −

H6 dH
dt Re2α(1−φ)2.5φ3

1
16 − H6Re2α2(1−φ)5φ3

1
180 +

H7Re2α2(1−φ)5φ3
1

24 − 5H8Re2α2(1−φ)5φ3
1

64 ;

f6(t) =
Reφ1
360 − dH

dt Re2φ1
360 +

H dH
dt Re2φ1
180 +

dH
dt Re2α(1−φ)2.5φ1

360 +
H2Re2φ2

1
30 +

H3Re2φ2
1

180 − H4Re2φ2
1

72 +
H5Re2φ2

1
600 +

H dH
dt Re2φ2

1
120 − H2 dH

dt Re2φ2
1

180 +
H2Re2α(1−φ)2.5φ2

1
12 +

H3Re2α(1−φ)2.5φ2
1

270 − H4Re2α(1−φ)2.5φ2
1

72 +
dH
dt Re2α(1−φ)2.5φ2

1
120 +

H2Re2α2(1−φ)5φ2
1

20 ;

f7(t) = −Re2φ1
dH
dt

1260 − 8H2Re2φ2
1

315 +
2H3Re2φ2

1
189 − 17Re2φ2

1
dH
dt

2520 − 2HRe2α(1−φ)2.5φ2
1

315 − 11H2Re2α(1−φ)2.5φ2
1

420 +

13H3Re2α(1−φ)2.5φ2
1

3780 − dH
dt Re2α(1−φ)2.5φ2

1
252 − Re2α2(1−φ)5φ2

1
315 +

HRe2α2(1−φ)5φ2
1

315 − 13H2Re2α2(1−φ)5φ2
1

1260 +
H6Re2φ3

1
112 −

H7Re2φ3
1

210 +
H8Re2φ3

1
1680 +

H4 dH
dt Re2φ3

1
96 − 29H5 dH

dt Re2φ3
1

10080 +
H2( dH

dt )
2
Re2φ3

1
336 − H5Re2α(1−φ)2.5φ3

1
252 +

19H6Re2α(1−φ)2.5φ3
1

756 −
17H7Re2α(1−φ)2.5φ3

1
2520 − H3 dH

dt Re2α(1−φ)2.5φ3
1

504 +
3H4 dH

dt Re2α(1−φ)2.5φ3
1

224 − H5Re2α2(1−φ)5φ3
1

252 +
5H6Re2α2(1−φ)5φ3

1
336 ;

f8(t) = −Re2φ2
1

360 +
31HRe2φ2

1
10080 − H2Re2φ2

1
840 − H3Re2φ2

1
1260 +

Re2φ2
1

dH
dt

1008 − 5Re2α(1−φ)2.5φ2
1

2016 − 13HRe2α(1−φ)2.5φ2
1

5040 +

H2Re2α(1−φ)2.5φ2
1

1120 − Re2α2(1−φ)5φ2
1

560 − HRe2α2(1−φ)5φ2
1

672 − H5Re2φ3
1

640 +
3H6Re2φ3

1
1600 − H7Re2φ3

1
3200 − H3 dH

dt Re2φ3
1

960 +

H4 dH
dt Re2φ3

1
960 − H4Re2α(1−φ)2.5φ3

1
1152 − 41H5Re2α(1−φ)2.5φ3

1
28800 +

11H6Re2α(1−φ)2.5φ3
1

4800 − H2 dH
dt Re2α(1−φ)2.5φ3

1
960 +

H3 dH
dt Re2α(1−φ)2.5φ3

1
960 +

H3Re2α2(1−φ)5φ3
1

1440 − 19H4Re2α2(1−φ)5φ3
1

5760 +
H5Re2α2(1−φ)5φ3

1
384 ;

f9(t) =
83Re2φ2

1
90720 +

HRe2φ2
1

2016 +
H2Re2φ2

1
2592 +

127Re2α(1−φ)2.5φ2
1

90720 +
11HRe2α(1−φ)2.5φ2

1
12960 +

41Re2α2(1−φ)5φ2
1

90720 − 7H4Re2φ3
1

12960 +

H5Re2φ3
1

194400 +
H6Re2φ3

1
145800 − H2 dH

dt Re2φ3
1

1620 − H3 dH
dt Re2φ3

1
19440 − ( dH

dt )
2
Re2φ3

1
5184 − H3Re2α(1−φ)2.5φ3

1
9720 − 23H4Re2α(1−φ)2.5φ3

1
19440 −

41H5Re2α(1−φ)2.5φ3
1

194400 − H2 dH
dt Re2α(1−φ)2.5φ3

1
1080 +

H3Re2α2(1−φ)5φ3
1

9720 − H4Re2α2(1−φ)5φ3
1

864 ;

f10(t) = − 41Re2φ2
1

226800 − HRe2φ2
1

8100 − 11Re2α(1−φ)2.5φ2
1

64800 +
H3Re2φ3

1
3600 − 103H4Re2φ3

1
302400 +

131H5Re2φ3
1

1512000 +
H dH

dt Re2φ3
1

7200 −
H2 dH

dt Re2φ3
1

8400 +
H2Re2α(1−φ)2.5φ3

1
3600 − H3Re2α(1−φ)2.5φ3

1
9450 − 41H4Re2α(1−φ)2.5φ3

1
302400 +

Re2α(1−φ)2.5φ3
1

dH
dt

7200 −
H dH

dt Re2α(1−φ)2.5φ3
1

7200 +
H2Re2α2(1−φ)5φ3

1
3600 − H3Re2α2(1−φ)5φ3

1
3600 ;

f11(t) =
Re2φ2

1
64800 − H2Re2φ3

1
14850 +

53H3Re2φ3
1

356400 − 19H4Re2φ3
1

356400 − Re2φ3
1

dH
dt

47520 +
H dH

dt Re2φ3
1

23760 − HRe2α(1−φ)2.5φ3
1

19800 +

H2Re2α(1−φ)2.5φ3
1

9900 +
7H3Re2α(1−φ)2.5φ3

1
356400 +

Re2α(1−φ)2.5φ3
1

dH
dt

47520 − Re2α2(1−φ)5φ3
1

39600 +
HRe2α2(1−φ)5φ3

1
19800 +

H2Re2α2(1−φ)5φ3
1

59400 ;

f12(t) =
HRe2φ3

1
129600 − 13H2Re2φ3

1
453600 +

47H3Re2φ3
1

2721600 − Re2φ3
1

dH
dt

362880 +
Re2α(1−φ)2.5φ3

1
129600 − HRe2α(1−φ)2.5φ3

1
32400 +

H2Re2α(1−φ)2.5φ3
1

56700 − Re2α2(1−φ)5φ3
1

129600 +
HRe2α2(1−φ)5φ3

1
129600 ;

f13(t) = − Re2φ3
1

1684800 +
HRe2φ3

1
294840 − H2Re2φ3

1
294840 +

Re2α(1−φ)2.5φ3
1

453600 − HRe2α(1−φ)2.5φ3
1

294840 − Re2α2(1−φ)5φ3
1

1684800 ;

f14(t) = − Re2φ3
1

6350400 +
HRe2φ3

1
3175200 +

Re2α(1−φ)2.5φ3
1

6350400 ;

f15(t) = − Re2φ3
1

95256000 ;
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g1(t) = −H2Reφ1 + H3Re2φ1
dH
dt − H2Reα(1 − φ)2.5φ1 + H3Re2αφ1

dH
dt (1 − φ)2.5 − H4Re2φ1

dH
dt

2 +

8H5Re2φ2
1

15 +
H3Reφ1

3 +
H6Re2φ2

1
36 +

8H7Re2φ2
1

105 − 3H8Re2φ2
1

160 +
5H4Re2φ2

1
dH
dt

12 +
23H5Re2α(1−φ)2.5φ2

1
30 +

5H6Re2α(1−φ)2.5φ2
1

18 +
11H7Re2α(1−φ)2.5φ2

1
90 +

8H5Re2α2(1−φ)5φ2
1

15 − 7H6Re2α2(1−φ)5φ2
1

36 ;

g2(t) = 0;

g3(t) =
Reφ1

3 − HRe2φ1
dH
dt

3 +
H2Re2φ1

dH
dt

6 +
Reα(1−φ)2.5φ1

3 − HRe2α(1−φ)2.5φ1
dH
dt

3 − H4Re2φ2
1

4 +
H5Re2φ2

1
20 −

H2Re2φ2
1

dH
dt

6 +
H3Re2α(1−φ)2.5φ2

1
9 − 5H4Re2α(1−φ)2.5φ2

1
12 ;

g4(t) = −Reφ1
12 − H2Re2φ2

1
6 +

H3Re2φ2
1

18 − H2Re2α(1−φ)2.5φ2
1

3 +
H3Re2α(1−φ)2.5φ2

1
18 − H2Re2α2(1−φ)5φ2

1
6 ;

g5(t) =
2H2Re2φ2

1
15 − 2H3Re2φ2

1
45 +

Re2φ2
1

dH
dt

60 +
11H2Re2α(1−φ)2.5φ2

1
60 − H3Re2α(1−φ)2.5φ2

1
60 +

H2Re2α2(1−φ)5φ2
1

20 ;

g6(t) =
Re2φ2

1
45 − HRe2φ2

1
180 − H2Re2φ2

1
180 +

H3Re2φ2
1

270 +
7Re2α(1−φ)2.5φ2

1
180 +

HRe2α(1−φ)2.5φ2
1

180 − H2Re2α(1−φ)2.5φ2
1

90 +

Re2α2(1−φ)5φ2
1

45 ;

g7(t) = − 2Re2φ2
1

105 − HRe2φ2
1

630 − Re2α(1−φ)2.5φ2
1

35 − Re2α2(1−φ)5φ2
1

126 ;

g8(t) =
17Re2φ2

1
3360 +

Re2α(1−φ)2.5φ2
1

288 ;

g9(t) = −Re2φ2
1

2592 ;

m1(t) = − H2Re
A2

+ H3Re
3A2

+ 2H5Re2

5A2
2 − 11H6Re2

36A2
2 + 5H7Re2

84A2
2 +

H3 d2 H
dt2

Re2

A2
2 − H4 d2 H

dt2
Re2

2A2
2 − H2Reα(1−φ)2.5

A2
+

4H5Re2α(1−φ)2.5

5A2
2 − 11H6Re2α(1−φ)2.5

36A2
2 +

H3 d2 H
dt2

Re2α(1−φ)2.5

A2
2 +

2H5Re2α2(1−φ)5

5A2
2 +

11H6Re2φ1
18A2

− 37H7Re2φ1
315A2

+

5H4 d2 H
dt2

Re2φ1

12A2
− 3H5Re2α(1−φ)2.5φ1

10A2
+

19H6Re2α(1−φ)2.5φ1
18A2

;

m2(t) = 0;

m3(t) = Re
3A2

− H d2 H
dt2

Re2

3A2
2 +

H2 d2 H
dt2

Re2

6A2
2 +

Reα(1−φ)2.5

3A2
− H d2 H

dt2
Re2α(1−φ)2.5

3A2
2 − H4Re2φ1

4A2
+

H5Re2φ1
20A2

−
H2 d2 H

dt2
Re2φ1

6A2
+

H3Re2α(1−φ)2.5φ1
9A2

− 5H4Re2α(1−φ)2.5φ1
12A2

;

m4(t) = − Re
12A2

− H2Re2

12A2
2 + H3Re2

36A222 − H2Re2α(1−φ)2.5

6A2
2 +

H3Re2α(1−φ)2.5

36A2
2 − H2Re2α2(1−φ)5

12A2
2 ;

m5(t) = H2Re2

30A2
2 − H3Re2

90A2
2 +

H2Re2α(1−φ)2.5

30A2
2 +

H2Re2φ1
30A2

− H3Re2φ1
90A2

+
d2 H
dt2

Re2φ1

60A2
+

H2Re2α(1−φ)2.5φ1
30A2

;

m6(t) = − Re2

90A2
2 − Re2α(1−φ)2.5

45A2
2 − Re2α2(1−φ)5

90A2
2 − HRe2φ1

180A2
+

H2Re2φ1
180A2

− Re2α(1−φ)2.5φ1
180A2

+
HRe2α(1−φ)2.5φ1

180A2
;

m7(t) = Re2

252A2
2 +

Re2α(1−φ)2.5

252A2
2 +

Re2φ1
1260A2

− HRe2φ1
630A2

− Re2α(1−φ)2.5φ1
1260A2

;

m8(t) = − Re2

2016A2
2 +

Re2φ1
10080A2

;

n1(t) = 2H − 2H4Re
3A2

+ 4H5Re
15A2

− H2 dH
dt Re

A2
+ 5H7Re2

18A2
2 − 97H8Re2

420A2
2 + 79H9Re2

1620A2
2 +

19H5 dH
dt Re2

10A2
2 − 44H6 dH

dt Re2

45A2
2 +

H3( dH
dt )

2
Re2

A2
2 +

5H4 d2 H
dt2

Re2

12A2
2 − 2H4Reα(1−φ)2.5

3A2
+

5H7Re2α(1−φ)2.5

9A2
2 − 97H8Re2α(1−φ)2.5

420A2
2 +

19H5 dH
dt Re2α(1−φ)2.5

10A2
2 +

5H7Re2α2(1−φ)5

18A2
2 +

137H8Re2φ1
360A2

− 1643H9Re2φ1
22680A2

+
47H6 dH

dt Re2φ1
180A2

− 121H7Re2α(1−φ)2.5φ1
630A2

+
239H8Re2α(1−φ)2.5φ1

360A2
;

n2(t) = −1;
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n3(t) = H2Re
3A2

− H3Re
9A2

+
Re dH

dt
3A2

− 2H5Re2

15A2
2 + 11H6Re2

108A2
2 − 5H7Re2

252A2
2 − 7H3 dH

dt Re2

9A2
2 +

7H4 dH
dt Re2

18A2
2 − H( dH

dt )
2
Re2

3A2
2 −

H2 d2 H
dt2

Re2

6A2
2 +

H2Reα(1−φ)2.5

3A2
− 4H5Re2α(1−φ)2.5

15A2
2 +

11H6Re2α(1−φ)2.5

108A2
2 − 7H3 dH

dt Re2α(1−φ)2.5

9A2
2 − 2H5Re2α2(1−φ)5

15A2
2 −

11H6Re2φ1
54A2

+
37H7Re2φ1

945A2
− 5H4 dH

dt Re2φ1
36A2

+
H5Re2α(1−φ)2.5φ1

10A2
− 19H6Re2α(1−φ)2.5φ1

54A2
;

n4(t) = − HRe
6A2

+ H4Re2

18A2
2 − H5Re2

45A2
2 +

H2 dH
dt Re2

12A2
2 − HReα(1−φ)2.5

6A2
+

H4Re2α(1−φ)2.5

9A2
2 − H5Re2α(1−φ)2.5

45A2
2 +

H2 dH
dt Re2α(1−φ)2.5

12A2
2 +

H4Re2α2(1−φ)5

18A2
2 +

H5Re2φ1
8A2

− H6Re2φ1
40A2

+
H3 dH

dt Re2φ1
12A2

− H4Re2α(1−φ)2.5φ1
18A2

+
5H5Re2α(1−φ)2.5φ1

24A2
;

n5(t) = Re
15A2

+ HRe
30A2

− H4Re2

90A2
2 + H5Re2

225A2
2 +

H dH
dt Re2

15A2
2 − H2 dH

dt Re2

20A2
2 +

Re2 d2 H
dt2

60A2
2 +

Reα(1−φ)2.5

15A2
− H4Re2α(1−φ)2.5

90A2
2 +

H dH
dt Re2α(1−φ)2.5

15A2
2 − H4Re2φ1

20A2
+

H5Re2φ1
100A2

− H2 dH
dt Re2φ1
30A2

+
H3Re2α(1−φ)2.5φ1

45A2
− H4Re2α(1−φ)2.5φ1

12A2
;

n6(t) = − Re
60A2

− H2Re2

36A2
2 + H3Re2

108A2
2 − 7 dH

dt Re2

180A2
2 − H2Re2α(1−φ)2.5

18A2
2 +

H3Re2α(1−φ)2.5

108A2
2 − 7 dH

dt Re2α(1−φ)2.5

180A2
2 −

H2Re2α2(1−φ)5

36A2
2 − H3Re2φ1

90A2
+

H4Re2φ1
270A2

− H dH
dt Re2φ1
180A2

− H3Re2α(1−φ)2.5φ1
90A2

;

n7(t) = HRe2

63A2
2 +

2H2Re2

315A2
2 − 2H3Re2

945A2
2 +

11Re2 dH
dt

1260A2
2 +

2HRe2α(1−φ)2.5

63A2
2 +

2H2Re2α(1−φ)2.5

315A2
2 +

HRe2α2(1−φ)5

63A2
2 +

H2Re2φ1
126A2

−
H3Re2φ1

270A2
+

dH
dt Re2φ1
315A2

+
HRe2α(1−φ)2.5φ1

630A2
+

H2Re2α(1−φ)2.5φ1
210A2

;

n8(t) = − Re2

180A2
2 − HRe2

144A2
2 − Re2α(1−φ)2.5

90A2
2 − HRe2α(1−φ)2.5

144A2
2 − Re2α2(1−φ)5

180A2
2 − HRe2φ1

840A2
+

H2Re2φ1
720A2

−
Re2α(1−φ)2.5φ1

1008A2
+

HRe2α(1−φ)2.5φ1
840A2

;

n9(t) = 8Re2

2835A2
2 +

HRe2

1296A2
2 +

8Re2α(1−φ)2.5

2835A2
2 +

Re2φ1
7560A2

− 13HRe2φ1
45360A2

− Re2α(1−φ)2.5φ1
7560A2

;

n10(t) = − 163Re2

453600A2
2 +

Re2φ1
64800A2

;

w1(t) = 0;

w2(t) = −1 − α(1 − φ)2.5 +
3H4Reφ1

4 − 3H5Reφ1
20 +

H2Reφ1
dH
dt

2 − 131H5Re2φ1
dH
dt

60 +
53H6Re2φ1

dH
dt

72 −
H3Re2φ1( dH

dt )
2

2 − 5H4 d2 H
dt2

Re2φ1

24 − H3Reα(1−φ)2.5φ1
3 +

5H4Reα(1−φ)2.5φ1
4 +

H4Re2α(1−φ)2.5φ1
dH
dt

2 −
63H5Re2α(1−φ)2.5φ1

dH
dt

20 − 31H7Re2φ2
1

45 +
293H8Re2φ2

1
2016 − 12869H9Re2φ2

1
90720 +

3751H10Re2φ2
1

151200 − 67H6Re2φ2
1

dH
dt

180 −
8H7Re2φ2

1
dH
dt

315 − 1607H7Re2α(1−φ)2.5φ2
1

1260 +
131H8Re2α(1−φ)2.5φ2

1
1120 − 18679H9Re2α(1−φ)2.5φ2

1
90720

− 7H5Re2α(1−φ)2.5φ2
1

dH
dt

60 +

7H6Re2α(1−φ)2.5φ2
1

dH
dt

72 +
4H6Re2α2(1−φ)5φ2

1
45 − 667H7Re2α2(1−φ)5φ2

1
630 +

4303H8Re2α2(1−φ)5φ2
1

10080 − 121H12Re2φ3
1

1296 +

407H13Re2φ3
1

11340 − 1369H14Re2φ3
1

396900 − 55H10Re2φ3
1

dH
dt

432 +
37H11Re2φ3

1
dH
dt

1512 − 25H8( dH
dt )

2
Re2φ3

1
576 +

11H11Re2α(1−φ)2.5φ3
1

120 −
38573H12Re2α(1−φ)2.5φ3

1
113400 +

703H13Re2α(1−φ)2.5φ3
1

11340 +
H9Re2α(1−φ)2.5φ3

1
dH
dt

16 − 95H10Re2α(1−φ)2.5φ3
1

dH
dt

432 −
9H10Re2α2(1−φ)5φ3

1
400 +

19H11Re2α2(1−φ)5φ3
1

120 − 361H12Re2α2(1−φ)5φ3
1

1296 ;

w3(t) = 1
3 ;

w4(t) = − H2Reφ1
6 +

H3Reφ1
18 − Reφ1

dH
dt

12 +
5H3 dH

dt Re2φ1
12 − 7H4 dH

dt Re2φ1
48 +

H( dH
dt )

2
Re2φ1

12 +
H2 d2 H

dt2
Re2φ1

24 −
H2Reα(1−φ)2.5φ1

6 − H2 dH
dt Re2α(1−φ)2.5φ1

12 +
7H3 dH

dt Re2α(1−φ)2.5φ1
12 +

4H5Re2φ2
1

45 +
H6Re2φ2

1
216 +

4H7Re2φ2
1

315 −
H8Re2φ2

1
320 +

5H4 dH
dt Re2φ2

1
72 +

23H5Re2α(1−φ)2.5φ2
1

180 +
5H6Re2α(1−φ)2.5φ2

1
108 +

11H7Re2α(1−φ)2.5φ2
1

540 +

4H5Re2α2(1−φ)5φ2
1

45 − 7H6Re2α2(1−φ)5φ2
1

216 ;
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w5(t) =
HReφ1

30 − H2Reφ1
30 +

Reα(1−φ)2.5φ1
30 − HReα(1−φ)2.5φ1

30 +
H4Re2φ2

1
30 +

H5Re2φ2
1

360 − 7H6Re2φ2
1

5400 +
H3 dH

dt Re2φ2
1

60 +

29H4Re2α(1−φ)2.5φ2
1

360 +
13H5Re2α(1−φ)2.5φ2

1
900 +

H2 dH
dt Re2α(1−φ)2.5φ2

1
60 − H3Re2α2(1−φ)5φ2

1
90 +

3H4Re2α2(1−φ)5φ2
1

40 ;

w6(t) = −Reφ1
180 +

HReφ1
90 − H dH

dt Re2φ1
45 +

H2 dH
dt Re2φ1
90 −

d2 H
dt2

Re2φ1

360 +
Reα(1−φ)2.5φ1

180 − H dH
dt Re2α(1−φ)2.5φ1

45 −
H4Re2φ2

1
48 +

H5Re2φ2
1

240 − H2 dH
dt Re2φ2

1
72 +

H3Re2α(1−φ)2.5φ2
1

108 − 17H4Re2α(1−φ)2.5φ2
1

360 +
H5Re2α(1−φ)2.5φ2

1
400 −

H2 dH
dt Re2α(1−φ)2.5φ2

1
120 +

H3Re2α2(1−φ)5φ2
1

180 − H4Re2α2(1−φ)5φ2
1

48 +
3H8Re2φ3

1
320 − 3H9Re2φ3

1
800 +

3H10Re2φ3
1

8000 +

H6 dH
dt Re2φ3

1
80 − H7 dH

dt Re2φ3
1

400 +
H4( dH

dt )
2
Re2φ3

1
240 − H7Re2α(1−φ)2.5φ3

1
120 +

79H8Re2α(1−φ)2.5φ3
1

2400 − H9Re2α(1−φ)2.5φ3
1

160 −
H5 dH

dt Re2α(1−φ)2.5φ3
1

180 +
H6 dH

dt Re2α(1−φ)2.5φ3
1

48 +
H6Re2α2(1−φ)5φ3

1
540 − H7Re2α2(1−φ)5φ3

1
72 +

5H8Re2α2(1−φ)5φ3
1

192 ;

w7(t) = −Reφ1
1260 +

Re2φ1
dH
dt

1260 − HRe2φ1
dH
dt

630 − Re2α(1−φ)2.5φ1
dH
dt

1260 − H2Re2φ2
1

105 − H3Re2φ2
1

630 +
H4Re2φ2

1
252 − H5Re2φ2

1
2100 −

H dH
dt Re2φ2

1
420 +

H2 dH
dt Re2φ2

1
630 − H2Re2α(1−φ)2.5φ2

1
42 − H3Re2α(1−φ)2.5φ2

1
945 +

H4Re2α(1−φ)2.5φ2
1

252 − dH
dt Re2α(1−φ)2.5φ2

1
420 −

H2Re2α2(1−φ)5φ2
1

70 ;

w8(t) =
Re2φ1

dH
dt

5040 +
2H2Re2φ2

1
315 − H3Re2φ2

1
378 +

17 dH
dt Re2φ2

1
10080 +

HRe2α(1−φ)2.5φ2
1

630 +
11H2Re2α(1−φ)2.5φ2

1
1680 −

13H3Re2α(1−φ)2.5φ2
1

15120 +
dH
dt Re2α(1−φ)2.5φ2

1
1008 +

Re2α2(1−φ)5φ2
1

1260 − HRe2α2(1−φ)5φ2
1

1260 +
13H2Re2α2(1−φ)5φ2

1
5040 − H6Re2φ3

1
448 +

H7Re2φ3
1

840 − H8Re2φ3
1

6720 − H4 dH
dt Re2φ3

1
384 +

29H5 dH
dt Re2φ3

1
40320 − H2( dH

dt )
2
Re2φ3

1
1344 +

H5Re2α(1−φ)2.5φ3
1

1008 − 19H6Re2α(1−φ)2.5φ3
1

3024 +

17H7Re2α(1−φ)2.5φ3
1

10080 +
H3 dH

dt Re2α(1−φ)2.5φ3
1

2016 − 3H4 dH
dt Re2α(1−φ)2.5φ3

1
896 +

H5Re2α2(1−φ)5φ3
1

1008 − 5H6Re2α2(1−φ)5φ3
1

1344 ;

w9(t) =
Re2φ2

1
1620 − 31HRe2φ2

1
45360 +

H2Re2φ2
1

3780 +
H3Re2φ2

1
5670 − dH

dt Re2φ2
1

4536 +
5Re2α(1−φ)2.5φ2

1
9072 +

13HRe2α(1−φ)2.5φ2
1

22680 −
H2Re2α(1−φ)2.5φ2

1
5040 +

Re2α2(1−φ)5φ2
1

2520 +
HRe2α2(1−φ)5φ2

1
3024 +

H5Re2φ3
1

2880 − H6Re2φ3
1

2400 +
H7Re2φ3

1
14400 +

H3 dH
dt Re2φ3

1
4320 −

H4 dH
dt Re2φ3

1
4320 +

H4Re2α(1−φ)2.5φ3
1

5184 +
41H5Re2α(1−φ)2.5φ3

1
129600 − 11H6Re2α(1−φ)2.5φ3

1
21600 +

H2 dH
dt Re2α(1−φ)2.5φ3

1
4320 −

H3 dH
dt Re2α(1−φ)2.5φ3

1
4320 − H3Re2α2(1−φ)5φ3

1
6480 +

19H4Re2α2(1−φ)5φ3
1

25920 − H5Re2α2(1−φ)5φ3
1

1728 ;

w10(t) = − 83Re2φ2
1

453600 − HRe2φ2
1

10080 − H2Re2φ2
1

12960 − 127Re2α(1−φ)2.5φ2
1

453600 − 11HRe2α(1−φ)2.5φ2
1

64800 − 41Re2α2(1−φ)5φ2
1

453600 +

7H4Re2φ3
1

64800 − H5Re2φ3
1

972000 − H6Re2φ3
1

729000 +
H2 dH

dt Re2φ3
1

8100 +
H3 dH

dt Re2φ3
1

97200 +
( dH

dt )
2
Re2φ3

1
25920 +

H3Re2α(1−φ)2.5φ3
1

48600 +

23H4Re2α(1−φ)2.5φ3
1

97200 +
41H5Re2α(1−φ)2.5φ3

1
972000 +

H2 dH
dt Re2α(1−φ)2.5φ3

1
5400 − H3Re2α2(1−φ)5φ3

1
48600 +

H4Re2α2(1−φ)5φ3
1

4320 ;

w11(t) =
41Re2φ2

1
1247400 +

HRe2φ2
1

44550 +
Re2α(1−φ)2.5φ2

1
32400 − H3Re2φ3

1
19800 +

103H4Re2φ3
1

1663200 − 131H5Re2φ3
1

8316000 − H dH
dt Re2φ3

1
39600 +

H2 dH
dt Re2φ3

1
46200 − H2Re2α(1−φ)2.5φ3

1
19800 +

H3Re2α(1−φ)2.5φ3
1

51975 +
41H4Re2α(1−φ)2.5φ3

1
1663200 − dH

dt Re2α(1−φ)2.5φ3
1

39600 +

H dH
dt Re2α(1−φ)2.5φ3

1
39600 − H2Re2α2(1−φ)5φ3

1
19800 +

H3Re2α2(1−φ)5φ3
1

19800 ;

w12(t) = − Re2φ2
1

388800 +
H2Re2φ3

1
89100 − 53H3Re2φ3

1
2138400 +

19H4Re2φ3
1

2138400 +
dH
dt Re2φ3

1
285120 − H dH

dt Re2φ3
1

142560 +
HRe2α(1−φ)2.5φ3

1
118800 −

H2Re2α(1−φ)2.5φ3
1

59400 − 7H3Re2α(1−φ)2.5φ3
1

2138400 − dH
dt Re2α(1−φ)2.5φ3

1
285120 +

Re2α2(1−φ)5φ3
1

237600 − HRe2α2(1−φ)5φ3
1

118800 −
H2Re2α2(1−φ)5φ3

1
356400 ;

w13(t) = − HRe2φ3
1

842400 +
H2Re2φ3

1
226800 − 47H3Re2φ3

1
17690400 +

dH
dt Re2φ3

1
2358720 − Re2α(1−φ)2.5φ3

1
842400 +

HRe2α(1−φ)2.5φ3
1

210600 −
H2Re2α(1−φ)2.5φ3

1
368550 +

Re2α2(1−φ)5φ3
1

842400 − HRe2α2(1−φ)5φ3
1

842400 ;

w14(t) =
Re2φ3

1
11793600 − HRe2φ3

1
2063880 +

H2Re2φ3
1

2063880 − Re2α(1−φ)2.5φ3
1

3175200 +
HRe2α(1−φ)2.5φ3

1
2063880 +

Re2α2(1−φ)5φ3
1

11793600 ;

w15(t) =
Re2φ3

1
47628000 − HRe2φ3

1
23814000 − Re2α(1−φ)2.5φ3

1
47628000 ;
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w16(t) =
Re2φ3

1
762048000 ;

Similarly, some constants have also been enlisted as

A1 =
kn f
k f

;

A2 = A1
Prφ2

;

φ1 =
(
1.013 + 0.092φ − 0.015φ2)[1 − φ

(
1 + ρp

ρ f

)]
;

φ2 = (1 − φ)− φ
(ρCp)p

(ρCp) f

.
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Abstract: The present investigation addresses the flow of hybrid (nickel–zinc ferrite and ethylene
glycol) nanoliquid with entropy optimization and nonlinear thermal radiation coatings past a
curved stretching surface. Analysis was carried out in the presence of magnetohydrodynamic,
heat generation/absorption, and convective heat and mass flux conditions. Solution of the modeled
problem was attained numerically using MATLAB built-in function bvp4c. Impacts of prominent
parameters on betrothed distributions were depicted through graphs and were well supported
by requisite discussions. Numerically calculated values of Sherwood number were established
in a tabulated form and were scrutinized critically. An excellent concurrence was achieved when
results of the presented model were compared with previously published result; hence, dependable
results are being presented. It was observed that concentration field diminished with increasing
values of curvature parameter, though the opposite trend was noticed for velocity and temperature
distributions. Further, it was detected that Nusselt number decreased with augmented values of
radiation and curvature parameters.

Keywords: coatings; curved stretched surface; nanoliquid; nonlinear thermal radiation;
entropy generation

1. Introduction

Numerous applications of heat transfer liquids or coolants can be found in a variety of fields, such
as automobiles, industry, electronics, and cooling processes. In all such industrial applications, cooling
by liquids has been used for years. The process of cooling by fluids may be the single phase (where
there is no phase change in the coolant) or two-phase (where coolant liquid will experience a phase
change). In the latter, latent heat influences the cooling efficiency [1]. Several coolants, such as water,
ethylene glycol, blend of water and glycol, propylene glycol and amalgamation of water, and propylene
glycol, are used as coolants in automobiles and industrial cooling processes. In the last two decades,
several researchers have devoted their efforts to increasing thermal conductivity of coolants, thereby
improving heat transfer capabilities. The pioneering work of Choi et al. [2] introduced nanofluids by
insertion of solid nanoparticles into liquids, thus enhancing the thermal properties of these liquids.
This pioneering work has remarkably revolutionized modern engineering and the industrial world.
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Nanofluids are an amalgamation of suspended solid material particles and customary liquids (ethylene
glycol, water). This new type of advanced material possesses amazing capabilities that trigger the
process of heat transfer and augments the thermal conductivity of the base fluid. Enhancement in
the thermal conductivity and heat transfer is visualized once ferrite nanoparticles are added into the
base liquid. Several examples featuring heat transfer can be quoted, including chemicals, cooling and
heating system of buildings, and avionics cooling systems. Nanofluids exhibit potentially exceptional
features in comparison to macrometer-sized particles. This is because nanoparticles have sufficiently
larger surface area compared to micrometer-sized particles; this is the reason nanofluids possess
incomparable capabilities of heat transfer [3].

In several electromagnetic applications with high permeability, e.g., electromagnetic wave
absorbers and inductors, usage of nickel–zinc ferrite can be noticed. To minimize energy losses
related to bulk powders, usage of nickel–zinc nanoparticles has been recommended by a number of
researchers [4–6]. In addition, a majority of electronic gadgets require such materials to be compressed
into outsized shapes with the required thickness, which is reasonably challenging if the size of these
particles is large enough. Several methods have been proposed to get nickel–zinc ferrite, including ball
milling, precipitation, and hydrothermal. Ferrofluids are colloidal fluids comprising ferromagnetic
or ferrimagnetic nanoparticles suspended in an electrically insulated hauler fluid. In the current
examination, ethylene glycol (C2H6O2) was taken as a carrier fluid. The assumed ferrite nanoparticle
was nickel–zinc ferrite (NiZnFe2O4) crystallize in the normal spinal structure. Typically, at room
temperature, the inverted spinals are ferromagnetic and normal spinals are paramagnetic. Moreover,
zinc ferrites act like antiferromagnetic in nature at low temperature. This feature makes ferromagnetic
nanofluids more relevant in different real-world applications [7,8]. The ferrofluid’s flow with the
effect of thermal gradients and the magnetic field was discussed by Neuringer [9]. Majeed et al. [10]
demonstrated the heat transfer investigation in a ferromagnetic fluid flow.

The subject of fluid flow past stretched surfaces has diverse engineering and industrial
applications, including paper production, glass blowing, crystal growing, hot rolling, manufacturing
of rubber sheets, annealing of copper wires, etc. The coined work of Crane [11] discussing the flow
past a linearly stretching surface urged fellow researchers to discover more avenues in this exciting and
interesting subject. This was followed by the remarkable work of Gupta and Gupta [12] who pondered
on the flow past a spongy surface. Then, Chakrabarti and Gupta [13] examined the hydromagnetic flow
past a stretched surface. Andersson et al. [14] considered the flow of power-law fluid past a surface,
which was linearly stretched under the influence of magnetic forces. The flow of an Oldroyd-B fluid
with the impact of generation/absorption was deliberated by Hayat et al. [15]. Muhammad et al. [16]
discussed the effect of thermal stratification in the ferromagnetic fluid on a stretching sheet. Ramzan
and Yousaf [17] demonstrated that the elastic viscous nanofluid finished a bi-directional stretching
surface in view of Newtonian heating. Hussain et al. [18] utilized the exponentially stretching sheet to
scrutinize the flow of Jeffrey nanofluid with radiation effects. Some recent explorations highlighting
various fluid flows past stretched surfaces with coatings can be found in references [19–22].

In today’s cutting-edge engineering technology, curved stretching has a broad relevance because
of its different uses in industry, for example, in transportation and electronics. Sanni et al. [23]
attained a numerical solution for the viscous fluid flow on a curved stretched channel. Sajid et al. [24]
inspected the ferrofluid (Fe3O4) flow on a curved sheet with effects of Joule heating and magnetic forces.
Rosca and Pop [25] studied time-dependent flow along a spongy curved surface. Imtiaz et al. [26]
introduced the effect of homogeneous/heterogeneous reactions in ferrofluid embedded in a stretching
surface. Naveed et al. [27] calculated heat transfer and used the micropolar fluid to analyze the effects
over a curved surface with thermal radiation.

A literature review has specified that copious studies are available relating to nanofluids with
linear/nonlinear/exponential stretching surfaces but comparatively less research work is available
highlighting curved stretched surfaces. This gets even narrower when we talk about the study of hybrid
nanoliquid with entropy optimization past curved surfaces. Therefore, our task here is to discuss
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hybrid nanoliquid flow comprising ferromagnetic nanoparticle, i.e., nickel–zinc ferrite (NiZnFe2O4),
and the base fluid, i.e., ethylene glycol (C2H6O2), over a curved surface with entropy optimization
coating. The whole analysis was performed with added impressions of nonlinear thermal radiation
with entropy optimization coatings. The analysis was supported by the convective heat and mass
flux boundary conditions. Numerical solution of the envisioned model was obtained by utilizing
bvp4c from MATLAB. The traits of the sundry parameters on involved distributions were thoroughly
discussed keeping their physical justification in mind.

2. Mathematical Formulation

We considered a 2D steady, incompressible nanoliquid flow over a curved stretching channel
looped in the form of a circle with a radius R about the curvilinear directions r and x, as shown in
Figure 1. Here, a higher value of R corresponds to a marginally curved surface. The stretching velocity
is taken as u = uw along the x-direction. A magnetic field is applied normal to the fluid flow and along
the r-direction. The electric and induced magnetic fields were overlooked owing to our assumption of
small Reynolds number.

Figure 1. Flow geometry.

The assumed system is governed by the following equations:

∂

∂r
{(R + r)v}+ R

∂u
∂x

= 0 (1)

u2

r + R
=

1
ρn f

∂p
∂r

(2)

v
∂u
∂r

+
Ru

r + R
∂u
∂x

+
uv

r + R
= − 1

ρn f

R
r + R

∂p
∂x

+
μn f

ρn f
(

∂2u
∂r2 +

1
r + R

∂u
∂r

− u

(r + R)2 )−
σ

ρn f
B0

2u (3)

v
∂T
∂r

+
Ru

r + R
∂T
∂x

= αn f (
∂2T
∂r2 +

1
r + R

∂T
∂r

) +
Q0(

ρCp
)

n f
(T∞ − T) +

1(
ρCp
)

n f

1
r + R

∂

∂r
(r + R)qr (4)

v
∂C
∂r

+
Ru

r + R
∂C
∂x

= DB(
∂2C
∂r2 +

1
r + R

∂C
∂r

) (5)

The system of Equations (1)–(5) is supported by the following boundary conditions:

v|r=0 = 0, u|r=0 = uw(x) = sx, k f
∂T
∂r

∣∣∣
y=0

= h∗(Tf − T), −DB
∂C
∂r

∣∣∣
r=0

= jw

u|r→∞ → 0, ∂u
∂r

∣∣∣
r→∞

→ 0, T|r→∞ → T∞, C|r→∞ → C∞
(6)

The thermophysical traits of the hybrid nanoliquid are appended in Table 1.
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Table 1. The values of Cp, ρ, and k for ethylene glycol and NiZnFe2O4 (nickel–zinc ferrite) [28–33].

Thermo-Physical Characteristics of the
Ethylene Glycol and Nickel–Zinc Ferrite

Cp (J/kg K) ρ (kg/m3) k (W/mK) Pr

ethylene glycol(C2H6O2) 2382.0 1116.6 0.2490 204.0
nickel–zinc ferrite(NiZnFe2O4) 710.0 4800.0 6.3 –

The mathematical form of thermophysical properties are given as follows:

μn f =
μ f

(1 −φ)2.5 , αn f =
kn f

(ρCp)n f
(7)

ρn f = (1 −φ)ρ f +φρs, (ρCp)n f = (1 −φ)(ρCp) f +φ(ρCp)s (8)

kn f

k f
=

(ks + 2k f )− 2φ(k f − ks)

(ks + 2k f ) +φ(k f − ks)
(9)

In Equation (4), the nonlinear radiation heat flux term via Rosseland’s approximation is given
as follows:

qr =
4σ∗

3k∗
∂T4

∂r
=

16σ∗T3

3k∗
∂T
∂r

(10)

3. Solution Procedure

Here, we used the following dimensionless transformations:

ζ =
√

s
ν f

r, p = ρ f s2x2P(ζ), T = T∞(1 + (θw − 1)θ),

C = C∞ + jw
DB

√
ν f
s h(ζ), u = sx f ′(ζ), v = − R

r+R
√sν f f (ζ)

(11)

Here, prime denotes the derivative w, r, T, ζ and θw = Tf/T∞. The above transformation
Equation (11) satisfies Equation (1) identically and Equations (2)–(6) are given by the following:

P′ =
(
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1

ζ+ K1
h′ + Sc

(
K1

ζ+ K1

)
f h′ = 0 (15)

and
f (ζ) = 0, f ′(ζ) = 1, θ′(ζ) = (1 − θ(ζ))Bi, h′(ζ) = −1, as ζ = 0

f ′(ζ) → 0, f ′′ (ζ) → 0, θ(ζ) → 0, h(ζ) → 0, as ζ → ∞
(16)

Here, K1 = R
√

s
ν f

, Bi =
h∗
√

υ f
s

k f
, Sc =

υ f
DB

, Rd = 16σ∗T∞
3

3kk∗ , λ1 = Q0
s(ρCp) f

, and Pr =
υ f
α f

.
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Eliminating pressure term from Equations (12) and (13) by differentiating Equation (13) with
respect to ζ and then putting in Equation (12), we get the following:

f iv + 2 f ′′′
ζ+K1

− f ′′

(ζ+K1)
2 +

f ′

(ζ+K1)
3 + (1 −φ)25/10

(
1 −φ+φ
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ρ f
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{ K1
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2 ( f ′2 − f f ′′ )− K1
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( f ′ f ′′ − f f ′′′ )

− K1
(ζ+K1)

3 f f ′} − (1 −φ)25/10M( f ′
ζ+K1

+ f ′′ ) = 0

(17)
with

f (0) = 0, f ′(0) = 1, f ′(∞) → 0, f ′′ (∞) → 0 (18)

The surface drag force (Cf), Sherwood number (Shx), and Nux (Nusselt number) along x-direction
are defined as follows:

Cf =
τrx

1
2ρu2

w
, Nux =

xqw

k f (Tf − T∞)
, Shx = − x

(C − C∞)

∂C
∂r

(19)

where
τrx = μn f (

∂u
∂r

− u
r + R

)
r=0

, qw = (qr)w − (
∂T
∂r

)
r=0

(20)

After putting Equations (11) and (20), Equation (19) becomes the following:

1
2 Cf (Rex)

1
2 = f ′′ (0)− f ′(0)

K1
, Nux(Rex)

− 1
2 = −

[ kn f
k f

+ Rd(1 + (θw − 1)θ(0))3
]
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Shx(Rex)
− 1

2 = 1
h(0)

(21)

Here, Rex = sx2

v f
.

4. Entropy Generation

The equation of entropy generation in dimensional form is given in reference [34].
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kn f
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2
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3kn f k∗
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Equation (22) after applying the requisite transformations takes the following form:

NG =
Egen ′′′
E0

′′′ = Rex

[ kn f
k f

+ Rd(1 + Πθ)3
]
θ′2 + BrRex

Π2 ( f ′′ )2 + BrRex
Π2 M f ′2 + Rex ∑

Π

(
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(23)

where

Br =
μn f uw

2

kn f Tf
, Rex =

x2s
ν f

, ∑ =
C∞RD

kn f
, Π = θw − 1 (24)

5. Results and Discussion

The MATLAB built-in function bvp4c was applied to integrate the numerical solution for the
system of Equations (14), (15), and (17) with initial and boundary conditions, Equations (16) and (18), for
numerous values of K1, M, Rd, λ1, and Sc graphically. For this technique, we first changed differential
equations with the higher order to the equations of order one by utilizing new variables. The function
bvp4c needs an initial guess for the solution and with the tolerance of 10−7. The guess we chose
needed to satisfy the boundary conditions (Equations (16) and (18)) and the solution. The validation of
our presented results is depicted in Table 2. An excellent agreement with Sanni et al. [23] was observed
when M = 1, ϕ = 0.0, and in the absence of temperature and concentration profile.
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Table 2. Comparison of presented results for skin friction coefficient 1
2 Cf (Rex)

1
2 when M = 1 and ϕ = 0.0.

K1 Sanni et al. [23] Present Result

5 1.1576 1.15760
10 1.0734 1.07341
20 1.0355 1.03540
50 1.0140 1.01400

100 1.0070 1.00690
1000 1.0008 1.00079

Figures 2 and 3 show the impression of solid volume fraction ϕ on velocity and temperature
profiles. Both velocity fields increased with increasing values of solid volume fraction ϕ. Further,
the momentum and thickness of the thermal boundary layers were boosted with a larger value of ϕ.
The values given to other parameters were Pr = 10, Sc = 0.5, K1 = 10, Rd = 0.5, θw = 0.5, λ1 = 0.5, and
M = 0.1.

 
Figure 2. Upshot of ϕ on velocity distribution f ′(ζ).

 
Figure 3. Upshot of ϕ on temperature field θ(ζ).

The impact of the curvature parameter K1 on velocity, concentration, and temperature profiles
are depicted in Figures 4–6. Increasing values of K1 resulted in an increase in fluid velocity and
temperature field, while the concentration profile diminished. This was because of the radius of the
surface augment when curvature parameter K1 was increased. As a result, the flow increased but it
offered more resistance, therefore the temperature rose. The values of other parameters were fixed as
Pr = 10, Sc = 0.5, ϕ = 0.1, Rd = 0.5, θw = 0.5, λ1 = 0.5 and M = 0.1.
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Figure 4. Upshot of K1 on velocity profile f ′(ζ).

 
Figure 5. Upshot of K1 on temperature profile θ(ζ).

 
Figure 6. Upshot of K1 on concentration field h(ζ).

Figure 7 demonstrates the variation in the velocity field for numerous estimates of magnetic
parameter M. Here, increments in M led to a decline in the magnitude of fluid’s velocity. This was
because of the resistive force (called Lorentz force) triggered by the magnetic field, which lowered the
velocity of the fluid’s velocity flow. The values of the other parameters were fixed as K1 = 10, Sc = 0.5,
ϕ = 0.1, Rd = 0.5, θw = 0.5, λ1 = 0.5, and Bi = 0.1.
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Figure 7. Upshot of M on velocity profile f ′(ζ).

The characteristics of Biot number Bi and heat generation/absorption parameter λ1 on
temperature field are displayed in Figures 8 and 9, respectively. Figure 8 shows that the convective
heat transfer coefficient intensified for higher estimates of Bi and the temperature subsequently rose.
Figure 9 illustrates the behavior of λ1. To increase the estimation values of heat absorption/generation
parameter, the temperature profile and thermal boundary layer thickness were increased. The values
of other parameters were fixed as K1 = 10, M = 0.3, ϕ = 0.5, Rd = 0.1, θw = 0.5, and Pr = 10.

 
Figure 8. Upshot of Bi on temperature field θ(ζ).

 
Figure 9. Upshot of λ1 on temperature distribution θ(ζ).

Figures 10 and 11 show the impacts of nonlinear radiation parameter Rd and Prandtl number Pr
on temperature distribution, respectively. It can be seen that the temperature field fell with increasing
Prandtl number Pr. As Prandtl number is linked in a reciprocal way to the thermal diffusivity,
a quick augmentation in the Prandtl number Pr lessened the temperature and thickness of the thermal
boundary layer. The temperature profile increased with increment in nonlinear radiation parameter
Rd. Physically, the radiative heat flux increased with increasing values of Rd which ultimately boosted
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the temperature of the fluid. The values assigned to other parameters were K1 = 10, M = 0.3, ϕ = 0.5,
Bi = 0.1, θw = 0.5, and Sc = 5.

 

Figure 10. Upshot of Rd on temperature field θ(ζ).

 

Figure 11. Upshot of Pr on temperature field θ(ζ).

The impression of Schmidt number Sc on concentration distribution is portrayed in Figure 12.
A decrease in concentration field was detected with increasing values of Sc. As the Schmidt number
has a converse proportion with the Brownian diffusion coefficient, an increment in the Sc yielded a
decay in Brownian diffusion coefficient that brought about a diminishment in concentration and its
interrelated boundary layer thickness. The values allocated to other parameters were K1 = 10, M = 0.3,
ϕ = 0.1, Bi = 0.1, θw = 0.5, and Rd = 0.1.

 
Figure 12. Upshot of Sc on concentration profile h(ζ).

The influence of curvature parameter K1 and magnetic parameter M on skin friction coefficient
− 1

2 Cf Re1/2
x is depicted in Figure 13. It can be noticed that the surface drag force diminished

with increasing value of K1. A contradictory trend was demonstrated in case of M. In Figure 14,
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the consequence of magnetic parameter M and solid volume fraction ϕ on shear wall stress is
demonstrated. The skin friction profile rose with increase in magnetic parameter M and solid volume
fraction ϕ for fixed values of parameters Pr = 10, Sc = 0.5, Rd = 0.5, θw = 0.5, λ1 = 0.5 and Bi = 0.1.

 
Figure 13. Upshot of K1 and M on wall shear stress − 1

2 Cf Re1/2
x .

 
Figure 14. Upshot of M and ϕ on wall shear stress − 1

2 Cf Re1/2
x .

Figure 15 shows the effect of Biot number Bi and solid volume fraction ϕ on Nusselt number

Nux(Rex)
− 1

2 . It was detected that for higher value of Bi and ϕ, the surface heat transfer rate upsurged
when values of parameters were given as K1 = 10, M = 0.3, Sc = 5.0, Rd = 0.1, θw = 0.5, λ1 = 0.5 and
Pr = 10.

 
Figure 15. Upshot of Bi and on ϕ Nusselt number NuRe−1/2

x .

The outcome of curvature parameter K1 and nonlinear radiation parameter Rd on Nusselt number

Nux(Rex)
− 1

2 is examined in Figure 16. Here, a reduction in Nusselt number was noted for increasing
values of curvature parameter K1 and the opposite trend was seen for nonlinear radiation parameter
Rd for fixed values of ϕ = 0.1, M = 0.3, Sc = 5.0, θw = 0.5, λ1 = 0.5 and Pr = 10.
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Figure 16. Upshot of K1 and Rd on Nusselt number NuRe−1/2
x .

The impact of the Brinkman number (Br) on entropy generation is portrayed in Figure 17.
From the illustration, it can be seen that entropy optimization was boosted with increasing values of
(Br). The reason behind this was that more heat was generated between the layers of the fluid because
of augmented values of (Br). Figure 18 displays the relationship between the magnetic parameter
(M) and the entropy generation. Again, the same trait as depicted in case of (Br) was witnessed here.
Higher values of (M) meant stronger Lorentz force and ultimate strengthening of the dissipation
energy, and this was the main cause of irreversibility.

 
Figure 17. Upshot of Br on NG (η).

 
Figure 18. Upshot of M on NG (η).

Table 3 shows the behavior of Sherwood number Shx(Rex)
− 1

2 for varied values of Sc (Schmidt
number), K1 (curvature parameter), and M (magnetic parameter). It can be seen that for snowballing

values of Sc, the Sherwood number Shx(Rex)
− 1

2 increased; however, it diminished for increasing value
of K1 and M.
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Table 3. Numerical value of Sherwood number Shx(Rex)
− 1

2 for various value of parameter with fixed
value of Pr = 10, Rd = 0.1, ϕ = 0.1, Bi = 0.1, θw = 0.5, λ1 = 0.5 f ′(ζ).

Sc K1 M Shx(Rex)
− 1

2

0.5 10 0.1 0.38325
1.0 – – 0.59354
2.0 – – 0.92268
5 5 0.1 1.60150
– 10 – 1.58090
– 50 – 1.56230
5 10 0.3 1.56270
– – 0.5 1.54600
– – 0.7 1.53040

6. Concluding Remarks

In this paper, the flow of nanoliquid comprising nickel–zinc ferrite–ethylene glycol
(NiZnFe2O4–C2H6O2) accompanied by entropy optimization coating past a curved stretching surface
with convective heat and mass flux boundary was examined. The solution of the envisioned system
of equations was found numerically by applying MATLAB built-in function bvp4c. The impact
of numerous arising parameters on involved profiles was depicted via graphical illustrations with
requisite discussions.

The conclusions of the current study are as follows:

• An increase in curvature parameter accounted for increasing velocity and temperature fields and
diminishing concentration distribution.

• Under the considerable influence of magnetic parameter, an increased axial velocity field
was attained.

• For the increasing estimates of the solid volume fraction, the temperature and velocity profiles
showed increasing behavior.

• The temperature profile improved with increasing values of Biot number and heat
generation/absorption parameter.

• The value of friction factor profile augmented for larger values of M and ϕ, but it decreased for
K1 and M.

• The Nusselt number NuRe−1/2
x declined with increasing values of K1 and Rd.
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Nomenclature

u, v velocity components
r, x coordinate
R radius of circle
P pressure
B0 strength of magnetic field
Q0 volumetric rate of heat generation/absorption
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qr nonlinear radiative heat flux
T, T∞ temperature
C, Cw, C∞ concentration
DB Brownian diffusion coefficient
Tf convective temperature at the sheet
jw mass flux
uw stretching velocity along x-direction
k* mean absorption coefficient
K1 curvature parameter
M magnetic parameter
S positive stretching constant
Sc Schmidt number
Rd radiation parameter
h* convective heat transfer coefficient
Cf surface drag force
Shx Sherwood number
Rex local Reynolds number
Egen

′′′ volumetric rate of local entropy generation
E0

′′′ characteristic entropy generation rate
NG entropy generation
Br Brinkman number
Bi Biot number
Pr Prandtl number
Nux Nusselt number
Cs heat capacity of surface
Greek Symbols
ρnf, ρf, ρs density
μnf, μf, μs dynamic viscosity
σ electrical conductivity
σnf modified thermal diffusivity
(ρCp)nf, (ρCp)f heat capacity
kf, knf, k thermal conductivity
ϕ solid volume fraction of nanofluid
ζ a scaled boundary-layer coordinate
σ* Stefan–Boltzmann constant
θw temperature difference
λ1 heat generation parameter
f dimensionless stream function,
θ dimensionless temperature
τrx wall’s shear stress
∑ a constant parameter
α dimensionless temperature difference
Subscripts
w for wall surface
nf for the nanofluid
f for the base fluid
s for the solid (nanoparticles)
∞ use for ambient
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Abstract: The current investigation is carried out on the thin film flow of Reiner-Philippoff fluid
of boundary-layer type. We have analyzed the flow of thin films of Reiner-Philippoff fluid in
the changeable heat transmission and radiation over a time-dependent stretching sheet in 2D.
The time-dependent governing equations of Reiner-Philippoff fluid model are simplified with the
help of transformation of similarity variables. To investigate the behavior of the Reiner-Philippoff
fluid with variable stretching surface for different physical effects, we considered thermophoresis
and Brownian motion parameters in the flow. The Homotopy Analysis Method is implemented in
the reduced model to achieve a solution of the original problem. A numerical convergence of the
implemented method is also analyzed. The behavior of temperature, velocity, and concentration
profiles have been investigated with the variation of skin friction, Nusselt number, and Sherwood
number. A comparative graphical survey is presented for the velocity gradient, under different
parameters. An analytical analysis is presented for the time-dependent parameter over thin film
flow. The results we obtained are better than the previously available results. For the survey, the
physical representation of the embedded parameters, like, β depends on the stretching parameter ζ,
and the Reiner-Philippoff fluid parameter ε are discussed in detail and plotted graphically. Prandtl
number Pr, Brownian motion parameter Nb, thermophoretic number Nt, and Schmidt number Sc
are presented by graphs and discussed in detail.

Keywords: Reiner-Phillipoff fluid; thin film; time-dependent; thermal radiation; homotopy analysis
method (HAM)

1. Introduction:

In the last few decades, scientists have given great attention to thin film flow. The basic idea
behind such an important concept is the applications and mechanism of thin film flow. Thin films are
ubiquitous in nature and their mechanism is important to understand, because it has a wide range of
practical uses. The traditional theory of Newtonian fluids is mainly focused on the linear relationship
between stress and strain tensor or on their rates. Newtonian fluids are hardly pointing towards the
doctrine of linear relation between the stress and strain tensor. In the same way, fluids that do not
agree with the linear distribution between the stress and strain tensor are known as non-Newtonian
fluids. There are two main classes of non-Newtonian fluids, visco-inelastic and visco-elastic fluids. The
subsequent has great importance due its dual nature. Visco-elastic fluids, due to their viscosity, show
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an elastic behavior up to some degree. In such fluids, energy is stored in the form of strain energy. One
cannot ignore the strain in these types of fluids, because it is responsible to recover the original state.
These fluids came under the definition of Newtonian fluids, when there is a first order derivative of all
the tensor formed from the velocity field, while fluids having higher order derivative tensors present
come under the definition of non-Newtonian fluids. Some of these fluids are second order, third order,
and fourth order fluids. Third order liquid, which is due to its sequential nonlinear constraints, has
a variety of applications.

The study of non-Newtonian fluids from a theoretical point of view is too complicated and we
need a mathematical relation to briefly illuminate the relation between shear stress and the shear
rate. Therefore, a variety of non-linear relations have been suggested for the study of these fluids.
As a consequence, to deliberate such a categorizing demeanor, various models have been initiated
and discussed in [1]. Non-Newtonian fluids are not so simple that a single mathematical relation
can explain the whole scenario. Therefore, for this purpose, several models have been initiated and
developed to briefly explain the nature of such fluids. Among all, Ellis fluid model, Sisko fluid model,
the Carreau viscosity model, Ostwald-de Waele model, the cross-viscosity model, Carreau-Yasuda
model, Powell-Eyring model, and Reiner-Philippoff fluid model are the most important models in
explaining the nature of such fluids. These models have interesting properties in their own, in which
the Ostwald-de Waele model is considered to be the basic model, normally known as the Power law
model. The subsequent of all models discussed here is a time-independent three-parameter model,
behaving like non-Newtonian fluids under intermediate shear rates and Newtonian fluids at extreme
shear rates. Consequently, due to their dual nature, Reiner-Philippoff fluid has many applications in
engineering sciences and other technologies.

A variety of fluids are available in nature, in which nanofluids are the most interesting fluids, due
to their variety of applications. The most commonly uses of nanofluids are metal oxides, oxide
ceramics and chemically stable metals, like Alumina, Silica, Zirconia, Titania, aluminum oxide,
copper oxide, gold, copper and various forms of allotropes of carbon and metal carbides. Water, oils,
polymeric solutions, lubricants, bio-fluids, and glycols are normally used as base fluids. Nanofluids
are two-phased mixtures designed by spreading nanometer-sized particles, in which base fluid size
ranging up to 100 nm. Nanoparticles play a key part in heat transfer analysis. On the other hand,
applications of liquid film flow grow day by day. The most common uses of these flows are in
heat exchange processes, techniques of coating, industrial and distillation processes, and many more.
The applied usage of the liquid film flow is a fascinating interaction amongst fluid mechanics, structural
mechanics, and technology. Some of the practical usages are polymer and metal extrusion, foodstuff
processing, plastic sheets depiction, casting and fluidization of the reactor.

In the assessment of these applications, researchers have taken a keen interest in the study of
liquid film flow on unstable surfaces. Stretching sheets at the beginning were treated as linear surfaces.
Such a phenomenon encountered in many industrial processes, like, in cooling, extraction of polymer
sheets and plastic sheets, etc. In these industrial processes the stretching sheet contacts with the
fluid both mechanically and thermally. Sakiadis [2] work is considered to be the pioneering work in
the study of boundary-layer flow over non-stationary and rigid surfaces. But in polymer industries
stretching sheet play a key role, which is explained by Crane [3] in his famous work. After the work of
Crane on stretching sheet and its numerous applications in the polymer industry, researchers have
shown great interest in it. Stretching sheet problems have been investigated by different researchers
under different physical parameters with their variations, like viscosity and thermal conductivity,
magnetic and electric fields (MHD), thermal radiation, viscous dissipation, and chemical reactions etc.

Similar to the variations in the parameters for the stretching sheet, the same phenomenon
of stretching problem is studied for different geometries and is developed from time to time.
Siddiqui et al. [4,5] investigated non-Newtonian fluids on a moving built with a sloping plane in one
direction for thin film flow. Tawade et al. [6] studied the effect of magnetic field upon a thin fluid
stream passes over a temperamental stretching sheet with heat. They used two different numerical
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approaches, Newton-Raphson and RK-Felberg. They briefly explained and provided a detailed survey
of different physical parameters.

Beside all these, the implemented techniques are not to be ignored. In literature, the boundary-
layer equations obtained for stretching flow are solved by different approaches. Among all, numerical
and perturbation approaches have been adopted and applied by many researchers successfully.
In practice, numerical techniques are too difficult to apply due to the high non-linearity of the model
equations, whereas perturbation techniques are not always applicable. Perturbation techniques need
a small or large parameter to be presented in the equation, which is not always available to us.
To overcome this situation, some new techniques were developed and implemented by the researchers
successfully. Sajid and Hayat [7] used HAM and HPM to thin film flow of Sisko fluid and Oldroyed-6
constant. The effect of thermal radiations of blending convection stream over a steeping surface
in a permeable channel is studied by Bakier [8]. Nargis and Tahir [9] have given a more detailed
survey of grade third fluid on a moving belt in the direction of a slanted plane. Stretching problem
in permeable medium with thermal effects of a slanted plate is investigated by Moradi et al. [10].
Chaudhary et al. [11] re-examined thermal radiation impacts of liquid on exponentially extending
surfaces. Eldabe et al. [12] examined convection, radiation, and synthetic effects of MHD visco-elastic
fluid flow in a permeable channel on a horizontal stretching sheet. Das [13] has investigated some
important properties of thermal radiation and thermophoresis of MHD blended convective flow.
Recently, Hsiao [14] has examined the heat and mass trasfer effects of Maxwell fluid. MHD flow
of different models, like Powell–Eyring nanofluid and other non-Newtonian fluids on stretching
surfaces are briefly explained in [15–17]. Crane [3] for the first time studied the flow of gummy liquid
in a stretched surface. The effect of heat exchange on an extending sheet for viscoelastic liquids is
discussed by Dandapat [18]. Wang [19] for the first time studied finite liquid film on an unsteady
stretching domain. The problem discussed by Wang [19] has discussed by Usha and Sridharan [20]
with a survey on different parameters. For a heat transfer analysis of liquid film fluid, numerical
results for different parameters were obtained by Liu and Andersson [21]. The repercussion in the
thin liquid film on an unsteady stretching sheet due to the inner heat production was examined by
Aziz et al. [22].

The thin liquid film flow of non-Newtonian fluids has a lot of practical features. Consequently,
it becomes a common solute in engineering and other technologies. Andersson et al. [23,24] investigated
the non-Newtonian thin liquid films at a time depending stretching sheet by taking the Power law model
in consideration. After this pioneer investigation of Andersson, scientists have given more attention
to stretching problems by using the Power law model, for more detail see [25,26]. Other models also
came in discussion during this era. Megahed et al. [27] examined the thin liquid film flow of Casson
liquid for viscous promulgation with slip velocity and the transmission of variable heat transition.
The same scenario was discussed by Abolbashari et al. [28] for nano particles with the generation of
entropy. Buongiorno’s model for nano fluid thin film on a temperamental extending stretched sheet
was recently investigated by Qasim et al. [29]. A steady flow of liquids through a porous medium is
studied by Ariel [30]. Ariel got a high non-linear coupled boundary value problem for the geometry
under consideration and applied numerical methods to obtain an appropriate solution. Sahoo et al. [31]
investigated heat exchange analysis with a uniform oblique magnetic field for non-Newtonian fluids.
They successfully applied finite difference and Broyden’s methods for the concatenation of the field
of the velocity. Aiyesimi et al. [32,33] examined the thin liquid film flow of an MHD grade third fluid
and obtained some interesting results by using perturbation techniques with a brief survey impact of
slip parameters and magnetic parameters. Third grade fluid and its approximate analytical solution
by using OHAM for three different kinds of flow has discussed by Islam and Shah et al. [34,35].
Makinde [36] studied the same geometry with isothermal effects for hydro-dynamically third order
liquid film flow. The approximate solution for velocity and temperature was obtained by a Hermitepade
method. A brief discussion and explanation was given by Yao and Liu [37] of the second order fluid
over flat plates for unsteady flows. Erdogan et al. [38] examined the properties of unsteady flow of the
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non-Newtonian fluids, with a brief description on Poiseuille, Couette, and generalized form of Couette
flow. Abdulhameed et al. [39] successfully applied Laplace transformation, perturbation techniques,
and separation of variable methods for the clarity of unsteady non-Newtonian fluids over an oscillating
plate. Huan was the first to settle variational rules for nano thin film-lube [40] with the help of the
method of semi-inverse [41–45]. Kapitza [46], Yih [47], Krishna and Lin [48], Anderson and Dahl [49],
and Cheng et al. [50] considered thin film flow problems with distinct geometric expressions. As time
passes, the thin film flow applications in engineering sciences increase day by day and as a result,
the researchers extended the work to a new world. Recently, coating and fiber applications of thin film
flow are described and discussed in [51–54]. The geometry and other physical constraints have fixed,
but some impurities have been introduced to the study as discussed in [55,56], to improve and enhance
the heat transfer analysis.

An interesting and remarkable behavior of time-dependent non-Newtonian fluid is its
pseoudo-plasticity, which vanishes with the expansion of shear rate. Many models have initiated as
discussed earlier in the investigation of the behavior of such fluids. Among all, in Reiner-Philippoff
fluid model [57], researchers have shown great interest. In 1965, Kapr and Gupta [58] have studied
Reiner-Philippoff fluid two-dimensional flow in a linear channel. Different approaches have been
adopted with different geometrical aspects to discuss this famous model.

In 1994, Tsung-Yen [59] investigated the boundary-layer flow problems by using this model.
The basic idea of boundary-layer theory was introduced by L. Prandlt in Heidelberg, Germany,
in August 1904, at the third International Congress of Mathematicians. It is the region in the fluid flow,
developing at large Reynolds numbers. This region is strongly affected by inertial forces and viscous
forces. Boundary layer theory is very important and has a variety of dimensions and visual perception
of interest, and has been studied for a long interval of time. In 2009, this model was investigated
by Yam [60] for the boundary flow past a stretching wedge. During this era Patel and Timol [61]
used the technique of similarity solution for three dimensional boundary layer type equations for
non-Newtonian fluids. Ahmad [62] examined the Reiner-Phillippoff fluid flow based nano-liquids
past a stretching sheet. Recently, Ahmad et al. [63] discussed the same model with the same geometry
with shifting and thickness in the stretching sheet.

Discussion has shown that different problems arise due to varying geometry as well as the fluid
behavior, and different approaches are adopted by the researchers to meet their needs. Most of the
problems that arise are highly non-linear and it is a difficult job to handle such problems with the
usual available techniques in literature. Nowadays, perturbation techniques [64,65] are in the main
stream for dealing with such problems. These methods work in the presence of small or large scale
parameters. These parameters are not always available to us in applied sciences and we cannot apply
these techniques to these types of problems. To deal with such problems, we use non-perturbative
techniques like the “Lyapunov’s artificial small parameter method” [66], the method of d-Expansion,
and the adomians decomposition method (ADM) [67]. Various approaches have been adopted by
researchers to find the solution to their problems. An exact solution in literature is very rare. This is
because of the complexity of the geometry of the problem. That is why we often see numerical
approaches to find the approximate solution. Among all, homotopy analysis method (HAM) [68–70]
is the one by virtue of which we can find the approximate solution. In 1992, Liao [71] for the first
time developed and implemented this method and found solution in the form of series in a single
variable. Liao also discussed the convergence of this proposed method and found a rapid convergence.
HAM has some interesting points of interest. Most importantly, this method is independent of whether
a given non-linear problem contains any small or large parameters or not. In HAM, we can modify
and control the region of convergence, where necessary, and is helpful in selecting distinct sets of base
operations, which approximate a non-linear problem with less effort.

The goal of our current investigations is to obtain the thin liquid film flow of Reiner-Philippoff
fluid over a stretching sheet with heat transfer and thermal radiations. Boundary-layer equations are
obtained from the physical demonstrated geometry. Thermophoresis effects and Brownian motion
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are also encircled with different physical parameters. A similarity solution is obtained with the help
of new variables, due to which a complicated model is transformed into simple coupled ordinary
differential equations. An analytical approach is adopted for the solution of the reduced system. HAM
is implemented with initial guess as required for the implementation of the technique, due to its fast
convergence. With the variation of different physical parameters, the results are plotted, tabulated,
and discussed in detail. The physical significance of Sherwood number and skin friction is presented
by tables.

2. Problem Formulation

Consider an electrically conducting and time-dependent thin film flow of Reiner-Philippoff fluid
over spreading sheet. The elastic sheet start moving from fixed slit. The coordinates oxyz are adjusted
in such way that ox and the plate are equal, and oy is along the sheet. The origin is at rest in the
direction of the x-axis, due to the two equal and opposite forces of the stretching sheet flow. We take
the x-axis in the direction spreading sheet and has the stress velocity Uw(x, t) = γx(1 − ζt)−1, where
γ and ζ represent any fix numbers, which are vertical to y-axis as shown in Figure 1.

Figure 1. Geometry of the physical model.

The wall temperature [72,73] of the liquid is

Tw(x, t) =

(
γx2

2(1 − ζt)1.5ν f

)
Tr + T0 (1)

and the capacity of the nanoparticles is given by

Cw(x, t) =

(
γx2

2(1 − ζt)1.5ν f

)
Cr + C0 (2)

where ν f denotes the fluid kinematic viscosity, T0 and C0 denote the temperature of the slit and
volume friction of the nanoparticles, while Tr and Cr represent the reference temperature and reference
volume of the nanoparticles respectively. Assume that the effects of body forces are negligible in the
field of flow. In light of the previous assumptions, the equation of continuity, the basic boundary
governing equations, concentration, and heat transferring equations take the following forms.

The stress deformation behavior is well explained by Reiner-Philippoff in [74], and is considered
one of the classical descriptions and is given by an implicit functional way:

τij =

[
μ0 +

μ∞−μ0
1

2τ2
0
(∑3

p=1 ∑3
q=1 τpqτqp)

]
eij (3)
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where the parameters μ0, μ∞, and τ0 are greater than zero. This model gives interesting results due to
its behavior, for large or small values of the model nearly agree with Newtonian fluids. Besides this,
when the values of τ0 are in between the extremes the model agrees with non-Newtonian fluids.

The Momentum equations for two dimensional flow together with the continuity equation takes
the form:

∂ũ
∂x

+
∂ṽ
∂y

= 0 (4)

ρ
(

∂ũ
∂t + ũ ∂ũ

∂x + ṽ ∂ũ
∂y

)
+

∂p
∂x

=
∂τxx

∂x
+

∂τxy

∂y
(5)

ρ
(

∂ṽ
∂t + ũ ∂ṽ

∂x + ṽ ∂ṽ
∂y

)
+

∂p
∂y

=
∂τxy

∂x
+

∂τyy

∂y
(6)

The components of stress, presented above, are difficult to present in a closed single explicit
format. For this purpose, we assume a small τ0 such that its higher powers greater than three vanishes.
The stress components take the form:

τxy = τ0
xx + τ2

0 τ
′
xx (7)

with the constitutive relations defined by

τ0
xx = μ0

(
2 ∂ũ

∂x

)
, τ0

yy = μ0

(
2 ∂ṽ

∂y

)
, τ0

xy = μ0

(
∂ũ
∂y + ∂ṽ

∂x

)
(8)

where τ0
xx denotes the Newtonian stress component of the fluid with μ0, the coefficient of viscosity

and τ
′
xx is the residual contribution terms of the Reiner-Philippoff fluid, and prime should not be

considered a derivative.
Using Equation (7) in Equation (3), we get

τij =

(
μ0 +

μ∞ − μ0

1 + 1
2τ2

0
(τ02

xx + 2τ02
xy + τ02

yy + ...)

)
eij (9)

Neglecting fourth and higher order terms, we get

τij =

[
μ0 +

2(μ∞ − μ0)

τ02
xx + 2τ02

xy + τ02
yy

]
eij (10)

Hence, τij is explicitly related to the gradient of the velocity by the above relation.
Let us consider τ0 as large, such that its exponent larger than three is negligible in the relation

expressed below.

τxx = τ∞
xx +

τ
′′
xx

τ2
0

(11)

with the constitutive relations:

τ∞
xx = μ∞

(
2 ∂ũ

∂x

)
, τ∞

yy = μ∞

(
2 ∂ṽ

∂y

)
, τ∞

xy = μ∞

(
∂ũ
∂y + ∂ṽ

∂x

)
(12)

where τ∞
xx denotes the Newtonian fluid stress component with the viscosity coefficient μ∞ and τ

′′
xx,

the residual contribution terms of the Reiner-Philippoff fluid, while the prime should not be considered
a derivative sign.

Using Equation (11) in Equation (1), and neglecting higher exponent terms of 1
τ0

, we get
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τij =

[
μ∞ +

(μ0 − μ∞)(τ∞2
xx + 2τ∞2

xy + τ∞2
yy )

2τ2
0

]
eij (13)

Using Equations (10) and (13) in Equations (5) and (6), we get

ρ
(

∂ũ
∂t + ũ ∂ũ

∂x + ṽ ∂ũ
∂y

)
= −∂p

∂x
+

∂

∂x

[
2λ ∂ũ

∂x

]
+

∂

∂y

[
λ
(

∂ũ
∂y + ∂ṽ

∂x

)]
(14)

ρ
(

∂ṽ
∂t + ũ ∂ṽ

∂x + ṽ ∂ṽ
∂y

)
= −∂p

∂y
+

∂

∂y

[
2λ ∂ṽ

∂x

]
+

∂

∂x

[
λ
(

∂ũ
∂y + ∂ṽ

∂x

)]
(15)

where λ represents the terms defined in the square brackets in Equations (10) and (13).
In the absence of pressure gradient, the boundary-layer equations are simplified to(

∂ũ
∂t + ũ ∂ũ

∂x + ṽ ∂ũ
∂y

)
=

1
ρ

[
∂

∂y λ ∂ũ
∂y

]
(16)

where
∂ũ
∂y

=
τij

μ∞ + (μ0−μ∞)

1+
( τij

τs

)2

(17)

∂T
∂t

+ ũ
∂T
∂x

+ ṽ
∂T
∂y

− K
ρcp

∂

∂y

[
∂T
∂y

]
= τ

[
DB

(
∂C
∂y

∂T
∂y

)
+

DT
T∞

(
∂T
∂y

)2]
(18)

1
DB

[
∂C
∂t + ũ ∂C

∂x + ṽ ∂C
∂y

]
− ∂2C

∂y2 =

(
DT

T∞DB

)
∂2T
∂y2 (19)

With the constraints defined at the boundaries

ũ = Uw, ṽ = 0, T = Tw, C = Cw at y = 0, (20)

∂ũ
∂x

=
∂T
∂x

=
∂C
∂x

= 0, ṽ =
dh
dt

= 0, C > 0, at y = h(t) (21)

Here, ũ and ṽ represent the state variables, denotes the velocity components along x-axis and
y-axis respectively, and ρ represents the density of the fluid, local temperature by T, and the fluid

capacitance by Cp. The ratio (ρc)p
(ρc) f

is the characteristic ratio of the base fluid to the nanoparticles heat

capacitance; DB represents the direct Brownian diffusion constant; DT represents thermophoretic
diffusion constant, K is the thermal conductivity, and T∞ denotes the fluid temperature far away from
the slit. Introducing the succeeding similarity transformations [75,76]

η =

√
γ

υ(1 − ζt)
y, ψ(x, y, t) = x

√
υγ

1 − ζt
f (η), ũ =

∂ψ

∂y
= γ(1 − ζt)−1 f

′
(η)

ṽ =
∂ψ

∂x
= −

√
γυ

(1 − ζt)
f (η), τij =

[
x
(

γ(1 − ζt)−1
)3
] 1

2
g(η)

h(t) =
[

υ
γ(1−ζt)−1

] 1
2
(

Tw − T0

)
θ(η) = T − T0,

(
Cw − C0

)
φ(η) = C − C0

(22)

where prime represents the change with respect to η, β =
√

ζ
υ(1−ζt)h(t) represents the liquid film

thickness, ψ denotes the stream function, and υ = μ
ρ is the kinematics viscosity. From the dimensionless

film thickness, we can write dh
dt = − cβ

2

√
υ

ζ(1−ζt) , for detail see [77,78]. With the help of the newly

introduced similarity transformations, Equations (14)–(21) are reduced to the following equations,
while the continuity equation is satisfied identically.
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dg
dη

− 1
ε

[
S
(

η
2

d2 f
dη2 +

d f
dη

)
+
(

d f
dη

)2 − f d f
dη

]
= 0 (23)

g − ε
d2 f
dη2

(
g2+λγ

g2+γ

)
= 0 (24)

1
Pr

(
d2θ
dη2

)
+ f

dθ

dη
− 2θ

(
d f
dη

)
− S

2

(
3θ + η dθ

dη

)
+ Nt

(
dθ
dη

)2
+ Nb

(
dθ
dη

) (
dφ
dη

)
= 0 (25)

d2φ

dη2 + Sc
[

f dφ
dη − 2φ

(
d f
dη

)
− S

2

(
3φ + η

dφ
dη

)]
+

Nt
Nb

(
d2θ
dη2

)
= 0 (26)

The boundary constraints of the problem are:

f ′(0) = 1, f (0) = 0, θ(0) = φ(0) = 1, g(0) = 0, g
′
(0) = 1 (27)

f (β) =
Sβ

2
, f ′′(β) = 0, θ′(β) = φ′(β) = 0, g

′′
(β) = 0, g(β) =

Sβ

2
(28)

The generalized physical constraints obtained are defined as: S = γ
ε is the non-dimensional

measure of unsteadiness, ε =
√

x
υ , λ = μ0

μ∞
and γ = τ2

s

(
1−κt

cx
1
3

)3
are parameters of Reiner-Philippoff

fluid, Pr =
ρνcp

K is the Prandtl number, Nt = τDw(Tw−T∞)
νT∞

represents thermophoresis constraint,

Nb = τDB(Cw−C∞)
ν represents the limitation of the Brownian motion, and Sc = ν

DB
denotes Schmidt

number. All these parameters and numbers are well defined and explained briefly in literature.
Cf x and Nux represent the local skin-friction coefficient and local Nusselt number respectively, and
are defined as:

Cf x =
(τ)y=0

ρŨ2
w

2

(29)

or
Cf x

√
Rex

2
= τw

√
x

Ũ3
w
= g(0, x) (30)

where Rex is known as the local Reynolds number and is defined as Rex = Ũwx
ν̃ and τw is the value of

τ on η = 0. Nu is the Nusselt number and is defined as Nu = Qw
k̂(Tw−T0)

, while Qw denotes the heat flux

and Qw = −k̂
(

∂T
∂y

)
η=0

. Sh = DB Jw
k̂(Tw−T0)

represents the Sherwood number in which Jw is the mass flux,

where Jw = −DB

(
∂c
∂y

)
η=0

.

Sherwood number Sh and Nusselt number Nu take the dimensionless forms:

Nu = Θ
′
(0), Sh = −Φ

′
(0) (31)

3. Solution by HAM

The approximate solution of the Equations (23)–(26) corresponding to the Equations (27) and (28)
are treated with Homotopy Analysis Method (HAM). The auxiliary parameters encircled the solution
which normalize and switch to conjunction of the solutions. Let us take the initial guesses:

f̂0(η) = η, θ̂0(η) = 1, φ̂0(η) = 1 (32)

Let us denote the linear operators by L f , Lθ , and Lφ defined as:

L f ( f̂ ) = f̂
′′′

, Lθ(θ̂) = θ̂
′′
, Lφ(φ̂) = φ̂

′′
(33)
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with the property

L f (�1 + �2η + �3η2) = 0, Lθ(�4 + �5η) = 0, Lφ(�6 + �7η) = 0 (34)

where �j for j ∈ {1, 2, ..., 7} are the general solution coefficients. The fundamental procedure of the
solution by using HAM is explained in [72,73,76].

4. Results and Discussion

The current analysis is carried out on the thin film flow of Reiner-Philippoff fluid of boundary
layer type over a time-dependent stretching plate. The aim of this subsection is to study the velocity
distribution, temperature distribution, and concentration profile with physical effects of different
embedding parameters, which are discussed in Figures 2–16.

Figure 2 demonstrates the thin film thickness β during the fluid motion. In the performance of
coating, thin film thickness play a key role. Physically, the thickness of the films is directly related
to the velocity. Figure 2b reflects a more rapid variations in β under smaller values of ε and S as
compared to the results observed in part (a). The velocity of the fluid decreases with an increase in the
thickness parameter β. It happens because for larger values β of the fluid viscosity increases, and as
a result a gradual fall can be observe in the gradient of the velocity profile.
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Figure 2. (a) Impact of β on f
′
(η), when ε = 0.4, S = 0.2 and (b) Impact of β on f

′
(η), when

ε = 0.01, S = 0.05.

Figure 3 illustrates the effect of the stretching parameter ε. The velocity profile shows an increase
with the increasing values of ε, because the lower plate always behaves directly to the flow fluid velocity.
Physically, for ε > 0, the surface accelerating rises, ε < 0 decelerating the surface, while ε = 0 depict the
random motion of the surface. Figure 3b reflects the sensitivity of ε, under smaller values of β and S.
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Figure 3. (a) Impact of ε on f
′
(η), when β = 0.1, S = 0.2 and (b) Impact of β on f

′
(η), when

β = 0.05, S = 0.005.
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Figure 4 reveals the behavior of unsteady constraint S over f
′
(η) for dissimilar values of the

embedded parameters. It is observed that the velocity profile f
′
(η) directly varies with unsteadiness

parameter S. The velocity profile climes up with the increasing behavior of S. Furthermore, it is
observed that the solution is possible only in the closed interval [0, 1] for S. Also, the increasing values
of S increases the motion of the nanofluid.
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Figure 4. (a) Impact of S on f
′
(η), when β = 0.1, ε = 0.2 and (b) Impact of β on f

′
(η), when

β = 0.01, ε = 0.01.

The impact of Pr on θ(η) is shown in Figure 5. An inverse relation has been observed between the
temperature and the Prandlt number. Physically, for small values of Pr these fluids have larger thermal
conductivity and vice versa. As a result, for larger values of Pr the thermal boundary layer declines.
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Figure 5. Impact of Pr on θ(η), when S = 0.7, β = 1.0, ε = 0.4, Nb = 0.5, Nt = 0.3, Sc = 0.7.

The effect of the thin film thickness β on temperature profile for different values of the embedded
parameters is shown in Figure 6. A similar effect in velocity profile is observed for β. The larger the
thickness of the liquid film, the lesser the heat transfer. In other words, the flow of heat in the larger
thickness film faces more more difficulty, as compared to a lesser thickness film.

Figure 7 illustrates the temperature distribution under Brownian motion parameter Nb. In general,
due to the irregular motion of the particles, this causes a collision between these particles. An increase
in heat of the fluid can be seen with the ascending order of the Brownian motion parameter Nb,
consequently, free surface nanoparticle volume friction decreases.

The impact of the unsteadiness parameter S on the heat profile θ(η) is presented in Figure 8. It is
observed that θ(η) varies directly with S. An increase in S increases the temperature of the fluid, which
further increases the kinetic energy of the fluid, and results in increment of the liquid film motion.
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Figure 6. Impact of β on θ(η), when S = 0.6, ε = 0.5, Nb = 0.5, Nt = 0.3, Sc = 0.1, Pr = 0.7.
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Figure 7. Impact of Nb on θ(η), when S = 0.6, ε = 0.5, β = 0.4, Nt = 0.3, Sc = 0.1, Pr = 0.7.
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Figure 8. Impact of S on θ(η), when Nb = 0.5, ε = 0.5, β = 1.0, Nt = 0.3, Sc = 0.9, Pr = 0.6.

Figure 9 illustrates the effect of thermophoresis parameter Nt on temperature profile. The
limitations thermophoresis helps in the increase of a surface temperature. The irregularity in motion
(Brownian motion), causes a temperature increase due to the kinetic energy produced by nano
suspended particles, which results in thermophoretic force generation. The intensity produced by this
force compels the fluid to move away from the stretching sheet. As a result, larger values of Nt cause
an increase in temperature, due to which the surface temperature also increases.

Figure 10 describes the Schmidt number effect over temperature profile. Schmidt number
physically relates the boundary-layer of mass transfer to the hydrodynamics layer. Increasing rate of
the viscous diffusion keeping the mass flux constant increases the Schmidt number, which as a result
decreases the heat profile, as shown in the figure.
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Figure 9. Impact of Nt on θ(η), when Nb = 0.5, ε = 0.4, β = 1.0, S = 0.3, Sc = 0.6, Pr = 0.5.
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Figure 10. Impact of Sc on θ(η), when Nb = 0.5, ε = 0.1, β = 0.1, S = 0.3, Nt = 0.3, Pr = 0.6.

The effect of Brownian motion parameter Nb on φ(η) is shown in Figure 11. Brownian motion
is the irregular motion fluid particles. At molecular level Brownian motion of micropoler nanofluid
leading the thermal conductivity of nanofluids. The figure describes an inverse relation between the
concentration profile and Nb. The boundary-layer thicknesses diminishes due to an increase in Nb,
which results in reducing the concentration.
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Figure 11. Impact of Nb on φ(η), when Sc = 0.7, ε = 0.1, β = 0.9, S = 0.7, Nt = 0.3, Pr = 0.6.

Figure 12 describes the effect of thermophoresis parameter Nt on concentration field. It is clear
from the figure that an increase in Nt increases the concentration field. This is because higher values of
Nt increase the nanofluid molecules kinetic energy, and as a result the concentration increases.
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Figure 12. Impact of Nt on φ(η), when Sc = 0.7, ε = 0.3, β = 0.9, S = 0.5, Nb = 0.5, Pr = 0.6.

The impact of Pr on φ is shown in Figure 13. Larger values of the Prandtl number Pr cause the
concentration to falls down. The information from the figure reveals that large values of Pr cause
the concentration profile to fall down. Physically, the thermal boundary-layer vanishes with greater
values of Pr and as a result the concentration profile falls. The same phenomenon is observed for the
heat profile.
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Figure 13. Impact of Pr on φ(η), when Sc = 0.6, ε = 0.2, β = 0.6, S = 0.5, Nb = 0.6, Nt = 0.6.

Figure 14 shows the concentration profile φ(η) behavior, under the effect of the unsteadiness
parameter S. A direct relation has been observed between the unsteadiness parameter S and φ(η) the
concentration profile . Increasing the unsteadiness parameter S, causes an increase in the temperature to
be observed, that blows the kinetic energy off the fluid, which leads to an increase in the concentration
of the liquid film.

Figure 15 reveals the opposite information as discussed in the temperature distribution under
different parameters. The above diagram shows that the concentration profile decreases due to an
increase in Schmidt number Sc, which as a result reduces the boundary-layer thickness. This is
because of the physical significance of the Schmidt number, which relates both the mass and
hydrodynamic layer.

Figure 16 illustrates the effect of thin film thickness β on φ(η) for the different values of the
embedded parameters. It is clear that the concentration profile falls with higher values of β. The same
effect has been observed for β in the velocity distribution as well as in temperature distribution.
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Figure 14. Impact of S on φ(η), when Sc = 0.7, ε = 0.8, β = 0.9, Pr = 0.5, Nb = 0.8, Nt = 0.4.
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Figure 15. Impact of Sc on φ(η), when S = 0.7, ε = 0.8, β = 0.9, Pr = 0.6, Nb = 0.8, Nt = 0.4.
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Figure 16. Impact of β on φ(η), when S = 0.7, ε = 0.8, Sc = 0.9, Pr = 0.6, Nb = 0.8, Nt = 0.4.

5. Tables Discussion

Table 1 depicts the influence of Nusselt number. The effects of Nt, S, β, and Pr on Θ
′
(0) are

shown. It is clear that larger values of Nt and S decrease Θ
′
(0), while the unsteadiness parameter

S and thickness parameter β increase Θ
′
(0). The influence of stretching parameters ε and λ of

Reiner-Philippoff fluid and unsteadiness parameter S on skin friction Cf is presented in Table 2.
It is observed that the increasing values of stretching parameters of Reiner-Philippoff fluid ε and λ

decrease Cf , while unsteadiness parameter S increases Cf . The effects of Nb, Nt, Pr, Sc, and S on the
Sherwood number Φ

′
(0) are demonstrated in Table 3. It is observed that local Sherwood number

values increases due to an increase in thermoporetic parameter Nt. Increasing values of Schmidt
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number Sc decreases the Sherwood number, while increasing unsteady parameter and Prandtl number
decreases the Sherwood number.

Table 1. Variation in Nusselt number with different values of the parameters Nt, Pr, β, and S.

Nt β S Pr Θ
′
(0)

0.5 0.1 1.5 1.5 0.626541
0.626198
0.625771

0.1 0.625345
0.5 0.626541
1.0 0.626541
1.5 0.1 0.626541

0.5 2.38501
1.0 4.78618
1.5 0.1 5.10531

0.5 0.407137
1.0 0.517063
1.5 1.5 0.626541

3.0 1.08812
5.0 1.40251
7.0 1.56869

Table 2. Variation in skin friction with different values of the parameters ε, λ, and S.

ε λ S Cf

0.1 0.9 0.5 0.17400
0.6 0.42640
1.0 0.54710
1.8 0.95 0.11381

0.995 0.08872
0.9995 0.07511
0.99995 0.5 0.06632

1.0 1.18991
1.5 1.981683
2.0 2.398281

Table 3. Variation in Sherwood number with different values of the parameters Nb, Nt, Sc, S and Pr.

Nb Nt Sc S Pr Φ
′
(0)

0.1 0.5 1.5 1.5 −1.35820
0.5 −0.238811
1.0 −0.098888
1.5 0.1 −0.0223188

0.5 −1.35820
1.0 −2.75366
1.5 0.1 −4.14542

0.5 −1.18991
1.0 −0.981683
1.5 0.1 −0.398281

0.5 −0.882057
1.0 −1.12055
1.5 1.5 −0.642239

3.0 −1.21912
5.0 −1.53875
7.0 −1.669378
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6. Conclusions

The goal of our current research is to investigate the effects of the embedded parameters on
different state variables, like velocity, temperature, and the behaviour of the modeled equations under
these parameters. The modeled equations are tackled with an analytical approach “homotopy analysis
method” HAM. The embedded parameters and their effects are investigated and studied graphically.
The motion of the suspended particles always has a great physical significance in heat transfer processes.
Physically, the larger the Brownian motion parameter, the greater is the heat induction. Similar results
have been observed for temperature profile with the larger values of Brownian motion. The effect
of increasing values of Sc on boundary-layer thickness show a decrease in the thickness of the layer.
The surface temperature increases with the increasing values of Pr, while an opposite effect is observed
for unsteadiness parameter S, i.e., large values of S reduce the surface temperature. It is also observed
that the temperature profile falls with large numbers of thermophoresis parameter Nt and vice versa.
It is further observed that larger values of Nb reduce the mass flux, where Nt increases the mass flux.
Higher values of Sc reduce the flux of mass, while it increases with increasing values of Sc. On the other
hand, skin friction Cf shows a decline in its behavior with larger values of the stretching parameters ε

and λ, while the unsteadiness parameter S increases Cf . In the solution procedure, the implemented
technique convergence under the variation of physical parameters is observed numerically, which
shows the reliability of our technique.

The central concluded points are as follows:

• A comparative analysis for the stretching and unsteadiness parameters for the gradient of the
velocity is discussed to observe the sensitivity of these parameters.

• The temperature profile climbs up with larger values of Brownian motion parameter Nb.
• Wth larger values of S, the thermal boundary layer thickness reduces.
• Higher values of Pr increase the surface temperature, where an opposite effect is observed for

unsteady parameter S, i.e., large values of S reduce the temperature of the surface.
• It is examined that the heat profile decreases with increasing values of thermophoresis parameter

Nt, and increases with small numbers.
• The increasing values of Nb reduce the mass flux, where Nt increases the mass flux, while it rises

with rising values of Sc.
• The effect of Prandtl number Pr on concentration and temperature profile is analyzed and a similar

decline is observed in both the profiles.
• The convergence of the HAM method with the variation of the physical parameters is observed,

and found its convergence more rapid as compared with other techniques.
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Abbreviations

The following abbreviations and parameters with their possible dimensions stated here are used in this article:

Sh Sherhood number
β Film thickness parameter
Nu Nusslet number
S Unsteady parameter
Re Reynold number
Pr Prandtl number
ζ Stretching parameter
Sc Schmidth number
DB Brownian diffusion of nanofluids
Uw(x, t) Stretching velocity (m/s)
Nt Thermophoretic parameter
Cf Skin friction coefficient
Nb Brownian motion parameter
eij Components of the strain rate
T Cauchy stress tensor
T Fluid temperature (K)
τij Extra stress tensor
I Identity tensor
υ Kinematic viscosity (m2/s)
ρ Density (Kg/m3)
μ Dynamic viscosity (mPa)
cp Specific heat (J K−1 g−1 K−1)
DT Thermophoretic diffusion of nanofluids
h(t) Thickness of liquid
κ Absorption coefficient
Qw Heat Flux (W/m2)
Rex Local Reynolds number
Jw Mass flux (K g s−1 m−2)
f Dimensionless velocity
∞ Condition at infinity
0 Reference condition
ũ Velocity component in x-direction (m/s)
ṽ Velocity component in y-direction (m/s)
x, y, z Coordinates (m)
η Similarity variable
t Time (s)
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Abstract: The thin film flow of micropolar fluid in a porous medium under the influence of
thermophoresis with the heat effect past a stretching plate is analyzed. Micropolar fluid is assumed as
a base fluid and the plate is considered to move with a linear velocity and subject to the variation of
the reference temperature and concentration. The latitude of flow is limited to being two-dimensional
and is steadily affected by sensitive fluid film size with the effect of thermal radiation. The basic
equations of fluid flow are changed through the similarity variables into a set of nonlinear coupled
differential equations with physical conditions. The suitable transformations for the energy equation
is used and the non-dimensional form of the temperature field are different from the published work.
The problem is solved by using Homotopy Analysis Method (HAM). The effects of radiation
parameter R, vortex-viscosity parameter Δ, permeability parameter Mr, microrotation parameter Gr,
Soret number Sr, thermophoretic parameter τ, inertia parameter Nr, Schmidt number Sc, and Prandtl
number Pr are shown graphically and discussed.

