
c© 2020 Girish Joshi

ADAPT-TO-LEARN POLICY TRANSFER IN REINFORCEMENT
LEARNING AND DEEP MODEL REFERENCE ADAPTIVE CONTROL

BY

GIRISH JOSHI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2020

Urbana, Illinois

Doctoral Committee:

Professor Girish Chowdhary, Advisor
Professor Cedric Langbort, Chair
Professor Naira Hovakimyan
Professor Rayadurgam Srikant
Professor Matthew West

ABSTRACT

Adaptation and Learning from exploration have been a key in biological

learning; Humans and animals do not learn every task in isolation; rather

are able to quickly adapt the learned behaviors between similar tasks and

learn new skills when presented with new situations. Inspired by this, adap-

tation has been an important direction of research in control as Adaptive

Controllers. However, the Adaptive Controllers like Model Reference Adap-

tive Controller are mainly model-based controllers and do not rely on ex-

ploration instead make informed decisions exploiting the model’s structure.

Therefore such controllers are characterized by high sample efficiency and

stability conditions and, therefore, suitable for safety-critical systems. On

the other hand, we have Learning-based optimal control algorithms like Re-

inforcement Learning. Reinforcement learning is a trial and error method,

where an agent explores the environment by taking random action and maxi-

mizing the likelihood of those particular actions that result in a higher return.

However, these exploration techniques are expected to fail many times before

exploring optimal policy. Therefore, they are highly sample-expensive and

lack stability guarantees and hence not suitable for safety-critical systems.

This thesis presents control algorithms for robotics where the best of both

worlds that is “Adaptation” and “Learning from exploration” are brought

together to propose new algorithms that can perform better than their con-

ventional counterparts.

In this effort, we first present an Adapt to learn policy transfer Algorithm,

where we use control theoretical ideas of adaptation to transfer policy be-

tween two related but different tasks using the policy gradient method of

reinforcement learning. Efficient and robust policy transfer remains a key

challenge in reinforcement learning. Policy transfer through warm initial-

ization, imitation, or interacting over a large set of agents with randomized

instances, have been commonly applied to solve a variety of Reinforcement

ii

Learning (RL) tasks. However, this is far from how behavior transfer hap-

pens in the biological world: Here, we seek to answer the question: Will

learning to combine adaptation reward with environmental reward lead to

a more efficient transfer of policies between domains? We introduce a prin-

cipled mechanism that can “Adapt-to-Learn”, which is adapt the source

policy to learn to solve a target task with significant transition differences and

uncertainties. Through theory and experiments, we show that our method

leads to a significantly reduced sample complexity of transferring the policies

between the tasks.

In the second part of this thesis, information-enabled learning-based adap-

tive controllers like “Gaussian Process adaptive controller using Model

Reference Generative Network” (GP-MRGeN), “Deep Model Refer-

ence Adaptive Controller” (DMRAC) are presented. Model reference

adaptive control (MRAC) is a widely studied adaptive control methodology

that aims to ensure that a nonlinear plant with significant model uncertainty

behaves like a chosen reference model. MRAC methods try to adapt the

system to changes by representing the system uncertainties as weighted com-

binations of known nonlinear functions and using weight update law that

ensures that network weights are moved in the direction of minimizing the

instantaneous tracking error. However, most MRAC adaptive controllers

use a shallow network and only the instantaneous data for adaptation, re-

stricting their representation capability and limiting their performance under

fast-changing uncertainties and faults in the system.

In this thesis, we propose a Gaussian process based adaptive controller

called GP-MRGeN. We present a new approach to the online supervised

training of GP models using a new architecture termed as Model Reference

Generative Network (MRGeN). Our architecture is very loosely inspired by

the recent success of generative neural network models. Nevertheless, our

contributions ensure that the inclusion of such a model in closed-loop control

does not affect the stability properties. The GP-MRGeN controller, through

using a generative network, is capable of achieving higher adaptation rates

without losing robustness properties of the controller, hence suitable for mit-

igating faults in fast-evolving systems.

Further, in this thesis, we present a new neuroadaptive architecture: Deep

Neural Network-based Model Reference Adaptive Control. This architecture

utilizes deep neural network representations for modeling significant nonlin-

iii

earities while marrying it with the boundedness guarantees that characterize

MRAC based controllers. We demonstrate through simulations and anal-

ysis that DMRAC can subsume previously studied learning-based MRAC

methods, such as concurrent learning and GP-MRAC. This makes DM-

RAC a highly powerful architecture for high-performance control of non-

linear systems with long-term learning properties. Theoretical proofs of the

controller generalizing capability over unseen data points and boundedness

properties of the tracking error are also presented. Experiments with the

quadrotor vehicle demonstrate the controller performance in achieving ref-

erence model tracking in the presence of significant matched uncertainties.

A software+communication architecture is designed to ensure online real-

time inference of the deep network on a high-bandwidth computation-limited

platform to achieve these results. These results demonstrate the efficacy of

deep networks for high bandwidth closed-loop attitude control of unstable

and nonlinear robots operating in adverse situations. We expect that this

work will benefit other closed-loop deep-learning control architectures for

robotics.

iv

To my wife “Sushma”, for her love and support.

v

ACKNOWLEDGMENTS

It is my pleasure to take this opportunity to thank some of the people who

directly indirectly helped and supported me through this process. I owe

my deepest gratitude to my advisor, mentor Dr. Girish Chowdhary, for his

unfailing support and guidance through my time at the University of Illinois

Urbana-Champaign. His leadership skills and ability to find an innovative

approach to problem-solving and the ability to look at the big picture and

motivate necessary fundamental research will always inspire me. I do not

have a dramatic story to share of a tumultuous ride of a Ph.D. student, but

rather a happy one. Thanks to my advisor, who has always advised me

well and supported financially throughout. Dr. Chowdhary’s very open and

friendly approach to research discussions, sometime in a very casual setting

like at a relaxing game of badminton always helped me innovate and think

out the box. While earning my degree, I have made a good friend for life,

my advisor!

I should also thank a few people here who had a profound influence on

me and my work through personal discussions or the knowledge imparted in

their class. I want to thank Dr. Martin Hagan for his incredible lectures in

Neural Network and Estimation Theory. He is one of the best teachers I ever

had the privilege of listening to. I want to thank Dr. R Srikant, for teaching

us to enjoy the elegance of the theory of Reinforcement Learning and Markov

Decision Processes. For the love of being in their class, I took the Machine

Learning course both under Dr. Bruce Hajek and Dr. Maxim Raginksky.

My life research goal will be to, at the least, inculcate a fraction of your

passions towards research. I thank Dr. Naira Hovakimyan for teaching me

the mathematical intricacies of Adaptive control; it was a dream come true

experience attending your course. I would like to thank my committee chair,

Dr. Cedric Langbort, and the committee members, Dr. Srikant Raydurgam,

Dr. Naira Hovakimyan, and Dr. Mathew West, your reviews and suggestions

vi

on my dissertation helped me refine my work.

My time here at the University of Illinois Urbana-Champaign and Ok-

lahoma State University has been made pleasurable by all my friends and

colleagues. I am grateful to my current and past lab-mates and friends in-

cluding Denis Ospichev, Allan Axelrod, Aaron Havens, Anwesa Choudhuri,

Anay Patnaik, Jasvir Virdi, Harshal Maske, Sri Theja Vuppala, Nolan Re-

ploge, Joshua Whitman, Moitreya Chaterjee, M Ugur Ackal, Hunter Young,

Aseem Borkar, Prabhat Mishra, Maximillian Muhlegg. You all have been

like a family away from home.

I wish to thank all members of administration staff at the Department

of Aerospace Engineering, Coordinated Science Lab, College of Engineering,

and ISSS who work behind the curtains for the success of a graduate student.

A special thanks to Linda Stimson of CSL and Staci L McDannel of Aerospace

Engineering.

This journey and achievement would not have been possible without sup-

port and encouragement from my loving wife ”Sushma”. I could not have

mustered enough courage leaving a stable job in the Indian Space Research

Organization and the family behind, and travelling to unknown land perus-

ing Ph.D. Its Sushma’s constant support and greater sacrifice that I could

follow my heart. My daughter Aarohi’s infectious smile helped me persist

through lonely times. Lastly, I wish to thank my parents, in-laws; Joshi’s

and Koulgi’s and my sisters Supriya2, you all have been immense source of

comfort, without which I would be lost.

vii

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF SYMBOLS . xv

CHAPTER 1 INTRODUCTION . 1
1.1 Adaptation and Learning . 1
1.2 Reinforcement Learning . 2
1.3 Transfer Learning . 5
1.4 Adaptive Control . 9
1.5 Contribution of This Work . 12
1.6 Outline of Thesis . 17

CHAPTER 2 REINFORCEMENT LEARNING 19
2.1 Introduction . 19
2.2 RL in the Markov Decision Process Framework 19
2.3 Connections between RL and Adaptive Control 26
2.4 Looking forward: Transfer learning and behavioral adaptation 27

CHAPTER 3 MODEL BASED POLICY TRANSFER USING TAR-
GET APPRENTICE . 28
3.1 Introduction . 28
3.2 Transfer Learning with Target Apprentice (TA-TL) 29
3.3 Markov Decision Process . 30
3.4 Learning Source Policy . 32
3.5 Inter task Mapping through Manifold Alignment 33
3.6 Transfer learning through policy adaptation 33
3.7 Theoretical bounds on sample complexity 37
3.8 Target Task Apprentice Learning 41
3.9 Experiments & Results . 42
3.10 Same-Domain Transfer . 43
3.11 Cross Domain Transfer . 46

viii

CHAPTER 4 ADAPT TO LEARN: POLICY TRANSFER 51
4.1 Introduction . 51
4.2 Preliminaries . 52
4.3 Adapt-to-Learn: Policy Transfer in RL 53
4.4 Optimization of Target Policy 59
4.5 Learning the Mixing Coefficient 63
4.6 Theoretical bounds on sample complexity 65
4.7 Policy transfer in simulated robotic locomotion tasks 70

CHAPTER 5 MODEL REFERENCE ADAPTIVE CONTROL . . . 75
5.1 Introduction . 75
5.2 Preliminaries . 76
5.3 NN model for Uncertainty Estimation 79
5.4 Universal Approximation Theorem 82
5.5 Online Parameter Estimation law 83
5.6 Persistency of Excitation . 84
5.7 Stability and Boundedness . 86
5.8 Evaluation of MRAC through simulation Using Wing-Rock

System . 90

CHAPTER 6 GAUSSIAN PROCESS MODEL REFERENCE ADAP-
TIVE CONTROL . 96
6.1 Introduction . 96
6.2 Adaptive Control using GP-MRGeN 98
6.3 Analysis of Stability . 101
6.4 Stability and Boundedness results for GP-MRGeN 103
6.5 Simulations . 107

CHAPTER 7 DEEP MODEL REFERENCE ADAPTIVE CONTROL112
7.1 System Description . 112
7.2 Adaptive Control using Deep Nets (DMRAC) 118
7.3 Adaptive Control Using Bayesian Deep Neural Networks . . . 122
7.4 DMRAC weight update using Bayesian Deep Features 127
7.5 Stability Analysis and Sample Complexity for Stochastic-

DMRAC . 128
7.6 Persistency of Excitation for S-DMRAC 134
7.7 Evaluation of DMRAC and S-DMRAC Controller 141

CHAPTER 8 CONCLUSION & SUGGESTED FUTURE RESEARCH158
8.1 Policy Transfer using Adaptation 158
8.2 Learning over data in Adaptive Control 159
8.3 Feature Analysis and Selection using Deep Learning Ap-

proach in Adaptive Control 161

ix

APPENDIX A . 168
A.1 Simulation Lemma [1] . 168
A.2 Manifold Alignment . 169

REFERENCES . 171

x

LIST OF FIGURES

1.1 Reinforcement Learning . 4
1.2 Taxonomy of Transfer Learning Algorithms 8

2.1 Taxonomy of Reinforcement Learning Algorithms 22

3.1 Non windy to Windy grid World Transfer:(a) & (b) Agent
navigating through grid world in source and target domain
(c) Average Rewards & (d) Training length, Comparing
quality of transfer for TA-TL and UMA-TL through con-
vergence rate of Average Reward and Training Length 44

3.2 Policy Transfer from Inverted Pendulum to Non-stationary
Inverted pendulum: (a) Average Rewards and (b) Training
length, TA-TL(ATL ours), UMA-TL(Jumpstart-RL) and
Stand-alone RL . 45

3.3 (a) Cart-Pole and Bicycle Domain (b)Average Rewards for
TA-TL (ours), UMA-TL (jumpstart) and RL 46

3.4 Policy Transfer from Cart-Pole to Bike Balancing: (a) To-
tal simulation time (in seconds) the agent was able to bal-
ance the bike in training (b) Total time required to solve
the task for TA-TL (ours), UMA-TL (jumpstart) and RL . . . 47

3.5 Policy Transfer from Mountain Car to Inverted Pendulum:
(a) Average Rewards and (b) Training length 48

3.6 Negative Transfer Inverted Pendulum: (a) Average Reward
and (b) Training length . 49

4.1 Target Trajectory under policy πθ and local trajectory de-
viation under source optimal policy π∗ and source transi-
tion pS . 55

4.2 Intrinsic KL divergence Objective: (a) One step Transition
starting from state s0 under policy πθ under target Transi-
tion model (b) One step simulated transition from state s0

under source optimal policy π∗ and source transition model
(c)Likelihood of landing in state s

′
1 starting from state s0

using policy πθ and target transitions 55

xi

4.3 The Reward Mixing Co-efficient β for HalfCheetah, Hop-
per and Walker2d environment learnt over trajectories col-
lected interacting with envs. 65

4.4 2D robot models used for locomotion experiments. From
left to right clockwise: Walker2d, Half-Cheetah, Hopper.
These tasks are challenging to control as they are under-
actuated and have contact discontinuities. 70

4.5 Learning curves for locomotion tasks, averaged across three
runs of each algorithm: Adapt-to-Learn(Ours), Randomly
Initialized RL(PPO), Warm-Started PPO using source pol-
icy parameters and Best case imitation learning using Source
policy directly on Target Task without any adaptation. 73

4.6 Trajectory KL divergence Total Intrinsic Return
(
−
∑
eζt
)

averaged across three runs. 74

5.1 Model Reference Adaptive Control Flow Diagram 76
5.2 Structured uncertainty: position and velocity history un-

der MRAC controller . 92
5.3 Structured uncertainty: Uncertainty estimation and Net-

work weights history . 93
5.4 Unstructured uncertainty:Linear in state adaptive element-

Position and Velocity history under MRAC controller 94
5.5 Unstructured uncertainty:Linear in state adaptive element-

Uncertainty estimation and Network weights history 94
5.6 Unstructured uncertainty: RBF-NN-Position and Velocity

history under MRAC controller 95
5.7 Unstructured uncertainty:Linear in state adaptive element-

Uncertainty estimation and Network weights history 95

6.1 GP-MRGeN vs High Gain-MRAC Controller Evaluation
on aircraft Wing-Rock dynamics model-Closed-loop sys-
tem response in roll angle θ(t) 109

6.2 GP-MRGeN vs High Gain-MRAC Controller Evaluation
on aircraft Wing-Rock dynamics model-Closed-loop sys-
tem response in roll rate p(t) 109

6.3 GP-MRGeN vs High Gain-MRAC Controller Evaluation
on aircraft Wing-Rock dynamics model Tracking Error in
θ(t) and p(t) . 110

6.4 Phase plot with RBF dynamic centers selected for MRAC
Controller . 110

6.5 GP-MRGeN vs High Gain-MRAC-Total Control input u(t) . . 111
6.6 GP-MRGeN vs High Gain-MRAC-Uncertainty approxima-

tion. The blobs indicate the time step at which generative
model is updated and queried for GP training 111

xii

7.1 DMRAC training and controller details 119
7.2 DMRAC Update Scheme for Outer-layer weights and Inner-

layer Deep feature . 129
7.3 output of Bayesian Neural Network: Shaded area is Epis-

temic uncertainty and Training points (black dots) are cho-
sen according to kernel independence test to ensure non
zero Aleatoric uncertainty . 138

7.4 Wind-Rock Roll and Roll-rate for step command following
using S-DMRAC controller . 142

7.5 Uncertainty Estimate using S-DMRAC Controller 143
7.6 Outer-Layer S-DMRAC weights history for Wing-Rock control 144
7.7 DMRAC Controller Evaluation on 6DOF Quadrotor dy-

namics model, DMRAC Controller on Trajectory tracking
control with learning and as frozen feed-forward network
(Circular Trajectory) . 145

7.8 Closed-loop system response in roll rate φ(t) and Pitch θ(t) . . 146
7.9 Position Tracking performance of DMRAC controller with

learning and in learning retention test over Circular Tra-
jectory (b)DNN Training . 146

7.10 (a)Position Tracking performance of DMRAC controller
with learning and in learning retention test over Circular
Trajectory (b)DNN Training, Test and Validation perfor-
mance . 147

7.11 Our On-board - Off-board Implementation of Deep Model
reference Adaptive controller for Quadrotor control. The
system ensures that the outer layer weights can be up-
dated onboard in a manner to ensure Lyapunov stability
(at 200Hz), while the inner layer weights are updated asyn-
chronously off-board to improve learning performance. 148

7.12 The flight platform on which DMRAC is implemented 149
7.13 Tracking performance on a simple figure of 8 trajectory 149
7.14 Tracking of reference model’s roll and pitch signal for a

simple figure of 8 trajectory 150
7.15 Tracking performance under low wind bias 150
7.16 Tracking of reference model’s roll and pitch signal under

low wind bias . 151
7.17 Tracking performance under medium wind bias 151
7.18 Tracking of reference model’s roll and pitch signal under

medium wind bias . 151
7.19 Tracking performance under high wind bias 152
7.20 Tracking of reference model’s roll and pitch signal under

high wind bias . 152
7.21 Tracking performance under high wind bias with cloth at-

tached underneath the quadcopter 152

xiii

7.22 Tracking of reference model’s roll and pitch signal under
high wind bias . 153

7.23 Tracking performance for a circular trajectory under high
wind bias with cloth attached on drone 153

7.24 Tracking of reference model’s roll and pitch under high
wind bias with cloth attached on drone 153

7.25 Linear and adaptive control torque for each algorithm 154
7.26 MRAC Trajectory tracking performance in X-Y-Z under

system fault for eight flight test. Out of eight flights we ob-
serve four times the quadrotor either crashed or produced
bad tracking (Red dot: Time at which Fault occurred) 155

7.27 DMRAC Trajectory tracking performance in X-Y-Z under
system fault for Eight flight test (Red dot: Time at which
Fault occurred) . 156

7.28 Tracking performance on a figure of 8 trajectory 156
7.29 Tracking of reference model’s roll and pitch for a figure of

8 reference trajectory . 157
7.30 Controller performance for clockwise tracking of figure of

8 trajectory under wind bias 157
7.31 Tracking of reference model’s roll and pitch for clockwise

tracking of figure of 8 under wind bias 157

8.1 MRAC vs DMRAC in Training and Test Phase. For 1st
100sec the DMRAC features are trained, further the DM-
RAC is used as frozen network with no active online learning . 164

8.2 DMRAC controller uncertainty estimate while in Training
and Test phase . 165

8.3 DMRAC Features visualization using t-SNE. 165
8.4 DMRAC features before training and after training to han-

dle Low, Medium, High Wind Bias and Rotor Tip breaking
case . 166

8.5 PCA for DMRAC features trained to handle Low, Medium,
High Wind Bias and Rotor Tip breaking case 167

A.1 Manifold alignment between two state spaces defined in
different feature spaces . 170

xiv

LIST OF SYMBOLS

Policy Transfer in Reinforcement Learning

M Markov decision process

S State Space

A Action Space

Ā Normalized Action Space

P Transition model

H Horizon length

R Reward Model

s, sk ∈ S Agent state at step at time k

s′, sk+1 ∈ S Transitioned next state

ak ∈ A Sampled action

p(sk+1|sk, ak) ∈ P Transition model

rk(sk, ak) ∈ R Reward for state sk and action ak

ρ0 Distribution on Initial states

γ Discount factor

π Agent Policy

πθ Parameterized policy

π∗ Optimal policy

πad Adaptive policy

K simulation time step

T Bellman Update Operator

xv

V π State value function under policy π

Qπ State-Action value function under policy π

Aπ Advantage function under policy π

bk Baseline correction term

V ∗ Optimal State value function

Q∗ Optimal State-Action value function

δ Temporal Difference error (TD-error)

MS Source MDP

MT Target MDP

P̂T Approximate/Apprentice target Model

Ŵ , B̂ Approximate/Apprentice target Model Network parameters

χST Manifold Alignment

ŝSk , ŝ
T
k ∈ S Projected states in source and target domain

D Replay Buffer

θ Policy network parameters

θ− Policy network parameters before update

α Learning rate

ηπ(θ), J(θ) Total return under policy π

ηKL,β(πθ, π
∗) Intrinsic objective

η̄KL,β(πθ, π
∗) Lower bound on Intrinsic objective

β Reward Mixing co-efficient

ζt Intrinsic reward

r′t Total reward

τπθ Trajectory under policy πθ

dπθ State visitation distribution under policy πθ

∇θ Gradient operator

ζτ Placeholder for total return

xvi

Model Reference Adaptive control

A System Dynamics

B Control Matrix

Arm Reference system Dynamics

Brm Reference system control matrix

t time

x(t) System states

xrm(t) Reference system states

e(t) Tracking error

(̇) Derivative operator

u(t) Admissible control vector

upd(t) Feedback controller

ucrm(t) Feed-forward controller

uad(t) Adaptive controller

kx, kr Feedback and Feed-forward gain

f(x) Nonlinear uncertainty term

L Lipschitz constant

Dx Compact domain of states

W ∗ Ideal adaptive network parameters

W Approximate adaptive network parameters

W̃ Parameter error

Wb Parameter upper bound

σ(x) Structured uncertainty feature vector

Φ(x) Unstructured uncertainty feature vector

φi(x) Elements of unstructured uncertainty feature vector

ci, σi Latent hyper-parameter of RBF kernel

xvii

ε̃(x) Network appromation error

λmin, λmax Min and Max Eigen Values

V (t, x) Lyapunov function

Γ Learning rate

Q,P Symmetric positive definite matrix

GP Gaussian Process

m(.), k(., .) Mean and Co-Variance kernel vector

H Hilbert Space

Gσ Linear operator associated with kernel k(z, z′)

ζ zero mean Weiner noise

σ Switching signal

BV Feature vector buffer

fθ(x) Deep neural Network estimate of the function f(x)

θ D-MRAC network parameters

Φσ
n(x) = fθ\θn Deep feature vector

ZM = {xi, yi}Mi=1 D-MRAC training data set

mA(ε, δ) Sample complexity

N Number of D-MRAC network parameters

xviii

CHAPTER 1

INTRODUCTION

1.1 Adaptation and Learning

Reinforcement learning and Adaptive control are two main approaches in

learning control for an agent solving a task. Traditionally the control prob-

lems can be divided into two main classes.

• Regulation and Tracking: The objective is to follow a reference

trajectory.

• Optimal Control: The objective is to minimize a cost function, which

can be functional of system parameters and not necessarily of the ref-

erence signal.

The control algorithms for first kind are well known including Linear quadratic

regulators, model reference controls. Where as for the tasks optimizing func-

tionals of system behavior, model free Reinforcement Learning techniques

are popular.

In general, learning control refers to the process of acquiring a control strat-

egy for a particular control system and a particular task by trial and error.

Learning control is usually distinguished from adaptive control [2] in that the

learning system can have rather general optimization objectives—not just,

e.g., minimal tracking error—and is permitted to fail during the process of

learning, while adaptive control emphasizes fast convergence without failure.

Thus, learning control resembles the way that humans and animals acquire

new movement strategies, while adaptive control is a special case of learn-

ing control that fulfills stringent performance constraints, e.g., as needed in

life-critical systems like airplanes.

In this thesis we will address both the strategies for generating control for

a given system and task, namely ”Reinforcement Learning” and ”Adap-

1

tive Control”. We hypothesize that bring the concepts of Adaptation to

Reinforcement Learning and Learning to Adaptive control we can develop

the algorithms which are more efficient than their stand-alone counterparts.

We will now introduce Reinforcement Learning and Adaptive control and mo-

tivate the ideas of Adapting-to-Learn and Learning-to-Adapt in control

synthesis problems for uncertain dynamical systems.

1.2 Reinforcement Learning

Reinforcement Learning address the problem of optimizing a functional form

of the cost objective, to generate the optimal control action for agent trying

to solve a given task. The key issue is the constrained optimization; here

optimal-control methods based on the calculus of variations and dynamic

programming have been extensively studied. When a detailed and accurate

model of the system to be controlled is not available, the classical optimal

control solution are not feasible and we use approximate dynamic program-

ming which we call Reinforcement Learning.

The usual tracking problems in control assume prior knowledge of a refer-

ence trajectory. But note that the for many problems an optimal reference

trajectory is not available. For example locomotion of a bipedal robot. where

the task is to design a control policy which enables a robot capable of walk-

ing. In such cases one may not be able to specify a desired trajectory for the

limbs a priori, but one can specify the objective of moving forward, main-

taining equilibrium, not damaging the robot, etc. Reinforcement Learning

not only learns such optimal reference trajectories but also generate action

which enable optimal reference tracking.

Reinforcement Learning (RL) is based on a very intuitive learning be-

haviors exhibited by biological agents. The RL agent interacts with the it

environments, and takes sequential actions with the goal of maximizing a re-

ward signal, which may be time-delayed. If a particular action sequence leads

to favourable outcomes the agent is encouraged to take those actions more

often. When the agent interacts with environment sufficiently long enough

and maximizing the likelihood of favourable action, we claim to learn optimal

policy to solve a given task. But this kind of learning requires a designed

reward model which captures the the dynamics of the task. Usually for engi-

2

neering problems we can design such rewards model or can be assumed to be

naturally available through interacting environment. For example, an agent

could learn to play a game by being told whether it wins or loses, but is never

given the “correct” action at any given point in time. The RL framework has

gained popularity as learning methods have been developed that are capable

of handling increasingly complex problems. However, as the RL agents are

more often very slow in learning and mastering difficult tasks, and thus a

significant amount of current RL research focuses on improving the speed of

learning.

1.2.1 Sample Complexity of Reinforcement Learning

Sample complexity analysis answers the question how much data needs to

collected in order to perform learning successfully? Sample complexity in

Reinforcement learning is analogous to classical issue for sample complexity

in supervised learning, , but is harder because of the larger input-output space

and increased realist nature of the problem of the reinforcement learning

setting.

The sample complexity for reinforcement learning is usually defined as

function of sampling model and performance criteria used. In particular

sample complexity can be defined as the number of calls to the sampling

model is required to satisfy a specified performance criteria and how this

scales with the relevant problem dependent parameters. The dependent pa-

rameters for reinforcement learning problems are state and action space size

N , A, problem horizon length or number of decision epochsH or equivalently

discount factor γ for infinite horizon problem, performance criteria ε used as

accuracy parameter and certainty parameter δ. In a policy search setting,

where we desire to find a “good” policy among some restricted policy class

Π, the dependency on the complexity of a policy class is also relevant.

Most of the existing RL algorithm, the sample complexity of finding a op-

timal policy has polynomial dependence on the State-Action space (N,A),

exponential in planning horizon length H and linear dependence on policy

space size Π. The algorithms whose sample complexity can be bounded by a

polynomial in the environment size and approximation parameters, with high

probability, are know as Probably Approximately Correct in Markov Deci-

3

Figure 1.1: Reinforcement Learning

sion Processes (PAC-MDP). For sake of sample complexity analysis the RL

algorithms are categorized as Model-based and Model-free algorithms. Differ-

ence between model-free and model-based algorithms can be highlighted as,

model-based algorithms generally retain some transition information during

learning whereas model-free algorithms only keep value-function information.

All algorithms known to be PAC-MDP involve finding solution to a given

MDP through value iteration or through dynamic programming of an inter-

nal MDP model. Such model based algorithms, include Rmax proposed by

Brafman & Tennenholtz’s, E3 by Kearns & Singh, and MBIE by Strehl &

Littman, are few of the algorithms to mention which provide a sample com-

plexity analysis. These methods are known to have relatively high space and

computational complexities of order

Õ
(
N2A

)
(1.1)

Another class of algorithms, including most forms of Q-learning (Watkins &

Dayan, 1992), make no effort to learn a model and can be called model free.

The sample complexity of Delayed Q-Leanring is shown to be following by

Strehl et.al,

Õ

(
NAV 4

max

ε4(1− γ)4

)
(1.2)

This high complexity of reinforcement learning weather model-free or model-

based algorithms lead to research in Transfer Learning. Transfer learning can

4

be defined as improvement of learning in a new task through the transfer of

knowledge from a related task that has already been learned. While sig-

nificant progress has been made to improve learning through transfer in a

supervised learning, the idea of transfer learning has only recently been ap-

plied to reinforcement learning tasks. We will present some details of Transfer

Learning in RL in next section.

1.3 Transfer Learning

Biological agents have inherent ability to evolve and learn from experience.

Humans and animals do not learn tasks in isolation. We tend to use our

experience and knowledge of related tasks to constantly improve and also

learn new but related tasks. This inherent ability to transfer knowledge

between tasks, that is, recognize and apply relevant knowledge from previous

learning experiences when we encounter new tasks is central point to Transfer

Learning.

Contrast to learning in nature Machine learning algorithms in tend to learn

tasks in isolation. Transfer learning attempts to change this by developing

methods to transfer knowledge learned in one or more source tasks and use

it to improve or accelerate learning in a related target task.

The goal of Transfer in Reinforcement Learning is to improve learning in

the target task by leveraging knowledge from the source task. The main

goal of Transfer Learning is regret minimization, where regret is defined as

difference between total achievable maximum reward to achieved reward.

There are three most important measures by which we quantify the success

of transfer in improving the learning in the target task.

• Jump-Start in the achievable performance in the target task using

only the transferred knowledge, before any further learning is done,

compared to the initial performance of an ignorant agent.

• Time to Threshold: The learning time needed by the agent to achieve

a pre-specified performance level may be reduced via knowledge trans-

fer. That is how steep is the learning curve. This performance metric

is evaluated through time it takes to fully learn the target task given

5

the transferred knowledge compared to the amount of time to learn it

from scratch.

• Asymptotic Performance, that is the final performance level achiev-

able in the target task compared to the final level without transfer.

The Transfer Learning in RL can be categorized mainly as Same Domain

Transfer and Cross Domain Transfer. The more conventional same domain

transfer methods focus on pairs of tasks that are closely related, such as dif-

ferent version of same tasks where agents have the same state st ∈ S and

actions space at ∈ A. A more difficult challenge is to transfer between differ-

ent domains, where we informally define a domain to be a setting for a group

of semantically similar tasks. Cross-Domain transfer require an additional

information of inter-task mapping, that is the correspondence between the

state an action space of source and target tasks to transfer the policy. Inter-

task mapping (which is discussed further in Section) is a way to define how

two tasks are related. Most of the time it is assumed the inter-task mapping

is provided by the human designer in the loop. However, if the agent is ex-

pected to transfer autonomously, such mappings have to be learned. Such

an inter-task mapping can be learned in Supervised or Unsupervised setting

online or offline. For our experiements on cross domain transfer in this thesis

we use a Unsupervised Manifold Alignment technique developed by Wang &

Mahadevan [3].

