1,682 research outputs found

    Changing technology trends, transition dynamics and growth accounting

    Get PDF
    The technology growth trends that underlie recent productivity patterns are investigated in a framework that incorporates investment-specific technological progress. Structural-break tests and regime-shifting models reveal the presence of a downward shift in TFP growth in the late 1960s and an upward shift in investment-specific technology growth in the mid-1980s. In both cases, these breaks precede observed changes in labor productivity growth by several years. Simulations of technology growth shocks in a basic neoclassical model show that induced patterns of capital accumulation are consistent with the observed lags between technological advances and changes in productivity growth.Technology ; Productivity

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Harnessing Big Data for Characterizing Driving Volatility in Instantaneous Driving Decisions – Implications for Intelligent Transportation Systems

    Get PDF
    This dissertation focuses on combining connected vehicles data, naturalistic driving sensor and telematics data, and traditional transportation data to prospect opportunities for engineering smart and proactive transportation systems.The key idea behind the dissertation is to understand (and where possible reduce) “driving volatility” in instantaneous driving decisions and increase driving and locational stability. As a new measure of micro driving behaviors, the concept of “driving volatility” captures the extent of variations in driving, especially hard accelerations/braking, jerky maneuvers, and frequent switching between different driving regimes. The key motivation behind analyzing driving volatility is to help predict what drivers will do in the short term. Consequently, this dissertation develops a “volatility matrix” which takes a systems approach to operationalizing driving volatility at different levels, trip-based volatility, location-based volatility, event-based volatility, and driver-based volatility. At the trip-level, the dynamics of driving regimes extracted from Basic Safety Messages transmitted between connected vehicles are analyzed at a microscopic level, and where the interactions between microscopic driving decisions and ecosystem of mapped local traffic states in close proximity surrounding the host vehicle are characterized. Another new idea relates to extending driving volatility to specific network locations, termed as “location-based volatility”. A new methodology is proposed for combining emerging connected vehicles data with traditional transportation data (crash, traffic, road geometrics data, etc.) to identify roadway locations where traffic crashes are waiting to happen. The idea of event-based and driver-based volatility introduces the notion that volatility in longitudinal and lateral directions prior to involvement in safety critical events (crashes/near-crashes) can be a leading indicator of proactive safety.Overall, by studying driving volatility from different lenses, the dissertation contributes to the scientific analysis of real-world connected vehicles data, and to generate actionable knowledge relevant to the design of smart and intelligent transportation systems. The concept of driving volatility matrix provides a systems framework for characterizing the health of three fundamental elements of a transportation system: health of driver, environment, and the vehicle. The implications of the findings and potential applications to proactive network level screening, customized driver assist and control systems, driving performance monitoring are discussed in detail