Keywords: thin film of micropolar fluid; porous medium; thermophoresis; thermal radiation;
skin friction; Nusselt number and Sherwood number; variable thickness of the liquid film; HAM

1. Introduction

Fluids, generally, have a major role in many problems related to industrial and engineering
applications like crystal growing, glass blowing, polymer extrusion processes, metallurgical processes,
and so on. In the extrusion process, the heated liquid stretching into a cooling system, as well
as the phenomenon in which the tiny sized particles are transferred from a hot surface to a cool
surface, is called thermophoresis. In gasses, tiny particles like dust exert force parallel to the
temperature gradient called thermophoretic force, and the motion gained by these particles is known
as thermophoretic velocity. In thermophoresis, tiny particles are transferred towards cold surfaces,
whereas hot surface particles also resist taking place and, as a result, a particle free layer is observed
around the hot surface, as analyzed by Goldsmith and May [1]. The most important application of this
phenomenon is to remove tiny particles from the path of gas particles used in turbine blades. The same
phenomenon was used by Goren [2] in the study of aerosol particles, and this idea was extended
by Jayaraj et al. [3] in the natural convection. The idea of mass transfer in this phenomenon was
investigated by Selim et al. [4]. They analyzed the effects of physical parameters involved in the model.
Chamka et al. [5,6] observed the thermophoresis effect in free convection boundary layer flow over
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the permeable wall. Das [7] studied variable fluid properties with slip boundary conditions. Flow in
porous media is highly important in enhanced oil recovery, geothermal energy extraction, insulation
of buildings, food processing, heat storage beds, composite manufacturing, and the coating of paper
and textile processes. Porous media flow describes different practical and engineering applications
like oil or gaseous movement, liquid in the oil reservoir or gaseous field, the purification process of oil,
gaseous wells, drilling, and the processing of carbon made substances and cosmetic material.

Generally, the study of non-Newtonian fluid flow in two- and three-dimensional problems
is a tough job because of its high nonlinearity and, especially, the addition of extra terminologies
such as magnetic field, porous medium, thermophoretic term, dissipation term, and so on. Despite
these difficulties, efforts are being made by the researchers to solve such problems. The idea of
viscous dissipation and permeable media was introduced by Al-Hadrami et al. [8]. In another
paper, Al-Hadrami et al. [9] studied the combined problem of convection for both forced and free
convection through a permeable channel. The micropolar fluids in two and three dimensions belong
to the non-Newtonian fluids explained by Łukaszewicz [10] in his book. It is pointed out that the
Navier-Stokes equation is not sufficient to handle the Cauchy stress tensor of micropolar fluid and,
therefore, this fluid belongs to non-Newtonian fluids. Aouadi [11] presented a numerical solution
for micropolar liquid flow over a stretched plate. The flow of second grade fluid with heat flux
over a stretching surface is described in the studies of Chauhan and Olkha [12] and Cortell [13].
Dandapat and Gupta [14] observed the allied problem over a stretching sheet with some modification.
The time-dependent motion of second order liquid in partially filled porous media was explored by
Chuhan and Kumar [15]. Khan and Shafie [16] studied the generalized Burger’s fluid including rotation
in a porous medium. They observed effects of embedded parameters related to the model. Micropolar
fluid is one of the important sub-class of non-Newtonian fluid. Studies related to micropolar fluids
with various physical configurations with thermal radiation were presented by Abo-Eldahab and
Ghonaim [17], Rashidi et al. [18,19], Heydari et al. [20], and Tripathy et al. [21]. The idea of heat
and mass transfer mechanisms were described by the researchers to study the impact of various
embedded parameters on the nanoparticle volume fraction. Rahman and Sattar [22] and Bakr [23] have
studied the heat and mass transfer flow of micropolar fluid using the oscillatory boundary conditions.
Ramzan et al. [24] have examined the Buoyancy impacts on the heat and mass transfer flow of the
micropolar fluid with double stratification. Srinivasacharya and Ramreddy [25] have inspected the
heat and mass transfer in micropolar fluid with thermal and mass stratification.

Recently, thin film flow has been an important subject of research. Thin film fluid is used for
making different heat exchangers and tools in chemical techniques, and these applications require
complete comprehension on the motion procedure. The applications comprise wire and fiber coating,
polymer preparing, and so on. This motion is attached to manufacturing various types of sheets,
either metallic or plastic. The quality of the final product is related to heat and mass transport and
the rate of stretching. An analysis of heat transfer in Williamson nanofluid flow was conducted by
Nadeem and Hussain [26] and Khan et al. [27]. Aziz et al. [28] studied heat transfer through thin film
flow on an unsteady stretching sheet with internal heating. Qasim et al. [29] and Tawade et al. [30]
discussed the flow of thin film using different fluids and geometries. Khan et al. [31] and Mahmood and
Khan [32] investigated the effects of different variables on different fluids in their flow. According to our
knowledge, there is no published work related to thermophoresis on heat transfer and thermal radiation
characteristics of thin film micropolar liquid on the stretched plate under the transformations used in
this research. Therefore, we have shown our interest in this paper to make an effort in discussing this
new case. In this manuscript, exploration of the behavior of a steady, laminar, and two-dimensional
flow of an incompressible micropolar fluid thin film into a porous medium past a stretched sheet
was examined. Further, the inclusion of thermal radiation in the equation of energy is always used
as a special case and, in most of the problems in the existing literature, the energy equation is used
without radiation. In the papers cited above [17–20], the non-dimensional energy equation is written
as (3R + 4)θ′′ + 3R Pr fθ′ = 0, in which R is revealed as the radiation term. Clearly, if R becomes
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zero, then the energy equation is reduced to θ” = 0, that is, the key parameter Pr and momentum
boundary layer vanish and, therefore, the energy equation becomes meaningless. Therefore, we have
tried to avoid this situation by using a transformation that is the same as in the works of [27,29,32]
for the same problem as cited in the literature [17–20] with the addition of concentration. In recent
research, most researchers used homotopy analysis method (HAM) to solve higher order nonlinear
problems, and credit goes to Liao [33–35], who investigated such a wonderful technique to solve
nonlinear higher order differential equations. Gul et al. [36,37] used the HAM method for the suitable
range of parameters. Analytical solutions in series form are calculated using HAM. The effects of all
parameters on velocity, microrotation, temperature, and concentration fields are shown graphically.

2. Mathematical Formulation

Consider the thin film micropolar fluid flow on a stretched plate, which is being stretched with a
linear velocity Uw = ax. Here, a > 0 is a constant and shows the stretching rate and x displays the
direction of the flow. The thickness δ of the thin film is chosen uniform and the medium is considered
porous, as displayed in Figure 1. The stretching plate is kept at temperature Tw and concentration Cw.
The temperature Tw = T0 − Tre f

(
Uwx
2υ

)
and concentration Cw = C0 − Cre f

(
Uwx
2υ

)
on the surface are

assumed to vary with distance x from the plate. T0 and C0 are the temperature and concentration at
the plate, while Tre f and Cre f are the constant reference temperature and concentration. Further, it is
assumed that the liquid film is gripping and releasing radiation. The radiate heat flux is considered
along the x-axis, while neglecting along the y-axis.

 

Figure 1. Physical geometry of the problem.

The basic flow equations of our proposed model are as follows:

ux + vy = 0 (1)

uux + vuy = υuxx + kcσy +
υϕ

K
(U − u) + Crϕ(U2 − u2) (2)

G1σyy − 2σ− uy = 0 (3)

ρcp
(
uTx + vTy

)
= kTyy − (qr)y (4)

uCx + vCy = DmCyy +
DmkT

Tm
Tyy − (VTC)y (5)

The modeled boundary conditions for the two-dimensional liquid film are as follows:

u = Uw = ax, v = 0, σ = 0, T = Tw, C = Cwaty = 0, (6)

uy = Ty = σy = Cy = 0, v = δx, aty = δ. (7)
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The Rosseland approximation is defined as follows:

qr = −4σ∗

3k∗ ∂yT4 (8)

where qr is radiative heat flux, σ∗ is Stefan–Boltzman constant, and k∗ represents the mean absorption
coefficient. The flux is assumed to be small, such that T5

1 and higher terms are ignored, as in the
existing literature. After expanding by Taylor’s series, T4 is reduced to the following form:

T4 = 4T3
1 T − 3T4

1 (9)

T1 is used as the temperature at the free surface. Using Equations (8) and (9), Equation (4) is
reduced as follows:

uTx + vTy =
k

ρcp
Tyy +

16σ∗T3
1

3ρcpk∗ Tyy (10)

Abo-Eldahab and Ghonaim [17], Rashidi et al. [18,19] and Heydari et al. [20] introduced the
following transformations:

ψ(x, y) = (2υUwx)
1
2 f (η), σ = (

Uw

2υx
)

1
2
Uwg(η), η = (

Uw

2υx
)

1
2
y, ux = ψy and uy = −ψx (11)

In the recent research of Khan [27] and Qasim et al. [29], the thin film flows are modeled using
reference temperature and concentration for steady and unsteady problems, respectively.

T = T0 − Tre f (
Uwx
2υ

)θ(η), C = C0 − Cre f (
Uwx
2υ

)θ(η) (12)

where T0 is temperature at the stretched surface and Tre f is used as a constant reference temperature,
such that 0 ≤ Tre f ≤ T0. Similarly, C0 is the concentration at the stretched surface and Cre f is used as a
constant reference concentration, such that 0 ≤ Cre f ≤ C0. Substituting Equations (11) and (12) into
Equations (1)–(7), the basic governing equations of velocity, velocity rotation, and temperature with
boundary conditions yield the following forms:

f ′′′ + f f ′′ + Δg′ + 1
Mr
(
1 − f ′

)
+ Nr

(
1 − ( f ′

)2
)
= 0 (13)

Gr g′′ − 2(2g + f ′′ ) = 0 (14)(
1 +

4
3

R
)
θ′′ − Pr

(
2θ f ′ − f θ′

)
= 0 (15)

φ′′ + Sc(Sr − τφ)θ′′ + Sr
(

f − τθ′
)
φ′ − 2Scφ f ′ = 0 (16)

f (0) = g(0) = 0, f ′(0) = θ(0) = φ(0) = 1 (17)

f ′′ (β) = f (β) = g′(β) = θ′(β) = φ′(β) = 0 (18)

where f is a dimensionless velocity function and g is a dimensionless microrotation angular velocity
function, θ is the temperature function, φ is the concentration function, β is the non-dimensional
thickness of the liquid film, Δ = k1

υ is the vortex–viscosity parameter, Mr = Ka
2φυ is the permeability

parameter, Nr = 2φCrUw
a is the inertia coefficient parameter, Gr = G1a

υ represents the microrotation

parameter, Pr =
ρυcp

k represents the Prandtl number, R =
4σ∗T3

1
k∗k represents the radiation parameter,

Sc = υ
Dm

represents the Schmidt number, Sr = DmkT(Tw−T0)
υTm(Cw−C0)

represents the Soret number, and τ = kU2
w

2υa
is the thermophoretic parameter and is same as in the works of [17–20].
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The important physical quantities are skin friction coefficient Cf , local Nusselt number Nu,
and Sherwood number, which are defined as follows:

Cf =
μ
(
uy
)

y=0
1
2ρU2

w
, Nu =

−k
(
Ty
)

y=0x

k(Tw − T0)
, Sh =

−Dm
(
Cy
)

y=0x

Dm(Cw − C0)
.

where μ
(
uy
)

y=0, −k
(
Ty
)

y=0, and −Dm
(
Cy
)

y=0 are shear stress, heat, and mass fluxes at the surface,
respectively. Using the variables in (11), the expressions for dimensionless skin friction, Nusselt
number, and Sherwood number are obtained as follows:

Cf

(
Re
2

) 1
2
= − f ′′ (0), Nu

(
Re
2

)− 3
2
= −θ′(0), Sh

(
Re
2

)− 3
2
= −φ′(0) (19)

Here, Re = Uwx
υ represents the Reynold number based on the stretching velocity. The calculated

values for the skin friction coefficient and local Nusselt number are shown in Tables 1–3.

Table 1. Values for the skin friction coefficient, when h = −0.2, Mr = Gr = 0.8, Nr = R = Δ = Sc =

Sr = τ = Pr = 0.3,β = 1.

Δ Mr Nr −f”(0)

0.3 0.8 0.3 1.36594
0.4 0.8 0.3 1.36571
0.5 0.8 0.3 1.36547
0.3 0.8 0.3 1.36594
0.3 0.9 0.3 1.24938
0.3 1.0 0.3 1.15533
0.3 0.8 0.3 1.36594
0.3 0.8 0.4 1.45338
0.3 0.8 0.5 1.54067

Table 2. Values of rate of heat transfer or the local Nusselt number, when h = −0.2, Mr =

Gr = 0.8, Nr = R = Δ = Sc = Sr = τ = Pr = 0.3,β = 1.

R Pr −θ
′
(0)

0.3 0.3 0.246741
0.4 0.3 0.240841
0.5 0.3 0.235105
0.3 0.3 0.246741
0.3 0.4 0.325885
0.3 0.5 0.403524

Table 3. Values of the Sherwood number, when h = −0.2, Mr = Gr = 0.8, Nr = R = Δ = Sc = Sr =
τ = Pr = 0.3,β = 1.

Sc Sr τ −φ
′
(0)

0.3 0.3 0.3 0.265463
0.4 0.3 0.3 0.350588
0.5 0.3 0.3 0.434081
0.3 0.3 0.3 0.265463
0.3 0.4 0.3 0.264059
0.3 0.5 0.3 0.262655
0.3 0.3 0.3 0.265463
0.3 0.3 0.4 0.266868
0.3 0.3 0.5 0.268272
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3. Solution Methodology

3.1. Homotopy Analysis Method

The solutions of Equations (13)–(16) with the related boundary conditions (17) and (18) are
achieved using HAM. Consider that initial guesses on f (η), g(η), θ(η), and φ(η) satisfying the
boundary conditions at η = 0 are as follows:

f0(η) =
η3

2β2 − 3η2

2β
+ η, g0(η) = 0, θ0(η) = 1, φ0(η) = 1 (20)

The linear operators for the given functions are the following:

L f ( f ) = f (iv), Lg(g) = g′′ , Lθ(θ) = θ′′ , Lφ(φ) = φ′′ . (21)

satisfying the following properties:

L f

(
a1 + a2η+ a3η

2 + a4η
3
)
= 0, Lg(a5 + a6η) = 0, Lθ(a7 + a8η) = 0, Lφ(a9 + a10η) = 0 (22)

where ai(i = 1 − 10) are constants related to the general solution.
The corresponding nonlinear operators are as follows:

Nf [ f (η; q) , g(η; q)] = fηηη(η; q) + f (η; q) fηη(η; q) + Δgη(η; q)

+ 1
Mr (1 − fη(η; q)) + Nr

(
1 − ( fη(η; q))2

)
,

(23)

Ng[ f (η; q), g(η; q)] = Grgηη(η; q)− 2(2g(η; q) + fηη(η; q)) = 0, (24)

Nθ[ f (η; q), θ(η; q)] =
(

1 +
4
3

R
)
θηη(η; q)− Pr(2θ(η; q) fη(η; q)− f (η; q)θη(η; q)), (25)

Nφ[ f (η; q), θ(η; q), φ(η; q)] = φηη(η; q) + Sc(Sr − τφ(η; q)) θηη(η; q)+
Sr( f − τθη(η; q))φη(η; q)− 2Scφ(η; q) fη(η; q) = 0.

(26)

(a) Zeroth-Order Deformation Problem

The main idea of HAM is explained in Equations (19)–(22). We formulate the zeroth-order problem
from Equations (13)–(16) as follows:

(1 − q)L f { f (η; q)− f0(η)} = qh f Nf { f (η; q), g(η; q)}, (27)

(1 − q)Lg{g(η; q)− g0(η)} = qhgNg{ f (η; q), g(η; q)}, (28)

(1 − q)Lθ{θ(η; q)− θ0(η)} = qhθNθ{ f (η; q), θ(η; q)}, (29)

(1 − q)Lφ{φ(η; q)− φ0(η)} = qhφNφ{ f (η; q), g(η; q), θ(η; q), φ(η; q)}, (30)

Expanding the functions f , g, θ and φ by Taylor’s series when q = 0, we have the following:

f (η; q) = f0(η) +
∞
∑

w=1
fw(η) qw,

g(η; q) = g0(η) +
∞
∑

w=1
gw(η) qw,

θ(η; q) = θ0(η) +
∞
∑

w=1
θw(η) qw,

φ(η; q) = φ0(η) +
∞
∑

w=1
φw(η) qw.

(31)
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where
fw(η) =

1
w! f w

η (η; q)|q=0, gw(η) =
1

w! gw
η(η; q)|q=0,

θw(η) =
1

w!θ
w
η(η; q)|q=0, φw(η) =

1
w! φ

w
η (η; q)|q=0.

(32)

The supporting constraints h f , hg, hθ, and hφ are taken such that series (33) converges at q = 1.
Substituting q = 1 in (33) we get the following:

f (η) = f0(η) +
∞

∑
w=1

fw(η), (33)

g(η) = g0(η) +
∞

∑
w=1

gw(η), (34)

θ(η) = θ0(η) +
∞

∑
w=1

θw(η), (35)

φ(η) = φ0(η) +
∞

∑
w=1

φw(η). (36)

(b) wth Order Deformation Problem

The following equations are satisfied by the problem of the wth order.

L f [ fw(η)− χw fw−1(η)] = h f R f
w(η), (37)

Lg[gw(η)− χwgw−1(η)] = hg Rg
w(η), (38)

Lθ[θw(η)− χwθw−1(η)] = hθ Rθ
w(η), (39)

Lφ[φw(η)− χwφw−1(η)] = hφ Rφ
w(η). (40)

where

χw =

{
0, if q ≤ 1
1, if q > 1

3.2. Numerical Solution

The numerical (ND solve) solution of Equations (13)–(16) with boundary conditions (17) and (18)
for different values of embedded parameters are calculated and compared with HAM in Tables 4–7.

Table 4. Comparison of HAM and numerical solution for velocity when h = −0.001, Pr = 10.6, Nr =
R = Sc = Sr = τ = Δ = 0.5, Gr = β = Mr = 1.

η HAM Solution of f
′
(η) Numerical Solution Absolute Error

0 5.09 × 10−22 0.000000 5.09 × 10−22

0.1 0.099999 0.100043 4.3 × 10−5

0.2 0.199999 0.200168 1.6 × 10−4

0.3 0.299999 0.300364 3.6 × 10−4

0.4 0.399999 0.400624 6.2 × 10−4

0.5 0.499999 0.500937 9.3 × 10−4

0.6 0.599999 0.601295 1.2 × 10−3

0.7 0.699999 0.701689 1.6 × 10−3

0.8 0.799999 0.802110 2.1 × 10−3

0.9 0.899999 0.902549 2.5 × 10−3

1 0.999999 1.002997 2.9 × 10−3
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Table 5. Comparison of HAM and numerical solution for microrotation angular velocity when h =

−0.15, Nr = R = Δ = Sc = Sr = τ = 0.5, Mr = β = 1, Gr = 5, Pr = 10.6.

η HAM Solution of g(η) Numerical Solution Absolute Error

0 −1.28767269 −0.0000000 1.2 × 10−8

0.1 −0.0094987 −0.0088208 6.7 × 10−4

0.2 −0.0167880 −0.0157937 9.9 × 10−4

0.3 −0.0221826 −0.0211439 1.2 × 10−3

0.4 −0.0259819 −0.0250914 8.9 × 10−4

0.5 −0.0284720 −0.0278531 6.1 × 10−3

0.6 −0.0299279 −0.0296435 2.8 × 10−4

0.7 −0.0306156 −0.0306741 5.8 × 10−5

0.8 −0.0307942 −0.0311543 3.6 × 10−4

0.9 −0.0307176 −0.0312916 5.7 × 10−4

1 −0.0306366 −0.0312919 6.5 × 10−4

Table 6. Comparison of HAM and numerical solutions for temperature when h = −0.33, Nr = R =

Δ = Sc = Sr = τ = 0.5, Mr = β = 1, Gr = 5, Pr = 10.6.

η HAM Solution of θ(η) Numerical Solution Absolute Error

0 0.999999989 1.000000 1.06 × 10−8

0.1 0.924017 0.925128 1.1 × 10−3

0.2 0.855763 0.857526 1.7 × 10−3

0.3 0.795601 0.797495 1.8 × 10−3

0.4 0.743742 0.745268 1.5 × 10−3

0.5 0.700264 0.701015 7.5 × 10−4

0.6 0.665136 0.664844 2.9 × 10−4

0.7 0.638237 0.636805 1.4 × 10−3

0.8 0.619370 0.616887 2.4 × 10−3

0.9 0.608278 0.605027 3.2 × 10−3

1 0.604656 0.601109 3.5 × 10−3

Table 7. Comparison of HAM and numerical solutions for concentration when h = −0.42, Nr = R =

Δ = Sc = Sr = τ = 0.5, Mr = β = Gr = 1, Pr = 10.6.

η HAM Solution of φ(η) Numerical Solution Absolute Error

0 1.000000091 1.000000 9.1 × 10−8

0.1 0.898855 0.90411 5.2 × 10−3

0.2 0.809875 0.81792 8.04 × 10−3

0.3 0.733047 0.741694 8.6 × 10−3

0.4 0.668142 0.675623 7.4 × 10−3

0.5 0.614767 0.619828 5.1 × 10−3

0.6 0.572423 0.57436 1.9 × 10−3

0.7 0.540544 0.539208 1.3 × 10−3

0.8 0.518529 0.514298 4.2 × 10−3

0.9 0.505765 0.499496 6.2 × 10−3

1 0.501644 0.494614 7.03 × 10−3

4. Graphical Results and Discussion

The thin film motion of a micropolar fluid through porous media with the impact of energy
radiation and thermophoresis through a stretching plate is investigated. The non-linear coupled
differential Equations (13)–(16) with physical conditions (17) and (18) were determined through HAM.
The effects of all the embedded constants on the dimensionless velocity field, dimensionless
microrotation, dimensionless temperature field, and concentration fields— f (η), g(η), θ(η), and φ(η),
respectively—are observed. The physical geometry of the modeled problem is demonstrated by
Figure 1. Liao [33–35] presented h curves to measure the convergence of the series solution for accurate
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results of the system, so suitable h-curves are drawn for the velocity profile f (η), microrotation
profile g(η), temperature profile θ(η), and concentration profile φ(η) in range of −2.0 ≤ h f ≤ 0.1,
−2 ≤ hg ≤ 0, −2.1 ≤ hθ ≤ 0.1, and −2 ≤ hφ ≤ 0, respectively, in Figures 2–5. The influence
of permeability parameter Mr on the velocity field is described in Figure 6. The permeability
parameter should be increased at a very small level because of the small thickness of the liquid
film because higher values of Mr, that is , Mr → ∞ correspond to the case in which there is no
porous medium. The increasing values of Mr respond to the large opening of the porous space, which
reduces retardation of the flow; so for increasing values of Mr, the velocity increases in this region.
The larger values of the inertia coefficient parameter Nr increase the velocity of fluid as a result of
its direct relation with fluid motion, deliberated in Figure 7. The influence of Δ versus motion of
liquid film is represented in Figure 8. As Δ has an inverse relation with viscosity, the viscosity falls
for larger values of Δ, while the velocity of the liquid film is raised. Figures 9 and 10 indicate the
relationship between β with the fluid velocity profile f (η) and microrotation profile g(η). The fluid
motion reduces with the increase in the liquid film thickness. The reason is clear, because larger
values of β dominate the viscous forces and, as a result, the fluid velocity decreases. In other words,
the thickness of the liquid film shows resistance to liquid flow, and fluid velocity causes retardation
towards the free surface—this effect is very clear in the rotation velocity field g(η). The microrotation
profile g(η) of the liquid film rises with the increasing microrotation Gr, as displayed in Figure 11,
because the microrotation parameter has an inverse relation with the viscosity parameter. As a result,
the viscosity reduces with the rising values of Gr; therefore, larger values of Gr offer low resistance
to the flow and the velocity of fluid increases. Figure 12 demonstrates the variation of the inertia
parameter Nr on the non-dimensional microrotation profile g(η). It is observed that the rise in the
inertia parameter Nr material parameter reduces the microrotation profile. The inclusion of thermal
radiation in the equation of energy is always used as a special case and, in most of the problems in the
existing literature, the energy equation is used without radiation. If the thermal radiation parameter
R becomes zero, the temperature field θ(η) in Abo-Eldahab and Ghonaim [17], Rashidi et al. [18,19],
and Heydari et al. [20] becomes meaningless, so it is not clear when the thermal radiation parameter
R becomes zero in these papers. Therefore, our case of thermal radiation is reciprocal to the above
published work, and is the same as Khan [27], Qasim et al. [29], and Mahmood and Khan [32].
Therefore, the temperature rises with the larger values of thermal radiation parameter, as shown
in Figure 13, because the thickness of the boundary layer (thin film) is directly related to thermal
radiation. Physically, the rate of energy transport increases and, as a result, the temperature of the fluid
rises. The dimensionless fluid thickness β has a vital role in temperature distribution. θ(η) decreases
with increasing values of β, which is obvious from Figure 14. The size of thin film absorbing heat,
and thus the temperature of the fluid, decreases and, as a result, a cooling effect is produced. In other
words, the thickness of the fluid decreases with the increasing temperature. Figure 15 represents the
comparison of temperature and Prandtl number Pr. The temperature falls with growing values of Pr.
In fact, the larger values of Pr enhance the viscous diffusion more than the thermal diffusion and,
as a result, the temperature profile declines. Schmidt number verses concentration is deliberated in
Figure 16. The rising values of Schmidt number Sc decrease the concentration field, because molecular
diffusivity is inversely related to Sc. The contribution of the Soret number Sr is represented in Figure 17,
showing that φ(η) rises when the Soret number Sr increases. In fact, the larger Soret number increases
the viscosity and, therefore, φ(η) accelerates. Figure 18 shows the relationship between thermophoretic
parameter τ and φ(η). They are inversely related to each other. Rising values of τ reduce the size of the
boundary layer. The concentration field rises as thickness β increases, as shown in Figure 19, because
of cohesive forces between molecules dominated by the increasing value of the parameter β, which
result a rise in friction force and cause the fluid flow.
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Figure 2. h f curves for the velocity field.

Figure 3. hg curves for the velocity field in rotation.

 
Figure 4. hθ curves for the temperature field.

 

Figure 5. hφ curves for the concentration field.
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Figure 6. Effect of permeability parameter Mr on the velocity.

 
Figure 7. The comparison of dimensionless velocity with inertia coefficient parameter Nr.

 
Figure 8. Velocity verses vortex–viscosity parameter Δ.

 

Figure 9. Variation of dimensionless velocity with dimensionless fluid thickness β.
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Figure 10. Variation of dimensionless microrotation profile with fluid thickness β.

 

Figure 11. Microrotation profile under the effect of microrotation parameter Gr.

 

Figure 12. Variation of dimensionless microrotation profile with inertial parameter Nr.

 

Figure 13. Temperature verses radiation parameter R.
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Figure 14. Temperature verses film thickness parameter β.

 

Figure 15. Temperature versus Prandtl number Pr.

 

Figure 16. Variation of dimensionless concentration with Schmidt number Sc.

 

Figure 17. Variation of dimensionless concentration with Soret number Sr.
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Figure 18. Concentration versus thermophoretic parameter τ.

 

Figure 19. Variation of dimensionless concentration with dimensionless fluid thickness β.

5. Conclusions

The study of the thin film flow in a permeable medium past a stretched plate was examined.
The micropolar fluid was used as a base fluid with the influence of thermal radiation and
thermophoresis. Modeled non-linear coupled differential equations were tackled through HAM.
The HAM solution was compared with the numerical method and close agreement was observed for
the validation of the problem. The effects of the physical parameters on the velocity, temperature,
and concentration profiles were displayed and discussed.

The outcomes of the problem are pointed out as follows:

• The increasing values of the thin film thickness parameter β improve the resistance force to
decline the velocity and microrotation profiles, and enhance the concentration field.

• It was observed that the rise in the Soret number Sr enhances the concentration field φ(η).
• The temperature field rises with the increasing value of the thermal radiation parameter R because

of the rate of energy and transport growth, and consequently enhances the temperature profile.
• The increase in the thickness of the thin film β reduces the temperature profile. Physically,

heat transfer is larger in the thin film as compared with the thick film, while the concentration
field increases as the thin film parameter β increases.

• The larger vortex–viscosity parameter Δ causes the velocity of the liquid film to rise.
• The HAM solution was validated with the numerical solution (ND-solve) and very close

agreement was observed.
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Nomenclature

x, y Cartesian coordinates
u, v Velocity components
Uw Stretching velocity
δ Uniform thickness of the thin film
Tw Wall temperature field
Cw Surface concentration
Tre f Reference temperature
Cre f Reference concentration
υ Kinematic viscosity
μ Dynamic viscosity
S constant characteristic
Cr Forchheimer inertia constant
kc coupling constant
T Temperature field
C Concentration field
ρ Fluid density
h(t) Liquid film thickness
qr Radiative heat fluctuation
σ Stefan–Boltzmann constant
Dm Concentration molecular diffusivity
Tm Mean temperature
K permeability
ψ Stream function
β Non-dimensional thickness of the Nano liquid film
ϕ porosity parameter
Pr Prandtl number
Sc Schmidt number
Sr Soret number
G1 is the microrotation constant
R Thermal radiation parameter
VT Thermophoretic velocity
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Abstract: Modern optical fiber required a double-layer resin coating on the glass fiber to provide
protection from signal attenuation and mechanical damage. The most important plastics resin
used in coating of fiber optics are plasticized polyvinyle (PVC), low/high density polyethylene
(LDPE/HDPE), nylon, and polysulfone. Polymer flow during optical fiber coating in a pressure
type coating die has been simulated under non-isothermal conditions. The flow dependent on
the wire or fiber velocity, geometry of the die, and the viscosity of the polymer. The wet-on-wet
coating process is an efficient process for two-layer coating on the fiber optics. In the present
study, the constitutive equation of polymer flow satisfies viscoelastic Phan-Thien-Tanner (PTT) fluid,
is used to characterize rheology of the polymer melt. Based on the assumption of the fully developed
incompressible and laminar flow, the viscoelastic fluid model of two-immiscible resins-layers modeled
for simplified-geometry of capillary-annulus where the glass fiber drawing inside the die at high
speed. The equation describing the flow of the polymer melt inside the die was solved, analytically
and numerically, by the Runge-Kutta method. The effect of physical characteristics in the problem
has been discussed in detail through graphs by assigning numerical values for several parameters
of interest. It is observed that velocity increases with increasing values of εD2

1, εD2
2, X1, and X2.

The volume flow rate increases with an increasing Deborah number. The thickness of coated fiber
optic increases with increasing εD2

1, εD2
2, and δ. Increase in Brinkman number and Deborah number

enhances the rate of heat transfer. It is our first attempt to model PTT fluid as a coating material for
double-layer optical fiber coating using the wet-on-wet coating process. At the end, the present study
is also compared with the published work as a particular case, and good agreement is found.

Keywords: optical fiber coating; double-layer coating; viscoelastic PTT fluid; analytic and
numerical simulations

1. Introduction

The analysis of non-Newtonian fluid is often encountered in many industrial disciplines [1,2].
The applications of such non-Newtonian fluids include wire and fiber coating, extrusion process,
performance of lubricants, food processing, design of various heat exchangers, ink-jet printing, polymer
preparation, colloidal and additive suspension, animal blood, chemical processing equipment, paper
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production, transpiration cooling, gaseous diffusion, drilling muds, heat pipes, etc. The non-Newtonian
fluids [3,4] are described by a nonlinear relationship between the sear stress and the rate of deformation
tensors. For this reason, several models have been proposed. There are several subclasses of
non-Newtonian fluids. Phan-Thien-Tanner fluid is one of the important fluids in this category and are
mostly used for the coating of wires and optical fiber. Therefore, in this problem, we used the PTT
fluid as a coating material for double-layer optical fiber coating.

In 1960, the modern concept of optical fiber was introduced, which gained significant importance
in the manufacturing industry. It consists of high purity silica glass fiber in which the information
travels in and forms light wave signals and the polymer coatings to protect the fiber from mechanical
damage. First, the fiber is dragged through to perform in the draw furnace, and then enters
in the cooling system. After going through the cooling system, the fiber is passed through
the double-layer coating of the polymer. The manufacturing process comes to an end as the
coating is cured by an ultraviolet lamp. Recently, two-layer coatings are used on optical fiber, i.e.,
primary (inner coating) and secondary coatings (outer coating). The inner-coating is made of a soft
coating-material to minimize the signal-attenuation due to micro bending. The secondary-coating
is made of hard coating-material that protects the primary-coating from mechanical damage.
The widespread-industrial success of optical-fibers as a practical-alternative to copper-cabling could
be attributed to these ultraviolet-curable coatings.

Two-types of coating processes were performed for two-layer coatings on bare glass fiber. These
are called wet-on-dry (WOD) and wet-on-wet (WOW) coating processes. In the WOD coating process,
fiber enters the primary coating die, followed by an ultraviolet lamp. Then, this cured fiber coating
enters the secondary coating die, again followed by an ultraviolet lamp. While in the wet-on-wet
process, the bare glass fiber passes through primary and secondary coating die and then cured by an
ultraviolet lamp. Recently, the WOW process gained significant importance in the production industry.
Herein, the WOW process is applied for the optical fiber coating.

Wire-coating (an extrusion procedure) is generally utilized as part of the polymer industry
for insulation and it protects the wire from mechanical damage. In this procedure, an exposed
preheated fiber or wire is dipped and dragged through the melted polymer. This procedure can also be
accomplished by extruding the melted polymer over a moving wire. Typical wire coating equipment
is composed of five distinct units: Pay-off tool, wire pre-heating tool, an extruder, and a cooling and
takeoff tool, as shown in Figure 1. The most common dies used for coatings are: Tubing-type dies and
pressure type dies. The later one is normally used for wire-coating and seems like annulus. That is
why flows through such die are similar to the flows through the annular area formed by a couple of
coaxial cylinders. One of the two cylinders (inner cylinder) moves in the direction of the axial, while
the second (external cylinder) is fixed. Preliminary efforts done by several researchers [5–10] used
power-law and Newtonian models to reveal the rheology of the polymer melt flow.

Figure 1. Optical fiber coating process.

At present, the Phan-Thein-Tranner (PTT) model, a third-grade visco-elastic fluid model, is the
most commonly used model for wire-coating. The high-speed wire-coating process for polymer
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melts in the elastic constitutive model was analyzed by Binding in Reference [11]. It also discussed
the shortcomings of the realistic modeling approach. Mutlu et al., in Reference [12], provided the
wire-coating analysis based on the tube-tooling die. Kasajima and Ito, in Reference [13], meanwhile
analyzed the wire-coating process and examined the post-treatment of the polymer extruded. They also
discussed the impacts of heat transfer on the cooling coating. Afterward, Winter, in References [14,15],
investigated the thermal effect on die, both from inside and outside perspectives. Recently, wire-coating
in view of linear variations of temperature in the post-treatment analysis was investigated by Baag
and Mishra in Reference [16].

The two-layer coatings process was also studied by many researchers. Kim et al. [17] used the
WOW process for optical fiber coating. Zeeshan et al. [18,19] used pressure coating die for the two-layer
coating in optical fiber analysis using the PTT fluid model. The same author discussed viscoelastic
fluid for the two-layer coating in the fiber coating [20]. The Sisko fluid model was used for fiber coating
by adopting the WOW process [21] in the presence of pressure type coating die.

In the present study, two-layer analysis is performed using viscoelastic fluid for optical fiber
coating phenomenon in the presence of pressure type coating die. Moreover, the computation of heat
transfer in fiber coating has significant effects on the operating variables in coating analysis. The heat
transfer also provides information to the die designers about the thermal variables that are important in
obtaining better product quality and achieving optimum operating conditions [22–25]. The closed form
solution for velocity field, thickness of the coated fiber optics, and temperature distribution has been
obtained in the first case. In the second case, the numerical solution has been obtained. The results of
both cases are compared and explained in detail. Finally, the recent result are also compared with the
published work reported by Kim et al. [17], as a particular case and good agreement is found.

2. Analysis

The WOW-type coating process is illustrated in Figure 2. The glass fiber is pulled with constant
velocity U through the primary coating die, which is filled with a primary coating resin. Afterwards,
the uncured coated fiber optics enters the secondary coating die, which is filled with a secondary resin.
After the secondary die the fiber leaves the system with two-coated layers, as displayed in Figure 2.
At the end these coated-layers, they are cured by ultraviolet lamps. Where Rw, R, and Rd are the radius
of the fiber optics, interface radius location, and radius of the die, L is the length of the die. The present
study is investigated under the assumption that the flow is incompressible, laminar, length of the die
is sufficient large, the fiber optics moves along the centerline with constant speed, negligible small
radial flow, as compared to the axial flow, because of high viscosity of the polymer-melt, the viscous
impacts are dominant, as compared to the inertial effects, axial heat conduction is negligible, and the
thermal conductivity, specific heat, melt density do not depend on the temperature and neglect the
gravitational effect. To analyze the flow, the cylindrical coordinate system (r, θ, z) is used in which r is
the radial coordinate and z is the axial coordinate of the wire means centerline of the die.

Figure 2. Geometry of double-layer optical fiber coating in wet-on-wet coating process [17].
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The basic equations governing the flow of incompressible fluids are:

∇.u = 0 (1)

ρ
du
dt

= ∇.T (2)

ρcp
dΘ
dt

= k∇2Θ + Φ (3)

f (trS)S + λṠ = ηA (4)

where ρ is the density of the fluid, T is the shear stress tensor, cp is the the specific heat, D/Dt denotes
the material derivative, k is the thermal conductivity, Θ is the fluid temperature, Φ is the dissipation
function, trS is the trace of extra stress tensor, Ṡ is the upper contra-variant convicted tensor, μ is the
viscosity of the fluid, and A is the deformation rate tensor.

The shear stress tensor is given in Equation (2) and the deformation rate tensor is given in
Equation (4), defined as:

T = −pI + S (5)

A = LT + L (6)

where I is the identity tensor and the superscript, T stands for the transpose of a matrix, and L = ∇u.
The upper contra-variant convicted tensor Ṡ in Equation (4) is given by

Ṡ =
dS
dt

−
[
(∇u)TS + S(∇u)

]
(7)

The function f (trS) is given by Tanner [19–21],

f (trS) = 1 +
ελ

η
(trS) (8)

In Equation (8), f (trS) is the stress function in which ε is related to the elongation behavior of the
fluid. For ε = 0, the model reduces to the well-known Maxwell model and for λ = 0, the model reduces
to a Newtonian one.

With the above frame of reference and assumptions the fluid velocity, extra stress tensor and
temperature filed are considered as

u = (0, 0, w(r)), S = S(r), Θ = Θ(r) (9)

Using assumptions and Equation (9), the continuity Equation (1) satisfied identically and from
Equations (2–8), we arrive at:

∂p
∂r

= 0 (10)

∂p
∂θ

= 0 (11)

∂p
∂z

=
1
r

d
dr

(rSrz) (12)

k

(
d2

dr2 +
1
r

d
dr

)
Θ + Srz

dw
dr

= 0 (13)

f (trS)Szz = 2λSrz
dw
dr

(14)

f (trS)Srz = η
dw
dr

(15)
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Φ = Srz
dw
dr

(16)

From Equations (10) and (11), it is concluded that p is a function of z only. Assuming that the
pressure gradient along the axial direction is constant. Thus, we have dp/dz = Ω.

Integrating Equation (12) with respect to r, we get

Srz =
Ω
2

r +
C
r

(17)

where C is an arbitrary constant of integration.
By substituting Equation (17) in Equation (15), we have

f (trS) =
ηdw

dr(
Ω
2 r + C

r

) (18)

Combining Equations (14), (15) and (17), we obtain the explicit expression for a normal stress
component Szz as:

Szz = 2
λ

η

(
Ω
2

r +
C
r

)2
(19)

From Equations (8) and (18), we have

η
dw
dr

=

(
1 + ε

λ

η
Szz

)(
Ω
2

r +
C
r

)
(20)

Inserting Equation (19) in Equation (20), we obtain an analytical expression for axial velocity as:

dw(j)

dr
=

1
η(j)

(
Ω
2

r +
C(j)

r

)
+ 2ε

λ2

η3
(j)

(
Ω
2

r +
C(j)

r

)3

(21)

Additionally, the temperature distribution is

k(j)

(
d2

dr2 +
1
r

d
dr

)
θ(j) + Srz(j)

dw(j)

dr
= 0 (22)

Here, j = 1, 2 represents the primary layer and secondary layer flow, respectively.
The boundary condition on θ(j) is θw at the fiber optics and θd at the die wall. For the problem

displayed in Figure 1, at the fluid interface, we utilize the assumptions that the velocity, the shear
stress, and the pressure gradient along the flow direction and the temperature and the heat flux are
continuous, which are given as follows.

The relevant boundary and interface conditions [17–22] on the velocity are

w1 = U at r = Rw and w2 = 0 at r = Rd (23)

w1 = w2 and Srz1 = Srz2 at r = R (24)

The relevant boundary and interface conditions [17–22] on the temperature are

θ1 = θw at r = Rw and θ2 = θd at r = Rd (25)

θ1 = θ2 and k1
dθ1

dr
= k2

dθ2

dr
at r = R (26)
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We introduce the non-dimensional flow variables as

r∗ = r
Rw

, w∗
(j) =

w(j)
U , θ∗(j) =

θ(j)−θd
θd−θw

, C∗
(j) =

2C(j)

R2
wΩ

, Br(j) =
η(j)U

2

k(j)(θd−θw)
, εD2

(j) =
λUc
Rw

, X(j) =
Uc
U ,

Γ∗ = R
Rw

, Rd
Rw

= δ > 1, K = k2
k1

, j = 1, 2.
(27)

dw(j)
dr = −4rX(j) − 4C(j)X(j)

1
r − 128X(j)εD2

(j)r
3 − 384X(j)εD2

(j)C(j)r − 384X(j)C2
(j)εD2

(j)
1
r −

128C3
(j)X(j)εD2

(j)
1
r3

(28)

d
dr

(
r

dθ(j)

dr

)
− 4Br(j)X(j)

(
r2 + C(j)

)dw(j)

dr
= 0 (29)

w1(1) = 1, w2(δ) = 0 (30)

w1(Γ) = w2(Γ), Srz1(Γ) = Srz2(Γ) (31)

θ1(1) = 0, θ2(δ) = 1, θ1(Γ) = θ2(Γ),
dθ1(Γ)

dr
= K

dθ2(Γ)
dr

. (32)

where Uc = − R2
wΓ/8η(j) is the characteristic velocity scale, and εD2

(j) is the characteristic Deborah
number based on velocity scale Uc, X(j) has physical meaning of a non-dimensional pressure gradient
and Br(j) is the Brinkman number. Here, Γ is the dimensionless parameter that is the ratio of the
radius of the liquid-liquid interface to the radius of the optical fiber and j = 1, 2 stands for primary and
secondary coating layer flows, respectively.

3. Analytical Solution (Exact Solution)

Analytical solution is given in the Appendix A.

4. Numerical Solution

We shall solve the above equations numerically. For this purpose, the Runge–Kutta–Fehlberg
method is employed. The computations are carried out for δ = 2. Before proceeding to the results
and their discussion, we first validate our results of numerical solution for comparing them with the
corresponding results based on exact solution (given in Appendix A). To this end, Figure 3 is prepared,
which shows the velocity curve obtained through both numerical and exact solutions. This figure
clearly demonstrates an excellent correlation between both the solutions. This establishes the
confidence on both exact and numerical solutions and also on the results predicted by these solutions.

Figure 3. Comparison of analytical and numerical solutions when εD2
1 = 5, εD2

2 = 10, X1 = 0.5, X1 =

1.0, δ = 2.
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5. Results of Analysis and Discussion

This section shows the impact of different emerging parameters of interest including the Deborah
numbers (viscoelastic parameter) εD2

1 and εD2
2 ,pressure gradient parameters X1 and X2, Brinkman

numbers Br1 and Br2 and the radii ration δ on the velocity and temperature profiles, volume flow
rate, thickness of the coated fiber optics, shear stress, and force required to pulling the fiber optics
(later referred as force only). This purpose is achieved graphically in 4–11. Figure 4 shows the effect
of dimensionless pressure gradient X1 and X2 on the velocity profile when εD2

1 = 0.5, εD2
2 = 1, δ = 2.

This figure shows that, as the pressure gradient parameter increases, the velocity profile increases.
The effect of Deborah number εD2

1 on velocity profile is shown in Figure 5. Since Deborah number is
the measure of the ratio of the rate of the pressure drop in the flow to the viscosity, i.e., εD2

(j) =
λUc
Rw

where Uc = − R2
wΩ/8η(j) is the characteristic velocity and Ω is constant pressure gradient in the axial

direction. That is why the velocity follows as an increasing trend with increasing Deborah number.
From Figures 4 and 5, it is clear that nonlinear behavior is occurred in the velocity profiles. Since
the velocity of fluid first increase up to a certain value and then decreases, which shows the shear
thickening effect. For low elasticity means for low Deborah number, the velocity disparity diverges a
little from the Newtonian one, however, when the Deborah number is increased, these profiles turn into
a more flattened one, showing the shear-thinning effect. It can be seen that, as ε is reduced, the profiles
turn to the Newtonian one and the result is therefore independent of D2

1 and D2
2. As X(j) =

Uc
U is the

pressure gradient in which Uc = − R2
wΩ/8η(j) is the characteristic velocity where U is the optical fiber

velocity. That is why the velocity inside the die exceeds from the fiber optics velocity due to large
values of the pressure gradient parameter.

Figure 4. Effect of X1 and X2 on velocity when εD2
1 = 5, εD2

2 = 10, δ = 2.

Figure 5. Effect of εD2
1 and εD2

2 on velocity profile when X1 = 0.5, X1 = 1.0, δ = 2.
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Figure 6 reveals that the volume flow rate increases with the increasing values of Deborah number
along with increasing radii ratio δ. The dimensionless temperature profile inside the die for various
values of emerging parameters is shown in Figures 7–9. Figure 7 depicts the effect of Brinkman number
on temperature profile. A rise in temperature is observed with increasing the Brinkman number.
Additionally, the temperature increases with an increasing Deborah number and pressure gradient
parameters, as shown in Figures 8 and 9, respectively.

Figure 6. Effect of εD2
1 and εD2

2 on volume flow rate when X1 = 0.5, X1 = 1.0.

Figure 7. Effect of Br1 and Br2 on temperature X1 = 0.5, X1 = 1.0, εD2
2 = 10, δ = 2.

The thickness of the coated fiber optics or coating thickness (hc) is shown in Figures 10 and 11.
It is observed that the thickness of the coated fiber optics increases with the increasing values of
Deborah number and radii ratio δ, as shown in Figures 10 and 11, respectively. For the sake of validity,
the present work is also compared with the published work in Reference [17] and good agreement is
found by taking the non-Newtonian parameter, which tends to zero, i.e., λ → 0 .

116



Coatings 2019, 9, 147

 
Figure 8. Effect of εD2

1 and εD2
2 on temperature Br2 = 0.5 X1 = 0.5, X1 = 1.0, δ = 2.

Figure 9. Effect of X1 and X2 on temperature Br2 = 0.5, εD2
2 = 10, δ = 2.

Figure 10. Effect of εD2
1 on thickness of coated fiber optics when X1 = 0.5, X1 = 1.0, δ = 2.
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Figure 11. Effect of δ on thickness of coated fiber optics when X1 = 0.5, X1 = 1.0, εD2
2 = 10.

6. Conclusions

To provide protection from signal attenuation and mechanical damage, optical fibers required
a double-layer resin coating on the glass fiber. Wet-on-wet coating processes are considered for
double-layer coating in optical fiber manufacturing. Expressions are presented for the radial variation
of axial velocity and temperature distribution analytically and numerically. Analytical expressions
of velocity, volume flow rate, final radius of the coated fiber optics and force required the full fiber
optics, which are reported. The effect of physical parameters such as Deborah number, dimensionless
parameter, radii ratio δ and Brinkman number has been obtained numerically. It was found that
velocity increases with increasing values of these parameters. The volume flow rate increases with
increasing Deborah number. The thickness of coated fiber optic increase with an increase in εD2

1, εD2
2,

and δ. The temperature depends upon Br1, Br2, εD2
1, εD2

1, X1, and X2, and it increases with increasing
these parameters. For ε = 0 and λ = 0, our results respectively, reduce to Maxwell and linear viscous
model. According to the best of our knowledge, there is no previous literature about the discussed
problem, which is our first attempt to handle this problem with two-layer coating flows.
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Appendix A

Analytical solution
Solutions of Equations (28) and (29) corresponding to the boundary conditions

Equations (30–32) become:

w1 = −2r2X1 − 4C1X1 ln r − 32εDe2
1r4 − 192X1C1εDe2

1r2 − 384X1C1
2εDe2

1 ln r+
64C1

3X1εDe2
1

1
r2 + C3

(A1)

w2 = −2r2X2 − 4C2X2 ln r − 32X2εDe2
2r4 − 192X2C2cεDe2

2r2 − 384X2C2
2εDe2

2 ln r+
64C2

3X2εDe2
2

1
r2 + C4

(A2)

Volume flow rates are

Q1 = X1

( (
C1 + 96C1

2εDe2
1 +

1
r C3

)(
Γ2 − 1

)− ( 1
2 + 48C1εDe2

1

)(
Γ4 − 1

)− 16
3 εDe2

1
(
Γ6 − 1

)
+ 64C1

3εDe2
1 ln Γ

−2
(
Ka + 96C1

2εDe2
1
)
Γ2 ln Γ

)
(A3)
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Q2 = C4

(
δ2 − Γ2

)
− 1

2 X2
(
1 + 96C2εDe2

2
)(

δ4 − Γ4
)
− 16

3 X2εDe2
2

(
δ6 − Γ6

)
− 2C2X2

(
1 + 192εDe2

2
)×(

δ2 ln δ

−Γ2 ln Γ

)
+ 64C2

2εDe2
2(ln δ− ln Γ)

(A4)

Thickness of the coated fiber optics of both layers is [17–21]

R1 =

⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣1 − 2

15Γ 2

⎛⎜⎜⎜⎝
96εDe2

1
(−Γ + Γ6 + 10(−1 + Γ)C1

(
Γ + Γ2 + Γ3 + 6C1 ln Γ − C1

2)X1
)
+

5Γ

⎛⎜⎝ −3(−1 + Γ)C3

+6 ln
(−1 + Γ2)

C1X1 + 2
(−1 + Γ3)C1

⎞⎟⎠
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦

1/2

(A5)

R2 =

⎡⎢⎢⎢⎢⎢⎢⎣1 − 1
15Γ

⎡⎢⎢⎢⎢⎢⎢⎣2

⎛⎜⎜⎜⎜⎜⎜⎝
15δΓ(−δ+ Γ)C4 + 6

⎛⎜⎜⎜⎝
5Γln δ(δ− Γ)(δ+ Γ)C3+

16εDe2
2

⎛⎜⎝ δ6Γ − δΓ6 + 10(δ− Γ)C3(
δΓ
(
δ2 + δΓ + Γ2

)
+

6ΓKln δc − C3
2

) ⎞⎟⎠
⎞⎟⎟⎟⎠X2

+10δΓ
(
δ3 − Γ3

)
X2

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

1/2

(A6)

Temperature profiles for both layers are

θ1 = −4Br1 X2
1

(
− 1

4 r4 − 3Kar2 − 32
9 εDe2

1r6 − 24KaεDe2
1r4 − 96K2

aεDe2
1r2 − 128K3

a X1εDe2
1 ln r − 4K2

a ln r−
8εDe2

1r4 − 96K2
aεDe2

1r2 − 384K3
aεDe2

1 ln r + 32K3
aεDe2

1
1
r2

)
+D1 ln r + D2,

(A7)

θ2 = −4Br2 X2
2

(
− 1

4 r4 − 3C3r2 − 32
9 εDe2

2r6 − 24C3εDe2
2r4 − 96C3

2εDe2
2r2 − 128C3

3X2εDe2
2 ln r − 4C3

2 ln r−
8ε2De2

2r4 − 96C3
2εDe2

2r2 − 384C3
3εDe2

2 ln r + 32C3
3εDe2

2
1
r2

)
+D3 ln r + D4,

(A8)

where Ka, Kb, Kc, Kd, D1, D2, D3 and D4 are all constants given below:

C1 = −H1
3 − 2

1
3 (−H1

2+3H2)

3
(
−2H1

3+9H1 H2−27H3+3
√

3
√

−H1
2 H2

2+4H2
3+4H1

3 H3−18H1 H2 H3+27H3
2
) 1

3
+

(
−2H1

3+9H1 H2−27H3+3
√

3
√

−H1
2 H2

2+4H2
3+4H1

3 H3−18H1 H2 H3+27H3
2
) 1

3

32
1
3

,

C3 = 1 + 21 + 32εDe1
2 + 192C1εDe1

2 − 64C1
3X1εDe1

2, C2 = C3,

C4 = 2δ2X2 + 4C3X2 ln δ+ 32X2εD2
2δ4 + 192X2C3ε2De2

2δ2 + 384X2C3
2εD2

2 ln δ− 64C3
3X2εD2

2 1
δ2 ,

D1 = 4Br1 X2
1(K((ln Γ − ln δ) + Γ))

⎛⎜⎝ 1
4 Γ4 + 3C1Γ2 + 32

9 εDe1
2Γ6 + 24C1D1

2Γ4 + 96K2
aεDe2

1Γ2+

128C1
3εDe1

2 ln Γ + 4C1
2 ln Γ + 8εDe1

2Γ4 + 96C1
2εDe1

2Γ2+

384C1
3εDe1 ln Γ − 32C1

3D1
2 1

Γ2

⎞⎟⎠+

4Br2X2
2
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Γ −

(
1
Γ + 1

Γ2 ln Γ

)))⎛⎜⎝ 1
4 Γ4 + 3C3Γ2 + 32

9 εDe2
2Γ6 + 24C3εDe2

2Γ4 − 96C3
2εD2e1Γ2+

128C3
3
bεDe2

2 ln Γ + 4C3
2 ln Γ + 8εDe2

2Γ4 + 96C3
2εDe2

2Γ2+
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3εD2e2 ln Γ − 32C3

3εDe2
2 1

Γ2

⎞⎟⎠+

+4Br1X2
1

1
Γ2 lnδ

(
1
4 + 3C1 +

32
9 εDe1

2 + 32C1εDe1
2 + 192C1

2εDe1
2 − 32C3

1εDe1
2
)

,

D2 = 4Br1X2
1

1
Γ2 lnδ

(
1
4 + 3C1 +

32
9 εDe1

2 + 32C1εDe1
2 + 192C1

2εDe1
2 − 32C3

1εDe1
2
)

,

D3 = 4Br1X2
1(Γ(ln Γ − ln δ))

⎛⎜⎝ Γ3 + 3C1Γ + 64
3 εDe1

2Γ5 + 96εDe1
2Γ3+

192C1
2εDe1

2Γ + 128C1
3εDe1

2 1
Γ + 4C1

2 1
Γ+

32εDe1
2Γ3 + 192C1

2εDe1
2Γ + 384C1

3εDe1
2 1

Γ + 64C1
2εDe1

2 1
Γ3

⎞⎟⎠
+4Br1X2

1
1

lnδ

(
1
4 + 3C1 +

32
9 εDe1

2 + 32C1εDe1
2 + 192C1

2εDe2
1 − 32C1

3εDe2
1

)
+ 4Br2X2

2

(
ΓK(ln Γ − ln δ)

+ 1
lnδ

)
+(

1
4 Γ4 + 3C3Γ2 + 32

9 εDe2
2Γ6 + 24C3εDe2

2Γ4 − 96C2
3εDe2

2Γ2 + 128C3
3εDe2

2 ln Γ + 4C2
3 ln Γ + 8εDe2

2Γ4

+96C2
3εDe2

2Γ2 + 384C3
3εDe2

2 ln Γ − 32C3
3εDe2

2 1
Γ2

)

D4 = 4Br2X2
2

(
1
4 Γ4 + 3C3Γ2 + 32

9 εDe2
2Γ6 + 24C3εDe2

2Γ4 − 96C2
3εDe2

2Γ2 + 128C3
3εDe2

2 ln Γ+
4C2

3 ln Γ + 8εDe2
2Γ4 + 96C2

3εDe2
2Γ2 + 384C3

3εDe2
2 ln Γ − 32C3

3εDe2
2 1

Γ2

)
− ΓD3,
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where

H1 = A2+B2
A3+B3

, H2 = A1+B1
A3+B3

, H3 = G
A3+B3

, A1 = −4X1 ln Γ − 192X2εDe2
2 − 192X1εDe2

1Γ,

A2 = −384X1εDe2
1 ln Γ, A3 = 64X1εDe2

1

(
1

Γ2 − 1
)

, B1 = 4X2 ln Γ + 192X2εDe2
2Γ2,

B2 = 384X2εDe2
2 ln δ+ 192X2εDe2

2Γ2B3 = −64X2εDe2
2Γ2
(

1
δ2 +

1
Γ2

)
,

A1 = −4X1 ln Γ − 192ε1De1
2Γ + 192εDe1

2 A2 = −384X1εDe1
2 ln Γ,

A3 = 64X1εDe1
2 1

Γ − 64X1εDe1
2, B1 = 4X2 ln Γ + 192X2εDe2

2Γ2 − 192X2εDe2
2δ2 − 4X2 ln δ,

B2 = −384X2 εDe2
2 ln Γ + 384X2εDe2

2 ln δ, B3 = −64X2εDe2
2 1

Γ2 − 64X2εDe2
2 1
δ2 ,

G = 1 + 2X1 + 32X1εD1
2 − 2X2δ

2 − 2X1Γ2 − 32X2εDe2
2δ4 − 32X1εDe1

2Γ4 − 2X2Γ3.
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Abstract: Our main objective in the present work is to elaborate the characteristics of heat transport
and magneto-hydrodynamics (MHD) finite film flow of human blood with Carbon Nanotubes
(CNTs) nanofluids over a stretchable upright cylinder. Two kinds of CNTs nanoparticles, namely
(i) SWCNTs (single walled carbon nanotubes) and (ii) MWCNTs (multi walled carbon nanotubes),
are used with human blood as a base liquid. In addition, a uniform magnetic field (B) has been
conducted perpendicularly to the motion of nanoliquid. The transformation of the partial differential
structure into a non-linear ordinary differential structure is made by using appropriate dimensionless
quantities. The controlling approach of the Homotopy analysis method (HAM) has been executed
for the result of the velocity and temperature. The thickness of the coating film has been kept
variable. The pressure distribution under the variable thickness of the liquid film has been calculated.
The impacts of different variables and rate of spray during coating have been graphically plotted.
The coefficient of skin friction and Nusselt number have been presented numerically. In addition,
it is noticed that the thermal field of a nanoliquid elevates with rising values of φ and this increase is
more in SWCNTs nanofluid than MWCNTs nanofluid.

Keywords: thin film casson nanofluid; SWCNTs and MWCNTs; stretching cylinder; MHD; HAM

1. Introduction

1.1. Literature Review

Nanofluid, characterized by a significant increase in the heat and mass transfer rate compared
to conventional engineered fluid (oils, lubricants, water, ethylene glycol, etc.) [1], is found to
serve in a number of engineering applications, for instance, the solar energy system [2], fuel-cell
industry [3], petroleum engineering [4–6], materials science [7,8], etc. Choi [9] was the first person
who introduced the concept of a dilute suspension of nanoparticles with a dimension less than 100 nm
(Cu, TiO2, Al2O3, Ag, Fe) and their oxides in conventional fluids (oils, lubricants, water, ethylene
glycol), which enhances the thermal performance of conventional fluids. Recent applications of
nanofluids in the biomechanical field, such as cancer therapy, drug delivery and medicines, have
produced a lot of interest in the investigation of nanofluid flows and heat transport. In view of these
various applications, researchers have focused their attention on nanofluid flows. Ellahi [10] examined
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the impact of MHD and thermal viscosity on the flow of non-Newtonian nanoliquid over a tube.
Alshomrani and Gul [11] computed the analytical solution of magneto-hydrodynamics thin film spray
of water base Al2O3 and CuO nanofluids on a horizontal stretchable cylinder. Asadi et al. [12,13]
investigated the experimental and theoretical influence of adding MWCNTs, ZnO nanoparticles,
and MgO-MWCNT hybrid nanofluids in thermal oil. Gul et al. [14] discussed the impact of an
effective Prandtl number on water and ethylene glycol-based alumina nanofluid spray along a
stretching cylinder.

CNTs (carbon nanotubes) have a long cylindrical profile, such as frames of carbon atoms
with a diameter ranging from 0.7 nm to 50 nm. Carbon nanotubes have a specific importance in
nanotechnology, conductive plastics, hardwater, air purification mechanisms, structural composite
materials, sensors, display of flat panels, storage of gas, biosensors, extra-long fibers, and many other
areas of science and engineering. The idea of CNTs was first discovered in 1991 by Lijima [15]. Carbon
nanotubes are further classified as single wall carbon nanotubes (SWCNTs) and multi wall carbon
nanotubes (MWCNTs), depending on the number of concentric layers of rolled graphene sheets.
Furthermore, carbon nanotubes are predictable inventive material of the 21st century due to their
special morphology; new physicochemical features; and unique thermal, electrical, and mechanical
characteristics. Additionally, the existence of carbon chains in carbon nanotubes does not pose any
danger to the atmosphere. Keeping the above applications, Haq et al. [16] investigated the impact
of the thermal conductivity and viscosity of CNTs nanoparticles within three different base fluids
(water, engine oil, and ethylene glycol) in nanofluid flowing over a stretching surface. Khan et al. [17]
considered the analysis of flow and heat transport of nanofluids containing carbon nanotubes along a
flat plate in the presence of the Navier slip boundary condition. Aman et al. [18] examined the effect of
MHD on the flow of non-Newtonian CNTs nanofluid. They used three kinds of base liquid. Similarly,
the exact solution of Maxwell nanofluid containing CNTs in four types of base fluid was investigated
in [19]. Asadi et al. [20–23] conducted some experimental study on the dynamic viscosity of different
nanofluids. They found that the viscosity of MWCNTs nanofluids is considerably higher than that of
the base fluids. Various other important studies that have been conducted on CNTs base nanofluid can
be seen via [24,25].

After the development of nanoliquids, scholars and engineers focused their concentration on
examining the motion of nanofluids from various circumstances, such as stretching cylinders and
sheets, rotating disks or cylinders, and parallel plates with various flow conditions. The flow problem
of magneto-nanofluid through a stretching/extending surface has several practical applications
in manufacturing progressions due to the mechanical property of electrically conducting liquids.
A stretching surface has gained the extensive attention of scholars due to many manufacturing and
technological applications, such as the fabrication and removal of polymer slips from dye, freezing of
continuing filaments, lead crystal blowing, manufacture of paper, production of meals, and sketching
of wires. Khan et al. [26] explored the phenomena of MHD spray scattering on a stretching cylinder
using nanoparticles Al2O3 and CuO water-based nanoliquids. Recently, some more useful explorations
of the subject associated with thin film flow have been presented in [27–30].

Non-Newtonian liquids like toothpaste, food stuff, and plastic have various uses in biochemical,
pharmacological, and cosmetic industries. It is very problematic to handle this kind of liquid because
the extra nonlinear term originates in the equation of motion. Thus, various liquid models are
presented to describe the performance of the said materials. In the present analysis, we select the
Casson model. Initially, this model was presented by [31]. It is a shear thinning fluid which is thought
of as the zero-shear rate of immeasurable viscosity [32], but is the infinite shear rate at zero viscosity.
Human blood, honey, jelly, and soup are examples of Casson fluid. The influence of thermal radiation
on Casson fluid flow and the rate of heat exchange on a permeable extending surface have been
reported [33]. Asma et al. [34] have explored the MHD flow of Casson liquid on a permeable upright
plate. The impact of MHD on Casson nanofliquid flow with thermal radiation over a cylinder was
studied in [35].
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Among the various models of non-Newtonian time independent fluids models, one of the distinct
features and a quite famous Casson model [31,36] known as the most approved is the rheological
model for characterizing human blood flow [24,37,38].

In the present work, the thin film Casson nanofluid (human blood) flow comprising CNTs
nanoparticles is analyzed with uniform MHD over a stretching upright cylinder. Human blood is
used as the base liquid, with two varieties of SWCNTs and MWCNTs nanoparticles inside. The HAM
technique [11,39–43] is performed to find the series solution of velocity and the thermal field. The
physical performance of each model’s parameters for SWCNTs and MWCNTs nanoparticles is
presented graphically for velocity, temperature, and pressure fields. Conclusions have been established
on the basis of the results.

1.2. Models of Thermophysical Properties of CNTs Nanofluids

This section demonstrates the thermophysical properties of CNTs nanofluids.

1.2.1. The Effective Density Model

ρn f is the effective density of nanofluids, which is given by [24,25]

ρn f = (1 − ϕ)ρ f + ϕ ρCNT , (1)

Here, ϕ signifies the volume fraction of nanoparticles and ρ f , ρCNT signify the density of the base fluid
and CNTs, respectively.

1.2.2. The Effective Viscosity Model

μn f is the effective density of nanofluids, which is given by [24,25]

μn f = μ f (1 − ϕ)−2.5, (2)

1.2.3. The Effective Thermal Expansion Coefficient of Nanoparticles Model

(ρβ⊗)n f is the effective thermal expansion coefficient of nanoparticles, which is given by [24,25](
ρβ⊗)

n f = (1 − ϕ)
(
ρβ⊗)

f + ϕ
(
ρβ⊗)

CNT , (3)

(ρβ⊗) f , (ρβ⊗)CNT signify the thermal expansion coefficient of the base fluid and CNTs, respectively.

1.2.4. The Effective Specific Heat Capacity Model(
ρ cp
)

n f is the effective specific heat capacity of nanofluids, which is given by [24,25]

(
ρ cp
)

n f =
(
ρ cp
)

f

[
(1 − ϕ) + ϕ

((
ρ cp
)

CNT
(ρ cp) f

)]
, (4)

(ρ cp) f , (ρ cp)CNT signify the specific heat capacity of the base fluid and CNTs, respectively.

1.2.5. The Effective Electrical Conductivity Model

σn f is the effective electrical conductivity of nanofluids, which is given by

σn f = σf

⎡⎣1 +
3
(

σn f
σf

− 1
)

ϕ(
σn f
σf

+ 2
)
−
(

σn f
σf

− 1
)

ϕ

⎤⎦, (5)

σf , σCNT signify the electrical conductivity of the base fluid and CNTs, respectively.

125



Coatings 2019, 9, 175

1.2.6. The Effective Thermal Conductivity Model

In the literature, there are several theoretical models available to calculate the thermal
conductivities of carbon nanotubes (e.g., Maxwell’s, Jeffery’s, Davis’s, Hamilton’s, and crosser models),
but only Xue’s model [44] employs principal models, which are effective for spherical and elliptical
shape particles. Xue’s model was established from the Maxwell model of turning elliptical carbon
nanotubes through a big axial ratio and paying the effect of the space sharing on CNTs. Here, for the
thermal conductivity of nanofluid kn f , Xue’s model [44] has been utilized.

kn f

k f
=

1 − ϕ + 2ϕ
(

kCNT
kCNT−k f

)
ln
( kCNT+k f

2 k f

)
1 − ϕ + 2ϕ

( k f
kCNT−k f

)
ln
( kCNT+k f

2 k f

) . (6)

k f , kCNT signify the thermal conductivity of the base fluid and CNTs, respectively.

2. Description of Problem

We consider steady and incompressible two-dimensional thin film Casson nanofluids flow along
a stretching upright cylinder of radius a. The z-axis represents along the surface of the cylinder and the
r-axis is that taken radially, as shown in Figure 1. The cylinder is supposed to electrically conduct with
constant B (magnetic field) of strength B0. Here, Tw = Ta is the surface temperature, while Tδ = Tb
is the free surface temperature of the cylinder. In this scenario, the tube surface is stretching with
velocity Ww = 2s z along the z-axis. Here, s > 0 is used for extension of the cylinder surface, while for
contraction, s < 0 is used. Additionally, the thermal field for the present problem is [11]

T = Tb − Tr

(
c z2

υn f

)
Θ(η), (7)

where Tr is the reference temperature. Furthermore, the human blood-based nanoliquid comprises
two sorts of CNTs (SWCNTs and MWCNTs) [24]. Viscous dissipation and natural convection have
been involved in nanofluid flow. The stress tensor of the Casson fluid model [36,37] is implemented as

τ
s f
mn = 2emnμ

d f
a + 2emn

py√
2πd

, where πd ≥ πcr, and

τ
s f
mn = 2emnμ

s f
a + 2emn

py√
2πd

, where πd ≺ πcr.
(8)

In the above expression, the share stress along mth and nth components is τ
s f
mn, the deformation

rate is πd, deformation rate components mth and nth are emn, the critical value represented by πcr is
focused on the non- Newtonian fluid model, μ

s f
a is the plastic dynamic viscosity of Casson fluid, and

the produce stress of the fluid is py.
By applying the order analysis, the suggested boundary film equations of carbon nanotubes fluid

are [11]
∂(ru)

∂ r
+

∂(rw)

∂ z
= 0, (9)

ρn f

[
u
(

∂w
∂r

)
+ w

(
∂w
∂z

)]
= μn f

(
1 +

1
β

)[
∂2w
∂r2 +

1
r

(
∂w
∂r

)]
+
(
ρβ⊗)

n f (T − Tb)g − σn f B2
0w, (10)

ρn f

[
u

∂u
∂r

+ w
∂u
∂z

]
= −∂p

∂r
+ μn f

(
1 +

1
β

)(
∂2u
∂r2 +

1
r

∂u
∂r

− u
r2

)
, (11)

(
ρcp
)

n f

(
u

∂T
∂r

+ w
∂T
∂z

)
= kn f

(
∂2T
∂r2 +

1
r

∂T
∂r

)
+ μn f

(
∂w
∂r

)2
. (12)
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Here, r, z are the radial and axial coordinates, respectively. Additionally, u(r, z) and w(r, z) are the

velocity elements in the r and z directions. β = μ
s f
a
√

2πcr
τmn

is the material parameter (Casson parameter);
the local pressure and temperature are specified by p and T, respectively; the specific density of the
nanofluid is ρn f ; the dynamic viscosity of the nanofluid is μn f ; β⊗

n f is the thermal expansion coefficient
of nanoparticles; the electrical conductivity of the nanofluid is σn f ; the thermal conductivity of the
nanofluid is kn f ; and the specific heat capacity of the nanofluid is

(
ρcp
)

n f .

 
Figure 1. Schematic diagram of flow model and coordinate system.

The subjected boundary conditions for the present analysis are as follows [11]:

u = Uw, w = Ww, T = Tw, at r = a, (13)

μ
∂w
∂r

= 0,
∂T
∂r

= 0, u = w
dδ

dz
, at r = b. (14)

where b is the outer radius which display the thickness of the liquid film, the expression of suction and
injection velocity is Uw, and Ww is the extended velocity of the cylinder surface.

Non-Dimensional Parameters

With the aid of the following suitable conversions [11]:

η =
r2

a2 , u =
−sa√

η
[ f (η)], w = 2sz

[
d f (η)

dη

]
, Θ =

T − Tb
Ta − Tb

. (15)

The transformed equations for momentum and energy arise are(
1 + 1

β

)[
η
(

d3 f (η)
dη3

)
+

d2 f (η)
dη2

]
+(

(1 − ϕ) + ϕ
ρCNT

ρ f

)
(1 − ϕ)2.5

[
Re
(

f (η)
(

d2 f (η)
dη2

)
−
(

d f (η)
dη

)2
)
+ GrΘ(η)− M f (η) d f (η)

dη

]
= 0,

(16)

kn f
k f

(
2η

d2Θ(η)
dη2 + dΘ(η)

dη

)
+ PrRe

(
(1 − ϕ) + ϕ

(ρcp)CNT
(ρcp) f

)
[ f (η) dΘ(η)

dη − 2Θ(η)
d f (η)

dη

+Ec

(
d2 f (η)

dη2

)2
]
= 0.

(17)
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The resultant transformed dimensionless boundary conditions are

f (η) = 1,
d f (η)

dη
= 1, Θ(η) = 1 at η = 1, (18)

d2 f (η)
dη2 = 0,

dΘ(η)

dη
= 0, at η = α. (19)

The solid particle volume fraction is ϕ, and in non-dimensional form, the variable thickness is

α =
b2

a2 = ηb. (20)

Here, a, b, α represent the radius of the cylinder, the external radius of the thin layer, and the
dimensionless thickness of the thin layer, respectively.

Re =
sa2

2υ f
, Pr =

μ f
(
cp
)

f

k f
, M =

σf B2
0a2

4μ f
, Gr =

a2g(T − T0)(β ρ) f

4Wwμ f
, Ec =

W2
wa2

ΔT
(
cp
)

f
. (21)

Re is the Local Reynolds number, Pr is the prandtl number, M is the magnetic parameter, Gr is the
Grashof number, and Ec is the Eckert number in dimensionless form defined as in [11].

Evaluating the pressure distribution term from Equation (11):

p − pb
μc f

= −Re
η

(
(1 − ϕ) + ϕ

ρCNT
ρ f

)
(1 − ϕ)2.5 f 2(η)− 2

(
1 +

1
β

)
d f (η)

dη
. (22)

Now, the shear stress at the free surface of the fluid film is zero, which means that

d2 f (α)
dη2 = 0. (23)

Also, the corresponding shear stress at the cylinder surface is

τw =
4s z(ρυ)n f

a

(
1 +

1
β

)[
d2 f (1)

dη2

]
=

4s zμn f

a

(
1 +

1
β

)[
d2 f (1)

dη2

]
. (24)

The non-dimensional forms of Cf , Nu (skin friction and Nesselt number, respectively) are expressed
as [11] [

zRe
a

]
Cf =

(
1 +

1
β

)[
d2 f (1)

dη2

]
(1 − ϕ)−2.5, Nu = −2

kn f

k f

[
dΘ(1)

dη

]
. (25)

Here, Re = sa2

2 υ f
denotes the Reynolds number.

3. Solution Methodology

In this paper, we use the HAM technique. The HAM scheme was initially planned by Liao [32,33]
and he construed the idea of Homotopy. With the help of HAM, Equations (16) and (17) are solved
along with the suggested boundary condition in Equations (18) and (19). To control and improve the
convergence of the problem, we used the auxiliary constant ђ. A selection of initial gasses is

f0(η) =
α

2(α − 1)3

[
η3 − 3αη2 − (3 − 6α)η + (2 − 3α)

]
+ η, Θ0(η) = 1. (26)

L f and LΘ are linear operators such that
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L f =
d4 f (η)

dη4 and LΘ =
d2Θ(η)

dη2 , (27)

The general result of L f and LΘ is

L f

{
K1 + K2η + K3η2 + K4η3

}
= 0 and L Θ{K5 + K6η} = 0. (28)

For velocity and temperature distribution, the Taylor’s expansions have been applied as follows:

f (η; ρ) = f0(η) +
∞

∑
ξ=1

fξ(η)ρ
ξ , (29)

Θ(η; ρ) = Θ0(η) +
∞

∑
ξ=1

Θξ(η)ρ
ξ . (30)

But

fξ(η) =
1
ξ!

d f (η; ρ)

dη

∣∣∣∣
ρ=0

and Θξ(η) =
1
ξ!

dΘ(η; ρ)

dη

∣∣∣∣
ρ=0

. (31)

For Equations (16) and (17), the ξth order system is as follows [11]:

L f
[

fξ(η)− Ñξ fξ−1(η)
]
= ň f R f

ξ (η), (32)

LΘ
[
Θξ(η)− ÑξΘξ−1(η)

]
= ňΘRΘ

ξ (η). (33)

where

Ñξ =

{
1, if ρ > 1
0, if ρ ≤ 1

. (34)

Onvergence of HAM

The HAM scheme has the auxiliary constants ђ f and ђΘ that constantly control and modify the
solution convergence. For an appropriate value of ђ f and ђΘ, we perform 18th order approximation.
The appropriate region ђ f and ђΘ for SWCNTs lies between −0.1 ≤ ђ f ≤ −0.5 and − 0.2 ≤ ђΘ ≤ 1.9,
while for MWCNTs, the suitable region is between −0.2 ≤ ђ f ≤ −0.8 and − 0.1 ≤ ђΘ ≤ 1.5.

4. Graphical Results and Discussion

In this portion, we will examine the impact of appropriate model variables on a thin layer
flow of Casson nanofluid over a stretching upright cylinder. The main features of the flow, like
surface drag force (coefficient of skin friction), the rate of heat transport (Nusselt number), and
the rate of spray on the thin layer have been studied for both SWCNTs and MWCNTs nanofluids.
The other physical parameters of interest, like the Casson parameter β, nanoparticles volume fraction
ϕ, magnetic variable M, Grashof number Gr, Prandle number Pr, and Reynolds number Re, have
been presented graphically and physically discussed for both cases of SWCNTs and MWCNTs
nanoparticles. We considered the thin liquid flow and heat analysis of two kinds of CNTs (SWCNTs
and MWCNTs) human blood-based nanoliquid. The schematic sketch and coordinate system of
the present problem are displayed in Figure 1. The variation in the velocity field d f (η)

dη , thermal

field Θ(η), and pressure field p−pb
μc f

(η) of blood flow against the different emerging parameters of

magnitudes (M = 0.3, Pr = 24, Ec = 1.5, ϕ = 0.01, α = 1.4, Gr = 0.2, Re = 0.3) have been portrayed in
the following figures for both sorts of CNTs.
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4.1. Velocity Distribution

Figure 2 depicts the behavior of d f (η)
dη by varying the magnetic parameter M and thin film thickness

parameter α of both CNTs (SWCNTs and MWCNTs) nanofluids. The impacts of these quantities on
d f (η)

dη are very clear during the flow of both CNTs nanofluids. It can be noted that the larger magnitude
of M reduced the fluid motion in both cases (SWCNTs and MWCNTs). Physically, such a situation
arises as a result of a constantly applied magnetic field B0 that can be induced current in inductive
nanoliquid. It creates resistant forces called Lorentz forces, which reduce the liquid velocity. Finally,
it is clear that B0 is used to govern the boundary layer separation. Comparatively, a rapid fall in the
velocity field is perceived in the case of SWCNTs as related to the MCWNTs. In Figure 2, the effect of α

(thin film nanofluid parameter) is depicted for both sorts of CNTs nanofluids. It can be observed that
by increasing the value of α, the fluid motion decelerates, because in this case, the mass of the fluid
is enhanced. Actually, the tiny size of the film accelerates the velocity and less energy is required for
fluid motion, for example, the flow in the pipe is much easier and faster than the flow in sea water.
Moreover, in the case of MWCNTs, the velocity field is dominant when compared to SWCNTs in the
present study.

 
Figure 2.

d f (η)
dη distribution for varying M and α.

Figure 3 presents the velocity distribution d f (η)
dη for several values of Gr using SWCNTs- and

MWCNTs-based nanofluid. The velocity d f (η)
dη elevates for both CNTs by maximizing the value of Gr.

Similarly, the velocity field d f (η)
dη shows the slowing behavior for both CNTs (SWCNTs and MWCNTs),

reducing the value of Gr. Actually, the ratio of the thermal buoyancy force in the direction of viscous
force is termed the Grashoff number Gr Therefore, the basic reason for this is that in the absenteeism
of buoyancy force, there is no motion of fluid. The present outline indicates that motion of liquid is
occurring due to the buoyancy force and the liquid is stationary in the absence of this force. In addition,
it is clear from the figure that SWCNTs are more dominant than MWCNTs.

Figure 4 elucidates the behavior of Casson parameter β and nanoparticle volume friction ϕ

on d f (η)
dη for both SWCNTs and MWCNTs nanofluids. For the increasing values of β, the velocity

distribution d f (η)
dη in the boundary layer is shown to be declining. It can be noted that accelerating the

value of β implies condensing the yield stress of Casson liquid and therefore successfully assisting the
motion of boundary film flow adjacent to the stretching surface of the cylinder. Furthermore, it is found
that the Casson fluid is close to Newtonian fluid for the large value of β → ∞ . Similarly, Figure 4
displays the impact of ϕ on the flow of nanoliquid for both nanoparticles (SWCNTs and MWCNTs).
Obviously, it is perceived that the velocity distribution d f (η)

dη improves as the magnitude of ϕ increases
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for both SWCNTs and MWCNTs nanofluids. Substantially, this occurs by inserting more particles ϕ

in the thin fluid of the nanoliquid and increasing the strength of heat carriage and cohesive among
the nanoliquid atoms, so that they become frail to halt the faster fluid flow since the heat transport
in thin materials is faster than in thick materials. In addition, it is clear from the figure that the flow
of SWCNTs is more dominant than MWCNTs. The velocity profiles d f (η)

dη of different magnitudes of
the Reynolds number Re for both types of CNTs nanofluids are presented in Figure 5. Basically, Re
is the ratio of inertial force toward the viscous force. It can be noted that the velocity profile d f (η)

dη

reduces as Re increases, so the velocity tends to be zero at a certain large space from the cylinder
surface. Generally, the greater value of Re controlled the inertial force, which reduced the viscous
force. Hence, for the larger magnitudes of the Reynolds number Re, the velocity of nanofluids reduces
and the flow of fluids declines slowly to the ambient condition. The inertial forces are more influential
forces and they do not permit the liquid atoms to flow. Strong viscous forces have a strong resistance
to the flow of the liquids. Boundary layer flow of fluid motion decreases with strong inertial forces.

 
Figure 3.

d f (η)
dη distribution for varying Gr.

 
Figure 4.

d f (η)
dη distribution for varying ϕ and β.
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Figure 5.

d f (η)
dη distribution for varying Re.

4.2. Thermal Distribution

Similarly, the next set of Figure 6, Figure 7 displays the impact of flow quantities on the thermal
profile Θ(η). Variation in the temperature profile Θ(η) for both types of CNTs nanofluids with
magnetic parameter M and thickness variable α is shown in Figure 6. An intensification in the thermal
field Θ(η) is perceived with a large value of M for both nanofluids because the high estimation of M
produces the Lorentz forces, which increase the fraction force between the fluid molecules for SWCNTs
and MWCNTs. This force favors and supports the temperature of fluids. Since the M magnetic field is
executed vertically, with the growing magnitude of M magnetic field effect, the fluid is controlled and
restricted. Additionally, the greater value of α decreases Θ(η) as the thin liquid coating is heated up
quicker than the thick liquid coating. As a result, the thermal field Θ(η) cools down at high values
of α. The reason for this is that with the thickness of the fluid film, the mass of the fluid increases,
which consumes the amount of temperature. Heat enters fluid, and as a result, the environment is
cooled down. Thick film fluid needs more heat compared to thin film fluid. Figure 7 demonstrates the
performance of the Reynolds number Re and Pr on the thermal filed Θ(η) for SWCNTs and MWCNTs.
The same behavior is noted in the variation of Re and Pr for both CNTs. It is seen that a higher measure
of Re denigrates Θ(η), explained by the basic fact that a greater magnitude of Re results in extra inertial
forces arising, which tightly bonds the particles of flow nanoliquids, and greater heat is enforced to
break the contacts amongst the liquid particles. Additionally, the behavior of the Prandtl number Pr
on the thermal field Θ(η) is presented in Figure 7. From the figure, it is shown that Θ(η) displays a
falling act for a greater magnitude of Pr for both types of CNTs nanoparticles. Generally, a greater
magnitude of Pr increases the thickness of the boundary layer, which boosts the cooling efficiency of
the nanomaterial. This is because Pr is the ratio of motion diffusivity to thermal diffusivity. Those
fluids which have the lowest Prandtl number Pr have good thermal conductivities; therefore, thick
boundary layer structures are maintained for diffusing heat.
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Figure 6. Distribution for varying M and α.

 
Figure 7. Θ(η) distribution for varying Re and Pr.

4.3. Pressure Distribution

Finally, in the set of Figures 8 and 9, we portray the variation in the key element of spray
phenomena pressure distribution p−pb

μc f
(η) in terms of different variables for SWCNTs and MWCNTs

nanofluids. The effect of ϕ (volume fraction) and thickness parameter α on pressure distribution
p−pb
μc f

(η) is sketched in Figure 8. The higher values of ϕ lead to stronger pressure p−pb
μc f

(η); as a result,
fraction forces are reduced and the concentration of nanoparticles is enhanced for both SWCNTs
and MWCNTS nanofluids. Due to a higher concentration, the fluid becomes dense and the collision
of molecules increases, exerting pressure on the wall of the cylinder. It has been noticed that the
high-pressure phenomena have a vital role in blood flow, chemical reactions, and cooking easily.
Furthermore, it can be observed that the pressure distribution p−pb

μc f
(η) is enhanced for greater values

of α. The large size of the film exerts a strong pressure p−pb
μc f

(η) and high power is applied to diminish
the stress of the thick film. The combined relationship of the film thickness and pressure created a
massive force, which is compulsory for the body to move on a fluid surface. Figure 9 exhibits the effect
of M and Re on p−pb

μc f
(η) for SWCNTs and MWCNTs. From Figure 9, it can be obviously seen that less

pressure is produced by a large magnitude of M. It can be seen that the pressure distribution p−pb
μc f

(η)

is weak due to Lorentz forces, which decrease the movement of fluid, and extra pressure is required.
The magnetic field M is applied perpendicular to the flow of nanofluids. Therefore, the Lorentz forces
capture the liquid in the boundary layer. To compete with the Lorentz forces due to the strong magnetic
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field, the pressure must be high in order to cause motion of the fluid. Moreover, large quantities of the
Reynolds number Re drop the pressure distribution p−pb

μc f
(η) and a strong inertial effect is produced.

Due to this inertial force, the fluid particles are packed closely and inflexibly and more pressure is
imposed to overcome these forces.

 
Figure 8.

p−pb
μc f

(η) distribution for varying ϕ and α.

 
Figure 9.

p−pb
μc f

(η) distribution for varying M and Re.

The certain mathematical values of CNTs (SWCNTs and MWCNTs) and human blood, depend on
various thermo-physical characteristics, such as density ρ, thermal conductivity k f , and specific heat
cp, as presented in Table 1. Also, Table 2 demonstrates the convergence analysis of the series solution
for f ′′ (1) (velocity field) and Θ′(1) (thermal field).

Table 1. Various mathematical values of thermophysical characteristics of CNTs of three base liquids [16].

Physical Properties k (W/mK) ρ (kg/m3) cp (J/kgK) β⊗×10−5/k σ(Sm−1)

Base fluid Human Blood 0.492 1053 3594 0.18 0.8

Nanoparticles SWCNT 6600 2600 425 27 106–107

MWCNT 3000 1600 796 44 1.9 × 10−4
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Table 2. The convergence of the Homotopic results for different orders of estimation.

Order of
Approximations

f”(1) −Θ
′
(1)

SWCNTs MWCNTs SWCNTs MWCNTs

1 0.36550 0.31471 0.8847 0.7056
5 0.32521 0.30210 0.6667 0.5943
10 0.31063 0.24323 0.6023 0.5671
15 0.03117 0.02230 0.5931 0.5395
18 0.02325 0.04905 0.4299 0.4321
20 0.02325 0.04905 0.3385 0.4133
30 0.02325 0.04905 0.3385 0.3133
37 0.02325 0.04905 0.3385 0.3133

Table 3 demonstrates the statistical data of f ′′ (1) (surface drag force) HAM approximation at
the 20th order for several values of related physical quantities, such as M = 0.3, Pr = 24, Ec = 1.5,
ϕ = 0.01, Gr = 0.2, α = 1.4, Re = 0.3 for SWCNTs/MWCNTS nanofluids. In Table 3, it is shown
that the magnitude of f ′′ (1) (surface drag force) intensifies for greater values of ϕ, M, Re for both
SWCNTs and MWCNTs. The growing thickness of the nanoparticles enhances the resistance forces,
which improve skin friction. The M also governs an opposing force named the Lorentz force and a
greater magnitude of M upsurges the skin friction. This drop-in influence is fast using the SWCNTs as
compared to the MWCNTs.

Table 3. The numerical values of the skin friction coefficient ( f ′′ (1)).

ϕ M Re
f”(1)

SWCNTs MWCNTs

0.01 0.2 0.4 0.411834 0.508077

0.02 0.700187 0.968220

0.03 0.958088 1.273380

0.01 0.3 0.40361 0.636512

0.4 0.579942 0.674852

0.3 0.5 0.551339 0.636271

0.6 0.579665 0.674344

Similarly, Table 4 is organized to explain Nu at the 20th order HAM estimate for different values of
relevant model variables for both SWCNTs and MWCNTs nanoliquids. From Table 4, it can be clearly
observed that the value of rate of heat transport accelerates for a high magnitude of both ϕ, Pr and
declines for a higher value of the Ec. The Ec is related to the dissipation term and a larger magnitude
of Ec enhances the thermal field. Therefore, the opposite result for the higher magnitude of the Ec
verses Nu is perceived.

Table 4. The numerical values of the Nusselt number (−Θ′(1)).

Pr Ec ϕ
−Θ

′
(1)

SWCNTs MWCNTs

20 1.5 0.01 0.067258 0.201780

21 0.107185 0.254541

22 0.127170 0.307476

20 1.6 0.067662 0.202577

1.7 0.068067 0.203375

1.5 0.02 0.246752 0.517260

0.03 0.427645 0.835803
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5. Conclusions

The current study explores the effect of MHD, heat transfer, and pressure distribution of thin layer
flow of Casson nanofluid over a stretching upright cylinder. Two forms of CNTs, namely SWCNTs and
MWCNTs, were picked as nanoparticles to be applied in human blood base fluid. The obtained set of
coupled ODEs was solved by the HAM scheme. The influence of several embedded flow variables
on velocity, thermal, and pressure distribution was derived and the derived result was investigated
through graphs. The salient features of the current investigation are as follows:

• Increasing the value of the Reynolds number Re and magnetic parameters M yields a reduction
in the velocity field for both nanoparticles (SWCNTs and MWCNTs);

• The analysis shows that the volume fraction ϕ increases the velocity, thermal fields, and
pressure distribution;

• The important phenomenon of pressure p−pb
μc f

(η) declines for a large value of M and Re, while it
is enhanced by increasing α and ϕ;

• The thermal efficiency of nanofluid improves by increasing the dimension of a nanoparticle,
as well as by increasing the magnitude of ϕ;

• It is observed that SWCNTs have a greater rate of heat transfer when equated to MWCNTs.
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Abstract: This article investigates the unsteady flow and heat transfer analyses of a viscous-based
nanofluid over a moving surface emerging from a moving slot. This new form of boundary layer flow
resembles with the boundary layer flow over a stretching/shrinking surface depending on the motion
of the moving slot. The governing partial differential equations are transformed to correct similar
form using the Blasius–Rayleigh–Stokes variable. The transformed equations are solved numerically.
Existence of dual solutions is observed for a certain range of moving slot parameter. The range of
dual solution is strongly influenced by Brownian and thermophoretic diffusion of nanoparticles.

Keywords: unsteady flow and heat transfer; nanofluid; Blasius–Rayleigh–Stokes variable; dual
solutions; numerical solution; correlation expressions

1. Introduction

The mechanism of drag and heat loss reduction [1] has been the focus of intensive analysis due to
its application in the prevention of loss of mechanical energy. Drag and heat loss reduction may create
energy savings, processing time reduction, enhancement in thermal rating, and make equipment more
durable. Several well-known methods have been proposed by researchers to reduce the drag and heat
loss in physical systems out of them utilization of stretching/shrinking surfaces [2] and enhancing the
thermal conductivity of the involved fluid are famous [3].

Nanofluids, an achievement of researchers and scientists of the developing world of
nanotechnology, exploit the thermal conductivity of solids to enhance the thermal conductivity
of a fluid by adding nano-sized solid particles. Materials commonly used for nanoparticles
include oxides such as alumina, silica, titania and copper oxide, and metals such as copper and
gold. Carbon nanotubes and diamond nanoparticles have also been used to realize nanofluids.
Nanoparticles vary from 1 to 100 nm in diameter. Thermal conductivity can be increased up to two
times by adding small amount of nanoparticles. Popular base fluids include water and organic fluids
such as ethanol and ethylene glycol. The volumetric fraction of the nanoparticles is usually below 5%.

A wide range of nanofluids exist in nature, like blood, which is a complex biological compound,
made up of different nanoparticles that perform various functions at molecular level. A number
of natural processes occurring in atmosphere and biosphere have wide variety of composition of
different fluids and nanoparticles. Manufacturing and industrial waste materials are also composed of
nanoscale particles and fluids. Various self-assembly processes for nanostructures generate from the
addition of nanoparticles in base fluid. Considering the wide-ranging uses of nanofluid in industry
and science, and the model of nanofluid presented by Buongiorno [4], many experimentalists and
researchers have showed great interest in the study of nanofluids in the last few years [5–12].
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Keeping the fact in view that the unsteady flows are more generalized, and the applications
of nanofluids and stretching surfaces in drag and heat loss reduction, this article analyzes the
unsteady flow of nanofluid over a moving surface. The study of flow over a linearly stretching
sheet was initiated by Crane [13]. He derived the analytical solution of two-dimensional momentum
equations. This notable work of Crane [13] has been studied by many researchers in many directions.
Some recent works on the topic of stretching/shrinking surfaces are References [14–18] and the
references given therein.

In 1997, Todd [19] introduced a new family of unsteady boundary layer flow over a moving
surface emerging from a moving slot. He proposed a new set of transformations containing the
Blasius–Rayleigh–Stoke variable to write the governing unsteady partial differential equations
in similar form. Fang et al. [20] conducted the heat-transfer analysis for this boundary layer
flow. In this article, we carry out the numerical analysis of unsteady flow of nanofluid past
a movable surface emerging from a moving slot by converting the governing coupled unsteady partial
differential equations into similar form using the transformation involving the Blasius–Rayleigh–Stoke
variable. The results are presented graphically and the effects of nanoparticles on skin friction,
Nusselt number and Sherwood number are discussed in detail. Dual solutions are observed for
a specific range of moving slot parameter and are found to be altered due to the presence of
nanoparticles. Furthermore, the numerical data is used to write the correlation expressions for
certain important flow quantities by performing linear regression. Correlation expressions enable
the readers to obtain the values of numerical results for different values of involved parameters from
analytical expressions.

2. Mathematical Formulation

Consider the unsteady two-dimensional flow and heat transfer of an incompressible viscous-based
nanofluid over a heated moving semi-infinite plate. The surface is emerging out along the x-axis
from a moving slot (see Figure 1 for geometry of the problem). At time t = 0, the fluid is at rest.
The governing boundary layer [21] equations are given as:

∂U
∂X

+
∂V
∂Y

= 0 (1)

∂U
∂t

+ U
∂U
∂X

+ V
∂U
∂Y

= ν
∂2U
∂Y2 , (2)

∂T
∂t

+ U
∂T
∂X

+ V
∂T
∂Y

= σ
∂2T
∂Y2 + ε

(
DB

∂T
∂Y

∂C
∂Y

+
DT
T∞

(
∂T
∂Y

)2
)

, (3)

∂C
∂t

+ U
∂C
∂X

+ V
∂C
∂Y

= DB
∂2C
∂Y2 +

DT
T∞

∂2T
∂Y2 , (4)

where U and V are the velocity components in X and Y directions. T is the fluid temperature, C is the
nanoparticles volume fraction, ν is the kinematic viscosity, σ is the thermal diffusivity of the fluid, ε is
the ratio of heat capacities of the nanoparticles (ρc)p and base fluid (ρc) f , DB and DT are the Brownian
and thermophoretic diffusion coefficients respectively. For water nanofluids at room temperature
with nanoparticles of 1–100 nm diameters, the Brownian diffusion coefficient ranges from 4 × 10−10

to 4 × 10−12 m2/s. For alumina/water and copper/water (ρc)p is 3.1 and 3.4 MJ/m3 respectively.
The thermophoretic diffusion is equal to 6 × 10−5 for aluminum/water nanofluid and 6 × 10−6 for
copper/water nanofluid.
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Figure 1. Systematic diagram of the problem. δ, δc, δT represent the thicknesses of momentum,
thermal and nanoparticles concentration boundary layers respectively.