The Transfer Learning involves following steps in transferring skills from

source to target domain

• Source task Selection: The source selection requires a rational rea-

soning as, why a policy learned on a given source can prove beneficial

in a given target domain learning. More often than not the agent as-

sumes that a human has performed source task selection. Additionally

a mechanism can also be designed which selects suitable source task

from given set of tasks which avoid negative transfer. While no defini-

tive answer to this problem exists, successful transfer techniques will

likely account for specific target task characteristics.

• Source Policy: A source policy is defined as a optimal action strat-

egy π : S → A defines how an agent interacts with the environment

6

mapping perceived system states to actions. It is assumed that an op-

timal source policy π∗ is available which maximizes cumulative reward

starting from any state s0 ∈ S. There are many possible approaches to

learning such a source policy

– Model-based or Model-Free Algorithms

– Policy Search Methods

– Dynamics Programming

• Inter-task Mapping: In order to enable transfer learning across tasks

with different state and action spaces, one must define how these tasks

are related to each other. One way to provide a mapping between

State-Action spaces of source and target domains is through Inter-

task-mapping χS, χA. An inter-task mapping is a one-to-one and in-

vertible mapping from source to target domain and visa versa. Such

an inter-task mapping can be hand coded or learned in supervised or

unsupervised manner over the trajectories collected over both source

and target domains.

• Policy Transfer: The transfer algorithms can be broadly classified

into these methods

– Life Long Learning [4]

– Imitation Learning [5, 6, 7, 8],

– Reward Shaping [9, 10]

– Representation Transfer [11]

1.3.1 Related work

Deep Reinforcement Learning (D-RL) has recently enabled agents to learn

policies for complex robotic tasks in simulation [15, 16, 17, 18]. However,

D-RL has been plagued by the curse of sample complexity. Therefore, the

capabilities demonstrated in the simulated environment are hard to replicate

in the real world. This learning inefficiency of D-RL has led to significant

work in the field of Transfer Learning (TL) [19]. A significant body of litera-

ture on transfer in RL is focused on initialized RL in the target domain using

7

Transfer
Learning

Expert
Agent

Human
Expert

Guided [12]

Policy Search

Inverse

RL[13]

Representation

Transfer[11]

Imitation

Learning[14]

Expert
Policy

π(a|s)
Explore

using

R(s, a)Learn

f(s) ≈ π(s)

Learn

πθ(a|s)

Re-use policy

params + RL

+

RL

Figure 1.2: Taxonomy of Transfer Learning Algorithms

learned source policy; known as jump-start/warm-start methods [20, 21, 22].

Some examples of these transfer architectures include transfer between sim-

ilar tasks [23], transfer from human demonstrations [13] and transfer from

simulation to real [24, 25, 26]. Efforts have also been made in exploring

accelerated learning directly on real robots, through Guided Policy Search

(GPS) [27] and parallelizing the training across multiple agents using meta-

learning [28, 29, 30]. Sim-to-Real transfers have been widely adopted in the

recent works and can be viewed as a subset of same domain transfer prob-

lems. Daftry et al. [31] demonstrated the policy transfer for control of aerial

vehicles across different vehicle models and environments. Policy transfer

from simulation to real using an inverse dynamics model estimated interact-

ing with the real robot is presented by [32]. The agents trained to achieve

robust policies across various environments through learning over an adver-

sarial loss is presented in [33]. However, mentioned algorithms and other

reported architectures do not necessarily lead to improved sample efficiency,

handle relatively minor changes in the transition model, and are even known

to cause negative transfer [19].

8

1.4 Adaptive Control

The term ”Adapt” means to change or alter according to changing situation

and purpose. The term ”Adaptive Control” is used in control engineering

for the controller which can learn and adapt their parameters to changing pro-

cess information in the system. The design of autopilots for high-performance

aircraft was one of the primary motivations for active research on adaptive

control in the early 1950s. Aircraft operate over a wide range of speeds and

altitudes, and their dynamics are nonlinear and conceptually time varying.

For such agile system it is found that fixed gain controllers are inadequate to

handle all flight regimes. This lead to the development to Adaptive controller

which can learn from the system measurement in comparison to a designed

reference model and generate control accordingly to cancel the effects of un-

modeled dynamics and external disturbances. Thereby Adaptive controllers

are preferred when a desired reference tracking is to be achieved in presence

of uncertainties. However prior to Adaptive Control there have been few ar-

chitectures like Integral-Controllers in PID, Gain Scheduling, Robust control

architectures like H∞ which provide robustness in presence of constant and

bounded disturbance.

1.4.1 Model Reference Adaptive control

Model reference Adaptive controller(MRAC) has been a widely studied full-

state feedback nonlinear controller, with wide range application in control

theory [34, 35, 36, 37]. MRAC have been successfully implemented for control

in robotic applications [38], medical processes control [39, 40, 41], Flight sys-

tem control [42, 43, 44] and many more applications. As the name suggested

MRAC architecture aims to design a controller which enables a reference

model tracking. That is MRAC enables a system state x(t) track the refer-

ence states xrm(t) of an appropriately chosen reference model. The reference

model in MRAC is designed to characterize the ideal transient and steady-

state response we desire the controlled system to exhibit. MRAC achieves

robustness of the baseline controller to the unmodelled dynamics and un-

certainty through linearly parametereized adaptive element which aims to

cancel the system uncertainties.

Adaptive element in MRAC can be classified as structured and unstruc-

9

tured networks. In the cases where the uncertainty can be represented as

linear weighted combination of the known nonlinear basis functions can be

classified as structured uncertainty. The adaptive element in structured un-

certainty case can be constructed as linearly parameterized in the known basis

function of the uncertainty. In the case where the structure of uncertainty

is unknown, the adaptive element is modelled using generic basis functions

as polynomials, shallow networks ,radial basis functions or neural networks.

We will study these individual choice of basis function in the further part of

the thesis. In this thesis we mainly deal with unstructured uncertainty case

and study the deep neural network representation of the system uncertainties

[45, 46, 38, 47].

The MRAC parameter update law is designed to minimize the tracking

error cost defined as V (t) = eT (t)e(t). The resulting parameter update law

is rank-1 update meaning to say it at any given time, the update law looks in

one particular direction in parameter space to minimize the tracking error.

However this update does not guarantee the convergence in the parameter to

their ideal values unless the system is Persistently Exciting(P.E). A detailed

mathematical definition of persistency of excitation is given in section-5.6.

The P.E condition requires the system states to span the complete spectrum

of state space for all arbitrary defined time intervals. Boyd and Shastry

have shown the the P.E condition on system states require the exogenous

reference signal to be P.E. If the exogenous reference signal r(t) contains

as many spectral lines as the number of unknown parameters , then the

plant states can be considered as P.E and therefore we can claim exponential

parameter convergence. However the condition of P.E on reference signal is

restrictive and difficult to monitor online.

Various methods are available in the literature to ensure robustness in the

uncertainty estimation despite the lack of P.E of reference signals. A clas-

sic σ−modification to the parameter update law was proposed by Ioannou

[48], and e−modification was proposed by Narendra [49] which guarantees

the adaptive parameters do not diverge even when the system states are

not P.E. A projection based modification to the parameter update law is

proposed in [41]. The projection operator ensures the parameters remain

bounded within a compact set. A Q−modification uses integral of track-

ing error to drive the parameters to a hyper-surface that contains the ideal

weights [40]. A L1 adaptive control is proposed by Cao and Hovakimyan

10

[50], which uses a high gain learning and low pass filtered adaptive element

to ensure robustness and guaranteed transient tracking behaviors. However,

due to high learning gains the cannot guarantee parameter convergence even

when the system states are P.E. Similarly Nguyen [51] proposed a optimal

modification to parameter update which allows use of high learning gains.

These proposed methods bound the parameters around a neighborhood of

pre-selected value or zero. The boundedness property of the parameters al-

low us to use Barbalat’s Lemma to argue asymptotic convergence in tracking

error. But however, these modification can also lead to slow learning or even

prevent the adaptive element from estimating constant uncertainties such as

trim condition or input biases.

Further more Girish Chowdhary [52] proposed concurrent learning (CL-

MRAC) modification to MRAC parameter update law. CL-MRAC use the

finitely exciting recorded data concurrently with the current data for adap-

tation. Finite excitation condition of recorded data is sufficient to guarantee

exponential tracking error and parameter convergence in MRAC without re-

quiring stringent P.E condition on reference signal. Authors Chowdhary et.al

[53] proposed a Gaussian process Model Reference adaptive control (GP-

MRAC) which models the adaptive element as distribution over function

rather a deterministic model. GP-MRAC is a non-parametric approach which

obviates the requirement to know the domain of operation a priori for feature

design. This method also ensures robust learning of system uncertinty using

Bayesian inference. In this thesis a new neuroadaptive architecture: Deep

Neural Network based Model Reference Adaptive Control (DMRAC) is pro-

posed. The proposed architecture utilizes the power of deep neural network

representations for modeling significant nonlinearities while marrying it with

the boundedness guarantees that characterize MRAC based controllers. We

demonstrate through simulations and analysis that DMRAC can subsume

previously studied learning based MRAC methods, such as concurrent learn-

ing and GP-MRAC. This makes DMRAC a highly powerful architecture for

high-performance control of nonlinear systems with long-term learning prop-

erties. The contributions of this thesis is detailed in next section.

11

1.5 Contribution of This Work

The main contribution of the thesis is in the areas of Policy Transfer in Re-

inforcement Learning and Adaptive Control. In the controllers available for

robotics the model based adaptive controller are at one end of the spectrum

and model free Reinforcement learning is at the other. Adaptive controllers

take advantage of the model information and carry out tracking error based

learning to estimate and cancel the uncertainties online. Thereby enabling

to use a baseline controller despite the modelling uncertainty and external

disturbances. Since the Adaptive controller are model based and point wise

learning in time therefore are highly sample efficient and also enjoys stability

and bounded guarantees of the tracking error. These attributes of Adaptive

controller make them suitable for safety critical systems like Aerospace ap-

plications. At the other end of this spectrum is the model free Reinforcement

learning. The RL is trial and error algorithm, which learn the optimal policy

through interacting with the environment and over reward feedback. The

RL agent is expected to fail multiple times before the agent can find the

optimal policy. Hence the RL policy lacks stability during the learning. Also

the RL policy is not robust to significant changes in the environment or sys-

tem parameters. Therefore the application of RL is restricted to simulated

agents.

In this thesis the effort is to bring best of both worlds“Adaptation” and

“Learning” together in proposing theoretically justified algorithms which per-

form better than their conventional counterparts. In that effort we borrow

control theoretical aspects of Adaptation to Policy transfer in RL and pro-

pose two algorithms,

• Model Based Policy Transfer in RL using Target Apprentice.

• Model Free-Adapt to Lean Policy Transfer in RL.

Similarly we borrow the idea of learning over a replay buffer of data collected

interacting with the environment and concept of deep Neural networks to

Model Reference Adaptive control to propose a new algorithm called

• Deep Model Reference Adaptive Control (DMRAC).

The DMRAC controller uses idea of asynchronous slower update of deep

features and faster update of the final layer parameters using classical MRAC

12

update rule. This time scale separation of update of the network inner layers

and last layer allowed us to use a deep neural network in the closed loop of

the controller, yet ensure the stability and guaranteed boundedness of the

tracking error. The details of the contributions of this thesis are provided in

detail in next two subsections.

1.5.1 Adapt to Learn Transfer Learning in RL

Lack of principled mechanisms to quickly and efficiently transfer policies

learned between domains has become the major bottleneck in Reinforcement

Learning (RL). This inability to transfer or adapt policies is one major reason

why RL has still not proliferated physical application like robotics. Since RL

agents cannot quickly transfer policies, the agent is forced to learn every

task from scratch, which is both time and sample expensive. Warm-start, a

method in which weights from one neural network are transferred to another,

has been reasonably successful for supervised learning. However, this method

can often lead to mixed and even negative results in RL [54, 19].

Our main contribution is an algorithm to transfer policies between tasks

with significant differences in state transitions via a policy adaptation mech-

anism. Unlike the majority of existing work in transfer learning for RL, our

approach does not merely use the transferred policy to warm start (initial-

ize the parameter of the target network with learned source network) policy

learning in the target domain. Neither does it rely on a multitude of simula-

tions across randomly generated source domains. Instead, we combine super-

vised reference trajectory tracking and unsupervised reinforcement learning

to adapt the source policy to the target domain directly. We show through

theory and experiments that our method enjoys significantly reduced sample

complexity in solving the task.

In this effort we have proposed both Model-based and Model-Free algo-

rithms to Transfer Policy between source and target tasks.

Model Based-Policy Transfer using Target Apprentice

In this work, we take a different approach from using the source policy to

initialize RL in the target. Inspired by the literature in model reference adap-

tive control (MRAC) [55][56] we propose an algorithm that adapts the source

13

policy to the target task. We argue that optimal policies retain its optimality

across domains that leverage the same physical principle but different state-

spaces. We augment the transferred policy by a policy adaptation term, that

adapts to the difference between the dynamics of two tasks in target space.

The adaptive policy termed as π
(T)
ad (s) is designed to accommodate the differ-

ence between the transition dynamics of the projected source and the target

task. We prove that such an adapted projected policy to be ε-optimal in

the target space. The key benefit of this method is that it obviates the need

to learn a new policy in the target space, leading to high sample efficient

transfer. We prove theoretical bounds on sample efficiency, showing that

reduced sample complexity depends polynomially on the cardinality of the

replay buffer |D|) and not on the cardinality of the entire state-action pairs

of target space (|S| × |A|).

Model Free-Adapt-to-Learn Policy Transfer using Target
Apprentice

Our main contribution is an algorithm to transfer policies between tasks with

significant differences in state transitions via a policy adaptation mechanism.

Unlike the majority of existing work in transfer learning for RL, our approach

does not just use the transferred policy to warm start (initialize the parameter

of the target network with learned source network) policy learning in the

target domain [22]; neither does it rely on a multitude of simulations across

randomly generated source domains [57]. Instead, we combine supervised

adaptation of the source policy and unsupervised reinforcement learning to

generate the policy for the target domain. We demonstrate both theoretically

and empirically that the proposed method enjoys significantly reduced sample

complexity in solving the task.

We posit that the presented method can be the foundation of a broader

class of RL algorithms that can choose seamlessly between learning through

exploration and supervised adaption resulting in behavioral imitation. Em-

pirically we show that approach is capable of robustly transferring policies

between tasks, even in the presence of nonlinear and time-varying differ-

ences in the dynamic model of the systems; and theoretically, we ensure

ε−optimality of such transferred policies in the target domain.

As such, our approach is inspired from two key insights from existing work

14

in RL and adaptive control. The theory behind adaptive control has been

widely studied but has been typically restricted to deterministic dynamical

systems with well-defined reference trajectories [55, 56]. We develop adap-

tive algorithms for reinforcement learning and stochastic MDPs in particu-

lar. Imitation Learning (IL) [14, 30] seems to play a crucial part in biological

learning, and as such has been widely studied. However, the key is, when

presented with a new situation, animals do not just imitate, but quickly

adapt, and also learn to get better through further interaction. The ability

to adapt and incorporate further learning in a structured way is one funda-

mental difference between our method and existing imitation learning and

Guided Policy Search (GPS) methods [12]. Unlike IL and GPS, our method

transfers policies between task with significant differences in the transition

model and uncertainty in the parameters in a model agnostic ways. More-

over, by mixing environment reward with intrinsic adaptation rewards, we

make sure that we adapt, but also learn in the face of uncertainty to acquire

skills beyond what source can teach. We posit that the presented method

can be the foundation of a broader class of learning algorithms. By tun-

ing the reward mixing term, the algorithm can choose seamlessly between

learning through RL to supervised adaptive imitation. Our approach is ca-

pable of robustly transferring policies between tasks, even in the presence of

nonlinear and time-varying differences in the dynamic model of the systems.

In particular, we show that it suffices to execute adapted greedy policies to

ensure ε−optimal behavior in the target domain.

1.5.2 Information Enabled Adaptation in Model Reference
Adaptive Controller

Deep Neural Networks (DNN) have lately shown tremendous empirical per-

formance in many applications where supervised learning is used, includ-

ing fields such as computer vision, speech recognition, translation, natural

language processing, Robotics, Autonomous driving and many more [58].

Unlike their counterparts such as Gaussian Radial Basis Function networks

[59, 60], deep networks learn features by learning the weights of nonlinear

compositions of weighted features arranged in a directed acyclic graph [61].

They are indeed much deeper versions of the single hidden layer neural net-

15

works (SHL-NN) studied in MRAC [62, 63]. It is now pretty clear that deep

neural networks are outshining heuristic based regression and classification

algorithms as well as RBFNs, GPs, SHL-NNs, and other classical machine

learning techniques [64]. However, their utility in the context of control, and

especially safety critical control which requires stability guarantees, has been

an open question.

Leveraging these successes, there have been many exciting new claims re-

garding the control of complex dynamical systems in simulation using deep

reinforcement learning[65]. However, Deep Reinforcement Learning (D-RL)

methods typically do not guarantee stability or even the boundedness of

the system during the learning transient. Hence despite significant simu-

lation success, D-RL has seldom been used in safety-critical applications.

D-RL methods often make the ergodicity assumption, requiring that there

is a nonzero probability of the system states returning to the origin, which

in practice is typically enforced by resetting the simulation when a failure

occurs. Unfortunately, however, real-world systems do not have this reset

option. Unlike, D-RL much effort has been devoted in the field of adaptive

control to ensuring that the system stays stable during learning.

In Chapter 5, we present flight test results of Deep MRAC, and present

theory that addresses this critical question: How can MRAC utilize deep

networks while guaranteeing stability? We present an MRAC architecture

that utilizes DNNs as the adaptive element; and an algorithm for the online

update of the weights of the DNN by utilizing a dual time-scale adaptation

scheme. In our algorithm, the weights of the outermost layers are adapted

in real time, while the weights of the inner layers are adapted using batch

updates. We also present theory to guarantee Uniform Ultimate Boundedness

(UUB) of the entire DMRAC controller.

Our results demonstrate how DNNs can be utilized in stable learning

schemes for adaptive control of safety-critical systems such as aircraft. This

provides a way to build highly adaptive and long-term learning capable flight

controllers. Furthermore, the dual time-scale analysis scheme used by us

should be generalizable to other DNN based learning architectures, includ-

ing reinforcement learning.

16

1.6 Outline of Thesis

This thesis presents mainly two architectures of Learning through Adaptation

in face of Uncertainties: Transfer in Reinforcement Learning and Deep Model

Reference Adaptive Control. We begin by discussing basics of Reinforcement

learning in Chapter-2. In this chapter we present a taxonomy of various

reinforcement learning algorithms. We also present a brief introduction to

the state of the art algorithms like value based methods, policy gradient and

model based Reinforcement learning algorithm. In Section-2.3, we argue the

connection between RL and Adaptive control, and further looking forward

the idea of Transfer learning and behavioral adaptation is discussed.

In Chapter-3 & 4 presents details of a new Model-based and Model-free

approach to policy transfer in Deep Reinforcement Learning for cross-domain

tasks. We present a novel architecture to adapt and reuse the mapped source

optimal-policy directly in the related domains. We show the optimal policy

from a related source task can be near optimal in the target domain pro-

vided an adaptive policy accounts for the model error between the source

and target. The main advantage of this policy augmentation over existing

transfer techniques, is generalizing the policies across related domains with-

out having to learn in the target tasks. We also show empirically that the

presented method enjoys reduced sample complexity depending when com-

pared to stand-alone RL or the state-of-the art Transfer algorithms.

In Chapter-5 the basis of Model reference adaptive controller and stability

properties of the controller is presented.

Chapter-6 presents a new architecture for Gaussian Processes Model Refer-

ence Adaptive Control (GP-MRAC) trained using a generative network. We

will further use the Model reference Generative network for Deep Model Ref-

erence Adaptive control in chapter-3. GP-MRAC is a successful method for

achieving global performance in the systems enabling adaptive control. GP-

MRAC can handle a broader set of uncertainties without requiring apriori

knowledge of the domain of operation. However, existing GP-MRAC work

requires estimates of the state-derivative, and this is a primary limitation in

the implementation of the controller. In this chapter, we alleviate this ma-

jor limitation by creating Model reference adaptive framework as Generative

Network (MRGeN). Our contribution is a generative network architecture for

learning Gaussian model to predict system uncertainties without having to

17

estimate the state derivatives while ensuring that the system stability prop-

erties are unaffected. We retain the nonparametric nature of the controller by

sharing the kernels between GP’s and MRGeN, ensuring global performance

and stability guarantees. GP-MRGeN can also be viewed as a method of

baseline policy transfers, with applications in Reinforcement Learning.

Further in Chapter-7 presents details of Deep Neural Network based Model

Reference Adaptive Control (DMRAC). DMRAC utilizes the power of deep

neural network representations for modeling significant nonlinearities while

marrying it with the boundedness guarantees that characterize MRAC based

controllers. We demonstrate through simulations and analysis that DMRAC

can subsume previously studied learning based MRAC methods, such as

concurrent learning and GP-MRAC. This makes DMRAC a highly powerful

architecture for high-performance control of nonlinear systems with long-

term learning properties.

18

CHAPTER 2

REINFORCEMENT LEARNING

2.1 Introduction

Reinforcement learning (RL) is a machine learning paradigm in which an

agent attempts to learn a control policy that can generate the desired se-

quence of actions for achieving a higher level objective. RL promises to pro-

vide a learning mechanism via which autonomous agents can learn to control

themselves directly through experience, without requiring manual coding of

control policies. Similar to other machine learning paradigms, RL research

heavily focuses on end-to-end learning, which in this case is learning of poli-

cies directly through experience. Recent successes of RL have shown that

agents can learn to decision making and control policies on complex simula-

tions for which it would have been very difficult to manually create control

policies. Some examples include chess, go, and more recently complex con-

tinuous time simulated domains [65, 66, 67, 15, 16, 17, 18, 68].

2.2 RL in the Markov Decision Process Framework

A stochastic process {sk} is termed Markovian if the conditional proba-

bility of a future event sk+1 depends only on the event immediately pre-

ceding, and not the entire history of events. In particular, p(sk+1|sk) =

p(sk+1|sk, sk−1, sk−2, ...). The Markov Decision Process (MDP) framework

leverages this very key property to lay out a sequential decision making

framework: A Markov decision process (MDP) is a tuple 〈S,A, R,P , γ〉,
with state space S, action space A, reward function r(s, a) ∈ R, transition

function p(sk+1|sk, ak) ∈ P , and discount factor γ ∈ [0, 1). The goal of the

decision making agent is to find a sequence of actions ak such that the re-

19

ward is maximized. The reward can be sparse and delayed, that is, it is

only available at some states, or only available after a sequence of actions are

performed. This makes the MDP sequential decision making problems quite

different and rather interesting than one-shot decision making problems such

as those studied in the Bandit framework or in linear/non-linear program-

ming. As such, the formulation we discuss below assumes that γ < 1 and is

necessary for infinite horizon sequential decision making problems. In finite

horizon problems, such as those studied in [69, 70] γ can take other values.

Given a state sk, a deterministic non-stationary policy π : S → A that

outputs an action ak = π(sk). The goal of MDP problems is to seek out

a policy that leads to maximum reward. To further formulate the problem

consider that starting from an initial state s0, the MDP following a policy π

will result in a trajectory ζ = {[s0, a0, r0], [s1, a1, r1], · · · }. Let us now define

the so-called Q-function of each state-action pair (s, a) under policy π as the

expected sum of discounted reward obtained by starting at any state s and

following a policy π thereafter after taking the action a = π(s):

Qπ(s, a) = Eπ[
∞∑
k=0

γkr(sk, ak)|s0 = s]. (2.1)

Note here that the expectation is on π, that is, following a different pol-

icy will lead to a different expected Q value even when one starts on the

same state. The Q-function is defined slightly (but very importantly) dif-

ferent than the V-function or the Value function V π for each state s under

policy π . The value function is defined only over s (and not over (s, a))

as V π(s) = Eπ[
∑∞

k=0 γ
kr(sk, ak)|s0 = s]. That is, it is defined simply as

the expected sum of discounted rewards obtained by following the policy π

starting from the state s. The goal is to find the optimal policy that max-

imizes the expected cumulative discounted reward in all states, that is, to

find π∗(s) = argmaxπ V
π(s). Here note that the maximum is over the policy

π. The value function of the optimal policy π∗ is termed as V ∗.

The Bellman equation states that the value of taking action ak in state

sk under the policy π equals the sum of the immediate reward and the dis-

counted value achieved by following the policy π:

Qπ(sk, ak) = r(sk, ak) + γQπ(xk, π(xk, ak)). (2.2)

20

It is rather straight forward to derive this equation, by noting that

Qπ(sk, ak) =
∞∑
k=0

γkr(sk, ak) = r(sk, ak) + γ
∞∑
k=1

γk−1r(sk, π(sk)) (2.3)

Further expanding the sum leads to the recursion in 2.2.

Similarly, it can be shown that the optimal Q function Q∗ follows the

Bellman optimality equation Q∗(x, a) = r(x, a) + γmaxa′ Q
∗(x, a′). The V

function also satisfies the optimality equation V ∗(sk) = maxa(r(sk, ak) +

γV ∗(sk+1), however note that to find the optimal action the knowledge of

sk+1 or alternatively P is necessary. On the other hand, with the Q-function

π∗(sk) = arg max
a

Q∗(sk, a). (2.4)

What we have presented is one of the most commonly studied MDP for-

mulations. One key variant is the formulation with stochastic policies, where

the policy is a distribution over actions, and given a state sk the action is

sampled from the policy distribution ak ∼ π(sk).

There are many algorithms available to solve the MDP problem in the

dynamic programming setting when R and P are known. Most of these

leverage the fact that the recursion in equation 2.2 is a contraction. Therefore

starting with any policy π it is possible to follow first a policy evaluation

step to populate the V or the Q function, and then a policy improvement

step where for each state the policy π(s) ← argmaxa∈A
∑

s′∈S P(r(s, a) +

γV π(s′)). Several of these algorithms are discussed in detail in [71].

In this article, we focus on the so-called Reinforcement Learning (RL)

problem, in which R and P are assumed to be unknown, and the agent

figures out an optimal policy through experience. There are many algorithms

available to solve the RL problem, some of which are summarized in Figure-

2.1. We provide details of some key methods now.

2.2.1 Q-learning and other value-based methods

Using the Markov assumption on the transition model and the Bellman for-

mula, recursive update expression for learning the state-action value function

21

RL

Direct RL Indirect RLRL
Paradigms

Value
Based

PG
Actor
Critic

MBRL

DQN
[65]

. . .
REINFORCE

[72]

DDPG
[66]

TRPO
[73]

PPO
[74]

ACKTR
[75]

A3C
[76]

. . .

PILCO
[77]

PEGA
SUS [78]

MPGPE
[79]

Dyna-Q
[80]

Methods

Algorithms

Figure 2.1: Taxonomy of Reinforcement Learning Algorithms

22

Qπ(st, at) can defined as

Qπ(sk, ak) = r(sk, ak) + γQπ(sk+1, π(sk+1))

The above definition leads us to the famous Q-learning and SARSA algo-

rithms, which use the follwing update form

Qπ(sk, ak)← Qπ(sk, ak) + αδ

where α is the learning rate and δ is defined as temporal-difference (TD-

error). Different choice of TD δ error leads to different algorithm

• Q-Learning: δ = r(sk, ak) + γmaxaQ
π(sk+1, a)−Qπ(sk, ak)

• SARSA: δ = r(sk, ak) + γQπ(sk+1, π(sk+1))−Qπ(sk, ak)

For large or continuous state-action spaces a tabular representation quickly

becomes intractable [71]. This issue can be resolved by using a function ap-

proximator, such as linear function approaximators [71], Gaussian Processes

[81, 60, 82], or neural networks [65, 76, 70, 74, 73]. Deep Q-networks (DQN)

is one such algorithm that has solved instability issues of approximate Q-

learning with deep neural network function approximators and techniques

like experience replay and soft update of the network [65]. DQN uses a cost

function of the form

J(θ) = E{s,a,r,s′}∼B
(
r + γmax

a′
Q(s′, a′, θ−)−Q(s, a, θ)

)2

where the samples {s, a, r, s′} are drawn from the replay buffer B and θ− is

frozen network parameter from last update.

2.2.2 Policy Gradient (PG) and Actor-Critic methods

Policy gradient method aims at optimizing a parameterized policy πθ(at|st)
resulting in the higher total discounted return. The total discounted return

the policy gradient aims to maximize is defined as

J(θ) = Eτ∼πθ(τ)

[∑
τ

r(sk, ak)

]

23

where the πθ(τ) is the probability of the trajectory and is defined as

πθ(τ) = πθ(s0, a0, . . . sT , aT) = ρ(s0)
T∏
k=1

πθ(ak|sk)p(sk+1|sk, ak)

PG maximizes uses gradient ascent for maximizing the the total expected

return J(θ). The policy gradient update is given as

θ = θ + α∇θJ(θ)

where∇θ = Eτ∼πθ(τ) [∇θ log πθ(τ)R(τ)]. The gradient calculation using likelihood-

ratio is first introduced in REINFORCE paper by William et.al. [72]. This

method makes use of likelihood-ratio trick given by identity

∇θπθ(τ) = πθ(τ)∇θ log πθ(τ)

in policy-gradient theorem.

Several variants of the policy gradient can constructed by replacing the

total return performance metric in the gradient expression as follows [83]

∇θ = Eτ∼πθ(τ) [∇θ log πθ(τ)ζ(τ)] .

Let ζ(τ) be the placeholder for total return. Using different estimates of the

total return, we can build different policy gradient algorithms, for example

ζτ = R(τ) =
∑T

k=1 r(sk, ak) is the vanilla REINFORCE algorithm which

uses bootstrapped total return on trajectory. The causality correction to the

total return estimate for gradient variance reduction in REINFORCE use

ζτ =
∑T

k′=t r(sk′ , ak′) [72]. A baseline corrected return for variance reduction

of gradient estimate employs ζτ =
∑T

k=1 r(sk, ak) − bk, where bk can be

average reward [13]. An actor-critic algorithm uses ζτ = Qπ(sk, ak) [84],

while an Advantage actor critic algorithm would use ζτ = Aπ(sk, ak), where

Aπ is the advantage function [76].

• ζτ = R(τ) =
∑T

k=1 r(sk, ak): REINFORCE (total return on trajectory)

• ζτ =
∑T

k′=t r(sk′ , ak′): Causality correction for gradient estimate vari-

ance reduction.

• ζτ =
∑T

k=1 r(sk, ak) − bk: Baseline correction for gradient variance

24

reduction.

• ζτ = Qπ(sk, ak): Actor-Critic Algorithm

• ζτ = Aπ(sk, ak): Advantage Actor-Critic Algorithm

2.2.3 Model based RL or “Indirect RL”

In model-based RL a goal is to attempt to learn T and R from state-action-

reward tuples and use this in learning the policy. Once T and R are learned

they may be used in any capacity to solve the MDP. The open ended na-

ture of how to use the model in this setting has brought about much debate

and discussion on what constitutes model-based RL, as one could argue that

model-free uses the value function and MDP assumption as a “model”. Gen-

erally model-based RL aims takes advantage of structure in the dynamics and

cost model resulting in orders of magnitude improvements in data-efficiency

over model-free methods, which is essential for some real-world applications.

Modern methods typically fall under two different approaches. The first

category strongly resembles system-identification where one iteratively esti-

mates a global dynamics model through interactions and uses the model to

plan an optimal policy as in model predictive control (MPC), usually via a

shooting method. One example is Probabilistic Ensembles with Trajectory

Sampling (PETS) [85]: A probabilistic dynamic model is learned via a model

ensemble through environment interactions. The optimal control is given by

a sampling based shooting methods using the learned probabilistic model.