    Cognitive networking for next generation of cellular communication systems

    Get PDF
    This thesis presents a comprehensive study of cognitive networking for cellular networks with contributions that enable them to be more dynamic, agile, and efficient. To achieve this, machine learning (ML) algorithms, a subset of artificial intelligence, are employed to bring such cognition to cellular networks. More specifically, three major branches of ML, namely supervised, unsupervised, and reinforcement learning (RL), are utilised for various purposes: unsupervised learning is used for data clustering, while supervised learning is employed for predictions on future behaviours of networks/users. RL, on the other hand, is utilised for optimisation purposes due to its inherent characteristics of adaptability and requiring minimal knowledge of the environment. Energy optimisation, capacity enhancement, and spectrum access are identified as primary design challenges for cellular networks given that they are envisioned to play crucial roles for 5G and beyond due to the increased demand in the number of connected devices as well as data rates. Each design challenge and its corresponding proposed solution are discussed thoroughly in separate chapters. Regarding energy optimisation, a user-side energy consumption is investigated by considering Internet of things (IoT) networks. An RL based intelligent model, which jointly optimises the wireless connection type and data processing entity, is proposed. In particular, a Q-learning algorithm is developed, through which the energy consumption of an IoT device is minimised while keeping the requirement of the applications--in terms of response time and security--satisfied. The proposed methodology manages to result in 0% normalised joint cost--where all the considered metrics are combined--while the benchmarks performed 54.84% on average. Next, the energy consumption of radio access networks (RANs) is targeted, and a traffic-aware cell switching algorithm is designed to reduce the energy consumption of a RAN without compromising on the user quality-of-service (QoS). The proposed technique employs a SARSA algorithm with value function approximation, since the conventional RL methods struggle with solving problems with huge state spaces. The results reveal that up to 52% gain on the total energy consumption is achieved with the proposed technique, and the gain is observed to reduce when the scenario becomes more realistic. On the other hand, capacity enhancement is studied from two different perspectives, namely mobility management and unmanned aerial vehicle (UAV) assistance. Towards that end, a predictive handover (HO) mechanism is designed for mobility management in cellular networks by identifying two major issues of Markov chains based HO predictions. First, revisits--which are defined as a situation whereby a user visits the same cell more than once within the same day--are diagnosed as causing similar transition probabilities, which in turn increases the likelihood of making incorrect predictions. This problem is addressed with a structural change; i.e., rather than storing 2-D transition matrix, it is proposed to store 3-D one that also includes HO orders. The obtained results show that 3-D transition matrix is capable of reducing the HO signalling cost by up to 25.37%, which is observed to drop with increasing randomness level in the data set. Second, making a HO prediction with insufficient criteria is identified as another issue with the conventional Markov chains based predictors. Thus, a prediction confidence level is derived, such that there should be a lower bound to perform HO predictions, which are not always advantageous owing to the HO signalling cost incurred from incorrect predictions. The outcomes of the simulations confirm that the derived confidence level mechanism helps in improving the prediction accuracy by up to 8.23%. Furthermore, still considering capacity enhancement, a UAV assisted cellular networking is considered, and an unsupervised learning-based UAV positioning algorithm is presented. A comprehensive analysis is conducted on the impacts of the overlapping footprints of multiple UAVs, which are controlled by their altitudes. The developed k-means clustering based UAV positioning approach is shown to reduce the number of users in outage by up to 80.47% when compared to the benchmark symmetric deployment. Lastly, a QoS-aware dynamic spectrum access approach is developed in order to tackle challenges related to spectrum access, wherein all the aforementioned types of ML methods are employed. More specifically, by leveraging future traffic load predictions of radio access technologies (RATs) and Q-learning algorithm, a novel proactive spectrum sensing technique is introduced. As such, two different sensing strategies are developed; the first one focuses solely on sensing latency reduction, while the second one jointly optimises sensing latency and user requirements. In particular, the proposed Q-learning algorithm takes the future load predictions of the RATs and the requirements of secondary users--in terms of mobility and bandwidth--as inputs and directs the users to the spectrum of the optimum RAT to perform sensing. The strategy to be employed can be selected based on the needs of the applications, such that if the latency is the only concern, the first strategy should be selected due to the fact that the second strategy is computationally more demanding. However, by employing the second strategy, sensing latency is reduced while satisfying other user requirements. The simulation results demonstrate that, compared to random sensing, the first strategy decays the sensing latency by 85.25%, while the second strategy enhances the full-satisfaction rate, where both mobility and bandwidth requirements of the user are simultaneously satisfied, by 95.7%. Therefore, as it can be observed, three key design challenges of the next generation of cellular networks are identified and addressed via the concept of cognitive networking, providing a utilitarian tool for mobile network operators to plug into their systems. The proposed solutions can be generalised to various network scenarios owing to the sophisticated ML implementations, which renders the solutions both practical and sustainable

    Conflict between Genetic and Phenotypic Differentiation: The Evolutionary History of a ‘Lost and Rediscovered’ Shorebird

    Get PDF
    Understanding and resolving conflicts between phenotypic and genetic differentiation is central to evolutionary research. While phenotypically monomorphic species may exhibit deep genetic divergences, some morphologically distinct taxa lack notable genetic differentiation. Here we conduct a molecular investigation of an enigmatic shorebird with a convoluted taxonomic history, the White-faced Plover (Charadrius alexandrinus dealbatus), widely regarded as a subspecies of the Kentish Plover (C. alexandrinus). Described as distinct in 1863, its name was consistently misapplied in subsequent decades until taxonomic clarification ensued in 2008. Using a recently proposed test of species delimitation, we reconfirm the phenotypic distinctness of dealbatus. We then compare three mitochondrial and seven nuclear DNA markers among 278 samples of dealbatus and alexandrinus from across their breeding range and four other closely related plovers. We fail to find any population genetic differentiation between dealbatus and alexandrinus, whereas the other species are deeply diverged at the study loci. Kentish Plovers join a small but growing list of species for which low levels of genetic differentiation are accompanied by the presence of strong phenotypic divergence, suggesting that diagnostic phenotypic characters may be encoded by few genes that are difficult to detect. Alternatively, gene expression differences may be crucial in producing different phenotypes whereas neutral differentiation may be lagging behind

    Will the US Economy Recover in 2010? A Minimal Spanning Tree Study

    Full text link
    We calculated the cross correlations between the half-hourly times series of the ten Dow Jones US economic sectors over the period February 2000 to August 2008, the two-year intervals 2002--2003, 2004--2005, 2008--2009, and also over 11 segments within the present financial crisis, to construct minimal spanning trees (MSTs) of the US economy at the sector level. In all MSTs, a core-fringe structure is found, with consumer goods, consumer services, and the industrials consistently making up the core, and basic materials, oil and gas, healthcare, telecommunications, and utilities residing predominantly on the fringe. More importantly, we find that the MSTs can be classified into two distinct, statistically robust, topologies: (i) star-like, with the industrials at the center, associated with low-volatility economic growth; and (ii) chain-like, associated with high-volatility economic crisis. Finally, we present statistical evidence, based on the emergence of a star-like MST in Sep 2009, and the MST staying robustly star-like throughout the Greek Debt Crisis, that the US economy is on track to a recovery.Comment: elsarticle class, includes amsmath.sty, graphicx.sty and url.sty. 68 pages, 16 figures, 8 tables. Abridged version of the manuscript presented at the Econophysics Colloquim 2010, incorporating reviewer comment