The corresponding boundary conditions are:

U(X, Y, t) = 0, V(X, Y, t) = 0, T(X, Y, t) = 0, C(X, Y, t) = 0 at t = 0,
U(X, Y, t) = UW , V(X, Y, t) = 0, T(X, Y, t) = TW , C(X, Y, t) = CW at Y = 0,

U(X, Y, t) → 0, T(X, Y, t) → T∞, C(X, Y, t) → C∞ as Y → ∞.
(5)

Since the unsteady flow is a generalized case of steady flow, Todd [19] generalized the Blasius
and Rayleigh–Stokes variables to get similar equations for the boundary layer flow of viscous fluid
over a moving surface, termed as the Blasius–Rayleigh–Stokes variable:

η = Y/
√

cos(α)νt + sin(α)(νX/UW). (6)

This variable depicts that the slot at Y = 0 is moving with a constant speed −Uw cot α. To obtain
similarity solutions for the system of Equations (1)–(5), we introduce the following similarity variables

ψ(x, y, t) = UW
√

cos(α)νt + sin(α)(νx/UW) f (η),
θ(η) = T−T∞

TW−T∞
, φ(η) = C−C∞

CW−C∞
,

(7)

in the governing equations to get the following ordinary differential equations:

f ′′′ +
1
2
(cos α)η f ′′ +

1
2
(sin α) f f ′′ = 0, (8)

θ′′ +
Pr
2
((cos α)η + (sin α) f )θ′ + Nbθ′φ′ + Ntθ

′2 = 0, (9)

φ′′ +
Le
2
((cos α)η + (sin α) f )φ′ + (

Nt

Nb
)θ′′ = 0, (10)

subject to boundary conditions:

f (η) = 0, f ′(η) = 1, θ(η) = 1, φ(η) = 1 at η = 0,
f ′(η) → 0, θ(η) → 0, φ(η) → 0 as η → ∞,

(11)

where prime represents the differentiation with respect to variable η. Pr is Prandtl number, Nt is
thermophoresis diffusion parameter, Nb is Brownian diffusion parameter and Le is Lewis number
given by the following expressions:

Pr =
ν

σ
, Nb =

εDB(CW − C∞)

σ
, Nt =

εDT(TW − T∞)

TWσ
, Le =

ν

DB
. (12)
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The range of the parameters of interest, namely thermophoresis diffusion parameter and Brownian
diffusion parameter is given as: Nb∈ (0.0, 0.5) and Nt∈ [0.0, 0.5).

3. Results and Discussions

In this special case of unsteady flow, the slot is moving with constant speed −Uw cot(α).
For α = π/2, the surface velocity is zero as in the case of Sakiadis flow [22]. For 0 < α < π/2,
the slot is moving with the constant speed Uw cot(α) in the opposite direction of stretching surface
and the situation is termed as leading-edge accretion. For α ∈ (αL , 0) ∪ (π/2 , αU), the direction of
slot motion is same as stretching sheet and the situation is termed as leading-edge ablation. As α → 0 ,
the speed of slot approaches infinity in opposite direction to the stretching surface, which correspond
to the Rayleigh starting-plate problem. The analytical solution for this case has been obtained using
the perturbation method (see Appendix A). Since the exact analytical solution of the system (8)–(11) is
not available for general α, we adopt the numerical method for the solution. In Table 1, the comparison
of numerical results of skin friction with results of Fang [20] is tabulated. In Table 2, the comparison
of the analytical result for α = 0 is given with the numerical solution. Tables 1 and 2 establish the
reliability of our results.

Table 1. Comparison of Fang [20] and Present study for values of different moving slot parameters.

α(◦) −f”(0) (Fang [17]) Present Study

90◦ 0.443748 0.443872

60◦ 0.576684 0.576685

30◦ 0.613527 0.613526

0◦ 0.564190 0.564189

−30◦ 0.416304 0.416303

−48◦ (upper solution) 0.239052 0.239055

−48◦ (lower solution) 0.00150569 0.00149961

Table 2. Comparison of analytical and numerical solutions for Nusselt and Sherwood number for α = 0.

Parameters Values
−θ

′
(0)

(Analytical)
−θ

′
(0)

(Numerical)
−φ

′
(0)

(Analytical)
−φ

′
(0)

(Numerical)

Pr = 1, Le = 0.5, Nb = 0.01, Nt = 0.01 0.5541896 0.5603877 0.0884477 0.0718526

Pr = 1, Le = 0.5, Nb = 0.05, Nt = 0.0 0.5541896 0.5532004 0.39894228 0.39894228

Pr = 1, Le = 1.0, Nb = 0.05, Nt = 0.0 0.55418958 0.5502023 0.56418958 0.56418958

Pr = 1, Le = 2.0, Nb = 0.02, Nt = 0.01 0.55418958 0.5551755 0.67603707 0.68467843

The numerical solution domain of α, (αL < α < αU), for the skin friction and Nusselt number
mentioned by Fang [20] also hold for Sherwood number. In this study, we focus on the effects of
nanoparticles on the heat transfer and behavior of nanoparticles concentration for the surface accretion
and ablation.

Figure 2 demonstrates numerical solutions of velocity profile for various values of slot moving
constant α ranging between −π/4 < α < αU . In Figure 3 the dual solution for the velocity profile is
plotted for α = −48◦. The thickness of boundary layer is much greater for lower solution branch as
compared to upper solution branch.
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Figure 2. Velocity profiles for varying slot moving parameter α.

Figure 3. Profiles of velocity for different branches at α = −48◦.

Figure 4 represents the dual solution for a fixed value of moving slot parameter α = −48◦,
with two distinct values of Prandtl number. For the above-mentioned values of parameters,
both solutions show maximum temperature gradient which can be viewed in the region away from
the wall. The change of heat transfer at the wall is less for lower solution as compared to the upper
solution. The thermal layer thickness is greater for lower solution as compare to upper solution branch.
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Figure 4. Temperature and its flux profiles for several branches at α = −48◦ for varying Pr with
Nb = 0.01 and Nt = 0.001.

Figures 5 and 6 illustrate the numerical solution domain of reduced Nusselt number as a function
of α for different values of Brownian and thermophoretic diffusion parameters, Nb and Nt respectively.
For Nusselt number, the correlation expression in the form of Nb and Nt has also been written by
applying the linear regression on the set of 2401 numerical values. The values of coefficients and
constant of the correlation expression in the form

− θ′(0) = C + CBNb + CT Nt

for Nb ∈ (0.01, 0.5) and Nt ∈ (0.0, 0.5) is given in Table 3 with maximum percentage error for different
Prandtl number and moving slot parameter.

 
Figure 5. Effects of slot moving parameter α on reduced Nusselt number for varying Nb with
Pr = Le = 1.0 and Nt = 0.1.
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Figure 6. Effects of slot moving parameter α on reduced Nusselt number for varying Nt with
Pr = Le = 1.0 and Nb = 0.1.

Table 3. Correlation expression for reduced Nusselt number and maximum percentage error
defined for varying Prandtl number and moving slot parameter considering values of Brownian
and thermophoresis diffusion parameters in the interval (0.01, 0.5).

Pr Le α C CB CT Max. % Error Solution Curve

0.5 1.5 30 0413 −0.226 −0.132 2.60% –
1.0 1.0 30 0.605 −0.261 −0.168 1.760% –
1.0 1.0 0.0 0.601 −0.253 −0.161 2.650% –
2.0 1.5 30 0.877 −0.305 −0.21 0.986% –
1.0 1.0 −49 0.235 −0.101 −0.075 2.430% Upper Solution
1.0 1.0 −49 0.004 −0.002 −0.002 7.970% Lower Solution

It is observed that the Nusselt number decreases with an increase in parameters Nb and Nt,
since higher temperatures correspond to higher Brownian and thermophoretic diffusion which
resultantly reduces the surface heat flux. The same observation can be made from the correlation
expressions since the coefficients of Nb and Nt are negative for all value of Pr and α. Furthermore, it is
seen that dual solutions exist for a certain interval of slot moving parameter α and that interval can be
viewed in Figures 5 and 6. The important observation is that the range of α reduces dramatically with
an increase of Nt and the duality of solution vanishes for Nt = 0.05. For this reason, the correlation
expression for α = −49o is derived for Nt∈ (0.0, 0.01). The variation of Nb has no effect on the duality
of the solution.

For a fixed value of moving slot parameter α = −49o, Figures 7 and 8 show the dual solution
for the variation of Nb and Nt. The thickness of concentration boundary layer is greater for the
smaller solution branch. As the value of Nb increases, the concentration boundary layers become
thinner for upper as well as for lower solution domains. The concentration thickness of boundary
layer is less for the lower solution branch. As the value of Nt increases, the concentration boundary
layers become thicker for upper and lower solution domains. In Figures 9–11, the effects of Lewis
number, thermophoretic diffusion and Brownian diffusion on the nanoparticles concentration flux
at the surface are plotted. The Sherwood number is plotted against the moving slot parameter α.
Dual solution for Sherwood number is observed in the interval (−53◦, −49.5◦). Figure depicts that
Sherwood number is growing function of α in the interval (−49.5◦, 30◦), and decreasing function in
the interval (30◦, αU). As Le increases, i.e., the dominancy of viscous diffusion increases over the
Brownian diffusion, the mass flux at the surface increases. Similar effects of Brownian diffusion and
opposite effects of thermophoretic diffusion on Sherwood number are observed. In dual solution range,
the effects of thermophoretic and Brownian diffusions on Sherwood number are found negligible.
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Figure 7. Dual solutions of nanoparticles concentration profile for α = −49◦ and varying Nb,
with Pr = Le = 1.0, Nt = 0.001.

Figure 8. Dual solutions of nanoparticles concentration profile for α = −49◦ and varying Nt,
with Pr = Le = 1.0, Nb = 0.05.
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Figure 9. Effects of slot moving parameter α on reduced Sherwood number for varying Le with
Pr = 1.0, Nb = 0.05, Nt = 0.001.

Figure 10. Effects of slot moving parameter α on reduced Sherwood number for varying Nb with
Pr = Le = 1.0, Nt = 0.001.
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Figure 11. Effects of slot moving parameter α on reduced Sherwood number for varying Nt with
Pr = Le = 1.0, Nb = 0.05.

4. Conclusions

In this work, the unsteady flow and heat transfer of a viscous-based nanofluid over a moving
surface emerging from a moving slot has been considered. The effects of involved parameters on
the temperature and concentration profiles are illustrated graphically. Furthermore, the variation
of reduced Nusselt and Sherwood numbers with the involved parameters; namely Lewis number,
Brownian motion parameter and thermophoretic diffusion parameter; are presented graphically.

The obtained results are concluded as follows:

• With the increase in the value of Brownian diffusion parameter Nb, the temperature enhances
while the nanoparticles volume fraction decreases.

• By increasing the thermophoretic diffusion parameter Nt, both temperature and nanoparticles
concentration are increased.

• Concentration of nanoparticles reduces with the enhancement of Lewis number Le.
• Dual solutions exist for both thermal and concentration boundary layers. The mass flux rate

attains the maximum value of slot moving parameter α, as the Lewis number is increased.
• Heat flux at the surface −θ′(0) reduces with the increase of Nb and Nt in the upper solution

branch. The reduced Sherwood number −φ′(0) is enhanced when Nb is increased, whereas it
reduces with increasing Nt.
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Nomenclatures

U Velocity component in X direction
V Velocity component in Y direction
Uw Plate velocity
ψ Stream function
T Temperature
T∞ Ambient temperature
TW Wall temperature
C Nanoparticles concentration
C∞ Ambient nanoparticles concentration
CW Wall nanoparticles concentration
η Similarity variable
α Moving slot parameter
DB Brownian diffusion coefficient
DT Thermophoretic diffusion coefficient
Le Lewis number
Nb Brownian diffusion parameter
Nt Thermophoretic diffusion parameter
Pr Prandtl number

φ
Nondimensional nanoparticles
concentration

θ Nondimensional temperature
ν Kinematic viscosity
σ Thermal diffusivity
ε Ratio of heat capacities of the nanoparticles
ρc) f Heat capacity of fluid
(ρc)p Heat capacity of nanoparticles

Appendix A

For α = 0, the governing equations reduce to

f ′′′ +
1
2

η f ′′ = 0, (A1)

θ ′′ +
Pr
2

ηθ′ + Nbθ′φ′ + Ntθ
′2 = 0, (A2)

φ′′ +
Le
2

ηφ′ + Nt
Nb

θ ′′ = 0. (A3)

We derive the analytical expressions for the skin friction, Nusselt number and Sherwood number subject to
the boundary conditions in Equation (A1). The exact solution of Equation (A1) is:

f ′(η) = 1 − er f
(

1
2

η

)
(A4)

It is noted that the magnitude of thermophoretic and Brownian diffusion parameters for nanoparticles is very
small [1,9], therefore we consider Nb and Nt of O(ε), ε → 0 . We expand θ and φ in small parameter ε and write

θ = θo + εθ1 + . . .
φ = φo + εφ1 + . . . (A5)

By substituting the expressions in Equation (A5) in Equations (A2) and (A3), the leading order boundary
value problem is given by

θ ′′
o +

Pr
2

ηθ′o = 0, (A6)

φ′′
o +

Le
2

ηφ′
o +

τ

β
θ ′′ = 0, (A7)
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where β and τ are constants of O(1) such that Nb = βε and Nt = τε. The solution of above boundary value
problem can be written as

θ′o(y) =
√

Pr√
π

e− 1
4 Prη2

,

φ′
o(y) = −

τPr
(√

Pre−
1
4 Prη2−√

Le e−
1
4 Leη2

)
+β(Le−Pr)

√
Le e−

1
4 Leη2

√
πβ(Le−Pr) .

(A8)

The first order system can be written as

∂2θ1
∂y2 +

1
2

Prη
∂θ1
∂y

+ β
∂θo

∂y
∂φo

∂y
+ τ

(
∂θo

∂y

)2
= 0 (A9)

∂2φ1
∂y2 +

1
2

Leη
∂φ1
∂y

+
τ

β

∂2θ1
∂y2 = 0 (A10)

with the boundary conditions
θ1 = 0, φ1 = 0 at η = 0

θ1 = 0, φ1 = 0 as η → ∞ (A11)

For the above boundary value problem, the exact solution is given by

θ′1(η) = e−
1
4 Prη2

(
1 −

√
Pr√
π

βerf
(

1
2

√
Leη

)
−

√
Pr√
π

τ

Le − Pr

(
Le erf

(
1
2

√
Prη

)
− Prerf

(
1
2

√
Leη

)))
(A12)

φ′
1(η) =

τ
β
√

π(Le−Pr) e− 1
4 Leη2

(
Pr
√

πe− 1
4 (Pr−Le)η2

+
τPrLe erf( 1

2

√
2Pr−Leη)√

2Pr−Le
−

√
Pr3
(
(Le−Pr)β−Prτ

Le−Pr

)(
erf
(

1
2

√
Leη
)

e− 1
4 (Pr−Le)η2 −

√
Le√
Pr

erf
(

1
2

√
Prη
))

+ ((Le − Pr)β − τPr)
√

Le erf
(

1
2

√
Prη
)
− τ

√
Le3Pr3

Le−Pr

(√
Le erf

(
1
2

√
Prη
)

e− 1
4 (Pr−Le)η2 −√

Prerfi
(

1
2

√
Le η

)))
,

(A13)

where erf is the error function and erfi is the imaginary error function.
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Abstract: In this research, the three-dimensional nanofluid thin-film flow of Casson fluid over an
inclined steady rotating plane is examined. A thermal radiated nanofluid thin film flow is considered
with suction/injection effects. With the help of similarity variables, the partial differential equations
(PDEs) are converted into a system of ordinary differential equations (ODEs). The obtained ODEs are
solved by the homotopy analysis method (HAM) with the association of MATHEMATICA software.
The boundary-layer over an inclined steady rotating plane is plotted and explored in detail for the
velocity, temperature, and concentration profiles. Also, the surface rate of heat transfer and shear
stress are described in detail. The impact of numerous embedded parameters, such as the Schmidt
number, Brownian motion parameter, thermophoretic parameter, and Casson parameter (Sc, Nb,
Nt, γ), etc., were examined on the velocity, temperature, and concentration profiles, respectively.
The essential terms of the Nusselt number and Sherwood number were also examined numerically
and physically for the temperature and concentration profiles. It was observed that the radiation
source improves the energy transport to enhance the flow motion. The smaller values of the Prandtl
number, Pr, augmented the thermal boundary-layer and decreased the flow field. The increasing
values of the rotation parameter decreased the thermal boundary layer thickness. These outputs are
examined physically and numerically and are also discussed.

Keywords: Casson fluid; rotating disk; condensation film; heat generation/consumption; thermal
radiation; HAM
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1. Introduction

Energy is a requirement of production for every industry and is used in every engineering
field. Important sources of energy are gas turbines, exchange membrane, and fuel cells [1],
hydraulic-fracturing [2,3], etc. Suspensions of nanoparticles in fluids show a vital enrichment
of their possessions at modest nanoparticle concentrations. Numerous researchers have worked on
nanofluids and studied their role in heat transfer analysis, like nuclear reactors and other transportations.
Nanofluids are smart fluids, where heat transfer can be decreased or increased in the base fluids.
This research work focuses on investigating the vast range of uses that involve nanofluids, emphasizing
their enriched heat transfer possessions, which are governable, and the defining features that these
nanofluids preserve that make them suitable for such uses. Moreover, nanofluids are a new kind
of energy transference fluid that are the suspension of base fluids and nanoparticles. For cooling
requirements, usual heat transfer liquids cannot be used, due to their lesser thermal conductivity.
By implanting nanoparticles into normal fluids, their thermal enactment can be enriched considerably.
Choi [4] is widely accepted as the first publication that introduces the concept of nanofluids. He clarifies
nano liquids as a liquid containing smaller scale particles known as nanoparticles about 1 to 100 nm
in measure.

Bhatti et al. [5] explored the simultaneous impacts of the varying magnetic field of Jeffrey nanofluid.
They examined the impact of physical parameters over the flow field. Xiao et al. [3] examined the
relative permeability of nanofibers with the capillary pressure effect using the Fractal-Monte Carlo
technique. They observed the impact of the embedding parameters with applications. Ellahi et al. [6]
investigated the MHD non-Newtonian nanofluid with a temperature dependent viscosity flow
through a pipe. The microchannel heat sink flow exploration cooled by a Cu water nanofluid by
applying the least square method and the porous media approach was observed by Hatami et al. [7].
Hatami et al. [8] explored nanofluid laminar flow between rotating disks with heat transfer. Srinivas
Acharya et al. [9] investigated nanofluid mixed convection flow with ion slip and Hall effects between
two concentric cylinders. Khan et al. [10] investigated boundary-layer nanofluid flow through
a stretching surface. Khanafer et al. [11] described two-dimensional Buoyancy driven flow with
enhanced heat transfer enclosure utilizing nanofluids. Mahanthesh et al. [12] investigated unsteady
MHD three-dimensional Eyring-Powell nanofluid flow with thermal radiation through a stretching
sheet. Rashidi et al. [13] explored nanofluid with entropy generation and MHD flow on a steady porous
rotating disk. Rashidi et al. [14] investigated 3-D film condensation on a steady inclined rotating disk.

Gul et al. [15] studied the heat and mass transfer analysis of a liquid film over an inclined plane.
They compared integer and non-integer order results under the influence of embedded parameters.
Saleh et al. [16] studied carbon-nanotubes suspended nanofluid flow with convective conditions using
the Laplace transform. Sheikholeslami et al. [17] examined nanofluid flow in a semi-annulus enclosure
with heat transfer and MHD effects. Sheikholeslami et al. [18] investigated flow in a semi-porous
channel of MHD nanofluid with an analytical investigation. Later, these investigators [19] deliberated
unsteady nanofluid flow through a stretching surface. Hayat et al. [20] explored the boundary layer
flow of Maxwell nanofluid. Malik et al. [21] explored MHD flow through a stretching Erying-Powell
nanofluid. Nadeem et al. [22] examined the flow of Maxwell liquid with nanoparticles through a
vertical stretching surface. Raju et al. [23] examined flow with free convective heat transfer through a
cone of MHD nano liquid. Rokni et al. [24] explored flow with the heat transfer of nanofluids through
plates. Nadeem et al. [25] investigated flow on a stretching sheet of nano non-Newtonian liquid.
Shehzad et al. [26] investigated the convective boundary conditions of Jaffrey nanoliquid flow with an
MHD effect. Sheiholeslami et al. [27] explored flow with a magnetic field and heat transfer of nano
liquid. Mahmoodi et al. [28] examined flow for cooling applications of nanonfluid with heat transfer.
Recently, Shah et al. [29–32] investigated a rotating system in the effects of hall current and thermal
radiations of nanofluid flow. Further theoretical investigations were examined by Sheikholeslami
using different phenomena for nanofluids, with present usages and possessions with applications of
numerous methods, can be found in [33–37]. Pour and Nassab [38] examined the convectional flow of
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nanofluids using the numerical technique. The influence of the physical parameters was observed in
their study.

The exploration of thin film has achieved substantial presentation due to its frequent usages in the
field of technology, industry, and engineering in a short interval of time. The investigation of thin liquid
flow is necessary, due to its practical uses, such as cable and fibber undercoat. Several well-known uses
of thin film are the fluidization of devices, elastic sheet drawing, and constant formation. Regarding their
uses, it is vital that scientists develop research on the stretching sheet of liquid films. Sandeep et al. [39]
studied non-Newtonian nanoliquids’ thin films’ fluid flow with heat transfer. Wang [40] detected an
unsteady flow of thin film fluid through a stretching sheet. Usha et al. [41] investigated unsteadily
finite thin liquid past a stretching sheet. Liu et al. [42] investigated thin film flow with heat transfer on
a stretching surface. Aziz et al. [43] perceived the flow on a stretching sheet of a thin fluid film for
the production of heat inside. Tawade et al. [44] examined fluid flow with thermal radiation and heat
transmission of a thin film. Fluid film flow on a stretching sheet with heat transfer was investigated
by Andersson et al. [45]. Also, investigators [46–51] examined the flow of liquid film on a stretching
surface for further dissimilar cases. Hatami et al. [52] examined 3-D nanofluid flow on a steady rotating
disk. A similar related study about nanofluid can be seen in [52–56]. Jawad et al. [57] examined
Darcy-Forchheimer nanofluid thin film flow with Joule dissipation and Navier’s partial slip of the
MHD effect. Jawad et al. [58] studied 3-D single-wall carbon nanotubes rotating flow with the impact
of nonlinear thermal radiation and viscous dissipation in the presence of aqueous suspensions. Other
related work can be seen in [59–63].

In view of the above important discussion, the aim of the current study is to investigate liquid
film flow over an inclined plane. The momentum, thermal, and concentration boundary-layers under
the influence of physical constraints for heat and mass transfer analysis will be examined physically
and numerically.

2. Problem Formulation

Consider a steady three-dimensional Casson nanofluid thin-film flow over a rotating disk.
The rotation of the disk is due to the angular velocity (Ω) in its own plane as displayed in Figure 1.
An angle, β, is made by the inclined disk with the horizontal axis. Also, h denotes the film thickness of
the nanofluid, and W represents the spraying velocity. The radius of the disk is very large as compared
to the liquid film thickness and hence the termination influence is unnoticed. g is gravitational
acceleration, T0 is the temperature at the film surface, while Tw represents the surface temperature of
the disk. Likewise, C0 and Ch are the concentration on the film and on the disk surfaces, respectively.
Pressure is a function of the z-axis only and the ambient pressure (P0) at the sheet of the film is kept
constant. The equations of continuity, momentum, concentration, and energy for a steady state are
shown in Equations (1) to (6) [8–10]:

ux + uy + uz = 0 (1)

ρn f
(
uux + vuy + wuz

)
=

(
1 +

1
γ

)
μn f

(
uxx + uyy + uzz

)
+ g sin β (2)

uvx + vvy + wvz =

(
1 +

1
γ

)
μn f

ρn f

(
vxx + vyy + vzz

)
(3)

uwx + vwy + wwz =

(
1 +

1
γ

)
μn f

ρn f

(
wxx + wyy + wzz

)
− g cos

β

Ω′ −
Pz

ρn f
(4)

uTx + vTy + wTz =
kn f(
ρcp

)
n f

(
Txx + Tyy + Tzz

)
(5)

uCx + vCy + wCz = Dβ
(
Cxx + Cyy + Czz

)
+

(
DT

T0

)(
Txx + Tyy + Tzz

)
(6)

155



Coatings 2019, 9, 248

 
Figure 1. Geometry of the problem.

In the above equations, u, v, and w represent the velocity components in the x, y, and z
axis, respectively.

The boundary conditions are as follows:

u = −Ωy, v = Ωx, w = 0, T = Tw, C = Ch
uz = vz = 0, w = 0, T = Tw, C = C0, P = P0

at z = 0
at z = h

(7)

Consider the similarity transformations of the form:

u = −Ωyg(η) + Ωx f ′(η) + gk(η) sin β
Ω′

v = Ωxg(η) + Ωy f ′(η) + gs(η) sin β
Ω′

w = −2
√

Ωvn f f (η), T = (T0 − Tw)θ(η) + Tw

ηφ(η) = C−Cw
C0−Cw

, η = z
√

Ω
vn f

(8)

The transformations introduced in Equation (8) are implemented in Equations (2) to (7). Equation (1) is
proved identically and Equations (2) to (6) are obtained in the forms:(

1 +
1
γ

)
f ′′′ − f ′2 + g2 + 2 f f ′′ = 0 (9)

(
1 +

1
γ

)
k′′ + gs− k f ′ + 2k f = 0 (10)(

1 +
1
γ

)
g′′ − 2g f ′ + 2g′ f = 0 (11)(

1 +
1
γ

)
s′′ − kg− s f ′ + 2s′ f = 0 (12)

If θ(η) and φ(η) are a function of z only, Equations (5) and (6) take the forms:(
1− 4

3
R
)
θ′′ + 2Pr

A2A3

A1A4
(I1 f ′ + j1)θ = 0 (13)

φ′′ + 2Sc fφ′ + Nt
Nb
θ′′ = 0 (14)
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f (0) = 0, f ′(0) = 0, f ′′ (δ) = 0, φ(0) = 0, φ(δ) = 1
g(0) = 0, g′(δ) = 0, k(0) = 0, k′(δ) = 0
s(0) = 0, s′(δ) = 0, θ(0) = 0, θ′(δ) = 1.

(15)

Physical parameters and other dimensionless numbers of interest are defined as:

Pr =
v f
α f

, Sc = μ
ρ f D , Nb =

(ρc)pDb(Ch)

(ρc) fα

Nt =
(ρc)pDT(TH)

(ρc) fαTc
, S = α

Ω

(16)

Here, Pr is the Prandtl number, Sc is the Schmidt number, Nb is the Brownian motion parameter, and Nt
is the thermophoretic parameter.

Where the normalized thickness constant is presented as:

δ = h

√
Ω

vn f
(17)

The condensation velocity is defined as:

f (δ) =
W

2
√

Ων
= α (18)

The pressure can be attained by the integration of Equation (4).
For the exact solution, let Pr = 0 and using θ(δ) = 1, the exact solution is:

θ′(0) = 1
δ

(19)

An asymptotic limit for small, δ, is defined in Equation (17). The reduction of θ’(0) for rising δ is not
monotonic. So, Nu is defined as:

Nu =
kn f

k f

(Tz)w

(T0 − Tw)
= A4δθ

′(0) (20)

The Sherwood number is defined as:

Sh =
(Cz)w

C0 −Cw
= δφ′(0) (21)

3. Solution by Homotopy Analysis Method

The optimal approach is used for the solution process. Equations (9) to (14) with boundary
conditions (15) are solved by HAM. Mathematica software is used for this aim. The basic derivation of
the model equation through HAM is given in detail below.

Linear operators are denoted as L f̂ , Lθ̂ and Lφ̂ is represented as

L f̂ ( f̂ ) = f̂ ′′′ , Lk̂(k̂)= k′′ , Lĝ(ĝ)= g′′ ,

Lŝ(ŝ)= s′′ , Lθ̂
(
θ̂) =θ̂′′ , Lφ̂

(
φ̂) =φ′′

(22)

The modelled Equations (9) to (14) with boundary conditions (15) are solved analytically as well as
numerically. The comparison between the analytical and numerical solution is shown graphically as
well as numerically in Tables 1–6 for the velocities, temperature, and concentration profiles. From these
tables, an excellent agreement between the HAM and numerical (ND-Solve Techniques) methods
is obtained.
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Table 1. Comparison of HAM and numerical solution for f (η).

f (η) HAM Solution Numerical Solution Absolute Error

0.0 0.000000 −2.812710 × 10−10 2.812710 × 10−10

0.1 0.003258 0.003258 5.703240 × 10−8

0.2 0.012408 0.012408 2.280140 × 10−7

0.3 0.026573 0.026573 5.104210 × 10−7

0.4 0.044948 0.044948 8.995600 × 10−7

0.5 0.066795 0.066793 1.388520 × 10−6

0.6 0.091431 0.091429 1.965710 × 10−6

0.7 0.118224 0.118221 2.615740 × 10−6

0.8 0.146586 0.146583 3.327870 × 10−6

0.9 0.175966 0.175962 4.078740 × 10−6

1.0 0.205842 0.205837 4.847430 × 10−6

Table 2. Comparison of HAM and numerical solution for k(η).

k(η) HAM Solution Numerical Solution Absolute Error

0.0 0.000000 3.431260 × 10−8 3.431260 × 10−8

0.1 0.082367 0.082366 2.022930 × 10−7

0.2 0.155134 0.155134 4.388100 × 10−7

0.3 0.218705 0.218705 6.667190 × 10−7

0.4 0.273439 0.273438 8.749510 × 10−7

0.5 0.319620 0.319619 1.071030 × 10−6

0.6 0.357437 0.357436 1.231030 × 10−6

0.7 0.386981 0.386980 1.356500 × 10−6

0.8 0.408247 0.408246 1.432420 × 10−6

0.9 0.421138 0.421137 1.471570 × 10−6

1.0 0.425484 0.425483 1.467400 × 10−6

Table 3. Comparison of HAM and numerical solution for g(η).

g(η) HAM Solution Numerical Solution Absolute Error

0.0 1.000000 1.000000 1.286450 × 10−8

0.1 0.950141 0.950139 2.377450 × 10−6

0.2 0.903441 0.903436 4.705070 × 10−6

0.3 0.860810 0.860803 6.954740 × 10−6

0.4 0.822957 0.822948 9.080750 × 10−6

0.5 0.790417 0.790406 0.000011
0.6 0.763566 0.763553 0.000013
0.7 0.742641 0.742627 0.000014
0.8 0.727756 0.727740 0.000015
0.9 0.718908 0.718892 0.000016
1.0 0.715997 0.715981 0.000016

Table 4. Comparison of HAM and numerical solution for s(η).

s(η) HAM Solution Numerical Solution Absolute Error

0.0 0.000000 −7.170820 × 10−9 7.170820 × 10−9

0.1 −0.019540 −0.019539 1.154300 × 10−6

0.2 −0.038351 −0.038349 2.304890 × 10−6

0.3 −0.055850 −0.055846 3.427710 × 10−6

0.4 −0.071593 −0.071588 4.501730 × 10−6

0.5 −0.085251 −0.085246 5.509380 × 10−6

0.6 −0.096596 −0.096590 6.416000 × 10−6

0.7 −0.105479 −0.105471 7.187270 × 10−6

0.8 −0.111819 −0.111811 7.792270 × 10−6

0.9 −0.115595 −0.115587 8.183170 × 10−6

1.0 −0.116839 −0.116831 8.326040 × 10−6
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Table 5. Comparison of HAM and numerical solution for θ(η).

θ(η) HAM Solution Numerical Solution Absolute Error

0.0 0.000000 −1.777730 × 10−9 1.777730 × 10−9

0.1 0.116628 0.116628 1.151200 × 10−7

0.2 0.232964 0.232964 2.309850 × 10−7

0.3 0.348690 0.348690 3.439950 × 10−7

0.4 0.463468 0.463469 4.517690 × 10−7

0.5 0.576946 0.576946 5.526490 × 10−7

0.6 0.688763 0.688763 6.424670 × 10−7

0.7 0.798558 0.798559 7.163620 × 10−7

0.8 0.905975 0.905976 7.751320 × 10−7

0.9 1.010670 1.010670 8.130730 × 10−7

1.0 1.112300 1.112300 8.304690 × 10−7

Table 6. Comparison of HAM and numerical solution for φ(η).

φ(η) HAM Solution Numerical Solution Absolute Error

0.0 0.000000 −2.935480 × 10−9 2.935480 × 10−9

0.1 0.109309 0.109309 8.676730 × 10−8

0.2 0.218448 0.218448 1.752770 × 10−7

0.3 0.327225 0.327226 2.613220 × 10−7

0.4 0.435439 0.435440 3.434820 × 10−7

0.5 0.542882 0.542883 4.241530 × 10−7

0.6 0.649351 0.649352 4.969910 × 10−7

0.7 0.754655 0.754656 5.581250 × 10−7

0.8 0.858619 0.858620 6.055710 × 10−7

0.9 0.961090 0.961091 6.356540 × 10−7

1.0 1.061940 1.061940 6.465200 × 10−7

4. Results and Discussion

The three-dimensional flow of the liquid film through a steady rotating inclined surface with
mass and heat transmission was examined. The influence of the embedded parameters, magnetic field,
M, Casson parameter, γ, Schmidt number, Sc, Brownian motion parameter, Nb, and thermophoretic
parameter, Nt, was investigated for the axial velocity, f (η), radial velocity, k(η), drainage flow, g(η),
and induced flow, s(η), temperature field, θ(η), and concentration profile, φ(η), respectively. Figures 2–5
display the influence of the Casson fluid parameter, γ, on f (η), k(η), g(η), and s(η). Rising γ generates
resistance in the flow path and decreases the flow motion of nanoparticles. It is observed that an
increase of the Casson fluid parameter, γ, leads to a decrease of f (η), k(η), g(η), and s(η). The opposite
trend is found in case of the z-direction, that is the enormous value of γ decreases the f (η), k(η), g(η),
and s(η). The influence of Pr on θ(η) is displayed in Figure 6. It is interesting to note that θ(η) decreases
with large values of Pr and increases with smaller values. In fact, the thermal diffusivity of nanofluids
has greater values by reducing Pr, and this effect is inconsistent for larger Pr. Hence, the greater values
of Pr drop the thermal boundary layer. The influence of the radiation parameter, R, on θ(η) is presented
in Figure 7. It is observed that if R increases, then the boundary layer area θ(η) is augmented. The effect
of Nb on θ(η) is displayed in Figure 8. The converse influence was created for φ(η) and θ(η), which
means augmented Nb decreases the concentration profile, φ(η). The concentration boundary layer
thickness decreased due to the rising values of Nb and as a result, the concentration field, φ(η), declined.
The features of the thermophoretic parameter, Nt, on the concentration profile, φ(η), are presented in
Figure 9. The enhancement of Nt increases φ(η). Thus, Nt depends on the temperature gradient of the
nanofluids. The kinetic energy of the nanofluids rises with the increasing value of Nt, and as a result,
φ(η) increases. Figure 10 identifies the influence of Sc. The dimensionless number, Sc, is stated as the
ratio of momentum and mass diffusivity. It is obvious that the amassed Sc reduces the φ(η) and as a
result, the boundary layer thickness is decreased.
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Figure 2. The influence of γ on f (η) when Ω = 1, ρ = 1, σ = 0.5, k = 1, M = 1.

Figure 3. The influence of γ on g(η) when Ω = 1, ρ = 1, σ = 0.5, k = 1, M = 1.

Figure 4. The influence of γ on k(η) when Ω = 1, ρ = 1, σ = 0.5, k = 1, M = 1.
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Figure 5. The influence of γ on s(η) when Ω = 1, ρ = 1, σ = 0.5, k = 1, M = 1.

Figure 6. The influence of Pr on θ(η) when Ω = 1, ρ = 1, σ = 0.5, k = 1, M = 1.

Figure 7. The influence of R on θ(η) when Ω = 1, ρ = 1, σ = 0.5, k = 1, M = 1.
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Figure 8. The effect of Nb on φ(η) when Nt = 0.6, Sc = 0.6, S = 0.7.

Figure 9. The influence of Nt on φ(η) when Nb = 0.6, Sc = 0.7, S = 0.7.

Figure 10. The influence of the Schmidt number (Sc) on φ(η) when Nb = 0.6, Nt = 0.5.

Figures 11 and 12 demonstrate the effects of Pr and R. It can be seen that rising values of Pr and R
increase Nu. In fact, the coaling phenomenon is enhanced with increased values of these parameters.
Figure 13 identifies that Nu reduces for the amassed values of k.
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Figure 11. The impact of the Prandtl number (Pr) on the Nusselt number.

Figure 12. The influence of radiation parameter (R) on the Nusselt number.

Figure 13. The influence of k on the Nusselt number.

5. Conclusions

In this article, the three-dimensional thin-film Casson fluid flow over an inclined steady rotating
plane was examined. The thin film flow was thermally radiated and the suction/injection effect was
also considered. By the similarity variables, the PDEs were converted into ODES. The obtained ODEs
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were solved by the HAM with association of the MATHEMATICA program. The main features of the
study are highlighted as:

• Smaller values of the Prandtl number enhance the thermal boundary layer.
• An increasing value of the magnetic field stops the fluid motion.
• Larger amounts of the thermal radiation parameter and thermophoretic parameter enhances the

thermal boundary layer.
• The Casson fluid parameter produces a resistance force and its increasing value decreases the

fluid motion.
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Nomenclature

Nb Brownian motion parameter
T Cauchy stress tensor
C Concentration of the fluid
h Film thickness
M Magnetic parameter
Nu Nusselt number
Pr Prandtl number
Nt Thermoporetic parameter
R Radiation parameter
x, y, z Rectangular coordinates
Re Reynold number
Sh Sherwood number
Cf Skin friction coefficient
W Spraying velocity
T∞ Temperature of the fluid at large distance
f Transformed dependent variable
u Velocity component in x-direction
v Velocity component in y-direction
μ Coefficient of viscosity
γ Casson fluid parameter
� Density of the fluid
p Fluid pressure
I Identity tensor chord
v Kinematic viscosity
Ω Rotation parameter
τ Shearing stress
ψ Stream function
β Thickness of the fluid
η Transformed independent variable
∞ Condition at infinity
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Abstract: This study aims to scrutinize the thin film flow of a nanofluid comprising of carbon
nanotubes (CNTs), single and multi-walled i.e., (SWCNTs and MWCNTs), with Cattaneo-Christov
heat flux and entropy generation. The time-dependent flow is supported by thermal radiation,
variable source/sink, and magneto hydrodynamics past a linearly stretched surface. The obtained
system of equations is addressed by the numerical approach bvp4c of the MATLAB software. The
presented results are validated by comparing them to an already conducted study and an excellent
synchronization in both results is achieved. The repercussions of the arising parameters on the
involved profiles are portrayed via graphical illustrations and numerically erected tables. It is seen
that the axial velocity decreases as the value of film thickness parameter increases. It is further noticed
that for both types of CNTs, the velocity and temperature distributions increase as the solid volume
fraction escalates.

Keywords: thin liquid film flow; carbon nanotubes; Cattaneo-Christov heat flux; variable heat
source/sink; entropy generation

1. Introduction

The flow and heat transfer phenomenon in thin fluid film past stretched surfaces has promising
applications including continuous casting, extrusion of plastic sheets, drawing of polymer surfaces,
foodstuff processing, annealing and tinning of copper wires, and cooling of metallic plates [1]. The
maintenance of the extrudes’ surface is vital in the extrusion process smooth surface with minimum
friction and enough strength is necessary for the coating procedure. Additionally, all this highly rely
on the flow and heat transfer properties of the thin film over stretched surfaces. Because of this, the
analysis in such cases is quite essential. Wang’s [2] pioneering work by deliberating the hydrodynamics
of time-dependent thin fluid film flow past a stretching sheet invited researchers to work in this
attractive industry-oriented theme. Andersson et al. [3] further developed Wang’s idea for heat transfer
analysis. This case is further presented in a more generalized form by Chung and Andersson [4]. The
solution to the same problem is discussed analytically by Wang [5]. The thin film flow is later analyzed
in various scenarios like magnetic impact [6,7], thermo-capillary impacts [8], and non-Newtonian
fluids [9–12].
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The above-mentioned studies on thin liquid films are limited to Newtonian and non-Newtonian
fluids in the absence of nanofluids. In recent years, the subject of nanofluids, owing to their amazing
characteristic of high thermal conductivity, has gained much attention of researchers and scientists.
The seminal work by Choi and Eastman [13] introducing “nanofluids” has revolutionized the heat
transfer processes. A nanofluid is an amalgamation of the solid metallic particles called “Nanoparticles”
with a size of 1–100 nm and ordinary liquids. Nanofluids are the finest coolants with amazing
applications including microelectronics, optical manufacturing and transportation [14]. There are
studies that emphasize the thin film liquid flow of nanofluids. Lin et al. [15] numerically scrutinized
the thin film Pseudo-plastic nano liquid flow with the impact of internal heat generation by utilizing
R–K scheme and Newton’s method. Later, Lin et al. [16] extended this study to the impacts of
viscous dissipation and temperature reliant thermal conductivity. The nano-liquid thin film flow
comprising graphene nanoparticles under the influence of aligned magnetic effect is discussed by
Sandeep [17]. Zhang et al. [18] studied the Oldroyd-B nanofluid thin film flow analytically with two
types of nanoparticles, i.e., silver and copper and found that nanofluid containing silver nanoparticles
has a better thermal conductivity in comparison to the copper nanoparticles. Zhang et al. [19] also
deliberated the power law nano liquid thin film flow with the slip using the differential transform
method. The problem of nanofluid thin films flowing past an elastic stretched sheet is solved using the
least square method (LSM) by Fakour et al. [20]. Ishaq et al. [21] deliberated the analytical solution of
Powell-Eyring nano liquid thin film flow with thermal radiation past a permeable stretched surface.
The flow of Darcy-Forchheimer nanofluid thin film comprising SWCNTs past an unsteady stretched
surface is studied by Nasir et al. [22].

There are numerous applications of heat transfer in industrial and engineering processes. These
include cooling towers, fuel cells, microelectronics, and nuclear reactors. The fundamental essence in
all these processes is that the value of thermal conductivity is presumed to be a constant. However,
this value varies with temperature and other factors. Pal [23] and Vajravelu et al. [24] observed that
the thermal conductivity varies linearly as the temperature is altered from 0◦ to 400◦ F. Initially, the
Fourier law of heat conduction has been used in the modeling of heat transfer applications but the
system encounters an initial disturbance due to the “parabolic energy equation” which is referred
to as “paradox in heat conduction”. This shortcoming in the Fourier’s model was addressed by
Cattaneo [25] who introduced the thermal relaxation time in the Fourier law of heat conduction.
Cattaneo’s act helped to represent the temperature profile via the hyperbolic energy equation and heat
transport propagation using thermal waves with a controlled speed. This heat transport mechanism is
employed in diverse practical scenarios, ranging from nano-liquid flow models to skin burn injury
models [26]. Moreover, several materials possess a large thermal relaxation time, such as biological
tissues having a relaxation time of 91–100 s and sand of 21 s. To uphold the material invariant
formulation, Christov altered the Maxwell-Cattaneo model by swapping the time derivative with
Oldroyd’s upper convected derivative. This improved version is nowadays being termed as the
Cattaneo-Christov (C-C) heat flux model. Later, Han et al. [27] introduced an analytical solution
for the viscoelastic material including the velocity slip boundary along with the C-C heat flux.
Mustafa [28] analyzed the rotating flow of the Maxwell fluid with an upper convected derivative
and C-C heat flux over a linearly stretched surface using both the analytical and numerical methods.
A similar case was examined by Khan et al. [29] considering an exponentially stretched surface.
The squeezed flow of the C-C heat flux with CNTs between two parallel disks is studied by Lu et
al. [30]. Ramzan et al. [31] studied the flow of the Williamson fluid flow numerically with C-C heat
flux associated with the convective boundary condition and homogeneous-heterogeneous reactions.
The flow of the magnetohydrodynamics (MHD) second-grade fluid over a stretched cylinder with
C-C heat flux is discussed by Alamri et al. [32]. Ramzan et al. [33,34] deliberated the Maxwell and
third-grade fluid flows with homogeneous-heterogeneous reactions and C-C heat flux. The flow of
aqueous based nanotubes with homogeneous-heterogeneous reactions past a Darcy-Forchheimer
three-dimensional flow is studied by Alshomrani and Ullah [35]. Saleem et al. [36] discussed the
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squeezing three-dimensional nanofluid flow comprising of nanotubes in a Darcy-Forchheimer medium
with thermal radiation and heat generation/absorption. There are numerous explorations that discuss
on the flow of nanofluid amalgamated with carbon nanotubes in various scenarios but there are fewer
that address the thin film flow. Some more explorations focusing on carbon nanotube or nanofluid
flow may be found in References [37–40] and many therein.

The literature review reveals that the flow of a thin film with the Newtonian/non-Newtonian
fluids is scarce in the literature and this subject gets even narrower if we talk about the thin film flows of
nanofluids. Very few explorations are available that discuss the thin film flows of nanofluid-comprising
nanotubes. Keeping in mind the importance of hydrodynamic flows, the idea of nanoliquid thin
films in comparatively new and fewer explorations are available in the literature (see Table 1). This
presented model is solved numerically and will present an estimated solution. The other limitation
of the flow is that it is discussed in 2D and can be extended to 3D with some more novel effects like
homogeneous-heterogeneous reactions, etc. The model presented here is an amalgamation of C-C
heat flux and entropy generation in the thin film flows of the nanofluids comprising of both types
of nanotubes (SWCNTs/MWCNTs) and has not yet been discussed in the literature. The numerical
solution of the problem is achieved. A comparison with an already established result in the limiting
case is also given and an excellent agreement between both is found. This corroborates our presented
results. The graphical illustrations and numerically calculated values of the physical parameters are
also added to the problem.

Table 1. The studies on nanoliquid film flow.

Authors Nanofluid Models Film Thickness Nanotubes
SWCNTs/MWCNTs

C-C Heat Flux

Lin et al. [15] Tiwari and Das
√ × ×

Sandeep [17] Tiwari and Das
√ × ×

Nasir et al. [22] Tiwari and Das
√

SWCNTs ×
Narayana and Sibanda [41] Tiwari and Das

√ × ×
Xu et al. [42] Tiwari and Das

√ × ×
Qasim et al. [43] Buongiorno’s

√ × ×
Present Tiwari and Das

√ √ √

(
√

) means effect is present and (×) means effect is absent.

2. Mathematical Modeling

Let us assume a thin film flow of a nanoliquid flow comprising CNTs past a time dependent
linearly stretched surface. The elastic sheet emerges from a slender slit at the Cartesian coordinate
system’s origin (Figure 1). The surface moves along the x-axis (y = 0) with a velocity uw(x, t) = bx

(1−αt) ,
with b and a being the constants in the y-direction and temperature Tw(x, y). The stream function ξ is
considered such that u = ξy, and v = −ξx.

Figure 1. The flow geometry of the model.
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The thin film is of width h(x, y). The flow is laminar and incompressible. A magnetic field B(x, t) =

Bo(1− at)−
1
2 , is employed normal to the extended surface. The governing unsteady conservation

equations [17] under the aforementioned assumptions are appended as follows:

∂2ξ

∂x∂y
− ∂

2ξ

∂y∂x
= 0 (1)

∂2ξ

∂t∂y
− ∂ξ
∂y
∂2ξ

∂x∂y
− ∂ξ
∂x
∂2ξ

∂y2 = vn f
∂3ξ

∂y3 +
σn f

ρn f
B

2
(t)
∂ξ
∂y

cos2 ε, (2)

(ρCp)n f

(
∂T
∂t

+
∂ξ
∂y
∂T
∂x
− ∂ξ
∂x
∂T
∂y

)
+ λ2Ω2 =

(
kn f +

16T∞3σ∗
3k∗

)
∂2T
∂y2 + q′′′ (3)

With the following corresponding boundary conditions

−ξx = 0, ξy = uw, T = Ts, at y = 0,
ξyy = 0, −ξx = ht, T = 0, as y = h(t).

(4)

The Cattaneo-Christov term is defined as

Ω2 = ∂2T
∂t2 + ∂u
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2
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2
T
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(
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)2 ∂2T
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2
T

∂x∂y − ∂ξ∂y
∂2ξ

∂x2
∂T
∂y − ∂ξ∂x ∂
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∂x

(5)

The heat source/sink “q′′′” is represented by

q′′′ =
k f uw(Ts − T0)

xν f

(
A∗ f ′ + B∗

(T − T0)

(Ts − T0)

)
(6)

The thermophysical attributes (specific heat Cp, density ρ and thermal conductivity k) of the base
fluid (H2O) and carbon nanotubes (SWCNTs /MWCNTs) are appended in Table 2.

Table 2. The thermophysical physiognomies of the fluid and CNTs [30].

Physical Characteristics Conventional Fluid Nano Particles

– H2O SWCNTs MWCNTs
Cp (J/kg K) 4179 425 796
ρ (kg/m3) 997 2600 1600
k (W/mK) 0.613 6600 3000

The hypothetical relations are characterized as follows:

μn f =
μ f

(1−φ)2.5 , vn f =
μn f

ρn f
, (7)

ρn f = (1−φ)ρ f +φρ
CNT

, αn f =
kn f

ρn f (cp)n f
(8)

σn f

σ f
= 1 +

3σφ− 3φ
σ+ 2− σφ+φ

,σ =
σCNT
σ f

, (9)

kn f

k f
=

(1−φ) + 2φ kCNT
kCNT−k f

ln(
kCNT+k f

2k f
)

(1−φ) + 2φ
k f

kCNT−k f
ln(

kCNT+k f
2k f

)
(10)
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Using the similarity transformations

η = 1
β

(
b

ν f (1−at)

) 1
2

y, Ψ = β

(
bν f

(1−at)

) 1
2
x f (η), θ = T−T0

Ts−T0

T = T0 − Tr

(
bx2

2ν f

)
(1− at)−1.5

θ(η),
(11)

The requirement of Equation (1) is fulfilled undoubtedly and Equations (2) and (3) yield

f ′′′ + (1−φ)2.5(1−φ+φ
ρCNT
ρ f

)λ
{

f f ′′ − f ′2 − S
(

f ′ + 1
2
η f ′′

)}
− (1−φ)2.5 σn f

σ f
M f ′ cos2 ε = 0 (12)

(
kn f
k f

+ 4
3 R

)
Pr

[
1−φ+φ

(ρCp)CNT
(ρCp) f

]θ′′ − λ[2 f ′θ− fθ′ + S
2 (3θ+ ηθ′)

]
+ 1

Pr

[
1−φ+φ

(ρCp)CNT
(ρCp) f

] (A∗ f ′ + B∗θ)

+γ

{ − 15
2 S2θ− 7

2 S2ηθ′ − 1
4 S2η2θ′′ − 8S f ′θ− ηS f ′′θ− 3

2ηS f ′θ′
+ 9

2 S fθ′ + Sη fθ′′ − 4 f ′2θ+ 3 f f ′θ′ − f ′2θ′′ + 2 f f ′′θ

}
= 0,

(13)

Additionally, the boundary conditions of Equation (4) become

f (0) = 0, f ′(0) = 1, θ(0) = 1, f (1) =
S
2

, f ′′ (1) = 0, θ′(1) = 0 (14)

The values of various non-dimensional parameters are defined as follows:

Pr =
υ f

α f
, S =

α

b
, R =

4σ∗T0
3

k∗k f
, M =

σ f B0
2

bρ f
,γ =

λ2b
1−αt

, λ = β
2

(15)

Physical quantities like the Skin friction coefficient and the local Nusselt number are given as

Nux =
xqw(x)

k f (Ts−T0 )
, C f =

τw
ρ f uw2 ,

qw(x) = −kn f (
∂T
∂y )y=0

, τw = μn f (
∂u
∂y )y=0

,
(16)

Additionally, in dimensionless form, as follows:

C f Rex
1/2 = 1

β(1−φ)
2.5 f ′′ (0),

NuxRex
−1/2 = − 1

β

(
kn f
k f

+ 4
3 R

)
θ
′
(0)

(17)

3. Entropy Generation

The entropy generation under the aforementioned assumptions is given as below:

Egen
′′′ =

k f

T0
2

[kn f

k f
+

16T∞3σ∗
3k∗k f

](
∂T
∂y

)2

+
μn f

T0

(
∂u
∂y

)2

+
σn f

T0
B

2
(t)u2 cos2 ε (18)

where all terms defined in Equation (15) portray the usual meaning. The entropy generation NG is
defined as

NG =

(kn f

k f
+

4
3

R
)
Rexθ

′2 + 1

(1−φ)2.5
BrRex

α
f ′′ 2 +

BrM
α

σn f

σ f
cos2 ε f ′22 (19)
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where S0
′′′ and Sgen

′′′ are the characteristic entropy generation rate and the entropy generation rate.
The parameters defined in the above equation are given as

α =
ΔT
Tw0

, Br =
μ f uw

2

k f ΔT
, Rex =

uwx
ν f

(20)

4. Results and Discussion

This section is devoted to witnessing the impression of numerous parameters on the involved
profiles whilst keeping in view their physical significance. The MATLAB built-in function bvp4c is
utilized to address the differential Equations (9), (10), and (16) with the associated boundary conditions
of Equation (11). To solve these, first we have converted the 2nd and 3rd order differential equations to
the 1st order by introducing new parameters. The tolerance for the existing problem is fixed as 10−6.
The initial guess we yield must satisfy the boundary conditions asymptotically and the solution as well.
The results show the influence of solid volume fraction (ϕ), dimensionless film thickness (λ), magnetic
parameter (M), unsteadiness parameter (S), radiation parameter (R), thermal relaxation parameter
(γ), and non-uniform heat source/sink parameter on the velocity, temperature and entropy generation
profiles. Further, the numerical values for the Skin friction and Nusselt number are given in Tables 3
and 4 for different parameters. The numerical values of the parameters are fixed as ϕ = 0.1, A* = B* = λ

= γ = 0.5 = S, R = 1.0 =M, and Pr = 6.2. Figures 2 and 3 display the impact of solid volume fraction (ϕ)
on axial velocity and temperature distribution. For incremented values of the solid volume fraction
(ϕ), the velocity and temperature profiles enhance in case of both SWCNTs and MWCNTs. Actually,
the convective flow and the solid volume fraction are directly proportionate with each other and this is
the main reason behind the enhancement of axial velocity and the temperature of the fluid.

Table 3. The comparison table of –θ’(0) with Sandeep [17] for varied estimates of S when R =M = γ =

0, Pr = 1.0.

S
ϕ = 0

Sandeep [17] Present Result

1.0 2.6772221621 2.677222
1.2 1.9995914260 1.999591
1.4 1.4477543611 1.447754
1.6 0.9566978443 0.956697
1.8 0.4845366320 0.484536

Table 4. The numerical value of the Skin friction with Pr = 6.2.

ϕ S λ M −CfRex
1
2

– – – – SWCNTs MWCNTs
0.1 0.1 0.1 1.0 0.53775 0.52995
0.2 – – – 0.57083 0.55402
0.3 – – – 0.60395 0.57701
– 0.1 – – 0.53775 0.52995
– 0.2 – – 0.54610 0.53761
– 0.3 – – 0.55442 0.54524
– – 0.1 – 0.53775 0.52995
– – 0.2 – 0.62530 0.61054
– – 0.3 – 0.70792 0.68693
– – – 0.0 0.12194 0.11183
– – – 0.5 0.34094 0.33214
– – – 1.0 0.53775 0.52995
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Figure 2. The illustration of ϕ versus f ’(η).

Figure 3. The illustration of ϕ versus θ(η).

Figures 4 and 5 depict the behavior of axial velocity and the temperature field for the growth
estimates of the film thickness parameter λ. It is found that both velocity and temperature profiles
diminish for increasing values of the film thickness parameter λ. In fact, the more the film thickness,
the lesser the fluid motion. This is because of the fact that higher values of film thickness dominate
the viscous forces, eventually diminishing the fluid velocity. Similar behavior is observed for the
temperature field.

Figure 4. The illustration t of λ versus f ’(η).
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Figure 5. The illustration t of λ versus θ(η).

The effect of the magnetic parameter M on the velocity and temperature fields can be visualized
in Figures 6 and 7. Figure 6 displays the impact of the magnetic parameter M on axial velocity. The is
the axial velocity of the declining function of the magnetic parameter M. Physically, by enhancing the
magnetic parameter M, the Lorentz force is strengthened in the flow, which has a tendency to resist the
fluid’s motion and slow it down. This force also creates heat energy in the flow. Consequently, the
temperature distribution increases both the SWCNTs and MWCNTs, which is displayed in Figure 7.

Figure 6. The illustration of M versus f ’(η).

Figure 7. The illustration of M versus θ(η).

Figures 8 and 9 show the effect of the unsteadiness parameter S on the velocity and temperature
distributions. It is found that with the increase of the unsteadiness parameter S, the axial velocity
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diminishes. Physically, the bouncy effect acts on the flow and diminishes it due to the increase in the
unsteadiness parameter S. Therefore, the thermal and momentum boundary layer thicknesses decrease.

Figure 8. The illustration of S versus f ’(η).

Figure 9. The illustration of S versus θ(η).

Figure 10 determines the consequence of the thermal relaxation parameter γ on the temperature of
the fluid. It is concluded that the temperature diminishes for increased values of the thermal relaxation
parameter γ. The temperature tends to be sharper near the boundary as the value of γ is higher than
the points on the growth in the wall slope of the temperature profile.

Figure 10. The illustration of γ versus θ(η).
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Figure 11 demonstrates the impact of the radiation parameter R on the temperature profile. It is
comprehended that the temperature field is an increasing function of the radiation parameter R. It is
also concluded that the thermal boundary layer thickness for both carbon nanotubes is increased. In
fact, larger estimates of the radiation parameter reduce the mean absorption coefficient and enhance
the radiative heat flux’s divergence. Due to this, the temperature of the fluid is upsurged.

Figure 11. The illustration of R versus θ(η).

The influence of non-uniform heat source/sink parameters A* and B* on the temperature
distribution is shown in Figures 12 and 13. It can be understood that the temperature profile
augments the boosted estimates of non-uniform heat source/sink parameters.

Figure 12. The illustration of A* versus θ(η).
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Figure 13. The illustration of B* versus θ(η).

The effect of Brinkman number (Br), magnetic parameter (M) and Reynolds number (Rex) on
the averaged entropy generation number is demonstrated in Figures 14–16. It is concluded that the
entropy generation number increases for mounting estimations of Brinkman number (Br), magnetic
parameter (M) and Reynolds number (Rex) for both SWCNT and MWCNT.

Figure 14. The illustration of Br versus NG(η).

Figure 15. The illustration of M versus NG(η).
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Figure 16. The illustration of Rex versus NG(η).

Table 3 is erected to envision the precision of the presented model by comparing it with Sandeep [17]
who discusses the flow of nanofluids past a thin film under the influence of the magnetic field. To
make a comparison, we have neglected the impacts of the volume fraction, electrical conductivity, and
thermal relaxation parameters. Excellent alignment is achieved between both results.

Table 4 shows the estimates of the Skin friction coefficient for different parameters. It is seen
that the Skin friction coefficient increases for growing values of the magnetic parameter, solid volume
fraction, unsteadiness parameter, and film thickness. Table 5 demonstrates the numerical values of
Nusselt number for numerous parameters. It is determined that the Nusselt number increases with
augmented values of the dimensionless film thickness, radiation parameter, solid volume fraction, and
unsteadiness parameter, while it diminishes for growing values of non-uniform heat source/sink.

Table 5. The numerical value of the Nusselt number with γ = 0.1, Pr = 6.2.

Λ R ϕ A* B* S NuxRex
− 1

2

– – – – – – SWCNTs MWCNTs
0.1 0.1 0.1 0.1 0.1 0.1 2.11090 2.06990
0.2 – – – – – 3.27730 3.16440
0.3 – – – – – 4.46510 4.24750
– 0.1 – – – – 2.36350 2.06990
– 0.3 – – – – 2.36770 2.07060
– 0.5 – – – – 2.37230 2.07130
– – 0.1 – – – 2.11090 2.06990
– – 0.2 – – – 2.59370 2.54840
– – 0.3 – – – 2.84440 2.84000
– – – 0.1 – – 2.11800 2.06990
– – – 0.3 – – 1.93540 1.89220
– – – 0.5 – – 1.75270 1.71440
– – – – 0.1 – 2.11800 2.06990
– – – – 0.3 – 1.88910 1.85770
– – – – 0.5 – 1.66430 1.25340
– – – – – 0.1 2.11090 2.06990
– – – – – 0.2 2.81360 2.72250
– – – – – 0.3 3.66060 3.48490

5. Conclusions

The thin film flow of nanofluid comprising of CNTs of both types (SWCNTs/MWCNTs) is studied
whilst keeping in view the important applications of CNTs in many engineering applications. The flow
is supported by the additional effects like C-C heat flux and entropy generation. The model is solved
numerically with the support of the MATLAB software function bvp4c. The highlights of the existing
study are
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• Velocity and temperature distributions are mounting functions of the solid volume fraction for
both types of CNTs in case of the thin film flow.

• For growing estimates of the thin film thickness parameter, the axial velocity diminishes.
• The velocity and temperature distributions show an opposite trend for the strong magnetic field

in a thin film flow model.
• Larger estimates of heat source/sink parameter lead to an increase in the temperature of the fluid.
• The temperature of the fluid is decreased for higher values of the thermal relaxation parameter.
• With an increase in the estimates of film thickness, the magnetic parameter and the Skin friction

coefficient show mounting behavior.
• The Nusselt number shows declining behavior for growing values of non-uniform heat source/sink.
• Entropy generation in the case of thin film flow is higher for larger estimates of the Brinkman

number and the magnetic parameter.
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Nomenclature

u, v velocity components B0 magnetic field of strength
x, y coordinate axis Pr Prandtl number
ξ stream function Cf skin friction coefficient
B magnetic field Nux Nusselt number
Tw constant surface temperature S squeezing parameter
T temperature α thermal diffusivity
Ω2 Cattaneo-Christov parameter Rex local reynolds number
q heat source/sink S0 characteristic entropy generation
Cp specific heat Sgen entropy generation rate
ρ density k0 thermal conductivity near from the surface
λ2 relaxation time of the heat flux kf thermal conductivity of water
T∞ ambient fluid temperature ε thermal conductivity parameter
uw stretching velocity along x-direction NG entropy generation number
Greek Symbols

ρCNT, ρf density of nanofluid f dimensionless stream function
σ* Stephan-Boltzmann constant θ dimensionless temperature
μnf, μf dynamic viscosity γ thermal relaxation parameter
k* viscoelastic parameter λ relaxation time of heat flux
αnf modified thermal diffusivity σnf, σf electrical conductivity of nanofluid and base fluid
(ρCp)nf, (ρCp)f heat capacity νnf, νf kinematic viscosity of nanofluid
k, knf thermal conductivity ΔT temperature difference
ϕ solid volume fraction of nanofluid τw shear stress
η a scaled boundary-layer coordinate Tw temperature on the interface
Ψ stream function Br brinkmann number
qw(x) the surface heat flux of nanoliquid film M hartmann number
β thermal expansion coefficient R conduction radiation parameter
A*, B* non-uniform heat source/sink parameters
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Abstract: The present study is about the pressure-driven heated bi-phase flow in two slippery walls.
The non-Newtonian couple stress fluid is suspended with spherically homogenous metallic particles.
The magnetic susceptibility of Hafnium allures is taken into account. The rough surface of the wall is
tackled by lubrication effects. The nonlinear coupled partial differential equations along with the
associated boundary conditions are first reduced into a set of ordinary differential equations by using
appropriate transformations and then numerical results were obtained by engaging the blend of
Runge–Kutta and shooting techniques. The sway of physical quantities are examined graphically. An
excellent agreement within graphical illustration and numerical results is achieved.

Keywords: heated bi-phase flow; couple stress fluid; lubrication effects; slippery walls;
magnetohydrodynamics

1. Introduction

The most common fundamental type of flow through a channel is known as “Poiseuille
flow.” The Poiseuille flow has gained notable attention of various researchers due to its significant
industrial applications. As an example, Siddiqui et al. [1] studied the plane Poiseuille flow with
heat transfer. Alamri et al. [2] examined the plane Poiseuille flow with simultaneous effects
of heat, magnetohydrodynamics (MHD) and second-order slip. They reported that the Stefan
blowing prominently influenced on velocity and temperature distributions. Babic [3] has numerically
investigated unsteady granular flows, namely transient Couette flow and cyclic Couette flow. In the
first case velocity of the wall varies from one constant to another while in the second case the velocity
is a harmonic function of time.

Moreover, non-Newtonian fluids have tremendous applications in the textile industry. Among the
different models of non-Newtonian fluids, couple stress fluid has only lubricant viscosity. Consequently,
in the absence of microstructure, couple stress in fluid arises which creates rotation without translation.
Devakar et al. [4] investigated the couple stress fluid for three different cases. Ilani et al. [5] presented
the unsteady nature of couple stress fluid between two parallel plates. Srinivasacharya et al. [6]
discussed the laminar flow of couple stress fluid by means of quasi-linearization technique. Murthy
and Nagaraju [7] conducted a study of couple stresses on the surface of a cylinder. The rotation of the
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container generates the flow employing super adherence condition. All reported studies on couple
stress eventually concluded that velocity always slows down in the fluid due to couple stresses by all
means. Significant contributions on couple stress fluid can be seen in [8–10].

Furthermore, it is a well-known fact that most of the chemical and mechanical processes are of
multiphase types. Consequently, several investigations have been performed up until now. In near
past, different physical aspects of bi-phase flows were investigated by numerous researchers, such
as Wu et al. [11], who discussed granular flow between opposite inclined plates for second-grade
fluid containing spherical particles. Bognar et al. [12] offered flow analysis of non-Newtonian fluid
on an oblique plane with material properties. Latz and Schmidt [13] presented numerical solutions
for fast-moving and very slow-moving granular flows. Latz and Schmidt [14] provided numerical
solutions for fast-moving and very slow-moving granular flows. The constitutive relations at small
and intermediate densities were equivalent to those derived from the kinetic theory of granular flow
which nevertheless recovers many aspects of dense granular flow. Two-phase fluids are inspected by
Armanini [15]. The article provides full detail as to how granular fluid mechanics work. Interaction of
solid–fluid for particulate flow with heat transfer is analyzed by Dan et al. [15]. Distributed Lagrange
multipliers are used to obtain the expressions for velocity and temperature fields. The Boussinesq
approximation is used for temperature and flow fields. The positioning of the particle is tracked by
using the discrete element method.

In addition, the performance of lubricated coatings with magnetic, nanoparticles, heat transfer, and
slip is very much ubiquitous in daily life. For instance, dish washing, replacement of lubricated cardiac
valves, and industrial dye, as well as blood pressure control of a patient, are some common examples
of slip and magnetization combination. Wang et al. [16] reported the effects of CeO2 nanoparticles
on laser cladding of Ti-based ceramic coatings. Wang et al. [17] studied nanostructure with heating
treatment on thin carbon films. Ellahi et al. [18] conducted a comparative study on shiny film coating on
multi-fluid flows suspended with nano-sized particles. Khan et al. [19] have used double-layer optical
fiber using Phan-Thien-Tanner fluid as a coating material. Lu et al. [20] inspected nonlinear thermal
radiation and entropy optimization coatings with hybrid nanoliquid flow. Riaz et al. [21] proposed a
model on mass transport peristaltic flow coated with Synovial fluid. Khan [22] has analyzed the effects
of slip on MHD flow of a nanofluid in a vertical channel. Bhatti et al. [23] have investigated nanofluid
influenced by externally applied magnetic fields. A new slip model is proposed by Zhu and Ye [24].
They used modeling approaches for submicrometer gas-phase heat conduction over a broad pressure
range. Zhang et al. [25] rectified the classical second-order boundary condition for the fundamental
flows. A list of core investigations on coatings [26,27], MHD [28,29], and nanoparticles [30–37] related
to proposed is given for readers to get detail understating.

Unlike all the cited literature, this article addresses a biphasic flow that has yet not been reported.
Much has been done with couple stress fluid; suspension of nanoparticles, slip, and magnetic fields,
but the current innovative idea, which reflects the mechanism of industrial and geophysical multiphase
flows is missed. Theory of couple stress fluid which is based upon the polarity of fluid entices to
incorporate metallic particles that display high magnetic susceptibility. Therefore, no choice is left other
than the suspension of Hafnium particles that fit the best. An additional contribution of lubrication
and heating wall distinguish the present work by changing the morpho-hydrodynamics of bi-phase
flow, which is, so far, a new and different prospect in the relevant field.

2. Mathematical Analysis

The particulate couple stress fluid containing Hafnium particles of spherical shape between two
flat plates apart from each other at distance h is considered. Flow is generated by the constant pressure
gradient, as shown in Figure 1.
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Figure 1. Particulate flow through slippery plates.

2.1. Governing Equations

The governing equations, such as continuity, momentum, and energy describing the particulate
flow of couple stress, are given as:

• Conservation of mass
∇→V = 0 (1)

• Conservation of momentum

ρ
d
→
V

dt
= ∇T +

CS
(1−C)

( →
Vp −

→
V f

)
+

ρ
→
f

(1−C)
(2)

where T denotes the Cauchy stress tensor and is defined by

T = −pI + s (3)

where I is a unit tensor and s is an extra stress tensor. This can be obtained by the product of
Rivlin–Ericksen tensor and coefficient of dynamic viscosity as follows:

s = μs A1 (4)

A1 = L + Lt (5)

• Conservation of energy

ρ f

(
Cp

)dΘ
dt

= k ∇2V + TL (6)

The steady and laminar velocities flows in each phase is given by:

→
V f =

[
u f (x, y) 0 0

]
(7)

→
Vp =

[
up(x, y) 0 0

]
(8)

The flow is under the simultaneous influences of transversely applied magnetic fields. Moreover,
the plates transmit the heat into the system being thermally charged by an external source; consequently,
temperature factor can be written as:

Θ = [Θ(y) 0 0] (9)
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In view of Equations (7)–(9), the above governing equations (Equations (1)–(6)) take the following
components forms:

0 = −∂p
∂x

+ μs

⎛⎜⎜⎜⎜⎝∂2u f

∂y2

⎞⎟⎟⎟⎟⎠− η1

⎛⎜⎜⎜⎜⎝∂4u f

∂y4

⎞⎟⎟⎟⎟⎠+ CS
(1−C)

(
up − u f

)
− σB2

0

(1−C)
u f (10)

up = u f − 1
S

(
∂p
∂x

)
(11)

0 =
∂2Θ
∂y2 +

μs

k

(
∂u f

∂y

)2

− η1

k

(
∂u f

∂y

)⎛⎜⎜⎜⎜⎝∂3u f

∂y3

⎞⎟⎟⎟⎟⎠ (12)

2.2. Boundary Conditions

The set of boundary conditions that describe the interaction of lubricated walls with the bi-phase
flow are:

• Boundary conditions at lower wall

u f (y) = β

⎧⎪⎪⎨⎪⎪⎩∂u f

∂y
− η1

μs

⎛⎜⎜⎜⎜⎝∂3u f

∂y3

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭, when y = −h (13)

u′′ f (y) = 0, when y = −h (14)

Θ(y) = Θ0, when y = −h (15)

• Boundary conditions at upper wall

u f (y) = −β
⎧⎪⎪⎨⎪⎪⎩∂u f

∂y
− η1

μs

⎛⎜⎜⎜⎜⎝∂3u f

∂y3

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭, when y = h (16)

u′′ f (y) = 0, when y = h (17)

Θ(y) = Θl, when y = h (18)

By using the dimensionless quantities:

u f = Uu f ; up = Uup; y = hy ; x = hx; p =
μsU

h p; Br =
U2μs

k(Θl−Θ0)
;

γ2 =
h2μs
η1

; M2 =
σB2

0 h2

μs
; β1 =

β
h ; m =

μs
h2S ; Θ(Θl −Θ0) = Θ −Θ0

(19)

Equations (10)–(12), after dropping the bars, can be obtained as:

1
γ2

∂4u f

∂y4
− ∂

2u f

∂y2 −
C

m(1−C)

(
up − u f

)
+

M2

(1−C)
u f +

∂p
∂x

= 0 (20)

∂2Θ
∂y2 =

Br

γ2

(
∂u f

∂y

)⎛⎜⎜⎜⎜⎝∂3u f

∂y3

⎞⎟⎟⎟⎟⎠− Br

(
∂u f

∂y

)2

(21)

where

up = u f −m
(
∂p
∂x

)
(22)
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As the original source of magnetized and heated bi-phase is on slippery walls and constant
pressure gradient. Therefore, by taking of dp/dx = P, Equations (20) and (21) can be obtained as:

d4u f

dy4
− γ2

d2u f

dy2 +
γ2M2

(1−C)
u f +

γ2

(1−C)
P = 0 (23)

d2Θ
dy2 + Br

(du f

dy

)2

− Br

γ2

(du f

dy

)⎛⎜⎜⎜⎜⎝d3u f

dy3

⎞⎟⎟⎟⎟⎠ = 0 (24)

Similarly, in view of Equation (19), the corresponding boundary conditions given in
Equations (13)–(18) in the dimensionless form are:

u f (y) = β1

⎧⎪⎪⎨⎪⎪⎩du f

dy
− 1
γ2

⎛⎜⎜⎜⎜⎝d3u f

dy3

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭, when y = −1 (25)

u′′ f (y) = 0, when y = −1 (26)

Θ(y) = 0, when y = −1 (27)

u f (y) = −β1

⎧⎪⎪⎨⎪⎪⎩du f

dy
− 1
γ2

⎛⎜⎜⎜⎜⎝d3u f

dy3

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭, when y = 1 (28)

u′′ f (y) = 0, when y = 1 (29)

Θ(y) = 1, when y = 1 (30)

3. Numerical Results and Discussion

3.1. Procedure

This section is devoted to obtaining the numerical solutions of resulting Equations (23) and (24)
by means of the Runge–Kutta method with a shooting technique [38] using MATLAB software. This
technique is preferred for two following reasons; firstly, the thermal energy equation is nonlinearly
coupled and, secondly, due to missing of condition. For missing condition, first of all, we are supposed
to convert the given system of differential equations into first-order initial value problems in order
to carry out systematic guessing of missing initial conditions which will continue until the desired
accuracy and convergence are not achieved. The following equations explain in detail the numerical
process, which is the prerequisite for the adopted numerical technique.

u f = g1 (31)

in which of u f is the velocity of the fluid phase. As it is an iterative scheme, in which each step has a
possible error that can be successively reduced by changing higher order derivatives of u f , in terms of
first-order ordinary differential equations as follows:

du f

dy
= g′1 = g2 (32)

d2u f

dy2 = g′2 = g3 (33)

d3u f

dy3 = g′3 = g4 (34)
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where prime denoted the differentiation with respect to y. In view of Equations (31)–(34) the transformed
form of Equation (23) is obtained as:

g′4 = γ2g3 −
(
γ2M2

1−C

)
g1 −

(
γ2

1−C

)
P (35)

Similar to the preceding pattern, one finds no absurdness to convert thermal differential
Equation (24) into first-order system by making the following suppositions:

Θ = g5 (36)

dΘ
dy

= g′5 = g6 (37)

By using Equations (36) and (37) in Equation (24), we have:

g′6 =
Br

m
(g2)(g4) − Br (g2)

2 (38)

In view of Equations (35) and (38), the associated boundary conditions given in Equations (25)–(30)
at the lower and upper plate can be obtained as:

(i) g1 = β1

(
g2 − g4

γ2

)
(ii) g2 = c1
(iii) g3 = 0
(iv) g4 = c2

(v) g5 = 0
(vi) g6 = c3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, when y = −1 (39)

In the same way given and missing conditions at the upper wall are:

(i) g1 = −β1

(
g2 − g4

γ2

)
(ii) g2 = c4
(iii) g3 = 0
(iv) g4 = c5

(v) g5 = 1
(vi) g6 = c6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, when y = 1 (40)

where c1, c2, c3, c4, c5, and c6 are the missing conditions which can be easily determined during the
routine calculation.

3.2. Validation

The numerical results for both phases are presented in Tables 1–3. Table 1 offers the variation of
velocity for both phases against the slip parameter. Table 2 shows the simultaneous variations in the
velocities for single- and two-phase flows at different points. Table 3 displays the thermal variation
at different points within the given domain when M = 0.5, γ = 2.0, and Br = 2.0. It is found that the
results extracted numerically are compatible with the physical expectations and satisfy all the subjected
conditions as shown graphically. This provides a useful check that the presented solutions are correct.
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Table 1. Variation in the velocity of both phases against slip parameter.

y up(β1=0.0) up(β1=0.015) uf(β1=0.0) uf(β1=0.015)

−1.0 1.0000 1.0178 0 0.0178
−0.9 1.0572 1.0748 0.0572 0.0748
−0.8 1.1124 1.1297 0.1124 0.1297
−0.7 1.1638 1.1808 0.1638 0.1808
−0.6 1.2102 1.2271 0.2102 0.2271
−0.5 1.2508 1.2674 0.2508 0.2674
−0.4 1.2847 1.3012 0.2847 0.3012
−0.3 1.3116 1.3279 0.3116 0.3279
−0.2 1.3310 1.3473 0.3310 0.3473
−0.1 1.3427 1.3589 0.3427 0.3589
0.0 1.3466 1.3629 0.3466 0.3629
0.1 1.3427 1.3589 0.3427 0.3589
0.2 1.3310 1.3473 0.3310 0.3473
0.3 1.3116 1.3279 0.3116 0.3279
0.4 1.2847 1.3012 0.2847 0.3012
0.5 1.2508 1.2674 0.2508 0.2674
0.6 1.2102 1.2271 0.2102 0.2271
0.7 1.1638 1.1808 0.1638 0.1808
0.8 1.1124 1.1297 0.1124 0.1297
0.9 1.0572 1.0748 0.0572 0.0748
1.0 1.0000 1.0178 0 0.0178

Table 2. Variation in the velocities for single- and two-phase flows at different points.

y up(C=0.0) up(C=0.5) uf (C=0.0) uf(C=0.5)

−1.0 1.0142 1.0191 0.0142 0.0191
−0.9 1.0626 1.0788 0.0626 0.0788
−0.8 1.1093 1.1363 0.1093 0.1363
−0.7 1.1531 1.1897 0.1531 0.1897
−0.6 1.1928 1.2379 0.1928 0.2379
−0.5 1.2277 1.2799 0.2277 0.2799
−0.4 1.2570 1.3149 0.2570 0.3149
−0.3 1.2803 1.3426 0.2803 0.3426
−0.2 1.2972 1.3626 0.2972 0.3626
−0.1 1.3074 1.3747 0.3074 0.3747
0.0 1.3108 1.3788 0.3108 0.3788
0.1 1.3074 1.3747 0.3074 0.3747
0.2 1.2972 1.3626 0.2972 0.3626
0.3 1.2803 1.3426 0.2803 0.3426
0.4 1.2570 1.3149 0.2570 0.3149
0.5 1.2277 1.2799 0.2277 0.2799
0.6 1.1928 1.2379 0.1928 0.2379
0.7 1.1531 1.1897 0.1531 0.1897
0.8 1.1093 1.1363 0.1093 0.1363
0.9 1.0626 1.0788 0.0626 0.0788
1.0 1.0142 1.0191 0.0142 0.0191
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Table 3. Thermal variation at the different points of given domain.

y Θ(β1=0.0) Θ(β1=0.015) Θ(C=0.0) Θ (C=0.5)

−1.0 0 0 0 0
−0.9 0.0928 0.0925 0.0814 0.0961
−0.8 0.1740 0.1734 0.1547 0.1794
−0.7 0.2457 0.2449 0.2212 0.2523
−0.6 0.3100 0.3090 0.2822 0.3173
−0.5 0.3687 0.3676 0.3390 0.3764
−0.4 0.4235 0.4224 0.3928 0.4314
−0.3 0.4758 0.4747 0.4446 0.4838
−0.2 0.5266 0.5255 0.4953 0.5347
−0.1 0.5768 0.5757 0.5454 0.5849
0.0 0.6268 0.6257 0.5954 0.6349
0.1 0.6768 0.6757 0.6454 0.6849
0.2 0.7266 0.7255 0.6953 0.7347
0.3 0.7758 0.7747 0.7446 0.7838
0.4 0.8235 0.8224 0.7928 0.8314
0.5 0.8687 0.8676 0.8390 0.8764
0.6 0.9100 0.9090 0.8822 0.9173
0.7 0.9457 0.9449 0.9212 0.9523
0.8 0.9740 0.9734 0.9547 0.9794
0.9 0.9928 0.9925 0.9814 0.9961
1.0 1.0000 1.0000 1.0000 1.0000

3.3. Discussion

In this section, a concise study of pertinent parameters is graphically presented in Figures 2–10.
Figures 2 and 3 are plotted to examine the influence of the magnetic parameter on the motion of couple
stress fluid and metallic Hafnium particles. In both graphs, a clear decline in velocities for higher
values of the magnetic parameter is observed. Nevertheless, the theory of Hannes Alfven explains
the same phenomenon involving the interaction of magnetic fields being induced into an electrically
conducting fluid system. This phenomenon produces Alfven waves which result in clear retardation of
fluid’s speed. However, in Figures 4 and 5, the density of the Hafnium particles brings out a different
result as compared to magnetic fields. The major push of pressure on the fluid on slippery walls, the
hydro motion in both phases is supported by the addition of extra metallic particles. Consequently,
velocity increases by increasing the number of particles. Such factors can be regarded as to attenuate
the interaction of fluid particle or interparticle collision allowing the particles to move with least
resistance. The most significant parameter which constitutes the existence of the present fluid flow is
couple stress parameter γ. It is observed that the fluid particle additives, contribute to expediting the
movement. This may cause obscurity and vagueness in the mind of a reader, but Equations (23), (28),
and (31) provide enough clues about the inverse influence of couple stress parameter on the flow that
attenuates the force of friction/drag arising from the effect base fluid’s accumulation. This constitutes
a size-dependent effect in the base fluid, in addition to minimizing the rotational field of the fluid
particles. Hence, rapid fluid flow is observed in both Figures 6 and 7. However, the contribution of
slippery walls is not negligible, as they assist the metallic particles to frisk freely in the liquid. The role
of the slip parameter that supports the velocity of both phases is spotted in Figures 8 and 9. Generally,
it is believed that slippery walls only snag the flow because of their behavior as a retarding force.
Against all such expectations, in the present study, slip effects bring about unprecedented change by
increasing the velocity of the fluid, as shown in Figure 8. This change is due to the inverse influence
of γ, given in Equations (28) and (31) which rebuffs all such perception that slip parameter merely
hampers the flow. The change in temperature through Brinkman number Br is sketched in Figure 10. It
is revealed that the higher values of Brinkman heat up the fluid temperature.
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Figure 2. Effects of magnetic fields on the flow.

Figure 3. Effects of magnetic fields on the particles.

Figure 4. Effects of C on the flow.
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Figure 5. Effects of C on the particles.

Figure 6. Couples stress parameter affecting the flow.

Figure 7. Couples stress parameter affecting the motion of particles.
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Figure 8. Effects of slip parameter on the flow.

Figure 9. Effects of slip parameter on the motion of particles.

Figure 10. Role of Brinkman number on the temperature.
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4. Conclusions

In this study, the heated couple stress bi-phase fluid with spherical particles of metal Hafnium is
investigated. The flow bounded by two parallel plates is caused by solely the influence of pressure
gradient in an axial direction. A uniform and constant magnetic field of strength B0 snags the flow,
transversely acting across the channel. Extra effects of lubrication are applied on both walls to minimize
the surface roughness and to attain a smooth flow. The significant outcomes of the analysis are:

• The velocity of each phase increases due to an increase in the slip parameter.
• The magnetic field does not support the flow and ends up causing a force of resistance.
• The molecules additives of base fluid reduce the force of friction and hence velocities of both

phases are galvanized.
• The temperature of the flow escalates for higher values of Brinkman number.
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Nomenclature

u f velocity of base fluid
h distance between plates
p pressure
t time
M Hartmann number
U reference velocity
B0 magnetic field
C number density of the particles
up velocity of particle
→
f body force

f body force
k thermal conductivity
Cp specific heat
m dimensionless constant
Br brinkman number
S drag force coefficient
Greek Symbols

γ couple stress parameter
ρf density of base fluid
η1 constant associated to couple stress fluid
Θ0 temperature of lower wall
μs viscosity
δ electric conductivity
ρ density of the suspension
β slip length
Θ dimensional temperature
Θl temperature of upper wall
β1 slip parameter
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Abstract: The aim of this research work is to increase our understanding of the exhaustion of energy in
engineering and industrial fields. The study of nanofluids provides extraordinary thermal conductivity
and an increased heat transmission coefficient compared to conventional fluids. These specific
sorts of nanofluids are important for the succeeding generation of flow and heat transfer fluids.
Therefore, the investigation of revolutionary new nanofluids has been taken up by researchers and
engineers all over the world. In this article, the study of the thin layer flow of Darcy-Forchheimer
nanofluid over a nonlinear radially extending disc is presented. The disc is considered as porous.
The impacts of thermal radiation, magnetic field, and heat source/sink are especially focused on.
The magnetic field, positive integer, porosity parameter, coefficient of inertia, and fluid layer thickness
reduce the velocity profile. The Prandtl number and fluid layer thickness reduce the temperature
profile. The heat source/sink, Eckert number, and thermal radiation increase the temperature profile.
The suggested model is solved analytically by the homotopy analysis method (HAM). The analytical
and numerical techniques are compared through graphs and tables, and have shown good agreement.
The influences of embedded parameters on the flow problem are revealed through graphs and tables.

Keywords: Darcy-Forchheimer nanofluid; nonlinear extending disc; variable thin layer; HAM and
numerical method

1. Introduction

Nanoparticles less than 100 nm in size suspended into a base fluid is recognized as nanofluid.
Nanofluids are used in pharmaceutical procedures, microelectronics, fuel cells, hybrid powered
machines, and nanotechnology fields. Choi and Eastman [1] were the first to immerse nanoparticles
into a base fluid and call it a nanofluid. Through the suspension of nanoparticles, the thermophysical

Coatings 2019, 9, 446; doi:10.3390/coatings9070446 www.mdpi.com/journal/coatings199



Coatings 2019, 9, 446

properties of the conventional fluid are enhanced. The heat transmission characteristics of a nanofluid
were pointed out by Wang and Mujumdar [2]. Later on, Eastman et al. [3,4] furthered this study using
different base fluids. Murshed et al. [5] experimentally showed that nanofluids that contain smaller
amounts of nanoparticles have higher thermal conductivities. Furthermore, increasing the volume
of the nanoparticles fraction increases the thermal conductivity of the nanofluids. Maiga et al. [6]
addressed the thermal and hydrodynamic behaviors of nanofluids inside a heated tube. Nanofluid
flow in a circular tube with heat flux was addressed by Bianco et al. [7]. The flow processes of
nanofluids inside a heated cavity were numerically addressed by Tiwari and Das [8]. The heat
transmission in nanofluid flows with Brownian and thermophoresis influences was investigated by
Buongiorno [9]. The heat transmission processes of nanofluids in a porous medium were examined by
Kasaeian et al. [10]. The radiative MHD flow of a nanofluid experiencing a chemical reaction under the
influence of thermal radiation was addressed by Ramzan et al. [11]. The impacts of Brownian motion,
magnetic field, and nanoparticles volume fraction on nanofluid flow were analyzed by Sheikholeslami
and Shehzad [12]. The MHD nanofluid flow over an extending surface with the influence of viscous
dissipation was addressed by Besthapu et al. [13]. The heat transmission in a nanofluid flow over
an oscillatory stretching sheet with radiation impacts was addressed by Dawar et al. [14]. The same
nanofluid with entropy generation and magnetic field impacts was addressed by Alharbi et al. [15].
Nanofluid flow based on four different fluids in a rotating system with a Darcyian model was addressed
by Shah et al. [16]. Khan et al. [17] addressed heat transmission in MHD nanofluid flow under the
influence of radiation in rotating plates.Khan et al. [18] addressed nanofluid flow over a linear extending
sheet under convective conditions. The viscous dissipation impact of MHD nanofluid flow with
entropy generation was determined by Dawar et al. [19]. Sheikholeslami [20] examined the radiative
and heat transfer in electrohydrodynamic nanofluid flow. Sheikholeslami [21] determined the MHD
nanofluid flow with Brownian influence. Dawar et al. [22] addressed the flow of nanofluid over a
porous extending sheet with radiation influence. Ramzan et al. [23] examined the MHD nanofluid flow
using the couple stress effect. Sajid et al. [24] examined nanofluid flow over a radially extending surface.
Attia et al. [25] examined the stagnation point flow in a porous medium over a radially extending
surface. But and Ali [26] scrutinized the MHD flow and heat transfer with entropy generation rate
over a radially stretching surface. Zeeshan et al. [27] examined ferrofluid flow over a stretching sheet
under the influence of ferromagnetism, thermal radiation, and the Prandtl number. Ellahi et al. [28]
addressed the impact of a magnetic field on Carreau fluid flow. Recently, the applications and
development of nanofluids were discussed by Ellahi [29]. In another article, Ellahi et al. [30] addressed
differential equations with application in engineering fields. The applications of heat transfer in
nanofluid flows were addressed by Abu-Nada [31]. Hayat et al. [32] discussed the MHD magnetic field
impact on Powell-Eyring nanomaterial flow over a nonlinear extending sheet. Hsiao [33] examined
the heat convection, conduction, and mass transfer of MHD nanofluid flow over a stretching sheet.
Abu-Nada [34] addressed the heat transfer in a nanofluid flow with entropy generation. Hsiao [35]
analyzed the viscous dissipation and radiative influences on MHD Maxwell nanofluid flow in a
thermal extrusion system. Pour and Nassab [36] examined nanofluid flows under bleeding conditions.
Tian et al. [37] addressed the MHD incompressible flow of nanofluid over an extending sheet with
thermophoresis and Brownian influences. Recently, Shah et al. [38] addressed the flow of nanofluid
over an extending sheet with couple stress impact. Ellahi et al. [39] examined heat transmission in a
boundary layer flow with MHD and entropy generation effects. Some recent study about nanofluid
flow can be seen in [39–43].

In this article, a thin layer flow of Darcy-Forchheimer nanofluid over a nonlinear radially extending
disc is examined. The disc is considered as porous. The homotopy analysis method (HAM) is applied
to solve the nonlinear differential equations using appropriate similarities transformations. The HAM
is compared with the numerical (ND-Solve) technique through graphs and tables. Section 2 confronts
with the problem of formulation. In Section 3, the modeled problem is solved by HAM. In Section 4,
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the impacts of embedded parameters on the fluid flow are deliberated. Section 5 presents the concluding
remarks of this research.

2. Problem Formulation

The thin layer flow of a nanofluid over a nonlinear radially extending porous disc in an axially
symmetric form has been assumed. The extending disc has been kept at z = 0. The nanofluid thickness
is regulated to the thin layer with the breadth z = h where h is the thin layer thickness (Figure 1).
The porous disc is stretching with a nonlinear velocity Uw = arn where n is the integer such that n > 0.
The applied magnetic field is assumed in a vertical direction to the flow phenomena. The pressure is
considered as constant. All others assumptions for the flow phenomena are used as in [24–26]. The
leading equations are considered as:

∂u
∂r

+
u
r
+
∂w
∂z

= 0 (1)

u
∂u
∂r

+ w
∂u
∂z

=
μ

ρ

∂2u
∂z2 −

σB2
0

ρ
u− 1

ρ

(
ν
k
+ Fu

)
u (2)

u
∂T
∂r

+ w
∂T
∂z

=
k
ρcp

∂2T
∂z2 +

μ

ρcp

(
∂u
∂z

)2

− 1
ρcp

∂qr

∂z
+

Q0

ρcp
(T0 − Tref) (3)

Here u, v, B0, F =
Cb√
Bx

, Cb, qr, Q0, ρcp, Cb, k, σ, ρ, μ are the components of velocity in their corresponding
directions, induced magnetic strength, inertial coefficient of a permeable medium, drag coefficient,
radiative heat flux, heat source/sink, effective heat capacity, thermal conductivity, kinematic viscosity,
electrical conductivity, the electrical conductivity, density, and dynamic viscosity, respectively.

Figure 1. Geometrical illustration of the problem.

The qr is defined as:

qr = −4σ∗
3k∗
∂T4

∂z
(4)

By Taylor’s expansion, T4 can be written as:

T4 = 4T3
refT − T4

ref (5)

In observation of Equations (4) and (5), Equation (3) is reduced as:

u
∂T
∂r

+ w
∂T
∂z

=
1
ρcp

⎛⎜⎜⎜⎜⎝k +
16σ∗T3

ref
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∂z2 +

μ
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(
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)2

+
Q0

ρcp
(T0 − Tref) (6)

The following physical conditions are defined for the nanofluid flow:

u = arn, w = 0, θ = θw at z = 0
μ∂u∂z = ∂θ

∂z = 0, w = udh
dr at z = h

(7)
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The ψ(r, z) = − r2Uw√
Re

f (η) and η = z
r

√
Re are developed for the similarity transformations in such

a way that the components of velocity (u, w) along the radial direction and axial direction have been
converted as:

u = − 1
r
∂ψ(r,z)
∂z = Uw f ′(η)

w = 1
r
∂ψ(r,z)
∂r = − Uw√

Re

[(
3+n

2

)
f (η) +

(
n−1

2

)
η f ′(η)

]
T = T0 − Tref

(
U2

w
2aν f

)
θ(η)

(8)

here, Re = rUw
ν f

is the Reynolds number.
The transformed velocity and temperature equations are:

f ′′′ +
(3 + n

2

)
f f ′′ − n( f ′)2 −M f ′ − (κ+ Fr f ′) f ′ = 0 (9)

(1 + R)θ′′ + Pr
[(3 + n

2

)
fθ′ − 2n(θ f ′)

]
+ EcPr( f ′)2 − γθ = 0 (10)

with boundary conditions:

f (0) = 0, f ′(0) = 1, θ(0) = 1, f ′′ (β) = f (β) = θ′(β) = 0 (11)

In Equations (9)–(11), β = h
√

Re
r represents the fluid layer thickness, M =

rσB2
0

ρUw
indicates the

magnetic field parameter, Fr =
rCb

Uw
√

Bx
represents the coefficient of inertia, κ = rν

kUw
represents

the porosity parameter, R =
16r2σ∗T3

refT

3U2
wkk∗ represents the thermal radiation parameter where σ∗ is the

Boltzmann constant and k∗ is the coefficient of absorption, Pr =
μcp

k indicates the Prandtl number,

Ec =
U2

w

(cp)ΔT
represents the Eckert number, and γ = r2Q0

U2
wρcp

represents the heat source/sink.