Another approach is Data-Efficient Reinforcement Learning with Probabilis-

tic Model Predictive Control [86]: A probabilistic model is learned using a

Gaussian Process in order to account for long-term prediction uncertainty.

The optimal control is found using MPC and analytic gradients computed

via Maximum Principle.

The second category makes use of global or local models to do policy

optimization directly as in the model-free case either by using the model

derivatives to compute analytic policy updates or sampling the update using

the learned dynamics model. In Probabilistic Inference for Learning Control

(PILCO) [77] a probabilistic model learned using a Gaussian process and

exploits analytic gradients of resulting distribution to optimize the policy.

25

In Guided Policy Search (GPS) [12] locally linearized model of the dynamics

and cost function are used to iteratively update a global policy.

The Model-based assumption can also become a detriment. The policy

is biased by the chosen model parameterization and data-distribution and

may result in compounding errors in planning or poor local solutions in

policy optimization. This is why the most successful model-based methods

emphasize model-uncertainty representation. Many on-going works aim to

investigate how to most effectively and generally exploit model assumptions

and scale to arbitrarily problems with high-dimensional observations.

2.3 Connections between RL and Adaptive Control

Both RL and adaptive control are frameworks designed to find control policies

when the model transitions are not known. Adaptive control has classically

considered control of continuous time systems using state-space models and

well defined tracking objectives [35, 87, 88, 89, 2], while RL has classically

focused on decision making policies in discrete state MDPs. The key power

of RL is that reward can be sparse or “delayed”, that is, the agent does not

need to have a reward at every time-step k, rather only in certain states. For

example, an agent trying to find a path on a map need only obtain the reward

when it reaches it goal, and not necessarily along the way. This is in contrast

with traditional adaptive control problems such as Model Reference Adaptive

Control in which the agent receives a tracking error reward at every time

step. Traditionally, continuous time RL problems are considered difficult to

solve due to: 1. Challenges in learning the right approximate representation

for continuous domain state-action spaces [71, 90, 91, 92] and 2. Excessive

number of experiments required to handle the explore-exploit dilemma in

continuous state-spaces [92, 93, 94]. Recently advances in compute power

and training of deep neural networks for supervised learning has rekindled

fueled a number of works focused on solving continuous time control problems

with RL in simulation [95, 66]. The results are promising, given that the

agent can learn high-dimensional control tasks merely from trials, however,

transition from simulation to real-world has been a challenge, especially in

face of results that show that the learned policies may not transfer well across

similar systems or degrade rapidly when parameters are only slightly varied.

26

In essence, these works have focused on learning control policies through

experience, but are not yet equipped to adapt the policies in face of change.

There has been interest in also using the RL frameworks for solving classical

control problems [96, 97, 98].

2.4 Looking forward: Transfer learning and behavioral

adaptation

Given enough samples and time, RL can learn policies for complex tasks.

However, much work remains to be done in figuring out principled mecha-

nisms to quickly and efficiently transfer policies learned between domains to

bring RL to the real world. A significant body of literature on transfer in RL

is focused on initialized RL in the target domain using learned source policy;

known as jump-start/warm-start methods [20, 21, 22, 23, 13, 24, 25, 26].

However, warm-start, which has been reasonably successful for supervised

learning, can often lead to mixed and even negative results in RL [54, 19].

Efforts are also being made in exploring accelerated learning directly on real

robots, through Guided Policy Search (GPS) [27] and parallelizing the train-

ing across multiple agents using meta-learning [28, 29, 30]. However, these

and other reported architectures do not necessarily lead to improved sample

efficiency, nor are guaranteed to handle relatively minor changes in the transi-

tion model, and are even known to cause negative transfer. In essence, many

exciting research directions remain in ensuring RL fails gracefully when the

underlying model changes, or has robustness margins like linear controllers.

Hierarchical RL and behavioral adaptation are accordingly also receiving in-

creasing attention [54].

27

CHAPTER 3

MODEL BASED POLICY TRANSFER
USING TARGET APPRENTICE

3.1 Introduction

Recent successes in Deep Reinforcement Learning (D-RL) have enabled RL

agents to solve complex problems [65, 99]. Despite these advancement, we

do not yet understand how to efficiently transfer the learned policies from

one task to another [19]. In particular, while some level of progress is made,

in transferring RL policies in the same state-space domains, the problem of

efficient cross-domain skill transfer is still quite open.

In this chapter, we focus on cross-domain policy transfer. We consider the

term “Cross-Domain”, in a sense that the source and target tasks exploit

the same underlying physical principles, but their state spaces are entirely

different. This similarity in dynamical behavior of tasks should help a good

RL agent to find it easier to solve a target task after it has learned a related

source task. Thereby reducing the effort needed to learn an entirely different

and seemingly disconnected task. Such a transfer of knowledge will apply

to a broad class of problems of practical interest. We can extend this idea

of cross-domain transfer to the problems of transfer from simulation to the

real world tasks, simple linear system to complex nonlinear tasks and as an

architecture towards robustifying the policies under non-stationary environ-

ments. Thereby, we argue that we can efficiently harnessing benefits of RL

through transfer for real world engineering problems.

Humans are capable of efficiently and quickly generalizing the learned skills

between such related tasks [100]. However, RL algorithms capable of per-

forming efficient transfer of policies without learning in the new domain have

not yet been reported. To address this gap, leveraging the notions of ap-

prenticeship learning [7] and adaptive control [55, 56], we present a sample

efficient algorithm that can directly transfer by adapting the learned policy

28

from source to the target task. We show that the presented method enjoys

reduced sample complexity, depending polynomially only on the size of the

chosen replay buffer (|D|) on which the apprentice model is estimated. And

not on the cardinality of the entire state-action pairs of the target space

(|S| × |A|).
Given an optimal source policy, a target apprentice model and an inter-task

mapping, we show that it suffices only to execute greedy actions augmented

with an adaptive policy to ensure ε−optimal behavior in the target.

3.1.1 State of the Art: Transfer Learning in RL

A significant body of literature in Transfer Learning (TL) in the RL, are

focused on using the learned source policy as an initial policy in the target

task RL [20, 21, 22]. Refer Supplementary document Section-5 Figure-1 for

conventional TL architecture. Examples of TL include a transfer in scenar-

ios where the source and target task are similar, and no mapping of state

space is needed [23] or transfer from human demonstrations [13]. However,

when the source and target task have different state-action spaces, the policy

from source cannot be directly used in the target. In this case, a mapping is

required between the state-action space of the corresponding source and tar-

get tasks to enable knowledge transfer [19]. The inter-task mapping can be

supervised; provided by an agent [101], hand-coded using semantics of state

features [102, 23, 103], or unsupervised using Manifold Alignment [3, 22]

or Sparse Coding Algorithm [21]. Aforementioned TL methods accelerate

the learning and minimize regret as compared to stand alone RL. However,

initializing the target task learning with the transferred source policy may

not lead to significant sample efficiency in the transfer, or even fail to con-

verge leading to negative transfer [104]. In particular, these approaches do

not leverage the fact that both tasks exploit the same physical principle and

hence the possibility of reusing source policy in the target domain.

3.2 Transfer Learning with Target Apprentice (TA-TL)

This section proposes a novel transfer learning algorithm capable of cross-

domain transfer between two related but dissimilar tasks. The presented ar-

29

chitecture applies to both continuous and discrete state, action space tasks.

Unlike the available state of art TL algorithms, which mainly concentrates

on policy initialization in the target task RL [19]; we propose to re-use source

policy directly as the optimal policy in the related target domain. We achieve

this efficient transfer through on-line correction of the transferred policy with

adaptive policy, derived based on model transition error. The presented ap-

proach has three distinct phases: Phase -1 involves finding an optimal policy

over continuous action space of the source task. For this purpose, we use Deep

Deterministic Policy Gradient (DDPG) [99] to solve the source MDP(section-

3.4). Phase-2 of the transfer; involves discovering a mutual mapping between

state, action space of source and target using Unsupervised Manifold Align-

ment (UMA) (section-3.5). Phase-3 of transfer, is the adaptation of the

mapped source optimal policy through policy augmentation in a new target

domain (section-4.3). It is to be noted; we do not engage in policy explo-

ration in target space for transfer, we adapt and reuse the projected source

policy in the target space, to achieve near-optimal behavior. Nevertheless,

with any further exploration, we can improve upon the projected-adapted

policy and aim to achieve an optimal solution, but this exercise is left for

follow-on work.

3.3 Markov Decision Process

We assume the underlying problem is defined as Markov Decision Process

(MDP). An MDP is defined as a tuple M = (S,A,P ,H, ρ0,R), where S
denote the state of the system; A set of continuous actions bounded by

‖A‖2 ≤ τ . P = P (s, a, s′) is a Markovian state transition model, the proba-

bility of making transition to s′ upon taking action a in state s. H is solution

horizon of MDP, such that MDP terminates after H steps. ρ0 is distribution

over which initial states are chosen and R : S × A → R is deterministic

reward function measuring the performance of agent and is assumed to be

bounded s.tR ∈ [0, 1]. The total return starting from states si ∈ ρ0 is defined

as sum of discounted reward V π = E
(∑H

i=t γ
i−tr(si, ai)

)
under some policy

π and γ ∈ [0, 1) being the discount factor. A policy π : S → Ā is a mapping

from states S to normalized continuous action space, where Ā ∈ (−1, 1). The

scaled action from policy is obtained as ai ← τπ(si), where τ is scale factor.

30

The agent’s goal is to find a policy π? which maximize the total return.

Let π∗M be projected optimal policy in target MDP M . The associated

optimal value function under M is V π∗
M for all s ∈ S. Let T : Rn → Rn be

the Bellman update operator defined as

(T f)(s) = max
a∈A

[
r(s, a) + γ E

s′∼P (s,a)
f(s′)

]
(3.1)

The optimal value function V π∗
M satisfies the Bellman equation (3.1) such that

V π∗
M (s) = T V π∗

M (s)

We formalize the underlying transfer problem by considering a source and

target MDPMS = (S,A,P ,H, ρ0,R)S,MT = (S,A,P ,H, ρ0,R)T , with its

own state space, action space and transition model respectively. We make the

following assumption regarding state and action space of source and target

tasks.

Assumption 3.3.1 The state space can differ in dimensionality and span

different coordinate frames in respective domains S(s) ∈ Rn,S(T) ∈ Rm. We

assume the dimensionality of the continuous action space in the source and

target tasks are same A(T),A(S) ∈ Rk. However, the bounds on action am-

plitude can be different ||A(S)||2 ≤ τ (S), ||A(T)||2 ≤ τ (T).

The different dimension action spaces can also be handled, which adds

another layer of hierarchy to manifold alignment and will be considered in the

future work. We assume an invertible mapping χs provides correspondence

between the two state space of source and target model. We will use ŝSi , ŝTi

to denote the corresponding projected states from target and source spaces

respectively. The transition probabilities PS,PT also differ. However, we

assume the physics of the problem share some fundamental similarities in

the underlying principles for transfer to be meaningful.

Assumption 3.3.2 The transition model for the source task,

sSi+1 = P(S)(ŝSi , a
S
i)

is available or that we can sample from a source model simulator. This

assumption is not very restrictive, since we can always select design related

source task for given target task

31

We learn an approximation to the target transition model using state-

action-state buffer D = (st, at, st+1)Lt=i collected along the trajectories gen-

erated by source policy with added random exploration noise. We call this

approximate model P̂(T) as the apprentice to target.

3.4 Learning Source Policy

The presented approach is based on the deterministic policy optimization for

source task. Here we present the transfer in continuous action space domain

using deep architecture for policy learning. We consider a standard reinforce-

ment learning setup consisting of an agent interacting with an environment

in discrete time steps. Starting from initial state s0 ∼ ρ0, the agent takes

series of action ai at each time step i and receives a scalar reward ri according

to some deterministic reward function R : S ×A → R for H steps. The goal

is to find policy πθ, such that total discounted reward along the trajectories

is maximized.

L(πθ) = E
so,s1,...

[
H∑
k=0

γkrt+k

]
=

∫
S
dπθV πθ(s)ds (3.2)

where V πθ = E
st+1,st+2,...

[
H∑
t=t

γtrt|st = s, πθ

]
, dπθ is state visitation probability

and θ is the policy parameter. The discount factor γ ∈ [0, 1) limits the values

of the value function V πθ to be finite and well-defined. It is shown by [99], a

deterministic policy gradient w.r.t. the policy parameters exists. Updating

the policy using this gradient, moves the parameters in the direction of max-

imizing the total discounted rewards. For simplicity, we ignore the discount

in the state distribution and write the gradient as

∇θL(πθ) = E
s∼dπθ

[
∇aQ

πθ(s,a)|s=st,a=πθ∇θπθ|s=st
]

(3.3)

where Qπθ(st, at) = Est+1 [r(st, at) + γV πθ(st+1)] is called action-value func-

tion. Its output can be interpreted as a value of taking a particular action at

a particular state and following the policy thereafter. The DDPG algorithm

and implementation details can be found in [99]

32

3.5 Inter task Mapping through Manifold Alignment

Transfer in RL setting, the source and target task have a different repre-

sentation of state and action spaces. The cross-domain transfer requires an

inter-task mapping to facilitate a meaningful transfer. State space s(S), s(T)

belonging to two different manifold, cannot be directly compared. Unsu-

pervised Manifold Alignment (UMA) technique helps to discover alignment

between two data sets and provide a one to one and onto inter-task mapping.

For ease of exposition we demonstrate the transfer for tasks with same ac-

tion dimensionality. Problems with distinct, non-analogous action spaces is a

straight forward extension and use classification methods to find correspon-

dence between action spaces [105, 11]. Details of the inter-state mapping are

provided in [22, 3] and reference therein.

3.6 Transfer learning through policy adaptation

In this section, we present the details of the central idea of Policy Transfer

through Adaptation using Target Apprentice (TA-TL). Algorithm-1 details

TL through policy adaptation using apprentice model. Algorithm-1 leverages

the inter-task mapping detailed in section-3.5 to move back and forth between

source and target space for knowledge transfer and adaptive policy learning.

The proposed policy transfer architecture is provided in Algorithm-1 and

the working details are as follows. For every initial condition in target task

sT0 ∈ S(T); sT0 are mapped to source space to find the corresponding initial

condition of source task using the inverse manifold mapping as ŝSi = χs
+(sTi).

Where χs
+ is the inverse mapping from target to source and ŝSi represents

the image of sTi in source state space. For the mapped state in source task,

an optimal action is selected using learned policy π(S)(ŝSi).

Using this selected action aSi the source model at state ŝ
(S)
i is propagated

to sSi+1. The propagated state in source task is mapped back to the target

space using inter-task mapping function ŝTi+1 = χs(s
S
i+1) where ŝTi+1 is the

image of sSi+1 in the target space.

From Assumption-3.3.1, every selected normalized action ā(s) ∈ Ā(S) of

source task has equivalent correspondence in the target space. Using this

33

Algorithm 1 Transfer Learning through Policy Adaptation

1: Input: π∗(S)(s), χS and P̂(T)

2: Initialize sT0 ∼ ρ0.

3: while s
(T)
i = terminal do

4: ŝSi = χs
+(sTi) {Project the target task state to source space}

5: aSi = τ (S)π∗(S)(ŝSi)
{Generate the optimal action using Source policy}

6: sSi+1 = P(S)(ŝSi , a
S
i) {Query the source task model at state ŝSi and

action aSi }
7: ŝTi+1 = χs(s

S
i+1)

{Project back the source task propagated state to target space}
8: π

(T)
ad = P̂(T)(sTi , a

T
i)− ŝTi+1 {Compute the adaptive policy}

9: π∗T = τ (T)π∗(S)(χs(s
S)) +Kπ(T)

ad {TL policy for target task}
10: a∗Ti ∼ π∗T (si) {Draw action from policy π∗T (si) and propagate the

target model}
11: end while=0

equivalence of actions in normalized action space, a corresponding scaled

action aTi ∈ A(T) in target space is selected as aTi = τ (T)π(S)(ŝ
(S)
i). The

selected action for target task is augmented with a policy adaption term

a
(T)
ad ∈ A

(T)
ad derived from adaptive policy,

π
(T)
ad = P(T)

(S) (sSi , a
S
i)− P̂(T)(sTi , a

T
i) (3.4)

a
(T)
ad = π

(T)
ad (sT) (3.5)

where P̂(T)(sTi , a
T
i) is apprentice model and P(T)

(S) (sSi , a
S
i) = χs(P(S)(sSi , a

S
i))

is the projected source model on to target space. The total transferred policy

for solving a related target task is proposed to be a linear combination of

mapped optimal policy and an adaptive policy as follows,

π∗(T)(.) = τ (T)π∗(S)(χs(.)) +Kπ(T)
ad (.) (3.6)

The flow diagram of the proposed transfer algorithm is provided in supple-

mentary Section-5 Figure-2.

34

3.6.1 ε-Optimality of the Projected Adapted Policy

We analyze the admissibility of the target policy (3.6) by proving the ξ(ε)-

optimal solutions of the projected-adapted source policy in target space. For

this purpose we assume the target model to be a nonlinear control affine

system and the source model be any general nonlinear plant model. The

proof follows from the system theory and universal approximation theorem

[106] for single hidden layer networks and is provided in the supplementary

document.

Theorem 3.6.1 For any given small ε ≥ 0, there exists a δ(ε) such that

the difference between true target model and target apprentice model over the

entire reachable state-action space be

dM∗,M̂ = sup
(s,a)∈S×A

‖P(T)(s, a)− P̂(T)(s, a)‖ ≤ δ(ε) (3.7)

Then using the modified policy (3.6) we can show the trajectories in target

task under policy π∗(T) are equivalent to projected optimal source trajectories.

sTi+1 = χs

(
P(S)(sSi , a

S
i)
)

+ ξ(ε) (3.8)

where ξ(ε) = χs‖P(T)(s, a)− αP̂(T)(s, a)‖

Proof We analyze the admissibility of the augmented policy for the target

space. Target model is assumed to be any nonlinear, control affine system

and source model be any nonlinear system. The discrete transition model

for both source and target model can be considered as follows,

P(S)(s, a) : sSi+1 = F∗(S)(sSi , a
S
i) (3.9)

P(T)(s, a) : sTi+1 = F∗(T)(sTi) + BaTi (3.10)

where sS ∈ S(S), sT ∈ S(T) and aS ∈ A(S), aT ∈ A(T).

The target apprentice is an approximation to the target model. We retain

the control affine property of the target model by using appropriate basis of

the single layer neural network, to model the target dynamics. The approx-

imate or the apprentice model of the target can be written as function of

35

network weights and basis as,

P̂(T)(s, a) : sTi+1 = F̂ (T)(si) + B̂a(T)
i (3.11)

=
[
Ŵ B̂

]
×
[
ψ(s

(T)
i) a

(T)
i

]T
(3.12)

where F̂ (T)(st) = Ŵ (T)ψ(s
(T)
i) and φ =

[
Ŵ B̂

]
, Ψ(sTi , a

T
i) =

[
ψ(s

(T)
i) a

(T)
i

]
be target apprentice network weights and basis function.

Sampling the action from modified target optimal policy (3.6) a
(T)
i =

π∗(T)((sTi)) and applying it to target model following holds,

s
(T)
i+1 = F∗(T)(sTi) + Ba(T)

S,i + BKa(T)
ad,i (3.13)

where a
(T)
S,i = τ (T)π∗(S)(χs(s

T
i)) is the mapped optimal action to target space

corresponding to source optimal policy and a
(T)
ad,i = π

(T)
ad (sTi) is modification

term to mapped optimal action to cancel the effects of model error.

From definition of model adaptive policy (3.5) and apprentice model (3.12),

above expression can be written as

s
(T)
i+1 = F∗(T)(sTi) + Ba(T)

(S),i + BK
(
P(T)

(S) (sSi , a
S
i)− F̂ (T)(si)− B̂a(T)

i

)
For choice of policy mixture coefficient K = B̂−1. The above expression

simplifies to,

sTi+1 = αP(T)
(S) (sSi , a

S
i) +

(
P(T)(s, a)− αP̂(T)(s, a)

)
(3.14)

Where α = BB̂−1, and for persistently exciting data D = [si, ai, si+1]Ni=1

collected for apprentice estimation, convergence of the parameters to true

value can be shown [107], ensuring α ≈ 1

Using the definition of projected model and (3.10) the above expression

(3.14), can be rewritten in terms of source transition model using the inter-

task mapping function χS as

sTi+1 = χs

(
F∗(S)(sSi , a

S
i)
)

+ ξ(ε) (3.15)

where ξ(ε) = χs‖P(T)(s, a)− αP̂(T)(s, a)‖
Expression (3.15) demonstrates that implementation of the modified opti-

36

mal policy (3.6) in target task is equivalent to projecting the source optimal

trajectories on to the target space, leading to ξ(ε)-optimal solutions in the

target task.

For given any small “δ(ε)” error in the adaptive policy learning, results in the

imperfect model cancellation, which we show leads to suboptimal behavior

in target task. With the advantage of high sample efficiency of the proposed

technique, near-optimal behavior in the target can be acceptable.

3.7 Theoretical bounds on sample complexity

In this section, we prove theoretical bounds on sample complexity of the

proposed transfer algorithm. We show that the sample complexity for the

proposed method has no dependence on |S| and |A|.
Though there is enough empirical evidence that transfer can improve per-

formance in subsequent reinforcement-learning tasks, there has been very

little theoretical analysis. Since most of the proposed algorithms approach

the problem of transfer as a method of providing good initialization to target

task RL, we can expect the sample complexity to be still a function of the

cardinality of state-action pairs |N | = |S| × |A|. On the contrary, we show

the sample complexity of the proposed method is free of |N | thereby provid-

ing faster and efficient transfer across the domains. Another reason for our

proposed algorithm to be efficient is, we engage in supervised learning of the

target apprentice to facilitate the transfer as compared to initialized RL in

the state of art TL methods.

As we have seen in the previous section, we do not engage in target task

learning, but we learn an apprentice to the target model which assist in

reusing the optimal source policy. However, we do not require the estimate

of the transition model of the target over the entire state and action space. In-

stead, we show that it is sufficient to have a good approximate model around

the trajectories sampled starting from the state s0 ∼ ρ0, using source pol-

icy with added exploration noise as behavioral policy. As we collect enough

samples in replay buffer D to express the state-action pairs of interest, we

show the sample complexity of cross-domain policy transfer to be a function

of |D|.

37

Definition 3.7.1 The replay buffer D is defined as the set of state-action-

state pairs collected over the trajectories generated starting from s0 ∼ ρ0 such

that the target apprentice model estimated over this buffer satisfies model

approximation identity (3.7).

3.7.1 Sample Complexity of TA-TL

Let’s define MDP M∗ and M̂ which differ only in their transition models.

For analysis, we assume an oracle provides us the true adaption term, such

that the resulting transition model is equivalent to the true source transition

probability projected on to the target task. Let M̂ be the model achieved

using the adaption term, estimated interacting with the target model. P

and P̂ be the transition model associated with M∗, M̂ respectively. We

analyze the sample complexity of the proposed policy transfer through policy

adaptation in achieving the ε-optimal return.

Definition 3.7.2 Given the value function V ∗ = V π∗ and model M1 and M2,

which differ only in the corresponding transition models P1 and P2, defined

∀s, a ∈ S ×A

dV
∗

M1,M2
= sup

s,a∈S×A

∣∣∣∣ E
s′∼P1(s,a)

[V ∗(s′)]− E
s′∼P2(s,a)

[V ∗(s′)]

∣∣∣∣
Lemma 3.7.3 If M∗ be the MDP with true projected source model on to the

target space P
(T)
(S) and M̂ be the MDP with adapted model P̂

(T)
(S) estimated over

D. Using Definition 4.6.2, ∀s, a ∈ S × A and any δ ∈ (0, 1), w.p at least

1− δ, the following error bound is satisfied

dV
∗

M∗,M̂
≤ ρvδ(ε)

√
|H|
2
log

(
2

δ

)
where

dV
∗

M∗,M̂
= sup

s,a∈S×A

∣∣∣∣∣∣ E
s′∼P (T)

(S)
(s,a)

[V ∗(s′)]− E
s′∼P̂ (T)

(S)
(s,a)

[V ∗(s′)]

∣∣∣∣∣∣
The proof of the above lemma is straight forward using finite differences

assumption , Hoeffding’s lemma and using the fact that the value function

V π∗(s) is ρv-Lipschitz [108], such that |∇V π∗(s)| ≤ ρv.

38

Proof Let the value function V π∗ =
∑H

i=1 γ
ir(si, ai) be the total discounted

reward over |D| i.i.d trajectories with action taken according to π∗.

For some c > 0 and for states s′ ∼ P
(T)
(s) (s, a) and s′′ ∼ P̂

(T)
(s) (s, a) the

bounded difference for all s, a ∈ S ×A can be written as

‖V ∗(s′)− V ∗(s′′)‖∞ ≤ c

We use the first order Taylor series approximation to bound the above error.

Using the fact that V ∗ is ρv-Lipschitz and using the Triangle Inequality we

have

‖V ∗(s′)− V ∗(s′′)‖∞ ≤
∥∥∥∥∂V ∗∂s

∥∥∥∥
∞
‖(s′ − s′′)‖∞

= ρvdM∗,M

= ρvδ(ε)

Hence we have shown that ‖V ∗(s′)− V ∗(s′′)‖∞ is bounded in the infinity

norm, with the nonnegative difference between V ∗(s′) and V ∗(s′′) c being

c = ρvδ(ε). (3.16)

Using the McDiaramids Inequality on the real valued functions V ∗ : S → R,

and using the definition of c from eq. 3.16, completes the proof:∣∣∣∣∣∣V ∗(s′)− E
s′∼P̂ (T)

(S)
(s,a)

[V ∗(s′)]

∣∣∣∣∣∣ ≤ c

√
|H|
2

log

(
2

δ

)

= ρvδ(ε)

√
|H|
2

log

(
2

δ

)

Lemma 3.7.4 Given M∗, M̂ and value function V π∗
M∗, V

π∗

M̂
the following

bound holds
∥∥∥V π∗

M∗ − V π∗

M̂

∥∥∥
∞
≤ |D|dV ∗

M∗,M̂

The proof of this lemma is finer version of the simulation lemma. The com-

mon results are found in PAC exploration algorithms [109]. Similar results

for RL with imperfect model are reported by [110].

Proof Let T ∗, T̂ be the Bellman update operator of M∗ and M̂ respectively.

For the bounded function V ∗ : S → R for s, a ∈ S ×A, lets consider the one

39

step error ∥∥∥V ∗(s)− T̂ V ∗(s)∥∥∥
∞

=
∥∥∥T ∗V ∗(s)− T̂ V ∗(s)∥∥∥

∞

The above statement is true due to fact V ∗(s) satisfies the Bellman equation

V ∗(s) = T ∗V ∗(s)

Using the definition of Bellman operator we can write∥∥∥T ∗V ∗(s)− T̂ V ∗(s)∥∥∥
∞

= max
s,a∈S×A

∣∣∣∣∣∣ E
s′∼P (T)

(S)
(s,a)

[V ∗(s′)]− E
s′∼P̂ (T)

(S)
(s,a)

[V ∗(s′)]

∣∣∣∣∣∣
≤ dV

∗

M∗,M̂

Therefore we can bound the difference of total discounted value function over

the trajectories generated by source optimal policy π(S)∗ over M∗ and M̂ as

follows.

Add and subtract T̂ V ∗M∗ and applying the Triangular inequality we can

write∥∥∥V ∗M∗ − T̂ V ∗M̂∥∥∥∞ =
∥∥∥V ∗M∗ − T̂ V ∗M∗ + T̂ V ∗M∗ − T̂ V ∗M̂

∥∥∥
∞

≤ dV
∗

M∗,M̂
+
∥∥∥T̂ V ∗M∗ − T̂ V ∗M̂∥∥∥∞

= dV
∗

M∗,M̂
+ max

s,a∈S×A

∣∣∣∣∣∣ E
s′∼P̂ (T)

(S)
(s,a)

[V ∗M∗(s
′)]− E

s′∼P̂ (T)
(S)

(s,a)

[V ∗
M̂

(s′)]

∣∣∣∣∣∣
Repeating the above steps for D samples on the support S \ s1 yields the

result.

Theorem 3.7.5 let Φ, ρj > 0. let Jφ be a convex function and let φ∗ =

argminφ:‖φ‖≤Φ Jφ. Also assume that ‖∇φJφ‖ ≤ ρj w.p 1. Using SGD for

target apprentice learning; at least T iterations are required with η =
√

Φ2

ρ2T
,

where

T ≥ β2

(
Φ|D|2

ε2

)2(|H|
2

log

(
2

δ

))2

40

s.t to satisfy ε-optimality of the value function as given in Lemma-3.7.4 with

the adapted policy.

Proof We prove this theorem using convergence rate of mini-batch SGD

algorithm. The convergence proof of SGD is elementary and can found in

[111]. Let φ∗ be minimizer of J (φ) and be upper bounded by ‖φ∗‖∞ ≤ Φ.

Using learning rate η and assuming J (φ∗) = 0 we know the following results

holds

δ(ε)2 ≤ Φρj√
T

(3.17)

where δ(ε) is defined in (3.7). Using the Lemma-3.7.4 and letting the error

in optimal return for adapted policy be ε solve for δ(ε) as

δ(ε) =
ε

|D|ρv
√
|H|
2

log
(

2
δ

)
Using this expression for δ(ε) in (3.17) and setting β = ρρ2

v, solving for T

yields the desired result.

3.8 Target Task Apprentice Learning

Target apprentice is an approximate model for the target task. The target

apprentice model is learned over data collected through random exploration

in the target domain around projected source trajectories[7]. From simulation

lemma [109] we know that it is sufficient to explore in the vicinity of optimal

policies to perform near optimally with the approximated model in the target

space.

3.8.1 Apprentice Learning

The training dataset is collected starting from random initial condition sam-

pled according to sj0 ∼ ρ0. Actions are executed according to policy ai ∼
τTπ(s)(si) + aε where aε being exploration noise. The resulting trajectories

each of length H are stored Dj := {s0, a0, s1, a1 . . . sH}j. Randomly sampled

data-points from D is divided as training inputs {st, at}Lt=1 and target value

{st+1}Lt=1. Using stored data of state-action-state triplets, we train the dy-

41

namic model f̂φ(st, at) by minimizing the empirical risk using least square

regression for linearly parametrized model.

J (φ) =
1

Dtr

∑
st,at,st+1∈Dtr

(
1

2
‖f̂φ(st, at)− st+1‖2

)
(3.18)

The network parameters φ = [Ŵ , B̂] are stored upon convergence. The

trained model is evaluated over the trajectories not seen during the training.

We evaluate the utility of the projected policy π̂(T) = τ (T)π∗(S)(χs(s
T)) in

target model on both true and approximate MDP, M (T) and M̂ (T). Utility

function UM(π) is defined as average reward accumulated for k trials. If

UM(π̂(T)) − UM̂(π̂(T)) ≤ ζ, the minimization routine return the model pa-

rameters φ, where ζ is some chosen small threshold on the performance.

It should be noted that while a Deep network is ideally suited for learning

the value functions, this is not the case for the apprentice model, which is

an approximate model of the true dynamics. A single layer neural network

is used with suitable activation functions to model the continuous dynamics

of the target task. For tasks with more complex transition models, a deep

architecture with multiple layers can also be used [112]. This exercise is

underway and left for follow-on work.