    Adapt-to-learn policy transfer in reinforcement learning and deep model reference adaptive control

    Get PDF
    Adaptation and Learning from exploration have been a key in biological learning; Humans and animals do not learn every task in isolation; rather are able to quickly adapt the learned behaviors between similar tasks and learn new skills when presented with new situations. Inspired by this, adaptation has been an important direction of research in control as Adaptive Controllers. However, the Adaptive Controllers like Model Reference Adaptive Controller are mainly model-based controllers and do not rely on exploration instead make informed decisions exploiting the model's structure. Therefore such controllers are characterized by high sample efficiency and stability conditions and, therefore, suitable for safety-critical systems. On the other hand, we have Learning-based optimal control algorithms like Reinforcement Learning. Reinforcement learning is a trial and error method, where an agent explores the environment by taking random action and maximizing the likelihood of those particular actions that result in a higher return. However, these exploration techniques are expected to fail many times before exploring optimal policy. Therefore, they are highly sample-expensive and lack stability guarantees and hence not suitable for safety-critical systems. This thesis presents control algorithms for robotics where the best of both worlds that is ``Adaptation'' and ``Learning from exploration'' are brought together to propose new algorithms that can perform better than their conventional counterparts. In this effort, we first present an Adapt to learn policy transfer Algorithm, where we use control theoretical ideas of adaptation to transfer policy between two related but different tasks using the policy gradient method of reinforcement learning. Efficient and robust policy transfer remains a key challenge in reinforcement learning. Policy transfer through warm initialization, imitation, or interacting over a large set of agents with randomized instances, have been commonly applied to solve a variety of Reinforcement Learning (RL) tasks. However, this is far from how behavior transfer happens in the biological world: Here, we seek to answer the question: Will learning to combine adaptation reward with environmental reward lead to a more efficient transfer of policies between domains? We introduce a principled mechanism that can ``Adapt-to-Learn", which is adapt the source policy to learn to solve a target task with significant transition differences and uncertainties. Through theory and experiments, we show that our method leads to a significantly reduced sample complexity of transferring the policies between the tasks. In the second part of this thesis, information-enabled learning-based adaptive controllers like ``Gaussian Process adaptive controller using Model Reference Generative Network'' (GP-MRGeN), ``Deep Model Reference Adaptive Controller'' (DMRAC) are presented. Model reference adaptive control (MRAC) is a widely studied adaptive control methodology that aims to ensure that a nonlinear plant with significant model uncertainty behaves like a chosen reference model. MRAC methods try to adapt the system to changes by representing the system uncertainties as weighted combinations of known nonlinear functions and using weight update law that ensures that network weights are moved in the direction of minimizing the instantaneous tracking error. However, most MRAC adaptive controllers use a shallow network and only the instantaneous data for adaptation, restricting their representation capability and limiting their performance under fast-changing uncertainties and faults in the system. In this thesis, we propose a Gaussian process based adaptive controller called GP-MRGeN. We present a new approach to the online supervised training of GP models using a new architecture termed as Model Reference Generative Network (MRGeN). Our architecture is very loosely inspired by the recent success of generative neural network models. Nevertheless, our contributions ensure that the inclusion of such a model in closed-loop control does not affect the stability properties. The GP-MRGeN controller, through using a generative network, is capable of achieving higher adaptation rates without losing robustness properties of the controller, hence suitable for mitigating faults in fast-evolving systems. Further, in this thesis, we present a new neuroadaptive architecture: Deep Neural Network-based Model Reference Adaptive Control. This architecture utilizes deep neural network representations for modeling significant nonlinearities while marrying it with the boundedness guarantees that characterize MRAC based controllers. We demonstrate through simulations and analysis that DMRAC can subsume previously studied learning-based MRAC methods, such as concurrent learning and GP-MRAC. This makes DMRAC a highly powerful architecture for high-performance control of nonlinear systems with long-term learning properties. Theoretical proofs of the controller generalizing capability over unseen data points and boundedness properties of the tracking error are also presented. Experiments with the quadrotor vehicle demonstrate the controller performance in achieving reference model tracking in the presence of significant matched uncertainties. A software+communication architecture is designed to ensure online real-time inference of the deep network on a high-bandwidth computation-limited platform to achieve these results. These results demonstrate the efficacy of deep networks for high bandwidth closed-loop attitude control of unstable and nonlinear robots operating in adverse situations. We expect that this work will benefit other closed-loop deep-learning control architectures for robotics
    corecore