The skin friction and Nusselt number are defined as:
√

Re
2 C f = − f ′′ (0)
1√
Re

Nu = −(1 + R)θ′(0) (12)

3. HAM Solution

The HAM technique is used to solve the modeled Equations (9) and (10) with the
following procedure.

The primary guesses are picked as follows:

f0(η) = η, θ0(η) = 1 (13)

The Lf and Lθ are selected as:

L f ( f ) = f ′′′ , Lθ(θ) = θ′′ (14)

The resultant non-linear operators N f and Nθ are specified as:

N f [ f (η;ℵ)] = d3 f (η;ℵ)
dη3 +

(
3+n

2

)
f (η;ℵ)d2 f (η;ℵ)
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(
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)2
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(
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)
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(15)
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Nθ[θ(η ;ℵ), f (η;ℵ)] = (1 + R)d2θ(η;ℵ)
dη2 + Pr
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The zeroth-order problem from Equations (9) and (10) are:

(1−ℵ)L f [ f (η;ℵ) − f0(η)] = ℵ� f N f [ f (η;ℵ)] (17)

(1−ℵ)Lθ[θ(η ;ℵ) − θ0(η)] = ℵ�θNθ[θ(η ;ℵ), f (η;ℵ)] (18)

The converted boundary conditions are:
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For ℵ = 0 and ℵ = 1 we can write:

f (η; 0) = f0(η), f (η; 1) = f (η)
θ(η ; 0) = θ0(η ), θ(h; 1) = θ(η)

(20)

When ℵ fluctuates form 0 to 1, the initial solutions vary to the final solutions. Then, by Taylor’s
series, we have:
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where
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The series (21) at ℵ = 1 converges, we obtain:

f (η) = f0(η) +
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(23)

The qth− order gratifies the succeeding:
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with boundary conditions:
fq(0) = f ′q (0) = 0, θq(0) = 0
f ′′q (β) = fq(β) = θ′q(β) = 0

(25)
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where

χq =

{
0, if ℵ ≤ 1
1, if ℵ > 1

(28)

4. Results and Discussion

In this section impact of physical parameters on velocity and temperature profiles are discuses.
In Figure 2, h-curve for velocity and temperature profiles are displayed. In Figures 3–7, the physical
influence of the embedded parameters on the thin layer flow of Darcy-Forchheimer nanofluid over a
nonlinear radially extending porous disc is presented. Figure 3 depicts the impacts of positive integer
n and magnetic parameter M on f ′(η). It is determined here that both parameters show a declining
behavior in the velocity profile.The nonlinearity stretching phenomena of the thin film flow reduced
the thin layer with the escalation in n, because the bulky magnitude of n produced an opposing force to
reduce the fluid motion. Therefore, the fluid velocity was reduced with the escalated n. Moreover, the
large amount of M decreased the fluid velocity. Basically, the Lorentz force says that the resists the fluid
motion on the liquid boundary which, in result, diminishes the velocity of the fluid. Figure 4 reveals the
impacts of κ and Fr on f ′(η). The porous medium performed a key role during fluid flow occurrences.
Significantly, the porosity parameter disturbed the boundary layer flow of liquid which, as a result,
produced opposition to the fluid flow and, hereafter, a decline the velocity of the fluid. Furthermore,
Fr diminished the fluid flow at the surface of the radially extending disc. This behavior occurred
because the porous medium was added to the flow phenomena which decreased the coefficient of
inertia, and consequently, the fluid velocity was decreased. The influence of fluid layer thickness β
on f ′(η) and θ(η) is shown in Figure 5. Physically, the resistive force to fluid flow increased with
the increase in fluid layer thickness β. The increased fluid layer thickness increased the velocity
and a smaller amount of energy was needed for the motion of the fluid. Consequently, the velocity
profile was reduced with an increase in fluid layer thickness. Similarly, the increase in fluid layer
thickness was reduced θ(η). Figure 6 reveals the influences of γ and R on θ(η). Physically, γ acted
like a heat producer which increased the boundary layer thickness and released heat to the fluid flow
phenomena. Therefore, the increase in γ increased θ(η). The increase in R increased θ(η). The upsurge
in R enhanced the thermal boundary layer temperature of the fluid flow; consequently, increased
behaviour in θ(η) is observed. The impact of Pr and Ec is revealed in Figure 7. The increased Eckert
number increased the temperature of the thin film flow. Actually, the Eckert number produced viscous
resistance due to the presence of a dissipation term which increased the nanofluid thermal conductivity
to increase the temperature field. The enhanced Prandtl number Pr reduced the temperature of the
thin film flow. The higher Pr numbers (e.g.,Pr = 7.0) possess lower thermal conductivity which result
in a decline in temperature of the boundary layer flow. Conversely, the lower Pr numbers possess
higher thermal conductivity which consequently increases the temperature of the boundary layer flow.

Figures 8 and 9 display a comparison of the homotopy analysis method (HAM) and numerical
(ND-Solve) techniques f ′(η) and θ(η). The agreement of the HAM and numerical techniques is
observed here.

The influence of entrenched parameters on Cf and Nu are displayed in Tables 1 and 2. The increasing
fluid layer thickness increases the opposing force to fluid flow which, as a result, improves the Cf of
the thin film flow. The escalating magnetic field increases the Cf. This influence is due to the increasing
magnetic field which boosts the resistive force to the flow of fluid, called Lorentz force. The κ and Fr
increase the Cf. The porosity parameter disturbs the boundary layer flow of the thin film flow which
increases the resistive force to the fluid. The coefficient of inertia is directly proportional to the porosity
parameter. The increase in the porosity parameter increases the coefficient of inertia which, in result,
boosts the opposing force to fluid flow. The increasing positive integer boosts the nonlinearity which
produces resistance to the fluid and increases the Cf. The increase in R increases the Nu. The thermal
boundary layer temperature of the fluid flow increases with the increase in R which increases the
heat transfer of the thin film flow. The increase in Pr increases the Nu. Usually, the large amount
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of Pr reduces the nanofluid thermal conductivity. Therefore, the Nu increases with the increase in
Pr. The larger amount of γ increases the Nu. This effect is due to the fact that the γ increases the
boundary layer thickness of the nanofluid which, in result, increases the Nu. The increasing values of
Ec reduces the Nu. The Eckert number is usually composed of the nanofluid thermal conductivity term
to increase the temperature profile which, in turn, gives the opposite influence for cooling processes.
The escalating positive integer increases the Nu.

Tables 3 and 4 display the assessment of the homotopy analysis method (HAM) and numerical
(ND-Solve) techniques for f ′(η) and θ(η). The agreement of the HAM and numerical techniques is
observed here.

Figure 2. �-curves for f ′(η) and θ(η).

 
Figure 3. Impression of n and M on f ′(η).

Figure 4. Impression of κ and Fr on f ′(η).
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Figure 5. Impression of β on f ′(η) and θ(η).

Figure 6. Impression of γ and R on θ(η).

 
Figure 7. Impression of Pr and Ec on θ(η).
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Figure 8. The assessment of HAM and ND-Solve for f ′(η).

Figure 9. The assessment of HAM and ND-Solve for θ(η).

Table 1. The effect of embedded parameters on Cf at 15th order approximations of the homotopy
analysis method (HAM).

β M κ Fr n Cf

0.2 0.6 0.1 0.1 2.0 0.534624
0.3 0.761014
0.4 0.950758

0.7 0.553042
0.8 0.571415
0.9 0.589744

0.2 0.552042
0.3 0.571415
0.4 0.589744

0.2 0.607370
0.4 0.642203
0.6 0.676780

3.0 0.847565
4.0 1.012080
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Table 2. The effect of embedded parameters on Nu at 15th order approximations of the HAM.

R Pr γ Ec n Nu

0.5 1.0 0.1 0.1 2.0 2.394070
0.6 2.553680
0.7 2.713280

1.1 2.955850
1.2 3.194332
1.3 3.428861

0.3 2.763659
0.5 2.813816
0.7 2.863768

0.2 2.827741
0.3 2.811727
0.6 2.785875

3.0 4.552986
4.0 6.435682

Table 3. The assessment of the HAM and ND-Solve for f ′(η).

η HAM Numerical

0.0 1.000000 0.000000
0.1 0.961455 0.961589
0.2 0.945490 0.945568
0.3 0.931736 0.931656
0.4 0.920188 0.920156
0.5 0. 910827 0.910817
0.6 0.903656 0.903699
0.7 0.899547 0.899635
0.8 0.890117 0.890124
0.8 0.889466 0.883445
1.0 0.887864 0.887895

Table 4. The assessment of the HAM and ND-Solve for θ(η).

η HAM Numerical

0.0 1.000000 1.000000
0.1 0.993277 0.993900
0.2 0.986997 0.965800
0.3 0.981248 0.988250
0.4 0.976111 0.983133
0.5 0.971651 0.978612
0.6 0.967931 0.974732
0.7 0.964988 0.971530
0.8 0.962865 0.969025
0.9 0.961583 0.967233
1.0 0.961154 0.966158

5. Conclusions

The thin layer flow of Darcy-Forchheimer nanofluid over a nonlinear radially extending disc
has been examined in this study. The nonlinear disc with a variable thickness of the nanofluid has
been varied with the help of positive integer n. The magnetic field has been executed in a direction
vertical to the nanofluid flow. The influences of magnetic field parameter, positive integer, porosity
parameter, coefficient of inertia, fluid layer thickness, Prandtl number, heat source/sink, thermal
radiation, and Eckert number on the fluid flow problem have been observed in this study. The key
findings can be stated as follows:
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• Increasing the magnetic field parameter, positive integer, porosity parameter, coefficient of inertia,
and fluid layer thickness reduces the velocity profile.

• Increasing the Prandtl number and fluid layer thickness reduces the temperature profile.
• Increasing the heat source/sink, thermal radiation, and Eckert number increases the

temperature profile.
• Increasing the fluid layer thickness, magnetic field parameter, porosity parameter, coefficient of

inertia, and positive integer increases the skin friction coefficient.
• Increasing the heat source/sink, thermal radiation, Eckert number, and positive integer increases

the local Nusselt number.
• Increasing the Eckert number reduces the local Nusselt number.
• An agreement between the HAM and numerical techniques is observed here.
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Nomenclature

a Stretching parameter
B0 Magnetic field (N m A−1)
cP Specific heat (J kg−1 K−1)
k Thermal conductivity (W m−1 K−1)
n Positive integer
Q0 Heat flux (W m−2)
qr Radioactive heat flux (J)
u, v Velocity components (m s−1)
ρ Dynamic viscosity (MPa)
σ Electrical conductivity (S m−1)
� Assisting parameter
Cf Skin friction coefficient
Pr Prandtl number
κ Porosity parameter
β Fluid layer thickness parameter
Ec Eckert number
F Permeability (m2)
h Thin layer thickness
k* Stefan Boltzmann constant
T Fluid temperature (K)
Tref Reference temperature
Uw Stretching velocity (m s−1)
η Similarity variable
v Kinematic viscosity (m2 s−1)
σ* Absorption coefficient
M Magnetic field parameter
Nu Nusselt number
R Thermal Redation parameter
γ Heat source/sink parameter
Fr Coefficient of inertia parameter
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Abstract: In the present analysis, peristaltic flow was discussed for MHD Newtonian fluid through
the gap between two coaxial tubes, where the viscosity of the fluid is treated as variable. In addition,
the inner tube was considered to be at rest, while the outer tube had the sinusoidal wave traveling
down its motion. Further, the assumptions of long wave length and low Reynolds number were
taken into account for the formulation of the problem. A closed form solution is presented for general
viscosity using the Adomian decomposition method. Numerical illustrations that show the physical
effects and pertinent features were investigated for different physical included phenomenon. It was
found that the pressure rise increases with an increase in Hartmann number, and frictional forces
for the outer and inner tube decrease with an increase in Hartmann number when the viscosity
is constant. It was also observed that the size of the trapping bolus decreases with an increase in
Hartmann number, and increases with an increase in amplitude ratio when the viscosity is parameter.

Keywords: peristaltic flow; an endoscope; variable viscosity; Adomian solutions; different wave forms

1. Introduction

The study of peristaltic mechanism has gained considerable attention during the past few
decades [1–10]. Peristaltic mechanism involves certain physiological phenomena, like swallowing food
through the esophagus, vasomotion of small blood vessels, transport of urine from kidney to bladder,
chyme motion in the gastrointestinal tract, and movement of spermatozoa in human reproductive tract.

Peristaltic pumping is a form of liquid transport that occurs when a progressive wave of area
contraction or expansion propagates along the length of distensible duct. There are many engineering
processes in which peristaltic pumps are used to handle a wider range of fluids, particularly in the
chemical and pharmaceutical industries. This mechanism is also used in the transport of slurries,
sanitary fluids, and noxious fluids in the nuclear industry [11–13]. Extensive analytical, numerical, and
experimental studies have been undertaken involving such flows. Important studies to the present
topic include the works done by [14–19]. In all previous studies, fluid viscosity is assumed to be
constant. There are few attempts in which the variable viscosity in peristaltic phenomena has been
used. Mention may be made of the works by [20–22].

There are various analytical techniques to solve the differential equations arising in physics
and engineering. Thus, various perturbation and non perturbation techniques are in use. Recently,
Adomian decomposition has acquired great credence in tackling the linear and non-linear problems,
and sometimes gives the closed form solution in the form of general functions like trigonometric
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functions, Bessel functions, and so on. The impressive bibliography of the work done by the Adomian
decomposition method has been presented in papers by [23–30].

The intent of the paper is to present an integrated solution for different facets of the problem.
These include application of endoscopy in a viscous fluid with the variable viscosity and closed form
Adomian solutions, which are presented for unknown (general μ(r)) variable viscosity. In Section 2,
mathematical formulation of the present problem is described. Section 3 deals with the solution of
the problem using the Adomian decomposition method. Three typical examples were chosen and
their closed form solutions were presented, and comparison is given with the existing literature. In
Section 4, graphical results are presented to gauge the effects of certain physical parameters. Finally,
streamlines for the flow problems are also drawn.

2. Mathematical Formulation

Consider the magnetohydrodynamic flow of an electrically conducting viscous fluid through the
gap between two coaxial tubes. It is assumed that a uniform magnetic field B0 is applied transversely
to the flow. Further, considering that the magnetic Reynolds number is small, the induced magnetic
field is negligible. A schematic diagram of the geometry of the problem under consideration is shown
in Figure 1.

Figure 1. Effects of an endoscope on peristaltic motion.

The geometry of the wall surface is described as

R1 = a1 (1)

R2 = a2 + b cos
2π
λ
(Z− ct) (2)

where a1, and a2 are the radii of the inner and the outer tubes, respectively; b is the amplitude of the
wave; λ is the wavelength; c is the propagation velocity; and t is the time.

In the laboratory frame (R, Z), the flow is unsteady, but, by introducing a wave frame (r , z)
moving with velocity c away from the fixed frame, the flow can be treated as steady [10]. The coordinate
frames are related by the transformations.

z = Z− ct, r = R, w = W − c, u = U (3)

where (u, w) and
(
U, W

)
are the velocity components in radial and axial directions in moving and

fixed coordinates, respectively. Using the transformations (3), the equations that govern the flow are

∂u
∂r

+
∂w
∂z

+
u
r
= 0 (4)
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ρ
[
u∂u∂r + w∂u∂z

]
= −∂p∂r + ∂

∂r

(
2μ(r) ∂u∂r

)
+

2μ(r)
r

[
∂u
∂r − u

r

]
+ ∂
∂z

(
μ(r)

(
∂u
∂z + ∂w

∂r

)) (5)

ρ
[
u∂w∂r + w∂w∂z

]
= −∂p∂z + ∂

∂z

(
2μ(r) ∂w∂z

)
+ 1

r
∂
∂r

(
rμ(r)

(
∂u
∂z + ∂w

∂r

))
−σB2

0(w + c)

(6)

where u and w are the velocity components in the r and z directions, respectively; ρ is the density; σ is
the electrically conductivity of the fluid; and μ is the variable viscosity. The governing equations can
be dimensionalized by the following non-dimensional parameters.

r = r
a2

, z = z
λ , w = w

c , u = λu
a2c , p =

a2
2p

λcμ , r1 = r1
a2

, δ = a2
λ

r2 = r2
a2

= 1 +ϕ cos(2πz), Re = ρca2
μ , M =

√
σ
μB0a2

(7)

where φ is the amplitude ratio, Re is the Reynolds number, δ is the dimensionless wave number, and
M is the magnetic parameter.

Using the above non-dimensional parameters in Equations (4)–(6), the following system of
equations is obtained.

1
r
∂(ru)
∂r

+
∂w
∂z

= 0 (8)

Reδ3
[
u∂u∂r + w∂u∂z

]
= −∂p∂r + δ2 ∂

∂r

(
2μ(r) ∂u∂r

)
+ δ2

(
2μ(r)

r

(
∂u
∂r − u

r

))
+δ2

(
∂
∂z

(
μ(r)

(
∂u
∂z δ

2 + ∂w
∂r

))) (9)

δRe
[
u∂w∂r + w∂w∂z

]
=−∂p∂z + δ2 ∂

∂z

(
2μ(r) ∂w∂z

)
+ 1

r
∂
∂r

(
rμ(r)

(
∂u
∂z δ

2 + ∂w
∂r

))
−M2w

(10)

Using the long wavelength approximation and dropping terms of order δ and higher, the above
equations reduce to

∂p
∂r

= 0 (11)

1
r
∂
∂r

(
rμ(r)

∂w
∂r

)
=
∂p
∂z

+ M2w (12)

The relevant boundary conditions in new parameters are

w = −1 at r = r1

w = −1 at r = r2
(13)

3. Solution by Adomian Decomposition Method

In this section, the Adomian solution is determined for the velocity field. According to the
Adomian decomposition method, Equation (12) can be written in the operator form as

Lrw =
dp
dz

+ M2w (14)
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where the differential operator Lr is defined in the form

Lr =
1
r
∂
∂r

(
rμ(r)

∂
∂r

)
(15)

and the inverse operator L−1
r is defined by

L−1
r (.) =

∫ [
1

rμ(r)

∫
r(.) dr

]
dr (16)

Applying the inverse operator, Equation (12) takes the form

w(r, z) = L−1
r

[dp
dz + M2w

]
+ c1r + c2

w(r, z) = dp
dz I(r) + L−1

r

(
M2w

)
+ c1r + c2

(17)

in which

L−1
r

(
dp
dz

)
=

∫ [
1

rμ(r)

∫
r
(

dp
dz

)
dr

]
dr =

dp
dz

I(r) (17a)

and I(r) is given by

I(r) =
∫

r
2μ(r)

dr (18)

According to Adomian decomposition, it can be written as

w =
∞∑

n=0

wn (19)

Using the Adomian decomposition method, the solution w(r, z) can be elegantly computed by
the recurrence relation

w0 = c1r + c2

w1 =
dp
dz I(r) + M2L−1

r (w0)

wn+2 = M2L−1
r (wn+1), n ≥ 0

(20)

The above equations give

wn = M2n−2
(

dp
dz

+ M2c2

) (
L−1

r

)n−1
I(r) + M2nc1

(
L−1

r

)n−1
I1(r), n ≥ 1 (21)

in which

I1(r) =
∫

r2

3μ(r)
dr (22)

With the help of Equations (20) and (21), the closed form of w can be written as

w(r, z) = w0 +
∞∑

n=1
wn

w(r, z) = c1χ(r) + c2χ1(r) +
dp
dzχ2(r)

(23)

Using the boundary conditions (13), the values of constants c1 and c2 can be written as

c1 =
χ

1
(r1)−χ1

(r2)

χ(r1) χ1
(r2)−χ(r2) χ1

(r1)
− dp

dz

[
χ

2
(r1) χ1

(r2)−χ2
(r2) χ1

(r1)

χ(r1) χ1
(r2)−χ(r2) χ1

(r1)

]
c2 = − 1

χ
1
(r2)
− dp

dz
χ

2
(r2)

χ
1
(r2)
− c1

χ(r2)
χ

1
(r2)

(24)

where these χ′s are defined in Appendix A.
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The closed form solution (13) is represented in terms of integrals for any kind of general variable
viscosity. These integrals can be computed for particular values of variable viscosity μ. Here, three
cases of variable viscosity are taken into account, μ(r) = 1, r, and 1

r .

3.1. Case 1 (When μ = 1)

With the help of Equations (16), (18) and (22), the following are obtained:

I(r) =
r
2

dr =
r2

4
(25)

(
L−1

r

)n
I(r) =

(
r
2

)2n+2

[(n + 1)!]2
, n ≥ 1, 2, 3, . . . (26)

(
L−1

r

)n
I(r) =

(
r
2

)2n+2

[(n + 1)!]2
, n ≥ 1, 2, 3, . . . (27)

I1(r) =
∫

r2

3
dr =

r3

32 ,

(
L−1

r

)n
I1(r) =

∞∑
n=0

r2n+3

32.52.72 . . . .(2n + 3)2 (28)

The closed form of w(r, z) can be written as

w(r, z) = c1χ3
(r) + c2I0(Mr) +

1
M2

dp
dz

(−1 + I0(Mr)) (29)

Using boundary conditions (13), the solution of (29) can be written as

w(r, z) = a14χ3
(r) + a15I0(Mr) +

1
M2

dp
dz

(
−1− a15I0(Mr) − a14χ3

(r)
)

(30)

The constants appearing in the above equations are defined in the equations and I0 are the
modified Bessel functions, with the first kind of order 0.

3.1.1. Volume Flow Rate and Pressure Rise

The instantaneous volume flow rate Q(z) is given by

Q(z) =
∫ r2

r1

rw(r, z) dr =
dp
dz

a22 + a20 + a21 (31)

From Equation (31), the following is obtained:

dp
dz

=
1

a22

(
Q(z) − a20 − a21

)
(32)

The volume flow Q over a period is obtained as

Q = Q(z) +
(
1 +

ϕ2

2

)
− r2

1 (33)

and
dp
dz

=
1

a22

(
Q−

(
1 +

ϕ2

2

)
+ r2

1 − a20 − a21

)
(34)
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The pressure rise Δp and the friction force (at the wall) on the outer and inner tubes are F(0) and
F(1), respectively, are

Δp =

∫ 1

0

dp
dz

dz (35)

F(0) =
∫ 1

0 r2
2

(
−dp

dz

)
dz

F(1) =
∫ 1

0 r2
1

(
−dp

dz

)
dz

(36)

3.1.2. Stream Function

The corresponding stream function
(
u = − 1

r
∂Ψ
∂z and w = 1

r
∂Ψ
∂r

)
can be written as

Ψ = a14g(r) − 1
M2

dp
dz

(
a14g(r) +

r2

2
+ a15

r
M

I1(Mr)
)
+ a15

r
M

I1(Mr) (37)

where the constants appears in the above equations are defined in Appendix A; I1 is a modified Bessel
functions of the first order; and a14, a15 are defined in Appendix A.

3.2. Case 2 (When μ = r)

Using Equations (16), (18), and (22), the following is implied for μ = r:

I(r) =
∫

r
2.r

dr =
r
2!

(38)

(
L−1

r

)n
I(r) =

∞∑
n=0

rn+1

(n + 2)!(1.2.3.4 . . . .(n + 1))
(39)

I1(r) =
∫

r2

3.r
dr =

r2

3!
(40)

(
L−1

r

)n
I1(r) =

r2

3!
+
∞∑

n=1

rn+2

(n + 3)!(3.4.5 . . . .(n + 2))
(41)

With the help of these values, and using boundary conditions, the closed form of w(r, z) can be
written as

w(r, z) = b14χ4
(r) + b18χ5

(r) +
dp
dz

(
χ

6
(r) + b19χ5

(r) − b15χ4
(r)

)
(42)

The constants appearing in the above equations are defined in Appendix A.

3.2.1. Volume Flow Rate and Pressure Rise

The instantaneous volume flow rate Q(z) is given by

Q(z) =
dp
dz

b29 + b27 + b25 (43)

The volume flow rate and the pressure gradient can be calculated as

Q = Q(z) +
(
1 +

ϕ2

2

)
− r2

1 (44)
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The pressure rise Δp and the friction force (at the wall) on the outer and inner tubes F(0) and F(1)

can be computed using (35) and (36).

dp
dz

=
1

b29

(
Q−

(
1 +

ϕ2

2

)
+ r2

1 − b25 − b27

)
(45)

The constants appearing in the above equations are defined in Appendix A

3.2.2. Stream Function

Stream function, in this case, is defined as

Ψ = b14g0(r) + b18g1(r) +
dp
dz

(g2(r) + b19g1(r) − b15g0(r)) (46)

3.3. Case 3 (When μ = 1
r )

Using the similar procedure as discussed in previous sections, it can be written as

w(r, z) = d16χ7
(r) + d18χ8

(r) +
dp
dz

(
χ

9
(r) + d19χ8

(r) − d17χ7
(r)

)
(47)

The constants appearing in the above equations are defined in Appendix A.

3.3.1. Volume Flow Rate and Pressure Rise

The instantaneous volume flow rate Q(z) is given by

Q(z) =
dp
dz

d27 + d26 + d25 (48)

The volume flow Q over a period is obtained as

Q = Q(z) +
(
1 +

ϕ2

2

)
− r2

1 (49)

The pressure rise Δp and the friction force F(0) and F(1) can be computed using (35) and (36).

dp
dz

=
1

d27

(
Q−

(
1 +

ϕ2

2

)
+ r2

1 − d25 − d26

)
(50)

3.3.2. Stream Function

Stream function for this case is

Ψ = d16h(r) + d18h1(r) +
dp
dz

(h2(r) + h1(r)d19 − h(r) d17) (51)

The constants appearing in the above equations are defined in Appendix A.

4. Results and Discussion

The objective of the current analysis is to present the closed form solutions of MHD Newtonian
fluid with variable viscosity. The expression for pressure rise per wavelength and frictional forces are
difficult to integrate analytically; therefore, numerical integration is used to evaluate the integrals.
Figures 2–4 are plotted for pressure rise and friction force against flow rate Q when viscosity is constant.
In Figure 2, it is observed that pressure rise increases with an increase of M up to Q < 1.7, after which
the curves intersect each other and, finally, it gives an opposite behavior. The effects M on F(0)(for
outer tube) and F(1) (for inner tube) are presented in Figures 3 and 4. It is depicted from Figures 3
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and 4 that with an increase in M, both F(0) and F(1) decrease M for small Q and, finally, the behavior is
reversed at the end. A comparison of the velocity field for constant viscosity case is made between
the Adomian decomposition solution and perturbation solutions obtained by [6]. (see Figure 5).
Figures 6–9 are prepared when (viscosity) μ = r. It is observed from Figure 6 that in the retrograde
(Δp > 0, Q < 0) and peristaltic pumping (Δp > 0, Q > 0) regions, the pressure rise decreases with an
increase in amplitude ratio ϕ. Figures 7 and 8 show that F(0) and F(1) give an opposite behavior
as compared with Δp. The velocity field increases with the increase in M and the maximum value
of the velocity is at the center (see Figure 9). Figures 10–13 are prepared when the viscosity μ = 1

r .
It is observed from Figure 10 that with an increase in r1, the pressure rise decreases in the retrograde
(Δp > 0, Q < 0), peristaltic pumping (Δp > 0, Q > 0), and copuming (Δp < 0, Q > 0) regions. It is
depicted from Figures 11 and 12 that with an increase in r1, both F(0) and F(1) decrease for small Q and,
finally, the behavior is reversed at the end. The velocity profile for different values of M for the case
when viscosity is μ = 1

r is shown in Figure 13. It is observed from Figure 13 that the magnitude value
of the velocity profile decreases with an increase in M.

Figure 2. The variation of Δp with Q for different values of M at r1 = 0.4, ϕ = 0.4, when μ = 1.

Figure 3. The variation of friction force F(0) (outer tube) with Q for different values of M at
r1 = 0.4,ϕ = 0.4, when μ = 1.
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Figure 4. The variation of friction force F(1) (inner tube) with Q for different values of M at
r1 = 0.4,φ = 0.4, when μ = 1.

Figure 5. Comparison with the existing literature.

Figure 6. The variation of Δp with Q for different values of ϕ at M = 3, r1 = 0.1, when μ = r.
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Figure 7. The variation of friction force F(0) (outer tube) with Q for different values of φ at
r1 = 0.1, M = 3, when μ = r.

Figure 8. The variation of friction force F(1) (inner tube) with Q for different values of ϕ at
r1 = 0.1, M = 3, when μ = r.

Figure 9. Velocity profiles for different values of M at t = 1, z = 1,ϕ = 1, when μ = r.

222



Coatings 2019, 9, 524

Figure 10. The variation of Δp with Q for different values of r1 at M = 3, ϕ = 0.4, when μ = 1
r .

Figure 11. The variation of friction force F(0) (outer tube) with Q for different values of r1 at
ϕ = 0.4, M = 3, when μ = 1

r .

Figure 12. The variation of friction force F(1) (inner tube) with Q for different values of r1 at
ϕ = 0.4, M = 3, when μ = 1

r .
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Figure 13. Velocity profiles for different values of M at t = 1, z = 1, ϕ = 1, when μ = 1
r .

Trapping Phenomenon

The trapping phenomenon is an interesting phenomenon in peristaltic motion, which is discussed
in Figures 14–18 for the case when μ = 1, μ = r, and μ = 1

r . Stream lines for different values of ϕ for
the case when μ = 1 are shown in Figure 14. It is observed from Figure 6 that with an increase in
amplitude ratio ϕ, the size of the trapping bolus increases. Stream lines for different values of M and ϕ

for the case when μ = r are shown in Figures 15 and 16. It is observed from Figure 15 that the size of
the trapping bolus decreases with an increase in Hartmann number M. The size of the trapping bolus
increases with an increase in amplitude ratio ϕ (see Figure 16). Stream lines for different values of M
and ϕ for the case when μ = 1

r are shown in Figures 17 and 18. It is observed from the Figures that the
size of the trapping bolus increases with an increase in Hartmann number M and amplitude ratio ϕ.

Figure 14. Streamlines for two different values of ϕ for (a) ϕ = 0.1 and (b) ϕ = 0.101. The other
parameters are chosen as M = 2, Q = 0.41, r1 = 0.65 when μ = 1.
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Figure 15. Streamlines for two different values of M for (a) M = 1 and (b) M = 0.6. The other parameters
are chosen as ϕ = 0.2, Q = 0.45, r1 = 1 when μ = r.

Figure 16. Streamlines for two different values of ϕ for (a) ϕ = 0.29 and (b) ϕ = 0.3. The other
parameters are chosen as M = 1, Q = 0.45, r1 = 1.1 when μ = r.

Figure 17. Streamlines for two different values of M for (a) M = 0.2 and (b) M = 0.1. The other
parameters are chosen as ϕ = 0.1, Q = 0.4, r1 = 1.1 when μ = 1

r .
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Figure 18. Streamlines for two different values of r1 for (a) r1 = 1.11 and (b) r1 = 1.13. The other
parameters are chosen as M = 0.2, Q = 0.4, ϕ = 0.1 when μ = 1

r .

5. Conclusions

In the present analysis, peristaltic flow was discussed for MHD Newtonian fluid through the gap
between two coaxial tubes, where the fluid viscosity was treated as variable. In addition, the inner tube
was considered to be at rest, while the outer tube has the sinusoidal wave travelling down its motion.
Further, the governing equations are simplified under the assumptions of long wavelength and low
Reynolds number. The solution of the problem under discussion is computed analytically using the
Adomian decomposition method. The results of the proposed problem are discussed through graphs.
The main findings are summarized as follows:

• It was found that the pressure rise increases with an increase in Hartmann number M and frictional
forces for the outer F(0) and inner tube F(1) decreases with an increase in M when viscosity μ = 1.

• It was also found that the pressure rise decreases with an increase in amplitude ratio ϕ in the
retrograde (Δp > 0, Q < 0) and peristaltic pumping (Δp > 0, Q > 0) regions and frictional forces
give opposite behavior as compared with pressure rise when viscosity μ = r.

• The pressure rise decreases in the retrograde (Δp > 0, Q < 0), peristaltic pumping (Δp > 0, Q > 0)
and copuming (Δp < 0, Q > 0) regions with an increase in r1, and frictional forces decrease for
small values of volume flow rate Q with an increase in r1 when viscosity μ = 1

r .
• It was also noticed that the size of the trapping bolus increases with an increase in amplitude

ratio ϕ when viscosity μ = 1, while it increases with an increase in Hartmann number M and
amplitude ratio ϕ when viscosity μ = 1

r . However, it decreases with an increase in Hartmann
number M and increases with an increase in amplitude ratio ϕ when viscosity μ = r.
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Nomenclature

a1 and a2 radii of the inner and the outer tubes
b amplitude of the wave
λ wavelength
c propagation velocity
t Time
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(u, w) velocity components in radial and axial directions in moving coordinates(
U, W

)
velocity components in radial and axial directions in fixed coordinates

ρ density
σ electrically conductivity of the fluid
μ variable viscosity
ϕ amplitude ratio
Re Reynolds number
δ dimensionless wave number
M magnetic parameter
Q volume flow rate
a′s and χ′s constants used to simplify the problem

Appendix A

χ(r1) =

[
r +

∞∑
n=0

M2n+2
(
L−1

r

)n
I1(r)

]
r=r1

,

χ(r2) =

[
r +

∞∑
n=0

M2n+2
(
L−1

r

)n
I1(r)

]
r=r2

,

χ1 (r1) =

[
1 +

∞∑
n=0

M2n+2
(
L−1

r

)n
I(r)

]
r=r1

,

χ1 (r2) =

[
1 +

∞∑
n=0

M2n+2
(
L−1

r

)n
I(r)

]
r=r2

,

χ2 (r1) =

[ ∞∑
n=0

M2n
(
L−1

r

)n
I(r)

]
r=r1

,

χ2 (r2) =

[ ∞∑
n=0

M2n
(
L−1

r

)n
I(r)

]
r=r2

,

χ3 (r1) =

[
r +

∞∑
n=0

M2n+2 r2n+3

32.52.72....(2n+3)2

]
r=r1

,

χ3 (r2) =

[
r +

∞∑
n=0

M2n+2 r2n+3

32.52.72....(2n+3)2

]
r=r2

,

χ4 (r1) =

[
r + M2 r2

3! +
∞∑

n=1
M2n+2 rn+2

(n+3)!(3.4.5....(n+2))

]
r=r1

,

χ4 (r2) =

[
r + M2 r2

3! +
∞∑

n=1
M2n+2 rn+2

(n+3)!(3.4.5....(n+2))

]
r=r2

,

χ5 (r1) =

[
1 +

∞∑
n=0

M2n+2 rn+1

(n+2)!(1.2.3.4....(n+1))

]
r=r1

,

χ5 (r2) =

[
1 +

∞∑
n=0

M2n+2 rn+1

(n+2)!(1.2.3.4....(n+1))

]
r=r2

,

χ6 (r1) =

[ ∞∑
n=0

M2n rn+1

(n+2)!(1.2.3.4....(n+1))

]
r=r1

,

χ6 (r2) =

[ ∞∑
n=0

M2n rn+1

(n+2)!(1.2.3.4....(n+1))

]
r=r2

,

χ7 (r1) =

[
r +

∞∑
n=0

M2n+2 r3n+4

12.42.90....(3n+3) (3n+4)

]
r=r1

,

χ7 (r2) =

[
r +

∞∑
n=0

M2n+2 r3n+4

12.42.90....(3n+3) (3n+4)

]
r=r2

,

χ8 (r1) =

[
1 + M2 r3

3! +
∞∑

n=1
M2n+2 r3n+3

3!(30.72.132....(3n+3) (3n+2))

]
r=r1

,

χ8 (r2) =

[
1 + M2 r3

3! +
∞∑

n=1
M2n+2 r3n+3

3!(30.72.132....(3n+3) (3n+2))

]
r=r2

,
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χ9 (r1) =

[
r3

3! +
∞∑

n=1
M2n r3n+3

3!(30.72.132....(3n+3) (3n+2))

]
r=r1

,

χ9 (r2) =

[
r3

3! +
∞∑

n=1
M2n r3n+3

3!(30.72.132....(3n+3) (3n+2))

]
r=r2

,

g(r) = r3

3 +
∞∑

n=0

(M2n+2r2n+5)
(2n+5) (32.52.72...(2n+3)2)

,

g0 (r) =
r3

3 + M2r4

4! +
∞∑

n=1

M2n+2rn+4

(n+4) (n+3)!(3.4.5...(n+2)) ,

g0 (r) =
r3

3 + M2r4

4! +
∞∑

n=1

M2n+2rn+4

(n+4) (n+3)!(3.4.5...(n+2)) ,

g1 (r) =
r2

2 +
∞∑

n=0

M2n+2rn+3

(n+3) (n+2)!(1.2.3.4...(n+1)) ,

g2 (r) =
∞∑

n=0

M2nrn+3

(n+3) (n+2)!(1.2.3.4...(n+1)) ,

h(r) = r3

3 +
∞∑

n=0

M2n+2r3n+6

(3n+6) (12.42.90...(3n+3) (3n+4)) ,

h1 (r) =
r2

2 + M2r5

3!5 +
∞∑

n=1

M2n+2r3n+5

(3n+5) 3!(30.72.132...(3n+3) (3n+2)) ,

h2 (r) =
r5

3! +
∞∑

n=1

M2nr3n+5

(3n+5) 3!(30.72.132...(3n+3) (3n+2)) ,

a11 = I0(Mr1) − I0(Mr2), a12 = χ3(r1)I0(Mr2) − χ3(r2)I0(Mr1),

a13 = χ3(r2) − χ3(r1), a14 = a11
a12

, a15 = a13
a12

, a16 =
r3

2−r3
1

3 ,

a17 =
∞∑

n=0
M2n+2 (r2n+5

2 −r2n+5
1 )

(2n+5) (32.52.72....(2n+3)2)
,

a18 =
r2I1(Mr2)−r1I1(Mr1)

M , a19 =
r2

2−r2
1

2 , a20 = a14(a16 + a17),

a21 = a15a18, a22 = − (a19+a20+a21)
M2 ,

b11 = χ5(r1) − χ5(r2), b12 = χ4(r1) χ5(r2) − χ4(r2) χ5(r1),

b13 = χ6(r1) χ5(r2) − χ6(r2) χ5(r1), b14 = b11
b12

, b15 = b13
b12

,

b16 = χ4(r2) − χ4(r1), b17 = χ6(r1) χ4(r2) − χ6(r2) χ4(r1),

b18 = b16
b12

, b19 = b17
b12

, b20 =
M2(r4

2−r4
1)

4! ,

b21 =
∞∑

n=1
M2n+2 (rn+4

2 −rn+4
1 )

(n+4) (n+3)!(3.4.5....(n+2)) ,

b22 =
∞∑

n=0
M2n+2 (rn+3

2 −rn+3
1 )

(n+3) (n+2)!(1.2.3.4...(n+1)) ,

b23 = a16 + b20 + b21, b24 = b22 + a19, b25 = b14b23,

b27 = b18b24, b28 = b19b24, b29 = b22
M2 + b28 − b26,

d11 = χ8(r1) − χ8(r2), d12 = χ8(r2) χ7(r1) − χ7(r2) χ8(r1),

d13 = χ9(r1) χ8(r2) − χ9(r2) χ8(r1), d14 = χ9(r1) χ7(r2) − χ9(r2) χ7(r1),

d15 = χ7(r2) − χ7(r1), d16 = d11
d12

, d17 = d13
d12

, d18 = d15
d12

, d19 = d14
d12

,

d20 =
∞∑

n=0
M2n+2 (r3n+4

2 −r3n+4
1 )

(3n+6) (12.42.90....(3n+3) (3n+4)) , d21 = M2 (r5
2−r5

1)
30 ,

d22 =
∞∑

n=1
M2n+2 (r3n+5

2 −r3n+5
1 )

(3n+5) 3!(30.72.132...(3n+3) (3n+2)) ,

d23 = a16 + d20, d24 = a19 + d21 + d22, d25 = d16d23,

d26 = d18d24, d27 = 5
M2 d21 +

d22
M2 + d19d24 − d17d23.
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Abstract: In this paper, the MHD flow of a micropolar nanofluid on an exponential sheet in
an Extended-Darcy-Forchheimer porous medium have been considered. Buongiorno’s model
is considered in order to formulate a mathematical model with different boundary conditions.
The governing partial differential equations (PDEs) of the nanofluid flow are changed into a third
order non-linear quasi-ordinary differential equation (ODE), using the pseudo-similarity variable.
The resultant ODEs of the boundary value problems (BVPs) are renewed into initial value problems
(IVPs) using a shooting method, and then the IVPs are solved by a fourth order Runge-Kutta
(RK) method. The effects of various physical parameters on the profiles of velocity, temperature,
microrotation velocity, concentration, skin friction, couple stress coefficients, heat, and concentration
transfer are demonstrated graphically. The results reveal that triple solutions appear when S ≥ 2.0337
for K = 0.1 and S ≥ 2.7148 for K = 0.2. A stability analysis has been performed to show the stability
of the solutions; only the first solution is stable and physically possible, whereas the remaining two
solutions are not stable.

Keywords: pseudo-similarity variable; micropolar nanofluid; darcy forchheimer model; MHD flow;
triple solution; stability analysis

1. Introduction

Micropolar fluid is a polar fluid which contains rigid randomly oriented or spherical particles.
It can be defined as a fluid with micro structures and belongs to the nonsymmetric stress tensor [1].
Furthermore, this fluid model is employed to analyze the behavior of liquid crystals and exotic polymeric
fluid or lubricant colloidal suspensions. Ariman et al. [2,3], Eringen [4–6], and Lukaszewicz [7] discussed
the properties and applications of the micropolar fluid in details. The concept of the electrically
conducting fluids motion in the presence of a magnetic field is called magnetohydrodynamics, or MHD
for short. The word MHD is the combination of the words magneto, hydro, and dynamics, which
mean magnetic, fluid and motion, respectively. MHD is also known as magnetofluid dynamics and
hydromagnetic, which can be defined as the study of the dynamics of the electromagnetic field and
the electrically conducting fluids. Recently, Kumar et al. [8] examined the MHD flow of micropolar
fluid with a porous medium. Micropolar fluid with an MHD effect on a shrinking sheet along a weak
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concentration has been considered by Gupta et al. [9]. Turkyilmazoglu [10] found the exact solution of
micropolar fluid within the existence of the MHD effect. The MHD flow of micropolar fluids with a
porous medium had been considered by many researchers, such as Sheikh et al. [11], Akhter et al. [12],
Siddiq et al. [13], Dero et al. [14], Hayat et al. [15,16], Ahmed et al. [17], and Waqas et al. [18].

In the last couple of years, the use of nanofluid as a convectional fluid, in order to increase the
heat transfer rate, has pulled in extensive consideration among researchers. Research demonstrated
that dissolving different sorts of nanoparticles, such as nonmetal, polymeric and metal mixed in the
base fluids, provides good thermal properties [19,20]. The term nanofluid, which was introduced by
Choi and Eastman in 1995 [21], can be defined as a fluid that is a mixture of regular (base) fluids with
nano-meter sized particles (less than 100 nm). These particles may contain oxides, carbon nanotubes,
and metals. On the other hand, oil, ethylene glycol, and water are generally considered to be the base
fluids. These fluids have different physical and chemical properties from regular fluids [22]. There are
two approaches to study nanofluids, namely the experimental and numerical one. Many researchers
considered the numerical approach to understand the behavior of nanofluids and introduced new
concepts to understand them. Khanafer et al. [23] built up a model to contemplate the heat transfer
improvement of Cu-water nanofluid in a two-dimensional enclosure. Meanwhile, Buongiorno [24]
constructed a new non-homogeneous model in which velocity of base fluids and nanoparticles are
not equal to zero. This model consists of seven slip parameters, which are Brownian diffusion,
diffusiophoresis, gravity settling, fluid drainage, inertia, thermophoresis, and the Magnus effect.
The references of the development of nanofluids can be found in the book by Nield and Bejan [25]
and also in the published review articles on nanofluid, such as Mahian et al. [26–28] and Wong and
Leon [29]. Recently, a few researchers have considered nanoparticles with non-Newtonian base fluid
in the presence of MHD effects, such as Mahdy [30], Rehman et al. [31], Hamid et al. [32], Eid et al. [33],
and Prabhakar et al. [34].

It can be observed from previously published literature that not much work has been done on the
Extended-Darcy-Forchheimer porous medium, due to the fact that the governing equations cannot
be reduced to self-similarity solutions through the use of a similarity transformation, particularly
when using exponential similarity variables. Similarly, the MHD flow of micropolar nanofluid over an
exponential shrinking surface has also not been considered because the equation of the angular velocity
cannot be transformed into a self-similarity solution. Keeping in view these drawbacks, we attempt
to employ a new approach which is a pseudo-similarity variable in the governing equations of fluid
flow in order to obtain a local similar solution, as adopted by a few researchers in their studies [35–38].
The key objective of the present work is to consider the MHD flow of micropolar nanofluid over an
exponential shrinking surface in an Extended-Darcy-Forchheimer porous medium. The resultant
equations, after performing the pseudo-similarity variable in the form of a third-order non-linear
quasi-ordinary differential equation, have been solved using the shooting method with the RK-method;
we found triple solutions. When multiple solutions exist in any problem, it is necessary to conduct a
stability analysis in order to determine the stable solutions. Consequently, this analysis is also taken
into account in this research.

2. Problem Description and Formulation

The steady incompressible two-dimensional MHD flow of a micropolar nanofluid on an
exponentially shrinking surface in an Extended-Darcy-Forchheimer porous medium is considered by

adding − 1√
K

(
ϑ√
K
+ bu

)
u in the Navier Stokes equation. The velocity of the shrinking surface in the

form of exponential terms is given by Uw(x) = U0e
2x
� , while the uniform magnetic field of the strength

B0 has been normally applied to it (Figure 1). Due to a small value of the magnetic Reynolds number,
the induced magnetic field is ignored. Under the consideration of the mentioned assumptions, the
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boundary layer equations of motion for the micropolar nanofluid, heat and concentration equations
are expressed as:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=

(
ϑ+
κ
ρ

)
∂2u
∂y2 +

κ
ρ
∂N
∂y
− ϑ

K
u− b√

K
u2 − σB

2u
ρ

(2)

u
∂N
∂x

+ v
∂N
∂y

=
1
ρ j

[
γ
∂2N
∂y2 − κ

(
2N +

∂u
∂y

)]
(3)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + τ1

⎡⎢⎢⎢⎢⎣DB
∂C
∂y
∂T
∂y

+
DT

T∞

(
∂T
∂y

)2⎤⎥⎥⎥⎥⎦ (4)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT

T∞
∂2T
∂y2 (5)

subject to the following boundary conditions:

v =
√
ϑU0

2l e
x
2l S; u = −Uw(x) + B∗ϑ∂u∂y ; N = −m∂u∂y ; T = T w; C = C w aty = 0

u→ 0; N→ 0; T→ T∞; C→ C∞ as y→∞.
(6)

Figure 1. Physical model of the flow.

We considered the following similarity transformations, as adopted by Sanjayanand and Khan [39],
to solve Equations (1)–(5), with boundary condition (6):

ψ =
√

2ϑlU0e
x
2l f (x, η), N = U0e

3x
2l

√
U0
2ϑl g(x, η), θ(x, η) = (T−T∞)

(Tw−T∞) ,

∅(x, η) = (C−C∞)
(Cw−C∞) , η = y

√
U0
2ϑl e

x
2l

(7)

where u =
∂ψ
∂y and v = −∂ψ∂x are components of the velocity along the directions x and y respectively,ρ

is the fluid density, ϑ is the kinematic viscosity, σ is the electrical conductivity of the fluid, B = B0e
x
2l is

the magnetic field with a constant magnetic strength B0, K1 is the permeability of the porous medium,
b is the local inertia coefficient, κ is the vortex viscosity, N is the microrotation, γ indicates the spin
gradient viscosity, j is the ratio of the micro inertia and unit mass, T is the fluid temperature, and α is

the thermal diffusivity of the micropolar nanofluid. Furthermore, τ1 =
(ρc)p

(ρc) f
is the ratio between the

effective heat capacity of the nanoparticle material and the capacity of the fluid, DB is the Brownian
diffusion coefficient, DT is the thermophoretic diffusion coefficient, Tw is the temperature of the wall,
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T∞ is the ambient temperature, Cw is the concentration of the wall C∞ is the ambient concentration, and
B∗ = B1e

−x
2l is the velocity slip factor. It might be mentioned that the range of m is 0 ≤ m ≤ 1; however,

m is constant. In the case of m = 0, we have N = 0, which indicates that the strong concentration
and micro-elements are near to the wall and are not rotatable. Furthermore, m = 0.5 shows a weak
concentration, which causes the anti-symmetric part of the stress tensor to vanish. On the other hand,
m = 1 indicates the turbulent boundary layer flows modeling (see [40,41]).

Using Equation (7) in Equations (2)–(5), we get the following partial differential equations:

(1 + K) fηηη + f fηη + Kgη − 2
(

fη
)2 − FS

(
fη
)2 −K1 fη −M fη = 2l

(
fη fηx − fηη fx

)
(8)(

1 +
K
2

)
gηη + f gη − 3g fη − 2Kg−K fηη = 2l

(
fηgx − gη fx

)
(9)

1
Pr
θηη + fθη + Nbθη∅η + Nt

(
θη

)2
= 2l

(
fηθx − θη fx

)
(10)

∅ηη + Sc f∅η +
Nt

Nb
θηη = 2·Sc·l

(
fη∅x −∅η fx

)
(11)

Furthermore, many authors considered γ =
(
μ+ κ

2

)
j = μ

(
1 + K

2

)
j, where κ = μK is the material

parameter [41] in their work. In our problem, the terms of the Extended-Darcy-Forchheimer porous

medium K1 = lv
2U0K e

x
l

and γ = μ
(
1 + K

2

)
2ϑle

−x
�

U0
do not allow it to have self-similar solutions. For this

reason, by using the pseudo-similarity variable, a local similarity solution can be obtained by equating
the derivative of the functions of f , g, θ and ∅ with respect to x being equal to zero. This implies
that f (x, η) = f (η); g(x, η) = g(η);θ(x, η) = θ(η) and ∅(x, η) = ∅(η) [39]. As a result, all the terms
on the right-hand side become zero, and we get the following third-order non-linear quasi-ordinary
differential equation:

(1 + K) f ′′′ + f f ′′ + Kg′ − 2 f ′2 − FS f ′2 −K1 f ′ −M f ′ = 0 (12)(
1 +

K
2

)
g′′ + f g′ − 3g f ′ − 2δKg− δK f ′′ = 0 (13)

1
Pr
θ′′ + fθ′ + Nb∅

′θ′ + Nt(θ
′)2 = 0 (14)

∅
′′ + Sc f∅′ + Nt

Nb
θ′′ = 0 (15)

subject to the boundary conditions below:

f (0) = S; f ′(0) = −1 + λ f ′′ (0); g(0) = −m f ′′ (0); θ(0) = 1;∅(0) = 1
f ′(η)→ 0; g(η)→ 0; θ(η)→ 0;∅(η)→ 0 as η→∞.

(16)

Here, prime stands for the differentiation with respect to the new independent variable η, K = κ
μ

is the non-Newtonian parameter, K1 is the permeability parameter, FS = 2lb√
K

is the Forchheimmer

parameter, M =
2lσ(B0)

2

ρU0
is the Hartmann number, Pr = ϑ

α is the Prandtl number, Nt =
τ1DT(Tw−T∞)

νT∞ is

the thermophoresis parameter, Nb =
τ1DB(Cw−C∞)

ν is the parameter of Brownian motion, Sc = ϑ
DB

is the

Schmidt number, λ = B1

√
ϑU0

2l is the velocity slip, and S < 0 and S > 0 are the mass injunction and
suction parameter, respectively.
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The physical quantities of interest are the coefficient of the skin friction, the local Nusselt number
and local Sherwood number, which are given by:

C f =

[
(μ+κ) ∂u∂y+κN

]
y=0

ρU2
0

; Nu =
−x

(
∂T
∂y

)
y=0

(Tw−T∞) ; Sh =
−x

(
∂C
∂y

)
y=0

(Cw−C∞) ;

C f (Rex)
1
2 =

√
2(1 + (1−m)K) f ′′ (0); Nu(Rex)

− 1
2 = − 1√

2
θ′(0); Sh(Rex)

− 1
2 = − 1√

2
∅′(0)

(17)

where Rex = luw/ϑ is the local Reynolds number.

3. Stability Analysis

Weidman et al. [42] initiated a study of the stability analysis of multiple solutions. Since then,
some researchers, such as Rosca and Pop [43] and Lund et al. [44,45], performed stability analyses in
their studies on multiple solutions of fluid flow problems. They found that only the first or upper
solution has a physical meaning, while all of the remaining solutions (second or third) are not physically
relevant or, in other words, are said to be unstable solutions. The first step in finding the stability of
the solutions is to change the momentum, heat, and concentration equations into an unsteady form
by considering a new variable τ. In our case, we have τ = U0

2l e
x
l ·t, as defined in the paper of Rehman

et al. [46]:
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=

(
ϑ+

K1

ρ

)
∂2u
∂y2 +

κ
ρ
∂N
∂y
− ϑ

K
u− b√

K
u2 − σB

2u
ρ

(18)

∂N
∂t

+ u
∂N
∂x

+ v
∂N
∂y

=
1
ρ j

[
γ
∂2N
∂y2 − κ

(
2N +

∂u
∂y

)]
(19)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + τ1

⎡⎢⎢⎢⎢⎣DB
∂C
∂y
∂T
∂y

+
DT

T∞

(
∂T
∂y

)2⎤⎥⎥⎥⎥⎦ (20)

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT

T∞
∂2T
∂y2 (21)

The presence of τ is associated with initial value problems of the stable solution. Equating the
derivative of functions with respect to x being equal to zero leads to the new similarity transfer variables
in the presence of τ and η, which can be expressed as:

ψ =
√

2ϑlU0e
x
2l f (η, τ); N = U0e

3x
2l

√
U0
2ϑl g(η, τ); θ(η, τ) = (T−T∞)

(Tw−T∞) ;

∅(η, τ) = (C−C∞)
(Cw−C∞) ; η = y

√
U0
2ϑl e

x
2l ; τ = U0

2l e
x
l ·t

(22)

By applying Equation (22) in Equations (18)–(21), we get:

(1 + K)
∂3 f
∂η3 + f

∂2 f
∂η2 + K

∂g
∂η
− 2

(
∂ f
∂η

)2

− FS

(
∂ f
∂η

)2

−K1
∂ f
∂η
−M
∂ f
∂η
− ∂

2 f
∂τ∂η

= 0 (23)

(
1 +

K
2

) ∂2g
∂η2 + f

∂g
∂η
− 3g

∂ f
∂η
− 2Kg−K

∂2 f
∂η2 −

∂g
∂τ

= 0 (24)

1
Pr
∂2θ

∂η2 + f
∂θ
∂η

+ Nb
∂∅
∂η
∂θ
∂η

+ Nt

(
∂θ
∂η

)2

− ∂θ
∂τ

= 0 (25)

∂2∅

∂η2 + Sc f
∂∅
∂η

+
Nt

Nb

∂2θ

∂η2 − Sc
∂∅
∂τ

= 0 (26)

235



Coatings 2019, 9, 527

subject to the boundary conditions:

f (0, τ) = S; ∂ f (0, τ)
∂η = −1 + λ∂

2 f (0, τ)
∂η2 ; g(0, τ) = −m∂

2 f (0, τ)
∂η2 ;θ(0, τ) = 1;∅(0, τ) = 1

∂ f (η, τ)
∂η → 0; g(η, τ)→ 0; θ(η, τ)→ 0;∅(η, τ)→ 0 as η→∞

(27)

In order to indicate the solution stability of f (η) = f0(η), g(η) = g0(η), θ(η) = θ0(η) and
∅(η) = ∅0(η), which satisfy the equation of the boundary value problem (23)–(26) with boundary
condition (27), we follow the suggestion of Rehman et al. [46] by introducing the following functions:

f (η, τ) = f0(η) + e−ετF(η, τ)
g(η, τ) = g0(η) + e−ετG(η, τ)
θ(η, τ) = θ0(η) + e−ετH(η, τ)
∅(η, τ) = ∅0(η) + e−ετS(η, τ)

(28)

where F(η, τ), G(η, τ), H(η, τ) and S (η, τ) are small relative to f0(η), g0(η), θ0(η) and ∅0(η) of the
steady state solutions. It should be noted that the range of these functions are 0 < F(η, τ) < 1,
0 < G(η, τ) < 1, 0 < H(η, τ) < 1 and 0 < S(η, τ) < 1. Furthermore, ε is an unknown eigenvalue
parameter, which needs to be found. Substituting the values of the functions and their derivatives
from Equation (28) in Equations (23)–(26) with the boundary condition (27), we have:

(1 + K)F′′′0 + f0F′′0 + F0 f ′′0 + KG′0 − 4 f ′0F′0 − 2FS f ′0F′0 −K1F′0 −MF′0 + εF
′
0 = 0 (29)(

1 +
K
2

)
G′′0 + f0G′0 + F0g′0 − 3g0F′0 − 3g0F′0 − 2KδG0 −KδF′′0 + εG0 = 0 (30)

1
Pr

H′′0 + f0H′0 + F0θ
′
0 + Nb∅′0H′0 + NbS′0θ

′
0 + 2Ntθ′0H′0 + εH0 = 0 (31)

S′′0 + Sc
(

f0∅′0 + F0S′0
)
+

Nt
Nb

H′′0 + Sc·εS0 = 0 (32)

subject to the boundary conditions:

F0(0) = 0, F′0(0) = λF′′0 (0), G0(0) = −mF′′0 (0), H0(0) = 0, S0(0) = 0
F′0(η)→ 0, G0(η)→ 0, H0(η)→ 0, S0(η)→ 0, as η→∞ (33)

We assumed τ = 0 for Equations (23)–(26) in order to calculate the initial growth and decay of the
solution of Equation (28), as recommended by Alarifi et al. [47]. Under these circumstances, F(η, τ),
G(η, τ), H(η, τ) and S (η, τ) can be written as F0(η), G0(η), H0(η) and S0(η), respectively.

It is stated in the studies of Lund et al. [44,45] and Haris et al. [48] that eigenvalues can be
determined if and only if the boundary condition of any one function of the following functions F0(η),
G0(η), H0(η) and S0(η) can be relaxed into the initial condition by differentiating that function one
more time. In this study, we relaxed F0(η)→ 0 as η→∞ and then solved the system of Equations
(29)–(32) subject to Equation (33) along with the new relaxed boundary condition F′′ 0(0) = 1. It is
worth mentioning that the sign of the smallest eigenvalues (ε) determines the stability of the solutions.
The smallest eigenvalue is negative (positive), which indicates that the solution of the flow is unstable
(stable) and that there is an initial growth (decay) of disturbances.

4. Results and Discussion

In order to fully understand the considered fluid flow model, the numerical study has been
carried out for various important physical parameters, such as the magnetic parameter M, permeability
parameter K1, Forchheimmer parameter FS, non-Newtonian parameter K, thermophoresis parameter
Nt, Brownian motion parameter Nb, etc. The highly non-linear system of the quasi-ordinary differential
Equations (12)–(15), along with the boundary conditions (16), have been solved by using the shooting
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method, and triple solutions were found. The value of η∞ is chosen from 4 to 8, and it is worth noting
that the value of η∞ increases until the profiles of the velocity, temperature, and concentration converge
asymptotically to the momentum, temperature, and concentration boundary layers, respectively.

Figure 2 was drawn to analyze the effect of the material parameter K on the velocity profiles.
The thickness of the velocity boundary layer increases when the micropolar parameter K is increased
in the first and the second solutions, due to the fact that the material parameter reduced the drag force
and that the hydrodynamic boundary layer therefore rose. We noted that when K = 0 (Newtonian
fluid), the second solution did not exist. On the other hand, the dual nature of the velocity profile was
observed in the third solution. Figure 3 depicts the variation of the velocity profiles for the different
values of the Forchheimmer parameter FS. We observed that, due to increments in FS, the resistant
force occurred when the fluid flow was flowing on the porous surface, and hence the velocity of the
flow declined in the third solutions. The dual behavior of the velocity profile was noticed in the second
solution. However, no change could be seen in the first solution when FS was increased. The velocity
and thickness of the momentum boundary layers are inversely (directly) proportional to K1 and M
in the first (third) solution. On the other hand, the dual behavior of the velocity profile was seen in
the second solution, as illustrated in Figures 4 and 5. The effect of the slip parameters λ and m on the
velocity profiles are shown in Figures 6 and 7. In the first solution, the velocity boundary thickness was
reduced as λ and m increased; this was due to the fact that the velocity of the fluid and surface have a
big difference when the velocity slip factor is enhanced. For the second (third) solution, the velocity
profiles decreased (increased) initially after they inclined (declined) when λ and m improved. The dual
nature of the flow in some sense indicates that there is an initial growth of disturbance. Initially, the
microrotation profile was reduced and then started to rise with increasing values of the micropolar
parameter in the first solution, as shown in Figure 8. The thickness of the microrotation boundary
layer was enhanced (reduced) as K was enhanced in the third (second) solution. The dual behavior of
the microrotation profile was been observed in all solutions except the first solution when the value of
m increased. The thickness of the microrotation boundary layer increased with increasing values of
m in the first solution, as demonstrated in Figure 9. Figure 10 was drawn to analyze the variation of
the temperature profiles for different values of the Prandtl number Pr. The thermal boundary layer
thickness and temperature were incrementally reduced in the values of the Prandtl number Pr for all
of the solutions, as expected. This is due to the fact that a high Prandtl number causes the thermal
conductivity of nanofluid to diminish, and as a result the temperature is reduced. The variation of the
temperature profiles for different values of the Brownian motion parameter Nb is shown in Figure 11.
It was observed in all solutions of the temperature profiles that the temperature and thermal layer
thickness were enhanced with increasing values of Nb. This is due to fact that the Brownian motion
Nb increases the kinetic energy of the nanofluid; thus, the temperature of the nanofluid increases.
The temperature profile, with an effect resulting from the thermophoresis parameter Nt, is illustrated
in Figure 12. In all three solutions of the nanofluid flow problem, we noted that as the thermophoresis
parameter Nt rose, the temperature and thickness of the thermal layer increased. This is because the
thermophoretic force is generated by Nt and the temperature gradient, which pushes the flow of the
nanofluid far from the boundary layer as a resulting thickness of the thermal boundary layer increases.
The thickness of the concentration boundary layer declined with increasing values of the Brownian
motion parameter Nb in all solutions in Figure 13, which was expected. This was physically justified
by the fact that Brownian motion is generated when nanoparticle and base fluid are mixed together in
a nanofluid system. Since Brownian diffusion shows the conduction of heat under those circumstances,
the thickness of the concentration boundary layer decreases. Figure 14 was sketched to examine the
effect of Nt on the concentration profile of nanoparticles. In all three solutions, the thickness of the
concentration boundary layer was enhanced when thermophoresis increased.
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Figure 2. Profiles of the velocity for increasing values of K.

Figure 3. Profiles of the velocity for increasing values of FS.

Figure 4. Profiles of the velocity for increasing values of K1.
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Figure 5. Profiles of the velocity for increasing values of M.

Figure 6. Profiles of the velocity for increasing values of λ.

Figure 7. Profiles of the velocity for increasing values of m.
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Figure 8. Microrotation profiles for increasing values of K.

Figure 9. Microrotation profiles for increasing values of m.

Figure 10. Temperature profiles for increasing values of Pr.
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Figure 11. Temperature profiles for increasing values of Nb.

Figure 12. Temperature profiles for increasing values of Nt.

Figure 13. Nanoparticle concentration profiles for increasing values of Nb.
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Figure 14. Nanoparticle concentration profiles for increasing values of Nt.

Wang [49] and many researchers also stated in their studies that the similarity solution of the fluid
flow problems over the shrinking surface is possible to obtain when sufficient wall mass suction is
applied. The flow of Newtonian fluid is different from that of non-Newtonian fluid; it is observed
for micropolar nanofluid that when the value of the micropolar parameter K increases, a strong mass
suction is required to obtain the solution. In this study, we discovered that there exist two regions for
similarity solutions, namely multiple solutions and single solution, depending on the mass suction
parameter. For K = 0.1(K = 0.2) there is a range of triple solutions when S ≥ 2.0337(S ≥ 2.7148), and a
single similarity solution exists, S < 2.0337(S < 2.7148), as shown in Figure 15. When the suction is
enhanced, the skin friction increases in the first solution and decreases in the second and the third
solutions. Figures 16–18 were drawn to examine the effect of the suction S and micropolar parameter K
on the couple stress coefficient, and the heat and concentration transfer rate, respectively. In all graphs,
when the suction is increased, the couple stress coefficient, heat, and concentration transfer rate are
enhanced for all of the solutions.

Figure 15. Coefficient of the skin friction with various values of S.
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Figure 16. Couple stress coefficient with various values of S.

Figure 17. Heat transfer rate with various values of S.

Figure 18. Concentration transfer rate with various values of S.

By performing a stability analysis, the stability of the fluid flow solutions is achieved in this
research. We need to perform a stability analysis when more than one solution exists in the flow
problem. The main focus of this analysis is to determine which solution is stable and physically possible
and which one is unstable. It is worth noting that the stability of the solution depends on the sign of
the smallest eigenvalue. The value of the smallest eigenvalue is determined through Equation (24),
for which we have to solve Equations (25)–(28), along with the boundary conditions (29). The smallest
eigenvalues ε are demonstrated in Table 1 for different values of the suction and non-Newtonian
parameters. It is clear from Table 1 that the negative (positive) values of the smallest eigenvalue ε
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indicate an initial growth (decay) of the disturbance that will interrupt (resume) the boundary layer
separation and flow from becoming unstable (stable). It is worth mentioning that the stable solution
always provides a good physical meaning which can be realized.

Table 1. Smallest eigenvalues for different values of K and S when M = 0.5, Pr = Sc = 1, m =

0.5, K1 = 0.1, FS = 0.2, λ = 0.1, Nb = 0.2 and Nt = 0.15.

K S
ε

1st Solution 2nd Solution 3rd Solution

0.1
2.5 1.4309 −1.2683 −0.9436
3 1.7854 −1.3162 −1.2053

0.2
3 0.9831 −0.4392 −0.3518

3.5 1.2165 −0.6431 −0.5382

5. Conclusions

In this research, the MHD flow of micropolar nanofluid over an exponentially shrinking surface
was considered with the effect of the porous and velocity slip. Exponential similarity variables
were used to convert the partial differential equations into quasi-ordinary differential equations.
The resultant equations were converted from BVPs to IVPs using a shooting method, after which the
IVPs were solved by an RK-4th order method. After the findings of multiple solutions of nanofluid
flow, a stability analysis was performed in order to indicate the stable solution by using the BVP4C
solver in MATLAB software. The main summary findings of our research are as follow:

• Triple solutions exist when S ≥ 2.0337 for K = 0.1 and when S ≥ 2.7148 for K = 0.2.
• Dual solutions exist for the Newtonian case K = 0.
• The study of critical points acknowledges the range of multiple solutions and single solutions.
• The study of the stability analysis indicates that only the first solution is stable and that the

remaining two solutions are unstable.
• The thickness of the momentum boundary layer decreases with increasing values of K1 and M in

the first solution.
• Increasing values of thermophoresis and Brownian motion parameters are caused by the thickness

of the thermal boundary layer.

Author Contributions: L.A.L. and D.L.C.C. modelled the problem. Z.O. and K.S.N. numerically computed results
and wrote the manuscript. I.K. discussed the results physically and proof read it.

Funding: No specific funding received for this work.

Acknowledgments: Authors would like to thank YUTP 015LCO-078 for the financial support. The authors would
also like to thank Universiti Utara Malaysia (UUM) for the moral and financial support in conducting this research.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

u, v velocity components
Uw surface velocity
N microrotation
K material parameter
M a constant
T temperature
T0 a constant
Tw variable temperature at the sheet
T∞ ambient temperature
C concentration
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C0 a constant
C∞ ambient concentration
ϑ kinematic viscosity
κ vortex viscosity
γ spin gradient viscosity
j microinertia per unit mass
α thermal diffusivity
K∗ thermal conductivity
ψ stream function
η transformed variable
B(x) magnetic field
b local inertia coefficient
M Hartmann number
Pr Prandtl number
DB Brownian diffusion
DT thermophoretic diffusion
vw suction/injection velocity
K1 permeability of the porous medium
Cw variable concentration at the sheet
Nt thermophoresis parameter
Sc Schmidt number
λ Velocity slip
S injunction/suction parameter
C f skin friction coefficient
Nu local Nusselt number
Nb Brownian motion parameter
Sh local Sherwood number
Re local Reynolds number
ε unknown eigen value
τ Stability transformed variable
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Abstract: In this paper, magnetohydrodynamic (MHD) flow over a shrinking sheet and heat transfer
with viscous dissipation has been studied. The governing equations of the considered problem
are transformed into ordinary differential equations using similarity transformation. The resultant
equations are converted into a system of fractional differential boundary layer equations by employing
a Caputo derivative which is then solved numerically using the Adams-type predictor-corrector
method (APCM). The results show the existence of two ranges of solutions, namely, dual solutions
and no solution. Moreover, the results indicate that dual solutions exist for a certain range of specific
parameters which are in line with the results of some previously published work. It is also observed
that the velocity boundary layer decreases as the suction and magnetic parameters increase.

Keywords: APCM; Caputo derivative; dual solutions; unsteady flow; MHD; shrinking surface

1. Introduction

The theory of fluid flow on a shrinking surface has numerous applications in real-life problems,
such as shrinking film. Additionally, it has capillary effects in small pores, the shrinking-swell behavior
of a rising shrinking balloon, and hydraulic properties of agricultural clay soils [1], fuel-cells [2,3],
porous materials [4,5], and petroleum engineering [6,7]. Viscous fluid on a shrinking surface has
been examined for the first time by Miklavčič and Wang [8], and they discovered that the flow over
a shrinking surface did not exist unless sufficient mass suction was applied. It is worth mentioning
that the fluid flow on shrinking and stretching surfaces have different characteristics. Gupta et al. [9]
examined the magnetohydrodynamic (MHD) flow of micropolar fluid on a shrinking surface with
the effect of mixed convection parameter. Meanwhile, Naveed et al. [10] considered the MHD flow of
viscous fluid on a curved shrinking sheet. In order to model this problem, a curvilinear coordinates
system was employed and the dual solutions were obtained. The MHD flow of nanofluid over a
nonlinear stretching/shrinking wedge was considered by Khan et al. [11]. Soid et al. [12] investigated
the unsteady MHD stagnation point flow over a shrinking surface and found dual solutions. Likewise,
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Zaib et al. [13] considered the unsteady flow of the Williamson nanofluid over a shrinking surface and
found dual solutions by using the shooting method. Lund et al. [14] analyzed the Darcy–Forchheimer
flow of the Casson nanofluid with the impact of the slip condition on the shrinking surface and
expressed that the existence of dual solutions relies upon the suction parameter. The slip effects on the
nanofluid by utilizing the Buongiorno model has been examined by Dero et al. [15]. They found dual
solutions by implementations of the shooting method and stated that it was due to the unsteadiness
of the parameter. Similarly, Alarifi et al. [16] considered the stagnation point flow and found dual
solutions for an opposing case. Triple solutions of micropolar nanofluid over a shrinking surface have
been obtained by employing the shooting method [17]. Moreover, Lund et al. [18] performed a stability
analysis by using the three-stage Lobatto IIIa formula and concluded only first solution to be stable.
To the best of our knowledge, most of the studies and investigations of fluid flow have not used the
Caputo fractional derivatives for multiple solutions. Therefore, the main objective of this work is
to consider Caputo fractional derivatives, solve the governing equations by using the Adams-type
predictor-corrector method, and find multiple solutions.

From published literature, it can be concluded that the possibility of the existence of multiple
solutions of boundary layer flow on a shrinking surface is greater than on a stretching sheet. It is also
discovered that the solution of fluid flow over a shrinking surface is possible only in the presence of
high suction [19]. In other words, the solution is possible only on permeable surfaces. According to
Mishra et al. [20], multiple solutions depend on the non-linearity in governing equations of fluid flow
and other factors. Moreover, the existence of multiple solutions also depends on the values of different
physical parameters such as magnetic, Reynold numbers, Prandtl numbers, and suction parameters, as
claimed by Schlichting [21]. This claim complies with the findings of other researchers who discovered
that the ranges of multiple solutions, single solutions, and no solutions depend on the values, such as
the magnetic parameter [18], suction parameter [14], and surface velocity parameter [22]. Fang and
Zhang [23] examined the steady MHD flow of viscous fluid over a shrinking surface and found dual
solutions analytically. They concluded that dual and single solutions exist when 0 <M < 1 and M ≥ 1,
respectively. Previous researchers attempted to determine multiple solutions using various analytical
and numerical methods. Rana et al. [24] used the homotopy analysis method to find the multiple
solutions. Rohni et al. [25] and Ishak et al. [26] found multiple solutions by using the Keller-box method.
Fang et al. [27] employed an analytical approach to find multiple solutions of viscous fluid in exact form
and Raza et al. [28] considered the shooting method with the Runge–Kutta of the fourth order method
to find the multiple solutions of fluid flow. The objective of this paper is to extend the work of Fang
and Zhang [23] under the consideration of unsteady flow and heat equation with viscous dissipation
using the new approach with the Caputo derivative to reduce the governing equations to the first order
ordinary differential equations, which are then solved by the Adams-type predictor-corrector method.

The MHD field was initiated by Hannes Alfvén (1908–1995) who was a famous Swedish physicist.
Interest in the MHD flow started to gain attention when Hartmann invented the electromagnetic pump
in 1918 [29]. In recent years, the study of non-uniform transverse-magnetic field effects is applied in
many engineering problems. For example, electrically-conducting fluids that flow along with magnetic
field have significant applications in oil exploration, cooling nuclear reactors, boundary layer control
in the aerodynamics field, extraction of geothermal energy, and MHD generators and plasma studies.
Due to the important applications of MHD flow, many researchers, mathematicians, and engineers
considered MHD flow-related problems in their studies [30–32]. Ellahi et al. [33] considered the effect of
MHD on Couple Stress Fluid. Makinde et al. [34] examined nanofluid under the influence of MHD and
found that the hydrodynamic boundary layer is a decreasing function for higher values of magnetic
parameters. This article is presented as follows: Section 2 discusses the problem formulation, in which
governing equations are derived, and also gives some useful definitions and properties using solution
methodology. In Section 3, numerical are presented numerically and graphically. Finally, Section 4
concludes this study by giving key findings and remarks.
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2. Problem Formulation

2.1. Boundary Layer Governing Equations

The MHD flow of two-dimensional incompressible viscous fluid over a continuously unsteady
shrinking surface is considered. The velocity of mass transfer and the shrinking surface are assumed
to be vw (x, t) and uw (x, t), respectively, where t is the time and x is the coordinate measured with the
shrinking surface. Under these assumptions with viscous dissipation, the governing Navier–Stokes
(NS) equations of this problem are given by:

∂u
∂x

+
∂v
∂y

= 0 (1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= − 1
ρ
∂P
∂x

+ ϑ

(
∂2u
∂x2 +

∂2u
∂y2

)
− σ

∗B2u
ρ

(2)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= − 1
ρ
∂P
∂x

+ ϑ

(
∂2v
∂x2 +

∂2v
∂y2

)
(3)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

= α

(
∂2T
∂x2 +

∂2T
∂y2

)
+
μ

ρcp

⎡⎢⎢⎢⎢⎣(∂u∂x
)2

+

(
∂u
∂y

)2⎤⎥⎥⎥⎥⎦ (4)

Subject to the following boundary conditions:

t < 0 : u = v = 0, T = T∞ for all x; y

t ≥ 0 : u = uw(x, t) = − cx
1− γt

, v = vw(x, t) = −
√
ϑ f c

1− γt
f (0) = S, T = Tw(x, t) = T∞ +

bxm

1− γt
at y = 0

u→ 0; T→ T∞ as y→∞ (5)

where the pressure of fluid is denoted by P, velocity components along the x and y directions are
represented by u and v, respectively, temperature of fluid is T, kinematic viscosity of the fluid is ϑ,
density of the fluid is ρ, thermal diffusivity of the fluid is α, B = B0

(1−γt)1/2 is the transverse magnetic

field of strength which is applied with the normal surface direction, and b, c, and m are all positive
constants. It is worth mentioning that m = 1 and m = 0 indicate linear and constant variation with x of
the wall of temperature, respectively.

Now, we introduce the similarity variables for Equations (1)–(5) as follows:

u =
cx

(1− γt)
f ′(η); v = −

√
cv

(1− γt)
f (η), θ(η) =

T − T∞
Tw − T∞

(6)

Substituting (6) into Equations (2)–(4) yields the following system of ordinary differential equations

f ′′′ + f f ′′ − ( f ′)2 −A
(
η

2
f ′′ + f ′

)
−M f ′ = 0 (7)

1
Pr

θ′′ + fθ′ −m f ′θ−A
(
η

2
θ′ + θ

)
+ Ec( f ′′ )2 = 0 (8)

with reduced boundary conditions

f (0) = S; f ′(0) = −1; θ(0) = 1

f ′(η)→ 0; θ(η)→ 0 as η→∞ (9)
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where A =
γ
c is the unsteadiness parameter, M =

σ(B0)
2

ρc is the magnetic parameter, Ec = U2
w

Cp(Tw−T∞) is

the Eckert number, and Pr = ϑ
α is the Prandtl number. In our problem, we consider a decelerating

shrinking surface (A < 0) as assumed in [35,36].

2.2. Preliminaries on the Caputo Fractional Derivatives

In this section, the definition of the Caputo fractional derivative and its main properties
are introduced.

Definition 1. Let t >, a > 0, a, α, t ε�. The Caputo fractional derivative of the order α of function fεCn is
expressed as:

C
a Dαt f (t) =

1
Γ(n− α)

∫ t

a

f n(ξ)

(t− ξ)α+1−n dξ, n− 1 < α < n ∈ N (10)

Property 1. Let f (t), g(t) : [a, b]→�be such that C
a Dαt f (t) and C

a Dαt g(t) exist almost everywhere, and let
c1, c2 ε�. Then C

a Dαt
{
c1 f (t) + c2g(t)

}
exists almost everywhere and

C
a Dαt

{
c1 f (t) + c2g(t)

}
= c1

C
a Dαt f (t) + c2

C
a Dαt g(t) (11)

Property 2. If f(t) = c is a constant function then the fractional derivative of the function is equal to 0, and
mathematically it can be expressed as:

C
a Dαt c = 0 (12)

We considered the general fractional differential equation involving the Caputo derivative below

C
a Dαt x(t) = f (t, x(t)), αε(0, 1) (13)

with initial conditions x0 = x(t0).

Definition 2. The constant x* is an equilibrium point of the Caputo fractional dynamic system (13) if, and only
if, f (t, x*) = 0.

Here, we introduce the new fractional Atangana–Baleanu derivatives along the non-local and
non-singular kernel [37,38].

Definition 3. Let fεH1(a, b), b > a, αε[0, 1], then the new fractional derivatives of the Caputo behavior can be
expressed as:

Dα
t ( f (t)) =

B(α)
1−α

∫ t

a
f (x)exp

(
−α t− x

1−α
)
dx

where B(α) denotes a normalization function obeying B(0) = B(1) = 1.

In the case when the function does not belong to H1 (a,b), the derivative is given by

Dαt ( f (t)) =
αB(α)
1− α

∫ t

a
( f (t) − f (x))exp

(
−α t− x

1− α
)
dx

Furthermore, if σ = 1−α
α ε[0,∞), and α = 1

1−σε[0, 1], then the above Equation becomes

Dσt ( f (t)) =
N(σ)

σ

∫ t

a
f (x)exp

(
− t− x
σ

)
dx, N(0) = N(∞) = 1
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2.3. Solution Methodology

Choosing different variables below

y1 = η, y2 = f , y3 = f ′, y4 = f ′′ , y5 = θ, y6 = θ′ (14)

Equations (7) and (8) can be transformed into a system of first-order differential equations. Then,
the Caputo fractional-order derivative is applied to the resultant system to produce a fractional-order
system of the following form:⎧⎪⎪⎨⎪⎪⎩ Dαηy1 = 1, Dαηy2 = y3, Dαηy3 = y4; Dαηy4 = (y3)

2 − y2y4 + A
(
y3 +

y1 y4
2

)
+ My3

Dαηy5 = y6, Dαηy6 = Pr
{
my3y5 − y2y6 + A

(
y5 +

y1 y6
2

)
− Ec(y4)

2
} (15)

with boundary conditions below:

y1 = 0, y2 = S, y3 = −1, y4 = u1, y5 = 1, y6 = u2 (16)

Now, the Adams types predictor-corrector method has been applied to get the solution of fractional
differential equations. The error of this method is of the order h5, where h is the grid size.

3. Results and Discussion

The governing Equation (15) with initial conditions (16) is solved using the Adams-type
predictor-corrector method, and dual solutions are found depending on the suction parameter.
It is worth mentioning that when an unsteady parameter is equal to 0, our equation of momentum
is reduced to an equation obtained in [23], which is the major reference of our work. Furthermore,
the results of the coefficient of skin friction in our problem are in good agreement with their work.

According to our results, the coefficient of skin friction is equal to f ′′ (0) = S±√S2−4+4M
2 . For details on

the comparison, please refer to Table 1. From the table, we can conclude that only the first solution of
our problem is a physical realizable solution, since f ′′ (0) > 0, whereas the second solution is unstable
because most of the values of f ′′ (0) are less than 0. It is worth mentioning that our results of the first
solution are approximately equal to the result of a published article [23], which gives us confidence on
our calculation (see Table 1). It should be noted that if α < 1, multiple solutions do not exist and do not
fulfill the boundary conditions asymptotically.

Table 1. Comparison f ′′ (0) of present results with [23].

M S Fang Zhang [23] Present Results

1st Solution 2nd Solution 1st Solution 2nd Solution

0.5 3 2.8228756 0.1771243 2.8203848 −0.3554574
2 1.7071067 0.2928932 1.7063214 0.2845535

0 3 2.6180339 0.3819660 2.6165735 −0.2181474
2 1 1 1.0019038 0.94503648

Figure 1 shows the effect of the suction parameter on the velocity profile. It was noticed that
the thickness of the velocity boundary layer decreased as suction increased in the first solution. This
occurred due to the fact that high suction produced the resistance in the fluid flow, and, as a result, the
velocity and thickness of the momentum boundary layer decreased. On the other hand, the suction
was proportional to the velocity profile in the second solution.

253



Coatings 2019, 9, 548

Figure 1. f ′(η) for increasing values of S.

The effect of the magnetic parameter M on the velocity is demonstrated in Figure 2. The velocity
of the fluid flow decreased as magnetic parameter M increased in the first solution, as expected. This
was due to the Lorentz or electromagnetic force, which can be defined as “the force which is exerted by
a magnetic field on a moving fluid” [39]. We can say this force opposes the transport phenomenon.
However, the opposite trend can be seen in the second solution.

Figure 2. f ′(η) for increasing values of M and α = 1.

Based on the results shown in Figure 3, there no change was noticed in the first solution when the
magnitude of the unsteadiness parameter increased. On the other hand, the velocity layer became
thicker initially and then thinner in the second solution, since deaccelerating of the unsteadiness
parameter produced more drag force, which caused the thickness of the momentum boundary layer
to decrease.
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Figure 3. f ′(η) for increasing values of A and α = 1.

The effect of the unsteadiness parameter A on a dimensionless profile of temperature is depicted
in Figure 4. Both thermal boundary layer thicknesses and temperatures decreased initially and then
started to increase when the unsteadiness parameter A was increased in the second solution. This
behavior was expected because the momentum boundary layer declined and, therefore, the temperature
increased. However, no difference could be seen in the first solution with the increasing magnitude of
the unsteadiness parameter A.

Figure 4. θ(η) for increasing values of A and α = 1.

Figure 5 was drawn for the Prandtl number effect Pr on the profile of temperature. We can see
that the temperature declined with respect to Pr = 0.04 to 6.7 in the first solution. This was because
“fluid has relatively lower thermal conductivity for a large value of Prandtl number, which decreases
the conduction and thickness of the thermal boundary layer” [40], and, consequently, the temperature
reduced. This was because the “Prandtl number Pr which is the ratio of momentum diffusion to
thermal” [18]. On the other hand, the thermal boundary layer thickness and temperature increase in
the range of 0.04 ≤ Pr ≤ 3 decreased in the range of 3 ≤ Pr ≤ 6.7 in the second solution.
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Figure 5. θ(η) for increasing values of Pr and α = 1.

Figure 6 indicates the temperature increase when the Ecker number was increased in the first
solution. This was due to fact that an expansion in dissipation enhanced the flow of thermal conductivity,
which extended the temperature and thermal boundary layer thickness. On the other hand, the Eckert
number was inversely proportional to the temperature and thickness of the thermal boundary layer in
the second solution.

Figure 6. θ(η) for increasing values of Ec and α = 1.

The graph of the coefficient of skin friction for several values of S and different values of A
is illustrated in Figure 7. It was observed that the skin friction coefficient increased (decreased)
when suction was increased (reduced) in the first (second) solution. However, it decreased with the
decreasing of the unsteady parameter A. Physically, resistance occurred due to increments in the
suction parameter in the stable solution, while the opposite trend was seen in the unstable solution.
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Figure 7. Coefficient of skin friction for different values of A.

Figure 8 shows the effect of α on the profile of the temperature. It was noticed that multiple
solutions were difficult to be obtained when α < 1. As α increased, the temperature of the fluid
increased in the first solution and decreased in the second solution.

Figure 8. θ(η) for increasing values of α.

Figure 9 demonstrates the effect of α on the velocity profile. In both solutions, the velocity of the
fluid decreased when α increased.
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Figure 9. f ′(η) for increasing values of α.

4. Conclusion Remarks

The magnetohydrodynamic (MHD) flow over a shrinking sheet and heat transfer with viscous
dissipation is numerically studied. The governing equations of the momentum and energy are
transformed into the ordinary differential equations by using similarity transformation. The resultant
equations have been transformed into a system of fractional differential equations by using the Caputo
derivative. Fractional differential boundary layer equations, based on Caputo operators, are solved
numerically by the Adams-type predictor-corrector method. We compared our result with a past
published article and found it in good agreement with the first solution. Further, our results of the
second solution did not concur with the published results. This was because of the heat equation
and its different parameter effects on the unstable (second) solution. On the other hand, there existed
two different ranges, namely, no solution and dual solutions, which depended on the magnetic and
suction parameters.
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Abstract: The aim of the current study is to present an analytical and numerical treatment of
a two-dimensional peristaltic channel along with the coating of laminar layers of nanoparticles
with non-Newtonian (Williamson) base liquid. In addition to this, convective heat transfer and
magnetic field effects also take into consideration. The geometry is considered as an asymmetric
two dimensional channel experiencing sinusoidal waves propagating across the walls. The walls are
supposed to have heat convection at the upper wall and the lower wall is having no temperature
gradient. The problem is manufactured under the theory of lubrication approach. The mathematical
models are evolved by using appropriate transformations. The obtained nonlinear differential
equations are solved analytically. Graphical features are presented to find the influence of emerging
physical parameters on the stream function, velocity of the nanofluid, heat transfer, nanoparticles
concentration, pressure gradient, and pressure increase. It is found that the velocity decreases in
the lower part while increasing in the upper side of the channel in the presence of nanoparticles.
The temperature is becoming large with increasing amount of nanoparticles and heat convection at
the boundaries. It is also observed that nanoparticle concentration is getting higher with Brownian
motion parameter, but fluid becomes less thermal against thermophoresis parameter. The streamlines
phenomenon clearly reflects the asymmetry of the channel. The characteristics of viscous fluid can be
recovered by switching the Weissenbureg number (We) to zero.

Keywords: nanofluid; Williamson model; peristaltic pumping; convective boundary conditions;
asymmetric channel; analytic solutions

1. Introduction

Nanofluids attract current predilection because of its heat conduction attributes. Changing the
flow geometry, boundary conditions, or thermal conductivity of liquids can improve convective heat
transfer. Over the years, researchers have tried to increase the thermal conductivity of liquids. For this
purpose, with the idea of Maxwell [1] solid metal particles are introduced into the base liquid. The large
micro-sized particles are used to make suspensions because the conductivity of solids is greater than
that of liquids, but these particles tend to produce greater resistance to the flow of base fluid. Modern
nanotechnology tends to take a new direction in this field. In 1995, Choi [2] proposed a liquid with
nano-sized particles suspended in a base liquid to eliminate the disadvantages of micro-sized particles.
These liquids have efficient convective heat transfer compared to pure liquids. Recently, the idea of
nanofluid in peristalsis has been studied by some researchers [3–10].

Peristalsis is characterized as the extension and the arrival of a substance into a liquid that
improves the formative waves that broaden the length of the conduit, blending and shipping the liquid
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toward the wave spread. It is a mechanism that is available in numerous organs of the human body.
In some specific instruments—for example heart–lung machines, implantation gadgets, and other
pumping apparatus—such types of processes are utilized. It is of specific significance in many species
and especially in human body that the transportation of many tissues of the body under various
conditions, for example, the sucking of blood by leaches, the heap from the kidneys to the bladder
through filtration, transport of the spermatozoa to the male genital tract, the development of the bosom
in the Fallopian tubes, vasomotion of little veins, just as the blending and transport of gastrointestinal
entry material.

The use of heat is of particular importance in the field due to its wide scope in engineering and
biomechanics. In addition, the common relationship of heat stress and peristalsis can be observed
during the oxygenation process with the patient. The assessment of magnetic resonance in biological
tissues has aroused great interest among researchers regarding physical problems such as blood.

The assessment of heat transfer is related to the conditions of convection used in processes such
as thermal conductivity, mechanical properties, chemical reactions, and so on. Aziz [11] presented
a similarity solution to incorporate the convective walls conditions for thermal boundary layer on
a smooth plate. In another article, Makinde and Aziz [12] developed the MHD mixed model on a
flat surface in a concise way in terms of compatibility. Makinde [13] also discussed the flow of the
MHD component with the temperature and the mechanical evaluation of a plate on a flat surface with
extended conditions. Merkin and Pop [14] considered the analysis of heat transfer by dynamically
simulating the flow of a uniform current on a flat surface with a horizontal displacement. According to
them, the heat flux near the main edge is dominated by the surface heat flux.

After knowing the significance of the above discussed phenomena, authors are keen to develop
a series solution of peristaltic flow of nanofluid with Williamson fluid model as a base liquid with
convective boundary conditions travelling through asymmetric channel. At least we know that this
study has not been yet explored in the literature. This study will be a good base for the engineers
to utilize the results in procedures like thermal energy storage, gas turbines, nuclear workshops, etc.
The problem is modeled under the induction of lubrication approach. The series solutions of stream
function, temperature distribution, and nanoparticle concentration are achieved by using a well-known
converging method the homotopy perturbation method. The important features are analyzed more
specifically by sketching graphs to estimate the impact of pertinent constant physical factors.

2. Mathematical Modeling

The incompressible Williamson model is chosen as a base fluid for nanofluid in between an
asymmetric channel experiencing heat convection at the peristaltic type surfaces. The width of the
channel is taken as (d11 + d12). Flow is initiated due to the propagation of curved waves travelling
with uniform speed c towards the flow. The exchange of heat is recognized by imposing temperatures
T0 and T1 at the lower and upper areas, correspondingly. To discuss nano particle phenomenon,
we have taken the nanoparticle concentration C0 and on the lower side and upper one, accordingly
(see Figure 1).
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Figure 1. Geometry of the channel.

The magnetic field B0 is exerted orthogonally. The wall surfaces are taken as

Y = H1 = d11 + a11 cos[2πλX′] (1)

Y = H2 = −d12 − b11 cos[2πλX′ + ϕ], where X′ = X − ct (2)

In upper defined equations, a11 and b11 represent the wave amplitudes, λ gives the wavelength,
t suggests the time, X depicts the wave’s direction, and Y is placed normally to X. The range of
phase variance ϕ alters as 0 ≤ ϕ ≤ π. If ϕ = 0, we meant that a symmetric dimensional channel is
having waves located out of the phase and ϕ = π, suggest the waves within the phase. Moreover
a11, b11, d11, d12 and ϕ overcome the following relation

a2
11 + b2

11 + 2a11b11 cosϕ ≤ (d11 + d12)
2 (3)

The mathematical models of the considered problem given as

∇ ·�V = 0 (4)

ρ

⎛⎜⎜⎜⎜⎜⎝∂
�
V
∂t

+
�
V · ∇�V

⎞⎟⎟⎟⎟⎟⎠ = −∇P + ∇ · S + ρ f gα f
(
T̃ − T0

)
+ ρ f gα f

(
C̃−C0

)
+ J×B (5)

(ρc) f

⎛⎜⎜⎜⎜⎝∂T̃∂t +
�
V · ∇T̃

⎞⎟⎟⎟⎟⎠ = ∇ ·K∇T̃ + S · ∇�V + (ρc)p

(
DB

(
∇C̃ · ∇T̃

)
+

DT

Tm
(∇T̃ · ∇T̃)

)
(6)

∂C̃
∂t

+ V̂ · ∇C̃ = ∇ ·
⎛⎜⎜⎜⎜⎝DB∇C̃ + DT

∇T̃
To

⎞⎟⎟⎟⎟⎠ (7)

where g is the gravitational body force and α f represents the volumetric volume distension nanofluid’s
coefficient. In above relations, (ρc) f denotes the fluid’s heat capacity, (ρc)p accounts for effective

nanoparticles heat capacity, J = σ(
�
V ×B) reveals the current density, B = (0, B0) notifies the external

magnetic field, and S is placed for the Cauchy stress tensor for Williamson fluid and is determined as

τ =
(
μ∞ + (μ0 + μ∞)

(
1− Γ

·
γ
)−1

) ·
γ (8)
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where
·
γ comprises the subsequent value

·
γ =

√
1
2

∑
i

∑
j

·
γi j
·
γ ji =

√
1
2

Π (9)

Here Π is the strain tensor. The velocity profile for the given problem is considered as
�
V = (U′, V′).