3.9 Experiments & Results

The primary results presented in this section is focused on the cross-domain

transfer of the policy from the cart-pole to the bicycle balancing task and

a transfer from simulation to real world scenario through transfer between

inverted pendulum domains with the non-stationary target environment.

We also demonstrate the proposed method on simple yet challenging cross-

domain transfer from Mountain-Car(MC) to Inverted Pendulum (IP). We

also examine the robustness of the presented approach against negative trans-

fer through our final experiment. We evaluate the presented Target Appren-

tice TL(TA-TL) against existing cross-domain state of the art transfer in

RL, Unsupervised Manifold Alignment-TL(UMA-TL) [22] and no transfer

Deep-RL(DDPG).

42

3.10 Same-Domain Transfer

We learn the optimal policy in the source task using FQI. In each problem,

distinction in the environment/system parameters makes the source and tar-

get tasks different. The target and source domains have the same state-space

but different transition models and action spaces. We also do not need target

reward model be similar to source task, as the proposed algorithm directly

adapts the policy from the source task and does not engage in RL in the

target domain.

3.10.1 Grid World to Windy Grid World

The source task in this experiment is Non-Windy (NW) grid world. The

state variables describing the system are grid positions. The RL objective is

to navigate an agent through obstacles from start to goal position optimally.

The admissible actions are up (+1), down (−1), right (+1) and left (−1). The

reward function is +10 for reaching goal position, −1 for hitting obstacles

and 0 everywhere else. The target domain is same as the source but with

the added wind which affects the transition model in parts of the state-space

(see Figure 3.1b).

The optimal policy in source task (non-windy grid world) π∗(S) is learned

using Q-Iteration. We do not need any inter-task mapping as the source,

and target state spaces are identical. We start with 100 randomly sampled

starting position and execute policy π∗(S) in the target domain and collect

samples for apprentice model learning. Empirically, we show the proposed

method (TA-TL) provides a sample efficient TL algorithm compared to other

transfer techniques. Figure 3.1a and 3.1b shows the results of same domain

transfer in the grid world, demonstrating TA-TL achieving successful transfer

in navigating through the grid with obstacles and wind bias. Figure 3.1c

and 3.1d shows the quality of transfer through faster convergence to average

maximum reward with lesser training samples compared to UMA-TL and

RL methods. The presented algorithm can attain maximum average reward

in reaching goal position in ∼ 2 × 104 steps. UMA-TL and RL algorithm

achieve similar performance in ∼ 1.2×105 and ∼ 1.7×105 steps respectively,

nearly one order higher compared to proposed TA-TL.

43

(a) (b)

(c) (d)

Figure 3.1: Non windy to Windy grid World Transfer:(a) & (b) Agent
navigating through grid world in source and target domain (c) Average
Rewards & (d) Training length, Comparing quality of transfer for TA-TL
and UMA-TL through convergence rate of Average Reward and Training
Length

44

3.10.2 Inverted Pendulum (IP) to time-varying IP

We demonstrate our approach for a continuous state domain, Inverted Pen-

dulum (IP) swing-up and balance Figure-3.2. The source task is the con-

ventional IP domain. The target task differs from the source task in the

transition model. The target task is a non-stationary inverted pendulum,

where the length and mass of the pendulum are continuously time varying

with function Li = L0 + 0.5cos(πi
50

) and Mi = M0 + 0.5cos(πi
50

), where L0 = 1,

M0 = 1 and i = 1 . . . N . The state variables describing the system are angle

and angular velocity {θ, θ̇} ∈ [−π, π]. The RL objective is to swing-up and

balance the pendulum upright such that θ = 0, θ̇ = 0. The reward function is

selected as R(θ, θ̇) = −10|θ|2−5|θ̇|2, which yields maximum value at upright

position and minimum at the down-most position. The continuous action

space is bounded by T ∈ [−1, 1]. Note that the domain is tricky, since full

throttle action is assumed to not generate enough torque to be able to swing

the pendulum to the upright position, hence, the agent must learn to swing

the pendulum back and forth and leverages angular momentum to go to the

upright position.

(a)
(b)

Figure 3.2: Policy Transfer from Inverted Pendulum to Non-stationary
Inverted pendulum: (a) Average Rewards and (b) Training length,
TA-TL(ATL ours), UMA-TL(Jumpstart-RL) and Stand-alone RL

45

3.11 Cross Domain Transfer

3.11.1 Cart-Pole to Bicycle:

(a)

(b)

Figure 3.3: (a) Cart-Pole and Bicycle Domain (b)Average Rewards for
TA-TL (ours), UMA-TL (jumpstart) and RL

Bicycle balancing is a challenging physical problem, especially when the

bicycle velocity is below the critical velocity Vc = 4m/s to 5m/s. We set

the bicycle velocity to be V < Vc i.e. V = 2.778m/s such that the bicycle

becomes unstable, and active control is required to maintain stability. The

simulation itself is very high fidelity and realistic which was designed for

46

(a) (b)

Figure 3.4: Policy Transfer from Cart-Pole to Bike Balancing: (a) Total
simulation time (in seconds) the agent was able to balance the bike in
training (b) Total time required to solve the task for TA-TL (ours),
UMA-TL (jumpstart) and RL

studying the physics of the bicycle.

The states of the bicycle task are angle and angular velocity of the han-

dlebar and the bike from vertical (θ, θ̇, ω, ω̇) respectively. For the given state

the agent is in, it chooses an continuous action of applying torque to handle-

bar, T ∈ [−2Nm, 2Nm] trying to keep bike upright. The details of bicycle

dynamics are beyond the scope of this thesis, interested readers are referred

to [113, 114] and references therein.

We use the Cart-Pole as source task for learning to balance a bicycle. The

bicycle balance problem in principle is similar to that of cart-pole, since the

objective is to keep the unstable system upright. The objective of balance

is achieved in both the systems by moving in the direction of fall, which is

termed as a non-minimum phase behavior in the controls system literature.

The control in the cart pole affects the angle of the pole, by moving the

cart such that it is always under the pole. In the bicycle, the control is to

move the handlebar in the direction of fall. However, balancing the bike is not

straightforward, to turn the bike under itself, one must first steer in the other

direction before turning in the direction of fall; this is called counter steering

[114]. We observe that both cart pole and bicycle has this commonality in

their dynamical behaviors, as both the system have a non-minimum phase

that is the presence of unstable zero. This similarity qualifies the cart-pole

system as an appropriate choice of source model for bicycle balance task.

47

Cart pole is characterized by state vector [x, ẋ, θ, θ̇], i.e., position, velocity

of cart and angle, angular velocity of the pendulum. The action space is

the force applied to the cart F ∈ [−1N, 1N]. For mapping between the

state space of bicycle and cart pole model, we use Unsupervised Manifold

Alignment(UMA) to obtain this mapping [3]. We do not report the training

time to learn the intertask mapping since it is common to both ATL and

UMA-TL methods. Figure 3.3b and 3.4 shows the quality of transfer for

ATL through faster convergence to average maximum reward with lesser

training samples compared to UMA-TL and RL methods.

3.11.2 Mountain Car (MC) to Inverted Pendulum (IP)

(a)
(b)

Figure 3.5: Policy Transfer from Mountain Car to Inverted Pendulum: (a)
Average Rewards and (b) Training length

We also demonstrate the cross-domain transfer between mountain car to

an inverted pendulum. The source and target task are characterized by

different state and action space. The source task MC is a benchmark RL

problem of driving an under-powered car up a hill. The dynamics of MC

are described by two continuous state variables (x, ẋ) where x ∈ [−1.2, 0.6]

and ẋ ∈ [−0.07, 0.07] and one continuous action F ∈ [−1, 1]. The reward

function is proportional to negative of the square distance of the car from goal

position. The target task is conventional IP with state (θ, θ̇) ∈ (−π, π) and

action T ∈ [−1, 1]. We present the performance of transfer methods based

on sample efficiency in learning the target task and speed of convergence to

maximum average reward. Similar to the bicycle domain transfer Figure 3.5a

48

and 3.5b shows the quality of transfer for ATL through faster convergence to

average maximum reward with lesser training samples compared to UMA-TL

and RL methods.

3.11.3 Robustness to Negative Transfer

(a) (b)

Figure 3.6: Negative Transfer Inverted Pendulum: (a) Average Reward and
(b) Training length

We demonstrate that the proposed transfer is robust to negative transfers,

that is, cases in transfer learning where naive initialization of the target using

source policy could be detrimental. We demonstrate this through an inverted

pendulum upright balance task with the sign of control flipped. That is, we

use inverted pendulum model as both source and target systems but the

target is the inverse of the source model with the sign of the control action

flipped. It should be noted that dealing with change of sign in control has

been considered a highly challenging problem in adaptive control [56]. We

demonstrate ATL is immune to negative transfers. Figure 3.6a and 3.6b

demonstrate convergence to average maximum reward with lesser training

samples for proposed ATL method compared to Initialized-RL(UMA-TL)

and standalone-RL methods. It is to be observed that UMA-TL method

suffers from a negative transfer phenomenon. The agent under UMA-TL

converges to much lower average reward by getting stuck in a local minima

and never achieves the upright balance of the pendulum.

Also, the samples observed by UMA-TL in learning the task is much higher

compared to no transfer (RL) and proposed ATL methods. If the source

49

and target are not sufficiently related or the features of source task do not

correspond to the target, the transfer may not improve or even decrease

the performance in target task leading to negative transfer. We show that

the UMA-TL suffers from a negative transfer in this results, where as the

performance of presented ATL is much superior compared to UMA-TL and

RL(learning from scratch).

50

CHAPTER 4

ADAPT TO LEARN: POLICY TRANSFER

Efficient and robust policy transfer remains a key challenge in reinforcement

learning. Policy transfer through warm initialization, imitation, or interact-

ing over a large set of agents with randomized instances, have been commonly

applied to solve a variety of Reinforcement Learning tasks. However, this is

far from how skill transfer happens in the biological world: Humans and an-

imals are able to quickly adapt the learned behaviors between similar tasks

and learn new skills when presented with new situations. Here we seek to an-

swer the question: Will learning to combine adaptation and exploration lead

to a more efficient transfer of policies between domains? IN previous chapter

we introduced a model based policy transfer. In this chapter we will intro-

duce a Model-Free “Adapt-to-Learn” policy transfer architecture; which

will adapt the source policy to learn to solve a target task with significant

transition differences and uncertainties. We show through theory and exper-

iments that our method leads to a robust policy transfer algorithm with a

significantly reduced sample complexity of transferring the skills between the

tasks.

4.1 Introduction

Adapt-to-Learn is inspired by the fact that combined adaptation of behav-

iors and learning through experience is a primary mechanism of learning in

biological creatures [115, 116]. Imitation Learning (IL) [14, 30] also seems to

play a very crucial part in skill transfer, and as such has been widely stud-

ied in RL. In control theory such adaptation in reference tracking problems

has been typically restricted to deterministic dynamical systems with well-

defined reference trajectories [55, 56]. Inspired by this ability of biological

creatures, we seek to answer the question: Will learning to combine adapta-

51

tion and learning from exploration lead to more efficient transfer of policies

between domains? We demonstrate that the ability to adapt and incorporate

further learning can be achieved through optimizing over combined environ-

mental rewards with intrinsic adaptation rewards. Thereby, we ensure that

the agent quickly adapts and also learns to acquire skills beyond what the

source policy can teach. We experiment the presented policy transfer al-

gorithm between tasks with significant differences in the transition models,

which otherwise, using IL or Guided Policy Search (GPS)[12], fail to produce

any stable solution.

4.2 Preliminaries

Consider an infinite horizon MDP defined as a tupleM = (S,A,P ,R, ρ0, γ),

where S denote set of continuous states; A is a set of continuous bounded

actions, P : S × A × S → R+ is state transition probability distribution of

reaching s′ upon taking action a in s, ρ0 : S → R+ is the distribution over

initial states s0 and R : S ×A → R+ is deterministic reward function.

Let π(a|s) : S × A → [0, 1] be stochastic policy over continuous state

and action space. The action from a policy is a draw from the distribution

ai ∼ π(ai|si). The agent’s goal is to find a policy π? which maximize the

total return. The total return under a policy π is given as,

ηπ(s0) = Es0,a0,...

(
∞∑
t=0

γtr(st, at)

)
. (4.1)

where, s0 ∼ ρ0, at ∼ π(at|st) and st+1 ∼ p(st+1|st, at).
We will use the following definition of the state value function V π and

state-action value function Qπ defined under any policy π

V π(st) = Eat,st+1,at+1,...

(
∞∑
i=0

γir(si+t, ai+t)

)
,

Qπ(st, at) = Est+1,at+1,...

(
∞∑
i=0

γir(si+t, ai+t)

)
.

We now formalize the problem of policy transfer: Consider a source MDP

MS = (S,A,P ,R, ρ0, γ)S, and a target MDP MT = (S,A,P ,R, ρ0, γ)T ,

52

each with its own state-action space and transition model respectively. We

will mainly focus on the problem of same domain transfer, where the state and

action space are analogous S(S) = S(T) = S ⊆ Rm and A(T) = A(S) = A ⊆
Rk, but the source and target state transition models differ significantly due

to unmodeled dynamics or external environment interactions. Note that the

presented method can also be extended to handle cross-domain transfer using

domain alignment techniques such as manifold alignment (MA) [3]. Cross-

domain transfer results using the presented Adapt-to-Learn (ATL) algorithm

with MA are provided in the supplementary document.

Let π∗ be a parameterized optimal stochastic policy for source MDPMS.

The source policy π∗ can be obtained using any available RL methods [72,

73, 74]. We do not assume to have access to the parameters of the source

optimal policy. We assume source policy to be a stochastic black-box neural

network which given states spits out actions. We use the Proximal Policy

Optimization (PPO) [74] algorithm to generate the source optimal policy,

and a warm-started PPO-TL [22] as the state of the art TL solution against

which our ATL algorithm is compared.

4.3 Adapt-to-Learn: Policy Transfer in RL

In the presented transfer algorithm, we approach the problem of transfer

learning for RL through adaptation of previously learned policies. Our goal

is to show that an algorithm that can judiciously combine adaptation and

learning is capable of avoiding brute force random exploration to a large

extent and be significantly less sample expensive.

Towards this goal, our approach is to enable the agent to learn the optimal

mixture of adaptation (which we term as behavioral imitation) and learning

from exploration. Our method differs from existing transfer methods that

rely on Warm-Started TL or policy imitation [30, 14] in a key way: Unlike

imitation learning, we do not aim to emulate the source optimal policy;

instead, we try mimic the source transitions under source optimal policy.

53

4.3.1 Policy Adaptation for Transfer

ATL has two components to policy transfer, Adaptation and Learning. We

begin by mathematically describing our approach of adaptation for policy

transfer in RL and state all the necessary assumptions in Section 4.3.1. We

then develop the Adapt-to-Learn algorithm in Section 4.3.2 by adding the

learning from random exploration component.

Adaptation of policies aims to generate the policy πθ such that at every

given s ∈ ST the target transition approximately mimics the source transi-

tions under source optimal policy as projected onto the target manifold. We

can loosely state the adaptation objective as

PT (.|s, πθ(a|s)) ≈ PS(.|ŝ, π∗(a′|ŝ)), ∀s ∈ ST , (4.2)

Where ŝ = χST (s), i.e. target state projected onto source manifold. The

mapping χST is a bijective Manifold Alignment (MA) between source and

target, state-action spaces {S,A}S, {S,A}T . The MA mapping is required

for cross-domain transfers [22]. For ease of exposition, we focus on the same

domain transfer and assume MA mapping to be identity, such that χST =

χTS = I.

Note that our goal is not to directly imitate the policy itself, but rather

use the source behavior as a guideline for finding optimal transitions in the

target domain. This behavioral imitation objective can be achieved by mini-

mizing the average KL divergence between point-wise local target trajectory

likelihoods pT (s′i+1|si, πθ(si)), and the source transition under source optimal

policy pS(s′i+1|si, π∗(si)) as described below.

We define the state transition likelihood as conditional probability of land-

ing in the state s′ starting from state st under some action at ∼ πθ(at|st).
Unlike state transition probability, the state s′ is not the next transitioned

state but a random state at which this probability is evaluated (Hence s′

need not have the time stamp t + 1). This adaptation objective can be

formalized as minimizing the average KL-divergence [73] between source and

target transition trajectories as follows,

η
KL

(πθ, π
∗) = DKL(pπθ(τ)‖qπ∗(τ)),

η
KL

(πθ, π
∗) =

∫
S,A

pπθ(τ) log

(
pπθ(τ)

qπ∗(τ)

)
dτ (4.3)

54

Figure 4.1: Target Trajectory under policy πθ and local trajectory deviation
under source optimal policy π∗ and source transition pS

(a) (b)

(c)

Figure 4.2: Intrinsic KL divergence Objective: (a) One step Transition
starting from state s0 under policy πθ under target Transition model (b)
One step simulated transition from state s0 under source optimal policy π∗

and source transition model (c)Likelihood of landing in state s
′
1 starting

from state s0 using policy πθ and target transitions

55

where τ is the trajectory in the target domain under the policy πθ(a|s) defined

as τ = (s0, s1, s2, . . .).

The probability of the trajectory pπθ(τ) under policy πθ(at|st) and target

transition pT (.|st, at) can be written as

pπθ(τ) = ρ(s0)
∞∏
t=0

πθ(at|st)pT (st+1|st, at). (4.4)

Similarly qπ∗(τ) can be defined as probability of trajectory deviations at every

state st ∈ τ when the source optimal policy π∗(a′t|st) is used in place of target

policy πθ(at|st), and the states evolve according to the source transitions

model pS(.|st, a′t):

qπ∗(τ) = ρ(s0)
∞∏
t=0

π∗(a′t|st)pS(s′t+1|st, a′t). (4.5)

Unlike the conventional treatment of KL-term in the RL literature, the

transition probabilities in the KL divergence in Eq-(4.3) are treated as tran-

sition likelihoods and the transitioned state st+1 as a random variable. The

policy πθ learns to mimic the optimal transitions by minimizing the KL

distance between the transition likelihoods of the target agent reaching the

reference states {s′i}∞i=1 and the source transitions evalauted at {si}∞i=0.

Using the definition of the probabilities of the trajectories under πθ and π∗

(Equation-(4.4) & (4.5)) the log term in the KL divergence of the trajectory

(4.3) can be simplified as follows

log

(
pπθ(τ)

qπ∗(τ)

)
= log

(
ρ(s0)π(a0|s0)pT (s′1|s0, a0) . . .

ρ(s0)π∗(a′0|s0)pS(s′1|s0, a′0) . . .

)
(4.6)

Assumption 4.3.1 We assume that optimal source policy is known, and

thus, the optimal actions can be chosen with a very high probability π∗(a′t|st) ≈
1, ∀st ∈ ST .

We need this assumption only for deriving the expression for intrinsic re-

ward, which is presented further in this section. In the empirical evaluation

of the algorithm, the source policy π∗(a′t|st) is used as a stochastic policy

to facilitate exploration. However, Assumption-4.3.1 also helps us to extend

the proposed transfer architecture to deterministic source policy or source

56

policy derived from a human expert; since a human teacher cannot specify

the probability of choosing an action.

Using Eq-(4.6) and Assumption-4.3.1 i.e. π∗(a′t|st) = 1∀st we derive a

surrogate loss η̄
KL

(πθ, π
∗) which lower bounds the true KL loss Eq-(4.3),

such that,

η̄
KL

(πθ, π
∗) ≤ η

KL
(πθ, π

∗),

The expression for surrogate loss is defined follows,

η̄
KL

(πθ, π
∗) = E

st,at∼τ

(
∞∑
t=0

log

(
πθ(at|st)pT (s′t+1|st, at)

pS(s′t+1|st, a′t)

))
, (4.7)

η̄
KL

(πθ, π
∗) = E

st,at∼τ

(
∞∑
t=0

ζt

)
, (4.8)

where

ζt = log

(
πθ(at|st)pT (s′t+1|st, at)

pS(s′t+1|st, a′t)

)
.

4.3.2 Combined Adaptation and Learning

We achieve Adaption and Learning simultaneously by augmenting environ-

ment reward rt ∈ RT with intrinsic reward ζt. By optimizing over behavioral

imitation intrinsic return and cumulative future environmental reward simul-

taneously, we achieve transferred policies that try to both follow source advice

and learn to acquire skills beyond what source can teach. This trade-off be-

tween learning by exploration and learning by adaptation can be realized as

follows:

η̄
KL,β

= E
st,at

(
∞∑
t=0

γt((1− β)rt − βζt)

)
. (4.9)

For consistency of the reward mixing, the rewards rt, ζt are normalized to

form the total reward as follows

r′t = (1− β)rt − βζt. (4.10)

where the term β is the mixing coefficient. We learn β for optimal mix-

ing of adaptation and learning over episodic data collected interacting with

environment[117].

57

Assumption 4.3.2 To calculate the intrinsic reward ζt, the true transition

distribution for source and the target are unknown. However, we assume

both source and target transition models follow a Gaussian distribution cen-

tered at the next propagated state with fixed variance “σ”, which is chosen

heuristically.

Though Assumption-4.3.2 might look unrealistic, but is not very restric-

tive. We empirically show that for all the experimented MuJoCo environ-

ments, a bootstrapped Gaussian transition assumption is good enough for

ATL agent to transfer the policy efficiently.

Using the above assumption, we can approximate the individual KL term

(intrinsic reward) as follows,

ζt = log
(
πθ−(at|st)e−(st+1−s′t+1)2/2σ2

)
. (4.11)

The individual terms in the expectation ζt represent the distance between

two transition likelihoods of landing in the next state s′t+1 starting in st and

under actions at, a
′
t. The target agent is encouraged to take actions that lead

to states which are close in expectation to a reference state provided by an

optimal baseline policy operating on the source model. By doing so, we are

providing a possible direction of search for higher environmental rewards rt.

4.3.3 Actor-Critic

Using the definition of value function, the objective Eq-(4.9) can be written

as

η̄
KL,β

= V πθ(s). (4.12)

We can rewrite the expectation as sum over states and actions as follows:

η̄
KL,β

=
∑
s∈S

dπθ(s)
∑
a∈A

πθ(a|s)Qπθ(s, a), (4.13)

where dπθ(s) is the state visitation distributions [72].

Considering the case of an off-policy RL, we use a behavioral policy ψ(a|s)
for generating trajectories. This behavioral policy is different from the policy

πθ(a|s) to be optimized. The objective function in an off-policy RL measures

the total return over the behavioral state visitation distribution and actions,

58

while the mismatch between the training data distribution and the true pol-

icy state distribution is compensated by importance sampling estimator as

follows,

η̄
KL,β

=
∑
s∈S

dπθ− (s)
∑
a∈A

(
ψ(a|s)πθ(a|s)

ψ(a|s)
Qπθ− (s, a)

)
, (4.14)

where θ− is the parameter before update and is known to us. Using the

previously updated policy as the behavioral policy i.e ψ(a|s) = πθ−(a|s), the

objective expression can be rewritten as,

η̄
KL,β

= E
st∼dπθ− ,at∼πθ−

(
πθ(a|s)
πθ−(a|s)

Q̂πθ− (s, a)

)
. (4.15)

Note that we use an estimated state-action value function Q̂ rather than the

true value function Q because the true value function is usually unknown.

The mixed reward r′t is used to compute the ”critic” state-action value

function Q̂. Further, any policy update algorithm [72, 74, 73, 84] can be

used to update the policy in the direction of optimizing this objective.

Learning over a mixture of intrinsic and environmental rewards helps in

the directional search for maximum total return. The source transitions

provide a possible direction in which maximum environmental reward can be

achieved. This trade-off between directional search and random exploration

is achieved using the mixed reward Eq-(4.10). Therefore the proposed source

aided policy search in the target domain leads to a more sample efficient

algorithm compared to any stand-alone RL policy search methods.

4.4 Optimization of Target Policy

In the previous section, we formulated an Adapt-to-Learn policy transfer

algorithm; we now describe how to derive a practical algorithm from these

theoretical foundations under finite sample counts and arbitrary policy pa-

rameterizations.

We can, solve the following optimization problem to generate adaptive

59

policy updates:

π∗Tθ = arg max
πθ∈Π

(
η̄
KL,β

)
,

β ← β + ᾱ∇β η̄KL,β ,

s.t 0 ≤ β ≤ 1.

If calculating the above expectation is feasible, it is possible to maximize

the objective in Eq-(4.15) and move the policy parameters in the direction of

achieving a higher total discounted return. However, this is not generally the

case since the true expectation is intractable. Therefore a common practice is

to use an empirical estimate of the expectation to do approximate planning.

Algorithm 2 Adapt-to-Learn Policy Transfer in RL

Require: π∗(.|s), pS {Source Policy, source simulator}
1: Initialize sT0 ∈ ρ0. {Draw initial state from the given distribution in

target task}
2: for i = 1 ≤ K do
3: while si 6= terminal do
4: a′i ∼ π∗(a′i|si) {Generate the optimal action using Source policy}
5: ai ∼ πθ(ai|si) {Generate the action using the πθ}
6: si+1 ∼ pT (si+1|si, ai) {Apply the action ai at state si in the target

task}
7: s′i+1 ∼ pS(s′i+1|si, a′i) {Apply the action a′i at state si in the source

simulator}
8: ζt = πθ(ai|si)e−(si+1−s′i+1)2/2σ2 {Compute the point-wise KL diver-

gence intrinsic reward term}
9: Zi = ({si, ri, ζi, ai, a′i}) {Incrementally store the trajectory for policy

update}
10: end while
11: PZntrain(∇θη̄KL,β) {Form the Empirical loss}
12: θ′ ← θ + αPZntrain

(
∇θη̄KL,β

)
{Maximize the total return to update the

policy}
13: Collect test trajectories Zn

test using πθ′
14: β ← β + ᾱPZntest

(
∇β η̄KL,β

)
{Maximize the total return for optimal

mixing coefficient}
15: end for=0

60

4.4.1 Sample-Based Estimation of the Gradient

The previous section proposed an optimization method to find the adaptive

policy using KL-divergence as an intrinsic reward, enforcing the target tran-

sition model to mimic the source transitions. This section describes how this

objective can be approximated using a Monte Carlo simulation. The approx-

imate policy update method work by computing an estimator of the gradient

of the return and plugging it into a stochastic gradient ascent algorithm

π∗Tθ = argmax
πθ∈Π

PZn(η̄
KL,β

), (4.16)

θ ← θ + αĝ.

where α is the learning rate and ĝ is the empirical estimate of the gradient

of the total return η̄
KL,β

.

The gradient of the total discounted return is calculated as follows. Lets

take the derivative of the total return term

∇θ(η̄KL,β) = ∇θV
πθ(s) = ∇θ

(∑
a

(πθ(a|s)Qπθ(s, a))

)
∇θV

πθ(s) =
∑
a

∇θπθ(a|s)Qπθ(s, a) +
∑
a

πθ(a|s)∇θQ
πθ(s, a)

(4.17)

Using the following definition in above expression,

Qπθ(si, a) = pT (si+1, |si, a)(r + γV π
θ (si+1))

We can rewrite the gradient to total return over policy πθ as,

∇θV
πθ(s0) =

∑
a

∇θπθ(a|s0)Qπθ(s0, a)

+
∑
s1

pT (s1, |s0, a)
∑
a

πθ(a|s0)∇θ(r0 + γV π
θ (s1))

(4.18)

As the reward rt is independent of θ, we can simplify the above expression

61

and can be re-written as

∇θV
πθ(s0) =

∑
a

∇θπθ(a|s0)Qπθ(s0, a)

+
∑
s1

γpT (s1, |s0, a)
∑
a

πθ(a|s0)∇θV
π
θ (s1)

(4.19)

As we can see the above expression has a recursive property involving term

∇θV
πθ(s). Using the following definition of a discounted state visitation

distribution dπθ

dπθ(s0) = ρ(s0) + γ
∑
a

π(a|s0)
∑
s1

pT (s1|s0, a)

+γ2
∑
a

π(a|s1)
∑
s2

pT (s2|s1, a) . . . (4.20)

we can write the gradient of transfer objective as follows,

∇θ(ηKL,β) =
∑
s∈S

dπθ(s)
∑
a∈A

∇θπθ(a|s)Qπθ(s, a) (4.21)

Considering an off-policy RL update, where πθ− is used for collecting trajec-

tories over which the state-value function is estimated, we can rewrite the

above gradient for offline update as follows,

Multiplying and dividing Eq-4.21 by πθ−(a|s) and πθ(a|s) we form a gra-

dient estimate for offline update,

∇θ(ηKL,β) =
∑
s∈S

dπθ− (s)
∑
a∈A

πθ−(a|s) πθ(a|s)
πθ−(a|s)

∇θπθ(a|s)
πθ(a|s)

Qπθ− (s, a) (4.22)

where the ratio
(

πθ(a|s)
πθ− (a|s)

)
is importance sampling term, and using the fol-

lowing identity the above expression can be rewritten as

∇θπθ(a|s)
πθ(a|s)

= ∇θ log πθ(a|s)

∇θ(ηKL,β) = E
st∼dπθ− ,at∼πθ−

(
πθ(a|s)
πθ−(a|s)

Qπθ− (s, a)∇θ log πθ(a|s)
)

(4.23)

The gradient estimate over i.i.d data from the collected trajectories is com-

62

puted as follows:

ĝ = PZn(∇θη̄KL,β),

= Ê
st,at

(
πθ(a|s)
πθ−(a|s)

Q̂πθ− (s, a)∇θ log πθ(a|s)
)
, (4.24)

PZn(∇θη̄KL,β) =
1

n

n∑
i=1

(
πθ(ai|si)
πθ−(ai|si)

Q̂πθ− (si, ai)∇θ log πθ(ai|si)
)
.(4.25)

where PZn is empirical distribution over the data (Zn : {si, ai, a′i}ni).

Note that the importance sampling based off-policy update objective ren-

ders our discounted total return and its gradient independent of policy pa-

rameter θ. Hence the gradient of state-action value estimates ∇θQ̂
πθ− (s, a)

with respect to θ is zero in the above expression for total gradient.

4.5 Learning the Mixing Coefficient

A hierarchical update of the mixing coefficient ”β” is carried out over n-test

trajectories, collected using the updated policy network πθ′(a|s). Where θ′

is parameter after the policy update step. We use stochastic gradient ascent

to update the mixing coefficient β as follows

β ← β + ᾱĝβ, s.t 0 ≤ β ≤ 1.

where ᾱ is the learning rate and ĝβ = PZntest(∇β η̄KL,β) is the empirical estimate

of the gradient of the total return η̄
KL,β

(πθ′ , π
∗). The details of computing

the estimate ĝβ over data (Zn
test : {si, ai, a′i}Ti) are as follows,

A hierarchical update of the mixing coefficient ”β” is carried out over n-test

trajectories, collected using the updated policy network πθ′(a|s). The mixing

coefficient β is learnt by optimizing the return over trajectory as follows,

β = argmax
β

(η̄KL,β(πθ′ , π
∗))

63

Where θ′ is parameter after the policy update step.

β = argmax
β

E
st,at∼τ

(
∞∑
t=1

γtr′t

)

We can use gradient ascent to update parameter β in direction of optimizing

the reward mixing as follows,

β ← β + ᾱ∇β(η̄KL,β(πθ′ , π
∗))

Using the definition of mixed reward as r′t = (1− β)rt− βζt, we can simplify

the above gradient as,

β ← β + ᾱ E
st,at∼τ

(
∞∑
t=1

γt∇β(r′t)

)

β ← β + ᾱ E
st,at∼τ

(
∞∑
t=1

γt(rt − ζt)

)
We use stochastic gradient ascent to update the mixing coefficient β as follows

β ← β + ᾱĝβ, s.t 0 ≤ β ≤ 1.

where ᾱ is the learning rate and ĝβ = PZntest(∇β η̄KL,β) is the empirical estimate

of the gradient of the total return η̄
KL,β

(πθ′ , π
∗). The gradient estimate ĝβ

over data (Zn
test : {si, ai, a′i}Ti) is computed as follows,

ĝβ =
1

N

N∑
i=1

(
H∑
t=1

γt(rt − ζt)

)

where H truncated trajectory length from experiments.

As we can see the gradient of objective with respect to mixing coefficient

β is an average over difference between environmental and intrinsic rewards.

If rt − ζt ≥ 0 the update will move parameter β towards favoring learning

through exploration more than learning through adaptation and visa versa.

As β update is a constrained optimization with constraint 0 ≤ β ≤ 1. We

handle this constrained optimization by modelling β as output of Sigmoidal

64

network parameterized by parameters φ.

β = σ(φ)

And the constrained optimization can be equivalently written as optimizing

w.r.to φ as follows

φ← φ+ ᾱĝβ∇φ(β), where β = σ(φ)

The reward mixing co-efficient β learned for HalfCheetah, Hopper and Walker2d

envs is provided in Figure-4.3. For all the experiments we start with β = 0.5

that is placing equal probability of learning through adaptation and learning

through exploration. As we can observe the reward mixing leans towards

learning through adaptation for HalfCheetah and Hopper envs. Whereas, as

for Walker2d the beta initially believes learning from exploration more, but

quickly leans toward learning from source policy and adaptation.

Figure 4.3: The Reward Mixing Co-efficient β for HalfCheetah, Hopper and
Walker2d environment learnt over trajectories collected interacting with
envs.

4.6 Theoretical bounds on sample complexity

Although there is some empirical evidence that transfer can improve per-

formance in subsequent reinforcement-learning tasks, there are not many

theoretical guarantees. Since many of the existing transfer algorithms ap-

proach the problem of transfer as a method of providing good initialization

to target task RL, we can expect the sample complexity of those algorithms

to still be a function of the cardinality of state-action pairs |N | = |S| × |A|.

65

Hopper Walker2d HalfCheetah
State Space 12 18 17

Control Space 3 6 6
Number of layers 3 3 3
Layer Activations tanh tanh tanh

Total num. of network params 10530 28320 26250
Discount 0.995 0.995 0.995

Learning rate (α) 1.5×10−5 8.7×10−6 9×10−6

β initial Value 0.5 0.5 0.5
β-Learning rate (ᾱ) 0.1 0.1 0.1

Batch size 20 20 5
Policy Iter 3000 5000 1500

Table 4.1: Policy Network details and Network learning parameter details

On the other hand, in a supervised learning setting, the theoretical guaran-

tees of the most algorithms have no dependency on size (or dimensionality)

of the input domain (which is analogous to |N | in RL). Having formulated

a policy transfer algorithm using labeled reference trajectories derived from

optimal source policy, we construct supervised learning like PAC property of

the proposed method. For deriving, the lower bound on the sample complex-

ity of the proposed transfer problem, we consider only the adaptation part of

the learning i.e., the case when β = 1 in Eq-(4.9). This is because, in ATL,

adaptive learning is akin to supervised learning, since the source reference

trajectories provide the target states given every (st, at) pair.

Suppose we are given the learning problem specified with training set

Zn = (Z1, . . . Zn) where each Zi = ({si, ai})ni=0 are independently drawn

trajectories according to some distribution P . Given the data Zn we can

compute the empirical return PZn(η̄
KL,β

) for every πθ ∈ Π, we will show that

the following holds:

‖PZn(η̄
KL,β

)− P (η̄
KL,β

)‖ ≤ ε. (4.26)

with probability at least 1− δ, for some very small δ s.t 0 ≤ δ ≤ 1. We can

claim that the empirical return for all πθ is a sufficiently accurate estimate

of the true return function. Thus a reasonable learning strategy is to find a

πθ ∈ Π that would minimize empirical estimate of the objective Eq-(4.9).

Theorem 4.6.1 If the induced class of the policy πθ:LΠ has uniform con-

66

vergence property in empirical mean; then the empirical risk minimization is

PAC. s.t

P n(P (η̄
KL,π̂∗)− P (η̄

KL,π∗) ≥ ε) ≤ δ. (4.27)

and number of trajectory samples required can be lower bounded as

n(ε, δ) ≥ 2

ε2(1− γ)2
log

(
2|Π|
δ

)
. (4.28)

Proof Fix ε, δ > 0 we will show that for sufficiently large n ≥ n(ε, δ)

P n(P (η̄
KL,π̂∗)− P (η̄

KL,π∗) ≥ ε) ≤ δ (4.29)

Let π∗ ∈ Π be the minimizer of true return P (η̄
KL

), further adding and

subtracting the terms PZn(η̄
KL,π̂∗) and PZn(η̄

KL,π∗) we can write

P (η̄
KL,π̂∗)− P (η̄

KL,π∗) = P (η̄
KL,π̂∗)− PZn(η̄

KL,π̂∗)

+PZn(η̄
KL,π̂∗)− PZn(η̄

KL,π∗)

+PZn(η̄
KL,π∗)− P (η̄

KL,π∗) (4.30)

To simplify, the three terms in the above expression can be handled individ-

ually as follows,

1. P (η̄
KL,π̂∗)− PZn(η̄

KL,π̂∗)

2. PZn(η̄
KL,π̂∗)− PZn(η̄

KL,π∗)

3. PZn(η̄
KL,π∗)− P (η̄

KL,π∗)

Lets consider the term PZn(η̄
KL,π̂∗) − PZn(η̄

KL,π∗) in the above expression is

always negative semi-definite, since π̂∗ is a maximizer wrto PZn(η̄
KL

), hence

PZn(η̄
KL,π̂∗) ≤ PZn(η̄

KL,π∗) always, i.e

PZn(η̄
KL,π̂∗)− PZn(η̄

KL,π∗) ≤ 0

Next the 1st term can be bounded as

P (η̄
KL,π̂∗)− PZn(η̄

KL,π̂∗) ≤ sup
π∈Π

[PZn(η
KL

)− P (η̄
KL

)]

≤ sup
π∈Π
‖PZn(η̄

KL
)− P (η̄

KL
)‖

67

Similarly upper bound can be written for the 3rd term Therefore we can

upper bound the above expression as

P (η̄
KL,π̂∗)− P (η̄

KL,π∗) ≤ 2 sup
π∈Π
‖PZn(η̄

KL
)− P (η̄

KL
)‖

From Equation-(4.29) we have

sup
π∈Π
‖PZn(η̄

KL
)− P (η̄

KL
)‖ ≥ ε/2 (4.31)

Using McDiarmids inequality and union bound, we can state the probability

of this event as

P n(‖PZn(η̄
KL

)− P (η̄
KL

)‖ ≥ ε/2) ≤ 2|Π|e−
nε2

2C2H2 (4.32)

The finite difference bound

C =
1

1− γ
Equating the RHS of the expression to δ and solving for n we get

n(ε, δ) ≥ 2

ε2(1− γ)2
log

(
2|Π|
δ

)
(4.33)

for n ≥ n(ε, δ) the probability of receiving a bad sample is less than δ.

Env Property source Target %Change
Hopper Floor Friction 1.0 2.0 +100%

HalfCheetah gravity -9.81 -15 +52%
Total Mass 14 35 +150%

Back-Foot Damping 3.0 1.5 -100%
Floor Friction 0.4 0.1 -75%

Walker2d Density 1000 1500 +50%
Right-Foot Friction 0.9 0.45 -50%
Left-Foot Friction 1.9 1.0 -47.37%

Table 4.2: Transition Model and environment properties for Source and
Target task and % change

68

4.6.1 ε-Optimality result under Adaptive Transfer-Learning

Consider MDP M∗ and M̂ which differ in their transition models. For the

sake of analysis, let M∗ be the MDP with ideal transition model, such that

target follows source transition p∗ precisely. Let p̂ be the transition model

achieved using the estimated policy learned over data interacting with the

target model and the associated MDP be denoted as M̂ . We analyze the

ε-optimality of return under adapted source optimal policy through ATL.

Definition 4.6.2 Given the value function V ∗ = V π∗ and model M1 and M2,

which only differ in the corresponding transition models p1 and p2. Define

∀s, a ∈ S ×A

dV
∗

M1,M2
= sup

s,a∈S×A

∣∣∣∣ E
s′∼P1(s,a)

[V ∗(s′)]− E
s′∼P2(s,a)

[V ∗(s′)]

∣∣∣∣ .
Lemma 4.6.3 Given M∗, M̂ and value function V π∗

M∗, V
π∗

M̂
the following

bound holds
∥∥∥V π∗

M∗ − V π∗

M̂

∥∥∥
∞
≤ γε

(1−γ)2

where maxs,a ‖p̂(.|s, a) − p∗(.|s, a)‖ ≤ ε and p̂ and p∗ are transition of MDP

M̂,M∗ respectively.

The proof of this lemma is based on the simulation lemma [1]. Similar

results for RL with imperfect models were reported by [110].

Proof For any s ∈ S

|V π∗

M̂
(s)− V π∗

M∗(s)|∞
= |r(s, a) + γ

〈
p̂(s′|s, a), V π∗

M̂
(s′)
〉

−r(s, a)− γ
〈
p∗(s′|s, a), V π∗

M∗(s
′)
〉
|∞

Add and subtract the term γ
〈
p∗(s′|s, a), V π∗

M̂
(s′)
〉

= |γ
〈
p̂(s′|s, a), V π∗

M̂
(s′)
〉
− γ

〈
p∗(s′|s, a), V π∗

M̂
(s′)
〉

+ γ
〈
p∗(s′|s, a), V π∗

M̂
(s′)
〉
− γ

〈
p∗(s′|s, a), V π∗

M∗(s
′)
〉
|∞

≤ γ|
〈
p̂(s′|s, a), V π∗

M̂
(s′)
〉
−
〈
p∗(s′|s, a), V π∗

M̂
(s′)
〉
|

+ γ|
〈
p∗(s′|s, a), V π∗

M̂
(s′)
〉
− γ

〈
p∗(s′|s, a), V π∗

M∗(s
′)
〉
|∞

≤ γ|p̂(s′|s, a)− p∗(s′|s, a)|∞|V π∗

M̂
(s′)|∞

+γ|V π∗

M̂
(s)− V π∗

M∗(s)|∞

69

Figure 4.4: 2D robot models used for locomotion experiments. From left to
right clockwise: Walker2d, Half-Cheetah, Hopper. These tasks are
challenging to control as they are under-actuated and have contact
discontinuities.

Using the definition of ε in above expression, we can write

|V π∗

M̂
(s)− V π∗

M∗(s)|∞ ≤ γε|V π∗

M̂
(s′)|∞ + γ|V π∗

M̂
(s)− V π∗

M∗(s)|∞

Therefore

|V π∗

M̂
(s)− V π∗

M∗(s)|∞ ≤
γε|V π∗

M̂
(s′)|∞

1− γ

Now we solve for expression |V π∗

M̂
(s′)|∞. We know that this term is bounded

as

|V π∗

M̂
(s′)|∞ ≤

Rmax

1− γ
where Rmax = 1, therefore we can write the complete expression as

|V π∗

M̂
(s)− V π∗

M∗(s)|∞ ≤
γε

(1− γ)2

4.7 Policy transfer in simulated robotic locomotion

tasks

To evaluate Adapt-to-Learn Policy Transfer in reinforcement learning, we

design our experiments using sets of tasks based on the continuous control

70

environments in MuJoCo simulator [118]. Our experimental results demon-

strate that ATL can adapt to significant changes in transition dynamics. We

perturb the parameters of the simulated target models for the policy trans-

fer experiments (see Table-4.2 for original and perturbed parameters of the

target mode). To create a challenging training environment, we changed the

parameters of the model such that the optimal source policy alone without

any learning cannot produce any stable results (see source policy perfor-

mance in Figure-4.5). We compare our results against two baselines: (a)

Initialized Reinforcement learning (initialized PPO) (Warm-Start-RL [22])

(b) Stand-alone reinforcement policy learning (PPO) [74].

We experiment with the ATL algorithm on Hopper, Walker2d, and HalfChee-

tah Environments (Refer Figure-4.4). The states of the robots are their

generalized positions and velocities, and the actions are joint torques. High

dimensionality, non-smooth dynamics due to contact discontinuity, and being

under-actuated systems make these tasks very challenging. We use deep neu-

ral networks to represent the source and target policy, the details of which are

in the Table-2 Supplementary document. The following models are included

in our evaluation:

Slippery Hopper : is defined through 11-dimensional state space and

3-dimension action space, with reward function defined as r(t) = (st+1 −
st)/dt− 10−3‖a‖2, and a bonus of +1 for being in a non-terminal state. The

simulation is terminated upon reaching 1000 steps or hopper toppling. The

target model differs in the floor friction and foot joint damping.

Slippery Fat-Walker2d : is defined through 17-dimensional state space

and 6-dimension action space, with reward function and termination con-

dition defined the same as Hopper. The target model differs in the model

density and floor friction.

Fat HalfCheetah : is defined through 17-dimensional state space and

6-dimension action space, with reward function defined as r(t) = (st+1 −
st)/dt − 0.1‖a‖2. The simulation is terminated upon reaching 1000 steps.

The target model differs in the floor friction coefficient, gravity, and mass.

To establish a standard baseline, we also included the classic cart-pole

and Inverted pendulum balancing tasks, based on the formulation [119]. We

also demonstrate the cross-domain transfer capabilities using a model-based

variant of the proposed algorithm. [54] The results of policy transfer for

Cart-Pole to Inverted Pendulum and Inverted Pendulum to Bicycle trans-

71

fers are provided in the Supplementary. Learning curves showing the total

reward averaged across three runs of each algorithm are provided in Figure-

4.5. Adapt-to Learn policy transfer solved all the three tasks, yielding quicker

learning compared to other baseline methods. These results provide empir-

ical evidence of our hypothesis. Using trajectory KL divergence as intrinsic

adaptation reward to adapt source policy to the target, we achieve a more

robust and sample efficient policy transfer between two tasks, compared to

using a warm-start or standalone RL method. Note that the target domain

perturbations introduced are significant enough such that source policy alone

without any adaptation in the target domain produced no meaningful results

(Figure-4.5). This notion of adaptation in the face of uncertainty is a key

advancement over traditional policy transfer, meta-learning, or adversarial

RL methods.

72

Figure 4.5: Learning curves for locomotion tasks, averaged across three
runs of each algorithm: Adapt-to-Learn(Ours), Randomly Initialized
RL(PPO), Warm-Started PPO using source policy parameters and Best
case imitation learning using Source policy directly on Target Task without
any adaptation. 73

Figure 4.6: Trajectory KL divergence Total Intrinsic Return
(
−
∑
eζt
)

averaged across three runs.

74

CHAPTER 5

MODEL REFERENCE ADAPTIVE
CONTROL

5.1 Introduction

Model Reference Adaptive Control (MRAC) is a leading method for adaptive

control that seeks to learn a high-performance control policy in the presence

of significant model uncertainties [120, 34, 121]. MRAC has been widely

utilized in flight control, for example in [122, 123, 124, 125, 126]. The key idea

in MRAC is to find an update law for a parametric model of the uncertainty

that ensures that the candidate Lyapunov function is non-increasing. Many

update laws have been proposed and analyzed, which include but not limited

to σ-modification [48], e-modification [127], and projection based updates

[121]. More modern laws extending the classical parametric setting include

`1 adaptive control [128], DF-MRAC [129], and concurrent learning [130]

have also been studied.

An another MRAC approach introduced by Chowdhary et.al is the Gaus-

sian Process Model Reference Adaptive Control (GP-MRAC), which utilizes

a GP as a model of the uncertainty. A GP is a Bayesian nonparametric

adaptive element that can adapt both its weights and the structure of the

model in response to the data. The authors and others have shown that

GP-MRAC has strong long-term learning properties as well as high control

performance [53, 131]. However, GPs can be viewed as “shallow” machine

learning models, and do not utilize the power of learning complex features

through compositions as deep networks do (see 5.3.3). Hence, one wonders

whether the power of deep learning could lead to even more powerful learning

based MRAC architectures than those utilizing GPs.

75

Figure 5.1: Model Reference Adaptive Control Flow Diagram

5.2 Preliminaries

This section discusses the formulation of model reference adaptive control

(see e.g. [120, 34]). We consider the following system with uncertainty ∆(x):

ẋ(t) = Ax(t) +B(u(t) + f(x)) (5.1)

where x(t) ∈ Rn, t > 0 is the state vector, u(t) ∈ Rm, t > 0 is the control

input, A ∈ Rn×n, B ∈ Rn×m are known system matrices and we assume

the pair (A,B) is controllable. The term f(x) : Rn → Rm is the matched

uncertainty term and is assumed to be bounded such that ‖f(x)‖∞ < B and

Lipschitz continuous ‖f(x)− f(y)‖ ≤ L‖x− y‖ in a compact set x(t) ∈ Dx,
where Dx ⊂ Rn be a compact set. The controller u(t) is assumed to belong

to a set of admissible control inputs of measurable and bounded functions,

ensuring the existence and uniqueness of the solution to (5.1).

The reference model is assumed to be linear and therefore the desired

transient and steady-state performance is defined by a selecting the system

eigenvalues in the negative half plane. The desired closed-loop response of

the reference system is given by

ẋrm(t) = Armxrm(t) +Brmr(t) (5.2)

76

where xrm(t) ∈ Dx ⊂ Rn and Arm ∈ Rn×n is Hurwitz and Brm ∈ Rn×r.

Furthermore, the command r(t) ∈ Rr denotes a bounded, piecewise contin-

uous, reference signal and we assume the reference model (5.2) is bounded

input-bounded output (BIBO) stable [120].

The aim is to construct a feedback law u(t), t > 0, such that the state of

the uncertain dynamical system (5.1) asymptotically tracks the state of the

reference plant model (5.2) despite presence of matched uncertainty.

A tracking control law consisting of linear feedback term upd = kxx(t), a

linear feed-forward term ucrm = krr(t) and an adaptive term uad(t) form the

total controller

u(t) = upd(t) + ucrm(t)− uad(t) (5.3)

The baseline full state feedback and feed-forward controller is designed to

satisfy the matching conditions such that

Arm = A−Bkx (5.4)

Brm = Bkr (5.5)

The reference model tracking error is defined as

e(t) = xrm(t)− x(t) (5.6)

Using (5.1) & (5.2) and the controller of form (5.3) with adaptation term

uad(t), the tracking error dynamics can be written as

ė(t) = ẋrm(t)− x(t) (5.7)

ė(t) = Armxrm(t) +Brmr(t)− Ax(t)−B (u(t) + f(x)) (5.8)

Assuming the appropriate feedback upd = kxx(t) and feed-forward term

ucrm = krr(t) exists such that the above matching conditions (5.5)-(5.5)

are met. We can write the error dynamics as follows,

ė(t) = Armxrm(t) +Brmr(t)− Ax(t)−B (kxx(t) + krr(t)− uad(t) + f(x))

(5.9)

ė(t) = Armxrm(t) +Brmr(t)− (A−Bk)x(t)−Bkrt(t)−B (f(x)− uad(t))
(5.10)

77

Using the matching condition we can write the error dynamics as,

ė(t) = Arme(t) +B (f(x)− uad(t)) (5.11)

5.2.1 Structured Uncertainty

In next two subsection we will study the two possible characterization of the

uncertainty term as Structured and Unstructured uncertainty.

Consider the case where the structure of the uncertainty f(x) is known,

that is, we known that the uncertainty can be represented as a linear combi-

nation of a known continuously differentiable basis function as follows,

Assumption 5.2.1 The uncertainty f(x) can be linearly parameterized, that

is, there exist a unique constant vector W ∗ ∈ Rk×m and a vector of known

continuously differentiable basis functions σ(x) = [σ1(x), σ2(x),, σm(x)],

such that f(x) can be uniquely represented as

f(x) = W ∗Tσ(x(t)) (5.12)

where σ(x) : Rn → Rk is a k× 1 dimensional vector of known basis function,

while W ∗ ∈ Rk×m is the matrix of unknown parameters.

A large class of nonlinear uncertainties can be written in the above form.

Note that the requirement of existence of unique W ∗ for a given basis of the

uncertainty σ(x(t)) ensures that the representation of uncertainty is minimal.

The system dynamics with structured uncertainty can be written as,

ẋ(t) = Ax(t) +B(u(t) +W ∗Tσ(x)) (5.13)

5.2.2 Unstructured Uncertainty

In the more general case where it is only known that the uncertainty f(x) is

bounded, non-destabilizing and continuously differentiable and defined over a

compact domain x(t) ∈ Dx ⊂ Rn, the adaptive part of the control law can be

formed using Neural Networks (NNs). The uncertainty f(x) is represented as

linear combination of designed basis functions and unknown true parameters

as follows,

78

Assumption 5.2.2 The uncertainty f(x) can be linearly parameterized, that

is, there exist a unique constant vector W ∗ ∈ Rk×m and a vector of designed

Lipschitz continuous bounded basis function Φ(x) = [φ1(x), φ2(x),, φm(x)],

such that f(x) can be uniquely represented as

f(x) = W ∗TΦ(x) + ε̃(x) (5.14)

where Φ(x) : Rn → Rk is a k×1 dimensional vector of designed basis function,

such that Φ(x) is bounded on a compact domain x(t) ∈ Dx while W ∗ ∈ Rk×m

is the matrix of unknown parameters, such that ‖W ∗‖∞ ≤ Wb. The term

ε̃(x) is the network approximation error due finite parameterization and can

be bounded as follow

ε̄ = sup
x∈Dx
‖ε̃(x)‖ (5.15)

In the following section we will present more general approach of uncer-

tainty representation using Neural networks for capturing unstructured un-

certainty.

5.3 NN model for Uncertainty Estimation

5.3.1 Radial Basis Function Neural Network

The Radial Basis Functions (RBF) are bell shaped gaussian activations. The

argument of the activation function of the hidden layer units represents the

Euclidean norm between the input vector and the units’ center position. This

operation characterizes the exponentially decaying localized nonlinearity of

Gaussian functions. The expression for RBF can be written as

φi(x, ci, σi) , exp

(
−‖x− ci‖

2

σ2
i

)
(5.16)

Where ci are the RBF centroid and σi are the bandwidth or the standard

deviation of the Gaussian activation.

The output of adaptive element modelled as RBF network, which is essen-

tially mixture of gaussians can be written as follows,

∆(x) = W ∗TΦ(x, c,σ) + ε̃(x) (5.17)

79

Where W ∗ ∈ Rm×k are ideal weights, ε̃(x) : Rn → Rm is network approxima-

tion error and Φ(x) = [1, φ1(x, c1, σ1), φ2(x, c2, σ2), . . . , φk(x, ck, σk)] ∈ Rk is

a vector of known radial basis functions and c ∈ Rn×k and σ ∈ Rk is vector

of centers and standard deviations.

Even though the RBF network is a linear parameterized network, RBF net-

works can uniformly approximate continuous functions to arbitrary accuracy

on a compact domain provided a sufficient number of Gaussian activations

are used. The design of RBF network requires a priory knowledge of the

domain of operation. This local approximation property of RBF networks is

considered one of the reason for RBF being unpopular in function approxi-

mation over unknown support.

5.3.2 Single Hidden Layer Neural Network

A Single Hidden Layer (SHL) NN is a non-linearly parameterized map that

has also been often used for capturing unstructured uncertainties that are

known to be continuous. The input–output map of a SHL network can be

represented as

yk = bwθwk +

n3∑
j=1

(WjkΦj(zj)) (5.18)

where k = 1, 2, . . . n3, bw is the outer layer bias, θwk is the kth threshold,

Wjk represents the outer layer weights and Φj is the sigmoidal activation

functions. The Inner layer output can be written as,

Φj(zj) = σ (zj) (5.19)

With sigmoid activation defined as,

σ(z) =
1

1 + e−azj
(5.20)

where, a is the activation potential which can be a distinct value for each

neuron. The value zj is the input to the jth hidden layer neuron, and is given

by

zj = bvθvj +

n1∑
j=1

(Vijxi) (5.21)

80

Here n1, n2 and n3 are respectively the number of input and hidden layer

neurons, and number of outputs respectively, bv is the inner layer bias and

θvj is the jth threshold.

Hence in a similar fashion to RBF NN we have that the following approx-

imation holds for all x ∈ Dx ⊂ Rn where Dx is compact.

f(x) = W ∗TΦ(V ∗Tx) + ε̃(x) (5.22)

Where (W ∗, V ∗) are ideal set of weights that approximates the given function

to within an ε neighborhood of the function approximation error.

ε̃(x) =
∥∥f(x)−W ∗TΦ(V ∗Tx)

∥∥ (5.23)

The largest such error ε̃(x) is given by

ε̄ = sup
x∈Dx

∥∥f(x)−W ∗TΦ(V ∗Tx)
∥∥ (5.24)

And ε̄ = supx∈Dx ‖ε̃(x)‖ can be made arbitrarily small given sufficient number

of hidden layer neurons.

5.3.3 Deep Networks and Feature spaces in Machine Learning

The key idea in machine learning is that a given function can be encoded

with weighted combinations of feature vector Φ ∈ F , s.t

Φ(x) = [φ1(x), φ2(x), ..., φk(x)]T ∈ Rk

Let W ∗ ∈ Rk×m a vector of ‘ideal’ weights s.t ‖y(x)−W ∗TΦ(x)‖∞ < ε(x). In-

stead of hand picking features, or relying on polynomials, Fourier basis func-

tions, or comparison-type features used in support vector machines [132, 133]

and Gaussian Processes [134], DNNs utilize composite functions of features

arranged in a directed acyclic graphs, i.e.

Φ(x) = φn(θn−1, φn−1(θn−2, φn−2(...)))) (5.25)

where θi’s are the layer weights. The universal approximation property of

the DNN with commonly used feature functions such as sigmoidal, tanh,

81

and RELU is proved in the work by Hornik’s [135] and shown empirically to

be true by recent results [136, 137, 138]. Hornik et al. argued the network

with at least one hidden layer (also called Single Hidden Layer (SHL) net-

work) to be a universal approximator. However, empirical results show that

the networks with more hidden layers, show better generalization capability

in approximating complex function. While the theoretical reasons behind

better generalization ability of DNN are still being investigated [139], for

our purpose, we will assume that it is indeed true, and focus our efforts on

designing a practical and stable control scheme using DNNs.

5.4 Universal Approximation Theorem

The dominant theme of the second part of this thesis is the use of Deep

Neural Networks to approximate unknown functions of the dynamic states.

In order to adopt the different NN models for online adaptation we must

ensure that these models are effectively capable of uniformly approximating

continuous function over predetermined compact sets.

The Universal Approximation Theorem (UAT) claims a standard multi-

layer feed-forward neural network with single hidden layer containing finite

number of neurons and arbitrary activation can universally approximate any

function in C(Rn). Kurt Hornik [140] prooved in the paper that the UAT

result is not property of the activation function but the mulit-layer feed-

forward architectures of the neural networks. The activation function at the

output layer is assumed to linear. Without loss of generality the following

UAT theory is presented for the single output. Multi output case is a simple

extension of the presented result. The UAT is stated as follows,

Theorem 5.4.1 Let φ(.) be an arbitrary activation function. Let X ⊆ Rn

and belong to a compact set. The space of continous function on X is defined

as C(X). Then ∀f ∈ C(X) and ∀ε > 0, ∃n ∈ N aij, bj and wi ∈ R where

i ∈ {1 . . . n}, j ∈ {1 . . .m}

(Anf)(x1, . . . xm) =
n∑
i

wiφ

(
m∑
j

aijxj + bj

)
(5.26)

where (Anf) is the approximation function of f and therefore UAT states

82

that

‖f − Anf‖ ≤ ε (5.27)

It is necessary the network predicts simultaneously well on all the inputs in

compact set. In that case closeness of two function can be measure by uniform

distance as follows,

‖f − Anf‖ = sup
x∈C(Rn

‖f(x)− Anf(x)‖ ≤ ε (5.28)

The detailed proof is beyond the scope of this thesis, but a concise proof

statement state that. For given topological space Ω and any function f :

Rn → R. A neural network Anf is said to universal approximator if Anf is

dense in C(Ω), the set of continuous functions from Ω to R. For the detailed

proof please refer [140, 141].

We will further discuss the network parameter update law for MRAC and

necessary condition for the desired convergence in reference tracking error

and network parameters.

5.5 Online Parameter Estimation law

Since the the mapping Φ(x) ∈ Rk is known, letting W (t) ∈ Rk×m denote

the estimate of W ∗. The adaptive element in the adaptive controller can be

written as,

uad(t) = W TΦ(x(t)) (5.29)

Using the above definition of adaptive element we can rewrite the total con-

troller as u(t) (5.3) as

u(t) = −kxx(t) + krr(t)−W TΦ(x(t)) (5.30)

Therefore the error dynamics (5.11) can be reduced to

ė(t) = Arme(t) +B
(
W̃Φ(x) + ε̃(x)

)
(5.31)

where W̃ = W ∗ −W is error in parameter. The estimate to unknown true

network parameters W ∗ are evaluated on-line using the weight update rule

(5.32); correcting the weight estimates in the direction of minimizing the

83

instantaneous tracking error e(t). The resulting update rule for network

weights in estimating the total uncertainty in the system is as follows

˙̂
W = Γproj(Ŵ ,Φ(x)e(t)′PB) Ŵ (0) = Ŵ0 (5.32)

where Γ ∈ Rk×k and P ∈ Rn×n is a positive definite matrix. For given

Hurwitz Arm and Q > 0 the matrix P ∈ Rn×n is a positive definite solution

of Lyapunov equation

ATrmP + PArm +Q = 0 (5.33)

Where “proj” is the projection operator, and ensure the weight updated

according to (5.32) always lie within a compact set Wb.

Let the compact set Wb be defined as,

Wb , {Wi ∈ Rk|g(Wi) < c}, 0 ≤ c ≤ 1∀i = 1, 2 . . .m (5.34)

Where g(Wi) is defined as follows,

g(Wi) =
(1 + εw)W TW −W 2

max

εWW 2
max

(5.35)

The projection operator can be defined as

proj(W, y) ,

y if g(W) < 0

y if g(W) ≥ 0 and ∇gTy ≤ 0

y − ∇g
||∇g||

〈
∇g
||∇g|| , y

〉
g(W) if g(W) ≥ 0 and ∇gTy > 0

where, y = Φ(x)e(t)′PBi. More details of projection operator can be found

in [35].

5.6 Persistency of Excitation

Consider the problem of parameter estimation using a linear estimator for

a function by minimizing its squared loss error. In parameter estimation

problems such as flight system identification, the parameters to be estimated

directly relate to meaningful physical quantities such as aerodynamic deriva-

84

tives. Hence, the convergence of the unknown parameters to their true values

is highly desirable.

Let us assume the function to be estimated be f : Rn → Rm. Let the true

function f be of form

f(x) = W ∗TΦ(x) (5.36)

Where the unknown function be linearly parameterized in unknown ideal

weight W ∗ ∈ Rk×m and Φ(x) : Rn → Rk be a nonlinear continuously differ-

entiable basis function.