Introducing a wavy frame we introduce the following transformations

x = X′, y = Y, u = U′ − c, v = V′, p(x) = P(X, t) (10)

We suggest the following dimensionless parameters to be used in the above expressions

x = 2πx
λ , y =

y
d11

, u = u
c , v = v

cδ , δ =
d11
λ , d = d12

d11
, p =

d2
11p
μcλ , h11 = H11

d11
, h12 = H12

d12
,

a12 = a11
d11

, Br = EcPr, b = b11
d11

, Re =
ρcd11
μ , ψ =

ψ
cd11

, θ = T̃−T0
T1−T0

, Ec = c2

cp(T1−T0)
,

Pr = ρνc
K , S = Sd11

μc , We = Γc
d11

, ϕ = C̃−C0
C1−C0

, Gr =
ρ f gα f d2(T1−T0)

cμ , Gc =
ρ f gα f d2(C1−C0)

cμ ,

Nb =
τDB(C1−C0)

ν , Nt =
τDT(T1−T0)
τTm

, M =
√
σ
μB0d11, We = Γc

d11

(11)

where M, We, Br, Pr, Nb, Nt, Gr, and Gc represent the Hartman number, Weissenberg number, Brinkman
number, Prandtl number, Brownian motion parameter, thermophoresis parameter, local temperature
Grashof number, and local nanoparticle Grashof number, accordingly. After incorporating the above
structured parameters and applying the conditions of large wavelength along with small Reynolds
number in a wavy frame coordinates we have the final form of Equations (4)–(7)

∂u
∂x + ∂v

∂y = 0

dp
dx = ∂

∂y

[
∂2ψ
∂y2 −M2ψ+ We

(
∂2ψ
∂y2

)2
]
+ Grθ+ Gcϕ

(12)

or
∂2

∂y2

⎡⎢⎢⎢⎢⎢⎣∂2ψ

∂y2 + We
(
∂2ψ

∂y2

)2

−M2ψ

⎤⎥⎥⎥⎥⎥⎦+ Gr
∂θ
∂y

+ Gc
∂ϕ

∂y
= 0 (13)

Pr

⎡⎢⎢⎢⎢⎣Nb
∂ϕ

∂y
∂θ
∂y

+ Nt

(
∂θ
∂y

)2⎤⎥⎥⎥⎥⎦+ ∂2θ

∂y2 + Br

⎡⎢⎢⎢⎢⎢⎣(∂2ψ

∂y2

)2

+ We
(
∂2ψ

∂y2

)3⎤⎥⎥⎥⎥⎥⎦ = 0 (14)

∂2ϕ

∂y2 +
Nt

Nb

∂2θ

∂y2 = 0 (15)

where ψ is stream function satisfying the relations u = ∂δ/∂y and v = −δ∂ψ/∂x, The no-slip boundary
conditions for velocity u and nanoparticles fraction ϕ and convective boundaries are taken into
consideration for temperature θ which have the following dimensionless form in the wave frame [15]

ψ = F
2 , ∂ψ

∂y = −1, at y = h11, ψ = −F
2 , ∂ψ

∂y = −1, at y = h12,
∂θ
∂y − Biθ = −Bi at y = h11 and θ = 0 at y = h12

)
ϕ = 1 at y = h11, and ϕ = 0 at y = h12,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (16)

where h11 = 1 + a12 cos x and h12 = −d− b cos(x +ϕ). Also Bi = h f d11/K is the Biot number, h f stands
for the coefficient of convective thermal transport. The mean flow rate in dimensionless format is
elaborated as

Q = F + 1 + d (17)
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3. Solution of the Problem

The above obtained Equations (12)–(15) display the nonlinear ordinary differential equations
in which ψ, θ, and ϕ are mutually dependent. Such types of problems cannot be handled by
exact techniques. Therefore, we chose a more appropriate solution procedure, the homotopy
perturbation method (HPM) [16,17] to solve the current highly complicated boundary value problems.
The deformation equations for ψ, θ, and ϕ can be constructed as

(1− q′)L1
(
ψ̂−ψ0

)
+ q′

⎡⎢⎢⎢⎢⎢⎣ ∂2

∂y2

⎛⎜⎜⎜⎜⎜⎝∂2ψ̂

∂y2 + We
(
∂2ψ̂

∂y2

)2

−M2ψ̂

⎞⎟⎟⎟⎟⎟⎠+ Gr
∂θ̂
∂y

+ Gc
∂ϕ̂

∂y

⎤⎥⎥⎥⎥⎥⎦ = 0, (18)

(1− q′)L2
(
θ̂− θ0

)
+ q′

⎡⎢⎢⎢⎢⎢⎣Nb
∂θ̂
∂y
∂ϕ̂

∂y
+ Nt

(
∂θ̂
∂y

)2

+
∂2θ̂

∂y2 + Br
(
∂2ψ̂

∂y2

)2

+ We
(
∂2ψ̂

∂y2

)3⎤⎥⎥⎥⎥⎥⎦ = 0, (19)

(1− q′)L2(ϕ̂−ϕ0) + q′
[
∂2ϕ̂

∂y2 +
Nt

Nb

∂2θ̂

∂y2

]
= 0, (20)

where £1 and £2 are linear operators which are picked as £

£1 =
∂4

∂y4
and £2 =

∂2

∂y2 (21)

and
�
ψ0,

�
θ0, and

�
ϕ0 are the initial approximations which must satisfy the boundary conditions as well

as differential operator. The initial approximations for ψ, θ, and ϕ are elected as

�
ψ0 =

(h11−h12−2y) (−2(h11−h12) (h11−y) (h12−y))
2(h11−h12)

2 + F
(

h2
11−4h11h12+h2

12+2(h11+h12) y−2y2

2(h11−h12)
2

)
(22)

�
θ0 =

Bih12 − Biy
1− Bih11 + Bih12

(23)

�
ϕ0 =

−h12 + y
h11 − h12

(24)

Applying perturbation on small embedding parameters F ∈ [0, 1], we suggest the following
series solutions

�
ψ = ψ0 + q′ψ1 + q′2ψ2 . . . (25)
�
θ = θ0 + q′θ1 + q′2θ2 . . . (26)
�
ϕ = ϕ0 + q′ϕ1 + q′2ϕ2 . . . (27)

After substituting the above series solutions in Equations (18)–(20), we get the two systems for ψ,
θ, and ϕ.

• Zeroth Order System

£1

[
ψ0 −

�
ψ0

]
= 0,

ψ0 = F
2 , ∂ψ0

∂y = −1, at y = h1, ψ0 = −F
2 , ∂ψ0

∂y = −1, at y = h2,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (28)

£2

[
θ0 −

�
θ0

]
= 0,

θ0(h1) − Biθ0(h1) = −Bi at y = hi and θ0 = 0 at y = h2

⎫⎪⎪⎬⎪⎪⎭ (29)
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£2
[
ϕ0 − �ϕ0

]
= 0,

ϕ0 = 1, at y = h1 and ϕ0 = 0 at y = h2,

⎫⎪⎪⎬⎪⎪⎭ (30)

• First Order System

£1[ψ] +
∂2

∂y2

[
∂2ψ0
∂y2 + We

(
∂2ψ0
∂y2

)2
−M2ψ0

]
+ Gr

∂θ0
∂y + Gc

∂ϕ0
∂y = 0,

ψ1 = 0, ∂ψ1
∂y = 0, at y = h1 and ψ1 = 0, ∂ψ1

∂y = 0, at y = h2,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (31)

£2(θ1) + Nb

[
∂ϕ0
∂y · ∂θ0

∂y

]
+ Nt

(
∂θ0
∂y

)2
+ ∂2θ0
∂y2 + Br

[(
∂2ψ0
∂y2

)2
+ We

(
∂2ψ0
∂y2

)3
]
= 0,

θ′1(h1) − Biθ1(h1) = 0 at y = h1 and θ1 = 0 at y = h2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (32)

£2(ϕ1) +
∂2ϕ0
∂y2 + Nt

Nb

∂2θ0
∂y2 = 0,

ϕ1 = 0, at y = h1, ϕ1 = 0 at y = h2,

⎫⎪⎪⎬⎪⎪⎭ (33)

• Zeroth Order Solutions

By solving zeroth order systems by built-in technique in mathematical software, we obtain

ψ0 =
�
ψ0 =

(h11+h12−2y) (−2(h11−h12) (h11−y) h12−y)
2(h11−h12)

+

F(h2
11−4h11h12+h2

12+2(h11+h12) y)−2y

2(h11−h12)
2

(34)

θ0 =
�
θ0 =

Bih2 − Biy
1− Bih1 + Bih2

(35)

ϕ0 =
�
ϕ0 =

−h12 + y
h11 − h12

(36)

• First Order Solutions

The first order system has acquired the following general solutions

ψ1 = −1
6(−1+Bi(h11−h12)

7)
[1/4Gc(−1 + Bi(h11 − h12)

6 − 6(F + h11 − h12)(−h11M2 + 2h3
11

h12M2 − 2h11h3
12M2 + h4

12M2 + 48We(F + h11 − h12) + Bi(h11 − h12)(Gr(h11 − h12)
5+

6(F + h11 − h12)
(
−h4

11M2 + 2h3
11h12M2 ++h4

12M2 + 48We(F + h11 − h12)
)
))y4+

3
5

(
−1 + Bi(h11 − h12)

4(F + h11 − h12) M2y5
)
] + L11 + yL12 + y2L13 + y3L14

(37)

θ1 = 1
(−1+Bi(h11−h12))

2(h11−h12)
9 [1/2Bi(h11 − h12)

8((−1 + Bi(h11 − h12)) Nb+

Bi(h11 − h12) Nt)Pr + 36Br(−1 + Bi(h11 − h12))
2(F + h11 − h12)

2(h11 − h12)
2(h3

11−
3h2

12(h12 − 2We) + 3h11
(
h2

12 + 2FWe
)
− h12

(
h2

12 − 6We + 6h12We
)
))y2 − 24Br

(−1 + Bi(h11 − h12))
2(F + h11 − h12)

2(h11 + h12) h3
11 − 3h2

11(h12 − 3We) + 3h12(
h2

12 + 3FWe
)
(−h12(h2

12 − 9FWe + 9h12We))y3 + 12Br(−1 + Bi(h11 − h12))
2(F+

h11 − h12)
2(h3

11 − 3h2
11(h12 − 6We) + 3h11

(
h2

12 + 6FWe
)
− h12(h2

12 − 18FWe + 18

h12We))y4)] − 432
5 Br

(
−1 + Bi(h11 − h12) (F + h11 − h12)

2
)3

Wey5 + L15 + yL16

(38)

266



Coatings 2019, 9, 816

ϕ1 = 1
(−1+Bi(h11−h12))

2(h11−h12)
9Nb

Nt[1/3Bi(h11 − h12)
8((−1 + Bi(h11 − h12)) Nb+

Bi(h11 − h12) Nt)Pr + 36Br(−1 + Bi(h11 − h12))
2(F + h11 − h12)

2(h11 − h12)
2(h3

11
−3h2

11

(
h12 − 2We + 3h1

(
h2

12 + 2FWe
)
− h12

(
h2

12 − 6FWe + 6h12We
))
)Y2 − 24Br(−1

+Bi(h11 − h12))
2(F + h11 − h12)

2(h11 + h12) h3
11 − 3h2

12(h12 − 3We) + h11
(
h2

12 + 3FWe
)(

−h12
(
h2

12 − 9FWe
)
+ 9h2We

)
Y3 + 12Gc(−1 + Bi(h11 − h12)

2(F + h11 − h12)
2(

h3
11 − 3h2

11(h12 − 6We) + 3h2
11(h12 − 6We) + 3h11

(
h2

11 + 6FWe
)
− h12

(
h2

12 − 18FWe
))

y4] −
(

432
5 Br(−1 + Bi(h11 − h12))

2(F + h11 − h12)
2
)3

Wey5 + L17 + yL18

(39)

The final solutions according to the concept of HPM are given by using q→ 1 in Equations (2)–(27).

ψ = ψ0 +ψ1 + . . . (40)

θ = θ0 + θ1 + . . . (41)

ϕ = ϕ0 + ϕ1 + . . . (42)

where constants Lij, i = 1, j = 1− 8 can be found by routine calculation. The complete solutions of
ψ, θ, and ϕ can be obtained by supposed solutions. The solution for pressure gradient dp/dx can be
found by simply substituting the values in Equation (12). The mathematical formula for the pressure
increase function Δp can been visualized in next equation that has been solved numerically by built-in
technique numerical integration on Mathematica.

Δp =

1∫
0

(
dp
dx

)
dx (43)

4. Results and Discussion

This portion comprises of graphical results and discussion of obtained results for velocity,
temperature, nanoparticles, pressure gradient, and stream functions. The numerical data of the
pressure rise function Δp is also sketched against the domain of flow rate and found the effects of
physical parameters separately. Figures 2 and 3 are sketched for the velocity profile with varying
the values of (Gr) and (Gc), respectively in corresponding order. From Figure 2, it is clearly visible
that velocity is decreasing in lower part and increasing in upper part of the channel and enhances
its maximum peak at the center under the effect of Gr. One can see the similar behavior by taking
increasing values of Gc but here the difference is that the velocity is not varying much under the effect
of Gc in Figure 3. Figures 4–6 contain correspondingly the alteration of temperature profile θ with the
variability of Biot number (Bi), Brinkman number (Br), and the Prandtl number (Pr). From Figure 4,
one can notice that the temperature profile is stretched vertically with the increase in magnitudes
of Bi. It depicts that heat convection at the boundaries enhances the temperature of the Williamson
nanofluid. It is also notable here that the temperature is maximum at lower wall and minimum at
the lower surface and there is much variation in temperature level at upper region as compared to
lower side. Figure 5 reflects the observation that temperature is an increasing function of Br and the
temperature gradients are prominent at the lower portions as equated with the upper ones, but the
extent of heat is similar at both the surfaces as was observed for Bi. It can be received from Figure 6
that temperature profile is increasing in linear fashion for numerically increasing magnitudes of Pr but
the change in heat is calculated more significantly in the central parts of the enclosure which is the
totally different result than we have achieved in Figures 4 and 5. Figures 7 and 8 are presented to see
the behavior of nanoparticles volume fraction ϕwith increasing magnitudes of (Nb) and (Nt). Figure 7
shows that ϕ is getting higher when someone increases Nb. It is also explicit here that nanoparticles
are dispersed in the region between the lower and upper surfaces. On the other hand, Figure 8 revels
different story, the increase in Nt decreases the nanoparticles concentration. Figure 9 is plotted for
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pressure gradient dp/dx for Nb. It is seen that dp/dx is increasing as we increase Nb and gets maximum
height at the center of the domain, i.e., x = 0.5. From Figure 10, we can see that pressure gradient is
varying quite opposite manner for the parameter Nt. It can also be noticed from Figures 9 and 10 that
pressure gradient gets positive values only in the central part and remains negative at the corners.
Figures 11 and 12 are displaced to see the effects of parameters M and We on pressure rise Δp. Here
the whole area is broken into three zones, namely Region I–III. The Region I is recognized by the
portion where Q > 0, Δp > 0. Region II is named the place where Q > 0 and Δp < 0 while Region III
is composed of the part Q, Δp < 0. Figure 11 shows that Δp curves are increasing in Region I and II
while decreasing in Region III with the variation of M. Also, the free pumping exists at Q ≈ 1.5. In
Figure 12, it is observed that in Region I and II, Δp is increasing and in Region III, it is decreasing. Also,
the peristaltic pumping occurs in Regions I and II between the interval (−1.7, 0.5). The streamlines are
drawn in Figures 13–15 for the parameters Gc, We, and M, respectively. From Figure 13, it is clear that
the number of boluses is increasing, but size of the trapped bolus is decreasing in lower part of the
channel, while in upper portion, the situation is totally reflected in opposite ways. Figure 14 gives the
streamlines variation under the different values of We. It is attained here that, in the lower part, the
number of boluses is increasing but size is changing randomly. The stream function for M has been
sketched in Figure 15 and it is noted in both the lower and upper parts, the size of bolus in increasing
while number is decreasing. It is also admitted by Figures 13–15 that trapped boluses are displaced
towards left from upper to lower side due to asymmetric dimensions of the channel which can be
made symmetric by imposing ϕ = 0.

 

Figure 2. Modification of velocity profile against Gr for x = 1, F = 2, a = 0.2, b = 0.1, d = 1.5, ϕ =

1.5, Gc = 0.3, We = 0.01, M = 0.1, Bi = 0.5.
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Figure 3. Modification of velocity profile against Gc for x = 1, F = 2, a = 0.2, b = 0.1, d = 1.5, ϕ =

1.5, Gr = 0.1, We = 0.01, M = 0.1, Bi = 0.5.

 

Figure 4. Modification of temperature profile against Bi for, n = 2, x = 0.1, F = 5, a = 0.2, b = 0.1, d =

0.51, ϕ = 0.01, W = 0.01, M = 0.1, Gc = 0.9, Gr = 4, Gc = 0.3, Nb = 0.5, Pr = 0.4, Nt = 0.2.

 

Figure 5. Modification of temperature profile against Br for n = 2, x = 0.1, F = 5, a = 0.2, b = 0.1, d =

0.1, ϕ = 0.1, We = 0.01, Gc = 0.9, Gr = 1, Bi = 10, Nb = 0.5, Pr = 0.4, Nt = 0.2.

269



Coatings 2019, 9, 816

 

Figure 6. Modification of temperature profile against Pr for n = 2, x = 0.1, F = 5, a = 0.2, b = 0.1, d =

0.51, ϕ = 0.1, We = 0.01, Gc = 0.9, Gr = 1, Bi = 5, Nb = 0.5, Gc = 0.01, Nt = 0.2.

 

Figure 7. Modification of nanoparticles concentration against Nb for n = 2, x = 0.1, F = 5, a = 0.2, b =

0.1, d = 0.51, ϕ = 0.01, We = 0.01, Gc = 0.9, Gr = 4, Bi = 0.5, Pr = 0.4, Gc = 0.1, Nt = 0.2.

 

Figure 8. Modification of nanoparticles concentration against Nt for, n = 2, x = 0.1, F = 2, a =

0.2, b = 0.1, d = 0.51, ϕ = 0.01, We = 0.01, , Gc = 0.9, Gr = 4, Bi = 0.5, Pr = 0.4, Gc = 0.1, Nt = 0.2.
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Figure 9. Modification of pressure gradient against Nb for n = 2, y = 0.1, F = 10, a = 0.2, b = 0.1, d =

0.51, ϕ = 0.01, We = 0.1, Gc = 0.9, Gr = 4, Bi = 0.5, Pr = 0.4, Gc = 0.1, M = 1.5, Nt = 0.2.

 

Figure 10. Modification of pressure gradient against Nt for, n = 2, y = 0.1, F = 10, a = 0.2, b = 0.1, d =

0.51, ϕ = 0.01, We = 0.1, , Gc = 0.9, Gr = 4, Bi = 0.09, Pr = 0.4, Gc = 0.3, M = 1.5, Nb = 0.1.

 

Figure 11. Modification of pressure rise against M for, n = 2, y = 0.1, F = 10, a = 0.2, b = 0.3, d =

0.5, ϕ = 0.01, M = 1.3, Gc = 0.3, Gr = 0.1, Bi = 0.3, Pr = 0.4, Gc = 0.3, Nb = 0.3, Nt = 0.
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Figure 12. Modification of pressure rise against We for, n = 0.1, y = 0.1, a = 0.2, b = 0.3, d = 0.5, ϕ =

0.01, M = 1.3, Gc = 0.3, Gr = 0.1, Bi = 0.3, Pr = 0.4, Gc = 0.3, Nb = 0.3, Nt = 0.2.

   

Figure 13. Modification of streamlines for Gc = {0.1, 0.5, 0.9}when n = 0.1, y = 0.1, F = 5, a = 0.3, b =

0.2, d = 0.1, ϕ = 0.01, M = 0.1, We = 0.1, Gr = 4, Bi = 0.09, Pr = 0.4, Br = 0.9, Nb = 0.5, Nt = 0.2.

   

Figure 14. Modification of streamlines for We = {0.1, 0.2, 0.3} when n = 0.1, y = 0.1, a = 0.2, b =

0.3, d = 0.5, ϕ = 0.01, M = 0.1, Bi = 0.09, Pr = 0.4, Gc = 0.9, Gr = 4, Nb = 0.5, Nt = 0.2.
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Figure 15. Modification of streamlines for M = {0.1, 0.9, 1.7} when n = 2, F = 5, a = 0.3, b = 0.2, d =

1, ϕ = 0.01, We = 0.1, Gr = 4, Gc = 0.1, Bi = 0.09, Pr = 0.4, Gc = 0.9, Nb = 0.5, Nt = 0.2.

5. Conclusions

In this article, the authors have discovered the mathematical treatment of the peristaltic flow of
Williamson nanofluid coated with the walls of an asymmetric heated channel. The flow has been
studied analytically and graphically through variation of some pertinent parameters. From the above
discussion, the main findings are given below:

(1) The velocity of nanofluid is decreasing in the lower part while increasing in the upper side with
local temperature Grashof number and local nanoparticle Grashof number.

(2) The temperature is becoming large with an increase in Biot number, Brinkman number, and
Prandtl number.

(3) The nano particle concentration is getting higher when we increase Brownian motion parameter,
but diminishes with thermophoresis parameter.

(4) The pressure gradient is increasing with Brownian motion parameter, but lessening for
thermophoresis parameter.

(5) The peristaltic pumping fasten up with Hartman number and Weissenberg number.
(6) In the upper portion, the size of the trapped bolus is decreasing, but increasing in lower portion

when we increase local nanoparticle Grashof numbers and Weissenberg numbers, but it varies in
a random manner with Hartman numbers.

(7) It is important to notice that boluses are trapped by their position in lower and upper corners of
the channel due to its asymmetric structure. We can recover the results of symmetric channel by
neglecting the phase difference.

(8) The study of viscous nanofluid can be approached by neglecting Weissenburg number.
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Abstract: The present research examines the impact of second-order slip with thermal and solutal
stratification coatings on three-dimensional (3D) Williamson nanofluid flow past a bidirectional
stretched surface and envisages it analytically. The novelty of the analysis is strengthened by
Cattaneo–Christov (CC) heat flux accompanying varying thermal conductivity. The appropriate
set of transformations is implemented to get a differential equation system with high nonlinearity.
The structure is addressed via the homotopy analysis technique. The authenticity of the presented
model is verified by creating a comparison with the limited published results and finding harmony
between the two. The impacts of miscellaneous arising parameters are deliberated through graphical
structures. Some useful tabulated values of arising parameters versus physical quantities are also
discussed here. It is observed that velocity components exhibit an opposite trend with respect to the
stretching ratio parameter. Moreover, the Brownian motion parameter shows the opposite behavior
versus temperature and concentration distributions.

Keywords: coatings; second order slip; double stratification; Cattaneo–Christov heat flux; variable
thermal conductivity; Williamson nanofluid

1. Introduction

The heat transfer phenomenon plays a vital role when the temperature varies between different
bodies or parts of the same body. Heat can be transferred by three methods: convection of fluids,
conduction in solids, and radiation. To examine body heat transfer, the principle of heat transfer
can be applied to the human body. Here, we can quote one example: the metal pan is used to
transfer heat from the stove to food. Some applications of heat transfer are cooking food over metal
pots, boiling milk in metal pots, and thermal treatment of pain by a hot water bag. Straughan [1]
considered the Cattaneo–Christov (CC) model for heat flux and thermal convection over a Newtonian
fluid. Khan et al. [2] analyzed it numerically by engaging the bvp4c MATLAB-based function on a
Sisko fluid flow accompanied by generalized Fick’s and Fourier’s laws over a nonlinear stretched
surface. Hayat et al. [3] examined analytically the magnetohydrodynamics (MHD) flow of Jeffrey
fluid past a variable thick surface via the impacts of the chemical reaction and the CC model in a

Coatings 2019, 9, 849; doi:10.3390/coatings9120849 www.mdpi.com/journal/coatings275
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stratified medium. Waqas et al. [4] investigated the CC heat flux model for energy equation formulation
rather than Fourier’s law of heat conduction. It was observed that a variable thermal conductivity
remains inversely proportional to a temperature profile. The Soret–Dufour effects on walls with
the second-grade fluid flow between inclined parallel plain walls were inspected by Khan et al. [5].
Heat transfer characteristics of the incompressible flow of the second-grade fluid flow produced by
a stretching sheet were analyzed by Ghadikolaei et al. [6]. Khan et al. [7] investigated the behavior
of homogenous–heterogeneous reactions against heat transfer flow due to a stretching sheet. They
noticed that homogenous–heterogeneous reactions reduce fluid concentration.

In modern engineering processes, especially in metallurgical engineering and metalworking
practices, the role of MHD is fundamental for electrically conducting fluids. The magnetic field function
is crucial in cooling the hot plasma inside a nuclear reactor vessel. Similarly, the magnetic field is
employed for the mixing of metals inside an electrical furnace [8]. Chamkha et. al. [9] analyzed the
magnetic field effect on the mixed convection unsteady flow in an ambient fluid past a cone rotating with
an unsteady angular velocity. Pullepu et al. [10] analyzed the free convection flow with variable surface
temperature over a nonisothermal vertical cone. Akbar et al. [11] examined the two dimensional (2D)
electrically conducting flow of the hyperbolic tangent fluid past a stretching surface. They observed that
an increment in the Hartmann number decelerates the fluid velocity in the domain of the stretching sheet.
Seini et al. [12] d the magnetic field impact over a stretching surface accompanied by the appearance of
slip velocity near the stagnation point flow. They perceived that the impact of the magnetic field is
more significant on the velocity profile. Ravindran et al. [13] considered the impact of a transverse
magnetic field and heat generation and absorption on time-dependent mixed convection flow over a
porous cone with a chemical reaction. Boland et al. [14] simulated MHD flow of viscous fluid over a
circular cylinder covered with a permeable layer. They adopted the Darcy–Brinkman–Forchheimer
model to study the flow inside a porous medium. Ellahi et al. [15] investigated the influence of a Hall
current on MHD Jeffrey fluid flow over a nonuniform duct. Mishra et al. [16] explored heat transfer
and mass in the appearance of a magnetic field of viscoelastic fluid flow. They determined that the
behavior of the magnetic field against the velocity profile is opposite to temperature distribution and
concentration profiles. Hussain et al. [17] analyzed numerically the influence of the applied magnetic
field on a non-Newtonian fluid flow past a stretching surface.

Nanofluids are vital in many engineering applications, such as in biomedical engineering and
many chemical processes. Nanofluid is composed of nanometer-sized particles with a diameter of less
than 100 nm and some conventional fluid. The basic aim of using nanofluids is to upgrade the heat
transfer and thermal conductivity to attain better cooling. Khan et al. [18] d nanofluid flow over a
stretching sheet. Makinde [19] extended the work of Khan et al. [18] to convective boundary condition
in nanofluid flow. Nadeem et al. [20] analyzed the second-grade nanofluid (nonorthogonal stagnation
point) flow in the direction of the stretching surface. The impact of the variable magnetic field on
the nanofluid flow between two disks was explored by Hayami et al. [21]. They found the analytical
solution via the homotopy perturbation method and observed that the temperature of the boundary
layer thickness decreases with the increase of the Brownian motion parameter and thermophoretic
factor. Nanofluid flow in a permeable medium over a convectively heated permeable shrinking
sheet was examined by Hayat et al. [22]. Sheikholeslami et al. [23,24] considered the behavior of
the magnetic field on the free and forced convection flow of nanofluids respectively by making use
of the two-phase model. Hassan et al. [25] elaborated on convective transport of heat transfer in a
nanofluid through a porous medium. They concluded that convective heat transfer is improved by
nanoparticle concentration, and the magnetic field impacts second-order slip flow. Nayak et al. [26]
focused on the numerical solution of the three-dimensional (3D) nanofluid flow with nonlinear thermal
radiation with convective conditions and slip. Hosseini et al. [27] observed the nanofluid MHD flow in
a microchannel heat sink via the KKL (Koo–Kleinsteuer–Li) model. They noticed that the interaction
between nanoparticles and the solid phase enhances the Nusselt number. In recent years, several
scientists have used nanofluid heat transfer in their studies [28–34].
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Fluids are basically divided into two groups: Newtonian [35] and non-Newtonian fluids [36].
Fluids that abide by Newton’s law of viscosity are termed Newtonian fluids. However, a contradiction
to Newton’s law of viscosity is observed in non-Newtonian fluids. Applications of non-Newtonian
fluids may be found in many industrial and engineering areas, glass fiber, hot rolling, casting, and
paper production. Amongst many non-Newtonian fluids, Williamson fluid possesses shear thinning
property (i.e., viscosity tends to decrease when shear stress increases). Abundant articles may be
found in the literature that highlight the importance of Williamson fluid in numerous scenarios.
Ramzan et al. [37] examined Williamson nanofluid flow over a Riga plate. They found that with an
increase in Williamson fluid parameter velocity, distribution decreases. Ramzan et al. [38] also analyzed
the numerical solution of the 2D MHD stagnation point of Williamson fluid flow under the effect of
homogeneous–heterogeneous reactions over a linearly stretched surface and found opposite behavior
of temperature and velocity distribution against the Williamson fluid parameter. Nadeem et al. [39,40]
analyzed the 2D Williamson fluid flow over a stretching sheet considering the influence of nanosized
particles, also characterized as Williamson nanofluid. They studied the Williamson nanofluid peristaltic
flow in a curved channel, including compliant walls.

Homotopy analysis method (HAM) was suggested by Liao [41] in 1992 to solve highly nonlinear
differential equations. This technique has an edge over the rest of the contemporary techniques. HAM
is one of the best and simplest technique for obtaining the convergent series solution for weakly, as
well as, highly nonlinear differential equations. This technique includes the concept of homotopy from
topology. HAM is used for finding a convergent series solution with high nonlinearity. Homotopy
discriminates itself from other methods in the following ways:

1. Freedom to choose large or small parameters;
2. Guaranteed series solution convergence; and
3. Freedom to choose linear operators and base function.

There have been many attempts in the literature to discuss the varied fluid problems utilizing the
homotopy analysis method [42–49].

A literature review discloses that copious literature may be quoted in the case of 2D non-Newtonian
flows. Less work is available on 3D geometries, and this group becomes narrower if we talk about
3D Williamson nanofluid flows. The subject matter of 3D MHD flow of Williamson nanofluid over a
bidirectional stretched surface with second-order slip and double stratification is even more rarely
discussed. The structure of this paper is as follows: In Section 2, we present the mathematical model.
In Sections 3–5, we discuss the homotopic scheme in detail with zeroth and mth order solutions. In
Section 6, we address the convergence analysis. In Section 7, we present the results and discuss their
physical importance, and finally, we provide concluding remarks.

2. Mathematical Modeling

Here, we consider the steady 3D Williamson nano liquid flow with velocities of Uw = ax in the
x-direction and Vw = by in the y-direction, respectively, over a bidirectional extended sheet. While a
and b are constants (Figure 1), concentration buoyancy force and thermal are used by the fluid with
double stratification phenomena to study heat and mass transfers.
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Figure 1. Schematic flow diagram.

The following are the governing boundary layer equations:

ux + vy + wz = 0 (1)

uux + vuy + wuz = νuzz +
√

2Γνuzuzz −
σB2

0

ρ
u +

⎡⎢⎢⎢⎢⎣ g[α1(T − T∞) + α2(T − T∞)2]+

g[α3(C−C∞) + α4(C−C∞)2]

⎤⎥⎥⎥⎥⎦ (2)

uvx + vvy + wvz = νvzz +
√

2Γνvzvzz −
σB2

0

ρ
v (3)

q + λE(qt + V.∇q− q.∇V + (∇.V)q) = −∇(kT) (4)

J + λC(Jt + V.∇J − J.∇V + (∇.V)J) = −DB∇C (5)

q + λE(V.∇q− q.∇V) = −∇(kT) (6)

J + λC(V.∇J − J.∇V) = −DB∇C (7)

under the supervision of above-mentioned consideration and the impression of thermophoresis and
Brownian-motion, Equations (6) and (7) takes the form:

uTx + vTy + wTz + λEφE =
1
ρcp

∂
∂z

(kTz) + τ[DBCzTz +
DT

T∞
(Tz)

2 (8)

uCx + vCy + wCz + λCφC = DBCzz +
DT

T∞
Tzz (9)

where

φE = u2Txx + v2Tyy + wTzz + 2uvTxy + 2uwTxz + 2vwTyz +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(uux + vuy + wuz)Tx+

(uvx + vvy + wvz)Ty+

(uwx + vwy + wwz)Tz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

φC = u2Cxx + v2Cyy + wCzz + 2uvCxy + 2uwCxz + 2vwCyz +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(uux + vuy + wuz)Cx+

(uvx + vvy + wvz)Cy+

(uwx + vwy + wwz)Cz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

following boundary conditions supports the above-mentioned system of equations:

u = Uw + Uslip v = Vw + Vslip w = 0
T = Tw = T0 + d1x C = Cw = C0 + d2x at z = 0
u→ 0 v→ 0 T → T∞ = T0 + e1x C→ C∞ = C0 + e2x as z→∞

(12)

here

Uslip =
2
3

(
3− αl3

α
− 3

2
1− l2

Kn

)
Λuz − 1

4

(
l4 +

2
K2

n
(1− l2)

)
Λ2uzz = Auz + Buzz (13)
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Vslip =
2
3

(
3− αl3

α
− 3

2
1− l2

Kn

)
Λvz − 1

4

(
l4 +

2
K2

n
(1− l2)

)
Λ2vzz = Cvz + Dvzz, (14)

where A = 2
3

(
3−αl3
α − 3

2
1−l2
Kn

)
Λ, B = − 1

4

(
l4 + 2

K2
n
(1− l2)

)
Λ2, C = 2

3

(
3−αl3
α − 3

2
1−l2
Kn

)
Λ, D =

− 1
4

(
l4 + 2

K2
n
(1− l2)

)
Λ2, l = min

[
1

Kn
, 1

]
, α describes momentum accommodation coefficient and varies

from 0 ≤ α ≤ 1 Kn denotes Knudsen number and Λ denotes molecular mean free path. On the basis of
definition of l, we found for any particular estimates of Kn we own 1 ≥ l ≥ 0. The molecular mean free
path is always positive. Therefore, we know that B, D < 0 and C and A are positive.

To solve Equations (1),(3) and (8),(9), following similarity transformations are introduced:

u = ax f ′(η) v = ayg′(η) w = −√aν( f (η) + g(η))

θ(η) = T−T∞
Tw−T∞ φ(η) = C−C∞

Cw−C∞ η =
√

a
νz

(15)

here, f , g, θ and φ are the non-dimensional form for both velocities, temperature and the concentration.
Condition for incompressibility is self-satisfied and Equations (2),(3) and (8),(9) reduce to:

f ′′′ − f ′2 + ( f + g) f ′′ + We f ′′ f ′′′ + λ(1 + β2θ)θ+ λNr(1 + β3φ)φ−Ha f ′ = 0 (16)

g′′′ − g′2 + ( f + g)g′′ + Weg′′g′′′ −Hag′ = 0 (17)

(1 + εθ)θ′′ + εθ′2 + PrNbθ′φ′+ PrNtθ′2 − Pr f ′(S1 + θ)+

Pr( f + g)θ′ − δtPr

⎛⎜⎜⎜⎜⎝ ( f + g)2θ′′ − 2 f ′θ′( f + g) +
(

f ′2 − f ′′( f + g)
)
(S1 + θ)

+( f + g)( f ′+ g′)θ′
⎞⎟⎟⎟⎟⎠ = 0

(18)

φ′′ + Nt
Nb
θ′′ − PrLe f ′(S2 + φ) + PrLe( f + g)φ′−

PrLeδc

⎛⎜⎜⎜⎜⎝ ( f + g)2φ′′ − 2 f ′( f + g)φ′+
(

f ′2 − f ′′( f + g)
)
(S2 + φ)+

( f + g)( f ′+ g′)φ′
⎞⎟⎟⎟⎟⎠ (19)

and boundary conditions hold the form

f (0) = 0 f ′(0) = 1 + γ1 f ′′(0) + γ2 f ′′′(0) g(0) = 0
g′(0) = 1 + γ3g′′(0) + γ4g′′′(0) θ(0) = 1− S1 φ(0) = 1− S2

f′(∞)→ 0 g′(∞)→ 0 θ(∞) = 0 φ(∞) = 0 as z→∞
(20)

where the parameters given above are defined as follows:

λ = Grx
Re2

x
Grx =

gβT(Tw−T∞)x3

ν2 Rex = uwx
ν Nr = α3(Cw−C0)

α1(Tw−T0)
S1 = e1

d1

γ1 = A
√

a
ν γ2 = B a

ν γ3 = C
√

a
ν γ4 = D a

ν β2 = α2
α1
(Tw − T0) β =

b
a

β3 = α4
α3
(Cw −C0) α1 = βT We = UwΓ

√
2c
ν Pr =

μcp
k Ha =

σB2
0
ρa S2 = e2

d2

Le = α
DB

Nt = τDT(Tw−T0)
T∞ν Nb =

τDB(Cw−C0)
T∞ν δc = λCa δt = λEa

(21)

C f x is the coefficients of Skin friction in x- and C f y in the y-direction are represented as follows:

C f x =
τwx

ρU2
w

C f y =
τwy

ρU2
w

(22)

where τwx|z=0 = uz +
Γ√
2
(uz)

2 and τwy
∣∣∣
z=0 = vz +

Γ√
2
(vz)

2 (23)
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Coefficients of Skin friction in dimensionless forms are:

C f xRe
1
2 = [ f ′′ + We

2 ( f ′′)2]η=0

C f yRe
1
2 = [g′′ + We

2 (g′′)2]η=0

(24)

3. Homotopic Solutions

For the considered problem, (L f , Lg,Lθ, Lφ) are the linear operators and ( f0, g0,θ0,φ0) are the
initial guesses expressed in the following form:

f0(η) = A
1+γ1−γ2

(1− exp(−η)) g0(η) =
β

1+γ3−γ4
(1− exp(−η))

where 1 + γ1 − γ2 � 0 1 + γ3 − γ4 � 0
θ0(η) = (1− S1)(1− exp(−η)) φ0(η) = (1− S2)(1− exp(−η))

(25)

L f ( f ) = d3 f
dη3 − d f

dη Lg(g) = d3 g
dη3 − dg

dη

Lθ(θ) = d2θ
dη2 − θ Lφ(φ) =

d2φ
dη2 −φ

(26)

these operators satisfy the following condition:

L f [C1 + C2 exp(η) + C3 exp(−η)] = 0
Lg[C4 + C5 exp(η) + C6 exp(−η)] = 0
Lθ[C9 exp(η) + C10 exp(−η)] = 0

(27)

4. Zeroth Order Deformation

The zeroth order deformation problem is defined as follows:

(1− p)L f [
∼
f (η; p) − f0(η)] = p� f N f [

∼
f (η; p),

∼
g(η; p)] (28)

(1− p)Lg[
∼
g(η; p) − g0(η)] = p�gNg[

∼
f (η; p),

∼
g(η; p)] (29)

(1− p)Lθ[
∼
θ(η; p) − θ0(η)] = p�θNθ[

∼
f (η; p),

∼
g(η; p),

∼
θ(η; p),

∼
φ(η; p)] (30)

(1− p)Lφ[
∼
φ(η; p) −φ0(η)] = p�φNφ[

∼
f (η; p),

∼
g(η; p),

∼
θ(η; p),

∼
φ(η; p)] (31)

∼
f (0; p) = 0

∼
f ′(0; p) = 1 + γ1

∼
f ′′(0; p) + γ2

∼
f ′′′(0; p)

∼
f ′(∞; p) = 0

∼
g(0; p) = 0

∼
g′(0; p) = β+ γ3

∼
g′′(0; p) + γ2

∼
g′′′(0; p)

∼
g′(∞; p) = 0

∼
θ(0; p) = 1− S1

∼
θ(∞; p) = 0

∼
φ(0; p) = 1− S2

∼
φ(∞; p) = 0

(32)

N f [
∼
f (η; p),

∼
g(η; p)] = ∂3

∼
f (η;p)
∂η3 −

(
∂
∼
f (η;p)
∂η

)2

+ (
∼
f +

∼
g) ∂

2
∼
f (η;p)
∂η2 +

We∂
2
∼
f (η;p)
∂η2

∂3
∼
f (η;p)
∂η3 + λ(1 + β2

∼
θ)
∼
θ+ λNr(1 + β3

∼
φ)
∼
φ−M∂

∼
f (η;p)
∂η

Ng[
∼
f (η; p),

∼
g(η; p)] = ∂3∼g(η;p)

∂η3 −
(
∂
∼
g(η;p)
∂η

)2
+ (
∼
f +

∼
g) ∂

2∼g(η;p)
∂η2 +

We∂
2∼g(η;p)
∂η2

∂3∼g(η;p)
∂η3 −M∂

∼
g(η;p)
∂η

(33)
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Nθ[
∼
f (η; p),

∼
g(η; p),

∼
θ(η; p),

∼
φ(η; p)] = [(1 + ε

∼
θ)
∂2
∼
θ(η;p)
∂η2 + ε

(
∂
∼
θ(η;p)
∂η

)2

+

PrNb
∂
∼
θ(η;p)
∂η

∂
∼
φ(η;p)
∂η + PrNt

(
∂
∼
θ(η;p)
∂η

)2

+ Pr(
∼
f +

∼
g) ∂

∼
θ(η;p)
∂η −

δtPr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(
∼
f +

∼
g)

2
∂2
∼
θ(η;p)
∂η2 − 2∂

∼
f (η;p)
∂η

∂
∼
θ(η;p)
∂η (

∼
f +

∼
g)+(

(c)2 − ∂2
∼
f (η;p)
∂η2 (

∼
f +

∼
g)

)
(S1 + θ) + (

∼
f +

∼
g)

(
∂
∼
f (η;p)
∂η

∂
∼
g(η;p)
∂η

)
∂
∼
θ(η;p)
∂η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(34)

Nφ[
∼
f (η; p),

∼
g(η; p),

∼
θ(η; p),

∼
φ(η; p)] = ∂2

∼
φ(η;p)
∂η2 + Nt

Nb

∂2
∼
θ(η;p)
∂η2 −

PrLe∂
∼
f (η;p)
∂η (S2 + θ) + PrLe(

∼
f +

∼
g) ∂

∼
φ(η;p)
∂η −

PrLeδc

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
∼
f +

∼
g)

2
∂2
∼
φ(η;p)
∂η2 − 2∂

∼
f (η;p)
∂η (

∼
f +

∼
g) ∂

∼
φ(η;p)
∂η +⎛⎜⎜⎜⎜⎝( ∂∼f (η;p)∂η )

2

− ∂2
∼
f (η;p)
∂η2 (

∼
f +

∼
g)

⎞⎟⎟⎟⎟⎠(S2 + φ)+

(
∼
f +

∼
g)

(
∂
∼
f (η;p)
∂η

∂
∼
g(η;p)
∂η

)
∂
∼
φ(η;p)
∂η

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(35)

Here p ∈ [0, 1] is embedding parameter and � f ,�g,�θ and �φ are the non-zero auxiliary parameters.

5. mth-Order Deformation Problems

Here, we have
L f [ fm(η) − χm fm−1(η)] = � f Rn

f (η) (36)

Lg[gm(η) − χmgm−1(η)] = �gRn
g(η) (37)

Lθ[θm(η) − χmθm−1(η)] = �θRn
θ(η) (38)

Lφ[φm(η) − χmφm−1(η)] = �φRn
φ(η) (39)

Rm
f (η) = f ′′m−1 − f ′2m−1 +

m−1∑
k=0

( fm−1−k + gm−1−k) f ′′k + We
m−1∑
k=0

f ′′m−1−k f ′′′k + λθm−1+

β2λ
m−1∑
k=0
θm−1−kθk + λNrφm−1 + λNrβ3

m−1∑
k=0
φm−1−kφk −Ha f ′m−1

(40)

Rm
g (η) = g′′m−1 − g′2m−1 +

m−1∑
k=0

( fm−1−k + gm−1−k)g′′k + We
m−1∑
k=0

g′′m−1−kg′′′k −Hag′m−1 (41)

Rm
θ
(η) = θ′′m−1 + ε

m−1∑
k=0
θm−1−kθ

′′
k + ε

m−1∑
k=0
θ′m−1−kθ

′
k + PrNb

m−1∑
k=0
θ′m−1−kφ

′
k + PrNt

m−1∑
k=0
θ′m−1−kθ

′
k−

Pr(S1 + θ) f ′m−1 + Pr
m−1∑
k=0

( fm−1−kθ
′
k + gm−1−kθ

′
k) − δtPr

m−1∑
k=0

fm−1−k
k∑

l=0
fk−1θ

′′
1 −

δtPr
m−1∑
k=0

gm−1−k
k∑

l=0
gk−1θ

′′
1 − 2δtPr

m−1∑
k=0

fm−1−k
k∑

l=0
gk−1θ

′′
1 −−2δtPr

m−1∑
k=0

fm−1−k
k∑

l=0
f ′k−1θ

′
1−

2δtPr
m−1∑
k=0

gm−1−k
k∑

l=0
f ′k−1θ

′
1 − S1δtPr

m−1∑
k=0

f ′m−k−1 f ′k−1 + S1δtPr
m−1∑
k=0

fm−1−k f ′′k +

S1δtPr
m−1∑
k=0

gm−1−k f ′′k − δtPr
m−1∑
k=0

f ′m−k−1

k∑
l=0

f ′k−1θ1 + δtPr
m−1∑
k=0

fm−1−k
k∑

l=0
f ′′k−1θ1+

δtPr
m−1∑
k=0

gm−1−k
k∑

l=0
f ′′k−1θ1 + δtPr

m−1∑
k=0

fm−1−k
k∑

l=0
f ′k−1θ

′
1 + δtPr

m−1∑
k=0

fm−1−k
k∑

l=0
g′k−1θ

′
1

+δtPr
m−1∑
k=0

gm−1−k
k∑

l=0
f ′k−1θ

′
1 + δtPr

m−1∑
k=0

gm−1−k
k∑

l=0
g′k−1θ

′
1

(42)
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Rm
φ
(η) = φ′′m−1 +

Nt
Nb

m−1∑
k=0
θ′m−1−kθ

′
k − PrLeS2 f ′m−1 − PrLe

m−1∑
k=0

f ′m−1−kθk f ′m−1 + PrLe
m−1∑
k=0

fm−1−kφ
′
k+

PrLe
m−1∑
k=0

gm−1−kφ
′
k − PrLeδc

m−1∑
k=0

fm−1−k
k∑

l=0
fk−1φ

′′
1 − PrLeδc

m−1∑
k=0

gm−1−k
k∑

l=0
gk−1φ

′′
1 −

2δcPrLe
m−1∑
k=0

fm−1−k
k∑

l=0
gk−1φ

′′
1 − 2δcPrLe

m−1∑
k=0

fm−1−k
k∑

l=0
f ′k−1φ

′
1−

2δcPrLe
m−1∑
k=0

gm−1−k
k∑

l=0
f ′k−1φ

′
1 + S2δcPrLe

m−1∑
k=0

f ′m−k−1 f ′k−1 + S2δcPrLe
m−1∑
k=0

fm−1−k f ′′k +

S2δcPrLe
m−1∑
k=0

gm−1−k f ′′k − PrLeδc
m−1∑
k=0

f ′m−k−1

k∑
l=0

f ′k−1φ1+

δcPrLe
m−1∑
k=0

fm−1−k
k∑

l=0
f ′′k−1φ1 + δcPrLe

m−1∑
k=0

gm−1−k
k∑

l=0
f ′′k−1φ1 + δcPrLe

m−1∑
k=0

fm−1−k
k∑

l=0
f ′k−1φ

′
1+

δcPrLe
m−1∑
k=0

fm−1−k
k∑

l=0
g′k−1φ

′
1 + δcPrLe

m−1∑
k=0

gm−1−k
k∑

l=0
f ′k−1φ

′
1 + δcPrLe

m−1∑
k=0

gm−1−k
k∑

l=0
g′k−1φ

′
1

(43)

χm =

{
0, m ≤ 1
1, m > 1

(44)

the final solutions can be transcribed in the subsequent forms:

fm(η) = f ∗m(η) + D1 + D2eη + D3e−η
gm(η) = g∗m(η) + D4 + D5eη + D6e−η
θm(η) = θ∗m(η) + D7eη + D8e−η
φm(η) = φ∗m(η) + D9eη + D10e−η

(45)

where fm, gm,θm, and φm symbolize the special solutions.

6. Convergence Analysis

HAM is used to obtain the solution of higher order nonlinear problems or those in series form. It
gives several choices to control and modify the convergence region for the series solutions. Figure 2
represents the �− curves behavior of all distributions. Characteristic parameters � f ,�g,�θ and �φ have
permissible ranges −1.6 ≤ � f ≤ −0.4, −2.15 ≤ �g ≤ −0.2, −2.75 ≤ �θ ≤ −0.8 and −2.6 ≤ �φ ≤ −0.6
when γ = 0.2, Le = 1, Nt = 0.2, Nb = 0.3, Pr = 1.0, ε = 0.3, λ = 0.002, β1= β3 = 0.2, β = 0.1 and M = 0.2
Table 1 represents the numerical results obtained for series solutions depicting the convergence of
approximations up to the 25th order of approximations, that is, enough for series solution convergence.
It can be verified that the graphical depiction in Figure 2 and the tabular results in Table 1 are in
total consensus.

Figure 2. �− curves for f , g,θ andφ.
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Table 1. Convergence analysis of series solution using different order approximations when M = 0.2,
γ1 =0.2, γ2 = 0.2, Nb = 0.3, Nt = 0.2, λ = 0.002, Le = 1.0, Pr = 1.0 δt = 0.2, δc = 0.2, ε =0.1, β = 0.1.

Order of Approximations −f”(0) g”(0) −θ′(0) −φ′(0)
1 1.13509 0.07226 0.31147 0.53000
5 1.27039 0.07329 0.35690 0.46424

10 1.33592 0.07344 0.36006 0.44888
20 1.37389 0.07360 0.36099 0.44350
25 1.38731 0.07368 0.36158 0.44215
30 1.38731 0.07368 0.36158 0.44215

Table 2 was developed to validate the results obtained in the current model for skin friction in both
directions by comparison with Malik et al. [50], and excellent harmony in both outcomes is achieved.

Table 2. Comparative estimates of We with Malik et al. [50] for skin friction along both directions
in the limiting case, i.e., by considering the Hartmann number, second-order slip, temperature, and
concentration profiles to zero.

We −[f”+We
2 (f”)2]η=0 −[g”+We

2 (g”)2]η=0
[40] Present Outcomes [50] Present Outcomes

0.1 1.0934 1.0933 0.4661 0.4660
0.2 1.2695 1.2695 0.4841 0.4841
0.3 1.3340 1.3341 0.5025 0.5024
0.4 1.4915 1.4916 0.5220 0.5221

7. Results and Discussion

In this section, we analyze the impact of appearing factors on particular distributions in Figures 3–21.
The behavior on velocity profiles of β (ratio parameter) is described in Figures 3 and 4. It is noticed
that contradictory behavior shown by both velocities ( f ′, g′) for an increasing rate of β. As β = b

a , a
was smaller for higher values of β, which specified a decreasing velocity rate along the x-direction, or b
with higher values specified an increasing rate along the y-direction. In Figures 5 and 6, δt and δc

illustrate the influence of thermal relaxation and the concentration relaxation factor on temperature
concentration and distributions. We found that both concentration and temperature fields associated
with the thickness of the boundary layers were the functions of decreasing δc and δt, respectively.
Furthermore, δc = 0 and δt = 0 existing model will transform into classical laws of Fick’s and Fourier’s
respectively. The influence of thermal conductivity ε on the temperature distribution is described in
Figure 7. For higher values of ε, an increasing rate for the thermal boundary layer is found, which
in result increases the temperature distribution. In Figure 8 the impact of Lewis number Le on
concentration field is described. The strength of Lewis number depends on smaller estimations of
mass diffusivity than the thermal diffusivity, which shows that exhausted Brownian motion coefficient
decreases nanoparticle concentration profile. Figure 9 d the influence of mixed convective factor λ
on the velocity field (g′). Higher estimations of λ produce stronger buoyancy force, which indicates
an increasing rate in the velocity field (g′). The behavior of Prandtl number Pr against temperature
distribution is presented in Figure 10. It is inspected that heat diffusion is very slow from the heated
surface for higher estimates of Pr than smaller estimations of Pr. Therefore, temperature decreases with
increasing values of Pr. Figures 11 and 12 show the influence of Ha (Hartmann number) on both velocity
profiles ( f ′,g′). Retardation in the fluid motion is seen due to resistance effered by strong Lorentz
force. This act finally points out the decreasing rate on both velocity distributions. Figures 13 and 14
demonstrate the impact of Brownian motion factor Nb on concentration and temperature distribution.
For the larger estimates of Nb, fluid temperature increases and rapidly reduces the deposition of
particles far away from the fluid on the stretched surface. Due to which it increases and decreases
concentration. The influence of the Nt on the concentration distribution is described in Figure 15.
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When the estimates of Nt are high and they are directly proportional to the temperature distribution,
as a result it enhances the concentration distribution and its concentration associated with thickness of
boundary layer. Figure 16 illustrates the influence of Nt on the temperature profile. When the values
of Nt are higher, nanoparticles move from ambient fluid with higher temperature to the ambient fluid
with lower temperature, and as a results temperature is higher in the boundary layer region. Finally,
we identified the thickness of augmented thermal boundary layer. Figures 17 and 18 are drawn to
display the influence of Williamson fluid parameter We on both velocity profiles. Increasing values
of We decrease both velocities profiles. By increasing Williamson factor, relaxation time enhances. It
causes to increase liquid viscosity, which results in decrease in the velocity profile. In Figure 19 the
impact of stretching ratio factor β and mixed convective parameter λ on coefficient of Skin friction
along x-direction is displayed. Which d that the coefficient of Skin friction shpws increasing behavior
versus β and λ. Similar tendency can be observed in Hartmann number Ha and mixed convective
parameter λ, against coefficient of Skin friction in x-direction, as displayed in Figure 20. Analysis of
the impact of λ and Nr on Skin friction is described in Figure 21. It is noted that a thinner boundary
layer is associated with larger λ, which result in higher velocity gradient near the wall. That’s why
Skin friction reduces against λ.

 
Figure 3. Impact of β against f’.

 
Figure 4. Impact of β against g’.
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Figure 5. Impact of δc against φ.

 
Figure 6. Impact of δt against θ.

 

Figure 7. Impact of ∈ against θ.

Figure 8. Impact of Le against φ.
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Figure 9. Impact of λ against f’.

 

Figure 10. Impact of Pr against θ.

 

Figure 11. Impact of Ha against f’.
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Figure 12. Impact of Ha against g’.

Figure 13. Impact of Nb against φ.

Figure 14. Impact of Nb against θ.

 

Figure 15. Impact of Nt against φ.
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Figure 16. Impact of Nt against θ.

 
Figure 17. Impact of We against f’.

 
Figure 18. Impact of We against g’.
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Figure 19. Impact of λ and β against Skin friction.

 
Figure 20. Impact of λ and Ha against Skin friction.

 
Figure 21. Impact of Nr and λ against Skin friction.

8. Concluding Remarks

Three-dimensional Williamson nanofluid flow was investigated considering the Cattaneo–Christov
heat flux model. The originality of the envisioned mathematical model was boosted by considering
the influence of double stratification and second-order slip. HAM was applied to obtain the problem
solution in series form. The salient outcomes of the problem are as follows:

• The stretching ratio parameter had an opposite impact on both velocities.
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• Increasing values of concentrations and temperature distributions decreased the thermal and
concentration relaxation parameters, respectively.

• The higher temperature was in direct proportion with the thermal conductivity parameter.
• Velocity increased for values of the mixed convection parameter.
• For the large values of the Prandtl number, fluid temperature decreased.
• Both velocity components were decreasing functions of the Hartmann number.
• Skin friction coefficients against the x- and y- directions displayed an accelerating tendency with

respect to values of the stretching ratio and mixed convection parameters.
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Nomenclature

k0 Elastic parameter
Rex Local Reynold parameter
S1, S2 Thermal and concentration stratification parameter
k Thermal conductivity
Cfy Skin friction coefficients in the y-direction
Ha Hartmann number
Le Lewis number
Nb Brownian motion parameter
Nt Thermophoresis parameter
We Williamsons fluid parameter
Nr Ratio of concentration to buoyancy forces
Grx Grashof number
Cfx Coefficients of skin friction in the x-direction
u, v, w Velocity components
α3,α4 Linear and nonlinear coefficients of concentration expansions
J Mass flux
T∞ Ambient temperature
DB Brownian diffusion coefficient
θ Temperature parameter
A,B,C,D Constants
Uw Velocity along x-axis
σ Electrical conductivity
k0 Elastic parameter
α1 Normal stress moduli
γ1, γ3 First-order slip parameter
γ2, γ4 Second-order slip parameter
ν Kinematic viscosity
β Stretching ratio parameter
δt, δc Thermal and concentration relaxation parameters
λ Mixed convection parameter
ρ Density of fluid
λc Relaxation time of mass flux
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λE Relaxation time of heat flux
β2,β3 Nonlinear temperature’s and concentration’s convection parameter λ
α1, α2 Linear and nonlinear coefficients of thermal expansions
q Normal heat flux
C∞ Ambient concentration
DT Thermophoretic diffusion coefficient
f, g Nondimensional velocity parameters
ϕ Concentration parameter
ρ Density of the fluid
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Abstract: The peristaltic flow of velocity second slip boundary conditions and inclined magnetic field
of Jeffrey fluid by means of heat and mass transfer in asymmetric channel was inspected in the present
study. Leading equations described the existing flow were then simplified under lubrication approach.
Therefore, exact solutions of stream function, concentration and temperature were deduced. Further,
the numerical solutions of pressure rise and pressure gradient were computed using Mathematica
software. Furthermore, the effect of the second slip parameter was argued via graphs. It has been
depicted that this kind of slip is mandatory and very imperative to foresee the physical model. On the
other hand, false results will be obtained.

Keywords: velocity second slip; wave forms; peristaltic flow; exact solutions; magnetic field; heat
and mass transfer

1. Introduction

The peristaltic motion induced by channel or tube boundaries has a main role of fluid transport
in living organisms and industrial pumping. Additionally, it has attracted attention in the fields of
engineering and physiology. This transport is a means of fluid flow in an elastic path by the processes
of contraction and expansion. In particular, such flows of viscous and non-Newtonian fluids are
widely familiar in several biological systems including the human body in the transport of urine
from the kidney to the bladder; chyme movement in the gastrointestinal tract, bile ducts, ureter,
esophagus; spermatozoa in ducts efferent of the male reproductive tract; blood circulation in blood
vessels; and movement of ovum in female fallopian tubes. Technical roller and finger pumps also
function under this type of mechanism. In addition, with the existing of heat transfer, peristalsis
is imperative in many processes such as oxygenation and hemodialysis. Further, heat transfer is
also noteworthy in the treatment of diseased tissues in cancer. The cram of magnetohy drodynamic
(MHD) peristaltic flow is useful as it is used in the reduction of bleeding during surgeries, targeted
transfer of drugs via magnetic particles as drug carries, and MRI (magnetic resonance imaging) to
diagnose diseases. It also has a pivotal role in the motion of physiological fluids including blood and
blood pump machines. Furthermore, mass transfer in peristaltic flow occurs during the chemical
breakdown of food, amalgamation of gastric juices with food, diffusive and ionic flows by means of
membrane channels, diffusive oxygen transmission in tissue, drug delivery inside the body, and in
other digestion processes.
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There area lot of models for non-Newtonian fluids due to the complexity of fluids behaviour, like
Carreau [1–3], Herschel [4,5], Oldroyd [6,7], Williamson [8], Johnson [9–11], Casson [12], Couette [13]
and further as in [14–21]. Amongst these, the Jeffrey fluid model is considered as the simplest linear
model that presents non-Newtonian fluid properties in a way which may enable the researchers
to attain exact and analytical solutions. See, for example [22–25]. Kothandapani and Srinivas [26]
have investigated peristaltic transport for Jeffrey fluid under consequences of a magnetic field
in an asymmetric channel under the premise of a low Reynolds number and a long wavelength.
Tripathi et al. [27] studied MHD peristaltic flow of Jeffrey fluid by means of a finite length cylindrical
tube. Further, Nadeem et al. [28] examined the peristaltic flow of MHD Jeffrey fluid in eccentric
cylinders. Khan et al. [29] investigated peristaltic transport for Jeffrey fluid with variable viscosity via
a porous medium in an asymmetric channel. Srinivas and Pushparaj [30] have presented non-linear
peristaltic flow in an inclined asymmetric channel.

In 1827, Navier [31] stated that shear stress at surface is linearly proportional to slip at surface.
Fluids revealing slip effects are vital in polishing internal cavities and artificial heart valves. In particular,
the application of this condition in peristaltic flows has perfect relevance in the field of polymers and
physiology. Studies towards this point of research have been recently taken into account and a wide
range of analytical and numerical studies have been reported in [32,33] and [34]. In a porous channel,
effects of wall slip conditions and heat transfer on peristaltic transport of MHD Newtonian fluid with
elastic wall properties have been discussed by Sirinivas et al. [35]. Hayat et al. [36] introduced a
mathematical model in order to study the slip effects of heat and mass transfer on peristaltic transport of
MHD power-law fluid and second grade fluid in the channel by flexible walls. Further, Hayat et al. [37]
and [38] examined the influence of slip conditions and wall properties in the planar channel on MHD
peristaltic flow of Maxwell fluid, and Williamson fluid in the non-uniform channel by heat and mass
transfer, respectively. Nadeem and Akram [39] presented effects of partial slip on peristaltic flow of
MHD Newtonian fluid in an asymmetric channel. They obtained the solutions using the method
of Adomian decomposition and showed that trapping reduces with an increase of the velocity slip
parameter, while pressure rise increases with an increase in the slip parameter. Hayat et al. [40,41]
have analyzed effects of the slip condition on peristaltic flow of Phan-Thien-Tanner and of an Oldroyd
6-constant fluid, respectively. Mishra and Rao [42] investigated the effects of peristaltic flow of
Newtonian fluid in an asymmetric channel. Akram and Nadeem [43] studied consequences with
different waveforms of partial slip and nanofluid on peristaltic transport of non-Newtonian fluid.
Recently, Hina et al. [44] investigated the peristaltic flow of pseudoplastic fluid with wall properties in
a curved channel by heat or mass transfer.

In their important study, Roşca and Pop [45] showed that the second order slip flow model is
essential to predict flow characteristics precisely. Very recently, Aly [46,47] and Aly and Vajravelu [48]
have studied the effect of second velocity slip on fluid flow. In these studies, it was reported that these
type of boundary conditions is compulsory and should be taken into consideration, otherwise, false
results will be gained. As mentioned above, there are a considerable number of published papers
regarding the effect of the first slip parameter, however, very less consideration has been given to
peristaltic flows in the presence of the velocity second slip condition. Recently, Aly and Ebaid [49]
presented an exact solution for the outcome of second slip on peristaltic flow of nanofluid in an
asymmetric channel.

The intent of the current study is, therefore, to examine the effect of velocity second slip in
non-Newtonian fluids by heat and mass transfer in the presence of an inclined magnetic field over an
inclined tapered asymmetric channel, as many researchers have recently givenconsiderable attention
to this geometry, for example [50–52]. As per our knowledge, no effort has been reported yet to discuss
this multidimensional analysis, even in the absence of heat and mass transfer; hence, this study may
be helpful in this direction of research. The present governing equations for motion, concentration
and energy are simplified by assumptions of long wavelength approximation. Then, exact solutions
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of reduced equations are outlines. Therefore, with help of Mathematica software, many graphical
outcomes are plotted and reported for various involved physical parameters of interest.

2. Mathematical Formulation

The peristaltic motion of non-Newtonian incompressible fluid in a vertical tapered asymmetric
channel, under effects of a constant magnetic field is considered. It is assumed that a wave train
is moving with velocity c along non-uniform walls. In addition, we also assume that the channel
andmagnetic field are inclined at angles α and Θ, respectively. Further, upper and lower walls of
the channel are sustained at temperature T0 and T1 , respectively. For the present flow, U and V are
velocities in X and Y directions, respectively, in fixed frame. The upper and lower walls H1 and H2,
respectively, of tapered asymmetric channel in fixed frame are defined as:

Y = H1 = d1 + k∗X + a1 cos
[

2π
λ (X − ct)

]
Y = H2 = −d2 − k∗X − b1 cos

[
2π
λ (X − ct) + ϕ

] (1)

where a1 and b1 are amplitudes of waves; λ is wave length; d1 + d2 is width of channel; k∗(k∗ << 1)
is non-uniform parameter; c is velocity of propagation; t is time; phase difference φ varies in range
0 ≤ ϕ ≤ π; ϕ = 0 corresponds to symmetric channel by waves out of phase and φ = π waves are in
phase; and further, a1, b1, d1, d2 and φ satisfy the condition [24].

a2
1 + b2

1 + 2a1b1 cosφ ≤ (d1 + d2)
2.

An equation that governs flow in the presence of gravity consequences and an inclined magnetic
field are defined as [25].

∂U
∂X

+
∂V
∂Y

= 0 (2)

ρ
(
∂U
∂t + U ∂U∂X + V ∂U∂Y

)
= − ∂p∂X + ∂

∂X (SXX) +
∂
∂Y (SXY) − σB2

0 cosθ(U cosθ−V sinθ)
+ρg sinα (3)

ρ
(
∂V
∂t + U ∂V∂X + V ∂V∂Y

)
= − ∂p∂Y + ∂

∂X (SYX) +
∂
∂Y SYY + σB2

0 sin Θ(U cos Θ −V sin Θ)

−ρg cosα
(4)

Cp

(
∂T
∂t + U ∂T∂X + V ∂T∂Y

)
=

K1
ρ

(
∂2T
∂X2 +

∂2T
∂Y2

)
+ υ

(
1

1+λ1

(
1 + λ2

(
∂
∂t + U ∂

∂X + V ∂
∂Y

))(
2
(
∂U
∂X

)2
+ 2

(
∂V
∂Y

)2
+

(
∂U
∂Y + ∂V

∂X

)2
)) (5)

∂C
∂t

+ U
∂C
∂X

+ V
∂C
∂Y

= Dm

(
∂2C
∂X2 +

∂2C
∂Y2

)
+

DmKT

Tm

(
∂2T
∂X2 +

∂2T
∂Y2

)
(6)

where ρ, p, ν, σ, g, K1 , Cp , T, Dm, Tm, KT and C represent constant density, pressure, kinematic
viscosity, electrical conductivity, acceleration caused by gravity, thermal conductivity, specific heat,
temperature, coefficient of mass diffusivity, mean temperature, thermal diffusion ratio and concentration
of fluid, respectively.

For the Jeffrey fluid model, extra stress tensor S is given as [26].

S =
μ

1 + λ1

( .
γ+ λ2

..
γ
)

(7)
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where λ1 is ratio of relaxation to retardation times;
.
γ is shear rate; μ is viscosity of fluid; λ2 is retardation

time; and dots indicate differentiation with respect to time. Extra stress tensor S in component form is
defined as:

SXX =
2μ

1+λ1

(
1 + λ2

(
∂
∂t + (U ∂

∂X + V ∂
∂Y )

))
∂U
∂X

SXY =
μ

1+λ1

(
1 + λ2

(
∂
∂t + (U ∂

∂X + V ∂
∂Y )

)) (
∂U
∂Y + ∂V

∂X

)
SYY =

2μ
1+λ1

(
1 + λ2

(
∂
∂t + (U ∂

∂X + V ∂
∂Y )

))
∂V
∂Y

Furthermore, we know that the wave frame (x,y) and fixed frame (X,Y) are related by the
following transformations:

x = X − ct, y = Y, u = U − c, v = V, and p(x) = p(X, t). (8)

Let us define the following non-dimensional quantities:

−
x = x

λ ,
−
y =

y
d1

,
−
u = u

c ,
−
v = v

c , δ =d1
λ , d =d2

d1
,
−
p =

d2
1p

μcλ ,
−
t = ct

λ , h1 = H1
d1

,

h2 = H2
d2

, a = a1
d1

, b = b1
d1

, Re = cd1
v ,

−
Ψ = Ψ

cd1
, Fr = c2

gd1
, θ = T−T0

T1−T0
,

Sr =ρDmKt(T1−T0)
Tmμ(C1−C0)

, Sc = μ
ρDm

, Ec = c2

Cp(T1−T0)
, Pr =

ρνCp
K1

,
−
S = Sd1

μc ,

M =
√

σ
μB0d1, Φ = C−C0

C1−C0

(9)

where Re is Reynolds number; Fr is Froude number; Sr is Soret number; Sc is Schmidt number;
Ec is Eckret number; Pr is Prandtl number; M is Hartmann number; θ is temperature of fluid in
dimensionless form; and Φ is concentration of fluid in dimensionless form.

With the help of Equations (7) and (8), Equations (2)–(6), in terms of stream function Ψ (dropping
the bars, u = ∂Ψ

∂y , v = −δ∂Ψ∂x ), take following form:

Reδ
(
ΨyΨxy −ΨxΨyy

)
= −∂p∂x + δ ∂∂x (Sxx) +

∂
∂y

(
Sxy

)
−

M2 cos Θ
((

Ψy + 1
)

cos Θ + δΨx sin Θ
)
+ Re

Fr sinα
(10)

Reδ3
(
−ΨyΨxx + ΨxΨxy

)
= − ∂p∂y + δ2 ∂

∂x

(
Syx

)
+ δ ∂∂y

(
Syy

)
+

M2δ sin Θ
((

Ψy + 1
)

cos Θ + δΨx sin Θ
)
− δRe

Fr cosα
(11)

Reδ
(
Ψyθx −Ψxθy

)
= 1

Pr

(
θyy + δ2θxx

)
+ Ec

(1+λ1)

(
1 +

λ2 cδ
d1

(
Ψy

∂
∂x −Ψx

∂
∂y

))
(
4δ2Ψ2

xy +
(
Ψyy − δ2Ψxx

)2
) (12)

Reδ
(
ΨyΦx −ΨxΦy

)
=

1
Sc

(
δ2Φxx + Φyy

)
+ Sr

(
δ2θxx + θyy

)
(13)

where extra stress tensor forJeffrey fluid in component form is defined as:

Sxx = 2δ
1+λ1

(
1 +

λ2 cδ
d1

(
Ψy

∂
∂x −Ψx

∂
∂y

))
Ψxy

Sxy = 1
1+λ1

(
1 +

λ2 cδ
d1

(
Ψy

∂
∂x −Ψx

∂
∂y

)) (
Ψyy − δ2Ψxx

)
Syy = − 2δ

1+λ1

(
1 +

λ2 cδ
d1

(
Ψy

∂
∂x −Ψx

∂
∂y

))
Ψxy

(14)
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Using Equation (14) and assumptions of long wavelength approximation, Equations (10)–(13)
reduce in the form:

− ∂p
∂x

+
∂
∂y

(
1

1 + λ1

∂2Ψ
∂y2

)
−M2 cos2 Θ

(
Ψy + 1

)
+

Re
Fr

sinα = 0 (15)

− ∂p
∂y

= 0 (16)

1
Pr
∂2θ

∂y2 +
Ec

(1 + λ1)

(
∂2Ψ
∂y2

)2

= 0 (17)

1
Sc
∂2Φ
∂y2 + Sr

∂2θ

∂y2 = 0. (18)

Elimination of pressure from Equation (15) to (16) gives:

∂2

∂y2

(
1

1 + λ1

∂2Ψ
∂y2

)
−M2 cos2 Θ

∂2Ψ
∂y2 = 0 (19)

1
Pr
∂2θ

∂y2 +
Ec

(1 + λ1)

(
∂2Ψ
∂y2

)2

= 0 (20)

1
Sc
∂2Φ
∂y2 + Sr

∂2θ

∂y2 = 0. (21)

The system of PDEs given above in Equation (19) through (21) is solved subject to the following
boundary conditions:

Ψ = F
2 at y = h1 = 1 + kx + a cos 2πx

Ψ = −F
2 at y = h2 = −d− kx− b cos(2πx + ϕ)

∂Ψ
∂y = − η∗

1
(1+λ1 )

∂2Ψ
∂y2 −

η∗
2

(1+λ1)
∂3Ψ
∂y3 − 1 at y = h1

∂Ψ
∂y =

η∗
1

(1+λ1)
∂2Ψ
∂y2 +

η∗
2

(1+λ1)
∂3Ψ
∂y3 − 1 at y = h2

(22)

θ+ β∂θ∂y = 0 at y = h1

through(13)θ− β∂θ∂y = 1 at y = h2

(23)

Φ + γ∂Φ∂y = 0 at y = h1

through(13)Φ − γ∂Φ∂y = 1 at y = h2

(24)

where F is flux in wave frame; η∗
1
,η∗

2
,β and γ represent 1st-order slip parameter, 2nd-order slip parameter,

thermal slip parameter, and concentration slip parameter, respectively; h1 and h2 are thedimensionless
form of surfaces of peristaltic walls.

3. Exact Solution of Problem

Exact solution of Equation (19) satisfying boundary conditions (22) can be deduced as:
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Ψ = 1
L∞

(
2 cosh((h1 − h2)m)

(
(−h1 − h2 + 2y)

(
Fη1 m2 + 1

)
− η2 m2(F + h1 − h2)

)
+2(η2 m2(F− h2)(cosh(m(y− h1)) + cosh(m(y− h2)) − 1) − Fη1 m(sinh(m(y− h1))

+sinh(m(y− h2))) + F cosh(m(y− h1)) − F cosh(m(y− h2)) + h1(η2 m2(cosh(m(y− h1))

+ cosh(m(y− h2)) − 1) − η1 m(sinh(m(y− h1)) + sinh(m(y− h2))) + cosh(m(y− h1))

− cosh(m(y− h2)) + 1) + h2(η1 m(sinh(m(y− h1)) + sinh(m(y− h2))) − cosh(m(y− h1))

+ cosh(m(y− h2)) + 1) − 2y) + m(h1 + h2 − 2y)(Fη2
2
m4 − η1

(
Fη1 m2 + 2

)
−F)sinh((h1 − h2)m),

(25)

where m = M cos Θ, η1 =
η∗

1
(1+λ1 )

,η2 =
η∗

1
(1+λ1 )

and L∞ is a function of x defined in the Appendix A.

Now making use of Equation (25) in Equation (20), the exact solution of Equation (20) is derived as:

θ =
m2PrEc(F+h1−h2)

2

L0

(
2
(
2m2y2(cosh((h1 − h2)m) − 1) + cosh(m(−h1 − h2 + 2y))

)
+m(η1(η1m(4m2y2(cosh((h1 − h2)m) + 1) − cosh(2m(y− h1)) − cosh(2m(y− h2))

−2 cosh(m(−h1 − h2 + 2y))) + 2(4m2y2sinh((h1 − h2)m) + sinh(2m(y− h1))

−sinh(2m(y− h2)))) + η
2
2
m3(−(2(2m2y2(cosh((h1 − h2)m) + 1)

+ cosh(m(−h1 − h2 + 2y))) + cosh(2m(y− h1)) + cosh(2m(y− h2))))

+2η2m(η1m(sinh(2m(y− h1)) + sinh(2m(y− h2)) + 2sinh(m(−h1 − h2 + 2y)))
− cosh(2m(y− h1)) + cosh(2m(y− h2)))) − cosh(2m(y− h1))

− cosh(2m(y− h2))) + A1 y + A0 ,

(26)

where A0 ,A1 are functions of x and their values are computed by means of Equation (23) as:

A0 = 1
8(2β+h1−h2) (λ1+1)

(8(β+ h1) (λ1 + 1)+
1

L5
(m2EcPr(F + h1 − h2)

2L9 L6
2 − 2m2EcPrL11(β− h2) (F + h1 − h2)

2L6 L4

+m2EcPr(F + h1 − h2)
2L10L4

2)),

(27)

A1 =
4m4EcPr(F+h1−h2)

2

8(λ1+1) (2β+h1−h2) L8

(
η2

2
(h1 + h2)m4(2β+ h1 − h2) (cosh((h1 − h2)m) + 1)

−2(h1 + h2) (2β+ h1 − h2)(η1m cosh( 1
2 (h1 − h2)m) + sinh( 1

2 (h1 − h2)m))
2

−4η2 cosh( 1
2 (h1 − h2)m)(2βm cosh((h1 − h2)m) + sinh((h1 − h2)m))

(η1m cosh(((h1 − h2)m)) + sinh( 1
2 (h1 − h2)m))) − 8(λ1+1)

8(λ1+1) (2β+h1−h2)
.

(28)

With the help of Equation (26), exact solution of the concentration profile in Equation (21) is
concluded as:

Φ =
m2PrScSrEc(F+h1−h2)

2

L0

(
−2(2m2y2(cosh((h1 − h2)m) − 1) + cosh(m(−h1 − h2 + 2y)))

+m(η1(η1 m(2(cosh(m(−h1 − h2 + 2y)) − 2m2y2(cosh((h1 − h2)m) + 1)) + cosh(2m(y− h1))

+ cosh(2m(y− h2))) − 2(4m2y2sinh((h1 − h2)m) + sinh(2m(y− h1)) − sinh(2m(y− h2))))

+η2
2
m3(2(2m2y2(cosh((h1 − h2)m) + 1) + cosh(m(−h1 − h2 + 2y))) + cosh(2m(y− h1))

+ cosh(2m(y− h2))) − 2η2m(η1 m(sinh(2m(y− h1)) + sinh(2m(y− h2))

+2sinh(m(−h1 − h2 + 2y))) − cosh(2m(y− h1)) + cosh(2m(y− h2))))

+ cosh(2m(y− h1)) + cosh(2m(y− h2))) + A3 y + A2

(29)

where A2 ,A3 are functions of x and their values are computed by means of Equation (24) as:

A2 = 1
8(2γ+h1−h2) (λ1+1)

(8(γ+ h1) (λ1 + 1) + 1
L5

(
m2PrScSrEc(F + h1 − h2)

2L2L4
2

+m2PrScSrEc(F + h1 − h2)
2L1L2

6
− 2m2PrScSrEcL7(F + h1 − h2)

2L3L4))
(30)
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A3 =
4m4PrScSrEc(F+h1−h2)

2

8(λ1+1) (2γ+h1−h2) L8

(
η2

2
(h1 + h2)m4(2γ+ h1 − h2) (−(cosh((h1 − h2)m) + 1))

+2(h1 + h2) (2γ+ h1 − h2)(η1
m cosh( 1

2 (h1 − h2)m) + sinh( 1
2 (h1 − h2)m))

2

+4η2 cosh( 1
2 (h1 − h2)m)(2γm cosh((h1 − h2)m) + sinh((h1 − h2)m))

(η1 m cosh( 1
2 (h1 − h2)m) + sinh( 1

2 (h1 − h2)m))) − 8(λ1+1)
8(λ1+1) (2γ+h1−h2)

.

(31)

It should be noted that L0 − L11 appeared in Equation (26) through (31) and are functions of x
defined in the Appendix A.

4. Different Wave Shapes

Non-dimensional expressions for six considered wave forms are given as [43]. Expressions for
sinusoidal, multisinsoidal, triangular, square, trapezoidal and sawtooth waves are derived from the
Fourier series.

Sinusoidal wave:

h1(x) = 1 + kx + a sin 2πx, h2(x) = −d− kx− b sin(2πx + ϕ)

Multisinsoidal wave:

h1(x) = 1 + kx + a sin 2nπx, h2(x) = −d− kx− b sin(2nπx + ϕ)

Triangular wave:

h1(x) = 1 + kx + a
[

8
π3

∞∑
m = 1

(−1)m+1

(2m−1)2 sin(2π(2m− 1) x)
]

h2(x) = −d− kx− b
[

8
π3

∞∑
m = 1

(−1)m+1

(2m−1)2 sin(2π(2m− 1) x + ϕ)
]

Trapezoidal wave:

h1(x) = 1 + kx + a
[

32
π2

∞∑
m = 1

sin π8 (2m−1)

(2m−1)2 sin(2π(2m− 1) x)
]

h2(x) = −d− kx− b
[

32
π2

∞∑
m = 1

sin π8 (2m−1)

(2m−1)2 sin(2π(2m− 1) x + ϕ)
]

Square wave:

h1(x) = 1 + kx + a
[

4
π

∞∑
m = 1

(−1)m+1

(2m−1) cos(2(2m− 1)πx)
]

h2(x) = −d− kx− b
[

4
π

∞∑
m = 1

(−1)m+1

(2m−1) cos(2(2m− 1)πx + ϕ)
]

Sawtooth wave:

h1(x) = 1 + kx + a
[

8
π3

∞∑
m = 1

sin(2πmx)
m

]
h2(x) = −d− kx− b

[
8
π3

∞∑
m = 1

sin((2πmx)+ϕ)
m

]
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5. Special Cases

If η
1
= η2 = β = γ = k = 0, results of Nadeem and Akram [24] can be recovered as a special

case for present study. In addition to the vanishing of these values and in absence of heat and mass
transfer, the following results can be obtained as further special cases:

• Kothandapani and Srinivas [26], when Θ = α = 0,
• Srinivas and Pushparaj [30], for Θ = λ1 = 0 and
• Mishra and Rao [42], at Θ = M = α = λ1 = 0.

6. Results and Discussion

In the proceeding section, numerical results of current problems are conferred through
graphs. Mathematica software is utilized to analyze expressions for pressure gradient and pressure
rise numerically.

Figures 1–4 are displayed to observe behaviour of pressure rise for diverse values of Jeffrey
parameter λ1 , non-uniform parameter k, Reynolds number Re and inclination angle Θ. It is noted from
Figure 1; Figure 2 that behaviour of pressure rise decreases in retrograde pumping (Δp > 0, Q < 0),
peristaltic pumping (Δp > 0, Q > 0) and free pumping (Δp = 0) regions with an increase in λ1 and k,
whereas the behaviour of pressure rise is quite opposite in the co-pumping region (Δp < 0, Q > 0).
In this region, with an increase in λ1 and k, pressure rise increases. Figure 3 presents the behaviour
of pressure rise for diverse values of Re. From this figure, we depicted that pressure rise increases
in all pumping regions with an increase in values of Re. It is shown from Figure 4 that in the
retrograde pumping (Δp > 0, Q < 0) region, pressure rise increases with an increase in Θ, whereas in
the co-pumping region (Δp < 0, Q > 0), behaviour of pressure rise decreases with an increase in Θ.

Figure 1. Variation of Δp with Q for different values of λ1 for fixed a = 0.7, α = 0.2, b = 0.7, d = 1.5,
Θ = π

6 , M = 0.5, Re = 0.4, ϕ = π
4 , Fr = 0.6, η1 = 0.3, η2 = 0.4, k = 0.5.

302



Coatings 2020, 10, 30

Figure 2. Variation of Δp with Q for different values of k for fixed a = 0.7, α = 0.2, b = 0.7, d = 1.5,
Θ = π

6 , M = 0.5, Re = 0.4, ϕ = π
4 , Fr = 0.6, η2 = 0.4, η1 = 0.5, λ1 = 0.1.

Figure 3. Variation of Δp with Q for different values of Re for fixed a = 0.7, α = 0.2, b = 0.7, d = 1.5,
Θ = π

6 , λ1 = 0.4, M = 0.5, ϕ = π
4 , Fr = 0.6, η1 = 0.3, η2 = 0.4, k = 0.5.

Figure 4. Variation of Δp with Q for different values of Θ for fixed a = 0.7, α = 0.2, b = 0.7, d = 1.5,
λ1 = 0.7, M = 1, R = 0.3, ϕ = π

4 , Fr = 0.6, η1 = 0.3, η2 = 0.4, k = 0.5.

Figures 5–8 are plotted in order to notice the behaviour of pressure gradient for various values of
α, Jeffrey parameter λ1 , Hartmann number M and non-dimensional slip parameters η1 and η2 . It is
illustrated that for x ∈ [0, 0.2] and x ∈ [0.8, 1], the pressure gradient is small so that flow can easily
pass without the compulsion of a large pressure gradient, whereas in region x ∈ [0.2, 0.8], the pressure
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gradient increases with an increase in α, and it decreases with an increase in λ1 , M, η1 and η2 , so
more pressure gradient is necessary to maintain the flux to pass. Figure 9 shows the behaviour of the
pressure gradient for diverse wave forms. It has been observed from Figure 9 that pressure gradient is
maximum for square waves.

Figure 5. Variation of dp/dx with x for different values of α for fixed a = 0.7, b = 0.7, d = 1.5,
Fr = 0.6, Θ = π

3 , M = 0.5, Re = 0.4, ϕ = π
4 , η1 = 0.4 η2 = 0.5, λ1 = 0.3, k = 0.1, Q = 1.

Figure 6. Variation of dp/dx with x for different values of λ1 for fixed a = 0.7, α = 0.3, b = 0.7,
d = 1.5, Θ = π

3 , Re = 0.4, ϕ = π
4 , Fr = 0.6, η

1
= 0.5, η2 = 0.4, k = 0.1, M = 0.5, Q = 0.8..
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Figure 7. Variation of dp/dx with x for different values of M for fixed a = 0.7, α = 0.3, b = 0.5,
d = 1.8, Θ = π

3 , Re = 0.4, ϕ = π
4 , Fr = 0.6, η1 = 0.5, η2 = 0.4, k = 0.5, λ1 = 0.1, Q = 1.

Figure 8. Variation of dp/dx with x for different values of η1 and η2 for fixed a = 0.7, α = 0.2, b = 0.7,
d = 1.5, Fr = 0.6, Θ = π

3 , M = 0.5, Re = 0.4, ϕ = π
4 , λ1 = 0.3, k = 0.1, Q = 1.
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Figure 9. Cont.
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Figure 9. Variation of dp/dx with x for different wave forms for fixed a = 0.9, α = 0.3, b = 0.1,
d = 2, Θ = π

3 , M = 0.5, Re = 0.4, ϕ = π
4 , Fr = 0.6, η1 = 0.5, η2 = 0.4, λ1 = 0.5, k = 0.1.

The behaviour of temperature profiles for diverse values of Ec,λ1 and Pr are shown in Figures 10–12.
It has been observed from Figure 10 that the temperature profile increases with an increase in Ec.
This phenomena is physically valid as Ec shows a direct connection with temperature profile. Figure 11
depicts variation of the temperature profile for diverse values of λ1 . It has been observed from Figure 11
that the temperature profile decreases with an increase in λ1 . It has been observed from Figure 12
that the temperature profile increases with an increase in values of Pr. This happens due to the direct
relation of Pr with the temperature profile.

Figures 13–15 demonstrate theconcentration profile for diverse values of Ec, λ1 , Sr and Sc. It has
been observed from Figure 13, Figure 14 that concentration profiles show opposite behaviour in
comparison with the temperature profile. This observable fact physically holds as the temperature
profile shows its inverse relationship with the concentration profile. It has been observed from
Figure 13 that the concentration profile decreases with an increase in values of Ec. It has been depicted
from Figure 14 that with an increase in λ1 that the concentration profile increases. Figure 15 shows
the concentration profile for diverse values of Sr and Sc. It has been shown in Figure 15 that the
concentration profile decreases with an increase in Sr and Sc.

Figure 10. Temperature profile for different values of Ec for fixed a = 0.5, b = 1.2, d = 1.5, ϕ = π
4 ,

β = 0.0009, η1 = 0.009, η2 = 0.001, k = 0.2, λ1 = 0.2, M = 0.1, Pr = 1, Q = 4, x = 1.

306



Coatings 2020, 10, 30

Figure 11. Temperature profile for different values of λ1 for fixed a = 0.5, b = 1.2, d = 1.5, ϕ = π
4 ,

β = 0.0009, η1 = 0.009, η2 = 0.001, k = 0.2, M = 0.1, Pr = 1, Q = 4, Ec = 0.2, x = 1.

Figure 12. Temperature profile for different values of Pr for fixed a = 0.5, b = 1.2, d = 1.5, ϕ = π
4 ,

β = 0.0009, η1 = 0.009, η2 = 0.001, λ1 = 1, k = 0.2, M = 0.1, Q = 4, Ec = 0.2, x = 1.

Figure 13. Concentration profile for different values of Ec for fixed a = 0.5, b = 1.2, d = 1.5, ϕ = π
4 ,

γ = 0.0009, η1 = 0.009, η2 = 0.001, k = 0.2, λ1 = 0.2, M = 0.1, Pr = 1, Q = 4, Sc = 0.3,
Sr = 0.4, x = 1.
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Figure 14. Concentration profile for different values of λ1 for fixed a = 0.5, b = 1.2, d = 1.5, ϕ = π
4 ,

γ = 0.0009, η1 = 0.009, η2 = 0.001, k = 0.2, M = 0.9, Pr = 1, Q = 5, Sc = 0.6, Sr = 0.4,
Ec = 0.8, x = 1.

Figure 15. Concentration profile for different values of Sr and Sc for fixed a = 0.5, b = 1.2, d = 1.5,
ϕ = π

4 , γ = 0.0009, η1 = 0.009, η2 = 0.001, λ1 = 0.9, k = 0.2, M = 0.8, Pr = 0.5, Q = 5,
Ec = 0.8, x = 1.

In addition, an interesting observable fact in peristaltic flow is trapping. This is basically a pattern
of an internally circulating bolus of fluid via closed stream lines. The trapping phenomena is discussed
for different values of λ1 , M, η1 and η2 . It has been observed from Figures 16–18 that the size of the
trapping bolus decreases with an increase in values of λ1 , M, η1 and η2 . Figure 19 shows the behaviour
of stream lines for diverse wave forms. It has been observed that in all considered wave forms that the
trapped bolus increases in size and its size is smaller in the case of the triangular wave when compared
with the other three wave forms. Figure 20 shows comparison of the present work with existing
literature. It is observed in this figure that the exact solution of the present work and existing literature
satisfies the boundary conditions. Moreover, the magnitude value of the velocity profile is maximum
in the case of the present work and Nadeem and Akram [24]. In order to show the comparison of the
present work with existing literature in tabular form, Table 1 is constructed.
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Table 1. Shows the comparison of the present work with existing literature in tabular form.

y Present Work
Nadeem

andAkram [24]
Kothandapani and

Srinivas [26]
Srinivas and

Pushparaj [30]
Mishra and

Rao [42]

−1.109 −1.000 −1.000 −1.000 −1.000 −1.000
−1.009 −0.932753 −0.714278 −0.678228 −0.757937 −0.862651
−0.909 −0.8743 −0.505606 −0.459713 −0.565103 −0.736612
−0.809 −0.825682 −0.352378 −0.310456 −0.410812 −0.621188
−0.709 −0.785355 −0.239918 −0.208522 −0.287568 −0.516378
−0.609 −0.752035 −0.157452 −0.138929 −0.189381 −0.422183
−0.509 −0.724664 −0.097082 −0.0914497 −0.11148, −0.338602
−0.409 −0.702372 −0.0530242 −0.0591067 −0.0500785 −0.265636
−0.309 −0.684449 −0.0210585 −0.0371466, −0.00219338 −0.203285
−0.209 −0.670326 0.00187701 −0.0223419 0.0345026 −0.151548
−0.109 −0.659554 0.0179793 −0.0125168 0.0617927 −0.110426
−0.009 −0.65179 0.0287909 −0.00622739 0.081003 −0.0799192
0.091 −0.646787 0.0353474 −0.00254937 0.0930671 −0.0600266
0.191 −0.644387 0.0382767 −0.000942165 0.0985713 −0.0507487
0.291 −0.644513 0.0378597 −0.00116958 0.0977831 −0.0520854
0.391 −0.647169 0.0340561 −0.00326504 0.0906641 −0.0640367
0.491 −0.65244 0.0265019 −0.00753651 0.0768684 −0.0866028
0.591 −0.660492 0.0144732 −0.0146117 0.0557255 −0.119783
0.691 −0.671583, −0.00318205 −0.0255305 0.0262081 −0.163579
0.791 −0.686065 −0.0281551 −0.0418976 −0.0131183 −0.217989
0.891 −0.704397 −0.0628381 −0.0661183 −0.0641648 −0.283014
0.991 −0.727164 −0.110553 −0.101752 −0.129412 −0.358653
1.091 −0.755089 −0.175871 −0.154037 −0.212031 −0.444907
1.191 −0.789059 −0.265049 −0.230655 −0.316035 −0.541775
1.291 −0.830155 −0.386629 −0.342868 −0.446481 −0.649259
1.391 −0.879684 −0.552257 −0.507167 −0.609706 −0.767357
1.491 −0.939219 −0.777798 −0.747697 −0.813642 −0.896069
1.591 −1.000 −1.000 −1.000 −1.000 −1.000

Figure 16. Stream lines for different values of λ1 . (a) for λ1 = 0.1, (b) for λ1 = 1.6. The other
parameters are a = 0.7, b = 0.7, d = 1, Θ = π

5 , M = 2.2, ϕ = 0.01, η1 = 0.009, η2 = 0.001,
k = 0.1, Q = 1.5.
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Figure 17. Stream lines for different values of M. (a) for M = 2.2. (b) for M = 2.54. The other
parameters are a = 0.7, b = 0.7, d = 1, Θ = π

5 , M = 2.2, ϕ = 0.01, η1 = 0.009, η2 = 0.001,
λ1 = 1, k = 0.1, Q = 1.5.

Figure 18. Stream lines for different values of η1 and η2.(a) for η1 = 0.01 and η2 = 0.001,(b) for
η1 = 0.09 and η2 = 0.002. The other parameters are a = 0.7, b = 0.7, d = 1, Θ = π

5 , M = 1.8,
ϕ = 0.01, λ1 = 1.2, k = 0.1, Q = 1.5.

 
(a) (b) 

Figure 19. Cont.
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(c) (d) 

 
(e) 

Figure 19. Stream lines fordifferent wave forms. (a) for multisinsoidal wave, (b) for trapezoidal wave,
(c) for triangular wave, (d) for square wave, (e) for sawtooth wave, for fixed a = 0.9, α = 0.3, b = 0.1,
d = 2, Θ = π

3 , M = 0.5 Re = 0.4, ϕ = π
4 , Fr = 0.6, η1 = 0.5, η2 = 0.4, λ1 = 0.5, k = 0.1.

Figure 20. Comparison of the present work with existing literature.

7. Conclusions

In this research, we have investigated the effect of velocity second slip on non-Newtonian fluids
by heat and mass transfer in the presence of an inclined magnetic field over an inclined tapered
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asymmetric channel. Governing equations of motion, energy and concentration were simplified via
assumptions of long wavelength approximation. Then, exact solutions of reduced equations were
calculated. Graphical results were plotted and reported for various involved physical parameters of
concern. The main results can be typified as:

• The results presented in [24,26,30,42] were considered as special cases of the present work.
• The pressure rise decreases in retrograde, peristaltic and free pumping regions and increases

in co-pumping regions, with an increase in relaxation to retardation times λ1 and non-uniform
parameter k.