Let the W (t) be the online estimate of true ideal weights W ∗, therfore the

online estimate of f(x) can be represented by mapping ν : Rn → Rm such

that,

ν = W TΦ(x) (5.37)

Lets consider V (εi) : Rn → R denote the loss function to be minimized over

the set of points {xi}i∈I to estimate the parameters,

V (εi) =
1

2

∑
i∈I

εTi εi (5.38)

=
1

2

∑
i∈I

∥∥W TΦ(xi)− f(xi)
∥∥2

2
(5.39)

If we use the gradient descent algorithm with a fixed step size Γ to minimize

V the update rule for W becomes

W ← W

(
I − Γ

∑
i∈I

Φ(xi)Φ(xi)
T

)
− Γf(xi)Φ(xi)

T (5.40)

Using the expression for f(xi) = W ∗TΦ(xi) and defining the parameter error

W̃ = W −W ∗, we can rewrite the above update equation for W̃ as follows,

W̃ ← W̃

(
I − Γ

∑
i∈I

Φ(xi)Φ(xi)
T

)
(5.41)

which is a discrete-time linear time invariant system. Therefore, a necessary

and sufficient condition for the convergence of the algorithm is that

λmax

(∑
i∈I

Φ(xi)Φ(xi)
T

)
<

2

λmin(Γ)
(5.42)

85

If the Φ(xi) follows the above condition, then we can show that W̃ → 0

as t → ∞, i.e W → W ∗ as t → ∞ and the condition (5.42) is known as

persistency of excitation of Φ(xi)

For the case of adaptive control, Boyd and Sastry have shown that the

condition on persistency of excitation in the system states Φ(x) can be related

to persistency of excitation in the exogenous reference input r(t) by noting

the following: If the exogenous reference input r(t) contains as many spectral

lines as the number of unknown parameters, then the plant states are PE,

and the parameter error converges exponentially to zero [142].

Definition 5.6.1 The bounded signal Φ(t) is exciting over interval [t, t +

T],such that T > 0 and t ≥ t0, if there exists γ such that∫ t+T

t

Φ(τ)Φ(τ)Tdτ ≥ γI (5.43)

Definition 5.6.2 The bounded signal Φ(t) is persistently exciting over in-

terval [t, t + T],such that T > 0 and if for all t ≥ t0, if there exists γ such

that ∫ t+T

t

Φ(τ)Φ(τ)Tdτ ≥ γI (5.44)

Note that the above definition requires that the matrix
∫ t+T
t

Φ(τ)Φ(τ)T ∈
Rk×k be positive definite over any finite interval.

Definition 5.6.3 Autocovariance: A function Φ : Rn → Rk is said to have

a autocovariance Rφ(τ) ∈ Rk×k iff

lim
t→∞

1

T

∫ t+T

t

Φ(t)Φ(t+ τ)Tdt = Rφ(τ) (5.45)

Lemma 5.6.4 Suppose Φ as autocovariance Rφ(τ). Then Φ is Persistently

Exciting, iff Rφ(0) > 0

The proof this lemma can be found in [142].

5.7 Stability and Boundedness

We will introduce a general stability and boundedness proof for nonlinear

system. In next section we use this theory to prove closed loop stability of

86

system under adaptive controllers. Our work eventually leads to multi-layer

deep neural network as an online approximator of the uncertainty. With

the assumption of unstructured uncertainty and multi-layer network, we will

not be able to show asymptotic stability of the tracking, for this reason we

precisely state the kind of boundedness we can ensure.

To state the stability and boundedness results we use a general, nonlinear

dynamics as follows

ẋ(t) = f(t, x) (5.46)

Definition 5.7.1

The solution of (5.46) are uniformly ultimately bounded (with bound B) if

there exits a B > 0 and for any α and t0 ∈ R+, there exists a time T =

T (α) > 0 independent of t0 such that ‖x(t0)‖ < α implies ‖x(t; t0, x0)‖ < B
for all t > t0 + T .

Theorem 5.7.2 Suppose there exists a Lyapunov function V (t, x) : Dx → R
defined on 0 ≤ t <∞, such that

V (t, 0) = 0

V (t, x) > 0, x ∈ Dx, x 6= 0

If there exists continuous functions such that, α(.), β(.) ∈ K, such that V :

Dx → R

α(‖x‖) ≤ V (t, x) ≤ β(‖x‖)∀x ∈ D (5.47)

V̇ (t, x) ≤ γ(‖x‖) (5.48)

where γ(.) positive continuous function, then solution (5.46) is uniformly

ultimately bounded.

5.7.1 Lyapunov Stability of MRAC

The on-line adaptive identification law (7.8) guarantees the asymptotic con-

vergence of the observer tracking errors e(t) and parameter error W̃ (t) under

87

the condition of persistency of excitation [55, 120] for the structured uncer-

tainty. Under the assumption of unstructured uncertainty, we show tracking

error is uniformly ultimately bounded (UUB).

Theorem 5.7.3 Consider the actual and reference plant model (5.1) & (5.2).

If the weights parameterizing total uncertainty in the system are updated ac-

cording to identification law (5.32) Then the tracking error and error in net-

work weights ‖ẽ‖, ‖W̃‖ are bounded.

Proof Let V (e, W̃) > 0 be a differentiable, positive definite radially un-

bounded Lyapunov candidate function,

V (e, W̃) = eTPe+
1

2
tr
(
W̃ TΓ−1W̃

)
(5.49)

The time derivative of the lyapunov function (7.13) along the trajectory (7.7)

can be evaluated as

V̇ (e, W̃) = ėTPe+ eTP ė− t̃r
(
W TΓ−1Ẇ

)
(5.50)

Using (7.7) & (7.8) in (7.14), the time derivative of the lyanpunov function

reduces to

V̇ (e, W̃) = −eTQe+ 2eTPε(x) (5.51)

Hence V̇ (e, W̃) ≤ 0 outside compact neighborhood of the origin e = 0, for

some sufficiently large λmin(Q).

‖e(t)‖ ≥ 2λmax(P)ε̄

λmin(Q)
(5.52)

Using the BIBO assumption xrm(t) is bounded for bounded reference signal

r(t), thereby x(t) remains bounded and hence e(t) is bounded. Since V (e, W̃)

is radially unbounded the result holds for all x(0) ∈ Rn. Using the fact,

the error in parameters W̃ are bounded through projection operator [143].

Using Lyapunov theory and Barbalat’s Lemma [144] we can show that e(t)

is uniformly ultimately bounded in vicinity to zero solution. We note that,

the second derivative of Lyapunov function is follows,

V̈ (e, W̃) = −2λmin(Q)(e(t)ė(t)) + 2λmax(P)ε̄ė(t) (5.53)

88

V̈ (e, W̃) is bounded due the fact that W̃ is bounded through projection op-

erator in weight update rule [48] and ε̄ is a constant, hence from Lyapunov

theory and Barbalat’s Lemma [144], we can state V̇ (e, W̃) is uniformly con-

tinuous hence V̇ (e, W̃) → 0 as t → ∞. Using the previous fact with lower

bound on error (5.52) we show that e(t) is uniformly ultimately bounded

near to zero solution.

Theorem 5.7.4 For system (5.1) with the total controller (5.3) and adap-

tive elements defined as (5.32) with reference system (5.2), all signals in the

closed-loop system are bounded.

Proof Theorem 5.7.3 shows that the controlled system state x(t) converges

to the reference state xrm(t) in the steady-state. However, during the tran-

sient time, x(t) may be far away from xrm(t) due to significant initial errors

e(0) and W (0), which may lead to poor transient performance (e.g. con-

vergence rate, smoothness). To show this point, we analyze the transient

response of the classical MRAC system considering the norms of e(t) and

W (t)

We recall the candidate Lyapunov function (5.49) used to prove the system

stability under adaptive control. Using the following property of Lyapunov

function for stable systems V (t, x, W̃) ≤ V (t, x(0), W̃ (0)) we can write

‖e(t)‖∞ ≤

√
v(t, x(t), W̃ (t))

λmin(P)
≤

√
v(0, x(0), W̃ (0))

λmin(P)

≤

√
λmax(P)‖e‖2

∞ + λmax (Γ−1) ‖W̃ (0)‖2
F

λmin(P)
(5.54)

Where ‖‖F is the Frobenius norm. The L∞ norm of the tracking (5.54)

depends on two terms, initial tracking error e(0) and intial weight estimate

error W̃ (0). The effects of W̃ (0) on transient error ‖e(t)‖∞ can be reduced by

choosing a higher learning gain Γ, i.e. a high gain adaptive law can rapidly

suppress the effects of the initial estimation error W̃ (0) in the transient pe-

riod.

However, a large, high-gain induced, learning rate causes undesirable high-

frequency oscillations in adaptive systems, which may excite unmodeled dy-

89

namics and trigger instability. From (5.32) we can write∫ T

0

∥∥∥ ˙̂
W
∥∥∥2

dτ ≤ λ2
max(Γ) ‖ΦPB‖2

∞

∫ T

0

‖e‖2 dτ

= λ2
max(Γ) ‖ΦPB‖2

∞ ‖e‖
2
2 (5.55)

Using the bound on ‖e(t)‖ from above expression we can write,∥∥∥ ˙̂
W
∥∥∥
∞
≤

√
λ2
max(Γ) ‖ΦPB‖2

∞ ‖e‖
2
∞

=

√√√√λ2
max(Γ) ‖ΦPB‖2

∞

(
λmax(P)‖e‖2

∞ + λmax (Γ−1) ‖W̃ (0)‖2
F

)
λmin(P)

(5.56)

Higher learning gain leads to stiff differential equation which lead to insta-

bility in numerical integration. The analysis in (5.54) and (5.56) shows the

well-known trade-off in the adaptive control design, i.e. the high frequency os-

cillations in the adaptive system can be reduced by choosing a small learning

gain, while a small learning gain leads to sluggish tracking error convergence.

5.8 Evaluation of MRAC through simulation Using

Wing-Rock System

In this section we evaluate the MRAC controller on Wing-Rock system [145,

146]. We will experiment with adaptive elements with different basis vector

through numerical simulation on a wing rock dynamics model. Wing rock

is an interesting phenomena which is caused due to asymmetric stalling on

lifting surfaces of agile aircraft. Wing-rock phenomenon is observed on delta

wing air crafts. Flying at very high angle of attack at low speeds the aircraft

seems to rock in roll direction causing the oscillation to grow and leading

to undesired handling characteristics to pilot control. If left uncontrolled,

the oscillations caused by wing rock can easily grow unbounded and cause

structural damage. Let φ denote the roll angle of an aircraft, p denote the

roll rate, δa denote the aileron control input, then a simplified model for wing

90

rock dynamics is given by

φ̇ = p (5.57)

ṗ = δa + ∆(x) (5.58)

Where x = [φ, p] is the system state. The system uncertainty is defined as

∆(x) = W0 +W1φ+W2p+W3|φ|p+W4|p|p+W5φ
3 (5.59)

The original parameters for wing rock motion are adapted from [87], they

are W0 = 0.0,W1 = 0.2314,W2 = 0.6918,W3 = 0.6245,W4 = 0.0095,W5 =

0.0214. However to make the uncertainty more aggressive and nonlinear, we

increased the weights associated with nonlinear terms and added a heavy

bias term. The modified true parameters are as follows W0 = 1.0,W1 =

0.2314,W2 = 0.6918,W3 = 0.6245,W4 = 0.1,W5 = 0.214. The task of

the controller is to follow a reference step command. The reference model

chosen is a stable second order linear system with natural frequency of

2radian/second and damping ratio of 0.5. The linear control gains are given

by k = [−4,−2] and kr = −4and the learning rate is set to Γ = 100. Ini-

tial conditions for the simulation are arbitrarily chosen to be φ = 1deg,

p = 1deg/s.

5.8.1 Structured Uncertainty

Consider first the case where the structure of the uncertainty is known. We

assign the basis function using the known function form of ∆(x). Therefore

the basis Φ(x) is selected as,

Φ(x) =
[
1, φ, p, |φ|p, |p|p, φ3

]
(5.60)

There fore the adaptive element estimating the uncertainty can be of the

form νad = W TΦ(x). Since we are assuming structured uncertainty case

the true uncertainty can be expressed as ∆(x) = W ∗TΦ(x), where the ideal

weights W ∗ are given in the Section-5.8

The structured uncertainty case has no much of hyper-parameter tuning

and we also observe that the controller is robust under high learning gain.

91

The controller performance in approximating the true uncertainty is much

superior compared to unstructured uncertainty case. However this form of

controller require an additional information on the structure of uncertainty

which might not be available in all cases.

Figure compares the reference model states with the plant states for the

baseline adaptive law and Figure provide details of estimated vs true uncer-

tainty in system dyanmics and Figure shows the evolution of the network

weights.

Figure 5.2: Structured uncertainty: position and velocity history under
MRAC controller

5.8.2 Unstructured Uncertainty

For the results in this section we assume that it is only known that the

structure of the uncertainty is unknown. In unstructured uncertainty case

we study two basis function i.e linear in state model W Tx(t) and RBF-NN

model W TΦ(x, c, σ).

Linear in state network is the most popular adaptive network in classical

92

Figure 5.3: Structured uncertainty: Uncertainty estimation and Network
weights history

adaptive control. The adaptive element is defined as

νad = W1φ+W2p (5.61)

We will show that, a simple model of uncertainty such as W Tx might some

time under-represent the nonlinear uncertainty and hence fail to estimate the

uncertainty faithfully and thereby lead to a poorly performing controller.

The other general feature vector we will study is RBF-NN. RBF-NN are

deemed as universal approximators. RBF-NN are characterized by centers,

number of centers and bandwidths of Gaussian features. We consider RBF

NN with 10 nodes and uniformly distributed centers over the expected range

of the state space c ∈ [−1, 1] and bandwidth of σ = 0.5 are used to capture

the model uncertainty. Since the ideal weights W in this case are not known,

we evaluate the performance of the adaptive law by comparing the output

of the RBF-NN with the actual model uncertainty with weights frozen after

the simulation run is over.

93

Figure 5.4: Unstructured uncertainty:Linear in state adaptive
element-Position and Velocity history under MRAC controller

Figure 5.5: Unstructured uncertainty:Linear in state adaptive
element-Uncertainty estimation and Network weights history

94

Figure 5.6: Unstructured uncertainty: RBF-NN-Position and Velocity
history under MRAC controller

Figure 5.7: Unstructured uncertainty:Linear in state adaptive
element-Uncertainty estimation and Network weights history

95

CHAPTER 6

GAUSSIAN PROCESS MODEL
REFERENCE ADAPTIVE CONTROL

6.1 Introduction

In MRAC framework, radial basis function networks (RBFN) are quite widely

used as universal-approximator in adaptive models [147][148]. RBFNs re-

main popular adaptive elements compared to multilayer networks [149, 47],

due to their linear in parameter nature, which facilitates stability analysis of

real-time controllers. However, the accuracy of RBFN representation greatly

depends on pre-allocation of centers in a presumably known domain of op-

eration of the system [150, 52, 151, 152]; this has been a major limitation

of RBFN-MRAC [148]. On the contrary Gaussian Process (GP’s) adaptive

element in MRAC address this limitation of requiring to know the domain of

operation by employing the GP nonparametric model to overcome the local

approximation properties of RBFNs [134, 53].

In this chapter, we present a new approach to the on-line supervised train-

ing of GP models using a new architecture termed as Model Reference Gen-

erative Network (MRGeN). Our architecture is very loosely inspired by the

recent success of generative neural network models [153], yet our contribu-

tions are in ensuring that inclusion of such a model in closed-loop control

does not affect the stability properties. The generative network MRGeN is

a neural network model for the system uncertainties, which generates (pre-

dicts) the labeled pair of state-uncertainties for GP inference. The MRGeN

weights are updated such that network weights are moved in the direction of

reducing the reference model tracking error [34, 55].

This work is inspired by previous works on GP-MRAC [53, 154]. GP-

MRAC use system acceleration for generating noisy estimate of true model

of uncertainty for inferring the GP model. This method has limitations since

obtaining high fidelity acceleration information for many systems can be very

96

difficult due to noisy measurements or lack of sensors. Using MRGeN as a

generative model for on-line GP inference has following advantages

1. The presented architecture obviates the necessity of system acceleration

for implementation of GP-MRAC. Instead, it uses a fast-trained neural

network to predict those values. We demonstrate that the inclusion of

this network does not affect the stability properties.

2. Utilizing the GPs based controller [53], we retain the nonparametric

nature of the controller by sharing the dynamic centers between GP

and MRGeN update, ensuring the controller has global performance

guarantees. The number of parameters and their properties are not

required to be fixed apriori, rather they grow and adjust with data.

We argue that within the class of nonparametric modeling methods,

our presented approach leads to a very general data-driven generative

models for Gaussian inference.

Another key feature of the presented architecture is the ability to control

the rate of adaptation. Since the existing GP-MRAC uses ẋ(t) information

for training GP model, the rate of learning can only be as fast as the refer-

ence model. The original GP-MRAC work did not provide a mechanism for

controlling the rate of adaptation. Since we use the MRGeN for generating

target values, the rate of adaptation can be independently tuned through

a separate adaptation gain value. This feature has the benefit that it can

provide faster adaption when it is required to achieve stringent tracking per-

formance specifications. However, fast adaptation using high-gain learning

rates has been criticized for causing high-frequency oscillations in the control

response, resulting potentially in system instability [155].

To alleviate this issue, we use the fact that GPs are known to have a deep

connection with kernel filtering methods[156], in inherently handling noise

in training data. Hence this property of GP’s ensures that the nonparamet-

ric model learns the underlying noise-free model of uncertainty even when

MRGeN target values are noisy, ensuring robustness and faster adaptation

in the face of high gain learning rates.

97

6.2 Adaptive Control using GP-MRGeN

To address the issue of on-line supervised training of GP models for adaptive

control application, we introduce GP-MRGeN. GP-MRGeN learns underly-

ing smooth model to the system uncertainty using noisy estimate from high

gain generative model. While ensuring higher learning rate, this architecture

also smooths out high frequency components in the controller, preserving

asymptotic stability to system error dynamics. This key feature of the pre-

sented framework ensures robustness while adapting faster to abrupt and

large changes in system dynamics. The details of Gaussian processes and

GP-MRGeN controller is presented in further sections

6.2.1 Gaussian Processes

A GP is defined as collection of random variables such that every finite

subset is jointly Gaussian. That is, GP’s are completely characterized by

their second order statistics [134]. A GP is distribution over functions, i.e. a

draw from the GP is a function. When a function f(x) follows a GP model,

we can define the term completely with the GP mean and variance as follows,

∆(.) ∼ GP(m(.), k(., .′)) (6.1)

where m(.) is the mean of the function and k(., .) is positive definite, sym-

metric covariance kernel matrix.

Under GP regression, the mean is assumed to lie in the class of function H,

defined as reproducing kernel Hilbert space (RKHS). An RKHS is defined as

function space such that g ∈ H satisfies following conditions, i.e. ‖g‖H <∞
and ‖g(.)‖2

H =
∑∞

i=1

∑∞
j=1 αiαjk(zi, zj), interested readers can find further

details on RKHS in [134, 53] and reference therein.

6.2.2 GP Regression

Let Zτ = {z1, z2, . . . zτ} be set of discretely sampled state measurements.

For each zi’s observed, there is an observed output y(zi) = m(zi) + εi, where

εi ∼ N (0, ω2). The output yi’s can be stacked as a output vector y =

[y1, y2, . . . yτ]
T . We can define the covariance matrix K such that Ki,j =

98

k(zi, zj). The most common choice of covariance kernel and the one we use

in this work is Gaussian RBF kernel defined as k(z, z′) = exp
(
−‖z−z

′‖2
2µ2

)
,

where µ is defined as bandwidth of the kernel.

The GP regression fuses RKHS theory and Bayesian linear regression by

utilizing the regression model of the formm(z) = βTΨ(z) =
∑

i∈I βi〈ψ(zi), ψ(z)〉,
where β ∈ FZ is the vector of weights, belonging to a finite dimensional func-

tion space generated over Z such that FZ ⊂ H. ψ(zi) ∈ H is the mapping

between data points Zτ and linear subspace generated via data points.

GP Regression assumes that uncertainty in the data and model follow

Gaussian distributions, while modeling the function using mean m̂(.) and

a covariance function Σ̂. Since the observations and the likelihood of the

output yi p(yτ |Zτ , β) is Gaussian, we can set an initial Gaussian prior i.e.

p(β) ∼ N (0,Σβ) and use Bayes’ rule to to infer posterior distribution as

p(β|Zτ , yτ) with each new observation. Since the posterior is Gaussian, the

update generates a revised prior with mean m̂τ and covariance Σ̂τ for next

step of inference with new observation.

Given new input zτ+1, the joint distribution of the outputs available up to

the time τ , i.e. yτ and future data yτ+1 under the prior distribution can be

written as [
yτ

yτ+1

]
∼ N

(
0,

[
K(Zτ , Zτ) + ω2I kzτ+1

kTzτ+1
k∗τ+1

])
(6.2)

where kzτ+1 = K(zτ+1, Zτ) and k∗τ+1 = k(zτ+1, zτ+1). The posterior distribu-

tion obtained by joint Gaussian prior distribution over observation zτ+1 is

computed by

p(yτ+1|Zτ , yτ , zτ+1) ∼ N (m̂τ+1, σ̂τ+1) (6.3)

where
m̂τ+1 = βTτ+1kzτ+1 (6.4)

σ̂τ+1 = k∗τ+1 − kTzτ+1
Cτkzτ+1 (6.5)

are the updated mean and covariance estimates respectively. where Cτ :=

(K(Zτ , Zτ) + ω2I)
−1

and βτ+1 = Cτyτ .

If |Zτ | is finite the posterior mean and covariance is also finite. But since

Zτ and yτ grow with data, computing the inverse becomes computationally

intractable over time. In traditional offline GP regression this is less of a

99

problem but however, in online setting this linear growth of data poses a

computational challenge. To mitigate this issue and use GP-MRGeN in on-

line setting, we will use a simple budgeted kernel method to restrict the

number of data points stored for inference. The test for incorporating a

new data point into GP model through basis vector (BV) is done by kernel

independence test

γτ+1 = k∗τ+1 − kTzτ+1
ατ (6.6)

where ατ = K−1
zτ kzτ+1 . The term γτ+1 characterizes the richness of the space

spanned by basis vectors in estimating the target values. The details of

qualifying a data point to be added to the budget using kernel independence

test and test for removal of old point once the budget size is reached are

given in [53]. The algorithm for GP-MRGeN adaptive control is provided in

Algorithm-3.

6.2.3 GP-MRGeN Adaptive Controller

GP-MRGeN learns the posterior GP model of the system uncertainties over

the MRGeN estimates of the uncertainty f(x) as

uad(t) ∼ GP(m̂(x), k(x, x′)) (6.7)

where m̂(x) is the estimate of the mean function updated using (6.4). We

assume that the high gain MRGeN targets are distributed according to the

Gaussian distribution. We use the fact that GP regression can mitigate the

noise in the data and can still learn the true underlying model over high-

frequency target estimate generated by MRGeN weight update law. This

architecture ensures robustness with faster adaptation.

The GP model of the uncertainty is learned over the state measurement

Zτ = {x1, x2, . . . xτ} and corresponding MRGeN estimate of the uncertainty

at each xi’s as the observed output Yτ = {y1, y2, . . . yτ}T . The target yi are

defined as yi = W Tψ(xi), where ψ(xi) are defined as k(zi, zj) = 〈ψ(zi), ψ(zj)〉
and parameter W is updated using the MRAC weight update law (5.32).

The MRAC network estimating the target yi = W Tψ(xi) is known as Model

Reference Generative Network (MRGeN).

Further using the mean and covariance update given in (6.4) & (6.5) a

100

smoothed posterior estimate of the true uncertainty is modeled using GP

Bayesian inference. The adaptive element uad(t) can be set equal to the

mean of uncertainty i.e. uad(t) = m̂(x) or to an element drawn from the

distribution (6.7). It is shown in the next section, that if the adaptive element

is chosen as uad(t) = m̂(x), the approximation error ‖uad− f(x)‖ is bounded

and the total controller (5.3) is stable.

Algorithm 3 Gaussian Process Adaptive Control using MRGeN

1: Input: Γ, εtol, pmax
2: while new measurements are available do
3: Given zτ+1 compute γτ+1 = k∗τ+1 − kTzτ+1

ατ .
4: if γτ+1 > εtol then
5: Update the weights of MRGeN using weight update rule (7.8)
6: Compute yτ+1 = Ŵ Tφ(zτ+1)
7: Add (zτ+1, yτ+1) to BV(σ)
8: if |BV(σ)| > pmax then
9: Delete element in BV(σ) based on methods in [53]

10: end if
11: Increase the switching index σ
12: Calculate m̂τ+1 and Σ̂τ+1

13: νad = m̂τ+1

14: Evaluate the total control using (5.3)
15: end if
16: end while=0

6.3 Analysis of Stability

In this section we introduce the stochastic stability theory for switched sys-

tem. Consider the switched stochastic differential equation of Ito type whose

solution are class of continues Markov process. The system of equations are

dx(t) = F (t, x(t))dt+Gσ(t, x(t))dξ(t), x(0) = x0 (6.8)

where x ∈ Rnx , ξ(t) ∈ Rn2 is Wiener process, σ(t) ∈ N is the switching index

which switches finitely many times in any finite time interval. F (t, x(t))

is an ns-vector function, and Gσ(t, x(t)) is an ns × n2 matrix. Assume that

F (t, 0) = 0 and Gσ(t, 0) = 0. Let functions F (t, x(t)), Gσ(t, x(t)) be Lipschitz

101

for each switching index σ, ∀x, y such that

‖F (t, x)− F (t, y)‖+ ‖Gσ(t, x)−Gσ(t, y)‖ ≤ B‖x− y‖ (6.9)

Under the condition Lipschitz continuity the solution to (6.8) exists. Note the

assumption of Lipschitz continuity on Gσ is reasonable for GP formulations,

since the terms of Gσ are the differentiable kernel functions.

The following definitions concerning the ultimate boundedness of the so-

lution of (6.8) are introduced.

Definition 6.3.1 The process x(t) is said to be mean square ultimately bounded

uniformly in σ if there exists a positive constant K such that for all t, x0 ∈ Rns

and σ

lim
t→∞

Ex0‖x(t)‖2 ≤ K (6.10)

Definition 6.3.2 The process x(t) is said to be exponentially mean square

ultimately bounded uniformly in σ if there exist positive constants K, c, and

α such that for all t ∈ R+, x0 ∈ Rns, and for all σ

lim
t→∞

Ex0‖x(t)‖2 ≤ K + c‖x0‖2eα(t) (6.11)

Theorem 6.3.3 Let the x(t) be the solution of (6.8) and let V (t, x) : C1,2 ∈
{R+,Rns}. Lets define the Ito differential generator L for the smooth function

V (t, x) given by

LV (t, x(t)) =
∂V

∂t
+
∑
j

Fj(t, x)
∂V

∂x
+

1

2

∑
i,j

[
GσG

T
σ

]
i,j

∂2V

∂xi∂xj
(6.12)

where [GσG
T
σ]ij is ith and jth column of ns × ns matrix [GσG

T
σ]. If V (t, x)

follows,

1. α1 +c1‖x‖2 ≤ V (t, x) for all α, c1 > 0 and LV (t, x(t)) ≤ βσ−c2V (t, x),

for real βσ and c2 > 0, and all switch states σ; then the process x(t) is

mean square ultimately bounded uniformly in σ

2. Additionally if V (t, x) ≤ c3‖x‖2 + α2, then the process x(t) is exponen-

tially mean square ultimately bounded uniformly in σ.

The proof of the above theorem can be found in [53, 157]

102

6.4 Stability and Boundedness results for GP-MRGeN

This section provides the stability proof for GP-MRGeN using Algorithm-3.

Let σ(t) ∈ N be the switch index which is updated every time the basis

vector set BV is updated. When the σth set is active the mean function

is estimated using the BV(σ) basis vectors, and the corresponding mean is

denoted by m̂σ. The analysis presented uses the uncertainty modeled as

f(z(t)) = m(z(t)) +Gσ(t, z(t))dξ(t) (6.13)

where ξ is zero mean Weiner process, Gσ is linear operator associated with

kernel k(z, z′). Given system (5.1) and reference system (5.2) and for given

switch index σ under the control (5.3), the error dynamics can be written as

de(t) = Arme(t)dt+ dtB(εσm(t)−Gσ(t, z(t))dξ(t)) (6.14)

The above tracking error is achieved using the controller of the form (5.3)

and adaptive element is realization of the GP posterior as follows uad(z) ∼
GP(m̂σ(z), k(z, z′)). The error term is εσm = m̂σ(z) − f(z). For the sake of

brevity, we drop the time and state dependency of Gσ(t, z(t))dξ(t) in the

remaining section.

To prove stability we need to show boundedness of the approximation

error ‖m̂σ(z) − f(z)‖ and will we need the following result, which we will

state without the proof.

Theorem 6.4.1 (Dudley) Lets define a psuedometric,

dG(t, s) =

√
E [‖Gσdξ(t)−Gσdξ(s)‖]2 (6.15)

on T. let N(T, d, δ) be the δ−covering number of the space. The δ−entropy

of the space (T, d) is given by H(T, d, δ) = logN(T, d, δ). Let D(T) be the

diameter of space T with respect to following metric dG, then following bound

holds,

E sup
t∈T

Gσdξ(t) ≤ C

∫ D(T)

0

H1/2(T, d, δ)dδ (6.16)

Proof The proof of the above theorem can be found in [53]

Let Ki,j = k(cϑi , cϑj) be the kernel associated with m̂σ induced by quan-

tization operator ϑ : {1, . . . , τ} → {1, . . . , pmax}, such that zi 7→ cϑi , where

103

cϑi ∈ Dx are the set of chosen centers BV . Let m̂σ(z) = αTk(cϑ, z), where

α = (σ−2
n K + ω2I)−1y

Theorem 6.4.2 Let m̂σ and ∆(z) be defined as above, the MRGeN generated

target y be upper bounded as ‖y‖∞ ≤ Mσ and λ be the minimum of eigen

value of K−1. Then the disturbance approximation using GP can be upper

bounded as
‖εσm(z)‖∞ ≤

σ−1
n

√
λ

(σ−2
n λ+ ω2)

+
σ−2
n ω2Mσ

(σ−2
n λ+ ω2)

(6.17)

Proof Define the estimate m̂(z) = (σ−2
n K)−1kzy. Lets begin with calculating

the expectation of approximating term m̂σ(z),

E(m̂σ(z)) = E((σ−2
n K + ω2I)−1kzy) (6.18)

= E((I + ω2(σ−2
n K)−1)−1(σ−2

n K)−1kzy)

Using the above definition of m̂(z) we can write,

E(m̂σ(z)) = E((I + ω2(σ−2
n K)−1)−1m̂(z)) (6.19)

= (I + ω2(σ−2
n K)−1)−1E(m̂(z)) (6.20)

Defining the term Wλ = (I + ω2(σ−2
n K)−1)−1 we can write

m̂σ(z) = Wλm̂(z) (6.21)

E(m̂σ(z)) = WλE(m̂(z)) (6.22)

Using the previous arguments, lets calculate the mean square errorMSE(m̂σ(z)),

in step towards calculating the bounds on εσm(z)

MSE(m̂σ(z)) , E((m̂σ(z)−∆(z))T (m̂σ(z)−∆(z))) (6.23)

= E((Wλm̂(z)−∆(z))T (Wλm̂(z)−∆(z))) (6.24)

= E((m̂(z)−∆(z))TWT
λWλ(m̂(z)−∆(z)))−∆(z)TWT

λWλ∆(z)

−∆(z)TWλ∆(z)−∆(z)TWT
λ∆(z) + ∆(z)T∆(z) (6.25)

104

Simplifying and rearranging the terms we get,

E((m̂σ(z)−∆(z)T (m̂σ(z)−∆(z))

= E((m̂(z)−∆(z))TWT
λWλ(m̂(z)−∆(z)))

+∆(z)T (Wλ − Ip×p)T (Wλ − Ip×p)∆(z) (6.26)

= σ2
ntr(WλK

−1WT
λ) + ∆(z)T (Wλ − Ip×p)T (Wλ − Ip×p)∆(z) (6.27)

Using the identity ‖x‖∞ 6 ‖x‖2 we can bound the term ‖εσm(z)‖∞ as

‖εσm(z)‖∞ 6 sup
z∈Dx

√
E((m̂σ(z)−∆(z)T (m̂σ(z)−∆(z))

6 sup
√
σ2
ntr(WλK−1WT

λ) + sup
√

∆(z)T (Wλ − Ip×p)T (Wλ − Ip×p)∆(z)

(6.28)

Using the definition of Wλ and λ = λmin(K−1) we evaluate each term,

sup
(
σ2
ntr(WλK

−1WT
λ)
)

=
σ−2
n λmin(K−1)

λmin(σ−2
n K + ω2I)

(6.29)

=
σ−2
n λ

(σ−2
n λ+ ω2)2

(6.30)

Using the bound ∆(z) ≤ y ≤ Mσ the second term can be simplified as

follows,

sup
(
∆(z)T (Wλ − Ip×p)T (Wλ − Ip×p)∆(z)

)
=

(Mσ)2

(
σ−2
n

(σ−2
n λ+ ω2)

− 1

)2

≤ (Mσ)2

(
σ−2
n ω2

(σ−2
n λ+ ω2)

)2

Using above expressions the total bound can be written as,

‖εσm(z)‖∞ ≤
σ−1
n

√
λ

(σ−2
n λ+ ω2)

+
σ−2
n ω2Mσ

(σ−2
n λ+ ω2)

(6.31)

Analyzing the bound we can notice the first term is square root of variance

term and second is of the bias, which forms the source of total variation

between true signal and its approximation.