• The pressure rise increases in all pumping regions with an increase in Reynolds number Re.
• The pressure gradient increases with an increase in α and decreases with an increase in λ1 ,

Hartmann number M, slip parameter η1 and η2 .
• The temperature profile increases with an increase in values of Eckret number Ec and decreases

with an increase in relaxation to retardation times λ1 .
• The concentration profile decreases with an increase in Soret number Sr and Schmidt number Sc.
• The size of the trapping bolus decreases with an increase in values of relaxation to retardation

times λ1 , Hartmann number M, slip parameter η1 and η2 .
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Nomenclature

U , V Velocities in X and Y directions in fixed frame Fr Froude Number
P Pressure Sr Soret number
a1 and b1 amplitudes of waves d1 + d2 width of channel
k∗(k∗ << 1) non-uniform parameter λ wavelength
λ1 ratio of relaxation to retardation times λ2 retardation time
b amplitude of the wave Sc Schmidt number
Re Reynolds number Ec Eckret number
δ dimensionless wave number Pr Prandtl number
M Hartmann number μ viscosity
Q volume flow rate Ψ Stream function

ν kinematic viscosity Φ
concentration of fluid in
dimensionless form

θ temperature of fluid in dimensionless form C Concentration of fluid
σ electrical conductivity KT thermal diffusion ratio
K1 thermal conductivity Cp specific heat
Tm mean temperature Dm coefficient of mass diffusivity
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Appendix A

L∞ = 4
(
η1 (h1 − h2 )m2 − 1

)
cosh((h1 − h2 )m) − 2m(2η1 + h1

(
η2

2
m4 − η2

1
m2 − 1

)
+ h2 (−η2

2
m4

+η2
1
m2 + 1))sinh((h1 − h2 )m) + 4

L0 = 8(λ1 + 1)(2
(
η1 (h2 − h1 )m2 + 1

)
cosh((h1 − h2 )m) − 2 + m(2η1 + h1

(
η2

2
m4 − η2

1
m2 − 1

)
+h2

(
−η2

2
m4 + η2

1
m2 + 1

)
)sinh((h1 − h2 )m))2

L1 = −2m2(γ+ h1 ) h2
2
+

(
2h1 (4γ+ h1 )m2 + 2γ(2mγ+ sinh(2mh1 ))m + cosh(2mh1 )

)
h2

−γ(cosh(2mh1 ) + cosh(2mh2 ) + 2mγ(sinh(2mh1 ) − sinh(2mh2 ))) − h1 (2γ(2γ+ h1 )m2

−2γsinh(2mh2 )m + cosh(2mh2 ))

L2 = 2m2(γ+ h1 ) h2
2
+

(
−2h1 (4γ+ h1 )m2 + 2γ(sinh(2mh1 ) − 2mγ)m + cosh(2mh1 )

)
h2

−γ(cosh(2mh1 ) + cosh(2mh2 ) + 2mγ(sinh(2mh1 ) − sinh(2mh2 ))) + h1 (2γ(2γ+ h1 )m2

+2γsinh(2mh2 )m− cosh(2mh2 ))

L3 = m(sinh(mh1 ) + sinh(mh2 )) η1 + cosh(mh2 )
(
m2η2 − 1

)
+ cosh(mh1 )

(
η2 m2 + 1

)
L4 =

(
m(cosh(mh1 ) + cosh(mh2 )) η1 + sinh(mh2 )

(
m2η2 − 1

)
+ sinh(mh1 )

(
η2 m2 + 1

))
L5 = (2 cosh(m(h1 − h2 ))

(
(h2 − h1 ) η1 m2 + 1

)
+ msinh(m(h1 − h2 ))(2η1 + h1 (η

2
2
m4 − η2

1
m2

−1) + h2

(
−η2

2
m4 + η2

1
m2 + 1

)
) − 2)2

L6 = m(sinh(mh1 ) + sinh(mh2 )) η1 + cosh(mh2 )
(
m2η2 − 1

)
+ cosh(mh1 )

(
η2 m2 + 1

)
L7 = 2mγ cosh(2mh2 ) (γ+ h1 ) − sinh(2mh2 ) (γ+ h1 ) − (2mγ cosh(2mh1 ) + sinh(2mh1 )) (γ− h2 )

L8 = (2
(
η1 (h2 − h1 )m2 + 1

)
cosh((h1 − h2 )m) + m(2η1 + h1

(
η2

2
m4 − η2

1
m2 − 1

)
+ h2 (−η2

2
m4

+η2
1
m2 + 1))sinh((h1 − h2 )m) − 2)2

L9 = 2m2(β+ h1 ) h2
2
−

(
2h1 (4β+ h1 )m2 + 2β(2mβ+ sinh(2mh1 ))m + cosh(2mh1 )

)
h2

+β(cosh(2mh1 ) + cosh(2mh2 ) + 2mβ(sinh(2mh1 ) − sinh(2mh2 ))) + h1 (2β(2β+ h1 )m2

−2βsinh(2mh2 )m + cosh(2mh2 ))

L10 = −2m2(β+ h1 ) h2
2
+

(
2
(
2β2 + 4h1β+ h2

1

)
m2 − 2βsinh(2mh1 )m− cosh(2mh1 )

)
h2

+β(cosh(2mh1 ) + cosh(2mh2 ) + 2mβ(sinh(2mh1 ) − sinh(2mh2 ))) + h1 (−2β(2β
+h1 )m

2 − 2βsinh(2mh2 )m + cosh(2mh2 ))
L11 = −2mβ cosh(2mh2 ) (β+ h1 ) + sinh(2mh2) (β+ h1 ) + (2mβ cosh(2mh1 ) + sinh(2mh1 )
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Abstract: In the present exploration, our objective is to investigate the importance of Hall current
coatings in the establishment of Cattaneo–Christov (CC) heat flux model in an unsteady aqueous-based
nanofluid flow comprising single (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes (CNTs)
amid two parallel rotating stretchable disks. The novelty of the presented model is strengthened
with the presence of homogeneous-heterogeneous (HH) reactions and thermal stratification effects.
The numerical solution of the system of coupled differential equations with high nonlinearity is
obtained by applying the bvp4c function of MATLAB software. To corroborate the authenticity of
the present envisioned mathematical model, a comparison table is added to this study in limiting
case. An excellent harmony between the two results is obtained. Effects of numerous parameters on
involved distributions are displayed graphically and are argued logically in the light of physical laws.
Numerical values of coefficient of drag force and Nusselt number are also tabulated for different
parameters. It is observed that tangential velocity (function of rotation parameter) is increasing for
both CNTs. Further, the incremental values of thermal stratification parameter cause the decrease in
fluid temperature parameter.

Keywords: coatings; Hall current; Catttaneo-Christov heat flux; carbon nanotubes; homogeneous–
heterogeneous reactions

1. Introduction

Nanofluids consist of solid particles called nanoparticles with higher thermal characteristics
suspended in some base fluid. Moreover, convective heat transfer through nanoparticles has motivated
many researchers for its industrial applications, pharmaceutical processes, domestic refrigerators,
chillers, heat exchangers, electronic cooling system, and radiators, etc., [1]. Nanofluids are considered as
the finest coolants for its various industrial applications. Nanofluids exhibit promising thermos-physical
properties e.g., they have small viscosity and density and large thermal conductivity and specific heat [2].
As far as transportation of energy is concerned, the ideal features of nanofluids are the high thermal
conduction and low viscosity [3]. Choi and Eastman [4] primarily examined the upsurge in thermal
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conductivity by submerging nanoparticles into the ordinary fluid. Because of these thermos-physical
characteristics, nanofluids are considered as the finest coolants that can work at various temperature
ranges [5]. Sheikholeslami et al. [6] found a numerical solution ferrofluid flow under the influence of
applied magnetic field in a hot elliptic cylinder. It is examined by them that strong Lorentz force is
a source in declining the temperature of the fluid. The water-based nanofluid flow with numerous
magnetite nanoparticles amid two stretchable rotating disks is numerically studied by Haq et al. [7].
Khan et al. [8] numerically addressed the water and ethylene glycol based nanofluid flow containing
copper nanoparticles with suction/injection effect between parallel rotating stretchable disks. Saidi
and Tamim [9] examined the pressure drop and heat transfer properties of nanofluid flow induce
amid parallel stretchable disks in rotation by considering thermophoresis effects. Hayat et al. [10]
also found a series solution of Jeffrey nanofluid flow between two coaxial rotating stretchable disks
having convective boundary condition. Pourmehran et al. [11] numerically simulated the nanofluid
flow between coaxial stretchable rotating disks.

Molecules of carbon atoms arranged in a cylindrical shape to form a structure called carbon
nanotubes (CNTs). This arrangement of the molecule may be by rolling up of single sheet or by multiple
sheets of graphene [12]. The novel properties of CNTs are light weight and high thermal conductivity,
which make them potentially useful. CNTs are not dangerous to the environment as they are composed
of carbon atoms [13]. The CNTs are the most desirous materials of the twenty-first century. Modern
applications of CNTs are in microfabrication technique, pancreatic cancer test, and tissue engineering,
etc., [14]. The flow of nanofluid containing both types CNTs with thermal radiation and convective
boundary condition effects is examined analytically by Imtiaz et al. [15]. The water-based nanofluid
flow containing CNTs of both categories under the impact of magneto-hydrodynamics (MHD) amid
two parallel disks is studied by Haq et al. [16]. Mosayebidorcheh et al. [17] did heat transfer analysis
with thermal radiation impacts of CNTs-based nanofluid squeezing flow between two parallel disks
numerically via the least square method. Effects of thermal radiation in a magnetic field comprising
both types of CNTs aqueous based nanofluid flow by two rotating stretchable disks are debated by
Jyothi et al. [18]. Transparent carbon nanotubes coating to obtain conductive transparent coating is
analyzed by Kaempgen [19]. Keefer et al. [20] studied carbon nanotube-coated electrodes to improve
the current electrophysiological techniques. Enzyme-coated carbon nanotube as a single molecule
biosensor was reported by Besteman et al. [21]. Some recent investigations featuring Carbon nanotubes
amalgamated fluid flow may be found in [22–30] and many therein.

Thermal energy transformation possesses significant importance in engineering applications such
as fuel cell efficiency, biomedical applications including cooling of electronic devices, heat conduction
in tissues, energy production, heat exchangers, and cooling towers etc., [31]. Classical Fourier law
of heat conduction was employed to describe the mechanism of heat transfer. But this model gives
parabolic energy equation that is medium encountered initial disturbance instantly which is called
“heat conduction paradox.” Cattaneo [32] tackled this enigma by introducing the time needed for the
conduction of heat via thermal waves at a limited speed which is known as thermal relaxation time.
The modification in Fourier law gives hyperbolic energy equation for temperature profile. Christov [33]
further inserted Oldroyd’s upper convective derivative to maintain material invariant formulation.
This upgraded model is known as Cattaneo- Christov heat flux model. The aqueous fluid flow by
two rotating disks with the impact of CC heat flux is studied by Hayat et al. [34]. Dogonchi et al. [35]
scrutinized the squeezed flow of nanofluid encompassing CC heat flux and thermal radiation effects.
Lu et al. [36] discussed the unsteady squeezing nanofluid flow between parallel disks comprising
CNTs with CC heat flux model and HH reactions. The recent advance studies on CC heat flux is done
by many researchers [37–40].

The aforementioned literature survey (Table 1) reveals that unsteady nanofluid flow containing
CNTs with CC heat flux under the influence of hall current between two rotating stretchable disks is
not yet discussed. Additional impacts like HH reactions and thermal stratification of the presented
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mathematical model may be considered as added features toward the novelty of the problem. The
problem is solved numerically by using the bvp4c function of MATLAB software.

Table 1. A comparison table depicting uniqueness of presented mathematical model.

Author
CC Heat

Flux
HH

Reactions
Nanofluid
with CNTs

Hall Effect
Thermal

Stratification
Rotating

Parallel Disks

Hayat et al. [10] × × × × × √
Imtiaz et al. [15] × × √ × × √
Hayat et al. [34]

√ × √ × × √
Lu et al. [36]

√ √ √ × × √
Present

√ √ √ √ √ √

(×) shows effect is absent and (
√

) shows the presence of effect.

2. Problem Formulation

Consider an axisymmetric unsteady MHD water base nanofluid flow between continuously
stretchable disks with hall current effect amid non-conducting rotating disks at z = 0 and z = h. The
disks rotate at constant angular velocities Ω1 and Ω2 about its axis. Magnetic field B0 that is uniformly
distributed is applied in the normal direction of the disks (Figure 1). Furthermore, the stretching rates
of the disks are a1 and a2. Temperature T2 = T0 +

Br
1−ct refers to the temperature of upper disk while

the disk’s temperature at z = h is T1 = T0 +
Ar

1−ct in a thermally stratified medium.

Figure 1. Schematic picture of the fluid flow.

For isothermal cubic autocatalysis, a model for homogeneous and heterogeneous reactions with
reactants as chemical species are A∗and B∗ and was proposed by Merkin and Chaudary [41] and is
given by:

A∗ + 2B∗ → 3B∗, rate = Kc = ab2, (1)

A∗ → B∗, rate = Ksa, (2)

The continuity equation is

∇.
→
V = 0, (3)
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The momentum equations are

∂u
∂t

+ (
→
V.∇)u =

−1
ρn f

p∗r +
μn f

ρn f
(∇2u) − σn f

ρn f

BO
2

1 + m2
(u−mv), (4)

∂v
∂t

+ (
→
V.∇)v =

μn f

ρn f
(∇2v) − σn f

ρn f

BO
2

1 + m2
(v + mu), (5)

∂w
∂t

+ (
→
V.∇)w =

−1
ρn f

p∗z +
μn f

ρn f
+ ∇2w, (6)

The relevant energy equation is

(ρCp)n f (
→
V.∇)T = −∇.

→
q , (7)

where T represents the temperature, Cp the specific heat and
→
q the heat flux. Heat flux in perspective

of Cattaneo–Christov expression is satisfied.

→
q + ε1(

∂
→
q
∂t

+
→
V.(∇→q ) −→q .(∇→V) + (∇.

→
V)
→
q ) − k∇T. (8)

Here, ε1 is the thermal relaxation time and k is the thermal conductivity. Utilizing the
incompressibility condition, we arrive at

→
q + ε1(

∂
→
q
∂t

+
→
V.(∇→q ) −→q .∇→V) − k∇T. (9)

Eliminating
→
q from Equations (9) and (7), we get

Tt + uTr + wTz + ε1(Ttt + utTr + 2uTtr + 2wTtz + wtTz + uurTr + wwzTz

+uwrTr + wTrTz + 2uwTtz + u2wrr + w2Tzz =
Kn f

(ρCp)n f

(
∇2T

)
. (10)

As
→
V = (u, v, w) is the velocity vector, we obtain the following governing equations after applying

the boundary layer theory:

ur +
u
r
+ wz = 0, (11)

ut + uur + wuz − v2

r
=
−1
ρn f

p∗r +
μn f

ρn f
(urr +

1
r

ur − u
r2 + uzz) −

σn f

ρn f

BO
2

1 + m2
(u−mv), (12)

vt + uvr + wvz +
uv
r

=
μn f

ρn f
(vrr +

1
r

vr − v
r2 + vzz) −

σn f

ρn f

BO
2

1 + m2
(v + mu), (13)

wt + uwr + wwz − v2

r
=
−1
ρn f

p∗z +
μn f

ρn f

(
wrr +

1
r

wr + wzz

)
, (14)

Tt + uTr + wTz + ε1(Ttt + utTr + 2uTtr + 2wTtz + wtTz + uurTr + wwzTz

+uwrTr + wTrTz + 2uwTtz + u2wrr + w2Tzz =
Kn f

(ρCp)n f

(
Trr +

1
r Tr + Tzz

)
, (15)

at + uar + waz = DA

(
arr +

1
r

ar + azz

)
−Kcab2, (16)

bt + ubr + wbz = DB

(
brr +

1
r

br + bzz

)
+ Kcab2. (17)
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The associated boundary conditions are

u = ra1
1−ct , v = rΩ1

1−ct , w = 0, T = T1(r) = T0 +
Ar

1−ct ,
DA
∂a
∂z = Ksa, DB

∂b
∂z = −Ksa, at z = 0,

(18)

u =
ra2

1− ct
, v =

rΩ2

1− ct
, w = 0, T = T2(r) = T0 +

Br
1− ct

, a→ a0 , b→ 0, z = h. (19)

Here, T0 is the reference temperature. A and B are the dimensional constant with dimension
[T · L−1].

Thermo-physical properties of CNTS are represented in mathematical form as follows:

A =
μn f

μ f
=

1

(1−φ)2.5 , (20)

B =
ρn f

ρ f
= (1−φ) + ρCNT

ρ f
φ, (21)

C =
(ρCp)n f

(ρCp) f
= (1−φ) + (ρCp)CNT

(ρCp) f
φ, (22)

D =
kn f

k f
=

(1−φ) + 2φ kCNT
kCNT−k f

ln
kCNT+k f

2k f

(1−φ) + 2φ
k f

kCNT−k f
ln

kCNT+k f
2k f

, (23)

σn f

σ f
= 1 +

3φ
(
σCNT
σ f
− 1

)
(
σCNT
σ f

+ 2
)
−

(
σCNT
σ f
− 1

) . (24)

Table 2 represents the thermos-physical characteristics of CNTs and H2O.

Table 2. Thermo-physical properties of water and carbon nanotubes.

Physical Properties Base Fluid (H2O) MWCNTs SWCNTs

Cp(
J

kg k) 4179 796 425

ρ
(

kg
m3

)
997.1 1600 2600

k
(

W
mk

)
0.613 3000 6600

Following transformation are used to convert the above nonlinear partial differential equations to
dimensionless ordinary differential equations.

u = rΩ1
1−ct f ′(η), v = rΩ1

1−ct g(η), w = 2hΩ1√
1−ct

f (η),θ = T−T2
T1−To

,

p∗ = ρΩ1ν

(1−ct)2

(
P(η) + r2

2h2 ε
)
, η = z

h
√

1−ct
, a = c0ϕ̃, b = c0̃l.

(25)

Equation (11) is satisfied automatically, Equations (12) to (17) are transformed into the following
form:

A1

(
f ′ +

η

2
f ′′

)
+ Re

(
f ′2 − 2 f f ′′ − g2

)
+ ε− σn f

σ f

MRe( f ′ −mg)
B(1 + m2)

=
A
B

f ′′′, (26)

B
A

Re
[(

g +
1
2
ηg′

)
A1 + 2( f ′g− f g′)

]
− σn f

σ f

MRe(g + m f ′)
A(1 + m2)

= g′′ , (27)

∂p∗
∂z

= (A1( f + η f ′) − 4 f f ′)B(1− ct)Re− 2
(1− ct)

A
f ′′ , (28)
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A1
(
s + θ+ 1

2ηθ
′)+ (s + θ) f ′ − 2 fθ′ + γ[

(
s + θ+ 7

8ηθ
′)+

f ′
(

f ′ + 1
2η f ′′

)
(s + θ) + 2 f ′

(
s + θ+ 1

2ηθ
′)− 4 f

(
1
2ηθ

′′ + 3
2θ
′)+

( f + η f ′)θ′ + f ′2(s + θ) − 4
A1

f ′θ′ − 2 f f ′′ (s + θ) + 4
A1

f 2θ′′ − 4
A1

f f ′θ′

= D
C (

1
PrReθ

′′ + 1
Pr (s + θ)),

(29)

1
2
ηϕ̃′ − 2

A1
f ϕ̃′ − 1

Sc
ϕ̃′′ + k1ϕ̃l2 = 0, (30)

1
2
ηl̃′ − 2

A1
f l̃′ − δ

Sc
l̃′′ − k1ϕ̃l2 = 0, (31)

with transformed boundary conditions

f (0) = 0, f (1) = 0, f ′(0) = γ1, f ′(1) = γ2, g(0) = 1,
g(1) = Ω,θ(0) = 1− s,θ(1) = 0, P(0) = 0,

(32)

where

M =
σ f BO

2(1−ct)
ρ f

, A1 = c
Ω1

, γ1 = a1
Ω1

,γ2 = a2
Ω2

, Sc = h2c
DA

, Pr =
υ f (ρCp) f

k f
, Ω = Ω2

Ω1
,

k1 =
Kcc2

o (1−ct)
c , k2 =

ksh(1−ct)1/2

DA
δ = DB

DA
,γ = cε1

1−ct , D =
kn f
k f

, B =
(ρCp)n f

(ρCp) f
.

(33)

By assuming the chemical species alike, we take diffusion coefficient of both species equal, so that
δ = 1. And thus we have l̃(η) + ϕ̌(η) = 1, we get from Equations (30) and (31)

1
Sc
ϕ̃′′ − 1

2
ηϕ̃′ + 2

A1
f ϕ̃′ − k1(1− ϕ̃)2ϕ̃ = 0, (34)

ϕ̃′(0) = K2ϕ̃′(0), ϕ̃′(1)→ 1, (35)

Differentiating Equation (26), we get

A1

(3
2

f ′′ +
η

2
f ′′′

)
+ Re(2 f f ′′′ − 2gg′) − σn f

σ f

MRe( f ′′ −mg′)
B(1 + m2)

=
A
B

f ′′′′, (36)

3. Skin Friction and Local Nusselt Number

Shear stresses at lower disk in radial and tangential directions are τzr and τzθ

τzr = μn f uz|z=0 =
μ f rΩ1 f ′′ (0)

h(1−φ)2.5 , τzθ = μn f uz|z=0 =
μ f rΩ1g′(0)

h(1−φ)2.5 , (37)

The total shear stress is
τw =

(
τzr

2 + τzθ
2
)1/2

, (38)

Coefficients of drag force at z = 0, and z = h for the disk are

C f1 = τw |z=0

ρ f (rΩ1)
2 = 1

Rer(1−φ)2.5

[
( f ′′(0))2 + (g′(0))2

]1/2
,

C f2 =
τw |z=h

ρ f (rΩ2)
2 = 1

Rer(1−φ)2.5

[
( f ′′(1))2 + (g′(1))2

]1/2
,

(39)

Here, Rer represents local Reynolds number.
The dimensional form of Nu (the local Nusselt number) is

Nu =
kn f (ρcp) f

ρ f k f
, (40)
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By using transformation given in Equations (25), Equation (40) becomes

(1− ct)1/2Nu1 = −kn f

k f
θ′(0), (1− ct)1/2Nu2 = −kn f

k f
θ′(1), (41)

4. Numerical Method

In current model, MATLAB built-in-function bvp4c is used to solve coupled ordinary differential
equations (ODE’s) (Equations (26–36)) with mentioned boundary conditions (32). The computational
purpose of the infinite domain is restricted to η = 4 which is enough to indicate the asymptotic
behavior of the solution. The theme numerical scheme needs initial approximation with tolerance 10−6.
The initial taken estimation must meet the boundary conditions without interrupting the solution
technique. We obtain a system comprising three first-order differential equations given below:

f ′ = y2,
f ′′ = y3,
f ′′′ = y4

f ′′′′ = yy1

yy1 = B
A (A1

(
3
2 y3 +

η
2 y4

)
+ Re(2y1y4 − 2y5y6) − σn f

σ f

MRe(y3−my6)

B(1+m2)
),

g = y5,
g′ = y6,

yy2 = B
A Re

[(
y5 +

1
2 ηy6

)
A1 + 2(y2y5 − y1y6)

]
− σn f
σ f

MRe(y5+my2)

A(1+m2)
,

θ = y7,
θ′ = y8

yy3 = 1
D
C

1
PrRe− 4

A1
(y1)

2−2ηy1
(A1

(
s + y7 +

1
2ηy8

)
+ (s + y7)y2 − 2y1y8+

γ[
(
s + y7 +

7
8ηy8

)
+ y2

(
y2 +

1
2ηy3

)
(s + y7) + 2y2

(
s + y7 +

1
2ηy8

)
−

6y1y8 + (y1 + ηy2)θ′ + (y2)
2(s + y7) − 4

A1
y2y8 − 2y1y3(s + y7) − D

CPr (s + y7)),

(42)

With suitable boundary condition

y1(0) = 0, y2(0) = γ1, y5(0) = 1, y7(0) = 1− s,
y1(1) = 0, y2(1) = γ2, y5(1) = Ω, y7(1) = 0

(43)

5. Outcomes with Discussion

In this section the impact of different parameters on velocity and temperature profile, drag force
coefficient, and Nusselt number is described in the form of graphs and tables. In order to acquire
the required outcome we fix the different flow parameters such as M = 0.7, A1 = 0.5,γ1 = 0.1,
γ2 = 0.5, Sc = 1, Pr = 6.7,γ = 0.5, k1 = 0.1, Ω = 0.1.

5.1. Radial and Axial Velocity Profile

In Figures 2–9, the radial velocity f ′(η) and axial velocity profiles f (η) is depicted for Re,
parameters, scaled Stretching γ1 and γ2 and nanoparticle volume fraction φ. The solid line ( ) and
the dashed line (—-) represent the single wall carbon nanotubes and multiwall carbon nanotubes
respectively. Figures 2 and 3 show that the magnitude of radial f ′(η) and axial velocity f (η) reduces for
incremental value of Re. The fact is that for increasing values of Reynolds number causes the increase
in resistive forces which reduces the motion of fluid. Magnitude of f ′(η) and f (η) for multiwall carbon
nanotubes is higher as compared with single wall carbon nanotubes. f (η) takes on negative values
near the lower disks because upper disks are moving faster than the lower disks. Figure 4 depicts
that f ′(η) escalates in the vicinity of the lower disk and declines in the vicinity of the upper disks by
enhancing the value of γ1, while the behavior of f (η) remain same throughout the system as shown
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in Figure 5. But by the increase in the value of γ2, f ′(η) increases in the vicinity of the lower disks
and decreases in the vicinity of the upper disks, (see Figure 6), and f (η) shows decrease in magnitude
throughout the system, (see Figure 7). Figure 8 shows that f (η) reduces by the increase of nanoparticle
volume fraction and magnitude of f (η) is smaller for MWCNTs. f ′(η) is decreasing near the lower
disk and enhancing near the upper disks by increasing φ, while the amplitude of f ′(η) is higher for
MWCNTs than SWCNTs. This effect is shown in Figure 9.

Figure 2. Axial velocity profile f (η) for Re.

Figure 3. Radial velocity profile f ′(η) for Re.
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Figure 4. Radial velocity profile f ′(η) for γ1.

Figure 5. Axial velocity profile f (η) for γ1.

 
Figure 6. Radial velocity profile f ′(η) for γ2.
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Figure 7. Axial velocity profile f (η) for γ2.

 
Figure 8. Radial velocity profile f (η) for φ.

Figure 9. Axial velocity profile f ′(η) for φ.

5.2. Tangential Velocity Profile

Tangential velocity g(η) decreases by escalating the value of M because increasing magnetic field
exerts a retarding force which slows the motion of the particles within the fluid. Figure 10 depicts that
the tangential velocity has smaller magnitude for MWCNTs as compared to SWCNTs. Figure 11 depicts
that tangential velocity decreases for increasing value of A1 and its value is smaller for MWCNTs.
Figure 12 shows that as stretching rate increases at the upper disk it causes a decrease of tangential
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velocity. g(η) increases for incremental values of hall current parameter m and magnitude of tangential
velocity profile is more increasing for MWCNTs as compared with SWCNTs as shown in Figure 13.
Figure 14 depicts the relationship between Ω and g(η). It represents that the tangential velocity is an
escalating function of rotation parameter. Figures 15 and 16 depict that for increasing φ the amplitude
of g(η) increases and it decreases for increasing Reynolds number.

Figure 10. Tangential velocity profile for M.

 
Figure 11. Tangential velocity profile for A1.

Figure 12. Tangential velocity profile for γ2.
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Figure 13. Tangential velocity profile for m.

 
Figure 14. Tangential velocity profile for Ω.

Figure 15. Tangential velocity profile for Re.
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Figure 16. Tangential velocity profile for φ.

5.3. Dimensionless Temperature Distribution

The dimensionless temperature distribution for different values of relaxation parameter is depicted
for both MWCNTs and SWCNTs in Figure 17. The figure shows that higher rate of thermal relaxation
parameter causes the increase in temperature profile. Results shows that temperature profile is more
increasing for MWCNTs than SWCNTs. Figure 18 shows that temperature decreases by increasing
nanoparticle volume fraction and temperature profile shows more decreasing behavior for MWCNTS
as compared to SWCNTs. Effect of Reynolds number, Prandtl number, stratification parameter,
unsteadiness parameter A1, stretching parameter γ1 at lower disk on temperature profile is shown
in Figures 19–23. Results are plotted both for MWCNTs and MWCNTs. Figure 19 shows that for
positive values of Re there is an increase in temperature profile, and it shows that multi-walled carbon
nanotubes have higher temperature distribution for increasing Reynolds number as compared to
single-walled carbon nanotubes. Similarly, graph is plotted for negative values of Reynolds number. It
is revealed that on decreasing the value of Reynolds number, temperature profile also decreases and
shows more decreasing behavior for MWCNTs than SWCNTs. Figures 20–22 portray the variation of
temperature profile which decreases for incremental values of s, A1, and γ1 this decreasing behavior
is observed more for SWCNTs as compared with MWCNTs. Figure 23 depicts for increasing value
of Prandtl number temperature profile decreases. The decrease in temperature by augmentation of
Prandtl number is consistent with the physical expectation, as by increasing Prandtl number fluid
possesses lower thermal diffusivity which causes the thickness of thermal boundary layer to decrease.

Figure 17. Temperature profile for γ.
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Figure 18. Temperature profile for φ.

Figure 19. Temperature profile for Re.

Figure 20. Temperature profile for γ1.
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Figure 21. Temperature profile for A1.

Figure 22. Temperature profile for s.

Figure 23. Temperature profile for Pr.

5.4. Concentration Profile

Figure 24 demonstrate the analysis of concentration profile. For various estimates of homogeneous
reaction parameter k1 there is decay in concentration profile. Similar results are obtained for
heterogeneous reaction parameter k2 in Figure 25. Concentration field is observed for Schmidt
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number in Figure 26. As it is momentum to mass diffusivity ratio, so smaller the value of mass
diffusivity, stronger the value of Schmidt number, which causes the reduction of the concentration of
the fluid.

Figure 24. Concentration profile for k1.

Figure 25. Concentration profile for Sc.

Figure 26. Concentration profile for k2.
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Comparison of f ′′ (0) and g′(0) with Stewartson [42] for several estimates of Ω by considering all
extra terms as zero is depicted in Table 3. An excellent synchronization is achieved in this case. This
substantiates our mathematical model and presented results.

Table 3. Comparison of f ′′ (0) and g′(0) for numerous estimates of Ω with Stewartson [42].

Ω f ′′ (0) Present −g′(0) Present

−1.0 0.06666 0.06665 2.00095 2.00096
−0.8 0.08394 0.08394 1.80259 1.80259
−0.3 0.10395 0.10396 1.30442 1.30443
0.0 0.09997 0.09998 1.00428 1.00429
0.5 0.06663 0.06664 0.50261 0.50262

5.5. Drag Force Coefficient and Heat Transfer Rate

Influence of Hartmann number M, Hall current parameter m, stretching parameter γ1 and γ2, and
Reynolds number on Skin friction coefficients for MWCNTs and SWCNTs at both disks is portrayed
in Table 4. Skin coefficient friction decrease by increasing the value of Hall current parameter m and
Hartmann number M at lower and upper disk for both MWCNTs and SWCNTs, while increasing
behavior for Re and scaled stretching parameter γ1 for disk at z = 0 and stretching parameter γ2 for
the disk at z = h(t) for both MWCNTs and SWCNTs.

Table 4. Numerical values of drag force coefficient at lower and upper disk for SWCNTs and MWCNTs
when A1 = 0.5, Pr = 6.7, Ω = 0.5, S = 0.4, k1 = 0.1, k2 = 0.1, m = 0.5, Sc = 1.

m M Re γ1 γ2
SWCNTs

C1

MWCNTs
C1

SWCNTs
C2

MWCNTs
C2

0 0 – – – 5.03411 5.03457 6.04242 6.04063
– 0.5 – – – 5.02568 5.02466 6.04163 6.0397
– 1 – – – 5.01732 5.01486 6.04091 6.03888

0.5 0 – – – 5.03411 5.03457 6.04242 6.04063
– 0.5 – – – 5.02896 5.02852 6.04023 6.03805
– 1 – – – 5.02385 5.02253 6.03808 6.03553

0.5 0.5 0.5 – – 4.13561 4.14261 5.58341 5.59479
– – 1 – – 4.2427 4.48904 5.984181 6.19988
– – 1.5 – – 5.15702 6.33493 7.14381 8.20049
– – 0.1 0.1 – 2.94098 2.94399 4.87809 4.86666
– – – 0.2 – 3.60549 3.60836 5.22787 5.21623
– – – 0.1 0.6 2.94098 2.94399 4.87809 4.86666
– – – – 0.8 3.553583 3.56223 6.32921 6.31152

Table 5 is erected to depict the impact of numerous parameters on heat transfer rate. It is gathered
that rate of heat transfer is a decreasing function of unsteadiness parameter and Prandtl number at
lower disk for both MWCNTS and SWCNTs, while it is a decreasing function of Reynolds number at
lower disk and increasing function of Reynolds number at upper disk for both MWCNTs and SWCNTs.
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Table 5. Numerical values of heat transfer rate at lower and upper disk for SWCNTs and MWCNTs
when Ω = 0.5, γ1 = 0.1, γ2 = 0.4, k1 = 0.1, k2 = 0.1, m = 0.5, Sc = 1.

S Pr Re A1
SWCNTs
− knf

kf
θ
′
(0)

MWCNTs
− knf

kf
θ
′
(0)

SWCNTs
− knf

kf
θ
′
(1)

MWCNTs
− knf

kf
θ
′
(1)

0.2 – – – 4.14135 3.83131 4.49696 4.16193
0.4 – – – 3.10577 2.87324 3.37182 3.12053
0.6 – – – 2.01701 1.91516 2.24668 2.07914
0.7 – – – 1.5524 1.43613 1.68411 1.55844
0.2 3.9 – – 4.12824 3.81806 4.51945 4.18466
– 5.2 – – 4.12164 3.81139 4.530861 4.19621
– 1.3 0.2 – 4.13503 3.82486 4.50794 4.17309
– – 0.5 – 4.11594 3.81839 4.54154 4.18437
– – 0.1 0.6 4.10289 3.79571 4.593021 4.25082
– – – 0.7 4.05746 3.75367 4.705941 4.35533
– – – 0.8 4.00509 3.7052 4.83659 4.47624

6. Conclusions

Unsteady axisymmetric MHD flow and transfer of heat with water-based carbon nanotubes amid
two stretchable rotating disks is explored in the present study. Results for arising parameters for both
SWCNTs and MWCNTs are illustrated. Main findings of our observations are as follows.

• Radial velocity increases and declines in the vicinity of the lower and the upper disks respectively.
• Radial and axial velocity profile is increasing for stretching parameter γ1 and decreasing behavior

γ2 near the lower disks for both types of walls.
• Tangential velocity increases with increasing Hall current parameter and decreases with increasing

Hartmann number in case of SWCNTs and MWCNTs.
• Temperature increases for thermal relaxation parameter, and decreases for nanoparticle

volume fraction.
• In H-H reactions the concentration profile decreases for both types of CNTs.
• For incremental value of thermal stratification parameters temperature profile decreases.
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Nomenclature

Symbols Description

→
V =

→
V(u, v, w) Velocity of the fluid (m/s)

M Hartmann number
T Temperature (K)
T0 Reference temperature (K)
A, B The dimensional constant K.m−1

γ1 Scale stretching parameters at lower disk
γ2 Scale stretching parameters at upper disk
Ω1 Angular velocity of the lower disk (sec−1)

Ω2 Angular velocity of the upper disk (sec−1)
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Symbols Description

Cp Specific heat ( J
kg k)

A1 Unsteadiness parameter
ε1 Thermal relaxation time (sec)
B0 Applied magnetic field (Tesla)
σn f Thermal conductivity of nanofluid (S/m)

σ f Thermal conductivity of the fluid (S/m)

k1 Measure of strength of homogeneous reaction
Ω Rotation parameter
Sc Schmidt number
DA Diffusion coefficient of chemical species A∗ (cm2/s)
s Thermal stratification parameter
k2 Measure of strength of heterogeneous reaction
Re Reynolds number
μ f Dynamic viscosity of fluid (Pa.s)
μn f Dynamic viscosity of nanofluid (Pa.s)
ρ f Density of the fluid (kgm−3)

kn f Thermal conductivity of the nanofluid (W/mk)
ρn f Density of the nanofluid (kgm−3)

kCNT Thermal conductivity of carbon nanotubes (W/mk)
k f Thermal conductivity of the fluid (W/mk)
δ Ratio of diffusion coefficients
DB Diffusion coefficient of chemical species B∗ (cm2/s)
Pr Prandtl number

ε Pressure parameter
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Abstract: This article explores magnetohydrodynamic stretched flow of viscoelastic nanofluids
with heterogeneous–homogeneous reactions. Attention in modeling has been specially focused
to constitutive relations of viscoelastic fluids. The heat and mass transport process is explored
by thermophoresis and Brownian dispersion. Resulting nonlinear systems are computed for
numerical solutions. Findings for temperature, concentration, concentration rate, skin-friction, local
Nusselt and Sherwood numbers are analyzed for both second grade and elastico-viscous fluids.

Keywords: viscoelastic fluids; nanoparticles; magnetohydrodynamics; heterogeneous–homogeneous
reactions; numerical solution

1. Introduction

It is now acknowledged that non-Newtonian fluids in industrial, physiological and technological
processes are more significant than viscous fluids. Few examples of such fluids may include silicon
oils, printer ink, mud, ice cream, egg yolk, blood at low shear rate, shampoo, gypsum paste, polymer
solutions, nail polish, sand in water, ketchup etc. Rheological properties of such fluids are different
and thus all these cannot be explained employing one constitutive relationship between shear rate
and rate of strain. The modelled expressions for the non-Newtonian liquids are more tedious and of
higher order than Navier–Stokes expressions for viscous fluids. Researchers in the field face challenges
in modelling, analysis and computations from different quarters. Through different non-Newtonian
fluids, the objective here is to explore second grade and elastico-viscous fluids [1–8].

Nanofluids are described by carbon nanotubes (CNTs) [9–11], Buongiorno [12] and Tiwari and
Das [13] models. Therefore, the information is very significant about flows involving thermophoresis
aspects. Impact of slip in flow of copper-water nanoliquid over an extendable surface is examined
by Pandey and Kumar [14]. Flow of couple stress nanomaterial bound by an oscillatory stretchable
surface is analyzed by Khan et al. [15]. Turkyilmazoglu [16] discussed free and circular jets in view of
single phase nanomaterial. Few relevant investigatons for nanoliquids can be seen in studies [17–45].

According to previous literature, it is found that magnetohydrodynamic stretched flow of viscoelastic
nanofluids with heterogeneous–homogeneous reactions has not been reported yet. Attention in modeling
has been specially focused on constitutive relations of viscoelastic fluids. Heat and mass transport
process is explored by thermophoresis and Brownian dispersion. Adequate transformations are
considered to dimensionless the governing system. Numerical solutions of the resulting system are
obtained by employing the shooting method. Contributions of numerous sundary variables on flow
fields are interpreted through plots and numerical data.
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2. Problem Formulation

Two-dimensional (2D) steady magnetohydrodynamic flow of incompressible viscoelastic
nanoliquids by a linear stretchable surface with heterogeneous–homogeneous reactions is analyzed.
Second grade and elastico-viscous liquids are considered. Attention in modeling has been specially
focused on constitutive relations of viscoelastic fluids. Heat and mass transport process is explored
by thermophoresis and Brownian dispersion. Let uw (x) = cx denotes wall velocity along x-axis
(see Figure 1). Homogeneous-reaction for cubic catalysis is [37]:

A + B → 3B, rate = kcab2. (1)

At catalyst surface heterogeneous-reaction is [37]:

A → B, rate = ksa. (2)

Figure 1. Flow configuration.

In above relations rate constants are described by ks and kc and chemical species B and A have
concentrations b and a separately. Relevant equations for 2D flow satisfy [5,7]:

divV = 0, (3)

ρ
dV

dt
= divø + ρb. (4)

Cauchy stress tensor of second-order fluid is

ø = −pI + μA1 + α1A2 + α2A2
1, (5)

in which A1 and A2 stand for 1st and 2nd Rivlin-Ericksen tensors respectively i.e.,

A1 = (gradV)∗ + (gradV) , (6)

A2 =
dA1

dt
+ (gradV)∗A1 + A1 (gradV) , (7)
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where α1 and α2 stand for material constants, b for body force, d
dt for material derivative and p for

pressure. Material moduli satisfy following relationships for second grade fluid:

α1 ≥ 0, μ ≥ 0, α1 + α2 = 0, (8)

in which ∗ stands for matrix transpose and velocity distribution V is

V = [u (x, y) , v (x, y) , 0] . (9)

The governing expressions for 2D stretching flow of viscoelastic nanofluids are [5,7,37]:

∂u
∂x

+
∂v
∂y

= 0, (10)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 − k0

(
u

∂3u
∂x∂y2 + v

∂3u
∂y3 +

∂u
∂x

∂2u
∂y2 − ∂u

∂y
∂2u

∂x∂y

)
− σB2

0
ρ

u, (11)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 +

(ρc)p

(ρc) f

(
D∗

B

(
∂T
∂y

∂C
∂y

)
+

DT
T∞

(
∂T
∂y

)2
)

, (12)

u
∂C
∂x

+ v
∂C
∂y

= D∗
B

(
∂2C
∂y2

)
+

DT
T∞

(
∂2T
∂y2

)
, (13)

u
∂a
∂x

+ v
∂a
∂y

= DA

(
∂2a
∂y2

)
− kcab2, (14)

u
∂b
∂x

+ v
∂b
∂y

= DB

(
∂2b
∂y2

)
+ kcab2, (15)

u = uw (x) = cx, v = 0, T = Tw, C = Cw, DA
∂a
∂y

= ksa, DB
∂b
∂y

= −ksa at y = 0, (16)

u → 0, T → T∞, C → C∞, a → a0, b → 0 as y → ∞. (17)

Here v and u stand for velocities in vertical and horizontal directions respectively, (ρc) f for
heat capacity of liquid, ν(= μ/ρ) for kinematic viscosity, α1 for normal stress moduli, μ for dynamic
viscosity, T for temperature, σ for electrical conductivity, ρ for density, k0 = −α1/ρ for elastic parameter,
DT for thermophoretic factor, α = k/(ρc) f for thermal diffusivity, C for concentration, D∗

B for Brownian
factor, k for thermal conductivity, (ρc)p for effective heat capacity of nanoparticles, Cw and Tw for
wall concentration and temperature respectively and C∞ and T∞ for ambient fluid concentration and
temperature respectively. Here k0 < 0 stands for second grade fluid, k0 > 0 for elastico-viscous fluid
and k0 = 0 for Newtonian fluid. Selecting [5,7,37]:

u = cx f ′(ζ), v = − (cν)1/2 f (ζ), ζ =
( c

ν

)1/2 y,
θ(ζ) = T−T∞

Tw−T∞
, φ(ζ) = C−C∞

Cw−C∞
, a = a0r(ζ), b = a0h(ζ).

(18)

Expression (10) is identically verified and Equations (11)–(17) give [5,7,37]:

f ′′′ + f f ′′ − f ′2 − k∗1
(

2 f ′ f ′′′ − f ′′
2 − f f iv

)
− M2 f ′ = 0, (19)

θ′′ + Pr
(

f θ′ + Nbθ′φ′ + Ntθ
′2
)
= 0, (20)

φ′′ + Sc f φ′ + Nt

Nb
θ′′ = 0, (21)

1
Scb

r′′ + f r′ − Krh2 = 0, (22)
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δ

Scb
h′′ + f h′ + Krh2 = 0, (23)

f = 0, f ′ = 1, θ = 1, φ = 1, r′ = Ksr, δh′ = −Ksr at ζ = 0, (24)

f ′ → 0, θ → 0, φ → 0, r → 1, h → 0 as ζ → ∞. (25)

Here k∗1 stands for viscoelastic parameter, δ for ratio of mass diffusion coefficients, Nt for
thermophoresis parameter, K for homogeneous-reaction strength, M for magnetic parameter, Sc
for Schmidt number, Scb for Schmidt number (for heterogeneous–homogeneous reactions), Nb for
Brownian motion parameter, Ks for heterogeneous-reaction strength and Pr for Prandtl number. We set
these definitions as

k∗1 = −k0
( c

ν

)
, M2 =

σB2
0

ρc , Pr = ν
α , δ = DB

DA
, K =

kca2
0

uw
, Ks =

ks
DAa0

√
c
ν ,

Sc = ν
D∗

B
, Scb = ν

DA
, Nb =

(ρc)pD∗
B(Cw−C∞)

(ρc) f ν
, Nt =

(ρc)pDT(Tw−T∞)

(ρc) f νT∞
.

(26)

Considering that DA = DB we have δ = 1 and thus

r(ζ) + h(ζ) = 1. (27)

Now Eqsuations (22) and (23) give

1
Scb

r′′ + f r′ − K(1 − r)2r = 0, (28)

with boundary conditions
r′ (0) = Ksr (0) , r(∞) → 1. (29)

Coefficient of skin friction and local Sherwood and Nusselt numbers are

Re1/2
x Cf = (1 − 3k∗1) f

′′
(0) , Re−1/2

x Shx = −φ
′
(0) , Re−1/2

x Nux = −θ
′
(0) , (30)

in which Rex = uwx/ν denotes the local Reynolds number.

3. Solution Methodology

By considering suitable boundary conditions on the system of equations, a numerical solution is
developed using NDSolve in Mathematica. Shooting method is used via NDSolve. This method is
very helpful in case of small step-size featuring negligible error. As a consequence, both x and y varied
uniformly by a step-size of 0.01 [40].

4. Graphical Results and Discussion

Effects of magnetic parameter M, homogeneous-reaction strength K, Schmidt number Sc,
Schmidt number (for heterogeneous–homogeneous reactions) Scb, thermophoresis parameter Nt,
heterogeneous-reaction strength Ks, Prandtl number Pr and Brownian motion parameter Nb on
concentration φ (ζ) , concentration rate r (ζ) and temperature θ (ζ) for both second grade and
elastico-viscous fluids are sketched in Figures 2–12.

Figure 2 depicts impact of magnetic parameter M on temperature θ (ζ). Here M �= 0 is for
hydromagnetic flow situation and M = 0 corresponds to hydrodynamic flow case. Temperature θ (ζ)

is higher for hydromagnetic flow in comparison to hydrodynamic flow for both second grade and
elastico-viscous fluids. Physically magnetic parameter depends upon Lorentz force. Lorentz force is
an agent which resists the motion of fluid and therefore temperature θ (ζ) enhances.

Figure 3 displays variations in temperature θ (ζ) for increasing Prandtl number Pr. Temperature
θ (ζ) decays for larger Pr for both second grade and elastico-viscous fluids. Physically Prandtl number
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involves thermal diffusivity. Larger Prandtl number corresponds to weaker thermal diffusivity which
produces a decay in temperature θ (ζ) .

Figure 4 depicts impact of Brownian motion parameter Nb on temperature θ (ζ). Larger Nb
produces an increment in temperature θ (ζ) for both second grade and elastico-viscous fluids. Larger
Brownian motion parameter Nb has stronger Brownian diffusivity and weaker viscous force which
increased the temperature θ (ζ) .

Figure 5 shows that larger thermophoresis parameter Nt leads to higher temperature θ (ζ) for
both second grade and elastico-viscous fluids. Larger Nt causes strong thermophoresis force which
tends to shift nanoparticles from hot to cold zone and therefore temperature θ (ζ) increases.

Impact of magnetic parameter M on concentration φ (ζ) is displayed in Figure 6 Concentration
φ (ζ) is upgraded for increasing estimations of M for both second grade and elastico-viscous fluids.
Furthermore, the concentration φ (ζ) shows similar trend for both second grade and elastico-viscous fluids.

Figure 7 depicts that concentration φ (ζ) is decreased for larger Schmidt number Sc for both
second grade and elastico-viscous fluids. Schmidt number Sc has an inverse relation with Brownian
diffusivity. Larger Schmidt number leads to weaker Brownian diffusivity which produces weaker
concentration φ (ζ) .

Impact of Brownian motion Nb on concentration φ (ζ) is shown in Figure 8 Bigger Nb
produces a reduction in concentration φ (ζ) for both second grade and elastico-viscous fluids.
Physically Brownian force tries to push particles in opposite direction of concentration gradient and
make nanofluid more homogeneous. Therefore, higher the Brownian force, lower the concentration
gradient and more uniform concentration φ (ζ) .

Figure 9 displays that how thermophoresis Nt affects concentration φ (ζ). Here concentration φ (ζ)

is upgraded for higher estimations of Nt for both second grade and elastico-viscous fluids. Furthermore,
the concentration φ (ζ) shows similar trend for both second grade and elastico-viscous fluids.

Figure 10 displays that how Schmidt number Scb affects concentration rate r(ζ). Here concentration
rate r(ζ) is upgraded for higher estimations of Schmidt number Scb for both second grade and
elastico-viscous fluids. Furthermore, the concentration rate r(ζ) shows similar trend for both second
grade and elastico-viscous fluids.

From Figure 11 it is noted that larger homogeneous-reaction K displays a decay in concentration
rate r(ζ) for both second grade and elastico-viscous fluids. Larger homogeneous-reaction K
corresponds to higher chemical reaction which consequently decreases the concentration rate r(ζ).

Figure 12 depicts that larger heterogeneous-reaction Ks produces higher concentration rate r(ζ)
for both second grade and elastico-viscous fluids. Here heterogeneous-reaction parameter Ks has
an inverse relation with mass diffusivity which produces an enhancement in concentration rate r(ζ).

Table 1 displays skin-friction −Cf Re1/2
x subject to varying k∗1 and M. Here skin-friction has

higher estimations for larger M for both second grade and elastico-viscous fluids. Table 2 depicts
comparison for various estimations of k∗1 with homotopy analysis method (HAM). Table 2 presents
a good agreement of numerical solution with existing homotopy analysis method (HAM) solution
in a limiting sense. Table 3 depicts local Nusselt number NuxRe−1/2

x subject to varying k∗1, Nb
and Nt. Here larger Nb and Nt correspond to lower local Nusselt number for both second grade
and elastico-viscous fluids. Table 4 shows local Sherwood number ShxRe−1/2

x subject to varying k∗1, Nb
and Nt. Here larger Nt produces lower local Sherwood number while opposite trend is noted via Nb
for both second grade and elastico-viscous fluids.

Table 1. Skin-friction coefficient for various estimations of viscoelastic and magnetic parameters.

M
−Cf Re1/2

x −Cf Re1/2
x

k∗
1 = 0.1 k∗

1 = −0.1

0.0 0.7379 1.2395
0.2 0.7525 1.2640
0.5 0.8250 1.3858
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Figure 2. Variations of temperature for magnetic parameter when Nb = 0.2, Nt = 0.1 and Sc = Pr = 1.0.

Figure 3. Variations of temperature for Prandtl number when Nb = 0.2, Nt = 0.1, Sc = 1.0 and
M = 0.2.

Figure 4. Variations of temperature for Brownian motion parameter when Nt = 0.1, Sc = Pr = 1.0 and
M = 0.2.
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Figure 5. Variations of temperature for thermophoresis parameter when Nb = 0.2, Sc = Pr = 1.0 and
M = 0.2.

Figure 6. Variations of concentration for magnetic parameter when Nb = 0.2, Nt = 0.1 and Sc = Pr = 1.0.

Figure 7. Variations of concentration for Schmidt number when Nb = 0.2, Nt = 0.1, Pr = 1.0 and
M = 0.2.
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Figure 8. Variations of concentration for Brownian motion parameter when Nt = 0.1, Sc = Pr = 1.0
and M = 0.2.

Figure 9. Variations of concentration for thermophoresis parameter when Nb = 0.2, Sc = Pr = 1.0 and
M = 0.2.

Figure 10. Variations of concentration rate for Schmidt number (for heterogeneous–homogeneous
reactions) when K = 0.2, Ks = 0.5 and M = 0.2.
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Figure 11. Variations of concentration rate for homogeneous-reaction strength when Scb = 1.0, Ks = 0.5
and M = 0.2.

Figure 12. Variations of concentration rate for heterogeneous-reaction strength when K = 0.2, Scb = 1.0
and M = 0.2.

Table 2. Comparative data of skin-friction coefficient for various estimations of viscoelastic parameter
when M = 0.

k∗
1

−Cf Re1/2
x

Numerical HAM [5]

0.0 1.0000 1.00000
0.1 0.7379 0.73786
0.2 0.4472 0.44721
0.3 0.1195 0.11952

347



Coatings 2020, 10, 55

Table 3. Local Nusselt number for various estimations of viscoelastic, Brownian motion and
thermophoresis parameters when Sc = Pr = 1.0 and M = 0.2.

Nb Nt
NuxRe−1/2

x NuxRe−1/2
x

k∗
1 = 0.1 k∗

1 = −0.1

0.1 0.1 0.5232 0.5425
0.2 - 0.4970 0.5153
0.3 - 0.4716 0.4890
0.2 0.1 0.4970 0.5153
- 0.2 0.4827 0.5002
- 0.3 0.4689 0.4856

Table 4. Local Sherwood number for various estimations of viscoelastic, Brownian motion and
thermophoresis parameters when Sc = Pr = 1.0 and M = 0.2.

Nb Nt
ShxRe−1/2

x ShxRe−1/2
x

k∗
1 = 0.1 k∗

1 = −0.1

0.1 0.1 0.2100 0.2300
0.2 - 0.3994 0.4203
0.3 - 0.4622 0.4834
0.2 0.1 0.3994 0.4203
- 0.2 0.2435 0.2647
- 0.3 0.0982 0.1205

5. Conclusions

Magnetohydrodynamic flow of viscoelastic nanofluids bound by a linear stretchable surface with
heterogeneous–homogeneous reactions are analyzed. Both concentration φ (ζ) and temperature θ (ζ)

are enhanced via higher M. Larger Brownian motion Nb displays opposite trend for concentration
φ (ζ) and temperature θ (ζ). Larger thermophoresis number Nt produces higher concentration φ (ζ)

and temperature θ (ζ). Temperature θ (ζ) is reduced when Prandtl number enhances. Prandtl number
is considered to control the rate of heat transfer in engineering and industrial processes. The suitable
value of Prandtl number is very essential to control the rate of heat transfer in engineering and
industrial processes. Larger homogeneous-reaction K depicts a reduction in concentration rate r (ζ) .
Larger heterogenous-reaction Ks and Schmidt number Scb lead to higher concentration rate r (ζ) .
Skin friction is enhanced for larger magnetic parameter M. Reverse trend of local Sherwood number is
seen for Nt and Nb. Local Nusselt number is decreased for thermophoresis Nt and Brownian motion
Nb parameters. Furthermore, the present analysis is reduced to Newtonian fluid flow case when
k∗1 = 0.
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Nomenclature

u, v velocity components x, y coordinate axes
A, B chemical species kc, ks rate constants
μ dynamic viscosity ρ density of base fluid
a, b concentrations of chemical species k0 elastic parameter
ν kinematic viscosity σ electrical conductivity
V velocity distribution B0 magnetic field strength
ø Cauchy stress tensor b body force
α1, α2 material constants d

dt material derivative
p pressure A1, A2 first and second Rivlin-Ericksen tensors
∗ matrix transpose DA, DB mass diffusion coefficients
T temperature C concentration
T∞ ambient fluid temperature C∞ ambient fluid concentration
Tw surface temperature Cw surface concentration
(ρc)p effective heat capacity of nanoparticles (ρc) f heat capacity of fluid
α thermal diffusivity k thermal conductivity
uw surface velocity c positive constant
D∗

B Brownian diffusion coefficient DT thermophoretic diffusion coefficient
ζ similarity variable f ′ dimensionless velocity
θ dimensionless temperature φ dimensionless concentration
r dimensionless concentration rate k∗1 viscoelastic parameter
Sc Schmidt number M magnetic parameter
K homogeneous-reaction strength Pr Prandtl number
Nb Brownian motion parameter Nt thermophoresis parameter
Ks heterogeneous-reaction strength Scb Schmidt number
Cf skin friction coefficient Rex local Reynolds number
Nux local Nusselt number Shx local Sherwood number
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Abstract: This article addresses mixed convective 3D nanoliquid flow by a rotating disk with
activation energy and magnetic field. Flow was created by a rotating disk. Velocity, concentration
and temperature slips at the surface of a rotating disk were considered. Impacts of Brownian
diffusion and thermophoretic were additionally accounted for. The non-linear frameworks are
simplified by suitable variables. The shooting method is utilized to develop the numerical solution of
resulting problem. Plots were prepared just to explore that how concentration and temperature are
impacted by different pertinent flow parameters. Sherwood and Nusselt numbers were additionally
plotted and explored. Furthermore, the concentration and temperature were enhanced for larger
values of Hartman number. However, the heat transfer rate (Nusselt number) diminishes when the
thermophoresis parameter enlarges.

Keywords: rotating disk; mixed convective flow; MHD; binary chemical reaction; nanoparticles;
arrhenius activation energy

1. Introduction

A nanoparticle of size under 100 nm deferred into a standard fluid is then named a nanofluid.
The essentialness of a nanofluid is expected from its distinctive thermophysical qualities. Nanofluids
show enormous capacity to lead power and heat, so they have a critical impact in industry. Nanoliquids
have attracted extraordinary enthusiasm for their wide applications; for example, electronic chip
cooling, hybrid powered machines, progressed atomic frameworks, solar liquid heating, microchips,
excessively proficient magnets and optoelectronics. Thus, Choi [1] exhibited the term nanoparticle
inundated into a standard fluid. Buongiorno [2] presented a mathematical model for heat transport
in nanoliquid by considering the impacts of Brownian diffusion and thermophoretic dispersion.
Further examinations on nanofluids can be seen through the attempts [3–28].

The flow due to a rotating disk plays vital roles in numerous mechanical processes, encompassing
psychologist fits, rotors and flywheels. Recently rotating disks became very significant in thermal
power creating frameworks, electric-control generation, stopping mechanisms, rotating sawing
machines, etc. Fluid flow by a rotating disk is initiated by the Von Karman effect [29]. Turkyilmazoglu
and Senel [30] explored the impacts of mass and heat transport because of the porous disk subject to
rotating frame. Entropy generation in MHD flow by the rotation of porous disk subject to slip and
variable properties is examined by Rashidi et al. [31]. Nanofluid flow because of revolution of disk is
discussed by Turkyilmazoglu [32]. Hatami et al. [33] investigated the impacts of contracting rotating
disk on nanofluids. They utilized least square technique for solution development. Mustafa et al. [34]
analyzed three dimensional nanofluid flow over a stationary disk. Sheikholeslami et al. [35] constructed
numerical solutions of nanofluid by a rotating surface. Micropolar liquid flow by a turning disk
is explored by Doh and Muthtamilselvan [36]. Aziz et al. [37] provided a numerical report to
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nanofluid flow by rotation of disk subject to slip impacts and thermal absorption/generation.
Third-grade nanofluid flow over a stretchable rotating surface with heat generation is examined
by Hayat et al. [38]. Radiative flow in the presence of nanoparticles and gyrotactic microorganism by
the variable-in-thickness surface of a pivoting disk is explained by Qayyum et al. [39]. Hayat et al. [40]
provided a numerical solution for radiative flow of carbon nanotubes by the revolution of disk subject
to partial slip.

The aim of the present paper is to generalize the analysis of study [11] into four directions. Firstly,
to examine magnetohydrodynamic flow of viscous nanofluid due to the rotation of disk. Attention is
mainly given to Brownian diffusion and thermophoresis. Secondly, to utilize thermal, concentration
and velocity slips at the surface of rotating disk. Thirdly, to consider the effect of mixed convection.
Fourth, to analyze the Arrhenius activation energy and binary chemical reaction. The resulting scientific
framework is solved numerically via the shooting method. Concentration, temperature and Sherwood
and Nusselt numbers are also explored via graphs.

2. Problem Description

Let us examine a mixed convective 3D nanoliquid flow by a pivoting disk with slip features.
Arrhenius activation energy, magnetic field and binary chemical reaction are also accounted for.
A disk at z = 0 rotates with constant angular velocity Ω (see Figure 1). Brownian dispersion and
thermophoretic impacts are additionally present. The velocities are (u, v, w) in the headings of
expanding (r, ϕ, z) respectively. The associated boundary-layer equations are [11,37]:
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u = L1
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, v = rΩ + L1
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∂z

, w = 0, T = Tw + L2
∂T
∂z

, C = Cw + L3
∂C
∂z

at z = 0, (7)

u → 0, v → 0, T → T∞, C → C∞ as z → ∞. (8)
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Figure 1. Schematic diagram of the problem.

Here u, v and w stand for velocity components in directions of r, ϕ and z; ρ f , μ and ν = μ/ρ f
are for fluid density, dynamic and kinematic viscosities, respectively. L1 stands for velocity slip
factor; C∞ for ambient concentration; g∗ for acceleration due to gravity; T∞ for ambient temperature;
βT for thermal expansion factor; (ρc)p for effective heat capacity of nanoparticles; σ for electrical
conductivity; Ea for activation energy; L3 for concentration slip factor; (ρc) f for heat capacity of liquid;
βC for concentration expansion factor, C for concentration; L2 for thermal slip factor; n for fitted
rate constant; DT for thermophoretic factor, αm = k/(ρc) f and k for thermal diffusivity and thermal
conductivity, respectively; kr for reaction rate; T for fluid temperature; DB for Brownian factor; and κ

for Boltzmann constant. Selecting [37]:

u = rΩ f ′(ζ), w = −(2Ων)1/2 f (ζ), θ(ζ) = T−T∞
Tw−T∞

,

φ(ζ) = C−C∞
Cw−C∞

, ζ =
(

2Ω
ν

)1/2
z, v = rΩg(ζ).

⎫⎬⎭ (9)

Equation (1) is now verified while Equations (2)–(8) yield [11,37]:

2 f ′′′ + 2 f f ′′ − f ′
2
+ g2 − (Ha)2 f ′ + λT(θ + λCφ) = 0, (10)

2g′′ + 2 f g′ − 2 f ′g − (Ha)2g = 0, (11)

1
Pr

θ′′ + f θ′ + Nbθ′φ′ + Ntθ
′2 = 0, (12)

1
Sc

φ′′ + f φ′ + 1
Sc

Nt

Nb
θ′′ − σ (1 + δθ)n φ exp

(
− E

1 + δθ

)
= 0, (13)

f (0) = 0, f ′(0) = α f ′′(0), g(0) = 1 + αg′(0), θ(0) = 1 + βθ′ (0) , φ(0) = 1 + γφ′ (0) , (14)

f ′(∞) → 0, g(∞) → 0, θ(∞) → 0, φ(∞) → 0. (15)

Here λT stands for thermal buoyancy number, Nt for thermophoresis parameter, α for velocity slip
parameter, Pr for Prandtl number, λC for concentration buoyancy number, Sc for Schmidt parameter,
Ha for Hartman number, β for thermal slip parameter, σ for chemical reaction number, Nb for Brownian
parameter, δ for temperature difference parameter, γ for concentration slip parameter and E for
non-dimensional activation energy. These parameters are defined by
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The coefficients of skin friction and Sherwood and Nusselt numbers are

Re1/2
r Cf = f ′′(0), Re1/2

r Cg = g′(0), Re−1/2
r Sh = −φ′(0), Re−1/2

r Nu = −θ′(0), (17)

where Rer = 2(Ωr)r/ν depicts local rotational Reynolds number.

3. Solution Methodology

By employing suitable boundary conditions on the system of equations, a numerical solution was
constructed considering NDSolve in Mathematica. The shooting method was employed via NDSolve.
This method is very helpful in the situation of a smaller step-size featuring negligible error. As a
consequence, both the z and r varied uniformly by a step-size of 0.01 [20].

4. Graphical Results and Discussion

This segment displays variations of various physical flow parameters, such as the thermophoresis
parameter Nt, Hartman number Ha, thermal slip parameter β, chemical reaction parameter σ, Brownian
motion parameter Nb, concentration slip parameter γ and activation energy E, on concentration
φ(ζ) and temperature θ (ζ) distributions. Figure 2a displays the effect of Hartman number Ha
on temperature θ (ζ). Temperature θ (ζ) is enhanced for higher estimations of Ha. The effect of
thermal slip β on temperature θ (ζ) is shown in Figure 2b. Greater β shows diminishing trend of
θ (ζ) and associated warmth layer. The impact of Nt on temperature θ (ζ) is explored in Figure 2c.
An increment in Nt leads to stronger temperature field θ (ζ). Figure 2d depicts change in temperature
θ (ζ) for varying Brownian motion number Nb. Physically, the Brownian motion of nanoparticles
is enhanced by increasing Brownian motion number Nb. Therefore dynamic vitality is altered
into thermal vitality, which depicts an increment in temperature θ (ζ) and the respective warmth
layer. Figure 3a shows that how the Hartman number Ha influences concentration φ(ζ). For a
greater Hartman number Ha, both concentration φ(ζ) and the concentration layer are upgraded.
Figure 3b displays that concentration φ(ζ) is weaker for a greater concentration slip. Figure 3c
demonstrates how thermophoresis Nt influences concentration φ(ζ). By improving the thermophoresis
parameter Nt, the concentration φ(ζ) and associated layer are upgraded. Figure 3d depicts effect of
Brownian motion Nb on concentration φ(ζ). It is noted that higher concentration φ(ζ) is developed
by utilizing greater Brownian parameter Nb. Figure 3e explains effect of non-dimensional activation

energy E on concentration φ(ζ). An increment in E rots change Arrhenius work
(

T
T∞

)n
exp
(
− Ea

κT

)
,

which inevitably builds up a generative synthetic reaction due to which concentration φ(ζ) increases.
Figure 3f introduces the fact that an increment in chemical response number σ causes a rot in
concentration φ(ζ). Figure 4a,b displays the effects of Nt and Nb on Re−1/2

r Nu. It is noted that
Re−1/2

r Nu decreases for greater Nt and Nb. Contributions of Nt and Nb on Re−1/2
r Sh are explored in

Figure 5a,b. Here Re−1/2
r Sh is increasing the factor of Nb while it is decreasing the factor of Nt.
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(a) (b)

(c) (d)

Figure 2. (a) Variations of temperature distribution θ(ζ) for Hartman number Ha; (b) variations of
temperature distribution θ(ζ) for thermal slip parameter β; (c) variations of temperature distribution
θ(ζ) for thermophoresis parameter Nt; (d) variations of temperature distribution θ(ζ) for Brownian
motion parameter Nb.

(a) (b)

Figure 3. Cont.
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(c) (d)

(e) (f)

Figure 3. (a) Variations of concentration distribution φ(ζ) for Hartman number Ha; (b) variations
of concentration distribution φ(ζ) for concentration slip parameter γ; (c) variations of concentration
distribution φ(ζ) for thermophoresis parameter Nt; (d) variations of concentration distribution φ(ζ) for
Brownian motion parameter Nb; (e) variations of concentration distribution φ(ζ) for activation energy
E; (f) variations of concentration distribution φ(ζ) for chemical reaction parameter σ.

(a) (b)

Figure 4. (a) Variations of Nusselt number Re−1/2
r Nu for thermophoresis parameter Nt; (b) variations

of Nusselt number Re−1/2
r Nu for Brownian motion parameter Nb.
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(a) (b)

Figure 5. (a) Variations of Sherwood number Re−1/2
r Sh for thermophoresis parameter Nt; (b) variations

of Sherwood number Re−1/2
r Sh for Brownian motion parameter Nb.

5. Conclusions

Mixed convective 3D nanoliquid flow by a rotating disk subject to activation energy,
magnetohydrodynamics and a binary chemical reaction was studied. Here, the flow field was
considered to contain the chemically reacting species. Moreover, the mass transport mechanism
was developed via modified Arrhenius function for the activation energy. Activation energy is the
minimum quantity of energy needed by reactants to examine a chemical reaction. The source of the
activation energy needed to initiate a chemical reaction is typically heat energy from the surroundings.
Furthermore, the scientific system obtained was solved numerically via shooting method. A stronger
temperature distribution was seen for Nb and Nt. Both the concentration and temperature display
increasing behavior for greater Ha. Higher γ exhibits a decreasing trend for concentration field.
Concentration φ(ζ) depicts decreasing behavior for larger σ. Higher activation energy E shows stronger
concentration φ(ζ). Concentration φ(ζ) displays reverse behavior for Nb and Nt.
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Nomenclature

u, v, w velocity components r, ϕ, z coordinate axes
σ electrical conductivity B0 magnetic field strength
μ dynamic viscosity ρ f density of base fluid
βT thermal expansion coefficient βC concentration expansion coefficient
ν kinematic viscosity g∗ acceleration due to gravity
L1 velocity slip coefficient L2 temperature slip coefficient
L3 concentration slip coefficient Ω constant angular velocity
T temperature C concentration
Tw wall temperature Cw wall concentration
T∞ ambient fluid temperature C∞ ambient fluid concentration
αm thermal diffusivity k thermal conductivity
(ρc)p effective heat capacity of nanoparticles (ρc) f heat capacity of fluid
DB Brownian diffusion coefficient DT thermophoretic diffusion coefficient
Ea activation energy n fitted rate constant
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kr reaction rate κ Boltzmann constant
ζ similarity variable f ′, g dimensionless velocities
θ dimensionless temperature φ dimensionless concentration
Sc Schmidt number Ha Hartman number
λT thermal buoyancy number Pr Prandtl number
Nb Brownian motion parameter Nt thermophoresis parameter
λC concentration buoyancy number α velocity slip parameter
β thermal slip parameter γ concentration slip parameter
E dimensionless activation energy δ temperature difference parameter
Cf , Cg skin friction coefficients Rer local rotational Reynolds number
Nu Nusselt number Sh Sherwood number
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Abstract: In this paper, liquid coatings of bubbly flow with peristaltic motion inside elastic walls
is investigated. The proposed model is constructed using the two-fluid approach with the most
distinctive collaboration among gas, fluid, pressure, and drag forces. Variation in pressure leads to a
change in void fraction. The differential controlling conditions affected by the long wavelength of the
peristaltic wave and the slow movement are taken into account. Analytical results of the simplified
governing equations are obtained using the homotopy perturbation method (HPM). The features of
the significant parameters are shown and examined graphically.

Keywords: gas-liquid coatings; bubbles; two-fluid model; peristaltic flow; phase distribution; HPM

1. Introduction

An air-pocket-incited gas-fluid stream is the premise of smooth motion in numerous compound
building gadgets and applications ranging from boilers or evaporators and more than a few stage
bubble segment reactors of different structures to enormous-scale vigorous (and sometimes anaerobic)
sewage treatment plants. The two-phase transport hypothetical talk and test request are firmly
connected. On the other hand, the amalgamation that emerges from this association creates colossal
innovative potential for estimations advising and approving unique models. The subsequent innovation
develops utility in an expansive range of uses, from cutting-edge atomic hardware and space
motors to pharmaceutical assembling, nourishment innovation, vitality, and natural remediation.
Sussman et al. [1] considered a level-set methodology for figuring out answers for a incompressible
two-stage stream. Their study was about the movement of air bubbles in the water and falling
water drops in the air. A single-liquid model for a two-stage stream with variable thickness to
the stream-water flow was analyzed by Bankoff [2]. Zuber and Findlay [3] estimated the normal
volumetric fixation in two-stage stream frameworks. In their analysis, the outcomes anticipated by
the investigation were contrasted with experimental data acquired for different two-phase stream
systems, with different fluid gas blends in the adiabatic, vertical stream over a wide weight territory.
Picchi and Poesio [4] developed a unified model for both horizontal and slightly inclined fluid
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pipes lubricated with two-phase gas/shear-thinning fluid. Sato and Sekoguchi [5] suggested the
velocity distribution of liquid in two-phase bubble flow. A more precise analytical procedure was
constructed that created the justified foreboding of the liquid velocity dispensation in two-phase bubble
flow. Kuwagi et al. [6] investigated the oscillation of bubbly flow through a normally placed cylinder
employing a tridimensional system. Picchi and Battiato [7] discussed immiscible two-phase flow in
porous media and elaborated the impact of pore-scale flow. Bonzanini et al. [8] simulated 1-D slug
and stratified flow in pipes. Sontti and Atta [9] investigated co-flow in microchannels to discuss the
viscous effect on Taylor bubble formation. Bhatti et al. [10] broke down the heat and mass exchange of
a two-phase stream with an electric twofold layer whose impacts were incited due to the peristaltic
impetus within the sight of the transverse attractive field. Haider et al. [11] presented the heat transfer
as well as a magnetic field investigation on the peristaltically initiated movement of tiny particles.

Moreover, the mechanism of peristalsis comprises expansion and contraction events that impel
an ingredient forward. Examples of some cases of the peristaltic phenomenon are the transport
of bile in the bile duct, the transport of urine from the kidney to the gallbladder, the transport of
cilia, the vasomotion of small blood vessels, and the mixing of food in the digestive tract, to name a
few. The peristaltic phenomenon also has several industrial applications such as in the flow in tube
pumps, in the rollers and hoses in heart-lung machines, and in the dialysis process during open-heart
surgery. [12,13].

Furthermore, in buoyancy-driven flows, although the difference in inertia is almost negligible,
the gravity remains sufficiently strong to make the specific weight significantly different during the
flow in multiphase fluids. Tripathi et al. [14] investigated buoyancy effects in the peristaltic flow of
nanofluid under the influence of electro-osmosis. Animasaun and Pop [15] numerically explored the
effects of buoyancy on the flow driven by catalytic surface reactions. Angirasa et al. [16] reported the
buoyancy effects in a fluid saturated with a porous medium. Rashidi et al. [17] studied fluid flow in
the presence of buoyancy forces.

In addition to the above, the presence of bubbles has appeared in several applications in a gas-liquid
flow. Many theoretical and numerical investigations have been conducting for multiphase bubbly flows
in oil, gas, and liquid. It has numerous usages, such as in optical fiber sensing applications [18], sensitive
pressure measurement [19], the human bloodstream during decompression sickness, and subcooled
flow boiling in macro-channels [20]. Ellhi et al. [21] examined the simulation of bubble through the
nozzle of tube. Furthermore, lubricated coatings with bubbles in peristaltic motion have a lot of
applications in the biomedical field, and among several of these, in the control of blood pressure.
Particle coating with viscous liquids is an essential component in the industry for surface modification
purposes in order to induce and improve precise functionalities. Coating with viscous liquids is usually
present in very rich industrial trials, which allow the coating of particles under the shear forces exerted
in a mixing device. A list of key investigations on peristaltic flows [22–24], multiphase flows [25–29],
bubbly flows [30–34], coatings [35–40], elastic medium [41,42], and several other references are available,
which provide a more in-depth understanding to the reader.

Due to the immense contribution of two-phase flow structures in many significant fields,
this study attempts to trap the structures of gas-liquid bubbly flow inside the elastic walls under the
peristaltic mechanism applied over a two-fluid model. Due to the nonlinear model, a powerful
and efficient technique called the homotopy perturbation method is used for finding analytic
solutions. This method works even without the need of a linearization process of nonlinear differential
equations. The parameters affecting the flow prominently have been examined with the help of a
graphical illustration.

2. Mathematical Formulation

We assumed a symmetric channel with flexible walls starting at the origin of a rectangular
coordinate system, see Figure 1. Plates were placed parallel to the x-axis, on either side of the origin,
separated by a distance of 2h. Only the upper portion of the symmetric channel was taken into
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consideration. A continuous wave with long wavelength, λ, and speed, c, traveled on the plates [43]
and was defined by

z = h(X, t) = a(1 + η(X, t)) (1)

where η(x, t) = φSin( 2π
λ (X − ct)),φ = b

a having an interval of (0, 1).

Figure 1. Geometry of the problem.

Two-Fluid Model

The two-fluid model for the flow of the gas bubbles in the Newtonian fluid with the Euler–Euler
model was employed. Both phases were considered as a continuum and could be defined with
the help of differential equations. A thin surface separated both the fluids and at the interphase,
and consequently a jump continuity condition could be employed [44]. The bubbles were distributed
homogenously in the flow and considered to be of the same spherical shape. It was assumed that no
mass was transferred between the two phases and isothermal conditions were maintained. The density
of the liquid was constant, whereas for the gas-phase it depended on pressure, p. Bubble redispersion
was neglected and there was low gas holdup. With these assumptions, continuity equations for both
the liquid and bubble phase were of the form [45]

∇.(Ul) = 0, (2)

∂
(
εgρg

)
∂t

+ ∇.
(
εgρgUg

)
= 0, (3)

where Ul and Ub were the liquid and bubble velocities, respectively, whereas εg and ρg represented the
void space and density of the gaseous phase with the closure relation constraint εl + εg = 1. For low
gas εl ≈ 1. Using ideal gas laws, ρg =

p
RT0

, ρl ≈ constant, and because isothermal conditions were
taken into account T0 remained constant.

The momentum transfer for both the liquid and gaseous phase [46] were defined as

ρl

(
∂Ul
∂t

+ Ul
∂Ul
∂X

+ Vl
∂Ul
∂Y

)
= − ∂P
∂X

+ μ

(
∂2Ul

∂X2 +
∂2Ul

∂Y2

)
+ ρlg− εgρlg, (4)

365



Coatings 2020, 10, 115

ρl

(
∂Vl
∂t

+ Ul
∂Vl
∂X

+ Vl
∂Vl
∂Y

)
= −∂P
∂Y

+ μ

(
∂2Vl

∂X2 +
∂2Vl

∂Y2

)
, (5)

εgρg

(
∂Ug

∂t
+ Ug

∂Ug

∂X
+ Vg

∂Ug

∂Y

)
= −εg

∂P
∂X

+ μεg

⎛⎜⎜⎜⎜⎝∂2Ug

∂X2 +
∂2Ug

∂Y2

⎞⎟⎟⎟⎟⎠+ ρggεg − Fint,x, (6)

εgρg

(
∂Vg

∂t
+ Ug

∂Vg

∂X
+ Vg

∂Vg

∂Y

)
= −εg

∂P
∂Y

+ μεg

⎛⎜⎜⎜⎜⎝∂2Vg

∂X2 +
∂2Vg

∂Y2

⎞⎟⎟⎟⎟⎠− Fint,y, (7)

where Fint is the interaction force between the liquid and gaseous phases. These forces were able to be
divided into three parts—i) force due to drag, which is incorporated in the uniform flow, ii) added mass
force due to the acceleration of the bubble, and iii) lift force for the spherical bubble [47]. Mathematically
this could be written as

Fint = Fd + Fam + Fl, (8)

Fd = −CwVb(Ub −Ul), (9)

Fam = −CamVbρl

(dUslip

dt

)
, (10)

Fl = −ClVbρl(Ub −Ul) × (∇×Ul), (11)

in which Cw was a constant involving bubble diameter and drag force, Vb was the volume of the
bubble, Cam was a constant related to the volume fraction of liquid accelerated with the bubble, Uslip

was slip velocity defined as Uslip = Ub −Ul, and Cl was the lift coefficient. Finally, Ub was the speed of
a single bubble and it was related to gas velocity by Ug = Ub + Udri f t, where Udri f t is the average drift
velocity, which was proportional to the ratio of the special change in gas void fraction to total void
fraction of gas.

To transform from a fixed frame to wave frame, Lorentz transformations were employed.

X = x ∗ −ct, Y = y∗, U = u ∗ −c, V = v∗, p ∗ (x∗, y∗) = P(X, Y, t). (12)

Equations (2)-(11) became
∇.(ul∗) = 0, (13)

c
∂
(
εgρg

)
∂x∗ + ∇.

(
εgρgug∗

)
= 0, (14)

ρl

(
ul ∗ ∂ul∗
∂x∗ + vl ∗ ∂ul∗

∂y∗
)
= − ∂p
∂x∗ + μ

(
∂2ul∗
∂x∗2 +

∂2ul∗
∂y∗2

)
+ (1− εg)ρlg, (15)

ρl

(
ul ∗ ∂vl∗
∂x∗ + vl ∗ ∂vl∗

∂y∗
)
= − ∂p
∂y∗ + μ

(
∂2vl∗
∂x∗2 +

∂2vl∗
∂y∗2

)
, (16)

εgρg

(
ug ∗
∂ug∗
∂x∗ + vg ∗

∂ug∗
∂y∗

)
= −εg

∂p
∂x∗ + μεg

⎛⎜⎜⎜⎜⎝∂2ug∗
∂x∗2 +

∂2ug∗
∂y∗2

⎞⎟⎟⎟⎟⎠+ ρggεg − fint,x, (17)

εgρg

(
ug ∗
∂vg∗
∂x∗ + vg ∗

∂vg∗
∂y∗

)
= −εg

∂p∗
∂y∗ + μεg

⎛⎜⎜⎜⎜⎝∂2vg∗
∂x∗2 +

∂2vg∗
∂y∗2

⎞⎟⎟⎟⎟⎠− fint,y, (18)

fint = fd + fam + fl, (19)

fd = −CwVb(ub ∗ −ul∗), (20)

Fam = −CamVbρlc
(
∂ub∗
∂x
− ∂ul∗
∂x

+ (ub ∗ ·∇)ub ∗ −(ul ∗ ·∇)ul∗
)
, (21)

Fl = −ClVbρl(ub ∗ −ul∗) × (∇× ul∗), (22)
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and by employing the dimensionless quantities were

x = x∗
λ , y =

y∗
a , ul,g =

ul,g∗
c , vl,g =

vl,g∗
c , δ = a

λ , Re =
ρca
μ , p = a2

μλc P

Eo = a2

σ ρlg, Rbe =
ac
μ ρlVb, A =

μc
σ .

(23)

By imposing Equation (23) on Equations (12)-(22) and considering Re and δ approach zero, the
corresponding expressions resulted in

εg =
c1

ρgub
, (24)

∂p
∂x

=
∂2ul

∂y2 +
(
1− εg

)Eo
A

, (25)

Aρl
∂p
∂x

= Eo
(
ρg +

VbCw

g

)
−RbeAρl

(
ClWs

∂ul
∂z

+ CamWs
∂(ub − ul)

∂y

)
, (26)

along with the consequential nondimensional boundary limitations

ul(−h) = 0, ul(h) = 0, εg(0) = 1. (27)

3. Mathematical Solutions and Results

To compute the solutions of complicated nonlinear coupled equations, a powerful and efficient
technique called the homotopy perturbation method (HPM) was used for finding analytic solutions.
HPM is a powerful method which works even without the need of a linearization process [48–50].
It tends to reduce the nonlinear equations into a system of linear equations and generates an asymptotic
solution. To serve the purpose, the initial guess was formed as

ul,0 =
1
2

(
−2− h2P + Py2

)
and ub,0 = 1 + Py. (28)

The linear operators were

L1 =
d2ul

dy2 , and L2 =
dub
dy

. (29)

From Equations (22)-(23)

Eq1(x, y, q) = P(x, q) − ∂
2ul

∂y2 (x, y, q) −
(
1− c1

ρlub(x, y, q)

)
Eo
A

, (30)

Eq2(x, y, q) = −AρlP(x, q) + Eo
(
ρg(x, y, q) + VbCw

g

)
−

RbeAρl

(
ClWs

∂ul(x,y,q)
∂z + CamWs

∂(ub(x,y,q)−ul(x,y,q))
∂y

)
,

(31)

Constructing the homotopy that satisfy

H(U, q) = (1− q)
(
L1(U) − L2(ul,0)

)
+ q(Eq1(U)) = 0, (32)

H(V, q) = (1− q)
(
L2(V) − L2(ub,0)

)
+ q(Eq2(V)) = 0, (33)

with q ∈ (0, 1). When q = 0, the equation provided an initial guess, and for q = 1 the equation generated
a required solution. The solution should be of the form

U = U0 + pU1 + ..., V = V0 + pV1 + ... (34)
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Setting p = 1 the solution will be

U = U0 + U1 + ..., V = V0 + V1 + ... (35)

The expressions achieved up to second order were

u f = K5 + K6 y + K7y2 + K8y3 + K9y4 −K10y5,

K5 = −1− h2P
2 − 1

12 Eoh4P2 − 1
24 CamEoh4PRbeWs +

1
24 ClEoh4PRbeWs − CwEo2h4PVb

24gρl
,

K6 = 1
3 Eoh2P− 1

6 CamEoh2PRbeWs − CwEo2h2Vb
3gρl

− 3CwEo2h4PVb
40gρl

,

K7 = P
2 , K8 = −EoP

3 + 1
6 CamEoPWs +

CwEo2Vb
3gρl

+
CwEo2h2PVb

12gρl
,

K9 = EoP2

12 + 1
24 CamEoPRbeWs − 1

24 ClEoPRbeWs +
CwEo2PVb

24gρl
,

K10 =
CwEo2PVb

120gρl

(36)

ub = 1 + K11 y + K12 y2 + K13 y3 + K14 y4,

K11 = 1
6gρl

(
3CwEoVb

(
4 + h2P

)
(−2 + CamWs) + gP

(
18 + ClEoh2RbeWs −Cam

(
18 + Eoh2Rbe

)
Ws + 6Cam

2Ws
2
)
ρl

)
K12 = 1

12g2ρl
2

(
3Cw

2Eo2
(
4 + h2P

)
Vb

2 + CwEogPVb

(
−18 + Eoh2 + 12CamWs

)
ρl + 6(Cam −Cl)g2PRbeWs(−2 + CamWs)ρl

2
)

K13 = 1
6g2ρl

2

(
EoP

(
Cw

2EoVb
2 + Cw gVb(2 + Cam(−1 + Rbe)Ws −ClRbeWs)ρl + (Cam −Cl)g2RbeWsρl

2
))

K14 = − CwEo2PVb(CwVb+gρl)
24g2ρl

2 .

(37)

Here, P =
∂p
∂x . The flow rate in the fixed frame [51] was defined by

Q f =

∫ h

−h
u f (x, y)dy, (38)

Qg =

∫ h

−h
ug(x, y)dy, (39)

Q = Q f + Qg =

∫ h

−h
u f (x, y) + ug(x, y)dy. (40)

Solving the equation to get P in terms of Q and x was

∂p
∂x = 1

4Eogh5ρl

(
K1 · h5 + K2 · h3 −

√
(K1 · h5 + K2 · h3)2 − (K3h5 + K4h6)

)
K1 = Eo(ClgRbeWsρl −CwAEoVb −CamgRbeWsρl), K2 = −10 gρl

A

K3 = 120 Eog2ρl
2

A (1−Q), K4 = 240
g2hρ2

l Eo
A

(41)

4. Discussion

To study the impact of numerous parameters, such as volume (Vb), Eotvos number (Eo), added
mass coefficient (Cam), slip velocity (Ws), lift coefficient (Cl), and model coefficient (Cw), Figures 2–19
were plotted.
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Figure 2. Pressure rise for several values of Eo.

 

Figure 3. Pressure rise for several values of Cam.
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Figure 4. Pressure rise for several values of Rbe.

 

Figure 5. Pressure rise for several values of Ws.
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Figure 6. Fluid velocity curves for several values of Cw. Rbe = 10, Vb = 1.0, Eo = 1.0, Cam = 1.0, Ws =

10, Cl = 10.

 
Figure 7. Fluid velocity curves for several values of Cl. Rbe = 10, Vb = 1.0, Eo = 1.0, Cam = 1.0, Ws = 10,
Cw = 10.
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Figure 8. Fluid velocity curves for several values of Eo. Rbe = 10, Vb = 1.0, Cl = 10, Cam = 1.0, Ws = 10,
and Cw = 1.0.

Figure 9. Fluid velocity curves for several values of Vb. Rbe = 10, Eo = 1.0, Cl = 10, Cam = 1.0, Ws = 10,
and Cw = 1.0.
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Figure 10. Fluid velocity curves for several values of Cam. Rbe = 10, Eo = 1.0, Cl = 10, Vb = 1.0, Ws = 10,
and Cw = 1.0.

Figure 11. Fluid velocity curves for several values of Rbe. Cam = 1.0, Eo = 1.0, Cl = 10, Vb = 1.0, Ws =

10, and Cw = 1.0.
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Figure 12. Fluid velocity curves for several values of Ws. Cam = 1.0, Eo = 1.0, Cl = 10, Vb = 1.0, Rbe =

10, and Cw = 1.0.

Figure 13. Bubble velocity curves for several values of Cw. Rbe = 10, Vb = 1.0, Eo = 1.0, Cam = 1.0, Ws =

10, and Cl = 10.
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Figure 14. Bubble velocity curves for several values of Cl. Rbe = 10, Vb = 1.0, Eo = 1.0, Cam = 1.0,
Ws = 10, and Cw = 1.0.

Figure 15. Bubble velocity curves for several values of Eo. Rbe = 10, Vb = 1.0, Cl = 10, Cam = 1.0,
Ws = 10, and Cw = 1.0.
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Figure 16. Bubble velocity curves for several values of Vb. Rbe = 10, Eo = 1.0, Cl = 10, Cam = 1.0,
Ws = 10, and Cw = 1.0.

 
Figure 17. Bubble velocity curves for several values of Cam. Rbe = 10, Eo = 1.0, Cl = 10, Vb = 1.0,
Ws = 10, and Cw = 1.0.
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Figure 18. Bubble velocity curves for several values of Rbe. Cam = 1.0, Eo = 1.0, Cl = 10, Vb = 1.0,
Ws = 10, and Cw = 1.0.

 
Figure 19. Bubble velocity curves for several values of Ws. Rbe = 10, Vb = 1.0, Eo = 1.0, Cam = 1.0,
Cw = 10, and Cl = 10.
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4.1. Pressure Rising

The flow of biological fluid in peristaltic motion circulating in the human body are investigated in

Figures 2–5. The pressure rise was defined as ΔP =
∫ 1

0 dx. In Figure 2, it can be seen that by increasing
the value of the Eotvos number, the pumping rate rose in the co-pumping region (Δp<0, Q>0), whereas
the opposite behavior was seen in the retrograde pumping region (Δp>0, Q<0), (Δp<0, Q<0) and the
free pumping region. From Figure 3 it is noticeable that the pumping rate dropped (Δp<0, Q>0) in the
co-pumping region when we increased the value of the added mass coefficient and the free pumping
region (Δp<0, Q<0). In the retrograde pumping region (Δp>0, Q<0) the opposite behavior was noted.
It can be seen in Figure 4, that when we increased the value of Reynolds’ number Rbe, the pumping rate
rose in the co-pumping region (Δp〈0, Q〉0). However, the behavior was the opposite in the retrograde
pumping region (Δp>0, Q<0) and in the free pumping region (Δp<0, Q<0). From Figure 5, it is
noticeable that there was an upsurge in the pumping rate (Δp<0, Q>0) in the co-pumping region by
increasing values of slip velocity and free pumping region (Δp<0, Q<0). In the retrograde pumping
region (Δp>0, Q<0) the behavior was quite the opposite.

4.2. Fluid Velocity Profile

The fluid and gas velocities are examined in Figures 6–19. The effect of the model coefficient
on the flow velocity was increased when we increased the value of the model coefficient, as seen in
Figure 6. It is clear from Figure 7 that with increasing values of the lift coefficient, there was an upturn
in the velocity of fluid. From Figure 8, it is found that the behavior of the velocity reduced with the
increasing values of the Eotvos number because the Eotvos number is the ratio of gravitation force to
surface tension. The larger values of Eo represented lesser surface tension and an increase in gravity
resulted in the reduction of velocity. In Figure 9, we observed that when we increased the values of
volume, the velocity reduced. Due to the rise in bubble volume, drag force increased and, hence, fluid
slowed down. The fluid velocity decreased by increasing the value of the added mass coefficient as
depicted in Figure 10. The added mass force increased with the rise in bubble volume because it was a
drag force due to accelerating bubbles, hence the velocity of the fluid reduced. It is clear from Figure 11
that with rising values of Rbe the velocity of the fluid was decreased. Rbe was a parameter related to
bubble volume directly, with a constant fluid density it behaved similar to Vb. From Figure 12, it was
detected that the behavior of velocity reduced with increasing values of the slip velocity.

4.3. Gas Velocity Profile

The effect of the model coefficient on the flow velocity declined for higher values of the model
coefficient, as displayed in Figure 13. It is clear in Figure 14 that with the increase of the lift coefficient,
the velocity of fluid went up. From Figure 15, it was perceived that the behavior of the velocity rose with
the increasing values of the Eotvos number. It can be perceived from Figure 16, that when we increased
the values of volume, a dipping behavior of the velocity was grasped. The fluid velocity increased
with increasing values of the added mass coefficient, as portrayed in Figure 17. From Figure 18, it can
be concluded that with an increase in the values of Rbe, the velocity of fluid increases. Figure 19 shows
that the velocity rose with the increasing values of the slip velocity.

5. Conclusions

In this investigation, the rheological properties of the liquid influenced the coating to make
dynamical behavior nonlinear. Due to nonlinearity, first the constraints of low Reynolds number
and long wavelength approximations, after transforming the actual frame into a wave frame, were
used, and then the nonlinear coupled equations were solved by a well-known perturbation technique.
The physical effects of prominent parameters, namely volume, Eotvos number, mass coefficient, slip
velocity, and model coefficients were examined and discussed.
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Abstract: Nanofluids are potential heat transfer fluids with improved thermophysical properties
and heat transfer performance. Double diffusion convection plays an important role in natural
processes and technical applications. The effect of double convection by diffusion is not limited to
oceanography, but is also evident in geology, astrophysics, and metallurgy. For such a vital role of
such factors in applications, the authors have presented the analytical solutions of pumping flow of
third-grade nanofluid and described the effects of double diffusion convection through a compliant
curved channel. The model used for the third-grade nanofluid includes the presence of Brownian
motion and thermophoresis. Additionally, thermal energy expressions suggest regular diffusion and
cross-diffusion terms. The governing equations have been constructed for incompressible laminar
flow of the non-Newtonian nanofluid along with the assumption of long wavelength. The obtained
analytical expressions for velocity, temperature, and nanoparticle concentration have been sketched
for various considerable parameters. The effects of regular buoyancy ratio, buoyancy parameter,
modified Dufour parameter, and Dufour-solutal Lewis number have been analyzed along with wall
properties and pumping characteristics. This study concludes that fluid becomes hotter with increase
in regular buoyancy ratio and a modified Dufour parameter, but a decrease in temperature is observed
for the buoyancy parameter. Moreover, the solutal concentration is behaving inversely against the
Defour-Solutal Lewis number.

Keywords: double diffusion; nanofluid; curved channel; peristaltic pumping; compliant walls;
analytical solutions; third grade fluid model

1. Introduction

Nanofluid has served in a number of engineering applications, for example, porous materials [1,2],
fuel-cell industry [3], etc. due to its significant increase in the heat-transfer rate compared to
conventional engineered fluid [4]. Nanofluids are another class of fluids made by scattering at the
nanometer scale materials (nanoparticles, nanofibers, nanotubes, nanowires, nanorods, nanosheets,
or nanobeads) in base fluids. As it were, nanofluids are nanoscale colloidal suspensions containing
dense nanomaterial. They are two-stage frameworks with one stage (solid stage) into another (fluid
stage). It was discovered that nanofluids have improved thermophysical properties, for example,
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thermal conductivity, heat-diffusivity, thickness, and convective warmth move coefficients contrasted
with those of base fluids, like oil or water. It has indicated incredible potential applications in numerous
zones. Some investigations on nanofluid can be cited in [5–9]. Most of the human vessels are flexible in
nature and the peristaltic flows exhibit such kind of geometries. The flows of such types are very useful
in industry, engineering and medical. These flows have also immense applications in curing cancer cells.
Abd Elnaby and Haroun [10] have studied the influence of conformal wall properties on peristaltic
movement in a two-dimensional channel and produced the conclusion that the reverse pumping
rate increases by rising the wall damping and reduces under the increasing magnitude of the wall
elasticity as well as tension, which differs from the model used by Mittra and Prasad [11] and Srivastava
and Srivastava [12]. Muthu et al. [13] analyzed the peristaltic movement of a micropolar fluid in
circular cylindrical tubes with elastic wall properties. They suggested from the obtained measurement
that viscous damping is affecting the mean flow reversal over the elastic surface. Nadeem et al. [14]
obtained an analytical solution for pumping transport of Williamson nanofluid through a curved
channel with compliant walls and offered the readings under the variation of curvature of the enclosure
and heat transfer coefficient. Although a large number of studies on the peristaltic flow of conventional
fluids are available, only a few articles have been reported on the peristaltic flow of nanofluids [15–18].
In this regard, Akbar et al. [19] investigated the copper nanoparticles impinging on a curved channel
with compliant walls and peristalsis. They acquired analytical solutions for temperature distribution
and nanoparticle concentration. Due to the importance of the effects Soret (thermal diffusion) and
Dufour (diffusion-Thermo), many investigators have been studied which can be found in [20–22].