The boundedness of tracking error can now be proven as

Theorem 6.4.3 Consider the system in (5.1), the controller (5.3), and as-

105

sume that the uncertainty ‖f(z)‖ ≤ B is bounded and Lipschitz continuous

in closed compact domain z(t) ∈ Dx and is representable by a GP. Then, Al-

gorithm 1 and the adaptive signal uad(z) = m̂σ(z) guarantee that the system

is mean square uniformly ultimately bounded a.s.

Proof Let V (e(t)) = 1/2eT (t)Pe(t) be the stochastic Lyapunov candidate,

where P > 0 satisfies the Lyapunov equation. Note that the Lyapunov candi-

date is bounded above and below by a quadratic term since 1/2λmin(P)e2 ≤
V (e) ≤ 1/2λmax(P)e2. The Ito differential of the Lyapunov candidate along

the solution of (6.14) for the σth system is,

LV (e)

=
∑
i

∂V (e)

∂ei
Aei +

1

2

∑
i,j

[BGσ(BGσ)T]ij
∂2V (e)

∂ei∂ej
(6.32)

=
1

2
eTQe+ eTPB[εσm(z) +Gσdξ(t)] +

1

2
[BGσ(BGσ)TP]

(6.33)

Let c1 = 1/2‖P‖‖BGσ‖2 and c2 = ‖PB‖, then

LV (e)

≤ −1

2
λmin(Q)‖e‖2 + c2‖e‖ (‖εσm(z) +Gσdξ(t)‖) + c1

≤ −1

2
λmin(Q)‖e‖2 + c2‖e‖ (‖εσm(z)‖+ c′) + c1 (6.34)

From Theorem-6.4.2 we have ‖εσm(z)‖ ≤ c3 + c4M
σ, where

c3 =
σ−1
n

√
λ

(σ−2
n λ+ ω2)

, c4 =
σ−2
n ω2

(σ−2
n λ+ ω2)

therefore using this bound in above expression we can write,

LV (e) ≤ −1

2
λmin(Q)‖e‖2 + c2‖e‖ (c3 + c4M

σ + c′) + c1 (6.35)

Defining cσ5 = c3 + c4M
σ, therefore outside the set

Θσ =

‖e‖ ≤ cσ5 +
√

(cσ5)2 + 2 ∗ λmin(Q)c1

λmin(Q)

 (6.36)

Therefore, LV (e) ≤ 0 a.s. Since Mσ depends on y we need to show that y is

106

bounded. Since we use MRGeN to generate y, this result will be straightfor-

ward. From Assumption-5.2.2 and projection operator in weight update rule

(7.8), y is upper bounded as y ≤ WT
b ‖φ(x)‖∞. WhereWT

b is boundary point

in projection operator[48]. Therefore it follows that Θσ is bounded, hence

‖e‖ is bounded.

Using BIBO stability, for bounded reference signal r(t), xrm(t) remains

bounded and therefore x(t) ∈ Dx a.s. Since this is true for all arbitrary

switching σ, from stochastic stability theory [158] (6.14) is mean square UUB.

6.5 Simulations

In this section, we will evaluate the presented GP-MRGeN adaptive controller

using wing rock aircraft dynamic model. Let θ denote the roll attitude of an

aircraft, p denotes the roll rate and δa denotes the aileron input. The model

for wing rock dynamics of a delta wing aircraft is

θ̇ = p (6.37)

ṗ = Lδaδa + ∆(x) (6.38)

where Lδa = 3 and ∆(x) is model for wing rock dynamics and is assumed to

be unknown to the controller. We assume a stochastic model to uncertainty

∆(x), with variance ω2 and mean

∆(x) = W ∗
0 +W ∗

1 θ +W ∗
2 p+W ∗

3 |θ|pW ∗
4 |p|p+W ∗

5 θ
3 (6.39)

The parameters for the true mean function are motivated from [146] with

W ∗
1 = 0.2314, W ∗

2 = 0.6918,W ∗
3 = −0.6245,W ∗

4 = 0.0095,W ∗
5 = 0.0214. In

addition, a trim error is introduced by settingW ∗
0 = 0.8. The gain of feedback

controller Kp and Kr are set to Kp = [−16,−4] and Kr = 16 respectively

to ensure the matching condition to the reference model. A second order

reference model with natural frequency 4rad/s and damping ratio of 0.5 is

used. Further stochasticity is added to the system by adding Gaussian white

noise to the states with variance ωn = 0.01. The simulation uses time step

of 0.05s. The maximum number of points (pmax) to be stored in BV(σ) is

arbitrarily set to 100 and oldest points (OP) were selected to be deleted from

107

BV(σ) when budget is reached, the details are provided in [53].

The controller is designed to track a stable reference commands r(t). The

goal of the experiment is to compare the tracking performance of GP-MRGeN

controller with High Gain MRAC controller when the domain operation is

unknown. We find that 100 centers are sufficient for a good on-line ap-

proximation of the uncertainty. We use the same reference model for both

controllers. The learning rate for high gain MRAC and MRGeN generative

network for GP training is chosen to be Γ = 5000, Kernel bandwidth is

chosen as µ = 0.05 and tolerance threshold for kernel independence test is

selected to be εtol = 0.1 for updating the basis vector BV(σ).

Figure-7.7 and Fig-7.8 show the closed loop system performance in track-

ing the reference signal for GP-MRGeN and MRAC controller. Note that

the control response of the proposed adaptive controller is clearly superior as

compared to the standard adaptive controller. GP-MRGeN uses the genera-

tive model target at an only small number of discrete time steps to learn the

underlying model of the uncertainty. Also, the GP-MRGeN estimate is noise

free even when the target values are noisy. The presented controller achieves

tighter tracking with smaller tracking error as shown in Fig-7.9 compared to

MRAC controller. Figure-6.5 show the total control profile for both the con-

trollers. It can be observed the control history for GP-MRGeN has smaller

peaks and less noisy due to smoothing property of the GP estimation. This

denoising of the controller demonstrates that proposed method leads to ro-

bust adaptation without incurring high-frequency oscillations in the control

response. Figure-6.5 shows the network performance in estimating the un-

certainty. The GP-MRGeN estimate is noise free and closely approximates

the true uncertainty compared to MRAC estimate. The blobs in Fig-6.5

show the time step at which the generative model MRGeN was updated and

queried for inferring the posterior GP model over data.

108

Figure 6.1: GP-MRGeN vs High Gain-MRAC Controller Evaluation on
aircraft Wing-Rock dynamics model-Closed-loop system response in roll
angle θ(t)

Figure 6.2: GP-MRGeN vs High Gain-MRAC Controller Evaluation on
aircraft Wing-Rock dynamics model-Closed-loop system response in roll
rate p(t)

109

Figure 6.3: GP-MRGeN vs High Gain-MRAC Controller Evaluation on
aircraft Wing-Rock dynamics model Tracking Error in θ(t) and p(t)

Figure 6.4: Phase plot with RBF dynamic centers selected for MRAC
Controller

110

Figure 6.5: GP-MRGeN vs High Gain-MRAC-Total Control input u(t)

Figure 6.6: GP-MRGeN vs High Gain-MRAC-Uncertainty approximation.
The blobs indicate the time step at which generative model is updated and
queried for GP training

111

CHAPTER 7

DEEP MODEL REFERENCE ADAPTIVE
CONTROL

Neural networks in adaptive control have been studied for a very long time.

The seminal paper by Lewis [62] utilized Taylor series approximations to

demonstrate uniform ultimate boundedness with a single hidden neural net-

work. SHL networks are nonlinear in the parameters; hence the analysis

previously introduced for linear in parameter, radial basis function neural

networks introduced by Sanner and Slotine does not directly apply [59]. The

back-propagation type scheme with non-increasing Lyapunov candidate as a

constraint, introduced in Lewis’ work has been widely used in Neuro-adaptive

MRAC. Concurrent Learning MRAC (CL-MRAC) is a method for learning

based neuro-adaptive control developed by the author to improve the learn-

ing properties and provide exponential tracking and weight error convergence

guarantees. However, similar guarantees have not been available for SHL net-

works. There has been much work, towards including deeper neural networks

in control; however, strong guarantees like those in MRAC on the closed loop

stability during online learning are not available. Deep MRAC proposes a

dual time-scale learning approach which provides such guarantees. Our ap-

proach should be generalizable to other applications of deep neural networks,

including policy gradient Reinforcement Learning (RL) [159] which is very

close to adaptive control in its formulation and also to more recent work in

RL for control [97].

7.1 System Description

This section discusses the formulation of model reference adaptive control

(see e.g. [120]). We consider the following system with uncertainty ∆(x):

ẋ(t) = Ax(t) +B(u(t) + f(x)) (7.1)

112

where x(t) ∈ Rn, t > 0 is the state vector, u(t) ∈ Rm, t > 0 is the control

input, A ∈ Rn×n, B ∈ Rn×m are known system matrices and we assume the

pair (A,B) is controllable. The term f(x) : Rn → Rm is matched system

uncertainty and be Lipschitz continuous and bounded in x(t) ∈ Dx. Let

Dx ⊂ Rn be a compact set and the control u(t) is assumed to belong to a set

of admissible control inputs of measurable and bounded functions, ensuring

the existence and uniqueness of the solution to (7.1).

The reference model is assumed to be linear and therefore the desired

transient and steady-state performance is defined by a selecting the system

eigenvalues in the negative half plane. The desired closed-loop response of

the reference system is given by

ẋrm(t) = Armxrm(t) +Brmr(t) (7.2)

where xrm(t) ∈ Dx ⊂ Rn and Arm ∈ Rn×n is Hurwitz and Brm ∈ Rn×r.

Furthermore, the command r(t) ∈ Rr denotes a bounded, piece wise contin-

uous, reference signal and we assume the reference model (7.2) is bounded

input-bounded output (BIBO) stable [120].

The true uncertainty f(x) in unknown, but it is assumed to be bounded

and continuous over a compact domain Dx ⊂ Rn. A Deep Neural Net-

works (DNN) have been widely used to represent unknown function when

the basis vector is not known. Using DNNs, a non linearly parameter-

ized network estimate of the uncertainty can be written as fθ , θTnΦ(x),

where θn ∈ Rk×m are network weights for the final layer and Φσ
n(x) =

φn(θn−1, φn−1(θn−2, φn−2(...)))), is a k dimensional feature vector which is

function of inner layer weights, activations and inputs. The basis vector

Φσ
n(x) ∈ F : Rn → Rk is considered to be Lipschitz continuous to ensure the

existence and uniqueness of the solution (7.1).

7.1.1 Total Adaptive Controller

The aim is to construct a feedback law u(t), t > 0, such that the state of

the uncertain dynamical system (7.1) asymptotically tracks the state of the

reference model (7.2) despite presence of matched uncertainty.

A tracking control law consisting of linear feedback term upd = kxx(t), a

linear feed-forward term ucrm = krr(t) and an adaptive term uad(t) form the

113

total controller

u(t) = upd(t) + ucrm(t)− uad(t) (7.3)

The baseline full state feedback and feed-forward controller is designed to

satisfy the matching conditions such that Arm = A − Bkx and Brm = Bkr.

For the adaptive controller ideally we want uad(t) = f(x(t)). Since we do

not have true uncertainty information, we use a DNN estimate of the system

uncertainties in the controller as uad(t) = fθ(x(t)).

7.1.2 Deep Model Reference Adaptive Control

Unlike traditional MRAC or SHL-MRAC weight update rule, where the

weights are moved in the direction of diminishing tracking error, training

a deep neural network is much more involved. Feed-Forward networks like

DNNs are trained in a supervised manner over a batch of i.i.d data. Deep

learning optimization is based on Stochastic Gradient Descent (SGD) or its

variants. The SGD update rule relies on a stochastic approximation of the

expected value of the gradient of the loss function over a training set or

mini-batches.

To train a deep network to estimate the system uncertainties, unlike MRAC

we need labeled pairs of state-true uncertainties {x(t), f(x(t))} i.i.d samples.

Since we do not have access to true uncertainties (f(x)), we use a genera-

tive network to generate estimates of f(x) to create the labeled targets for

deep network training. For details of the generative network architecture

in the adaptive controller, please see [131]. This generative network is de-

rived from separating the DNN into inner feature layer and the final output

layer of the network. We also separate in time-scale the weight updates of

these two parts of DNN. Temporally separated weight update algorithm for

the DNN, approximating system uncertainty is presented in more details in

further sections.

7.1.3 Online Parameter Estimation law

The last layer of DNN with learned features from inner layer forms the Deep-

Model Adaptive Controller(DMRAC). We use the MRAC learning rule to

update pointwise in time, the weights of the D-MRGeN in the direction of

114

achieving asymptotic tracking of the reference model by the actual system.

Since we use the DMRAC estimates to train DNN model, we first study

the admissibility and stability characteristics of the generative model esti-

mate uad(t) = W TΦσ
n(x) in the controller (7.3). To achieve the asymptotic

convergence of the reference model tracking error to zero, we use the DMRAC

estimate in the controller (7.3) as uad(t) = W TΦσ
n(x)

uad(t) = W Tφn(θn−1, φn−1(θn−2, φn−2(...)))) (7.4)

To differentiate the weights of D-MRGeN from last layer weights of DNN

“θn”, we denote D-MRGeN weights as “W”.

Assumption 7.1.1 Appealing to the universal approximation property of

Neural Networks [150] we have that, for every given basis functions Φ(x) ∈ F
there exists unique ideal weights W ∗ ∈ Rk×m and ε1(x) ∈ Rm such that the

following approximation holds

f(x) = W ∗TΦσ
n(x) + ε1(x), ∀x(t) ∈ Dx ⊂ Rn (7.5)

Fact 7.1.2 The network approximation error ε1(x) is upper bounded, s.t ε̄1 =

supx∈Dx ‖ε1(x)‖, and can be made arbitrarily small given sufficiently large

number of basis functions.

The reference model tracking error is defined as e(t) = xrm(t)−x(t). Using

(7.1) & (7.2) and the controller of form (7.3) with adaptation term uad, the

tracking error dynamics can be written as

ė(t) = ẋrm(t)− ẋ(t) (7.6)

ė(t) = Arme(t) +B
(
W̃ TΦσ

n(x) + ε1(x)
)

(7.7)

where W̃ = W ∗ −W is error in parameter.

The estimate of the unknown true network parameters W ∗ are calculated

on-line using the weight update rule (7.8); correcting the weight estimates

in the direction of minimizing the instantaneous tracking error e(t). The

resulting update rule for network weights in estimating the total uncertainty

in the system is as follows

Ẇ = Γproj(W,Φσ
n(x)e(t)′PB) W (0) = W0 (7.8)

115

where Γ ∈ Rk×k is the learning rate and P ∈ Rn×n is a positive definite

matrix. For given Hurwitz Arm, the matrix P ∈ Rn×n is a positive definite

solution of Lyapunov equation ATrmP + PArm +Q = 0 for given Q > 0

Assumption 7.1.3 For uncertainty parameterized by unknown true weight

W ∗ ∈ Rk×m and known nonlinear basis Φ(x), the ideal weight matrix is

assumed to be upper bounded s.t ‖W ∗‖ ≤ Wb. This is not a restrictive

assumption.

7.1.4 Lyapunov Analysis

The on-line adaptive identification law (7.8) guarantees the asymptotic con-

vergence of the tracking errors e(t) and parameter error W̃ (t) under the

condition of persistency of excitation [55, 120] for the structured uncertainty.

Similar to the results by Lewis for SHL networks [47], we show here that un-

der the assumption of unstructured uncertainty represented by a deep neural

network, the tracking error is uniformly ultimately bounded (UUB). We will

prove the following theorem under switching feature vector assumption.

Theorem 7.1.4 Consider the actual and reference plant model (7.1) & (7.2).

If the weights parameterizing total uncertainty in the system are updated ac-

cording to identification law (7.8) Then the tracking error ‖e‖ and error in

network weights ‖W̃‖ are bounded for all Φσ
n ∈ F .

Proof: The feature vectors belong to a function class characterized by the

inner layer network weights θi s.t Φσ
n ∈ F . We will prove the Lyapunov

stability under the assumption that inner layer of DNN presents us a feature

which results in the worst possible approximation error compared to network

with features before switch.

For the purpose of this proof let Φ
σj
n (x),Φσi

n (x) denote feature before and

after switch and Φσi
n (x) be the feature after switch. We define the error ε2(x)

as,

ε2(x) = sup
Φ∈F

∥∥W TΦσi
n (x)−W TΦσj

n (x)
∥∥ (7.9)

Similar to Fact-7.1.2 we can upper bound the error ε2(x) as

ε̄2 = sup
x∈Dx
‖ε2(x)‖

116

By adding and subtracting the term W TΦ
σj
n (x), we can rewrite the error

dynamics (7.7) with switched basis as,

ė(t) = Arme(t)+B
(
W ∗TΦσi

n (x)−W TΦσi
n (x) +W TΦσj

n (x)−W TΦσj
n (x) + ε1(x)

)
(7.10)

From Assumption-7.1.1 we know there exists a W ∗ ∀σ and ∀Φσ
n ∈ F . There-

fore we can replace W ∗TΦ(x)σin by W ∗TΦ
σj
n (x) and rewrite the Eq-(7.10) as

ė(t) = Arme(t) + W̃ TΦσj
n (x) +W T (Φσj

n (x)− Φσi
n (x)) + ε1(x) (7.11)

For arbitrary switching σ, for any Φσ
n(x) ∈ F , we can prove the boundedness

by considering worst possible approximation error and therefore can write,

ė(t) = Arme(t) + W̃ TΦσ
n(x) + ε2(x) + ε1(x) (7.12)

Now lets consider V (e, W̃) > 0 be a differentiable, positive definite radially

unbounded Lyapunov candidate function,

V (e, W̃) = eTPe+
W̃ TΓ−1W̃

2
(7.13)

The time derivative of the Lyapunov function (7.13) along the trajectory

(7.12) can be evaluated as

V̇ (e, W̃) = ėTPe+ eTP ė− W̃ TΓ−1 ˙̂
W (7.14)

Using (7.12) & (7.8) in (7.14), the time derivative of the lyanpunov function

reduces to

V̇ (e, W̃) = −eTQe+ 2eTPε(x) (7.15)

where ε(x) = ε1(x) + ε2(x) and ε̄ = ε̄1 + ε̄2.

Hence V̇ (e, W̃) ≤ 0 outside compact neighborhood of the origin e = 0, for

some sufficiently large λmin(Q).

‖e(t)‖ ≥ 2λmax(P)ε̄

λmin(Q)
(7.16)

Using the BIBO assumption xrm(t) is bounded for bounded reference signal

117

r(t), thereby x(t) remains bounded. Since V (e, W̃) is radially unbounded

the result holds for all x(0) ∈ Dx. Using the fact, the error in parameters W̃

are bounded through projection operator [143] and further using Lyapunov

theory and Barbalat’s Lemma [144] we can show that e(t) is uniformly ulti-

mately bounded in vicinity to zero solution.

From Theorem-7.1.4 & Eq-(7.7) and using system theory [160] we can infer

that as e(t) → 0, W TΦσ
n(x) → f(x) in point-wise sense. Hence D-MRGeN

estimates yτ = W TΦσ
n(xτ) are admissible target values for training DNN

features over the data ZM = {{xτ , yτ}}Mτ=1.

The details of DNN training and implementation details of DMRAC con-

troller is presented in following section:

7.2 Adaptive Control using Deep Nets (DMRAC)

The DNN architecture for MRAC is trained in two steps. We separate the

DNN into two networks as shown in Fig-7.1. The faster learning outer adap-

tive network and slower deep feature network. DMRAC learns underlying

deep feature vector to the system uncertainty using locally exciting uncer-

tainty estimates obtained using a generative network. Between successive

updates of the inner layer weights, the feature provided by the inner deep

network is used as the fixed feature vector for outer layer adaptive network

update and evaluation. The algorithm for DNN learning and DMRAC con-

troller is provided in Algorithm-4. Through this architecture of mixing two-

time scale learning, we fuse the benefits of DNN memory through retention

of relevant, exciting features and robustness, boundedness guarantee in ref-

erence tracking. This key feature of the presented framework ensures ro-

bustness while guaranteeing long term learning and memory in the adaptive

network.

Also as indicated in the controller architecture Fig-7.1 we can use con-

textual state ‘ci’ other than system state x(t) to extract relevant features.

These contextual states could be relevant model information not captured in

system states. For example for an aircraft system, vehicle parameters like

pitot tube measurement, the angle of attack, engine thrust and so on. These

contextual states can extract features which help in decision making in case

of faults. The work on DMRAC with contextual states will be dealt with in

118

Figure 7.1: DMRAC training and controller details

the follow on work.

The DNN in DMRAC controller is trained over training dataset ZM =

{xi, yi}Mi=1, where the yi are D-MRGeN estimates of the uncertainty. The

training dataset ZM is randomly drawn from a larger data buffer B. Not

every pair of data {xi, yi} from D-MRGeN is added to the training buffer

B. We qualify the input-target pair based on kernel independence test such

that to ensure that we collect locally exciting independent information which

provides a sufficiently rich representation of the operating domain. Since the

state-uncertainty data is the realization of a Markov process, such a method

for qualifying data to be sufficiently independent of previous data-points is

necessary. The algorithm details to qualify and add a data point to the buffer

is provided in detail in subsection 7.2.2.

119

7.2.1 Details of Deep Feature Training using D-MRGeN

This section provides the details of the DNN training over data samples ob-

served over n-dimensional input subspace x(t) ∈ X ∈ Rn and m-dimensional

targets subspace y ∈ Y ∈ Rm. The sample set is denoted as Z where

Z ∈ X × Y .

We are interested in the function approximation tasks for DNN. The func-

tion fθ is the learned approximation to the model uncertainty with param-

eters θ ∈ Θ, where Θ is the space of parameters, i.e. fθ : Rn → Rm.

We assume a training data buffer B has pmax training examples, such that

the set Zpmax = {Zi|Zi ∈ Z}pmaxi=1 = {(xi, yi) ∈ X × Y}pmaxi=1 . The samples

are independently drawn from the buffer B over probability distribution P .

The hypothesis set, which consist of all possible functions fθ is denoted as

H. Therefore a learning algorithm A (in our case SGD) is a mapping from

A : Zpmax → H
The loss function, which measures the discrepancy between true target y

and algorithm’s estimated target function value fθ is denoted by L(y, fθ(x)).

Specific to work presented in this section using Deep Neural Networks, we

use a `2-norm between values i.e.

Ep(`(y, fθ(x))) = EP (‖yi − fθ(xi)‖2) (7.17)

as loss function for DNN training. The empirical loss (7.34) is used to ap-

proximate the loss function since the distribution P is unknown to learning

algorithm. The weights are updated using SGD in the direction of negative

gradient of the loss function as given in (7.35).

Unlike the conventional DNN training where the true target values y ∈ Y
are available for every input x, in DMRAC true system uncertainties as the

labeled targets are not available for the network training. We use the part of

the network itself (the last layer) with pointwise weight updated according to

MRAC-rule as the generative model for the data. The D-MRGeN uncertainty

estimates yi = W TΦ(x, θ1, θ2, . . . θn−1) along with inputs xi make the training

data set Zpmax = {xi, yi}pmaxi=1 . Note that we use interchangably xi and x(t)

as discrete representation of continuous state vector for DNN training. The

main purpose of DNN in the adaptive network is to extract relevant features

of the system uncertainties, which otherwise is very tedious to obtain without

120

the limits on the domain of operation.

We also demonstrate empirically, that the DNN features trained over past

i.i.d representative data retains the memory of the past instances and can be

used as the frozen feed-forward network over similar reference tracking tasks

without loss of the guaranteed tracking performance.

7.2.2 Method for Recording Data using MRGeN for DNN
Training

In statistical inference, implicitly or explicitly one always assume that the

training set ZM = {xi, yi}Mi=1 is composed on M-input-target tuples that

are independently drawn from buffer B over same joint distribution P (x, y).

The i.i.d assumption on the data is required for robustness, consistency of

the network training and for bounds on the generalization error [161, 162].

In classical generalization proofs one such condition is that 1
pmax

XTX → γ

as pmax → ∞, where X denotes the design matrix with rows ΦT
i . The i.i.d

assumption implies the above condition is fulfilled and hence is sufficient

but not necessary condition for consistency and error bound for generative

modeling.

The key capability brought about by DMRAC is a relevant feature extrac-

tion from the data. Feature extraction in DNN is achieved by using recorded

data concurrently with current data. The recorded data include the state xi,

feature vector Φ(xi) and associated D-MRGeN estimate of the uncertainty

∆′(xi). For a given ζtol ∈ R+ a simple way to select the instantaneous data

point {xi,∆′(xi)} for recording is to require

γi =
‖Φ(xi)− Φp‖2

‖Φ(xi)‖
≥ ζtol (7.18)

Where the index p is over the data points in buffer B. The above method as-

certains only those data points are selected for recording that are sufficiently

different from all other previously recorded data points in the buffer. Since

the buffer B is of finite dimension, the data is stored in a cyclic manner. As

the number of data points reaches the buffer budget, a new data is added

only upon one existing data point is removed such that the singular value of

the buffer is maximized. The singular value maximization approach for the

121

training data buffer update is provided in [163].

Algorithm 4 D-MRAC Controller Training

1: Input: Γ, η, ζtol, pmax, σ
2: while New measurements are available do
3: Update the D-MRGeN weights using Eq:(7.8)
4: Compute yτ+1 = W TΦσ

n(xτ+1)
5: Given xτ+1 compute γτ+1 by Eq-(7.18).
6: if γτ+1 > ζtol then
7: Update B : Z(:) = {xτ+1, yτ+1} and X: Φ(xτ+1)
8: if |B| > pmax then
9: Delete element in B by SVD maximization [163]

10: end if
11: end if
12: if |B| ≥M then
13: Sample a mini-batch of data ZM ⊂ B
14: Train the DNN network over mini-batch data using Eq-(7.35)
15: Update the feature vector Φσ

n for D-MRGeN network
16: Update the Switching signal σ
17: end if
18: end while=0

7.3 Adaptive Control Using Bayesian Deep Neural

Networks

In the last sections we presented a MRAC controller using Deep Neural Net-

works. Despite tremendous success of Deep Neural networks in modelling

functions, they suffer from overfitting. When applied to supervised learning

problems deep networks are often incapable of correctly assessing the un-

certainty in the training data and so make overly confident decisions about

the correct class or prediction. To address this issue of over-fitting of deep

neural networks in estimating model uncertainty in MRAC we introduce a

Bayesian Deep net MRAC. Apart from the benefits of Bayesian learning in

adding a natural regularization to feature learning; we can show that using

finitely exciting training data a desirable property of ”Induced Persistency

of Excitation” of the features can be obtained. The persistency of excitation

property of the deep features ensure the outer layer weights converge to their

true values and hence providing a desirable convergence of all signals.

122

All the layer weights in the Bayesian neural networks are represented by

probability distributions over possible values, rather than having a single

fixed value as in the traditional neural networks. The learnt deep features

and therefore adaptive element will be a stochastic quantity. Therefore we

also prove the robustness and stability of the stochastic adaptive controller

for given uncertain system under perturbation of the weights. The amount

of perturbation each weight exhibits is also learnt in a way that coherently

explains variability in the training data. Thus instead of training a single

network, the Bayesian neural network trains an ensemble of networks, where

each network has its weights drawn from a shared, learnt probability distri-

bution.

In the previous chapter we introduced a Gaussian process Model reference

adaptive control where the adaptive element is linear in parameter single layer

network. The weight of the network are drawn over a Gaussian distribution,

which is updated using Bayes law. We also showed that a linear in parameter,

Gaussian prior and Gaussian Likelihood assumption leads to an closed form

update of the posterior distribution over the network weights. However for

deep neural network Bayesian updated of the posterior belief on network

parameters is intractable, due to intractable evidence term. We will see the

details of Bayesian update for Deep neural networks in further sections.

7.3.1 Bayesian Deep Neural Networks

Bayesian Neural Networks(BNN) are comprised of a Probabilistic Model and

a Neural Network. The intent of such a design is to combine the strengths of

Neural Networks and Stochastic modeling. Neural Networks exhibit univer-

sal approximation property over continuous functions. Probabilistic models

allows us to combine prior and likelihood to produce probabilistic guarantees

on it’s predictions through generating distribution over the parameters learnt

from the observations. Therefore the network can specify the confidence in-

terval over the prediction. Thus BNNs are a unique combination of neural

network and stochastic models.

A neural network can be viewed as a probabilistic model P (Y|X ,θ). We

assume y is a continuous variable and P (Y|X ,θ) is gaussian likelihood. Give

the data ZM = {{xi, yi} ∈ X × Y}Mi=1. The total likelihood can be written

123

as,

p(Z|θ) =
∏
i

(p(yi|xi,θ)) (7.19)

Which is function of network parameters Θ. Maximizing this likelihood we

achieve a maximum likelihood estimate of the parameters given the data,

which is introduced in the previous section. Assuming a gaussian likelihood,

performing maximization of negative log likelihood leads to least square re-

gression which can suffer over-fitting.