Collective forced, free convection (mixed convection stream) is occurred in large number of
engineering and industrial processes, like solar central receivers attached to the wind potentials,
cooling of electronic equipment through fans and nuclear reactors during emergency shutdown and
heat transfers kept in lower-velocity surroundings. Heat and mass transfers accompanying effect on
each other also produce a cross-diffusion influence. The temperature difference generates mass transfer
which is known as Soret effect, on the other hand, the Dufour effect comes from the heat transfer
produced by the concentration gradient. Due to wide range of aplications, peristaltic transport of Jeffrey
fluid with double diffusion convection for nanofluids has been analyzed by Akram et al. [23] in the
presence of a tilted magnetic field. Exact solutions are obtained for the breaking field of nanoparticles,
the concentration field, the temperature field, the flow functions, the pressure gradient and the pressure
increase with respect to the axial and transverse coordinates on the length restrictions of longwave and
low Reynolds number. Akbar and Habib [24] have discussed the peristaltic flow induced by natural
double-diffusive convection to achieve a nanofluid magnetic field analysis in an asymmetric porous
channel and obtained solutions in a series of five coupled equations.

The feature of compliant wall in peristaltic flows is a key tool for governing muscle tension.
This physical phenomenon has been revealed mathematically by a system of equations which are linked
to compliant walls displacement [25,26]. Srinivasvas and Kothandapani [27] have investigated the
transfer of heat and mass effects on wavy flow through a porous region experiencing compliant walls.
Batti et al. [28] have introduced the wavy phenomenon of Jeffrey fluid in a non-uniform rectangular
enclosure with the effects of variable magnetic field. They proposed the attributes of non-uniformity
of channel on the flow with the incorporation of lubrication theory and obtained the exact solutions.
Bhatt et al. [29] have published the hall current factor on peristaltic analysis of heated particle–fluid
combined flow with compliant wall properties through numerical treatment. It is to be mentioned here
that the analysis of double diffusion mixed convection for a wavy mechanism of viscoelastic nanofluid
in a curved structured geometry has not been yet investigated.

Keeping in mind the importance of above-discussed literature and wide range of applications of
mixed convection phenomenon with nanoparticles in peristaltic flows, the authors converted their
attention to exploring the theoretical effects of double diffusion over peristaltic flow of nanofluid
having third-grade fluid as a base fluid through a curved channel along with wall properties.
Most probably, this study will be the best direction to efficiently use the achieved data in experimental
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side. The equations of continuity, momentum, energy, and nanoparticle concentration have been
modeled through some suitable physical conditions like low values of wavenumber and the Reynolds
number. The observing equations are then solved analytically by using a perturbation method.
The results are manipulated graphically and discussed in detail. The parameters affecting the
phenomenon have been described individually.

2. Mathematical Modeling

The problem is to contemplate the effects of double diffusion on the peristaltic transport of an
impermeable third-grade fluid in a compliant curved channel having radius R and uniform width 2d
bent in the form around the curve with central point having the corresponding components u and v in
above-mentioned sides (see Figure 1a). The walls have been structured to become wavy along the flow
and have the mathematical expression as described below. The operating equations for the obstacle
are [18]

∇ ·V = 0, (1)

ρ f (
∂v
∂t + V · ∇V) = −∇p + μ∇ · S

+(ϕρp + (1−ϕ)ρ f (1− βt(T − T1) − βc(C−C1)))g,
(2)

(ρc) f

[
∂T
∂t + V · ∇T

]
= K∇2T + (ρc)p(Db∇ϕ · ∇T + Dt

T1
(∇T · ∇T))

+(ρc) f Dtc∇2C,
(3)

∂C
∂t

+ V · ∇C = Ds∇2C + Dct∇2T, (4)

∂ϕ

∂t
+ V · ∇]ϕ = Db∇2ϕ+ (

Dt

T1
)∇2T, (5)

where ρ f and ρp suggest the fluid and particles density in order; c stands for volumetric coefficient;
V implies the velocity column; f gives the forcing factor; P delivers the pressure term; e represents
the nanoparticles strength; T0, C0, and ϕ0 describe the contextual representatives of T, C, and ϕ at
lower wall, respectively; and T1, C1, and ϕ1 are the correspondent at the upper wall; Db depicts
the Brownian diffusion factor; Dt the thermophoretic diffusion coefficient; βt shows the volumetric
volume expansion coefficient for the liquid; βc is the cognate solutal coefficient; Dct represents the soret
diffusivity; Ds reveals the solutal diffusivity; Dtc directs the Dufer diffusivity; and S sweeps the fluid
model tensor. We use the following dimensional quantities

x∗ = x
λ , r∗1 = r1

d1
, t∗ = ct

λ , w∗1 = w1
d1

, k∗ = R∗1
d1

,

p∗ = d2
1p

cλμ , S∗i j =
d1Sij

cμ , θ = T−T0
T1−T0

, φ = C−C0
C1−C0

,

γ =
ϕ−ϕ0
ϕ1−ϕ0

, Nc =
βcC0
βtT0

, Nr1 =
ρp−ρ f

(1−ϕ0)ρ f βtT0
, τ =

(ρc)p

(ρc) f
,

(6)
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(a) 

 
(b) 

Figure 1. (a) Geometry of the problem. (b) Comparison of current work with literature [25].

The new discovered parameters like Ld, Nb, Nc, Nd, Nr1 and Nt take place for a Dufour Lewis
number, a Brownian motion parameter, the regular double-diffusive buoyancy ratio, a modified
Dufour parameter, the nanofluid buoyancy ratio, and the thermophoresis parameter, accordingly.
According to the mechanism of flow, the velocity field is supposed as V = (v, u). After using above
defined parameters and applying the conditions of low Reynolds number and long wavelength,
the Equations (1)–(5) get the next coming form

− l
r1 + k1

∂p
∂x

+
1

r1 + k1

∂
∂r1

[
(r1 + k1)

2Sr1x
]
+ Ncγ+ θ−Nr1φ = 0, (7)

[
∂2θ

∂r1
2 +

1
r1 + k1

∂θ
∂r1

+ Nb
∂φ

∂r1

∂θ
∂r1

+ Nt(
∂θ
∂r1

)
2
+ Nd

[
∂γ

∂r1
+

1
r1 + k1

∂γ

∂r1

]]
= 0, (8)[

∂2

∂r1
2 +

1
r1 + k1

∂
∂r1

]
φ+

Nt

Nb

[
∂2

∂r1
2 +

1
r1 + k1

∂
∂r1

]
θ = 0, (9)
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∂2γ

∂r2
1

+
1

r1 + k1

∂γ

∂r1
+ Ld

⎡⎢⎢⎢⎢⎣∂2θ

∂r2
1

+
1

r1 + k1

∂θ
∂r1

⎤⎥⎥⎥⎥⎦ = 0, (10)

by using the no-slip boundary conditions and compliant walls phenomenon [22,29]

U = c at r1 = ±η = ±(d1 + a sin (
2π(X−ct)
λ ))

T = T0 at r1 = −η and T = T1 at r1 = η
C = C0 at r1 = −η and C = C1 at r1 = η
ϕ = ϕ0 at r1 = −η and ϕ = ϕ1 at r1 = η

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
After adopting wave frame phenomeno and creeping characteristics of the current ransport,

we have the following conclusive form of the above-defined boundary relations in dimensionless format

u = 0 at r1 = ±η = ±(1 + ε sin 2π(x− t)), (11)

θ = 0, φ = 0, γ = 0 at r1 = −η, (12)

θ = 1, φ = 1,γ = 1 at r1 = η, (13)

k
[
E1
∂3

∂x3 + E2
∂3

∂x∂t2 + E3
∂2

∂t∂x

]
η =

∂p
∂x

at r1 = ±η, (14)

Sr1x = −ur1 +
1

r1 + k1
u− 2β(ur1 +

1
r1 + k1

u)
3
. (15)

where E1, E2, and E3 are the representatives of the compliant wall properties [10].

3. Solution of the Problem

We utilize the method of series expansion to solve coupled differential equations which are given
before. The deformation equations for u, θ, γ, and φ are defined as [30]

(1− q)£[u− u0] + q

⎡⎢⎢⎢⎢⎣ − l
r1+k1

∂A
∂x + 1

r1+k1

∂
∂r1

[
(r1 + k1)

2Sr1x
]

+Ncr1 + θ−Nr1φ

⎤⎥⎥⎥⎥⎦ = 0, (16)

(1− q)£[θ− θ0] + q

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∂2θ
∂r1

2 +
1

r1+k1

∂θ
∂r1

+ Nb
∂ϕ
∂r1

∂θ
∂r1

+ Nt(
∂θ
∂r1

)
2

+Nd

[
∂γ
∂r1

+ 1
r1+k1

∂γ
∂r1

] ⎤⎥⎥⎥⎥⎥⎥⎥⎦ = 0, (17)

(1− q)£[ϕ−ϕ0] + q
[[
∂2

∂r1
2 +

1
r1 + k1

∂
∂r1

]
ϕ+

Nt

Nb

[
∂2

∂r1
2 +

1
r1 + k1

∂
∂r1

]
θ

]
= 0, (18)

(1− q)£[γ− γ0] + q

⎡⎢⎢⎢⎢⎣∂2γ

∂r2
1

+
1

r1 + k1

∂γ

∂r1
+ Ld

⎡⎢⎢⎢⎢⎣∂2θ

∂r2
1

+
1

r1 + k1

∂θ
∂r1

⎤⎥⎥⎥⎥⎦⎤⎥⎥⎥⎥⎦ = 0. (19)

where £ is the linear operator which is chosen as £ = ∂2

∂r2
1
. The initial guesses for u, θ, φ, and γ are

defined as

u0 = 1
2w1

[−2(k1 + r1)w ln (k1 + r1) + (k1 −w1)(−r1 + w1) ln (k1 −w1)+

(k1 + w1)(r1 + w1) ln (k1 + w1)],
(20)

θ0 = 1
2w1

[−2(k1 + r1)w1 ln (k1 + r1) + (k1 −w1)(r1 + w1) ln (k1 −w1)+

(k1 + w1)(r1 + w1) ln (k1 + w1)],
(21)

ϕ0 = 1
2w1

[−2(k1 + r1)w1 ln (k1 + r1) + (k1 −w1)(−r1 + w1) ln (k1 −w1)+

(k1 + w1)(r1 + w1) ln (k1 + w1)],
(22)
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γ0 = 1
2w1

[−2(k1 + r1)w ln (k1 + r1) + (r1 −w1)(r1 + w1) ln (k1 −w1)+

(k1 + w1)(r1 + w1) ln (k1 + w1)].
(23)

Now we use the following perturbation series for u, θ, γ, and φ

u = u0 + qu1 + . . .
θ = θ0 + qθ1 + . . .
γ = γ0 + qγ1 + . . .
ϕ = ϕ0 + qϕ1 + . . .

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭. (24)

After using the above series solutions in Equations (11) to (14) and comparing the coefficients of q,
we get the same solutions for zeroth order terms and the first order systems found the following solutions

u1 = C1 + rC2 − 1
4η3 (

1
9

rη2(6k(6 + k + kNc − kNr1 + 6A)η+ 3(3 + 5k)(1 + Nc −Nr1)

rη+ (1 + Nc −Nr1)r2(3 + 5η)) + 1
12(k+r)3 (768(k + r)3βη3Log[k + r]3

−3β(k− η)3(k + η)(17k2 + 40kr + 24r2 − 6kη− 8rη+ η2)Log[k− η]3
+288(k + r)2βη2Log[k + r]2(12(k + r)η+ (k− η)(3k + 4r− η)Log[k− η]
−(k + η)(3k + 4r + η)Log[k + η]) + β(k− η)2(k + η)Log[k− η]2(−8(k + r)(31k + 36r− 5η)η

+3(3k(17k2 + 40kr + 24r2)η+ (5k + 8r)η2 − 3η3)Log[k + η])

+(k + η)Log[k + η](4(k + r)2η2(r3(6 + r + Ncr−Nr1r) + 3(1 + (1 + Nc −Nr1)r3 − 30β)η

+k(−3 + 90β+ r2(6 + r + Ncr−Nr1r + 3(1 + Nc −Nr1)η)))

+β(k− η)(k + η)Log[k + η](−8(k + r)η(31k + 36r + 5η)

+3(k + η)(17k2 + 40kr + 24r2 + 6kη+ 8rη+ η2)Log[k + η]))

−(k− η)Log[k− η](4(k + r)2η2(r3(6 + r + Ncr−Nr1r) − 3(1 + (1 + Nc −Nr1)r3 − 30β)η

+k(−3 + 90β+ r2(6 + r + Ncr−Nr1r− 3(1 + Nc −Nr1)η)))

+β(k + η)Log[k + η](−16(k + r)η(31k2kr + 5η2) + 3(k + η)(3k(17k2 + 40kr + 24r2)

−(11k2 + 32kr + 24r2)η+ (5k + 8r)η2 + 3η3)Log[k + η]))

−8(k + r)ηLog[k + r]((k + r)2(6 + (k + r)(k2(1 + Nc −Nr1)

+r(6 + r + Ncr−Nr1r) + 2k(3 + 3A + r + Ncr−Nr1r)) − 936β)η2

+6β(−(k− η)2(7k2 + 18k + 12r2 − 4kη− 6rη+ η2)Log[k− η]2
+2(k− η)Log[k− η](−6(k + r)(5k + 6r− η)η
+(k + η)(7k2 + 18kr + 12r2 − η2)Log[k + η])

+(k + η)Log[k + η](12(k + r)η(5k + 6r + η)

−(k + η)(7k2 + 18kr + 12r2 + 4kη+ 6rη+ η2)Log[k + η]))))),

(25)

θ1 = C3 + rC4 − 1
4η2 (2(k + r)(−1−Nd + (Nb + Nt)(k + r))η2Log[k + r]2

+2(k + r)η+ Log[k + r](1 + Nd − (Nb + Nt)(k + r) − 2η
−(2Nd + (Nb + Nt)(k + r))η+ (−1−Nd + (Nb + Nt)(k
+r))((k− η)Log[k− η] − (k + η)Log[k + η])) + 1

2 r((Nb

+Nt)r + 2(−2(1 + Nd) + (Nb + Nt)(2k + r))η+ 2(4 + 4Nd

+2k(Nb + Nt) + 3(Nb + Nt)r)η2 + ((k− η)Log[k− η] − (k
+η)Log[k + η])(−2(Nb + Nt)r− 2(−2(1 + Nd) + (Nb

+Nt)(2k + r))η+ (Nb + Nt)r((k− η)Log[k− η] − (k
+η)Log[k + η])))),

(26)

φ1 = C5 + rC6 + 1
2Nbη

((Nb + Nt)(k + r)(1− 2η+ ηLog[k + r]2

+(−k + η)Log[k− η] + (k + η)Log[k + η] − Log[k + r](1− 2η
+(−k + η)Log[k− η] + (k + η)Log[k + η]))),

(27)
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γ1 = C7 + rC8 + 1
2η ((1 + Ld)(k + r)(1− 2η+ ηLog[k + r]2

+(−k + η)Log[k− η] + (k + η)Log[k + η] − Log[k + r](1− 2η
+(−k + η)Log[k− η] + (k + η)Log[k + η]))),

(28)

where the constants Ci, i = 1, 2, 3, . . . 8 can be found by using boundary conditions are described in the
Appendix A and the quantity A(x,t) contains the subsequent expression

A(x, t) = −2επ3k
{ E3

2π
sin (x− t)2π− (E1 + E2) cos (x− t)2π

}
. (29)

Therefore, the final solutions can be composed by injecting above evaluated expressions of
u0, θ0, φ0, γ0 and u1, θ1, φ1, γ1 into Equation (24).

The expression for the heat transfer coefficient is described as

z = ηxθr(η). (30)

Hence, it is calculated as

z = − 1
2+2εSin[2π(−t+x)]πεCos[2π(−t + x)](5(Nb + Nt) − 4C4 + (−1 + k)2(Nb

+Nt)Log[−1 + k + εSin[2π(t− x)]]2

+2(−1 + k)Log[−1 + k + εSin[2π(t− x)]](−Nb−Nt
+(−1 + Nb + kNb−Nd + Nt + kNt)Log[1 + k + εSin[2π(−t + x)]]) + Log[1 + k
+εSin[2π(−t + x)]](−2(3 + Nb + kNb + 3Nd + Nt + kNt) + (Nb + Nt− 3k2 (Nb
+Nt) − 2k(−1 + Nb−Nd + Nt))Log[1 + k + εSin[2π(−t + x)]]) + εSin[2π(−t
+x)] (2(4(Nb + Nt) − 2C[2] − (−1 + k)(Nb + Nt)Log[−1 + k + εSin[2π(t− x)]]2

−(4 + Nb + 4Nd + Nt)Log[1 + k + εSin[2π(−t + x)]]−(−1 + k)(Nb + Nt)Log[1 + k
+εSin[2π(−t + x)]]2 + Log[−1 + k + εSin[2π(t− x)]](Nb + Nt + (1− 2Nb + Nd
−2Nt)Log[1 + k + εSin[2π(−t + x)]])) + (Nb + Nt)ε(4 + (Log[−1 + k + εSin[2π(t
−x)]]−Log[1 + k + εSin[2π(−t + x)]])2)Sin[2π(−t + x)])).

4. Graphical Results and Discussion

The above analysis composes the effects of double diffusion on pumping flow of non-Newtonian
(third order) fluid travelling through a curved channel and also described the wall properties.
The formulation is carried out by introducing non-dimensional parameters and imposing the features
of the lubrication approach. After achieving system of four nonlinear coupled differential equations,
exact analytical solutions have been found by an appropriate analytical highly converging technique
(HPM). In this segment of the study, we have included graphical treatment of various obtained
quantities like comparison graph, velocity, temperature, solutal concentration, and nanoparticle
phenomenon. Figure 1b is included just to validate the present results by comparing analytical solution
with exact solution [25]. This graph contains the data of velocity obtained in the current study by
neglecting the effects of double diffusion convection (Nc = Nr1 = 0) and the data of [25]. One can find
the reading that the current analytical solutions are very much in agreement with the exact solutions
found by Hayat et al. [25]. In Figure 2, the velocity is displayed under the variation of the regular
buoyancy ratio Nc. We conclude from this figure that the velocity of fluid is increasing with increasing
quantity of Nc and become highest in the middle part of the channel. This result stresses that Nc

being the ration of concentration variance to temperature gradient, when gets increased meant that
concentration change is higher than the temperature difference which is actually causing the fluid to
travel with greater intensity. From Figure 3, it is very clear that the velocity is showing totally opposite
behavior against the buoyancy parameter Nr1 as compared to Nc which is also prominent physically
that when we increase the density of particles the fluid travels slowly. Figure 4 is portrayed to find the
influence of complaint wall parameters E1, E2, E3 and it can be concluded here that the velocity of
the nanofluid is minimized with the complaint wall parameters. In Figure 5, the temperature profile
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θ is portrayed to measure the influence of the regular buoyancy parameter Nb. According to this
graph, it is noticed that the temperature is increasing with the increasing value of Nb and the highest
temperature is observed at r = 0.2, which is near the centerline of channel. Figure 6 is showing the
effect of a modified Dufour parameter Nd on temperature profile θ. This graph is emphasized that
Nd is lowering the temperature throughout the geometry which represents the cooling effects due to
change in nanoparticles concentration. The temperature profile θ for various values of thermophoresis
parameter Nt is plotted in Figure 7. According to this figure, we can analyze that as we increase the
magnitude of Nt, the temperature θ is also increased and gets higher magnitude in the central region
of the channel. Figures 8 and 9 highlights the variation of nanoparticle concentration φwhen there is
an increase the values of Brownian motion parameter Nb and thermophoresis parameter Nt. It can
be supposed from these figures that nanoparticle concentration is increasing with Nb but decreasing
with Nt. It is also observed that nanoparticles are less in numbers in the central part and minimum
quantity is at the position r = h. Figures 10 and 11 are drawn to manage the behavior of curvature
parameter k and Defour-Solutal Lewis number Ld on solutal concentration. Figure 10 depicts that γ
is increasing with the increasing values of k. It means that as we use the curved channel with large
curvature, the solutal concentration will get increased. On the other hand, Figure 11 emphasizes that γ
is decreasing with Ld and quite opposite behaviour is observed in this figure as we have seen from
Figure 10. Figures 12–14 are captured to visualize the effects the Nb, Nd, and Nt respectively on the
heat transfer coefficient z. It is found from these figures that heat transfer is decreasing with Nb and Nt

on the left and right sides but increasing in the centre. It is depicted here that Nd reflects the opposite
behaviour on heat transfer. It is also noted from Figures 12–14 that amount of heat transfer is maximum
at the center of the channel.

 
Figure 2. Alteration of Nc on u when x = 0.2; t = 0; Q = 10; β = 0.1; ε = 0.6; Nr1 = 2; k = 2;
E1 = 0.1; E2 = 0.1; E3 = 0.9.
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Figure 3. Alteration of Nr1 on u when x = 0.2; t = 0; Q = 10; β = 0.1; ε = 0.6; Nc = 2; k = 2;
E1 = 0.1; E2 = 0.1; E3 = 0.9.

 

Figure 4. Variation of complaint wall parameters on u when ε = 0.6; β = 0.01; k = 2; x = 0.2;
t = 0; Nc = 2; Nr1 = 1; Q = 10.
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Figure 5. Alteration of Nb on θ when x = 0.5; t = 0; Q = 10; β = 0.2; ε = 0.6; Nt = 5; Nd = 2; k = 2.

 
Figure 6. Alteration of Nd on θ when x = 0.5; t = 0; Q = 10; β = 0.2; ε = 0.6; Nt = 5; Nb = 2; k = 2.

Figure 7. Alteration of Nt on θ when x = 0.5; t = 0; Q = 10; β = 0.2; ε = 0.2; Nb = 5; Nd = 2; k = 2.
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Figure 8. Alteration of Nb onφwhen x = 0.1; t = 0; Q = 10; β = 0.2; ε = 0.1; Nt = 10; Nd = 2; k = 2.

Figure 9. Alteration of Nt on φwhen x = 0.1; t = 0; Q = 10; β = 0.2; ε = 0.1; Nb = 10; Nd = 2; k = 2.

Figure 10. Alteration of k onγwhen x = 0.1; t = 0; Q = 10; β = 0.2; ε = 0.1; Nb = 2; Nd = 1; Ld = 0.1.
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Figure 11. Alteration of Ld on γwhen x = 0.1; t = 0; Q = 10; β = 0.2; ε = 0.1; Nb = 2; Nd = 1; k = 1.5.

Figure 12. Alteration of Nb on z when t = 0; Q = 10; β = 0.2; ε = 0.2; Nt = 15; Nd = 2; k = 2.
 

 
Figure 13. Alteration of Nd on z when t = 0; Q = 10; β = 0.2; ε = 0.2; Nt = 15; Nb = 20; k = 2.
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Figure 14. Alteration of Nt on z when t = 0; Q = 10; β = 0.2; ε = 0.2; Nb = 5; Nd = 2; k = 2.

5. Conclusions

In the third chapter, we have presented the effect of double diffusion on the peristaltic flow of
nanofluid through a curved channel. The governing equations for velocity, temperature, nanoparticles,
and solutal concentration have been modified and illustrated under the suppositions of low Reynolds
number and low wavelength. The solutions have been carried out by HPM. In the last section, graphical
results have been sketched through figures. The major points of the study are given below:

• The velocity profile increases with an increasing regular buoyancy ratio, but buoyancy parameter
and compliant walls give opposite effects on velocity.

• The temperature increases with the Brownian motion parameter and thermophoresis parameter,
but decreases with the buoyancy parameter. It is also noticed that the maximum temperature is
observed in the center of the channel.

• The nanoparticles increase with the variation of regular buoyancy parameter, but decrease with
increasing thermophoresis parameter. Moreover, it is concluded that in the center, there are fewer
numbers of nanoparticles as compared to the left side boundary.

• It is observed that as an increase in the curvature of the channel, solutal concentration is increased,
but reveals opposite behavior with Defour-Solutal Lewis number.

• It is found that heat is transferred in large amounts while increasing a modified Dufour
parameter, but the less heat transfer is observed in case of Brownian motion parameter and
thermophoresis parameter.

• It is disclosed that current analytical study is in line with the study [25] having exact solutions by
skipping the terms of double diffusion.
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Appendix A

C1 = − 1
48η3 (−4(3 + 5k)(1 + Nc −Nr)η5 + 3β(17k3 − 96k2η+ 51kη2 − 32η3)Log[k− η]3

+βLog[k− η]2(8η(31k2 − 216kη+ 31η2) − 9(17k3 − 32k2η− 77kη2 + 32η3)Log[k + η])
+Log[k− η](4η2(3k(−1 + 30β) + (6 + k2(6 + k + kNc − kNr + 6A) − 936β)η
−3k(2 + k + kNc − kNr + 2A)η2 + 2(1 + Nc −Nr)η4) + βLog[k + η](−496k2η
+2960η3 + 9(17k3 + 32k2η− 77kη2 − 32η3)Log[k + η])) + Log[k + η](4η2(k(3
−90β) + (6 + k2(6 + k + kNc − kNr + 6A) − 936β)η+ 3k(2 + k + kNc − kNr

+2A)η2 − 2(1 + Nc −Nr)η4) + βLog[k + η](8η(31k2 + 216kη+ 31η2) − 3(17k3

+96k2η+ 51kη2 + 32η3)Log[k + η]))),

C2 = 1
144η3 (4η3(6k2(1 + Nc −Nr) + 36k(1 + A) + (1 + Nc −Nr)η(3 + 5η)) + 3(−45β (3k2 + η2)Log[k− η]3

+βLog[k− η]2(−1232kη+ 135(3k2 + η2)Log[k + η]) + Log[k− η](4η2(3
−846β+ (k− η)(k(6 + k + kNc − kNr + 6A) − 2(3 + k(1 + Nc −Nr))η)) + βLog[k + η](2464kη
−135(3k2 + η2)Log[k + η])) + Log[k + η](4η2(−3 + 846β− (k + η)(6η+ k(6 + k + kNc − kNr

+6A + 2(1 + Nc −Nr)η))) + βLog[k + η](−1232kη+ 45× (3k2 + η2)Log[k + η])))),

C3 = 1
8η ((Nb + Nt)η(1 + 2η+ 6η2) + (k− η)(2k2(Nb + Nt) − (Nb + Nt)η2 − k(2 + 2Nd

+(Nb + Nt)η))Log[k− η]2 + 2(k− η)Log[k− η](1 + Nd − 2(1 + Nd)η− k(Nb + Nt)(1 + η)
+(Nb + Nt)η(k + η)Log[k + η]) + (k + η)Log[k + η](−2(k(Nb + Nt)(1 + η)
+(1 + Nd)(−1 + 2η)) + (2k(1 + Nd − k(Nb + Nt)) − k(Nb + Nt)η+ (Nb + Nt)η2)Log[k + η])),

C4 = 1
4η2 (2η(k(Nb + Nt)(1 + η) + (1 + Nd)(−1 + 2η)) − k(−1−Nd + (Nb + Nt)(k− η)) (k

−η)Log[k− η]2 + (k− η)Log[k− η](−1−Nd − k(Nb + Nt)(−1 + η) + 4Ndη

−η(−4 + Nb + Nt + (Nb + Nt)η) + 2(−1−Nd + k(Nb + Nt))(k + η)Log[k + η])
+(k + η)Log[k + η](1 + Nd + k(Nb + Nt)(−1 + η) − 4Ndη− η(4 + Nb + Nt + (Nb + Nt)η)

−k(−1−Nd + (Nb + Nt)(k + η))Log[k + η])),

C5 = 1
4Nbη

((Nb + Nt)(2k(−1 + 2η) + (1 + 2k− 2η)(k− η)Log[k− η] + k(−k + η) Log[k− η]2
+(k + η)Log[k + η](1− 2k− 2η+ kLog[k + η])),

C6 = 1
4Nbη2 ((Nb + Nt)(2η(−1 + 2η) + k(k− η)Log[k− η]2 + (k + η)Log[k + η] (1− 4η+ kLog[k + η])

−(k− η)Log[k− η](1− 4η+ 2(k + η)Log[k + η]))),

C7 = 1
4η ((1 + Ld)(2k(−1 + 2η) + (1 + 2k− 2η)(k− η)Log[k− η] + k(−k + η) Log[k− η]2

+(k + η)Log[k + η](1− 2k− 2η+ kLog[k + η]))),

C8 = 1
4η2 ((1 + Ld)(2η(−1 + 2η) + k(k− η)Log[k− η]2 + (k + η)Log[k + η] (1− 4η+ kLog[k + η])

−(k− η)Log[k− η](1− 4η+ 2(k + η)Log[k + η]))).
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Abstract: Present theoretical investigation is a mathematical illustration of an application to endoscopy
by incorporating hybrid nanoparticles and an induced magnetic field with a rheological fluid model for
more realistic results. Rheological fluid behavior is characterized by the Ostwald-de-Waele power-law
model. A hybrid nanofluid mechanism is considered comprising platelet-shaped nanoparticles since
nanoparticles are potential drug transportation tools in biomedical applications. Moreover, ciliary
activity is encountered regarding their extensive applications in performing complex functions along
with buoyancy effects. An endoscope is inserted inside a ciliated tube and peristalsis occurred due to
ciliary activity in the gap between tube and endoscope. A non-Newtonian model is developed by
mathematical formulation which is tackled analytically using homotopy analysis. The outcomes are
interpreted graphically along with the pressure rise and streamlining configuration for the case of
negligible inertial forces and long wavelength. A three-dimensional graphical interpretation of axial
velocity is studied as well. Moreover, tables are prepared and displayed for a more physical insight.

Keywords: hybrid nanofluid; induced magnetic field; mixed convection; heat generation; peristalsis;
cilia beating; Non-Newtonian

1. Introduction

Fluids possess a significant role in the amplification of heat exchange rate in numerous engineering
systems, e.g., heat exchangers, oil and petrochemical industries. Nanoparticle suspensions, pioneered
by Choi [1], made thermal performance of these fluids more effective and it has become a topic of
interest for many investigators [2–5]. Regardless of researchers’ efforts, there has been an elementary
issue with mono nanofluids that either they possess better thermal association or good rheological
characteristics. For example, metal oxides such as Al2O3 show excellent chemical inertness as well as
stability, whereas metallic nanoparticles including Al and Ag exhibit better thermal conductivities.
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Most of the authentic applications required transaction between different properties of nanofluids and
thus hybridization of nanomaterials has been introduced. Hybrid nanofluids can be manufactured
by dispersing nanoparticles of different materials individually or a mixture of nanoparticles in base
fluid. For instance, impacts of Cu–Ag nanohybrids on velocity and thermal boundary layer transport
inside the wedge have been investigated by Hassan et al. [6]. To gain the highest composite thermal
conductivity, chemical inertness and stability by using a small-volume fraction of nanoparticles at lower
production cost is the motivation of researchers behind their utilization of hybrid nanofluids [7–10].
Moreover, nanoparticles of TiO2 exhibit antibacterial and photocatalytic properties. Nguyen et al. [11]
has studied antibacterial properties of TiO2 by adopting silver decorative technique and revealed that
oxide nanoparticles of titanium did not show inhibitory impacts for bacteria whereas silver loaded
TiO2 nanocomposites display efficient antibacterial characteristics at a concentration of 40 mg/mL.
Ag nanoparticles are able to devastate pathogenic bacteria under ultraviolet radiation for efficient
degradation of toxic pollutants as well as being easy to attach to cell membranes [12–14]. Therefore,
Ag–TiO2 nanocomposite is preferred in this theoretical inspection. Moreover, platelet-shaped particles
are chosen since they capacitate swift healing in skin injuries because of their innate capability to make
a boundary intended for vascular walls.

A cilium is a microscopic, contractile, thin fiber-like slender appendage/protrusion that projects
from surfaces of specific cells. In the adult human body, epithelial cells along with motile cilia
are very prominent in specific brain sections. Due to their motility, they possess a considerable
role in many physiological processes like locomotion, alimentation and respiration. Peristalsis is a
spontaneous process of a symmetrical wave’s expansion and contraction within flexible boundaries.
Ciliary-induced peristalsis appears significantly in various biological transport processes such as
in biomedicine, physiology and nuclear reactors. Recently, Awais et al. [15] examined second-law
analysis for peristaltic nanofluid flow caused by ciliary action with magnetic effects. Furthermore,
they studied convective peristalsis of viscous fluid by considering non-uniform viscosity [16] as well.
Furthermore, the concept of peristaltic pumps, instigated by Engelman [17], has latterly been prominent
in several biological functions including roller pumps and heart-lung machines etc. As peristalsis
is a cutting-edge field due to physiological applications, several theoretical as well as experimental
attempts have been made to incorporate nanoparticles in order to improve thermal performance in
biomedical processes. Rashidi et al. [18] exemplified the application of MHD peristaltic transport of
blood containing nanoparticles in drug delivery through an incompatible channel which is practically
imperative in the bio-sciences. Hayat et al. [19] explicated mixed convective heat transfer in the
peristalsis of nanoparticles suspended in water assuming convective boundary conditions and joule
heating. Recently, Maqbool et al. [20] inspected the impacts of nanoparticles on magnetohydrodynamic
tangent hyperbolic fluid transportation in a ciliated tube.

Attention to non-Newtonian fluids arises as the majority of the physiological fluids possess
non-Newtonian behavior verified by experimental observations. In view of the fact that simplified
Newtonian models yield somewhat ambiguous results, several investigations on rheological fluid
behaviors have been carried out to obtain more realistic results. Examples include inelastic fluid
models e.g., the power-law model and viscoelastic fluid models such as the Johnson–Segalman model,
Oldroyd-B model and Maxwell model. Mixed convection impacts towards peristaltic transport of
magnetohydrodynamic non-Newtonian nanofluid were numerically evaluated by Hayat et al. [21].
The current study examines the rheological nature of fluid by employing Ostwald-de-Waele power law
model, a generalized one, in which rheological nature directly depends on power law index n and
deals with the shear thinning for (n < 1) and shear thickening for (n > 1) behaviors of fluid [22–25].

Moreover, the peristaltic flow with influences of applied magnetic field led to significant
applications in biomedical engineering problems [26–28]. In the case of large magnetic Reynolds
number for an electrically conducting fluid, induction becomes more prominent than magnetic diffusion,
and this made the induced magnetic field effects accountable. Shit et al. [29] examined the influence
of induced magnetic field on peristalsis of a micropolar fluid assuming velocity slip. They observed
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that peristaltic flow rate enlarges in an induced magnetic field which led to mechanical stimulation.
So, magnetic induction is appropriate in cancer treatment and magneto therapy as predicted in
literature [30–32]. Besides this, the performance of coatings with magnetic nanoparticles and heat
transport is ever-present in various fields. Magnetic nanoparticles, approved by the FDA (Food and
Drug Administration) [33], with coating are applicable in medical processes such as blood pressure
control of a patient, pharmacotherapy, surgery and alcohol detoxification etc. Ellahi et al. [34] carried
out a comparative investigation on shiny film coating on multi-fluids dispersed by nanoparticles. Akbar
and Butt [35] inspected the physiological flow of Casson fluid through a plumb duct. They observed
that fluid behaves as electrically conducting with a uniform magnetic field and found analytical results
under small wave number and low-Reynolds number approximations. The recent related research can
be read in [36–38].

Furthermore, endoscopic imaging is a precious diagnostic instrumental locating persistent access
to tissues deep inside hollow organs of the body. A conventional white-light endoscope is a solid
circular cylinder placed in a peristaltic tube. Fluid flow occurs in the space between the tube and
endoscope, and then further diagnostic procedures can be made such as for bleeding, cancerous
growths and precancerous polyps. Hayat et al. [39] have addressed the peristaltic transport of the
MHD power law fluid with endoscope effects. Hayat and Ali [40] have inspected the impact of an
endoscope on peristaltically induced flow of micropolar fluid. The influences of non-uniform viscosity
on peristaltic motion of Newtonian fluid through an endoscope have been conducted by Akbar and
Nadeem [41]. Rathod and Asha [42] have investigated endoscope effects along with a magnetic field
on peristalsis of the Newtonian fluid. They concluded that stress formation in a curved structure wall
augments as compared to straight walls. In view of the significance of research regarding endoscopy
applications, various studies have made (see refs. [43–48]).

With several advantages, advanced endoscopes are deficient in the spatial resolution for detection
and treatment of cancers and abnormalities at small scales. Ciliary walls have importance since these
biological cilia are helpful to perform complex biomimetic functions and applicable in vitro and in vivo
synthetic organs as well as drug-delivery applications. In these unmet requirements, the effects of
hybrid nanofluid and induced magnetic field on endoscopy application inside a ciliated peristaltic
tube are addressed. Mathematical modeling is performed by considering negligible inertial forces
and small wave number. An analytical solution of governing model is carried out by the homotopy
analysis method, and results are plotted physically against several sundry parameters via tables and
graphs. The trapping phenomenon is examined with the effects of electromagnetic induction as well.

2. Problem Description

A non-linear problem, concerning the transport and heat-transfer characteristics of non-Newtonian
(Ag-TiO2/H2O) hybrid nanofluid in an endoscope due to ciliary metachronical rhythm is investigated
here. A cylindrical coordinate system is used with (R,θ, Z) as position coordinates of fluid particles.
Non-Newtonian behavior of the flow is considered with Ostwald-de-Waele power law model expressed
as [22,25]:

τ = −k

⎧⎪⎪⎨⎪⎪⎩
√∣∣∣∣∣12 Δ : Δ

∣∣∣∣∣n−1⎫⎪⎪⎬⎪⎪⎭Δ. (1)

where,
1
2

Δ :Δ = 2

⎛⎜⎜⎜⎜⎝(∂U∂R
)2

+
(U

R

)2
+

(
∂W
∂Z

)2⎞⎟⎟⎟⎟⎠+ (
∂W
∂R

+
∂U
∂Z

)2

. (2)

In above expression k and n respectively represents flow consistency index and power law index.
In this study, non-Newtonian shear thickening fluid is considered with n = 2. Moreover, a constant
magnetic field having intensity H0 is taken in radial direction causes an induced magnetic field
H′(Hr(r, z), 0, Hz(r, z)) and, thereby, total magnetic field vector is H(H0 + Hr(r, z), 0, Hz(r, z)).
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The governing system of equations in an unsteady form is [25,29,30]:

∂U
∂R

+
U
R

+
∂W
∂Z

= 0 (3)

∂U
∂t + U∂U∂R + W∂U

∂Z = −1
ρhnf

∂P
∂R − 1

ρhnf

(
1
R
∂(2kRΦ∂U∂R )

∂R +
∂(kΦ( ∂U∂Z + ∂W∂R ))

∂Z

)
− μ̂

2ρhnf

(
∂H2

∂R

)
+

μ̂
ρhnf

(
∂Hr
∂t + (H0 + Hr)

∂Hr
∂R + Hz

∂Hr
∂Z

)
,

(4)

∂W
∂t + U∂W∂R + W∂W

∂Z = −1
ρhnf

∂P
∂Z − 1

ρhnf

(
1
R
∂(kΦR( ∂U∂Z + ∂W∂R ))

∂R +
∂(2kΦ∂W∂Z )
∂Z

)
− μ̂

2ρhnf

(
∂H2

∂Z

)
+

μ̂
ρhnf

(
∂HZ
∂t + (H0 + Hr)

∂HZ
∂R + HZ

∂HZ
∂Z

)
+

(ρβ)hnf
ρhnf

g(T− T0),

(5)

∂T
∂t

+ U
∂T
∂R

+ W
∂T
∂Z

=
κhnf(
ρcp

)
hnf

(
∂2T

∂R2 +
1
R
∂T
∂R

+
∂2T

∂Z2

)
+

Q0(
ρcp
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hnf

, (6)

−1
μ̂
∂E
∂Z = U

(
−∂Hr
∂R + ∂Hz

∂Z

)
+ Hz

∂U
∂Z − (H0 + Hr)

∂W
∂Z − 2W∂Hr

∂Z +

1
σμ̂

(
∂2Hr
∂R2 + 1

R
∂Hr
∂R + ∂2Hr

∂Z2

)
,

(7)

−1
μ̂
∂E
∂R = (H0 + Hr)

∂W
∂R + W

(
∂Hr
∂R − ∂Hz

∂Z
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− 2U∂Hz
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∂U
∂R+
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σμ̂
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R
∂Hz
∂R + ∂2Hz

∂Z2
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.

(8)

where,

Φ =

√√∣∣∣∣∣∣∣2
⎡⎢⎢⎢⎢⎣(∂U∂R

)2

+
(U

R

)2
+

(
∂W
∂Z

)2⎤⎥⎥⎥⎥⎦+ (
∂U
∂Z

+
∂W
∂R

)2
∣∣∣∣∣∣∣
n−1

Wave shapes in the laboratory frame for envelope of cilia tips according to Figure 1 can be
expressed as:

Figure 1. Geometry of the physical problem.
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R1 = a1, (9)

R2 = f (Z, t) =
[
a2 + b cos

(2π
λ
(Z− ct)

)]
(10)

where, α1 and α2 represents radii of internal and external cylindrical tubes, accordingly. Considering
the motion of cilia in an elliptical path, the vertical position of cilia tips is expressed as:

Z = g(Z, Z0, t) =
[
Z0 + αbSin

(2π
λ
(Z− ct)

)]
, (11)

Since the velocities of the fluid layers are similar to those of the cilia tips under the no-slip wall
conditions, the vertical and horizontal velocities are:

W = ∂Z
∂t

∣∣∣
Z0

=
∂g
∂t +

∂g
∂Z
∂Z
∂t ,

U = ∂R
∂t

∣∣∣
Z0

=
∂ f
∂t +

∂ f
∂Z
∂Z
∂t .

(12)

With the help of Equations (10) and (11), Equation (12) becomes:

At R = R2 W =

−2π
λ bαcCos

(
2π
λ (Z− ct)

)
1− 2π

λ bαcCos
(

2π
λ (Z− ct)

) , U =

2π
λ bαcSin

(
2π
λ (Z− ct)

)
1− 2π

λ bαcCos
(

2π
λ (Z− ct)

) . (13)

The associated boundary conditions are defined as:

W = 0, at R = R1, W =

−2π
λ bαcCos

(
2π
λ (Z− ct)

)
1− 2π

λ bαcCos
(

2π
λ (Z− ct)

)at R = R1. (14)

If (R, Z, U, W) and (r, z, u, w) are, respectively, the coordinates and velocities in the laboratory
and wave frame, then transformations from the laboratory frame to wave frame for a steady problem
are [48]:

r = R, z = Z− ct, p(r, z) = P(R, Z− ct), u(r, z) = U(R, Z− ct),
w(r, z) = W(R, Z− ct) − c.

(15)

We introduce the following dimensionless quantities in the wave frame as [29,31]:

r = r
a2

, z = z
λ , δ = a2

λ , r1 = r1
a2

= ξ, r2 = r2
a2

, u = λu
a2c , w = w

c , t = ct
λ ,

φ =
φ

H0a2
,ψ =

ψ
a2c , Hr = − δr

∂φ
∂z , Hz = 1

r
∂φ
∂r ,u = − δr

∂ψ
.

∂
¯
z

, ε = b
a2

,

w = 1
r
∂ψ
∂r , p =

a2
n+1p

cnλk , θ = T−T1
T0−T1

, E = − E
cH0μ̂

.

(16)

A non-dimensional governing model for the aforementioned quantities along with long wavelength
and creeping Stokesian flow approach is:

∂p
∂z + 1

r

(
− 1

r2
∂ψ
∂r + 1

r
∂2ψ
∂r2

)2
+ 2

(
− 1

r2
∂ψ
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r
∂2ψ
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)(
2
r3
∂ψ
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r2
∂2ψ
∂r2 + 1

r
∂3ψ
∂r3

)
−

M2
(
E− 1

r
∂ψ
∂r

)
−A1Grθ = 0,

(17)

∂p
∂r

= 0. (18)
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Equation (17) is simplified in the form:

− 1
r2

(
− 1

r2
dψ
dr + 1

r
d2ψ
dr2

)2
+ 2

r

(
− 1

r2
dψ
dr + 1

r
d2ψ
dr2

)(
2
r3

dψ
dr − 2

r2
d2ψ
dr2 + 1

r
d3ψ
dr3

)
+2

(
− 1

r2
dψ
dr + 1

r
d2ψ
dr2

)(
− 6

r4
dψ
dr + 6

r3
d2ψ
dr2 − 3

r2
d3ψ
dr3 + 1

r
d4ψ
dr4

)
+2

(
2
r3

dψ
dr − 2

r2
d2ψ
dr2 + 1

r
d3ψ
dr3

)2
+ M2

(
− 1

r2
dψ
dr + 1

r
d2ψ
dr2

)
−A1Gr dθ

dr = 0,

(19)

1
r
∂θ
∂r

+
∂2θ

∂r2 +
Ω
A2

= 0, (20)

E− 1
r
∂ψ

∂r
− 1

Rm

(
− 1

r2

∂φ

∂r
+

1
r
∂2φ

∂r2

)
= 0. (21)

where, bar notation is ignored.
Corresponding boundary conditions are listed as:

ψ(r) = −F
2 , 1

r
∂ψ
∂r = −1, φ(r) = 0, θ(r) = 1, at r = r1 = ξ,

ψ(r) = F
2 , 1

r
∂ψ
∂r = −1− 2πεαδ cos(2πz), φ(r) = 1,

θ(r) = 0, at r = r2 = 1 + ε cos(2πz).

(22)

In the above expressions, u and w denotes r- and z-components of velocity within the wave frame,
respectively. Emerging parameters in the above model are expressed as [48,49]:

M2 = ReS2Rm, Re =
an

2ρf

kcn−2 , Rm = σμ̂a2c, S = H0
c

√
μ̂
ρf

,

pm = p + 1
2 Reδ μ̂(H)2

c2ρf
, Ω =

Q0a2
2

κf(T0−T1)
, Gr =

(ρβ)f (T0−T1)a
n+1
2

kcn .
(23)

where as

A1 = (1−φ1 −φ2) + φ1(
(ρβ)s1
(ρβ)f

)] + φ2
(ρβ)s2
(ρβ)f

,

A2 =
κs2+(s−1)κbf−(s−1)φ2(κbf−κs2 )

κs2+(s−1)κbf+φ2(κbf−κs2 )

κs1+(s−1)κf−(s−1)φ1(κf−κs1 )

κs1+(s−1)κf+φ1(κf−κs1 )
.

(24)

Moreover, the pressure gradient can be achieved from the following relation:

F =

r2∫
r1

rwdr =

r2∫
r1

∂ψ

∂r
dr (25)

where, F is the volumetric rate of flow inside the wave frame. Now, non-dimensional mean flow rate Q
into the laboratory frame assuming the transformations of Equations (16) is:

Q = F +
1
2

(
1− ξ2 +

ε2

2

)
. (26)

Pressure rise per wavelength is calculated utilizing Equation (25) as:

ΔP =

1∫
0

dp
dz

dz. (27)

All variables and parameter are defined in Appendix A.

404



Coatings 2020, 10, 186

3. Methodology and Convergence of HAM Solutions

3.1. Methodology

The dimensionless governing model containing Equations (19)–(21) under the associated boundary
conditions (22) is analyzed by employing homotopy analysis method. For this, the initial guesses are
ψ0(r), φ0(r) and θ0(r) and linear operators are chosen in the subsequent manner as:

L1(ψ) = ψ
(iv), L2(φ) = φ

′′ ,L3(θ) = θ
′′ . (28)

And
L1

(
C1 + C2r + C3r2 + C4r3

)
= L2(C5 + C6r) = L3(C7 + C8r) = 0, (29)

where, C1-C8 represents constants while h1, h2 and h3 being auxiliary parameter which plays a key role
in the frame of HAM, since the convergence of solutions strongly depends on h. Now, for embedding
parameter γ ∈ [0, 1] and non-zero auxiliary parameters, the problem under study can be constructed in
the following manner [29,30]:

Zeroth-order deformation problem:

(1− γ)L1[ψ(r,γ) −ψ0(r)] = γh1N1[ψ(r,γ),φ(r,γ),θ(r,γ)], (30)

(1− γ)L2[φ(r,γ) −φ0(r)] = γh2N2[ψ(r,γ),φ(r,γ),θ(r,γ)], (31)

(1− γ)L3[θ(r,γ) − θ0(r)] = γh3N3[ψ(r,γ),φ(r,γ),θ(r,γ)]. (32)

and,
At r = r1 = ξ,ψ(r1,γ) = −F

2 , 1
r1
ψ′(r1,γ) = −1,φ(r1,γ) = 0,θ(r1,γ) = 1.

At r = r2 = 1 + ε cos(2πz),ψ(r2,γ) = F
2 , 1

r2
ψ′(r2,γ) = −1− 2πεαδ cos(2πz),

φ(r2,γ) = 1,θ(r2,γ) = 0.

(33)

On the basis of selected linear operator, auxiliary parameter and initial guesses, the m th order
solution series is constructed as:

L1[ψm(r,γ) − χmψm−1(r,γ)] = h1R1
m(r,γ), (34)

L2[φm(r,γ) − χmφm−1(r,γ)] = h2R2
m(r,γ), (35)

L3[θm(r,γ) − χmθm−1(r,γ)] = h3R3
m(r,γ). (36)

The boundary conditions are:

at r = r1 = ξ,ψm(r1,γ) = 0, 1
r1
ψ′m(r1,γ) = 0,φm(r1,γ) = 0,θm(r1,γ) = 0.

at r = r2 = 1 + ε cos(2πz),ψm(r2,γ) = 0, 1
r2
ψ′m(r2,γ) = 0,φm(r2,γ) = 0,

θm(r2,γ) = 0.

(37)

where the auxiliary parameter is found by plotting h-curves while χm is defined as:

χm = 0, m≤1
1, m>1

}
Therefore, we can write:

ψm(r,γ) = Ψm(r,γ) + C1 + C2r + C3r2 + C4r3,

φm(r,γ) = Φm(r,γ) + C5 + C6r,

θm(r,γ) = Θm(r,γ) + C7 + C8r.

(38)
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The particular solutions Ψm(r,γ), Φm(r,γ) and Θm(r,γ) are obtained using a symbolic software
mathematica while the constants are determined from the defined boundary conditions.

3.2. Convergence of HAM Solutions

To obtain the values of auxiliary parameters h1, h2 and h3, h-curves against ψ′′ , φ′′ and θ′ are
prepared and the results are given in Figures 2–4. Convergence intervals lie in the flat portion of these
h-curves as witnessed from plots. It is observed those permissible values of h1, h2 and h3 up to the
10th order of approximation are: −0.1 ≤ h1 ≤ 0.3, −0.12 ≤ h2 ≤ 0.01, −0.2 ≤ h3 ≤ 0.05.

Figure 2. h-curve for the ψ at z = 1, Q = 2, ε = 0.2.

Figure 3. h-curve for the φ at z = 1, Q = 2, ε = 0.2.

 
Figure 4. h-curve for the θ at z = 1, Q = 2, ε = 0.2.
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4. Quantitative Analysis

The governing model is tackled analytically and solutions are physically interpreted here.
The problem of rheological behavior of hybrid nanofluid flow induced by metachronical ciliary

transport with heat transfer is studied. Important physical features of water and nanomaterials are
represented in Table 1. Therefore, the behavior of velocity, temperature, induced magnetic field, stream
function and volumetric flow rate for involving parameters is discussed in this section. Magnitudes of
physical parameters are chosen corresponding to the physical situations assumed in the problem with
z = 1, ε = 0.2,α = 0.05 and δ = 0.002.

Figure 5 explores the variational trend of axial velocity for escalating values of magnetic Reynolds
number. As the magnetic Reynolds number rises, a high induction effects appear with the reduction
in magnetic diffusion. These effects can be observed from the figure in which the velocity inside the
annulus shows a decreasing behavior in the vicinity of the inner tube having radius a1 owing to no
slip velocity condition while it accelerates near the interior of outer tube with radius a2 due to the
continuous cilia beating. Moreover, a similar trend is noticed in Figures 6 and 7 for rising values of Gr
and M caused by increasing buoyancy effects towards the variation in Gr and due to adding the flow
mechanism with a rise in M which directly affects the flow rate. Figure 8 explicates the variational
trend of magnetic induction profile against R. This is due to the fact that induction is directly linked
with advection and the effects of R on the flow rate as described in Figure 5, cause magnetic induction
profile to decelerate near the boundary of inner tube and accelerate in the vicinity of outer tube.

The consequences of emerging parameters on the temperature profile are inferred in Figures 9
and 10. Correspondingly, a decrease in temperature of the hybrid nanofluid for gradually mounting
values of Gr is observed in Figure 9. The physics behind such behavior is an increase in heat-transfer
rate due to enhancing buoyancy forces for rise in values of Gr. An increasing response of temperature
of the fluid towards the magnetic Reynolds number is noted in Figure 10. This reveals that for high
values of R, fluid particles gain more kinetic energy which is directly related to fluid temperature.
All the results are plotted for mean flow rate Q = 2.

Figure 5. Variation in w(r) towards R.
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Figure 6. Variation in w(r) towards Gr.

 
Figure 7. Variation in w(r) towards M.

Figure 8. Variation in Hz(r) towards R.
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Figure 9. Variation in θ(r) towards Gr.

Furthermore, there is a three-dimensional physical interpretation of the velocity profile for variation
in values of magnetic Reynolds number, Grashof number and Hartmann number, as displayed in
Figures 11–13, respectively. The velocity maps out the parabolic trajectory for all the involving
parameters. It is seen that velocity profile changes its behavior in the intervals 0.1 ≤ r ≤ 0.6 and 0.61
≤ Υ ≤ 1.0 and the influences of the parameters on axial velocity are similar to the two dimensional
velocity behaviors.

Figure 10. Variation in θ(r) towards R.

 
Figure 11. Three-dimensional (3-D) velocity profile towards R.
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Figure 12. Three-dimensional (3-D) velocity profile towards Gr.

Besides this, the maximum pressure rise towards which peristalsis behaves as a pump is analyzed
by means of pressure rise for one wavelength. In this regard, Figures 14–17 are prepared which exhibit
the influence of embedding parameters correspond to pressure rise per wavelength towards mean flow
rate. Non-linear behavior of these curves characterizes non-Newtonian fluid. All these plots contain
four main parts (a) peristaltic pumping region, i.e., ΔP > 0, (b) free pumping region, i.e., ΔP = 0 (c)
co-pumping region, i.e., ΔP < 0. In the region of peristaltic pumping, flow rate is positive and caused
by peristalsis that occurred due to overcoming pressure difference while peristalsis of the boundaries
of tube yields a free-pumping region. In the region of co-pumping, flow due to the peristalsis is
assisted by negative pressure difference. The influence of the heat-generation parameter and Hartmann
number are shown in Figures 14 and 15, and it is perceived that the pressure rise in co-pumping region
(−1.0 ≤ Q ≤ −0.45) for Gr and (−1.0 ≤ Q ≤ 0.5) for M are decreasing. As, forΩ = 0.1, 0.3, 0.5, 0.7 and
M = 0.0, 0.5, 1.0, 1.5, corresponding co-pumping regions contain (Q ∈ [−1.0, −0.45], Q ∈ [−1.0, −0.42],
Q ∈ [−1.0, −0.4], Q ∈ [−1.0, −0.39]) and (Q ∈ [−1.0, 0.5], Q ∈ [−1.0, 0.48], Q ∈ [−1.0, −0.56], Q ∈ [−1.0,
−0.4]), respectively. Pumping and free-pumping regions are increasing due to temperature gradient by
buoyancy effects and increasing induction, correspondingly. Moreover, a similar trend for a rise in the
values of Gr and R is depicted in Figures 16 and 17, and it is witnessed that the co-pumping region
contains Q ∈ [−1.0, −0.4] but the pumping region is increasing.

Figure 13. Three-dimensional (3-D) velocity profile towards M.
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Figure 14. Pressure rise versus Q forΩ.

The pressure gradient illustrates a direction and rate of rapid variation in pressure. Therefore,
the pressure gradient towards embedding parameters such as the heat-generation parameter (Ω),
Hartmann number (M), magnetic Reynolds number (R) and Grashof number (Gr) are studied and
portrayed in Figures 18–21. It is perceived from these plots that the pressure gradient decreases rapidly
with the variation in all the parameters. Hence, flow can easily pass through the endoscope for a small
pressure gradient at r = 1 (near outer tube) exclusive of the imposition of the high-pressure gradient.

 

 
Figure 15. Pressure rise versus Q for M.
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Figure 16. Pressure rise versus Q for Gr.

 

 
Figure 17. Pressure rise versus Q for R.

Figure 18. Pressure gradient forΩ.
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Figure 19. Pressure gradient for M.

Figure 20. Pressure gradient for R.

Trapping is a significant observable fact, whereby a bolus is transported with the wave speed
and then a trapped bolus pressed forward along metachronical waves. These configurations are
plotted in Figures 22–25 for different values of sundry parameters with panels (a)-(d) which inspect the
ciliary-induced peristaltic flow pattern in the annulus. In general, the shape of streamlines is similar to
the wave moving parallel to the walls of the tube. Under specific conditions, streamlines split and
form a bolus which moves and circulates along the channel. The setup for the magnetic Reynolds
number (R) is explained in Figure 22 for M = 1.5, Gr = 0.8, Q = 2, ε = 0.2. Higher values of R yield
oscillatory motion of the fluid, and therefore a confined bolus decreases in size. Figure 23 depicts the
behavior of streamlines for M = 1.5, R = 2, Q = 2, ε = 0.2 and it is perceived that with an increment in
values of Gr, the confined bolus is shrinked moving towards the boundary of external tube and finally
disappear due to temperature distribution caused by buoyancy forces. A similar formation of the flow
pattern against rising Hartmann number is explored in Figure 24 with Gr = 0.8, R = 2, Q = 2, ε = 0.2.
Physically, enhancement in magnitude of M augments fluid velocity which opposes trapping. This is
in view of the fact that the magnitude of the amplitude ratio parameter (ε) indicates the length of cilia
and the increment in values of ε enlarges cilia. The trapped bolus grows in size and circulates speedily
as noticed in Figure 25. Thus, the presence of cilia favors trapping.
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Figure 21. Pressure gradient for Gr.

(a) 

(b) 

Figure 22. Cont.
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(c) 

(d) 

Figure 22. Behavior of streamlines for different values of magnetic Reynold number (a–d).

(a) 

Figure 23. Cont.
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(b) 

(c) 

(d) 

Figure 23. Behavior of streamlines for different values of Grashof number (a–d).
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(a) 

(b) 

(c) 

Figure 24. Cont.
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(d) 

Figure 24. Behavior of streamlines for different values of Hartmann number (a–d).

(a) 

(b) 

Figure 25. Cont.
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(c) 

(d) 

Figure 25. Behaviorof streamlines for different values of amplitude ratio (a–d).

Experiment-based numerical values and mathematical formulas for thermophysical characteristics
of the hybrid nanofluid are expressed in Tables 1 and 2. Furthermore, the impact of engrossing
parameters towards velocity and temperature profiles are presented in tabular form as shown in
Tables 3 and 4. Table 3 shows that for small values of r, velocity decreases gradually but an increasing
behavior is observed for larger radial distance against M and R. A conflicting behavior of the temperature
profile towards R and Gr is depicted in Table 4. Additionally, the behaviors of velocity, temperature
and magnetic induction profiles for variation in radial distance are examined and results are portrayed
in Table 5. All the variations are examined for M = 4, R = 2, Gr = 2.5,Ω = 4, Q = 2, z = 1, ε = 0.2.

Table 1. Numerical values of thermal characteristics of nanomaterials and base fluid at 25 ◦C [9,12].

Properties\Constituents H2O Ag TiO2

Density, ρ (kg/m3) 997 10,500 4250
Specific heat, Cp (J/kg K) 4179 235 686.2

Thermal conductivity, κ (W/m K) 0.613 429 8.95
Thermal expansion coefficient, β

(10−5 m/(mK)) 21 1.89 0.9
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In addition, validation of existing results is examined by comparing them with those of Nadeem
and Sadaf [50] in which an exact solution of a Newtonian Cu/blood nanofluid in the absence of magnetic
induction has been studied. Table 6 shows that the two results are in good agreement. (See Table 6).

Table 2. Experimental relations for thermophysical characteristics of hybrid nanofluid [9,10].

Properties Hybrid Nanofluid

Density ρhnf = ρf(1−ϕ2)
[
(1−ϕ1) + ϕ1

( ρs1
ρf

)]
+ ϕ2ρs2

Heat Capacity
(
ρcp

)
hnf

=
(
ρcp

)
f
(1−ϕ2)

[
(1−ϕ1) + ϕ1

(
(ρcp)s1

(ρcp)f

)]
+ ϕ2

(
ρcp

)
s2

Viscosity μhnf =
μf

(1−ϕ1)
2.5(1−ϕ2)

2.5

Thermal Conductivity

κhnf
κbf

=
κs2+(s−1)κbf−(s−1)ϕ2(κbf−κs2 )
κs2+(s−1)κbf+ϕ2(κbf−κs2 )

,

whereκbf
κf

=
κs1+(s−1)κf−(s−1)ϕ1(κf−κs1 )
κs1+(s−1)κf+ϕ1(κf−κs1 )

Thermal Expansion Coefficient (ρβ)hnf = (ρβ)f[(1−φ1 −φ2) + φ1(
(ρβ)s1
(ρβ)f

)] + φ2(ρβ)s2
,

Table 3. Numerical values of velocity profile versus r for variation in values of M and R.

r
w(r)

M=0.0 M=2.0 M=4.0 R=1.5 R=3.0 R=5

0.1 −1.000000 −1.000000 −1.000000 −1.000000 −1.000000 −1.000000
0.3 2.916111 2.721028 2.141469 2.721303 2.720534 2.720410
0.6 1.396253 1.358720 1.246153 1.358769 1.358632 1.358609
0.9 −0.352214 −0.235930 0.109736 −0.236095 −0.235635 −0.235561
1.2 −1.000013 −1.000013 −1.000013 −1.000013 −1.000013 −1.000013

Table 4. Numerical values of temperature profile versus r for variation in values of R and Gr.

r
θ(r)

R=2.0 R=4.0 R=6.0 Gr=0.5 Gr=2.0 Gr=3.5

0.1 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
0.3 1.074105 1.242672 1.298861 1.206081 1.140543 1.074070
0.6 0.981608 1.122851 1.169931 1.185397 1.083984 0.981587
0.9 0.501895 0.566682 0.588277 0.625917 0.564191 0.501894
1.2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 5. Variation in flow profiles for variation in radial distance r.

r Velocity Temperature Induced Magnetic Field

0.1 −0.999999 1.000000 9.468376
0.15 1.060587 0.965941 6.306623
0.2 1.943109 0.975023 4.723305

0.25 2.349953 0.999968 3.771855
0.3 2.515741 1.028599 3.136419

0.35 2.541556 1.054529 2.681561
0.4 2.478507 1.074105 2.339547

0.45 2.355582 1.085138 2.072744
0.5 2.1907886 1.086309 1.858574

0.55 1.9962259 1.076840 1.682671
0.6 1.7806156 1.056315 1.535457

0.65 1.5506610 1.024567 1.410307
0.7 1.3118123 0.981608 1.302488
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Table 5. Cont.

r Velocity Temperature Induced Magnetic Field

0.75 1.0687020 0.927579 1.208531
0.8 0.8253723 0.862717 1.125837

0.85 0.5853391 0.787332 1.052418
0.9 0.3514943 0.701789 0.986730

0.95 0.1257983 0.606497 0.927553
0.1 −0.0913227 0.501895 0.873915
1.05 −0.3020293 0.388449 0.825024
1.1 −0.5127976 0.266646 0.780240

1.15 −0.7371672 0.136990 0.739028
1.2 −1.000013 0.000000 0.700945

Table 6. Comparison of velocity with those of Nadeem and Sadaf [50] for n = 1,φ2 = 0, M =

0 and E = 0.

r

w(r)= 1
r
∂ψ
∂r

Gr=1.0 Gr=2.0 Gr=3.0

Existing [46] Existing [46] Existing [46]

0.1 −1.000000 −1.000000 −1.000000 −0.000000 −1.000000 −1.000000
0.17 −0.717905 −0.717905 −0.702637 −0.702637 −0.687369 −0.687369
0.24 −0.559148 −0.559157 −0.539095 −0.539095 −0.519033 −0.519033
0.31 −0.465611 −0.465615 −0.445894 −0.445894 −0.426172 −0.426172
0.38 −0.415011 −0.415014 −0.398441 −0.398441 −0.381868 −0.381868
0.45 −0.396309 −0.396313 −0.384359 −0.384359 −0.372405 −0.372405
0.52 −0.403142 −0.403151 −0.396393 −0.396393 −0.389636 −0.389636
0.59 −0.431481 −0.431483 −0.429839 −0.429839 −0.428195 −0.428195
0.66 −0.478539 −0.478546 −0.481408 −0.481408 −0.48427 −0.48427
0.73 −0.542336 −0.542343 −0.54867 −0.54867 −0.554997 −0.554997
0.80 −0.621365 −0.621371 −0.629747 −0.629747 −0.638123 −0.638123
0.87 −0.714447 −0.714452 −0.723131 −0.723131 −0.73181 −0.73181
0.94 −0.820564 −0.820638 −0.827574 −0.827574 −0.834509 −0.834509
1.01 −0.939132 −0.939145 −0.942016 −0.942016 −0.944887 −0.944887

1.04382 −1.00061 −1.00061 −1.00061 −1.00061 −1.00061 −1.00061

5. Conclusions

This study incorporates the effects of electromagnetic induction on a rheological model of a hybrid
nanofluid in ciliary-induced peristalsis through an endoscope. The major findings are summarized as:

� Velocity of the hybrid nanofluid reduces for M and Gr near the endoscope but it increases near
the external peristaltic tube having a ciliary surface due to a decreasing pressure gradient, even in
creeping flow condition as observed from 2-D and 3-D plots. These results show that buoyancy
effects are more prominent near the peristaltic tube and magnetic induction enhances peristalsis
in presence of Ag-TiO2 nanohybrids with 0.2% concentration.

� The magnetic induction profile displays a similar behavior as that of velocity towards the magnetic
Reynolds number. An increase in values of R upgrades the flow rate and hence it is concluded
that velocity and induced magnetic field relatively generate elastic oscillations. Consequently,
fluid having hybrid nanoparticles can deeply interact with tumors and efficiently deliver drugs
to specified section.

� The temperature of hybrid nanofluid depicts a decreasing behavior for Gr while a conflicting
trend is seen for R. This trend of temperature increase of the fluid will be helpful in the removal
of a cancer tumor and abnormal cells without affecting healthy parts within the body during
an endoscopy.
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� The behavior of the pressure rise for different parameters show that the pressure rise declines
in the co-pumping region whereas it is enhanced in the pumping and free-pumping regions.
Pumping rate increases for increment in radius ratio parameter which is favorable for accurate
endoscopic imaging.

� The pressure gradient decreases throughout the length of the endoscope close to the ciliated
peristaltic tube for r2 = 1.

� Numerical values of velocity and temperature against embedding parameters explore a similar
behavior as noticed in graphs. Flow profiles towards variation in radial distance are examined
which satisfy the conditions of the problem.

� The presence of cilia shows a dominant effect on the behavior of the flow variables. In most cases,
the sensitive interior surface of organs may be protected due to cilia as they assist velocity near
the peristaltic tube.

� The peristaltic flow pattern due to ciliary activity for different parameters is displayed via
streamline configuration and a reduction in the size of the trapped bolus is observed towards R,
M and Gr but conversely enlarges for ε.

� The present work appears to be the first attempt in the literature dealing with the effects of
electromagnetic induction on peristaltic transport and the heat transfer of non-Newtonian hybrid
nanofluid through a ciliated tube inserted by an endoscope. Additional developments and
characteristics of the problem can be examined.

� Results for Newtonian nanofluid [50] can be obtained in a limiting case.
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Nomenclature

b Wave Amplitude in Fixed Frame Wall (m)
c Wave speed (ms−1)
n Power law index
k Consistency index (Pa sn)
g Gravitational acceleration (ms−2)
s Nanoparticles shape factor
E Electric field strength (N/C)
p Pressure (Pa)
T Temperature (K)
T0 Temperature of inner tube (K)
T1 Temperature of outer tube (K)
Gr Grashof number (dimensionless)
Qo Heat sink/source parameter (Wm−2K−1)
Rm Magnetic Reynolds number
H0 Magnetic field strength (Am−1)
Hr Radial magnetic induction componentComponent (Am−1)
Hz Axial magnetic induction component (Am−1)
cp Specific heat (Jkg−1K−1)
M Hartman number
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U Radial velocity component (ms−1)
W Axial velocity component (ms−1)
Greek Symbol

ρ Density (kgm−3)
σ Electric conductivity (S/m)
φ Magnetic force function (A2m−1)
ψ Stream function (m2s−1)
β Thermal expansion coefficient (K−1)
λ Wavelength (m)
δ Wave number (dimensionless)
μ̂ Magnetic Diffusivity (m2s−1)
μ Dynamic viscosity (kgm-1s−1)
ε Wave amplitude in moving frame (m)
κ Thermal conductivity (Wm−1K−1)
Ω Dimensionless heat source/sink parameter
Δ Rate of deformation tensor (s−1)
τ Shear stress (Pa)
α Measure of eccentricity
Subscript

hnf Hybrid Nanofluid
f Base fluid
s1 Solid nano particles of Ag
s2 Solid nano particles of TiO2

Appendix A
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Abstract: In this manuscript, the authors developed the mathematical model for entropy generation
analysis during the peristaltic propulsion of Jeffrey nanofluids passing in a midst of two eccentric
asymmetric annuli. The model was structured by implementation of lubrication perspective
and dimensionless strategy. Entropy generation caused by the irreversible influence of heat
and mass transfer of nanofluid and viscous dissipation of the considered liquid was taken into
consideration. The governing equations were handled by a powerful analytical technique (HPM).
The comparison of total entropy with the partial entropy was also invoked by discussing Bejan
number results. The influence of various associated variables on the profiles of velocity, temperature,
nanoparticle concentration, entropy generation and Bejan number was formulated by portraying
the figures. Mainly from graphical observations, we analyzed that, in the matter of thermophoresis
parameter and Brownian motion parameter, entropy generation is thoroughly enhanced while inverse
readings were reported for the temperature difference parameter and the ratio of temperature to
concentration parameters.

Keywords: entropy generation; Bejan number; nanoparticles; Jeffrey fluid model; peristaltic flow;
analytical solutions; eccentric annuli

1. Introduction

Nanofluid, characterized by a significant increase in a number of properties compared to
conventional engineered fluid [1], is found to serve in many practical applications, for example,
petroleum engineering [2–5], power industry [6,7], and medical science [8,9], which has drawn
particular attentions for cancer treatments in recent years. Cancer covers a huge group of diseases
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which can damage any portion of the body. Nowadays, cancer is a main cause of death all over the
world, around 70% of cancer deaths materialize in middle- and low-income countries. There are
many treatments to cure cancer, such as surgery, radiation and chemotherapy, but these procedures
may harm the normal tissue. Hanahan and Weinberg [10] have explained six cancer hallmarks,
helping to differentiate features between the tumor and normal tissue, and maybe come up with
better alternative therapies. These hallmarks include inducing activating invasion and metastasis,
resisting cell death, angiogenesis, enabling replicative immortality, sustaining proliferative signaling,
and evading growth suppressors. Based on these cancer hallmarks, latest therapies for cancer treatment
have been introduced. Nowadays, nanomedicine (nanomedicine is a branch of nanotechnology,
or utilization of materials less than 100 nm, applied to medicine and health sciences) is the prominent
procedure for treating cancer. The nanocarriers’ properties, including their targeting modifications,
favorable drug release profiles, high surface-to-volume ratios, and nanoscale sizes, may authorize
them to reach and target the tissue of a tumor and the deliverance of drugs in a stable and controlled
manner. For cancer research, nanomaterials are available in modified shape, because to treat specific
tumors, size and surface features are crucial. The size of the nanoparticle is a key attribute, which
travel across the bloodstream, ensuring delivery of nanocarriers to tumor tissue. The small-scale
nanoparticles can stockpile comfortably in the physiological tumor vessels and also extravagate into
normal tissue. In view of many nanoparticle applications in bio-fluid flows, many researchers have
concentrated their work in the field of bio-nanofluids. For instance, Prakash et al. [11] have presented
the study of nanofluids which is relevant to bio-inspired nanofluid smart pump designs, which may
also be exploited in smart-drug delivery. Abbas et al. [12] have provided mathematical modelling to
describe the peristaltic transport of blood (blood is treated as nanofluid) and analyzed the entropy
analysis. They concluded that such a study can help in analyzing blood flow in small blood vessels
with elastic walls. Abdelsalam and Bhatti [13] have given a theoretical model to describe the effect
of sundry variables on the feature of blood flows in the presence of nanoparticles, and suggested
that Brownian motion and chemical reaction exhibit dual variation of nanoparticles’ volume fraction.
Shah et al. [14] have presented the theoretical study, which is applicable to the drug-delivery system,
as the micro-polar nanoparticles of gold are proficient drug-delivery and drug-carrying mediums.
Bhatti et al. [15] studied the two-phase flow under the effects of coagulation with peristaltic pumping
through the Prandtl stress model, with magnetic field and porous medium terms. They analyzed that
friction forces flourish with the altitude of clot height and particle concentration, on the other hand
they are minimized with other involving factors in the problem.

It is extensively known that biological liquids, such as gastric fluids and blood, generally behave
as non-Newtonian fluids. Many researchers have considered Jeffrey/viscoelastic fluid as biological
(synovial, blood, gastric, chyme, and saliva) fluid. To delineate the stress relaxation effects of real
fluids, the viscoelastic fluid model is appropriately competent. These effects cannot describe the usual
Newtonian fluid model. In addition to this, the Jeffrey fluid model can also describe the characteristic
of memory-time scale. Kahshan et al. [16] have described the Creeping flow of a viscoelastic fluid
in a channel with an application to flow in a flat-plate hemodialyzer. Pandey and Tripathi [17] have
explored the viscoelastic fluid flow by peristalsis in a channel in order to apply the model to the
swallowing of food-bolus through the esophagus. Ellahi et al. [18] used Jeffrey fluid as bio-fluid and
studied the problem of the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct, which may
be applicable to modern drug delivery systems with great utility. Ramesh et al. [19] have considered
Jeffery’s viscoelastic formulation, which is employed in the rheology of blood. Some more studies can
be seen through [20–25].

In thermodynamics, entropy is a measure of the number of specific modes in which a
thermodynamic system can be organized, often called a measure of impedance or a measure of
progress toward thermodynamic equilibrium. Pakdemirli and Yilbas [26] have analyzed the entropy
generation mechanism of non-Newtonian fluid through a pipe. According to them, the entropy
Brinkman number causes an increase in entropy generation. Entropy generation in a peristaltic
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pumping problem has been presented by Souidi et al. [27]. Heat and fluid flow causing entropy
generation in backward-facing step flow is suggested by Abu-Nada [28]. More studies on entropy
generation in peristaltic transports are reported in [29–31], but none of these established the entropy
analysis of viscoelastic nanofluids in eccentric cylinders having a peristaltic outer surface.

Keeping in mind the physiological applications of a peristaltic propulsion of viscoelastic fluids,
the investigators focused on the entropy generation and Bejan number during the peristaltic transport
of viscoelastic nanofluid in the annulus region of two eccentric cylinders. The equations of governing
the flow are considered in the cylindrical geometry. The concerned non-dimensional system of
equations is solved using optimal homotropy perturbation technique under the long wavelength and
low Reynolds number assumptions. The effects of involved parameters on the pressure rise, velocity,
temperature, nanoparticle concentration, entropy generation, and Bejan number are shown through
graphical illustrations.

2. Mathematical Analysis

Let us analyze the entropy generation in three-dimensional flow of nanofluid with the Jeffrey
model by considering the passage in a space between two eccentric annuli, with flexible outer
surface along with inner rigid cylinder, going with the fluid with constant speed V. The walls of the
outer annulus produce peristaltic waves along its length, which helps in pushing the fluid forward.
A concentration C0 of nanoparticles is assumed at the inner boundary, while the outer is maintained at
C1. The temperature distributions are described as T0 and T1 on the considered inner and lower walls
accordingly (see Figure 1).

Figure 1. Diagram of flow mechanism and annuli.

The physical behavior of inner and outer layers of the annuli is manipulated mathematically
as follows:
χi = χ j + χk cosγ, for i = 1, 2 . . . , where χ1, χ j = δ, χk = ε, and γ = θ are representing the inner
cylinder walls. Similarly, χ2, χ j = a, χk = b, and γ = 2π

λ (z− ct) are suggesting the same for outer
annuli. Above appearing δ, a, b, λ, and c are denoting the radii of inner and outer cylinders,
the amplitude of the wave, the wavelength and the wave speed, orderly.

According to the considered geometry, the velocity components are suggested as
[w1(r,θ, z), 0, w2(r,θ, z)]. The mathematical structure of the given problem can be entertained by
the following expressions based on physical laws:

∂w1

∂r
+
∂w2

∂z
+

w1

r
= 0, (1)
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∂w2
∂r + w2

∂w2
∂z

)
= −∂p∂z + ∂Υ31

∂r + 1
r
∂Υ32
∂θ + ∂Υ33

∂z +
Υ31

r
+ρ f gα(T − To) + ρ f gα(C−Co),

⎞⎟⎟⎟⎟⎠ (4)

(ρc) f

(
∂T
∂t + w1

∂T
∂r + w2

∂T
∂z

)
= k

(
∂2T
∂r2 + 1

r2
∂2T
∂θ2 +

∂2T
∂z2 + 1

r
∂T
∂r

)
+ (ρc)p[

DB
(
∂C
∂r
∂T
∂r + 1

r2
∂C
∂θ
∂T
∂θ +

∂C
∂z
∂T
∂z

)
+ DT

To

((
∂T
∂r

)2
+ 1

r2

(
∂T
∂θ

)2
+

(
∂T
∂z

)2
)]

+Υ11
∂w1
∂r + 1

rΥ12
∂w1
∂θ +Υ13

(
∂w1
∂z + ∂w2

∂r

)
+ 1

rΥ32
∂w2
∂θ +Υ33

∂w2
∂z + w1

r Υ22,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

∂C
∂t

+ w1
∂C
∂r

+ w2
∂C
∂z

= DB

(
∂2C
∂r2 +

1
r2
∂2C
∂θ2 +

∂2C
∂z2 +

1
r
∂C
∂r

)
+

DT

To

(
∂2T
∂r2 +

1
r2
∂2T
∂θ2 +

∂2T
∂z2 +

1
r
∂T
∂r

)
. (6)

In this study, constitutive relation used for fluid is the Jeffrey mode [18], which has the
following expression:

Υ =
μ

1 + λ1

( .
γ+ λ2

..
γ
)
. (7)

To execute the collective effects of emerging parameters, we adopt the process of
non-dimensionalization by introducing the following transformations [15,20–24]:

p′ = a2

μcλp, w′ = w2
c , u′ = λ

ac w1, V′ = V
c , z′ = z

λ , r′ = r
a , θ′ = θ,

t′ = c
λ t, ϕ = b

a , ε′ = ε
a , Re = ρca

μ , δ′ = δ
a , θ = T−To

T1−To
,

δo =
a
λ , σ = C−Co

(C1−Co)
, Pr =

μ
ρα , Sc =

μ
ρDB

, Br =
ρ f gαa2

μc (T1 − To),

Gr =
ρ f gαa2

μc (C1 −Co), Nb = τDB
α f

(C1 −Co), Nt = τDT
Toα f

(T1 − To),

α f =
k

(ρc) f
, τ =

(ρc)p

(ρc) f
, Gc = μc2

K(T1−To)
, S′ = μc

a .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In light of the above manufactured relations, the Equations (1) to (6) become

∂u′
∂r′ +

∂w′
∂z′ +

u′
r′ = 0, (8)

Reδo

(
∂u
′

∂t′ + u
′ ∂w′
∂r′ + w′ ∂u

′

∂z′

)
= −∂p

′
∂r′ + δo

∂S′11

∂r′ + δo
1
r′
∂S′12

∂θ′ + δ2
o
∂S′13

∂z′ + δo
S′11

r′ − δo
S′22

r′ , (9)

0 = − 1
r′
∂p′
∂θ′ + δo

∂S′21

∂r′ + δo
1
r′
∂S′22

∂θ′ + δ2
o
∂S′23

∂z′ + δo
S′21

r′ + δo
S′12

r′ , (10)

Reδo

(
∂w

′

∂t′ + u
′ ∂w′
∂r′ + w′ ∂w

′

∂z′

)
= −∂p

′
∂z′ +

∂S′31

∂r′ +
1
r′
∂S′32

∂θ′ + δo
∂S′33

∂z′ +
S′31

r′ + Grθ+ Brσ, (11)

δoRePr

(
∂θ
∂T′ + u

′ ∂θ
∂r′ + w′ ∂θ∂z′

)
=

(
∂2θ
∂r′2 +

1
r′2
∂2θ
∂θ′2 + δ

2
o
∂2θ
∂z′2 +

1
r′
∂θ
∂r′

)
+Nb

(
∂σ
∂r′
∂θ
∂r′ +

1
r′2
∂σ
∂θ′
∂θ
∂θ′ + δ

2
o
∂σ
∂z′
∂θ
∂z′

)
+ Nt

((
∂θ
∂r′

)2
+ 1

r′2

(
∂θ
∂θ′

)2

+δ2
o

(
∂θ
∂z′

)2
)
+ Gc

(
δoS′11

∂u′
∂r′ + δo

1
r′ S
′
12
∂u′
∂θ′ + S′13

(
δ2

o
∂u′
∂z′ +

∂w′
∂r′

)
+ 1

r′ S
′
32
∂w′
∂θ′ + δoS′33

∂w′
∂z′ + δo

u′
r′ S
′
22

)
,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(12)
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δoReSc
(
∂σ
∂t′ + u

′ ∂σ
∂r′ + w′ ∂σ∂z′

)
=

(
∂2σ
∂r′2 +

1
r′2
∂2σ
∂θ′2 + δ

2
o
∂2σ
∂z′2 +

1
r′
∂σ
∂r′

)
+ Nt

Nb

(
∂2θ
∂r′2 +

1
r′2
∂2θ
∂θ′2 + δ

2
o
∂2θ
∂z′2 +

1
r′
∂θ
∂r′

)
.

⎞⎟⎟⎟⎟⎟⎟⎠ (13)

Here, the quantities like Re, δ0, Gr, Br, Pr, Nb, Nt, Gc and Sc represent the Reynolds number,
wave number, local temperature Grashof number, local nanoparticle Grashof number, Prandtl number,
Brownian motion parameter, thermophoresis parameter, Brinkman number, and Schmidt number,
consecutively. After incorporating the theory of lubrication in this problem and disregarding the prime
symbols, Equations (8) to (13) can be viewed as:

∂u
∂r

+
∂w
∂z

+
u
r
= 0, (14)

∂p
∂r

= 0 =
∂p
∂θ

, (15)

0 = −∂p
∂z

+
∂S31

∂r
+

1
r

∂S32

∂θ
+

S31

r
+ Grθ+ Brσ, (16)

0 =
(
∂2θ
∂r2 + 1

r2
∂2θ
∂θ2 +

1
r
∂θ
∂r

)
+ Nb

(
∂σ
∂r
∂θ
∂r + 1

r2
∂σ
∂θ
∂θ
∂θ

)
+Nt

((
∂θ
∂r

)2
+ 1

r2

(
∂θ
∂θ

)2
)
+ Gc

(
S13
∂w
∂r + 1

r S32
∂w
∂θ

)
,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (17)

0 =

(
∂2σ

∂r2 +
1
r2
∂2σ

∂θ2 +
1
r
∂σ
∂r

)
+

Nt
Nb

(
∂2θ

∂r2 +
1
r2
∂2θ

∂θ2 +
1
r
∂θ
∂r

)
. (18)

The dimensionless components of the stress tensor for Jeffrey model in eccentric annuli, by using
cylindrical coordinates, are given by the following relations [18–20] after ignoring the prime symbols:

S11 =
2δo

1 + λ1

(
1 + λ2δo

c
a
(urt + uurr + wurz)

)
, (19)

S12 =
δo

1 + λ1

(
1 + λ2δo

c
ar

(
utθ + uurθ − r−1uθ + wuzθ

))
, (20)

S13 =
1

1 + λ1

(
1 + λ2δo

c
a
(∂t + u∂r + w∂z)

) (
δ2

ouz + wr
)
, (21)

S22 =
2δo

1 + λ1

(
1 + λ2δo

c
ar

(
ut + uur − r−1u + wuz

))
, (22)

S23 =
1

1 + λ1

(1
r

wθ + λ2δo
c
ar

(
wθt + uwθr − r−1wθ + wwθz

))
, (23)

S33 =
2δo

1 + λ1

(
1 + λ2δo

c
a
(wzt + uwrz + wwzz)

)
. (24)

So by switching expressions of the above stresses (after applying the constraints of long wavelength
and low Reynolds number) in Equations (16)–(18), we get:

1
1 + λ1

pz = wrr +
1
r

wθθ +
1
r

wr +
(
Grθ+ Brσ

)
(1 + λ1), (25)

0 =
(
θrr +

1
r2θθθ +

1
rθr

)
+ Nb

(
σrθr +

1
r2 σθθθ

)
+ Nt

(
θr

2 + 1
r2θθ

2
)

+Gc
(

1
1+λ1

(
wrwz +

1
r2 wθ2

))
.

(26)

0 =
(
σrr +

1
r2 σθθ +

1
r
σr

)
+

Nt
Nb

(
θrr +

1
r2θθθ +

1
r
θr

)
. (27)

431



Coatings 2020, 10, 213

The subscripts of u, w, p, ∂,θ and σdenote the velocity components, pressure, partial differentiation,
temperature, and concentration, respectively. The non-dimensional form of radii will take the following
form [32]:

r1 = δ+ ε cosθ,
r2 = 1 + ϕ cos 2π(z− t).

)
(28)

The respective boundary conditions may be put in the form [32]:

w = V,θ = 0, σ = 0 at r = r1,
w = 0,θ = 1, σ = 1 at r = r2.

)
(29)

3. Solution Procedure

In order to solve the resulting nonlinear system of partial differential equations, we applied the
fast converging analytical technique (OHPM). According to the scheme, the deformation equations for
the current problem may be written as [33–37]:

(1− q)
(
�
[ [

w
]
−�

[ [

w0

])
+ q

[
�
[ [

w
]
+

1
r2

[

wθθ + (1 + λ1) (BrΩ + GrΘ − pz)
]
= 0, (30)

(1− q)
(
�[Θ] −�

[ [
θ 0

])
+ q

(
�[Θ] + 1

r2 Θθθ + Nb
(
ΘrΩr +

1
r2 ΘθΩθ

) )
+Nt

(
Θr

2 + 1
r2 Θθ2

)
+ Gc

(
1

1+λ1

( [

wz

[

wr +
1
r2

[

wθ
2
)))

= 0,
(31)

(1− q) (�[Ω] −�[σo]) + q
(
�[Ω] +

1
r2 Ωθθ +

Nt
Nb

(
Θrr +

1
r

Θr +
1
r2 Θθθ

))
= 0. (32)

The linear operator is chosen as � = 1
r ∂r(r∂r). The initial guesses for w, θ, σ are selected as

[

wo = V ln[r/rV ](ln[r1/r2])
−1,

[

θ 0 =

[

σ 0 = ln[r1/r](ln[r1/r2])
−1. (33)

Now we describe the following series for complete solutions.

w = lim
q→1

[

w(r, θ, z, t, q) = lim
q→1

∞∑
n=0

qn

[

wn, (34)

θ = lim
q→1

Θ(r, θ, z, t, q) = lim
q→1

∞∑
n=0

qn

[

θ n, (35)

σ = lim
q→1

Ω(r, θ, z, q) = lim
q→1

∞∑
n=0

qn

[

σ n. (36)

Making use of Equations (34)–(36) into Equations (30)–(32) and equating the coefficients of
exponents of q, we gather the system of ordinary differential equations, which can be solved easily on
mathematical software by built-in commands. The volume flow rate Q can be noted as [26]:

Q = 2π

r2∫
r1

rwdr. (37)

The mean volume flow rate Q over one period can be written as [26,30]:

Q(z, t) =
Q
π
− ϕ

2

2
+ 2ϕ cos[2π(z− t)] + ϕ2 cos2[2π(z− t)]. (38)
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Now we can evaluate pressure gradient pz by solving Equations (37) and (38). The pressure rise
Δp in non-dimensional form contains the expression:

Δp =

1∫
0

(pz)dz. (39)

The two tables (Tables 1 and 2) are prepared through the numerical data of pressure rise Δp against
flow rate Q and temperature profile θ from Equation (26), and imposing values to defined parameters
on the mathematical software “Mathematica”.

Table 1. Data of Δp for Q against β1 and β2 when t = 0.05, ε = 0.1,ϕ = 0.1,θ = 0.8, V = 0.1,λ1 =

5, Br = 0.1.

Gr δ Q Δp

1

0.10

−1 19.3022

−0.8 15.4814

−0.6 11.6606

−0.4 7.83978

−0.2 4.01897

0.0 0.198168

0.2 −3.62264

0.4 −7.44344

0.6 −11.2642

0.8 −15.085

1.0 −18.9059

0.15

−1.0 22.4955

−0.8 18.005

−0.6 13.5145

−0.4 9.02408

−0.2 4.53362

0.0 0.0431658

0.2 −4.44729

0.4 −8.93775

0.6 −13.4282

0.8 −17.9187

1.0 −22.4091
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Table 1. Cont.

Gr δ Q Δp

3 0.10

−1.0 20.7127

−0.8 16.8919

−0.6 13.0711

−0.4 9.25031

−0.2 5.42951

0.0 1.60871

0.2 −2.2121

0.4 −6.0329

0.6 −9.85371

0.8 −13.6745

1.0 −17.4953

Table 2. Error variation of temperature solution θwhen other parameters are fixed.

Other Fixed Parameters r Residual Error

t = 0.3,
ε = 0.1,
z = 0.1,
δ = 0.1,
ϕ = 0.5,
θ = 0.8,
V = 0.3,
λ1 = 1,

Br = 0.5
Nt = 0.2,
Nb = 0.1.

0.169671 −1.77636 × 10−15

0.269671 0.00000

0.369671 2.22045 × 10−16

0.469671 −2.22045 × 10−16

0.569671 −2.77556 × 10−16

0.669671 −1.66533 × 10−16

0.769671 −5.55112 × 10−17

0.869671 −2.77556 × 10−17

0.969671 −2.77556 × 10−17

1.06967 2.77556 × 10-17

1.16967 −3.1225 × 10−17

1.26967 1.73472 × 10−17

1.36967 −2.42861 × 10−17

4. Entropy Generation

Entropy evaluates the anarchy of the process. Due to this most important aspect of heat
and mass transfer analysis, pivot concentrations are made to analyze the entropy effects and to
minimize the entropy generation. The volumetric rate of entropy generation for a Jeffrey nanofluid in
three-dimensional asymmetric annuli is defined as:

S′gen = K
T2

o

(
Tr

2 + 1
r2 Tθ2 + Tz

2
)
+ DB

Co

(
Cr

2 + 1
r2 Cθ2 + Cz

2
)
+ DB

To

(
CrTr +

1
r2 CθTθ + CzTz

)
+ 1

To

(
S11ur +

1
r S12uθ +S13(uz + wr) +

1
r S32wθ + S33wz +

u
r S22

)
.

(40)

From the above expression, we can assume that the entropy generation is composed of four
terms: The entropy generation for heat transfer irreversibility, the entropy generation because of
nanoparticles irreversibility, the entropy due to irreversibility of the combined effects of heat transfer
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and nanoparticles, and the entropy in the presence of irreversibility of viscous dissipation of Jeffrey
fluid, orderly. The non-dimensional parameters used in the above equation are defined as follows:

Ns =
S′gen

SG
, SG =

K(T1 − To)
2

a2T2
o

, Γ =
DBTo(C1 −Co)

K(T1 − To)
, Λ =

(T1 − To)

To
, Ω =

(C1 −Co)

Co

⎞⎟⎟⎟⎟⎠,

where Ns is the entropy generation number, Λ gives the temperature difference parameter, Ω represents
the concentration difference parameter, Γ suggests the ratio of temperature to concentration parameters.
By transforming Equation (40) into a dimensionless form without primes, we receive:

Ns =
(
θr

2 + 1
r2θθ

2 + δ2
oθz

2
)
+ ΓΛ

Ω

(
σr

2 + 1
r2 σθ

2 + δ2
oσz

2
)
+ Γ

(
σrθr +

1
r2 σθθθ + δ

2
oσzθz

)
+Gc

Ω

(
δoS11ur + δo

1
r S12uθ + S13

(
δ2

ouz + wr
)
+ 1

r S32wθ + δoS33wz + δo
u
r S22

)
.

(41)

Incorporating the lubrication approach, we achieve:

Ns =
(
θr

2 +
1
r2θθ

2
)
+

ΓΛ
Ω

(
σr

2 +
1
r2 σθ

2
)
+ Γ

(
σrθr +

1
r2 σθθθ

)
+

Gc
Ω

(
S13wr +

1
r

S32wθ
)
. (42)

Invoking the values of S13 and S32 from Equations (21) and (23) into the above Equation (42),
it becomes:

Ns =
(
θr

2 +
1
r2θθ

2
)
+

ΓΛ
Ω

(
σr

2 +
1
r2 σθ

2
)
+ Γ

(
σrθr +

1
r2 σθθθ

)
+

Gc
Ω

(
1

1 + λ1

(
wrwz +

1
r2 wθ2

))
. (43)

Moreover, the Bejan number, Be, being the ratio of entropy generation against the heat transfer
irreversibility to the total entropy generation is described mathematically as:

Be =
(
θr

2 +
1
r2θθ

2
)⎛⎜⎜⎜⎜⎝

(
θr

2 + 1
r2θθ

2
)
+ ΓΛ

Ω

(
σr

2 + 1
r2 σθ

2
)
+ Γ

(
σrθr

+ 1
r2 σθθθ

)
+ Gc

Ω

(
1

1+λ1

(
wrwz +

1
r2 wθ2

)) ⎞⎟⎟⎟⎟⎠−1

. (44)

Bejan number, Be, carries the values from the interval [0,1]. If Be < 1, it can be observed that total
entropy generation surpasses the heat transfer entropy, and for Be = 1, the total entropy generation
approaches the entropy generation against the heat transfer irreversibility.

5. Results and Discussion

The authors obtained the quantitative analysis of nanoparticles in Jeffery fluid flowing past
eccentric annuli having peristaltic waves at the outer surface. Heat and mass transfer phenomenon
was also taken under consideration by the law of conservation of mass and energy. Lubrication theory
was utilized to make the assumptions about laminar flow through arteries. Moreover, the effects
of entropy generation and Bejan number were observed, which affect the flow due to irreversibility
mechanism of temperature distribution, viscous dissipation, and nanoparticles’ concentration. In this
section, we describe the effects of emerging physical parameters of obtaining quantities through figures
which are drawn on Mathematica and ordered in a subsequent manner. Numerical data were achieved
for the expression of pressure rise by using built-in commands in mathematical software. Table 1 is
placed to find the variation of pressure rise data Δp, for a flow rate domain Q from the interval [–1, 1],
by varying the parameters δ and Gr under the constant values of other factors. This table suggests that
peristaltic pumping occurs at Q = 0. Figures 2 and 3 show the residual error curves, which clearly
reflects the highly convergent solution of temperature distribution and nanoparticles’ concentration,
respectively, by keeping the rest of the quantities numerically fixed. Moreover, the values used in the
graph emphasized that we can assign these numerical values of the parameters involved. Figure 4
confirms the validation of current analysis by comparing the present analysis with the study Nadeem
et al. [32], which was published for viscous fluid. From this figure it is quite obvious that the current
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study’s results were similar to the results obtained in [32] when we neglected the non-Newtonian
effects by assigning a zero value to the Jeffrey fluid parameter λ1. It was also found from this graph
that for Jeffrey fluid the radial velocity reduces. This is due to the increase in shearing stress as λ1

grows, which was introduced into the boundary layer, which can cause loss of speed.

Figure 2. Residual error curves of temperature distribution θ.

Figure 3. Residual error curves of nanoparticles’ concentration σ

Figure 4. Comparison of present study with [32].
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Figures 5–7 were plotted for pressure rise profile Δp against the flow rate domain Q. Figure 5
evaluates the effects of two parameters, the inner radius of the annuli δ, and the local temperature
Grashof number Gr on peristaltic pressure rise curves. From this figure we can imagine that the
lines of Δp are declining from left to right and intersecting each other at Q = –0.2. It can also be
concluded here that pumping rate is increasing with both the parameters on the negative side of the
domain, but reducing its inclination on the region of positive interval [0, 2]. This is due to the fact
that increasing the radius of the inner cylinder exerts greater pressure on the flow on the left side,
as compared to the other one, due to the eccentricity of the two annuli. Moreover, an increase in
the local temperature Grashof number is produced due to the increase in outer cylinder radius, thus
producing more pumping on the left side, whilst keeping the other parameters uniform. Figure 6 is
sketched for Δp to estimate the influence of eccentricity parameter ε and the local nanoparticles Grashof
number Br. One can observe clearly that a similar behavior is shown with ε and Br in comparison to δ
and Gr. The velocity profile can be considered in Figures 7 and 8. Figure 7 discloses the variation of
axial velocity w against the radial coordinate r, which is plotted for increasing numerical values of
eccentricity factor ε and inner cylinder velocity V. It is shown from this graph that when we speed up
the inner cylinder, the maximum velocity of fluid gets reduced near the outer annulus surface, while
an increase is noticed near the walls of the inner cylinder; also, under the impact of eccentricity of two
cylinders, fluid enhances its speed, but near the lower walls it becomes stable, which is very much
in line with the experimental and physical results. From Figure 8, we can predict that by enlarging
the nanoparticle Grashof number Gr and temperature Grashof number Br, the fluid travels rapidly in
the space away from the lower surface, which is not closer to the lower boundary. Figures 9 and 10
were included to find the theoretical characteristics of temperature distribution under the alteration of
Brownian motion parameter Nb and thermophoresis parameter Nt, correspondingly. It is obvious that,
by raising the amount of both parameters, temperature of the liquid varied directly and the maximum
temperature gradient was seen in the middle part of the space. This behavior clearly notifies that,
in the presence of nanoparticles, the thermal conductivity of the fluid enhances significantly, which is
also evident from the pioneer study on nanofluids [1]. This also suggests that the thermal conduction
is caused by Brownian diffusion and thermophoresis diffusion in the rise of flow, which leads to an
increase in flow temperature distribution.

Figure 5. Variation of pressure rise Δp with δ and Gr for fixed θ = 0.8, ϕ = 0.1, ε = 0.1, Br =

0.2, Nb = 0.5, Nt = 0.2, λ1 = 5, V = 0.1, t = 0.05..
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Figure 6. Variation of pressure rise Δp with ε and Br for fixed θ = 0.8, ϕ = 0.1, δ = 0.1, Gr =

0.2, Nb = 0.5, Nt = 0.2, λ1 = 5, V = 0.1, t = 0.05..

Figure 7. Variation of velocity profile w with ε and V for fixed θ = 0.8, ϕ = 0.1, δ = 0.1, Br =

0.3, Gr = 1, λ1 = 1, z = 0, t = 0.1, Q = 1. .

Figure 8. Variation of velocity profile w with Br and Gr for fixed θ = 0.1, ϕ = 0.5, δ = 0.5, ε =
0.1, V = 0.3, λ1 = 0.7, z = 0, t = 0.1, Q = 1. .
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Figure 9. Variation of temperature profile θ with Nb for fixed θ = 0.1, ϕ = 0.5, δ = 0.1, ε = 0.1, V =

0.3, λ1 = 0.7, z = 0, t = 0.3, Nt = 0.2, Br = 0.5..

Figure 10. Variation of temperature profile θwith Nt for fixed θ = 0.1, ϕ = 0.5, δ = 0.1, ε = 0.1, V =

0.3, λ1 = 1, z = 0, t = 0.3, Nb = 0.2, Br = 0.5.

The profile of nanoparticlesσ ismentioned in the diagrams labeled as Figures 11 and 12. In Figure 11,
we can see the effects of Brownian motion parameter Nb on nanoparticles’ concentration. It is clearly seen
from this graph that the amount of nanoparticles is lowered with the variation of Nb. Figure 12 reflects
the curves of nanoparticles’ profile for the parameter Nt and it can be suggested that nanoparticles’
concentration gets enlarged.

Figure 11. Variation of nanoparticles phenomenon σ with Nb for fixed θ = 0.1, ϕ = 0.5, δ = 0.1, ε =
0.1, z = 0, t = 0.3, Nt = 0.2..
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Figure 12. Variation of temperature profile σ with Nt for fixed θ = 0.1, ϕ = 0.5, δ = 0.2, ε = 0.1, z =

0, t = 0.2, Nb = 0.2..

Figures 13–18 exhibit the influence of emerging parameters on entropy function Ns. Figure 13
contains the graph of Ns against the Brinkman number Gc. This figure implies that entropy generation
increases near the lower surface of the space with the increasing effects of Gc, but in the wider part it
gets lowered with the varying factor. It was noticed that the entropy of the system increases with the
incursion in Nb in most of the region, but near the walls it is almost stable (see Figure 14). Figure 15
concludes that the entropy shows similar characteristics with Nt, as seen for Nb, but an opposite
result can be seen near the lower wall. This is because rising of Nt involves larger viscous dissipation
effects, due to energy production generating more entropy. From Figure 16 it can be visualized that
entropy is proportional to the concentration difference parameter Ω in the interval r > 0.5, but for
0 < r < 0.5 an inverse relation is shown, but the ratio of temperature to concentration parameters Γ and
the temperature difference parameter Λ showed increasing effects on the entropy generation, which
can be confirmed from Figures 17 and 18, accordingly.

Figure 13. Curves of Ns with fixed Gc where θ = 0.1, ϕ = 0.5, δ = 0.01, ε = 0.01, V = 0.3, λ1 =

1, z = 0, t = 0.1, Γ = 0.4, Nb = 0.9, Nt = 0.5, Br = 1, Gr = 3, Λ = 0.4, Ω = 0.3, Q = 1. .
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Figure 14. Curves of Ns with fixed Nb where θ = 0.1, ϕ = 0.8, δ = 0.01, ε = 0.01, V = 0.3, λ1 =

1, z = 0, t = 0.1, Γ = 0.4, Gc = 0.01, Nt = 0.9, Br = 1, Gr = 3, Λ = 1, Ω = 0.3, Q = 1. .

Figure 15. Curves of Ns with fixed Nt where θ = 0.1, ϕ = 0.8, δ = 0.01, ε = 0.01, V = 0.3, λ1 =

1, z = 0, t = 0.1, Γ = 0.4, Gc = 0.05, Nb = 0.9, Br = 1, Gr = 3, Λ = 1, Ω = 0.3, Q = 1. .

Figure 16. Curves of Ns with fixed Ω where θ = 0.1, ϕ = 0.8, δ = 0.01, ε = 0.01, V = 0.3, λ1 =

1, z = 0, t = 0.1, Γ = 0.4, Gc = 0.01, Nt = 0.5, Br = 1, Gr = 5, Λ = 1, Nb = 0.9, Q = 1. .
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Figure 17. Curves of Ns with fixed Γ where θ = 0.3, ϕ = 0.8, δ = 0.01, ε = 0.01, V = 0.3, λ1 =

1, z = 0, t = 0.1, Ω = 0.3, Gc = 0.01, Nt = 0.5, Br = 1, Gr = 3, Λ = 0.4, Nb = 0.9, Q = 1..

Figure 18. Curves of Ns with fixed Λ where θ = 0.3, ϕ = 0.8, δ = 0.01, ε = 0.01, V = 0.3, λ1 =

1, z = 0, t = 0.1, Ω = 0.3, Gc = 0.01, Nt = 0.5, Br = 1, Gr = 3, Γ = 0.4, Nb = 0.9, Q = 1..

Figures 19–22 are established to show the effects of physical factors on Bejan number Be, which is
the ratio of two entropy generations. Figure 19 elucidates that the increase in Gc imposes an increase
in Bejan number, which reflects the aspect that entropy due to heat transfer is less than that of total
entropy in the lower region, but totally inverse readings are noted in the rest of the space. With the
growing effects of Ω, Bejan number Be enhances through the flow domain, which can be found in
Figure 20. From Figures 21 and 22 it is evident that Be decreases with increments in Γ and Λ, which
indicates that the total entropy leads the same because of heat irreversibility.

Figure 19. Curves of Be with fixed Gc where θ = 0.1, ϕ = 0.5, δ = 0.1, ε = 0.01, V = 0.3, λ1 =

0.1, z = 0, t = 0.1, Ω = 0.3, Λ = 1, Nt = 0.5, Br = 1, Gr = 5, Γ = 0.4, Nb = 0.9, Q = 1..
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Figure 20. Curves of Be with fixed Ω where θ = 0.1, ϕ = 0.5, δ = 0.1, ε = 0.2, V = 0.3, λ1 =

0.1, z = 0, t = 0.1, Gc = 0.01, Λ = 1, Nt = 0.5, Br = 1, Gr = 5, Γ = 0.4, Nb = 0.9, Q = 1..

Figure 21. Curves of Be with fixed Γ where θ = 0.1, ϕ = 0.5, δ = 0.1, ε = 0.2, V = 0.3, λ1 = 0.1, z =

0, t = 0.1, Gc = 0.01, Λ = 1, Nt = 0.5, Br = 1, Gr = 5, Ω = 0.3, Nb = 0.9, Q = 1..

Figure 22. Curves of Be with fixed Λ where θ = 0.1, ϕ = 0.5, δ = 0.1, ε = 0.2, V = 0.3, λ1 = 0.1, z =

0, t = 0.1, Gc = 0.01, Γ = 0.4, Nt = 0.5, Br = 1, Gr = 5, Ω = 0.3, Nb = 0.9, Q = 1..

6. Conclusions

In the current article, entropy generation analysis and Bejan number characteristics were
investigated for peristaltic propulsion of Jeffrey fluid by introducing nanoparticles passing through two
eccentric asymmetric annuli. Analytical solutions for velocity, temperature, and nanoparticles’
concentration were summarized. The pressure rise expression was evaluated numerically.
Equations representing the laws of conservation were manipulated through the lubrication approach.
The dimensionless phenomenon was also taken into account by incorporating some suitable
transformations. Entropy generation number and Bejan number were achieved by substituting
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the obtained values of temperature distribution, velocity profile, and nanoparticles’ concentration.
Effects of appertaining parameters were achieved by sketching diagrams. From the graphical features
of the analysis, we gathered the following key observations:

• The pumping rate increases under the growing contribution of nanoparticles’ Grashof number
and temperature Grashof number.

• The fluid travels rapidly when the inner cylinders move faster, but in the upper space fluid gets
slow; on the other hand, there is an opposite response evaluated for local nanoparticles’ Grashof
number as well as local temperature Grashof number.

• It is shown that the flow gets more heated when we increase the magnitudes of the thermophoresis
parameter and the Brownian motion parameter, which also indicates the increase in thermal
conductivity of the material.

• It is estimated that nanoparticles enhance with the thermophoresis parameter, but reduce under
the increasing effects of the Brownian motion factor.

• It is summarized that entropy generation is raised near the inner cylinder when in relation to large
values of Brinkman number; however, near the outer cylinder, observations are quite inverse; but
against the thermophoresis parameter and Brownian motion parameter, entropy increased.

• From the figures of Bejan number, we showed that the temperature difference parameter and
the ratio of temperature to concentration parameters degenerate the Bejan number, whereas
the concentration difference parameter enhances the Bejan number; and the Brinkman number
produces random results over the Bejan number profile.
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Abstract: Top coating are usually moulded, painted or sprayed onto the wind blade Leading-Edge
surface to prevent rain erosion due to transverse repeated droplet impacts. Wear fatigue failure
analysis based on Springer model has been widely referenced and validated to quantitatively predict
damage initiation. The model requires liquid, coating and substrate speed of sound measurements
as constant input parameters to define analytically the shockwave progression due to their relative
vibro-acoustic properties. The modelling assumes a pure elastic material behavior during the impact
event. Recent coating technologies applied to prevent erosion are based on viscoelastic materials
and develop high-rate transient pressure build-up and a subsequent relaxation in a range of strain
rates. In order to analyze the erosion performance by using Springer model, appropriate impedance
characterization for such viscoelastic materials is then required and represents the main objective
of this work to avoid lack of accuracy. In the first part of this research, it is proposed a modelling
methodology that allows one to evaluate the frequency dependent strain-stress behavior of the
multilayer coating system under single droplet impingement. The computational tool ponders the
operational conditions (impact velocity, droplet size, layer thickness, etc.) with the appropriate
variable working frequency range for the speed of sound measurements. The second part of
this research defines in a complementary paper, the ultrasonic testing characterization of different
viscoelastic coatings and the methodology validation. The modelling framework is then used to
identify suitable coating and substrate combinations due to their acoustic matching optimization and
to analyze the anti-erosion performance of the coating protection system.

Keywords: droplet impact modelling; impedance analysis; rain erosion; ultrasound measurements;
viscoelastic modelling; wind turbine blades

1. Introduction

Rain erosion damage, caused by repeated droplet impact on wind turbine blades, is a major cause
for concern, even more so at offshore locations with larger blades and higher tip speeds, see Figure 1.
In most cases, since the surface protection plays a decisive role in the blade manufacture and overall
performance, it has been identified as an area where a solution may be obtained. There are various
protection solutions used by industry that can reduce the effect of erosion and increase the turbine
expected lifetime. Four main surface protection technologies may be considered: In-mould coatings
(Gel coating) applied during moulding on the entire blade surface but not specifically on the Leading
Edge location where the protection is crucial; post-mould coatings specifically developed for Leading
Edge Protection (LEP) and considering a multilayer system with optional configurations based on
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top-coatings, filler and primer materials, depending on blade manufacturing and operational settings;
tapes based on post-mould applications circumventing the issues related with liquid-based materials;
shells that as tapes are manufactured in controlled conditions and applied in pre-cast solid modules
over the Leading Edge surface. In order to analyze and evaluate the relative positive facts and faults of
a given protection system, we will consider the common issues related with rain erosion failure for any
of these technologies.

Figure 1. Examples of leading edge erosion across a range of years in service, from [1].

Industrial processes state that LEP systems can be outlined as a multi-layered system with varying
layer thickness and material configurations. A particular case, used here to sketch the problem, with
a post-mould coating-based LEP system is shown where the blade manufacturer includes a putty
layer between the composite laminate and the coating, see Figure 2. It also can be included a primer
layer under the coating and over the filler to improve adhesion mainly to avoid layer debonding and
circumvent application related defects.

 
Figure 2. Leading Edge Protection (LEP) system configuration on the blade surface as a post-mould
application multilayer system.

In the top coating material system, two main different types of erosion failure are mainly observed
(see Figure 3) in used Rain Erosion Testing coupons: pits and cracks that progress with mass loss
caused by direct impact and stress on surface and delamination indirectly caused by the interface
stresses [1,2].

The analysis of erosion caused by rain droplets is considered, as first approach, a single impact
event as it is shown in Figure 4. The damage is in fact a 3D dynamic consequence resulting in the
propagation of shock waves [3,4]. The droplet numerical modelling has been broadly studied by
different authors [5–8]. As the water droplet impinges on the surface, a longitudinal compressional
normal stress wave front in the top surface material further advances towards the coating-substrate
interface, where a portion of the stress wave is reflected back into the coating with a different amplitude
(depending on the relative material acoustic impedance) and yields a transverse shear wave. The
remaining part is transmitted to the substrate. The impact gives rise to a third wave due to the water
droplet deformation itself, called the Rayleigh wave, which is confined to the surface of the top coating.
Depending on the relative acoustic properties through the liquid-coating-substrate, the propagation of
the stresses and, consequently, the erosion lifetime can be optimized.
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Figure 3. Two different types of erosion failure: Coating surface wear erosion with pits and cracks
that progress with mass loss caused by direct impact and stress on surface and coating interface
delamination indirectly caused by the coating-substrate interface stresses. The coupons were tested at
Whirling arm rain erosion test facility (WARER) at University of Limerick.

 
(a) 

 
(b) 

Figure 4. (a) Standard blade structure sketch with a filler intermediate layer showing stress wave
behavior under impingement and (b) Liquid droplet-solid surface impact interaction depicted from
numerical simulation developed by the authors.

The analysis (or design) of Leading-Edge Protection systems depends on the material properties
in the configuration and the operational load to which it is designed during its realistic life, that is, it
must be able to withstand accelerated loads and also fatigue field regimes [6,9]. To make a selection or
design of a specific coating protection system, appropriate modelling requires to be defined [10–12].
Numerical or analytical models can be constructed with their own capabilities and limitations, [13–15].

Springer analytical model [13] has been widely referenced and industry validated [15]. The
model quantitatively predicts the erosion lifetime of coated materials under the previously untested
conditions. The model is limited to erosion failures such as progressive failure mode or coating wear.
To use the Springer model, material test data is needed to derive the erosion performance properties of
a selected system. The formulation examines the impact of a liquid droplet treating the problem only
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as a pure elastic 1D tensile-compression event. This simplification is applicable since shear stresses and
shear material characterization directly related with other important damage mechanisms as peeling,
debonding, delamination or crack evolution are out of the wear fatigue analysis case involved.

Wear fatigue failure analysis based on Springer model requires coating and substrate speed of
sound measurements as input material parameters. The model does not account for a very high-rate
transient pressure build-up and the viscoelastic effects are frequency dependent for the materials
involved [16–18]. The main objective of this research is to fully apply the Springer model but
considering the effect of the viscoelastic stress-strain development during the impact event in the
LEP multilayer system by means of the appropriate frequency range definition for the coating layer
impedance characterization.

In this work, as the first part of the research, it is proposed a modelling methodology that allows
one to evaluate the single droplet impingement taking into consideration the highly transient material
behavior during waterdrop collisions. The computational tool ponders with different application cases
the operational conditions (impact velocity, droplet size, layer thickness, etc.) with the variable working
frequency range that the material develops. We will introduce in this work a complementary numerical
modelling tool (developed in openmodellica [19]) including suitable material models that allow us to
observe the viscoelastic behavior (with consideration for high transient strain rate deformation, and
variable stiffness and damping with frequency) and not as a pure elastic event. The complete analysis
is used then to define the frequency range for the corresponding impedance measurements with
Ultrasonic testing. The paper is organized considering first a review of the aforementioned Springer
erosion lifetime prediction modelling, then the state of the art is completed for taking into account the
viscoelastic effects of the stress-strain development under single droplet impingement for elastomeric
materials. In last sections, different modelling analysis cases are discussed to ponder the effect of the
operational and material configurations on the frequency range definition for appropriate material
properties testing.

The coating characterization is developed in a second part of the research in a complementary
reference [20] for different viscoelastic coatings and the methodology validated for the input material
data definition of the erosion lifetime modelling based on Springer.

In this research the model is used then to carry out studies as a computational framework that
allows a parametric analysis to examine the impact of the selected coating impedance variation on
the erosion performance. This provides also a guidance in the selection and modulation of coating
properties and to identify suitable coating and substrate combinations due to their acoustic matching
optimization. At this point, the proposed modelling methodology should reduce the scope of Rain
Erosion Testing [21,22] to verify and evaluate the rain erosion resistance of coating systems.

2. Wear Erosion Lifetime Prediction Modelling from Fundamental Material Properties. A Review
of Springer Model

In this section a review of the Springer model is exposed in order to be used in the next sections
for wear erosion lifetime analysis depending on the material impedance measurements as input
modelling data.

The progression of erosion can be experimentally measured with applicable Rain Erosion Testing.
One method is in terms of the average erosion depth versus time or mass loss versus time (directly
related to the number of impacts, see Figure 5). There is initially an incubation period in which damage
progresses without perceptible change in the material weight loss. After a sufficient amount of fatigue
degradation has accumulated, the material tends to lose mass with a constant erosion rate. This marks
the end of the incubation period and a steady mass loss period begins, where the weight loss varies
nearly linearly with time.
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(a) (b) 

Figure 5. (a) Evolution of weight loss on experimental rain erosion testing coupons and lifetime
prediction model defining the incubation period and mass removal rate (b) Springer Model based
Fatigue life N approximation related with the material ultimate strength σu, the parameter “erosion
strength”, σe and the parameter b that includes the fatigue knee at the endurance limit σI. Adapted
from: [13].

Springer analytical model [13] quantitatively predicts the erosion of coated materials under the
previously untested conditions. The erosion evolution can be approximated by two straight lines as
depicted in Figure 5 with

m = 0 0 < nic
m = αc(n− nic) nic < n < n f c

(1)

where the mass loss m produced by a given number of droplets impacts n, can be estimated once the
incubation time of the coating nic and the slope of the erosion rate on the coating αc are identified.

In order to establish these parameters, the stress history of the coating and the substrate is assessed
analytically. It is affected by the shockwave progression due to the vibro-acoustic properties of each
layer, and by the frequency of the repeated water droplet impacts (see Figure 6).

(a) (b) 

Figure 6. Stress wave pattern in the coating and in the substrate for the time intervals related with
coating thickness hc and its wave speed Cc. (a) Stress wave contact at interface; (b) Stress wave
consecutive interactions.

Upon impingement on the coating, two different wave fronts travel into the liquid and coating
respectively. The wave front in the coating further advances towards the coating-substrate interface,
where a portion of the stress wave is reflected back into the coating and the remaining part is transmitted
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to the substrate. Due to this reflection a new wave is now advancing in the coating with a different
amplitude depending on the relative acoustic impedances of the coating and substrate,

ϕLc =
ZL −Zc

ZL + Zc
; ϕsc =

Zs −Zc

Zs + Zc
(2)

where Z = ρC is the impedance of the material, ρ is the density and C the elastic wave speed (the
speed of sound of the medium). ZL, ZC, and ZS are the elastic impedances of the consecutive materials
(i.e., in our problem they are the liquid (L), coating (C), and substrate (S) layers). ϕLc defines the relative
impedance parameter defined on the liquid-coating interface and ϕsc on the substrate-coating one.

This 1D formulation, see Figure 6, examines only the normal impact of a liquid droplet with
diameter d, onto a two layered structure with the first layer formed by the coating and the second
layer by the substrate (assumed semi-infinite) with thickness hs > 2d Cs

CL
, which means in fact that the

reflections from a subsequent substrate additional layers are not considered in the fatigue analysis.
The magnitude of the traveling waves propagating upwards the coating-liquid interface, and

traveling waves propagating downwards the coating-substrate interface, are expressed with the k
number of reflections as depicted in Figure 6:

σ2k
σ1

=
1+ϕsc

1−ϕscϕLc
[1− (ϕscϕLc)

k]
σ2k−1
σ1

=
σ2k
σ1
−ϕsc(ϕscϕLc)

k−1 (3)

where the Water-hammer Pressure defines the initial impact pressure σ1 = P

P =
VZL cos(θ)(ZL

Zc
+ 1

) (4)

That depends on the droplet impact speed V and its impact angle with cos(θ). The stabilized
stress at the interface coating-substrate can be approximated as

σ∞ = σ1 lim
k→∞
σ2k = σ1

1 + ϕsc

1−ϕscϕLc
= σ1

1 + ZL
Zc

1 + ZL
Zs

(5)

After a long enough period of time, the stresses at both the coating surface and the substrate
interface approaches to the constant value σ∞, which is also the stress that would occur in the substrate
after impingement in the absence of the coating layer. An example on its use within the project is
depicted on Figure 7. One can obtain an analytical value of the stress evolution on the coating during
the droplet impact. It is an alternative simplified computation to the algorithm presented in the
previous section based on a 3D numerical modelling.
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Figure 7. Variation of stress at coating-substrate interface for three different top coating LEP material
candidates for the same substrate. It can be observed the capability to avoid peak values with the
appropriate selection of the material impedances.

To evaluate the average stress values at the coating-liquid and coating-substrate interfaces during
the duration of the impact, it is introduced a parameter k that depends on the average number of
reflections in the coating layer

k =
1− e−γ

1−ψLcψsc
(6)

where the coating thickness hc enters its computation through the parameter γ that depends on it and
also on the droplet diameter d. It may be calculated as

γ =
2Cc

(ZL
Zs

+ 1
)
d

CL
(ZL

Zc
+ 1

)(
Zc
Zs

+ 1
)
hc

(7)

Finally, the average stress on the coating surface at x = 0 is defined with σo as

σo =
P(ψsc+1)
(1−ψLcψsc)

(
1− (1−eγ)(ψLc+1)ψsc

γ(ψsc+1)

)
σo =

VZL cos(θ)(ψsc+1)(
ZL
Zc +1

)
(1−ψLcψsc)

(
1− (1−eγ)(ψLc+1)ψsc

γ(ψsc+1)

) (8)

If the value of the relative impedance parameter of the substrate-coating interface equals zero,
ψsc = 0, so the coating material is considered the same as the substrate, and this expression reduces to
σo = σ1 = P that may be used to compute the average stress for homogeneous materials.

The average stress on the coating-substrate interface at x = h is defined then with σh as

σh =
P(ψsc+1)
(1−ψLcψsc)

(
1− (1−eγ)ψLcψsc

γ

)
σh =

VZL cos(θ)(ψsc+1)(
ZL
Zc +1

)
(1−ψLcψsc)

(
1− (1−eγ)ψLcψsc

γ

) (9)

And, as above, if the value of the relative impedance parameter of the substrate-coating interface
equals zero, ψsc = 0, so the coating material is considered the same as the substrate, this expression
reduces to σo = σh = P.

The incubation period of time neglecting mass loss prior the erosion develops at a given rate, as
depicted in Figure 5, is analyzed with fatigue concepts. It may be estimated applying Miner’s rule to
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the impingement force cycles and considering the averaged stress values with the equivalent dynamic
stress σe per unit area on the impact locations, see Figure 5c.

An approximation value for the fatigue life N is then given by a function of the equivalent dynamic
stress σe

N =
(
σuc
σe

)bc

bc =
b2c

log10

(
σuc
σIc

) (10)

where the subscript c indicates to the coating material, bc defines the fatigue slope, b2c matches to the
“knee” in the fatigue curve (that may be estimated with its endurance limit σI) and the coating ultimate
tensile strength σuc is defined for N = 1.

A parameter of the material “strength” Sc is introduced with a semi-empirical approach and
depends on the poison coefficient νc (included to consider the location of the impact force on the
radial averaged stress), and other relevant properties of both the coating material and substrate
treated previously,

Sc =
4(bc−1)σuc

(1−2νc)
[
1−( σIcσuc )

bc−1
] �

Sc =
4(bc−1)σuc
(1−2νc)

(11)

An important issue for fatigue analysis is how to consider the effect of the fatigue slope parameter
for the coating bc since it is difficult to obtain experimentally for typical LEP elastomeric materials.
Equation (11) may be simplified assuming that σIc < σuc and bc � 1.

It may be stated as an equivalent erosion resistance parameter for the coating Sec including the
damping effect of the coating described previously by means of the average number of reflections k
and the relative impedance parameter ψsc that acts on the interface wave reflections,

Sec =
4(bc − 1)σuc

(1− 2νc)
(
2k

∣∣∣ψsc
∣∣∣+ 1

) (12)

Fatigue life of the material is then estimated with the number of impacts during the incubation
time period as

n∗ic = a1

(Sec

σo

)a2

(13)

where a1 and a2 can be considered determined constants that may be fitted experimentally, Sec represents
the erosion strength of the material and depends on its fundamental properties defined in Equation
(12) and the averaged stress of the coating surface during the impact event defined in Equation(8).
In [1], the parameter values where defined as

n∗ic = 7× 10−6
(Sec

σo

)5,7
(14)

That may also be expressed in terms of the number impacts per site when considering the circular
projected area of the droplet with a given diameter d

nic =
8.9
d2

(Sec

σo

)5,7
(15)

where using appropriates units allow one to predict the number of impacts per m2 at which the coating
material starts to develop erosion with a given erosion rate that may also be computed from the
previous estimated parameters as

αc =
7.3310−5d3ρcσo

4

Sec4
(16)
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The equivalent analysis may be used to determine the erosion strength at interface coat-substrate
instead of surface. Accordingly, Equations (11) and (15) are written introducing the fundamental
properties of the substrate as

nih = 8.9
d2

(
Ses
σh

)5,7

Ses =
4(bs−1)σus

(1−2νs)
[
1−( σIsσus )

bs−1
]
(2k|ψsc|+1)

� 4(bs−1)σus

(1−2νs)(2k|ψsc|+1)
(17)

As we have previously stated from [13] in order to predict the incubation time and the mass
removal rate, the stress history in the coating and in the substrate has to be identified analytically or
numerically. It is affected by the shockwave progression due to the vibro-acoustic properties of each
layer, and by the time interval of the repeated water droplet impacts. Fatigue life of the material is
then calculated, and the model can be applied to estimate the stress at different locations through the
thickness, i.e., the coating surface or at the coating–substrate interface. Nevertheless, it is assumed that
the bond and adhesion of the boundary interface is ideally perfect, so the modelling does not account
for the microstructural imperfections and lack of adhesion of such interfaces and does not account
either for the shear stresses developed on the 3D impact event.

Considering for previous assumptions, the method has been applied successfully for wear erosion
damage in [15]. In that case, the erosion strength of the coating material defined in Equation (12) was
empirically obtained by means of the RET (Rain Erosion Testing) testing as a unique value instead of
obtaining the fundamental properties values separately.

Figure 8 shows a complete map of the liquid droplet, coating LEP and substrate (primer or filler)
material impedances as input parameters of the modelling with the related equations previously stated.
The impedance of the LEP thin coating and substrate materials need to be characterized and used as
input data in the modelling. The appropriate variable working frequency range depending on the
impact and material settings is analysed in next section and defined so the corresponding impedance
characterization with Ultrasonic testing for such measurements.

 
Figure 8. Diagram of liquid, coating and substrate material impedances and operational parameters
affecting rain erosion performance.
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3. Single Droplet Impact Modelling Considering Viscoelastic Material Characterization

3.1. Thin Coatings mechAnical Properties at High-Strain-Rates

The waterdrop impact introduces a very high-rate pressure transient build-up. The viscoelastic
material experiences a very rapidly increasing stress field that leads to a distortion and a subsequent
strain relaxation. The large deformation stress-strain behavior of elastomeric materials is strongly
dependent on strain rate. ISO 18872 standard [23] is defined for high strain rate testing of polymeric
materials. In [24–26] is analyzed for particular materials the deformation behavior over a wide range
in strain rates. The problem is widely studied in the literature in regards of different mechanical
properties, chemistry systems (molecular transitions and relaxations) and loading cases (considering
tensile or compression). For our droplet impact analysis and modelling, it is important to note that
the Ultimate Strength σu characterization represents an important input parameter because is directly
related with the erosion strength and is exponentially related to lifetime estimation (see Equations
(12) and (14) respectively). Its rate dependent value [26] is an important source of deviation on the
modelling accuracy. Representative engineering stress-strain plots of a polyurethane-based polymer
material under dynamic tension loading with three curves per selected strain rate level can be obtained
from [26]. Characterizing LEP materials at high strain rates is difficult, even at small amplitudes
because the regime of interest at a very high frequency is limited.

The highly transient material behavior during waterdrop collisions require to define the range
of frequency of its data set. Stiffness of a polymer is measured as a modulus, a ratio of stress to
strain at a certain stage of deformation. LEP polymers are viscoelastic materials and as a result
their mechanical and acoustical property will depend very much upon measurement frequency and
temperature, [27–31]. Viscoelastic variation in application of solid particle erosion analysis under high
speed impact conditions is reported in [18].

This material behavior can be obtained from the frequency response data from Dynamic Mechanical
Thermal Analysis (DMTA) where a sinusoidal strain is imposed on a rectangular sample as a function
of temperature, see Figure 9.

Figure 9. DMTA developed Testing for prototype LEP used in this work, only valid for low frequencies
1Hz up to 100 Hz but considering Temperature variation.

For the dynamic experiments the modulus is complex E* and is given by E* = E′ + iE” whereby E′
describes the elastic or energy storage component of the modulus and E” the loss of energy as heat in a
cycle deformation. The modulus of a viscoelastic material is a function of time as well as temperature
which is the basis for time-temperature superposition principles which may be used to predict the
temperature-frequency behavior of a polymer.
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The Dynamic Mechanical Thermal Analysis (DMTA) is the appropriate test to determine the
viscoelastic properties, however, the information provided by this technique is only valid up to a
frequency of 100 Hz, and therefore, it is not useful in the present context.

The Time-Temperature superposition principle may be required to determine
temperature-dependent mechanical properties in a broad range of frequencies. It also may
consider transforming the data from the frequency to the time domain for the computational analysis
(by performing convolution calculations and inverse Fourier transform on E′ and E” data set).

On the other hand, Dielectric Thermal Analysis (DETA) supplies information on the molecular
motion up to a frequency of 107 Hz by means of measuring the complex dielectric permittivity (ε*)
over the entire frequency range, so the regime of interest, see Figure 10. It gives complete information
for shifts in Tg transitions depending on frequency and temperature variations, but it has a lack on the
mechanical values of E′ and E” since it only gives us dielectric data. Thus, it is necessary to obtain
with additional time-temperature superposition the relevant mechanical data and converting it to the
complex Young modulus (E*). To that end, a series of mathematical models capable of performing
such interconversion may be applied [32–34].

Figure 10. DETA dielectric testing was developed with 3 different temperatures for prototype LEP
used in this work, valid for high frequencies up to 10 MHz but not contemplating mechanical
properties definition.

A direct measurement of the required mechanical elastic properties in high frequency ranges
can be obtained from Ultrasonic measurements as detailed in the literature [28–30]. There is a good
correlation between the ultrasonic properties’ attenuation α and sound velocity C and the elastic
modulus properties:

E′ = ρC2 ; E′′ =
ρC3

π f
α (18)

The speed of sound is temperature and frequency dependent so are the acoustic impedance.
In next section, further analysis is developed for better understanding the effect of most important
parameters that may affect the frequency development of the stress-strain-time evolution and hence
the consideration of appropriate speed of sound measurement as input modelling data.

3.2. Stress-Strain Frequency Range Analysis during Droplet Impingement

The working frequency range definition of a given single droplet impact is a complex phenomenon
that needs appropriate 3D Stress-Strain analysis out of the scope of this work and depends on many
operational variables. In Springer model it is simplified analytically considering the impact as a
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step-like function defined by means the droplet size, the water and coating speed of sound and the
impact speed (see first section of this document). In this work, the impact velocity of the droplets
is defined for the conditions of the collision without differentiation of the rotor speed or the gravity
effects of the rain droplets. The impact pressure is then considered through Water-hammer pressure
that depends on the speed of impact and the liquid and surface impedances. The total impact duration
tL depends on the droplet diameter and the speed of sound in the liquid,

tL =
2d
CL

(19)

It can be observed in Figure 11 this step wise force pulse definition yields a Fourier Transform
decomposition with not valid frequencies due to the abrupt change on the time required to build up
and down the contact forces.

Figure 11. Impact force step wise definition and its corresponding Fourier Reconstruction (where
impact duration depends on droplet diameter and the peak value depends on the velocity of droplet
impact and liquid-coating relative impedances).

A first approximation of the problem would be to consider droplet with shape completely round
with diameters in the range of 1–4 mm, so the corresponding duration of impacts tL are 1.35–5.4 μs and
if We assume that the time to build up and down is at least half of the impact duration time then, 1

2 tL,
give as a relation for the frequencies of that force pulse with values of 0.18–0.74 MHz, respectively.

In order to improve understanding the stress-strain development in the LEP system, we will
introduce different modelling cases of analysis with alternative to Springer model assumptions:

• Including appropriate coating material models that allow us to observe the viscoelastic behaviour
(with consideration for high transient strain rate deformation, and variable stiffness and damping
with frequency) and not as a pure elastic event. Water droplet properties are incorporated and
assumed constant in this work, but more complex material models could also be included in the
developed modelling. Moreover, density variations for coating and water due temperature are
also circumvented and are assumed constant during the impact event.

• Springer model undertakes a two layered structure with the substrate thickness assumed
semi-infinite. We will treat the LEP system as a multilayer configuration so We will be able to
observe additional wave reflections on the interfaces that affect also the surface coating. The
algorithm considers water as an additional layer to allow stress wave reflections at liquid-coating
interface. The initial impact conditions consider the coating as a dry surface, nevertheless, the
water could also be considered as an additional thin layer from previous droplet impact but it
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is neglected in this work to avoid complex liquid-coating contact modelling following Springer
assumptions simplification.

• 1D formulation examines the impact of a liquid droplet treating the problem only as
tensile-compression event. This simplification is applicable since shear stresses and shear
material characterization are out of the scope of the fatigue analysis case involved.

The simplified model proposed that considers these assumptions, see Figure 12, has been
numerically developed in Open Modellica [19]. The algorithm that includes the material models is
outlined in Figure 13. This LEP configuration is defined for rain erosion testing performed at PolyTech
Test & Validation A/S according to DNV-GL-RP-0171 [22], see Figure 14.

Figure 12. LEP configuration considering viscoelastic material models, multilayer and 1D droplet
impact event.

Table 1. Initial Reference Input data used for the impact modelling of RET testing.

Material
Modulus E (Pa)
/Viscosity (Pa s)

Speed of Sound C
(m/s)

Layer Thickness
/Droplet

Diameter (μm)

Impact Velocity
Specimen
Vcenter

(m/s)

Water droplet 2.19 × 109 1480.00 2000 121
Coating LEP 3.48 × 109/1.59 1733.00 500 121

Filler 4.90 × 109/3.183 1941.00 1000 121
Substrate Laminate 1.10 × 1010 2392.00 3400 121
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(a) (b) 

Figure 13. (a) Reference multilayer configuration for RET coupons. Liquid droplet and each material
layer are defined by the input mechanical parameters of Table 1; (b) corresponding numerical
configuration outline implemented in OpenModelica.

  
Figure 14. Rain erosion test facility and three specimens used at PolyTech Test & Validation A/S
according to DNV-GL-RP-0171 [22] for the analysis and experimental validation.

The numerical procedure was implemented in a general LEP configuration according to Rain
Erosion Testing coupons. Simulations of the stress-strain behavior caused in the multilayer system are
computed for a given 1D discretization through the thickness position solving for a set of material
nodes that belong to a particular homogenized layer. The Equilibrium equation to be accomplished for
any two consecutive nodes in the multilayer system is given by

mi
d2xi

dt2 = Fi−1,i − Fi,i+1 (20)

where layer k defines nk nodes, node i−1 defines position xi−1 and node i position xi. The material models
implemented to state a given layer k give us distinctive stress-strain behavior that can be modelled as:

• Pure elastic model, where A is the impact area defined by the droplet size and E is the
elastic modulus

Fi−1,i = − A·E(
x0

i − x0
i−1

) (xi − xi−1 − x0
i + x0

i−1

)
(21)

• Kelvin-Voight (KV) viscoelastic model, where η is the viscosity,

Fi−1,i = − A·E(
x0

i − x0
i−1

) (xi − xi−1 − x0
i + x0

i−1

)
− A·η(

x0
i − x0

i−1

) (dxi
dt
− dxi−1

dt

)
(22)
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and considering appropriate estimation of the viscosity attenuation observed in as:

σtotal = σs + σd
εtotal = εs = εd

→ σ = Eε+ η dε
dt

E∗ = E′ + iE′′ = E′ + i2π fη → η = E′′
2π f

(23)

• Havriliak-Negami H-N viscoelastic model [32–34], where E∞ define the unrelaxed or glassy
modulus, and Eo is the relaxed rubbery modulus and τ is the relaxation time, see Figures 15 and 16.

Fi−1,i + τ
dF
dt

= − A·E0(
x0

i − x0
i−1

) (xi − xi−1 − x0
i + x0

i−1

)
− A·E∞(

x0
i − x0

i−1

) (dxi
dt
− dxi−1

dt

)
(24)

Figure 15. H-N model. Storage Modulus variation with Frequency. E∞ unrelaxed modulus.

Figure 16. H-N model. Relaxation Time dependence on Temperature.

This simplified computational tool allow us to treat as parameters the material models (as pure
elastic, Kelvin-Voight, Havriliak-Negami, etc.) and their related properties (density, storage modulus,
loss modulus, tan delta, speed of sound, thickness, etc.), the operational variables (impact velocity,
droplet diameter size, droplet density, droplet speed of sound, etc.). In order to quantify the strain
rate analysis of the single droplet impact simulation, we will evaluate different cases considering the
effect on variations in coating-substrate thickness, viscoelastic material properties, droplet size and
droplet impact velocity from a reference configuration used in RET testing (Figure 13). The input data
values for these prototype materials of Table 1 where defined initially from previous testing results
and here are used for the exposed modelling procedure in order to discuss Stress-Strain frequency
range analysis during droplet impingement.

The strain-stress evolution with time is evaluated at different locations of the LEP coating for
appropriate comparison. The specific location of the analysis through the layer thickness is defined as
variable e_x for the strain and variable s_x for the stress, where x is defined at surface x = 0, interface
x = 100, or any intermediate positions with x = 25, 50 or 75 referring all to the given % of the layer
thickness, see Figure 13.

A first result for the analysis of the reference testing LEP configuration is plotted in Figure 17.
It is observed the strain evolution with time at the surface of the coating layer e_0 comparing two
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cases: Coat_1 using a pure elastic modelling of the coating material compared with Coat_2 using a
Kelvin-Voight modelling.

Figure 17. Strain evolution at the coating surface for the reference LEP configuration for RET coupons
with input data defined in Table 1. Material models comparison.

In addition, the spectrogram of the strain evolution with time for a given location e_x is calculated
with the Fourier transform applied in short-time periods though the duration of the impact analysis
(0–50 μs). The strain frequency decomposition during the impact event, provide us a plot of the
dominant frequency spectrum with a range of values (measured as power (dB) over Frequency (Hz)),
for each time analysis period. This procedure allows us to estimate indirectly the highly transient
strain-rate variations for the single droplet impact event.

Figures 18 and 19 show as a first simplified approximation, the effect of the inclusion of the
attenuation consequence due to the material modelling definition. The reason for such comparison is
to clarify that the material properties are frequency dependent so the input data for the modelling.
This assumption is important to consider when we define the speed of sound as a constant variable in
our analysis. A first conclusion for the developed case is that the most dominant frequencies occur
during the first stage of the impact and that Kelvin-Voight material modelling is appropriate to avoid
additional frequency noise due to the lack of attenuation when using pure elastic material models.

Figure 18. Spectrogram for strain evolution at the coating surface for the Reference multilayer
configuration. Material models analysis for Pure elastic consideration.
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Figure 19. Spectrogram for strain evolution at the coating surface for the Reference multilayer
configuration. Material models analysis for Kelvin-Voight consideration.

The computational analysis limits the frequency in a range of 0.5–2 MHz for this initial
set-up conditions.

3.3. Influence of Coating-Substrate Thickness Variations

In this section, the strain-stress analysis ponders first the effect of considering a variation on
the coating thickness over the reference case for the initial testing coupon of Table 1. Two cases of
study are related with variations of the given parameter multiplying its value by 1,4 for Cases 1 and 2
respectively as shown in Table 2

Table 2. Modelling input data for variation cases in Coating thickness.

Test Impact
Comparison_3
Case Analysis

Material
Modulus E (Pa)
/Viscosity (Pa s)

Speed of
Sound C

(m/s)

Layer
Thickness

(μm)

Impact Velocity
Specimen
Vcenter

(m/s)

Case 1 Coating LEP 3.48 × 109/1.59 1733.00 500 121
Case 2 3.48 × 109/1.59 1733.00 4 × 500 121

Figure 20 shows the influence of the Coating thickness on the stress developed at surface (s_0) and
interface (s_100) for the Case 1 (reference LEP configuration). The peak values observed at interface
depends also on the acoustic matching with the filler. Since the material develops different stress-strain
values through its thickness, a proper layer location for comparing the strain evolution is considered to
be defined at its intermediate 50% thickness location i.e., e_50, s_50. Figures 21 and 22 for Cases 1 and
2 comparison.
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Figure 20. Stress-Time evolution for Case 1 at surface (s = 0) and interface (s = 100).

Figure 21. Spectrogram for strain evolution at the middle coating layer. Comparison for coating
thickness variation respect to the reference LEP multilayer configuration (Case 1).

Figure 22. Spectrogram for strain evolution at the middle coating layer. Comparison for coating
thickness variation respect to the reference LEP multilayer configuration (Case 2).

It is important to observe the high values of the reflection stresses developed due to the multilayer
interfaces effect due to the low value of the substrate thickness of the reference LEP multilayer
configuration. Springer model limits this assuming that the substrate (filler) layer has to be considered
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semi-infinite, hs > 2d Cs
CL

, which means in fact that the reflections are not considered in the fatigue
analysis for computing the average stress values on surface. Other additional effect is considering very
thick coatings with hC > 2d Cc

CL
by means of shells or tapes. Cases 1–3 analyze the effect of increasing 20

times the filler thickness and 1, 10 and 20 times the coating thickness compared to the initial reference
LEP multilayer configuration of Table 1, detailed variation input data is defined on Table 3.

Table 3. Modelling input data for variation cases in semi-infinite substrates, hs > 2d Cs
CL

, in substrate

(filler) thickness and in thick coatings (shells and tapes), hC > 2d Cc
CL

.

Test Impact
Comparison_2
Case Analysis

Material
Modulus E (Pa)
/Viscosity (Pa s)

Speed of
Sound C

(m/s)

Layer
Thickness

(μm)

Impact Velocity
Specimen
Vcenter

(m/s)

Case 1
Coating LEP

3.48 × 109/1.59 1733.00 500 121
Case 2 3.48 × 109/1.59 1733.00 10 × 500 121
Case 3 3.48 × 109/1.59 1733.00 20 × 500 121

Cases 1,2,3 Filler 4.90 × 109/3.183 1941.00 20 × 1000 121

It is observed in Figures 23 and 24 the lower value of stress at surface (s_0) and middle location
layer (s_50) due to the increment of coating thickness (so its damping capabilities). It is also appreciated
the delay on wave stress reflections due to the increase on the substrate-filler thickness.

Figure 23. Stress-Time evolution for Cases 1–3 at surface, 0% of Coating thickness, considering the
substrate filler as semi-infinite with increased thickness (shells, tapes).
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Figure 24. Stress-Time evolution for Cases 1–3 at middle coating layer, 50% thickness, considering
substrate-filler as semi-infinite with increased thickness (shells, tapes).

Figures 25–27 show the corresponding influence on the strain frequency spectrum where the
higher strain-rate variations are developed in the periods of time closer to the impact pulse and the
wave traveling reflections.

Figure 25. Spectrogram for strain evolution at the middle coating layer, 50% thickness, considering
substrate-filler as semi-infinite with defined coating thickness for reference LEP configuration. Case 1.
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Figure 26. Spectrogram for strain evolution at the middle coating layer, 50% thickness, considering
substrate-filler as semi-infinite with increased thickness (shells, tapes). Case 2.

Figure 27. Spectrogram for strain evolution at the middle coating layer, 50% thickness, considering
substrate-filler as semi-infinite with increased thickness (shells, tapes). Case 3.

3.4. Influence of Coating Viscoelastic Property Variations

In this section, the strain-stress analysis considers the influence of pondering a variation on the
coating stiffness over the reference case for the testing coupon of Table 1. Three cases of study are
related with variations of the given parameter multiplying its value by 1, 0.5 and 1.5 for Cases 1, 2, and
3, respectively as shown in Table 4.

Table 4. Modelling input data for variation cases in coating modulus (stiffness) and considering
semi-infinite substrates, hs > 2d Cs

CL
.

Test Impact
Comparison_4
Case Analysis

Material
Modulus E (Pa)
/Viscosity (Pa s)

Speed of
Sound C

(m/s)

Layer
Thickness

(μm)

Impact Velocity
Specimen
Vcenter

(m/s)

Case 1
Coating LEP

3.48 × 109/1.59 1733.00 500 121

Case 2 0.5 × 3.48 ×
109/1.59 1733.00 500 121

Case 3 1.5 × 3.48 ×
109/1.59 1733.00 500 121

Cases 1,2,3 Filler 4.90 × 109/3.183 1941.00 20 × 1000 121
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Figure 28 show the strain in the coating layer due to a variation on the modulus for the three
different cases. It is detected an abrupt variation in the strain-rate values and its corresponding effect
on the strain frequency spectrum, Figures 29 and 30. The dominant working strain frequency range is
increased in the periods of time closer to the impact pulse is increased from 1 MHz, to 3–7 MHz for
Cases 2 and 3.

Figure 28. Strain-Time evolution for Case 1,2,3 at middle coating layer, 50% thickness, considering the
substrate-filler as semi-infinite with variation in coating modulus.

Figure 29. Spectrogram for strain evolution at the middle coating layer, 50% thickness, considering
substrate-filler as semi-infinite with variation in coating modulus. Case 2.
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Figure 30. Spectrogram for strain evolution at the middle coating layer, 50% thickness, considering
substrate-filler as semi-infinite with variation in coating modulus. Case 3.

3.5. Influence of Droplet Size Variations

The strain-stress analysis contemplates in this part the effect of pondering a distinction on the
droplet diameter over the reference case for the testing coupon. Three cases of study are related with
variations of the given parameter multiplying its value by 1,2 and 3 for Case 1, 2, and 3, respectively as
shown in Table 5.

Table 5. Modelling input data for variation cases in droplet diameter and considering semi-infinite
substrates, hs > 2d Cs

CL
.

Test Impact
Comparison_4
Case Analysis

Material
Modulus E (Pa)
/Viscosity (Pa s)

Speed of
Sound C

(m/s)

Layer
Thickness
/Droplet
Diameter

(μm)

Impact Velocity
Specimen
Vcenter

(m/s)

Case 1
Water droplet

2.19 × 109 1480.00 2000 121
Case 2 2.19× 109 1480.00 2 × 2000 121
Case 3 2.19 × 109 1480.00 3 × 2000 121

Cases 1,2,3 Filler 4.90 × 109/3.183 1941.00 20 × 1000 121

Figure 31 illustrates the strain evolution for the three different cases. It is noticed a delayed
variation in the strain-rate values with longer periods of impact and also the equivalent effect on the
strain frequency spectrum, Figures 32 and 33. The main working strain frequency range is evenly
increased for bigger droplets (4–6 mm. in diameter) in the periods of time closer to the impact and the
reflections with values from 1 MHz, to 3–7 MHz for Cases 2 and 3.
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Figure 31. Strain-Time evolution for Cases 1–3 at middle coating layer, 50% thickness, considering the
substrate-filler as semi-infinite with variation in droplet diameter.

Figure 32. Spectrogram for strain evolution at the middle coating layer, 50% thickness, considering
substrate-filler as semi-infinite with variation in droplet diameter. Case 2.

Figure 33. Spectrogram for strain evolution at the middle coating layer, 50% thickness, considering
substrate-filler as semi-infinite with variation in droplet diameter. Case 3.
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3.6. Influence of Droplet Impact Velocity Variations

In this section, the strain-stress analysis intends the consequence of a difference on the droplet
impact velocity over the reference case for the testing coupon. Three cases of study are related with
variations of the given parameter multiplying its value by 1, 0.6 and 1.4 for Cases 1, 2, and 3, respectively
as shown in Table 6. It is important to note that a maximum impact velocity in operational conditions
of wind turbine blades (only in offshore fields) should be defined around 170 m/s.

Table 6. Modelling input data for variation cases in droplet impact velocity and considering semi-infinite
substrates, hs > 2d Cs

CL
.

Test Impact
Comparison_4
Case Analysis

Material
Modulus E

(Pa)

Speed of
Sound C

(m/s)

Droplet
Diameter

(μm)

Impact Velocity
Specimen
Vcenter

(m/s)

Case 1
Water droplet

2.19 × 109 1480.00 2000 121
Case 2 2.19 × 109 1480.00 2000 0.6 × 121
Case 3 2.19 × 109 1480.00 2000 1.4 × 121

Figure 34 clarifies the direct related variation in the strain-rate values with the impact velocity for
the three different cases. The corresponding influence on the strain frequency spectrum is depicted in
Figures 35 and 36. The principal working strain frequency range is evenly distributed in the periods of
time closer to the impact with values from 1 to 7 MHz for Cases 2 and 3, pointing out an important
influence of the impact velocity with the frequency range during impact event.

Figure 34. Strain-Time evolution for Cases 1–3 at middle coating layer, 50% thickness, considering the
substrate-filler as semi-infinite with variation in droplet velocity.

471



Coatings 2020, 10, 685

Figure 35. Spectrogram for strain evolution at the middle coating layer, 50% thickness, considering
substrate-filler as semi-infinite with variation in droplet velocity. Case 2.

Figure 36. Spectrogram for strain evolution at the middle coating layer, 50% thickness, considering
substrate-filler as semi-infinite with variation in droplet velocity. Case 3.

4. Conclusions

Numerical and analytical models have been used in this work as a tool to analyze coating LEP
wear surface erosion performance. The modelling description offers a guidance in the analysis based
on the material fundamental properties. It is required for a complete analysis to define criteria for
identifying suitable acoustical matching of LEP coating and composite substrate interfaces.

Complex material models are considered to observe the highly transient material behavior during
waterdrop collisions that require to define the range of frequency of its data set to account for strain
rate dependence. The simplified single droplet impact modelling developed in this work has been
implemented and its capabilities assessed. The simulated analysis pondering different operational and
configuration cases used in industry has been discussed in detail and limits the working frequency
in a range of 0.5–7 MHz. The analysis has been developed assuming constant values of mechanical
properties during the impact event in order to imitate the Springer modelling assumptions. The upper
limit of 5 MHz allows one to consider a conservative constant value for the appropriate measurement
of the material impedance providing a limit on the stiffness variation of the viscoelastic response of the
selected material. Then, a procedure for the measurement of acoustic impedance with a time-of-flight
technique of a thin viscoelastic layer using a planar ultrasonic transducer for the frequency regime
of interest can be developed. Details of such developments are reported by the authors in linked
research [20].
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The material impedance characterization may be obtained at the appropriate Ultrasound frequency
testing for the erosion performance modelling input data to avoid lack of accuracy. The computational
tool presented would allow one to define erosion performance estimators depending on the relative
acoustic impedance of liquid, coating and substrate materials definition reducing the Rain Erosion
Testing campaigns to evaluate the rain erosion resistance of selected top-coating systems.

Author Contributions: Designed and developed the computational tool, L.D. and J.R.; Conceived and implemented
the material testing specimens, A.Š.; Determined the research program, defined the computational framework
scope, its use and the interpretation of the results, supervised the work and wrote the paper, F.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research has been partially funded by the DEMOWIND-2 Project “Offshore Demonstration Blade
(ODB)” funded by MINECO with reference PCIN-069-2017, by the ESI-Group Chair at CEU-UCH and from the
European Union’s Horizon 2020 research and innovation program under grant agreement No 811473. Project
“LEP4BLADES”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cortés, E.; Sánchez, F.; O’Carroll, A.; Madramany, B.; Hardiman, M.; Young, T.M. On the material
characterization of wind turbine blade coatings: Effect of the interphase adhesion on rain erosion performance.
Materials 2017, 10, 1146. [CrossRef]

2. Tobin, E.F.; Young, T.M.; Raps, D.; Rohr, O. Comparison of liquid impingement results from whirling arm
and water-jet erosion test facilities. Wear 2011, 271, 2625–2631. [CrossRef]

3. Gohardani, O. Impact of erosion testing aspects on current and future flight conditions. Prog. Aerosp. Sci.
2011, 47, 280–303. [CrossRef]

4. Adler, W.F. Waterdrop impact modeling. Wear 1995, 186, 341–351. [CrossRef]
5. Fang, J.; Owens, R.G.; Tacher, L.; Parriaux, A. A numerical study of the sph method for simulating transient

viscoelastic free surface flows. J. Nonnewton. Fluid Mech. 2006, 139, 68–84. [CrossRef]
6. Verma, A.S.; Castro, S.G.P.; Jiang, Z.; Teuwen, J.J.E. Numerical investigation of rain droplet impact on offshore

wind turbine blades under different rainfall conditions: A parametric study. Compos. Struct. 2020, 241,
112096. [CrossRef]

7. Yonemoto, Y.; Kunugi, T. Universality of Droplet Impingement: Low-to-high viscosities and surface tensions.
Coatings 2018, 8, 409. [CrossRef]

8. Keegan, M.H.; Nash, D.H.; Stack, M.M. On erosion issues associated with the leading edge of wind turbine
blades. J. Phys. D Appl. Phys. 2013, 46, 383001. [CrossRef]

9. Doagou-Rad, S.; Mishnaevsky, L.; Bech, J.I. Leading edge erosion of wind turbine blades: Multiaxial critical
plane fatigue model of coating degradation under random liquid impacts. Wind Energy 2020, 1, 1–15.
[CrossRef]

10. Mishnaevsky, L.; Fæster, S.; Mikkelsen, L.P.; Kusano, Y.; Bech, J.I. Micromechanisms of leading edge erosion
of wind turbine blades: X-ray tomography analysis and computational studies. Wind Energy 2020, 23,
547–562. [CrossRef]

11. Mishnaevsky, L., Jr.; Sütterlin, J. Micromechanical model of surface erosion of polyurethane coatings on wind
turbine blades. Polym. Degrad. Stab. 2019, 166, 283–289. [CrossRef]

12. Chen, J.; Geng, M.; Li, Y.; Yang, Z.; Chai, Y.; He, G. Erosion resistance and damage mechanism of TiN/ZrN
nanoscale multilayer coating. Coatings 2019, 9, 64. [CrossRef]

13. Springer, G.S. Erosion by Liquid Impact; John Wiley and Sons: New York, NY, USA, 1976.
14. Slot, H.M.; Gelnick, E.R.M.; Rentrop, C.; van der Heide, E. Leading edge erosion of coated wind turbine

blades: Review of coating life models. Renew. Energy 2015, 80, 837–848. [CrossRef]
15. Eisenberg, D.; Laustsen, S.; Stege, J. Wind turbine blade coating leading edge rain erosion model: Development

and validation. Wind Energy 2018, 80. [CrossRef]
16. Elhadi Ibrahim, M.; Medraj, M. Water droplet erosion of wind turbine blades: Mechanics, testing, modeling

and future perspectives. Materials 2020, 13, 157. [CrossRef]
17. Mishnaevsky, L., Jr. Toolbox for optimizing anti-erosion protective coatings of wind turbine blades: Overview

of mechanisms and technical solutions. Wind Energy 2019, 22, 1636–1653. [CrossRef]

473



Coatings 2020, 10, 685

18. Arena, G.; Friedrich, K.; Ruso, P.; Padenko, E.; Acierno, D.; Filippone, G.; Wagner, J. Solid particle erosion
and viscoelastic properties of thermoplastic polyurethane. eXPRESS Polym. Lett. 2015, 9, 166–176. [CrossRef]

19. OPENMODELICA. Available online: https://openmodelica.org (accessed on 6 June 2020).
20. Domenech, L.; Garcia-Peñas, V.; Šakalytė, A.; Puthukara, D.; Eskil Skoglund, F.; Sánchez, F. Top coating

anti-erosion performance analysis in wind turbine blades depending on relative acoustic impedance. Part 2:
Material characterization and rain erosion testing evaluation. Coatings 2020, in press.

21. Standard Test Method for Liquid Impingement Erosion Using Rotating Apparatus; ASTM G73-10; ASTM
International: West Conshohocken, PA, USA, 2017.

22. DNVGL: RP-0171. Testing of Rotor Blade Erosion Protection Systems. Recommended Practice. 2018.
Available online: http://www.dnvgl.com (accessed on 1 February 2020).

23. Plastics—Determination of Tensile Properties at High Strain Rates; ISO 18872:2007; ISO: Geneva, Switzerland,
2007.

24. Sarva, S.S.; Deschanel, S.; Boyce, M.C.; Chen, W. Stress-strain behavior of a polyurea and a polyurethane
from low to high strain rates. Polymer 2007, 48, 2208–2213. [CrossRef]

25. Roland, C.M.; Twigg, J.; van Vu, Y.; Mott, P.H. High strain rate mechanical behavior of polyurea. Polymer
2007, 48, 574–578. [CrossRef]

26. Fan, J.T.; Weerheijm, J.; Sluys, L.J. High-strain-rate tensile mechanical response of a polyurethane elastomeric
material. Polymer 2015, 65, 72–80. [CrossRef]

27. Chevalier, Y.; Vinh, J.T. Mechanics of Viscoelastic Materials and Wave Dispersion; Wiley: Hoboken, NJ, USA, 2013.
28. Garceau, P. Characterization of Isotropic and Anisotropic Materials by Progressive Ultrasonic Waves. In

Mechanics of Viscoelastic Materials and Wave Dispersion; Wiley: Hoboken, NJ, USA, 2013; pp. 513–554. [CrossRef]
29. Beda, T.; Esteoule, C.; Mohamed, S.; Vinh, J.T. Viscoelastic Moduli of Materials Deduced from Harmonic

Responses of Beams. In Mechanics of Viscoelastic Materials and Wave Dispersion; Wiley: Hoboken, NJ, USA,
2013; pp. 555–597. [CrossRef]

30. Brinson, H.F.; Brinson, L.C. Polymer Engineering Science and Viscoelasticity; Springer: New York, NY, USA,
2010; ISBN 978-1-4899-7485-3.

31. Grate, J.W.; Wenzel, S.; White, R.M. frequency-independent and frequency-dependent polymer transitions
observed on flexural plate ultrasonic wave sensors. Anal. Chem. 1992, 64, 413–423. [CrossRef]

32. Pascual, B.; Sánchez, F.; Doménech, L.; Cortés, E.; Ribes-Greus, A. Interconversion between dielectric and
mechanical measurements of polymeric materials for wind turbine Blades. In Proceedings of the XI Congreso
Nacional y II Internacional de Ingeniería Termodinámica, 11CNIT-XI-2018, Albacete, Spain, 12–28 June 2019.

33. Szabo, J.P.; Keough, I.A. Method for analysis of dynamic mechanical thermal analysis data using the
Havriliak-Negami model. Thermochim. Acta 2002, 392–393, 1–12. [CrossRef]

34. Garcia-Bernabe, A.; Lidon-Roger, J.V.; Sanchis, M.J.; Diaz-Calleja, R.; del Castillo, L.F. Interconversion
algorithm between mechanical and dielectric relaxation measurements for acetate of cis- and
trans-2-phenyl-5-hydroxymethyl-1,3-dioxane. Phys. Rev. E 2015, 92, 042307. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

474



coatings

Article

Top Coating Anti-Erosion Performance Analysis
in Wind Turbine Blades Depending on Relative
Acoustic Impedance. Part 2: Material Characterization
and Rain Erosion Testing Evaluation

Luis Domenech 1, Víctor García-Peñas 1, Asta Šakalytė 2, Divya Puthukara Francis 3,
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Abstract: Under droplet impingement, surface leading edge protection (LEP) coating materials for
wind turbine blades develop high-rate transient pressure build-up and a subsequent relaxation in a
range of strain rates. The stress-strain coating LEP behavior at a working frequency range depends
on the specific LEP and on the material and operational conditions, as described in this research
in a previous work. Wear fatigue failure analysis, based on the Springer model, requires coating
and substrate speed of sound measurements as constant input material parameters. It considers
a linear elastic response of the polymer subjected to drop impact loads, but does not account for
the frequency dependent viscoelastic effects for the materials involved. The model has been widely
used and validated in the literature for different liquid impact erosion problems. In this work, it is
shown the appropriate definition of the viscoelastic materials properties with ultrasonic techniques.
It is broadly used for developing precise measurements of the speed of sound in thin coatings and
laminates. It also allows accurately evaluating elastic moduli and assessing mechanical properties
at the high frequencies of interest. In the current work, an investigation into various LEP coating
application cases have been undertaken and related with the rain erosion durability factors due to
suitable material impedance definition. The proposed numerical procedures to predict wear surface
erosion have been evaluated in comparison with the rain erosion testing, in order to identify suitable
coating and composite substrate combinations. LEP erosion performance at rain erosion testing (RET)
technique is used widely in the wind industry as the key metric, in an effort to assess the response of
the varying material and operational parameters involved.

Keywords: computational modelling; impedance analysis; rain erosion testing; ultrasound measurements;
viscoelastic characterization; wind turbine blades

1. Introduction

Wind power has become a key technology to provide electricity from renewable and low-emission
sources [1]. There is a need to improve existing technologies, by increasing the size of offshore wind
turbines to capture more wind energy [2]. Composites use opened up great prospects in the design and
manufacture of future wind turbine blades, due to the versatility offered in the material optimization
and design. Nevertheless, composites perform poorly under transverse impact (i.e., perpendicular
to the reinforcement direction) and are sensitive to environmental factors, such as heat, moisture,
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icing, salinity and/or UV. Blade manufacturers employ surface coatings to protect the composite
structure from exposure to these factors. When considering the repeated impact of rain droplets, the
high required tip speed is a key contributor to surface erosion damage on the leading edges of wind
turbine blades.

The leading-edge protection (LEP) coating system analyzed in this work [3] is usually molded,
painted or sprayed onto the blade surface during whole blade manufacture or during a repair in-field.
Industrial processes state that LEP systems can be outlined as a multi-layered system, where a putty
filler layer between the laminate and the surface LEP coating is included to smooth the composite
surface. A primer layer may be also integrated under the coating and over the filler layer to guarantee
adhesion, circumventing delamination between layers, see Figure 1.

Figure 1. Leading Edge Protection (LEP) system application procedures, i.e., (a) spray; (b) roller;
(c) trowel. Multilayer configuration.

Analytical and numerical models are commonly applied to relate top coating erosion lifetime
prediction [4–6] or alternative accelerated rain erosion testing assessment is also used [7,8]. In order to
identify suitable coating and composite substrate combinations based on their potential stress reduction
on the surface and interface different studies are related with the droplet impact phenomena [9,10].
Recent studies treat the complexity of the single droplet impact problem with the fatigue analysis
under repeated impact [11], and considering material viscoelastic approaches [12–14]. The Springer [4]
model is applied and industry validated [5] for wear top-coating rain erosion lifetime assessment. It
is used in this research [15] to predict wear fatigue failure analysis and as a computational tool for
top-coating LEP design. In this work, its application is discussed, focusing on the required coating and
substrate suitable combinations, and on the appropriate speed of sound measurements as input material
parameters. The numerical model applied for the analysis of rain erosion lifetime estimation is limited
to a linear elastic response of the polymer subjected to drop impact loads [4]. It is important to note that
polymeric materials recently applied on the LEP systems are mainly viscoelastic materials with good
properties for impact energy attenuation in erosion applications [16], that develop different mechanical
response depending on temperature and on stress and strain rates [17–19]. If these parameters are
not incorporated in the mechanical modeling, the predicted stresses of the coating behavior under
impingement may wrongly consider the material capabilities.

In order to develop an appropriate parametric approach based on the viscoelastic material
characterization, it is also necessary to consider a computational tool that allows one to design and
validate the proposed modelling. In this research, a previous analysis of candidate materials in the
temporal and frequency domain was developed to define applicable strain rate range for the required
characterization. The simulated analysis developed in this research in a linked reference [15] limits
the frequency for wind turbine rain erosion applications in a range of 0.5–7 MHz. The analysis has
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been done considering the constant values of material speed of sound and density for the impedance
definition, in order to reproduce the Springer modelling assumptions.

The speed of sound of viscoelastic materials is directly related with its modulus of elasticity [20].
The viscoelastic characterization of the LEP materials at the appropriate working frequency range
is limited for dynamic tests based on the vibration of rods or beams [21,22] and only possible using
ultrasonic waves [23–25]. Moreover, the use of the ultrasound technique in thin film applications has
additional issues as coupled thickness layer determination [26–30]. Alternatively, it is well known
for viscoelastic materials, that the frequency (strain rate) and temperature dependencies of polymer
properties are both related. One may use the time–temperature superposition principle to generate
the frequency-dependent curve, but in this case, other testing based on temperature variations are
also complex and limited as described in [15]. It is important to point out here that the frequency
sensitivity of ultrasound velocities is usually weak, of order tens m/s/decade, as described in [23], but
since it depends mainly on the polymers relaxation and Tg, it may be a remarkable source of property
variations in the performance analysis developed in this work.

The higher limit of 5 MHz proposed in [15] permits one to consider a conservative method for
the suitable measurement of the material impedance, providing an upper bound limit on the stiffness
variation of the viscoelastic response of the selected material, as demonstrated in [23,24], and for specific
impact erosion applications in [16]. Hence, a procedure for the measurement of acoustic impedance
with a time-of-flight technique of a thin viscoelastic layer using a planar ultrasonic transducer for the
frequency regime of interest is done in this work, in the next section.

In the current work, impedance measurements at suitable working frequency with Ultrasonic
testing are presented and developed as the input material data for the lifetime prediction based on
Springer modelling exposed with different application case analysis. An investigation into various
LEP coating application cases has been undertaken and related with the rain erosion durability factors.
LEP erosion performance at rain erosion accelerated testing technique is used as the key metric in an
effort to assess the response of changing material and processing parameters involved and to evaluate
the lifetime accuracy analysis.

2. Ultrasonic Measurement of Speed of Sound of Thin Coating LEP Materials

2.1. Test Standards Used for Ultrasonic Material Characterization

The ultrasonic technique is an important procedure for viscoelastic materials’ characterization
at high strain rates. It is broadly used for developing precise measurements of speed of sound and
attenuation. These two variables are the bases for accurately evaluating elastic moduli, and for
assessing mechanical properties at high frequencies. Layer thickness and the speed of sound are
important linked parameters also to account for LEP system configuration. If one of the parameters is
known, the other one can be determined by simple time-of-flight (TOF) measurement of ultrasound.

An ultrasound examination is based on the propagation of ultrasonic waves in the part to be
examined and the follow-up of the transmitted signal (called transmission technique), or of the signal
reflected or diffracted by any surface or discontinuity (called reflection technique). Both techniques
can use a single probe that acts as a transmitter and receiver, or a double probe, or separate transmitter
and receiver probes. In the same way, these two techniques can involve an intermediate reflection
coming from one or more surfaces of the examined object.

• The transmission technique (ISO 16823 [31] contains a more detailed description of this technique)
is based on the measurement of the signal attenuation after the passage of an ultrasonic wave
through the examined part.

• The reflection technique (pulse echo technique, ISO 16810 [32], and ISO 16811 [33]) uses the
reflected or diffracted signal from any interface of interest inside the examined object. This signal
is characterized by its amplitude and its position on the time base, the latter being a function
of the distance between the reflector and the probe. The location of the reflector is determined
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by knowledge of this distance, the direction of wave propagation, and the position of the probe.
Contact with the test object is generally preferred over separation by a liquid buffer or immersion
coupling medium. Although it is applicable, in general terms, to discontinuities in materials and
applications, other techniques like the time-of-flight diffraction (TOFD, ISO 16828 [34]) can be used
for both detection and sizing of discontinuities provided is performed with necessary consideration
of geometry, acoustical properties of the materials, and the sensitivity of the examination.

For speed of sound measurements, the objective is to determine the exact time interval needed
for a signal to travel between the front and back surface of a test object with previously known
thickness. Attenuation may be calculated from the ratio of the two amplitudes measured. The pulse
echo technique uses a broad band frequency range for most engineering solids, from about 300 to
about 400 MHz. Preferably, the test object must have smooth, flat, parallel opposing surfaces and
minimum thickness (to avoid excess of attenuation). It should meet the limitations for precise signal
analysis, like the absence of discontinuities like voids or other particles. In addition, adequate force on
the transducer is required to squeeze out excess coupling medium. Note that direct, normal incidence
reflections may not appear even if test object shape and boundaries meet the conditions when the
material is anisotropic, orthotropic or contains microstructural gradients.

2.2. Ultrasonic Speed of Sound Measurement Methodology for Thin Coating LEP Systems

Ultrasonic testing was undertaken with a Dolphitec ultrasonic system [35] using a pulse echo
mode (ISO 16810 [32], and ISO 16811 [33]). This technique is based on analyzing the propagation of
ultrasonic wave through the tested material. At each interface of the material, there is a spike in the
ultrasonic response. This allows for the measuring the speed of sound through the material by finding
the distance between the front-wall echo (spike response of the front face) and the back-wall echo and
matching this to the material’s actual physical measured thickness.

Ultrasonic scanning was employed to determine the acoustic impedance of neat LEP coating and
filler materials. The acoustic impedance, Z can be calculated by:

Z = ρC (1)

where, ρ is the materials density and c is the speed of sound. These measurements were captured using
both single crystal 2.5 and 5 MHz probes. This allowed for the measurement of material impedance at
varying probe frequencies, providing information on viscoelastic response of the selected materials.

2.3. Testing Case Results

The coupons of LEP coatings, primer and filler materials for the impedance measurements were
supplied by Aerox Advance Polymers [36] and the testing developed by Dolphitec [35]. The coupons
prepared were of two geometries: a circular disc with a nominal diameter of 65 mm and thickness
ranging for 5.5–6.3 mm on average and thin laminates of 400 μm on average, see Figure 2. The testing
procedure was defined following the next steps:

Figure 2. (Left) Thin Coating LEP used for UT coupon, (Right) Example of how a Time of Flight
measurement is used in a tested coupon.
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For the 2.5 and 5 MHz probes, four locations were marked on each coupon and the thickness was
measured at each of these marked locations. Marks/points (starting from #1) are made on various
regions on the sample coupon.

• Measurements are taken of different locations of the sample coupon using Mitutoyo Digital
Vernier caliper.

• Transducer probe is placed on the coupon on the points marked region.
• The number of transmitting elements and gain of the probe is adjusted to obtain a clear image of

the backwall echo with the corresponding front wall threshold.
• The crosshair line on the C scan is placed on the point of the coupon, by this the GUI shows the

A scan, B scan and C scan image of the coupon at that point.
• A line measurement tool is used to define a line from the front echo to the backwall on the point

on the sample. The measurement tool will display the depth, which here is the thickness of
the sample.

• The velocity is adjusted in the velocity menu to obtain the measured thickness on the line measure
tool, as per the Vernier caliper reading of that point/location.

• Thus, the speed of sound of that location on the coupon is recorded to obtain the impedance, with
known values of density using the Equation (1).

Figure 3 shows the impedance measurements using the 2.5 MHz probes. The impendence for
the coating LEP, primer and two different fillers were successfully measured in three different batches
with 6 measurements developed on each material. All materials measured showed a minor reduction
(5–10%) in the impedance values when measured with the 2.5 MHz probe frequency compared to the
5 MHz probe throughout all the materials tested. This would indicate a limited stiffness variation
in order to develop the erosion lifetime performance analysis with Springer modelling, assuming a
constant impedance value used as input data for each material and measured using the 5 MHz UT
probe for all cases. Figure 4 shows the average speed of sound measurements for the 5 MHz probe.

Figure 3. Average impedance measurements with the 2.5 and 5 MHz probes.
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Figure 4. Average Speed of Sound measurements with the 5 MHz probe.

3. Quantitative Analysis of Relative Acoustic Impedance Characterization Affecting Rain
Erosion Performance

The wear erosion lifetime prediction model used in this research was computationally evaluated
and implemented [15] to link material input data definition with its performance estimation. A complete
map of the liquid droplet, coating LEP and substrate (primer or filler) material impedances as input
parameters of the equations defined in the modelling is proposed in Figure 5.

Figure 5. Map of impedance values as input data for the wear erosion lifetime modelling, implemented
equations in [15]. Diagram of liquid, coating and substrate material impedances and operational
parameters affecting rain erosion performance.

In order to discuss assumptions and capabilities of the proposed modelling, different study cases
are followed throughout this section of the document.
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3.1. Case 1. Analysis of a LEP Multilayer System Rain Erosion Testing Based on ASTM G73-10

This analysis case considers the rig features used at University of Limerick based on ASTM
G73-10 [37] (Figure 6), with two set of coupons comparing the inclusion of a primer layer and another
one with the coating LEP application directly to the sanded filler (see [3] for details). The modelling
input data are defined in Table 1.

Figure 6. Reference multilayer configuration for rain erosion testing (RET) coupons (ASTM G73-10).
Liquid droplet and each material layer are defined by the input mechanical parameters of Table 1.

Table 1. Reference Input data used for the Lifetime Springer modelling in Case1. ASTM G73-10.

Material
Density
(gr/cm3)

Modulus E
(Pa)

Speed of
Sound C (m/s)

Layer Thickness (μm)
Impact Velocity

specimen Vcenter
(m/s)

Water droplet 1.00 2.19 × 109 1480.00 2000 (diameter) 135
Coating LEP_1 1.160 3.48 × 109 1733.00 800 135

Primer_1 1.260 5.12 × 109 2016.00 50 135
Filler_1 1.300 4.90 × 109 1941.00 1000 135

Laminate Substrate 1.930 1.10 × 1010 2392.00 1000 135
Aluminum support 2.700 7.1 × 1010 5127.00 3300 135

Figure 7 shows the simulated analysis and the testing results tested at the WARER U.Limerick [3,7],
comparing for two experimental batches of given top coating material prototypes, with primer and
without primer, only with a filler substrate layer, as depicted in Figure 6. On the left vertical axes, one
can observe the mass loss for the simulated results (in straight lines). On the right vertical axes, the
box and whispers plots (in red for wear and in blue for debonding) are shown for each batch of the
rain erosion testing (RET) tested coupons (developed over five coupons size batches). Horizontal axes
define the incubation time for the experimental and simulated coupons. It is observed that since the
primer and the filler have very similar impedance values, the expected lifetime is also comparable.
Moreover, it is assumed that both materials have semi-infinite thickness (in the case of the primer, only
a 50 μm thickness is applied in real). The experimental testing anticipates the wear damage showing
inaccuracy on the modelling results. The simulated outcomes include important uncertainties due
to fundamental properties values used as input data on the modelling. In this case, LEP top coating
material ultimate strength was estimated with numerical extrapolation at high strain rates from [18].
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Figure 7. Rain erosion testing lifetime analysis for experimental tested and simulated material LEP
configuration comparing coating LEP configuration with No-primer layer (application directly to the
filler), and coating LEP configuration with intermediate primer layer.

The modelling approach nevertheless is useful to quantify how the expected lifetime of a given
configuration correlates with a given fundamental property variation, as introduced in Figure 5.
In Figure 8 is shown the lifetime consequence of a LEP material properties variation of 20%, such are
the computation of 80% and 120% values of the reference system. In this analyzed case, the wave
speed of the coating, cc (in green dotted) and is compared with the Ultimate Strength of the coating,
σuc, (in blue line). One can realize that a variation on the ultimate strength of the material influences
more significantly on the expected LEP lifetime (and so its determination by appropriate testing, but
out of the scope of this work). An example of that issue is quantified for the speed of sound values that
the Springer modelling requires as input data used in this research.

Figure 8. Lifetime analysis for experimental tested and simulated material LEP prototype comparing
20% variation of LEP Speed of Sound and Ultimate Strength.
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Other analysis is due to the relative impedance values on the interfaces liquid-coating and
coating-substrate that affect directly the lifetime performance results, see Figure 9. The parameters ϕLc

and ϕsc defined in Equation (2) (see Figure 5 for complete reference of the used equations), allow one
to identify suitable combinations to optimize lifetime performance by means of acoustic matching.

Figure 9. Relative impedance values comparing lifetime prediction due to 20% variation (computing
80% and 120% values) of the Coating cc and Substrate cs Speed of Sound.

It is important to note that the stress history and the criteria to consider how the stress waves
affect fatigue damage is based on a simplified one-dimensional and pure elastic single impact analysis
as introduced in previous section. Figure 10 shows the considered stress evolution at coating LEP
surface due to consecutive reflections defined in Equations (3)–(5), introduced in [15] and depicted in
Figure 5, for our reference system comparing lifetime prediction due to 50% variation of the coating
speed of sound cc (computing 50% and 150% of the reference values). The key parameter in this case is
the averaged stress σo calculated for the estimated impact duration. It is defined as a constant value in
Equation (8), introduced in [15], and directly applies in lifetime prediction with the number of impacts
estimation during incubation time, Equation (15). It is observed that a reduction and an increment
of the reference value reduce, in both cases, the coating LEP lifetime estimation. This is due that the
coating speed of sound values affect not only the coating-substrate reflections, also the liquid-coating
interface and hence to the waterhammer pressure at surface.

Figure 11 shows the equivalent analysis when the variation is due to the filler-substrate speed
of sound cs. In this case, that a 50% reduction on its value may yield and improvement of lifetime
estimation and a 150% of its reference value consequences an abrupt loss on erosion lifetime. Figure 12
depicts the stress history with the same assumptions, but at the interface coating-substrate, calculating
σh with Equation (9), introduced in [15].

The analysis allows one to define appropriate criteria for evaluate the coating LEP capability
to reduce or enhance the surface and interface stress, depending on its relative coating-substrate
impedance (or speed of sound). Its optimization in terms of fatigue lifetime may be coupled with another
parameter analysis, as discussed later in this section. By using other numerical simulation techniques
and more complex material models, the accurateness on this estimation may be also improved.
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Figure 10. Surface stress evolution analysis for simulated material LEP prototype comparing 50%
variation of LEP coating Speed of Sound.

Figure 11. Surface stress evolution analysis for simulated material LEP prototype comparing 50%
variation of Filler Substrate Speed of Sound.
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Figure 12. Interface stress evolution analysis for simulated material LEP prototype comparing 50%
variation of Filler Substrate Speed of Sound.

3.2. Case 2. Relative Coating-Substrate Impedance Variability. Analysis of a LEP Multilayer System Rain
Erosion Testing Based on DNVGL-RP-0171

This second case ponders a batch of three coupons with a LEP configuration definition used
for testing based on DNVGL-RP-0171 [38], following the modelling introduced and implemented
in [15,39] and validated at PolyTech [40], as depicted in Figures 13–15.

Table 2. Reference Input data used for the Lifetime Springer modelling in Case2. DNVGL-RP-0171.

Material Modulus E (Pa)
Speed of Sound C

(m/s)
Layer Thickness

(μm)

Impact Velocity
Specimen Vcenter

(m/s)

Water droplet 2.19 × 109 1480.00 2000 (diameter) 121
LEP19_2.5 MHz 3.48 × 109 1733.00 500 121
LEP19_5 MHz 5.12 × 109 2016.00 500 121
Filler_5 MHz 6.53 × 109 2241.00 1000 121

Filler_2.5 MHz 5.9 × 109 2134.00 1000 121
Primer_5 MHz 5.84 × 109 2153.00 100 121

Primer_2.5 MHz 5.66 × 109 2119.00 100 121
FillerB_5 MHz 6.87 × 109 2098.00 1000 121

FillerB_2.5 MHz 6.47 × 109 2030.00 1000 121
Laminate Substrate 1.10 × 1010 2392.00 3400 121

The modelling input data is defined in Table 2 that correspond to the speed of sound testing
measurements developed for this research, in which the results are exposed in Figure 3. The objective
is to validate the Springer modelling capabilities in regard to frequency-dependent speed of
sound measurements.

Figure 16 shows RET testing data results tested at Polytech facilities. The two experimental
coupons are configured with an intermediate primer layer to avoid delamination and to observe wear
damage uniquely. It is observed the two RET test coupons (referenced S445-178R#2 and S445-178R#3)
showing wear erosion damage progression at intermediate time intervals.
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Figure 13. Reference multilayer configuration for RET coupons (DNVGL-RP-0171). Liquid droplet and
each material layer are defined by the input mechanical parameters of Table 2.

Figure 14. Application execution steps of RET testing coupons used in this work (DNVGL-RP-0171).

Figure 15. Rain erosion test facility and three specimens used at PolyTech Test and Validation A/S
according to DNV-GL-RP-0171 [38], for the analysis and experimental validation.

Figure 16. RET images of coupons S445-178R#2 and S445-178R#3 at intermediate testing time and
zoom details to appreciate erosion damage.
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The testing results data are also plotted in Figure 17 with a velocity-time representation (equivalent
to V-N number of impacts until failure), where the velocity varies for each coupon depending on the
location distance to the root of the rotating arm (see [38] for details on such a testing procedure) defining a
slope introduced in Equation (15), from [15]. Simulated performance results are observed when using
speed of sound measured values as input data at different UT frequencies of 5 or 2.5 MHz. It is detected
that both cases offer the same simulated results, noting no influence on such impedance measurement
deviations. The modelling results predict erosion damage earlier than RET testing. The accuracy of
this modelling is reasonable, since many other material and operational parameters uncertainties are
involved. Nevertheless, considering, in our problem, the unique variation due to the coating wave speed
Cc, see Figure 18, the incubation time estimation (number of impacts until failure) is obtained for each
simulated Cc value. It is observed the effect of increasing the coating speed of sound value Cc produces
an improvement in erosion performance for a range of Cc values. One may also observe that, for the
optimum value of Cc, a change in Cc becomes negative for this upper range values. Figure 19 shows the
equivalent analysis but for a substrate speed of sound value Cs variation range. Both results allow one to
define optimum values for material stiffness design reference. Figure 20 illustrates the limits of erosion
performance deviation when considering a 10% value of its original reference for the speed of sound
variation, in the coating and in the substrate. It is pointed out the stronger influence of the substrate speed
of sound, mainly due to its responsibility on transferring the energy of impact to the blade laminate (in
the Springer model, it is considered of semi-infinite thickness).

3.3. Case 3. Substrate Impedance Variability. Analysis of a LEP Multilayer System Rain Erosion Testing Based
on DNVGL-RP-0171

This third case ponders the effect of considering different substrate materials with the same coating
LEP. Figure 21 shows a blade section in reparation. It is observed different substrate material layers from
the structural laminate where a filler (putty) layer between the laminate and the coating is included.
Some manufacturers also include a primer layer under the coating and over the filler to improve
adhesion. Depending on each industrial solution, the inclusion of interfaces may accelerate erosion by
delaminating between layers. It is important in terms of repairing that the LEP configuration keeps
uniform through the thickness with the appropriate substrate. In this section, the possible different
erosion lifetime is analyzed due to the substrate layer impedance variation. Upon impingement, the
wave front in the top coating further advances towards the coating-substrate interface, where a portion
of the stress wave is reflected back into the coating with a different amplitude, depending on the
relative material acoustic impedances, and the remaining part is transmitted to the substrate layer and
hence to the blade.

In this worked case are used two batches of three coupons, each with two LEP configurations,
as depicted in Figure 13, for rain erosion testing based on DNVGL-RP-0171. The modelling input
data are defined in Table 2 that correspond to the speed of sound testing measurements developed for
this research and of which the results are exposed in Figures 3 and 4. Particularly, the simulation is
different to previous case 2, mainly because of the use of a different coating LEP; see Table 3 for its input
data. The analysis considers RET testing results obtained at ORE-Catapult [41] with a configuration
of coating LEP19B layer with a Primer layer (without filler layer) and then the laminate (glass fiver
reinforced epoxy). The second test ponders the RET testing results obtained at PolyTech [40] with
a configuration of coating LEP19B, primer layer and filler B as an intermediate substrate before the
fourth GFRE-laminate layer.

487



Coatings 2020, 10, 709

Figure 17. V-Time plot for simulated coating LEP prototype, comparing both the effect of the droplet
impact velocity variations through the RET coupon from the root to the tip, according to DNVGL-RP-0171
and the comparing the simulated results when UT measuring at 2.5 and 5 MHz.

Figure 18. Incubation time estimation due to a unique variation of the coating wave speed Cc.
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Figure 19. Incubation time estimation due to a unique variation of the substrate (primer or filler) wave
speed Cs.

Figure 20. V-Time plot for simulated LEP prototype, comparing both the effect of a 10% variation on
the coating and substrate speed of sound variations.

Figure 21. Blade section in reparation showing different areas with different substrates. Droplet impact
reflected/transmitted stress on interface due to relative impedance.
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Table 3. Reference Input data used for the Lifetime Springer modelling in Case 3. DNVGL-RP-0171.

Material Modulus E (Pa)
Speed of Sound C

(m/s)
Layer Thickness

(μm)

Impact Velocity
Specimen Vcenter

(m/s)

Water droplet 2.19 × 109 1480.00 2000 (diameter) 121
LEP19B_5 MHz 3.05 × 109 1628.00 500 121

LEP19B_25 MHz 2.98 × 109 1609.00 500 121

Figures 22 and 23 show the RET data testing results of the two LEP configurations, evaluating the
effect of using (primer-laminate) or (primer-fillerB-laminate) as substrate layers with LEP19B as the
coating layer. The damage points are depicted in a V-N plot with the number of droplets impacts, until
failure for each impact velocity.

We may calculate and fit the erosion strength Sec_ f it from the RET data as described in Equations (12)
and (15), see [15] and Figure 5, in terms of number of droplet impacts N, and observed velocity. The
erosion strength Sec_ f it of both LEP systems are derived using their RET data by matching the V f it and
nic_ f it values for a given RET data VN plot result as

Sec_ f it = σo

⎛⎜⎜⎜⎜⎝nic_ f it d2

8.9

⎞⎟⎟⎟⎟⎠
1

5,7

σo = V f it
ZL cos(θ)(ψsc + 1)(ZL
Zc

+ 1
)
(1−ψLcψsc)

(
1− (1− eγ)(ψLc + 1)ψsc

γ(ψsc + 1)

)
(2)

In our case, all the Sec_ f it values were obtained for all the damages (coupling V f it and nic_ f it) of
each tested batch. The mean value of each set of initial failure points defined Sec_set was obtained and
plotted in a V-N curve for a complete range of V and N values with Equation (15), as introduced in [15].
See experimental RET data results in Figure 22 with V-N curve in dotted lines for the primer-laminate
or primer-fillerB-laminate used as substrate layers for each configuration. Subsequent intermediate
progression of damages until breakthrough are also plotted as aforementioned. It is perceived that
Springer V-N curve slope obtained for the aforementioned fit erosion strength follows the experimental
data for the initial damages (incubation time).

It is observed in Figure 22 for comparison and modelling accuracy validation that Springer
modelling simulations from fundamental properties (filled lines) of wear damage are also plotted,
considering the three cases of LEP19B as the coating layer combined with fillerB or primer or laminate
as substrate layer (with labelling LEP19B-fillerB, LEP19B-primer, LEP19B-laminate, respectively).
This is due to the fact that the Springer model only accounts for a semi-infinite substrate layer, and does
not consider a multilayer configuration as depicted in Figure 13. Since our tested systems contemplate
all a thin primer layer and then a filler or a laminate layer, the three possibilities were simulated,
and the results are plotted for comparison. The modelling results predict erosion damage earlier
than RET testing for the laminate and the filler B cases. In the contrary, Primer simulation shows
that the RET damages occur later than predicted. These results are as expected and are justified that
in reality the RET coupons have a multilayer configuration, where the primer is the first substrate
layer, but only with a thickness of 500 μm. That means that the overall mechanical effect is a mixture
between the thicker substrates (laminate or fillerB) and the primer. A worse performance is expected
when considering a pure primer layer and better for pure laminate substrate or pure fillerB substrate
(in agreement with the modelling results shown).

Figures 24 and 25 show that the incubation time estimation (number of impacts until failure) is
obtained for each simulated Cc and Cs value respectively. It is observed again (as in the previous case 2)
the effect of increasing the coating speed of sound value Cc and the substrate speed of sound value Cs in
a variation range. Both results allow one to define the influence of the substrate material responsibility
on transferring the energy of impact to the blade laminate, when considering its reparation with
added filler or putty layers. We can determine that the modelling estimates well wear failure and it is
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validated with the erosion strength derivation from RET testing data, which in fact is assumed to be
necessary within performance estimation methodology for correct erosion analysis.

Figure 22. V-N plot for RET testing and simulated coating LEP prototype comparing both the effect
of the droplet impact velocity variations though the RET coupon from the root to the tip according
DNVGL-RP-0171 and comparing the simulated results when varying the substrate impedance.

Figure 23. RET images of coupons at intermediate testing time for the two configurations: left,
(LEP19B-Primer-Laminate) and right, (LEP19B-Primer-FillerB-Laminate).
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Figure 24. Incubation time (Number of impacts until failure) numerical estimation, due to a unique
variation of the coating wave speed Cc when considering the Primer as the substrate layer.

Figure 25. Incubation time (Number of impacts until failure) numerical estimation, due to a unique
variation of the substrate wave speed CS when considering the LEP19B material as the substrate layer.

4. Conclusions

In the current work, an investigation into various LEP configuration cases have been undertaken
and related with the rain erosion durability factors, in an effort to assess the response of changing
material and processing parameters involved on its blade application.

Diverse cases are developed throughout the research work, in order to ponder the key issues on
appropriate LEP system definition for its mechanical characterization, to avoid a lack of accuracy on
erosion performance analysis. Viscoelastic material models are originally considered within a coating
layer impedance characterization methodology, based on ultrasound measurements for the modelling
input data in rain erosion lifetime applications. The computational tool has been used to define erosion
performance analysis, depending on the relative acoustic impedance of liquid, coating and substrate
materials. The proposed numerical procedures to predict wear surface erosion have been used to
identify suitable LEP coating and composite substrate combinations. Experimental campaigns of LEP
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erosion performance at rain erosion accelerated rain erosion testing (RET) technique have been used as
the validation key metric to assess the response of each combined material configuration.
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