Using a prior belief on the parameters p(Θ) and likelihood of the data

given a deep neural network model, we can obtain a updated posterior belief

on the parameter using Bayes rule as follows,

p(θ|Z) =
p(Z|θ)p(θ)∫

θ
p(Z|θ)p(θ)dθ

(7.20)

Maximizing the posterior p(θ|Z) leads to Maximum-a-posterior (MAP) es-

timate of parameter θ. Computing the MAP estimate has a regularizing

effect and can prevent overfitting. The optimization objectives here are the

same as for MLE plus a regularization term coming from the log prior. If we

had a full posterior distribution over parameters we could make predictions

that take weight uncertainty into account by marginalizing the parameters

as follows,

p(y|x, Z) =

∫
θ

p(y|x,θ)p(θ|Z)dθ (7.21)

This is equivalent to averaging predictions from an ensemble of neural net-

works weighted by the posterior probabilities of their parameters θ.

7.3.2 Variation Inference

Unlike Gaussian Processes, analytical solution for posterior p(θ|Z) for a

multi-layer neural network is intractable. We therefore have to approximate

the true posterior with a variational distribution q(θ|ζ). The variational

distribution is a known function parameterized by variational parameters ζ

which are estimated online. The variational parameters are estimated online

by minimizing the Kullback-Leibler (KL) divergence between variational dis-

tribution q(θ|ζ) and true posterior p(θ|Z). The KL objective can be written

124

as,

KL (q(θ|ζ)‖p(θ|Z)) =

∫
q(θ|ζ) log

(
q(θ|ζ)

p(θ|Z)

)
dθ

= Eq(θ|ζ) log

(
q(θ|ζ)

p(θ|Z)

)
(7.22)

Using the expression for true posterior (7.20), we can simplify the above

expression as

KL (q(θ|ζ)‖p(θ|Z)) = Eq(θ|ζ) log

(
q(θ|ζ)

p(Z|θ)p(θ)
p(Z)

)
(7.23)

= Eq(θ|ζ) [log (q(θ|ζ))− log (p(Z|θ))− log (p(θ) + log (p(Z))]

(7.24)

Since log (p(Z)) is independent of parameters θ, ζ we cam simply the above

expression as

KL (q(θ|ζ)‖p(θ|Z)) = Eq(θ|ζ) [log (q(θ|ζ))− log (p(Z|θ))− log (p(θ)] + log (p(Z))

= KL (q(θ|ζ)‖p(θ))− Eq(θ|ζ) (log (p(Z|θ))) + log(p(Z))

(7.25)

As we know log (p(Z)) is independent of parameter θ, to minimize the KL-

divergence KL (q(θ|ζ)‖p(θ|Z)), we can minimize only the first two terms in

(7.25) which are known as Variational Free Energy F(Z,θ, ζ)

KL (q(θ|ζ)‖p(θ|Z)) = F(Z,θ, ζ) + log(p(Z)) (7.26)

where

F(Z,θ, ζ) = KL (q(θ|ζ)‖p(θ))− Eq(θ|ζ) (log (p(Z|θ))) (7.27)

Negative Variational Free Energy is also known as Evidence Lower Bound

(ELBO)

L(Z,θ, ζ) = −F(Z,θ, ζ) (7.28)

Therefore the KL-divergence objective can be written as,

KL (q(θ|ζ)‖p(θ|Z)) = −L(Z,θ, ζ) + log(p(Z)) (7.29)

125

The term L(Z,θ, ζ) is known as evidence lower bound since it defines lower

bound on the evidence term p(Z) as follows,

L(Z,θ, ζ) = log(p(Z))−KL (q(θ|ζ)‖p(θ|Z)) (7.30)

Since the KL-divergence term is always positive semi-definite we can write,

L(Z,θ, ζ) ≤ log(p(Z)) (7.31)

Therefore, the KL divergence between the variational distribution q(θ|ζ) and

the true posterior p(θ|Z) is also minimized by maximizing the evidence lower

bound as follows,

ζ ←− argmax
ζ
L(Z,θ, ζ) (7.32)

And the Deep feature parameters are drawn from this variational distribution

as follows,

θ ∼ q(θ|ζ) (7.33)

We use Bayes by Backprop [164] algorithm to learn the latent parameters

of variational distribution using stochastic gradient descent algorithm whose

details are provided in next section.

7.3.3 Stochastic Gradient Descent and Batch Training

Lets consider a deep network model with parameters θ (or ζ) for bayesian

networks, and consider the problem of optimizing a non convex loss function

L(Z, θ), with respect to θ. Let L(Z, θ) is defined as average of loss over

sample of M training data points.

L(Z, θ) =
1

M

M∑
i

`(Zi, θ) (7.34)

where M denotes the size of sample training set. For each sample size of M ,

the training data are in form of M -tuple ZM = (Z1, Z2, . . . ZM) of Z−valued

random variables drawn according to some unknown distribution P ∈ P .

Where each Zi = {xi, yi} are the labelled pair of input and target values.

For each P the expected loss can be computed as Ep(`(Z, θ)). The above

empirical loss (7.34) is used as proxy for the expected value of loss with

126

respect to the true data generating distribution.

Optimization based on the Stochastic Gradient Descent (SGD) algorithm

uses a stochastic approximation of the gradient of the loss L(Z, θ) obtained

over a mini-batch of M training examples drawn from buffer B. The resulting

SGD weight update rule

θk+1 = θk − η
1

M

M∑
i

∇θL(θ) (7.35)

where η is the learning rate.

7.4 DMRAC weight update using Bayesian Deep

Features

In previous section we have presented the DMRAC update rule and its sta-

bility characteristics using the standard deep features. In this section we will

extend the results to stochastic deep features. The deep feature vector is

defined as Φσ
n(x) = fθ\θn, where fθ is the entire network. The deep neural

network stripped off its final layer weights form the deep features. Further

due to stochastic nature of the network, the feature vector Φσ
n(x) is a draw

over multivariate normal distribution due to stochastic network weights.

Φσ
n(x) ∼ N

(
Φ̄σ
n(x),

[
Gσ(x)Gσ(x)T

]
|θ
)

(7.36)

Where Φ̄σ
n(x),

[
Gσ(x)Gσ(x)T

]
are mean and covariance for the feature.

Using the outer layer weights W , updated according to MRAC rule and

the deep features from Bayesian deep neural network, we can write adaptive

element uad(t) in the total controller as,

uad(t) = W TΦσ
n(x(t)) (7.37)

We will show using stochastic stability theory that the following weight up-

date rule leads to mean square uniform ultimate boundedness almost surely.

The weight update rule for the final layer weights using MRAC rule is given

as

Ẇ (t) = −ΓΦ̄σ
n(x)e(t)TPB (7.38)

127

Where Φ̄σ
n(x) is mean of the features given as

Φ̄σ
n(x) = Eq(θ|ζ) (Φσ

n(x)) (7.39)

However in case the true expectation is intractable, we can estimate the

expectation empirically as follows,

Φ̂σ
n(x) =

1

N

N∑
i=1

(
Φσ
n,i(x)

)
(7.40)

Where Φσ
n,i(x) is the ith draw from distribution (7.73) for every given x(t).

Therefore we can modify the weight update law as,

Ẇ = proj

(
−Γ

(
1

N

N∑
i=1

(
Φσ
n,i(x)

))
e(t)TPB,W

)

Ẇ = proj
(
−ΓΦ̂σ

n (x) e(t)TPB,W
)

We are using the projection operator to bound the weights. However in

the further section we will show that using a stochastic feature presents

the property of Induced Persistency of Excitation, which ensures the learn

weights converge to true weights neighborhood for all switching signal σ.

7.5 Stability Analysis and Sample Complexity for

Stochastic-DMRAC

In this section, we present the sample complexity of learning of deep features

and stochastic stability results for Stochastic-DMRAC(S-DMRAC) with bayesian

deep neural network. In further section we will also analyze the deep features

and show that the DMRAC controller is characterized by the memory over

previously observed data and demonstrate in simulation that when DMRAC

is used as a feed-forward network with frozen weight (no learning) can still

produce bounded tracking performance results on reference tracking tasks

that are reasonably different from those seen during network training. We

ascribe this property of DMRAC to the very low generalization error bounds

of the DNN. We will prove this property in two steps. Firstly we will prove

128

Figure 7.2: DMRAC Update Scheme for Outer-layer weights and
Inner-layer Deep feature

the bound on the generalization error of DNN using Lyapunov theory such

that we achieve an asymptotic uniform boundedness in tracking error. Fur-

ther, we will show information theoretically the lower bound on the number

of independent datasets we need to train upon before we can claim the DNN

generalization error is well below a determined lower level given by Lyapunov

analysis.

7.5.1 Stability Analysis

In this section we will introduce the stochastic stability proof for S-DMRAC

controller. Using the above stochastic adaptive element (7.37) in the total

controller (7.3) we can rewrite the system dynamics (7.1) as follows,

ẋ(t) = Ax(t) +B(−kxx(t) + krr(t)− uad + f(x)) (7.41)

Using the matchcing condition we can write,

ẋ(t) = Armx(t) +Brmr(t) +B(f(x)− uad) (7.42)

129

Using the expression for stochastic adaptive element we can rewrite the above

expression as

ẋ(t) = Armx(t) +Brmr(t) +B(f(x)−W TΦσ
n(x)) (7.43)

Since we know the the feature vector instance is draw over the distribution of

parameters θ ∼ q(θ|ζ), we can write the random draw of the feature vector

as

Φσ
n(x) = Φ̄σ

n +Gσξ (7.44)

where Φ̄σ
n ∈ Rk is the mean of feature distribution and Gσ ∈ Rk is variance

and ξ ∼ N (0, I). Using the feature instance we can write the controller

expression in the system dynamic as

ẋ(t) = Armx(t) +Brmr(t) +B
(
f(x)−W T

(
Φ̄σ
n(x) +Gσξ

))
(7.45)

= Armx(t) +Brmr(t) +B
(
f(x)−W T Φ̄σ

n(x)−W TGσξ
)

(7.46)

We assume for every Φ̄σ
n that there exists an ideal weight W ∗, such that,

f(x) = W ∗T Φ̄σ
n(x) + εσm(x) (7.47)

Where εσm(x) = ∆(x) − W ∗T Φ̄σ
n(x) is network approximation error due to

universal approximation theorem, and this error can be bounded as,

ε̄σ = sup
x∈D

∥∥f(x)−W ∗T Φ̄σ
n(x)

∥∥ (7.48)

Using the reference model (7.2), we can write the error dynamics as,

ė(t) = Arme(t) +B
(
W̃ T Φ̄σ

n(x) + εσm(x)
)

+BW TGσξ (7.49)

Where W̃ = W ∗ −W . We can write the above tracking error dynamics as

diffusion process as follows,

de(t) = Arme(t)dt+B
(
W̃ T Φ̄σ

n(x) + εσm(x)
)
dt+BW TGσdξ(t) (7.50)

where dξ(t) is zero mean Wiener process.

Theorem 7.5.1 Consider the system in (7.1), the control law of (7.3), and

assume that the uncertainty f(x) : Rn → Rm is bounded and Lipschitz con-

130

tinuous on a compact set x(t) ∈ Dx. Let the reference signal r(t) is such that

the state xrm(t) of the bounded input bounded output reference model (7.2)

remains bounded in the compact ball Bm = {xrm : ‖xrm(t)‖ ≤ Bδ}, then the

adaptive control uad = W TΦσ
n(x), guarantee that the system is mean square

uniformly ultimately bounded in probability a.s.

Proof Let,

V (et, W̃ (t)) =
1

2
eTt Pet +

1

2
tr
(
W̃ (t)TΓ−1W̃ (t)

)
(7.51)

be stochastic lyapunov candidate. The error term et is a realization of drift

diffusion process, we assume t as index and not function of time, whereas

W (t) is a deterministic process W (t) is a function of time. Note that the

lyapunov candidate is bounded above below by

1

2
λ(P)‖et‖2 +

1

2
λ
(
Γ−1
)
‖W̃‖2

F ≤ V (et, W̃) ≤ 1

2
λ̄(P)‖et‖2 +

1

2
λ̄
(
Γ−1
)
‖W̃‖2

F

(7.52)

where λ and λ̄ is the minimum and maximum Eigen value operator and ‖‖F
is the Frobenius norm. The Ito derivative of the Lyapunov candidate along

the error dynamics (7.50) for σth system,

LV
(
et, W̃

)
=

∂V

∂t
+
∑
i

∂V (et, W̃)

∂ei
det

+
1

2

∑
i,j

[(BW TGσ)(BW TGσ)T]ij
∂2V (et, W̃)

∂ei∂ej
(7.53)

=
∂V

∂t
+
∑
i

∂V (et, W̃)

∂ei

(
Aei +B

(
εσm + W̃ T φ̄σn(Θ, x)

))
+

1

2

∑
i,j

[(BW TGσ)(BW TGσ)T]ij
∂2V (et, W̃)

∂ei∂ej
(7.54)

= −ẆΓ−1W̃ − 1

2
eTQe+ W̃ φ̄σn(x)eTPB + eTPBεσm(z)

+
1

2
[(BW TGσ)(BW TGσ)TP] (7.55)

Using the weight update law, we can simplify the above expression as follows

LV
(
et, W̃

)
=

1

2
eTQe+ eTPBεσm(z) +

1

2
[(BW TGσ)(BW TGσ)TP]

(7.56)

131

Let c1 = 1/2‖P‖‖W‖2
F‖BGσ‖2 and c2 = ‖PB‖, then

LV
(
et, W̃

)
≤ −1

2
λmin(Q)‖e‖2 + c2‖e‖‖εσm(z)‖+ c1

(7.57)

We know supx∈D ‖εσm(x)‖ ≤ ε̄σ, and using the projection operator the outer

layer weights W (t) are bounded ‖W‖ ≤ Wb. Therefore using this bound in

above expression we can write,

LV
(
et, W̃

)
≤ −1

2
λmin(Q)‖e‖2 + c2‖e‖ε̄σ + c1 (7.58)

Let cσ5 = c2ε̄.

We can define an set outside which the LV
(
et, W̃

)
≤ 0

Θσ =

‖e‖ ≥ cσ5 +
√

(cσ5)2 + 2 ∗ λmin(Q)c1

λmin(Q)

 (7.59)

Therefore, outside the set Θσ, LV
(
et, W̃

)
≤ 0 a.s. Using BIBO property of

reference model (7.2), when r(t) is bounded, xrm(t) remains bounded within

Bm. Solution to (7.1) x(t) ∈ Dx a.s. Since this is true for all σ, and because

Algorithm guarantees that σ does not switch arbitrarily fast,(7.50) is mean

square uniformly ultimately bounded inside of this set Θσ a.s.

7.5.2 Sample Complexity of DMRAC

In this section, we will study the sample complexity results from computa-

tional theory and show that when applied to a network learning real-valued

functions the number of training samples grows at least linearly with the

number of tunable parameters to achieve specified generalization error.

The generalization error of a machine learning model is defined as the

difference between the empirical loss of the training set and the expected loss

of test set [165]. This measure represents the ability of the trained model

to generalize well from the learning data to new unseen data, thereby being

able to extrapolate from training data to new test data. Hence generalization

132

error ε can be defined as

ε = sup
x∈D
‖f(x)− fθ(x)‖ (7.60)

where fθ(x) is neural network output.

Theorem 7.5.2 Consider a neural network with arbitrary activation func-

tions and an output that takes values in [−1, 1]. Let H be the hypothesis class

characterized by N-weights and each weight represented using k-bits. Then

any squared error minimization (SEM) algorithm A over H, to achieve a

generalization error (7.60) admits a sample complexity bounded as follows

mA(ε, δ) 6
1

ε2

(
kN ln 2 + ln

(
2

δ

))
(7.61)

where N is total number of tunable weights in the DNN.

Proof: Let H be finite hypothesis class of function mapping s.t H : X →
[−1, 1] ∈ Rm and A is SEM algorithm for H. Then by Hoeffding inequality

for any fixed fθ ∈ H the following event holds with a small probability δ

Pm{|L(Z, θ)− EP (`(Z, θ))| ≥ ε} (7.62)

= Pm

{∣∣∣∣∣
m∑
i=1

`(Z, θ)−mEP (`(Z, θ))

∣∣∣∣∣ ≥ mε

}
(7.63)

≤ 2e−ε
2m/2 (7.64)

Hence

Pm{∀fθ ∈ H, | |L(Z, θ)− EP (`(Z, θ))| ≥ ε}

≤ 2|H|e−ε2m/2 = δ (7.65)

We note that the total number of possible states that is assigned to the

weights is
(
2k
)N

since there are 2k possibilities for each weights. Therefore

H is finite and |H| ≤ 2kN . The result follows immediately from simplifying

Eq-(7.65).

133

7.6 Persistency of Excitation for S-DMRAC

In multi-layer architecture for uncertainty approximation, it is challenging to

ensure the Persistency of Excitation, which result in non P.E deep features

and therefore non convergence of the outer-layer weights. One straightfor-

ward way to remedy this problem is to inject exogenous perturbations into

the dynamics of the gradient descent algorithm so that even the parameters

in the hidden layers receive persistent excitation during training.

The traditional procedure to introduce robustness for linear models, which

is the addition of regularization term into the loss function, which could be re-

framed as a method to ensure persistent excitation of the model parameters.

Lets consider V (εi,W) : Rn × Rk×m → R denote the loss function to be

minimized over the set of points {xi}i∈I and corresponding target values

{f(xi)}i∈I ∈ Rm. consider the linear regression problem with the squared-

error loss

V (εi,W) =
1

2

∑
i∈I

εTi εi +R(W) (7.66)

The regularization term R(W) is usually assumed to impose some prior

knowledge about W , and it is chosen as a convex function of some norm

of W , such as ‖W‖2
2, or ‖W‖1. This forces the parameters to be close to zero

in some norm and restricts the class of functions that can be estimated by

the model.

For the ridge regression problem corresponding to the choice R(W) =

λ‖W‖2
2 for any λ > 0

V (εi,W) =
1

2

∑
i∈I

∥∥W TΦ(xi)− f(xi)
∥∥2

2
+ λ‖W‖2

2 (7.67)

Adding regularization is equivalent adding m pseudo-measurements. We can

rewrite the regularization term as follows

λ‖W‖2
2 =

m∑
i=1

∥∥∥W T (
√
λei)− 0

∥∥∥2

2
(7.68)

where is ei ∈ Rk is stnadard basis vector. Alternatively, an equivalent prob-

134

lem could also be formulated as

V (εi,W) =
1

2
Eξi

(∑
i∈I

∥∥W T (Φ(xi) + ξi)− f(xi)
∥∥2

2

)
(7.69)

Where ξi ∈ Rk is and random vector, with

E(ξi) = 0, E(ξixi
T
i) = λI

In particular, the probability distributions for ξi could be chosen to be dis-

crete for practical purposes, and the ridge regression could be considered as

perturbed version least square regression. However, such methods of adding

artificial noise to state in adaptive control might lead to chattering in control

and therefore in system response and hence not desirable.

We will now show that Bayesian-Deep neural network is a natural way of

adding regularization and the stochastic nature of network weights lead to

desirable property of persistency of excitation.

The KL-objective for posterior inference given data in training Bayesian-

deep neural network is follows,

L(Z,θ, ζ) = Eq(θ|ζ) (log (p(Z|θ)))−KL (q(θ|ζ)‖p(θ)) (7.70)

While maximizing L(Z,θ, ζ), we are maximizing the model likelihood given

data Z and minimizing KL-divergence between posterior and prior on pa-

rameters, which is akin to adding regularization.

Uncertainty in predictions arise from two sources; uncertainty in weights

called Epistemic uncertainty and uncertainty coming from the finite excita-

tion in training data know as Aleatoric uncertainty. Epsitemic uncertainty

can grows smaller, if we have more training data. Consequently, epistemic un-

certainty is higher in regions of no or little training data and lower in regions

of more training data. Epistemic uncertainty is covered by the variational

posterior distribution. Aleatoric uncertainty is covered by the probability

distribution used to define the likelihood function, it cannot be reduced if we

get more data. The total uncertainty or randomness in the feature vector

due to Epistemic and Aleatoric uncertainty, lead to favorable property of

persistency of excitation of Φσ
n

Theorem 7.6.1 Let the Bayesian deep network fθ is trained over data Zpmax =

135

{{xi, yi} ∈ X ×Y}pmaxi=1 , such that data is collected using kernel independence

test. Then the features Φσ
n = fθ\θn is persistently exciting.

Proof We use autocovariance argument to prove the that the stochastic

features Φσ
n are persistently exciting i.e iff

RΦσn(0) > 0 (7.71)

Implies the integral for any given t ≥ t0 and over any interval [t, t + T] for

any T > 0 satisfies, ∫ t+T

t

Φσ
n(τ)Φσ

n(τ)Tdτ ≥ γI (7.72)

To prove the fact that deep features of S-DMRAC are PE, we show that the

autocovariance RΦσn(0) exists and RΦσn(0) > 0.

Since the stochastic feature vector are realization of distribution defined

as

Φσ
n(x) ∼ N

(
Φ̄σ
n(x),

[
Gσ(x)Gσ(x)T

]
|θ
)

(7.73)

Therefore the autocovariance of feature vector Φσ
n can be defined as,

Rqθ(Φσn|x,θ) (Φσ
n(x)|x) = Eqθ

[
(Φσ

n − E(Φσ
n))2] (7.74)

= Eqθ
(
Φσ
nΦσ

n
T
)
− Eqθ (Φσ

n)Eqθ (Φσ
n)T (7.75)

Where qθ(Φ
σ
n|x, θ) is the variational predictive posterior distribution defined

as,

qζ(Φσn|x,θ) = p(Φσ
n|x, θ)q(θ|ζ) (7.76)

and p(Φσ
n|x, θ) is the posterior distribution on feature given a input x and

network parameters θ

p(Φσ
n|x, θ) = N

(
Φ̄σ
n(x),

[
Gσ(x)Gσ(x)T

]
|θ
)

(7.77)

Using the above definitions of conditional distributions, the autocovariance

term (7.75) can be decomposed into Aleatoric and Epistemic uncertainties

136

as follows [166]:

Rq (Φσ
n(x)|x) = Eq

(
Φσ
nΦσ

n
T
)
− Eq (Φσ

n)Eq (Φσ
n)T

⇒
∫

Θ

[
diag

(
Ep(Φσn|x,θ) (Φσ

n)
)
− Ep(Φσn|x,θ) (Φσ

n)Ep(Φσn|x,θ) (Φσ
n)T
]
qζ(θ)dθ

+

∫
Θ

[
Ep(Φσn|x,θ) (Φσ

n)− Eqζ(Φσn) (Φσ
n)
] [
Ep(Φσn|x,θ) (Φσ

n)− Eqζ(Φσn) (Φσ
n)
]T
qζ(θ)dθ

(7.78)

The first term of the predictive variance of the variational posterior distribu-

tion (7.78) in known as Aleatoric uncertainty coming from finite excitation or

variation in the training data. The expectation is with respect to predictive

posterior distribution p(Φσ
n|x, θ) integrated over all parameters θ.

The second term of the predictive variance of the variational posterior

distribution (7.78) is the epistemic uncertainty. That is uncertainty in pre-

dictions that arise from the uncertainty in weights. This kind of uncertainty

can be reduced if we get more data. Consequently, epistemic uncertainty is

higher in regions of no or little training data and lower in regions of more

training data. Epistemic uncertainty is covered by the variational posterior

distribution over parameters.

If we chose the training data such that Aleatoric uncertainty is non zero,

then we can show that the autocovariance of features Φσ
n is non zero every

where. We using kernel independence test (7.18) to qualify the data points

which are sufficiently distinct from the stored data in buffer {Z : x, y ∈
X ,Y}pmaxi=1 hence ensuring Aletoric uncertainty is non zero and due to fact

that the network weights are stochastic the epistemic uncertainty is non zero

anywhere else where training data is not available.

Hence using stochastic Bayesian network and training the network over

data points chosen according to kernel independence test (7.18) we can ensure

the total variance Rq (Φσ
n(x)|x) > 0 . An there for due to Lemma-5.6.4 we

know that given Φσ
n is P.E

7.6.1 Uniform boundedness of the Outer-Layer parameters

Consider the problem of parameter estimation using a linear estimator with

stochastic deep features. We learn a given function by minimizing its squared

137

Figure 7.3: output of Bayesian Neural Network: Shaded area is Epistemic
uncertainty and Training points (black dots) are chosen according to kernel
independence test to ensure non zero Aleatoric uncertainty

loss error.

Let us assume the function to be estimated be f : Rn → Rm. Let the true

function f be of form

f(x) = W ∗T Φ̄σ
n(x) + ε(x) (7.79)

Where the unknown function be linearly parameterized in unknown ideal

weight W ∗ ∈ Rk×m,∀σ and Φ̄σ
n(x) : Rn → Rk such that

Φ̄σ
n(x) = E

θ
(Φσ

n(x))

Where Φσ
n(x) is stochastic nonlinear continuously differentiable basis function

which is drawn from distribution (7.73)

Let the W (t) be the online estimate of true ideal weights W ∗, therefore the

online estimate of f(x) can be represented by mapping ν : Rn → Rm such

138

that,

ν(x) = W TΦσ
n(x) (7.80)

= W T
(
Φ̄σ
n(x) +Gσξ

)
(7.81)

Let e(t) be defined as,

e(t) = f(x)− ν(x) (7.82)

= W ∗T Φ̄σ
n(x) + ε(x)−W T

(
Φ̄σ
n(x) +Gσξ

)
(7.83)

= W̃ T Φ̄σ
n(x) + ε(x)−W T (Gσξ) (7.84)

then then the parameter update using gradient descent algorithm is given as

Ẇ = −ΓΦ̄σ
n(x)e(t) (7.85)

The parameter error dynamics can be found by differentiating W̃ and using

equation (7.85) as,

˙̃W = −ΓΦ̄σ
n(x)e(t) (7.86)

= −ΓΦ̄σ
n(x)

(
W̃ T Φ̄σ

n(x) + ε(x)−W T (Gσξ)
)

(7.87)

= −ΓΦ̄σ
n(x)Φ̄σ

n(x)T W̃ − ΓΦ̄σ
n(x)ε(x)− ΓΦ̄σ

n(x) (Gσξ)
T W̃ (7.88)

This is a linear time varying differential equation in W̃ . Furthermore, note

that if PE Condition using Theorem-7.6.1 is satisfied, then W̃ is asymptoti-

cally bounded near zero solution.

Theorem 7.6.2 Consider the system model given by equation (7.79), the

online estimation model given by equation (7.81), the stochastic deep fea-

ture gradient descent weight update law (7.88), and assume that the regres-

sor function Φσ
n(x) is continuously differentiable and that the measurements

Φσ
n(x) ∈ D where D ∈ Rm is a compact set. If the Φσ

n(x) satisfy the PE

condition, then the zero solution of the weight error dynamics of equation

(7.81) is globally uniformly ultimately bounded.

Proof Consider a quadratic Lyapunov candidate given by

V (W̃) =
1

2
tr
(
W̃ TΓ−1W̃

)
(7.89)

139

Such that V (0) = 0 and V (W̃) > 0,∀W̃ 6= 0. Since V (W̃) is quadratic,

letting λmin(.) and λmax(.) denote the operators that return the minimum

and maximum eigenvalue of a matrix, we have:

λmin
(
Γ−1
) ∥∥∥W̃∥∥∥2

F
≤ V (W̃) ≤ λmax

(
Γ−1
) ∥∥∥W̃∥∥∥2

F
.

Differentiating with respect to time along the trajectory (7.88), we have

V̇ (W̃) = tr
(
W̃ TΓ−1 ˙̃W

)
(7.90)

= W̃ TΓ−1
(
−ΓΦ̄σ

n(x)Φ̄σ
n(x)T W̃ − ΓΦ̄σ

n(x)ε(x)− ΓΦ̄σ
n(x) (Gσξ)

T W̃
)

(7.91)

Using the definition of empirical estimate of Φ̄σ
n(x) in (7.40), the above ex-

pression cn be rewritten as,

V̇ (W̃) = −W̃ T Φ̄σ
n(x)Φ̄σ

n(x)T W̃ − Φ̄σ
n(x)W̃ T ε(x)− W̃ T Φ̄σ

n(x) (Gσξ)
T W̃

(7.92)

≤ −λmax(Ω)
∥∥∥W̃∥∥∥2

−
∥∥Φ̄σ

n

∥∥
∞Wbε̄

σ (7.93)

≤ − λmax(Ω)

λmin (Γ−1)
V (W̃)−

∥∥Φ̄σ
n

∥∥
∞Wbε̄

σ (7.94)

Where Ω is defined as follows,

Ω =
1

N

N∑
i,j=1

(
Φσ
n,i(x)Φ̄σ

n,j(x)T + Φσ
n,i(x)(Gσξj)

T
)

(7.95)

Using the P.E condition Φσ
n,i(x), we know that λmax(Ω) > 0

Hence from Lyapunov stability theory if

∥∥∥W̃∥∥∥ ≥
√∥∥Φ̄σ

n

∥∥
∞Wbε̄σ

λmax(Ω)
(7.96)

we have V̇ (W̃) ≤ 0. Therefore the set Wδ =

{∥∥∥W̃∥∥∥ ≤√‖Φ̄σn‖∞Wbε̄σ

λmax(Ω)

}
is

positively invariant, hence W̃ approaches the bounded near zero solution

exponentially fast and remain are ultimately bounded.

140

If Theorem-7.6.2 holds, then the adaptive weights W (t) will approach expo-

nentially fast and remain bounded in a compact neighborhood of the ideal

weights W ∗.

7.7 Evaluation of DMRAC and S-DMRAC Controller

We evaluate the DMRAC and S-DMRAC controller using Wing-Rock system

dyanamics in simulation and through flight testing using Quadrotor in Vicon

arena. The simulation and flight test results are discussed in the following

sections.

7.7.1 S-DMRAC controller evaluation using Wing-Rock
system Dynamics

The initial simulation result we present are the S-DMRAC controller evalu-

ation using Wing-Rock dynamics. The details of Wing-Rock dynamics are

provided in the Section-5.8. The aim of the controller is to follow the a step

reference command under unknown nonlinear uncertainties.

The controller is designed to track a stable reference commands r(t). The

goal of the experiment is to compare the tracking performance of S-DMRAC

controller with MRAC controller when the domain operation is unknown.

We find that 100 centers are sufficient for a good on-line approximation of

the uncertainty. We use the same reference model for both controllers. The

learning rate for high gain S-DMRAC is chosen to be Γ = 10, Kernel band-

width is chosen as µ = 0.05 and tolerance threshold for kernel independence

test is selected to be εtol = 0.1 for updating the basis vector BV(σ).

Figure-7.7 and Fig-7.8 show the closed loop system performance in track-

ing the reference signal for GP-MRGeN and MRAC controller. Note that

the control response of the proposed adaptive controller is clearly superior as

compared to the standard adaptive controller. GP-MRGeN uses the genera-

tive model target at an only small number of discrete time steps to learn the

underlying model of the uncertainty. Also, the GP-MRGeN estimate is noise

free even when the target values are noisy. The presented controller achieves

tighter tracking with smaller tracking error as shown in Fig-7.9 compared to

MRAC controller. Figure-6.5 show the total control profile for both the con-

141

trollers. It can be observed the control history for GP-MRGeN has smaller

peaks and less noisy due to smoothing property of the GP estimation. This

denoising of the controller demonstrates that proposed method leads to ro-

bust adaptation without incurring high-frequency oscillations in the control

response. Figure-6.5 shows the network performance in estimating the un-

certainty. The GP-MRGeN estimate is noise free and closely approximates

the true uncertainty compared to MRAC estimate. The blobs in Fig-6.5

show the time step at which the generative model MRGeN was updated and

queried for inferring the posterior GP model over data.

Figure 7.4: Wind-Rock Roll and Roll-rate for step command following
using S-DMRAC controller

7.7.2 DMRAC Controller Evaluation on simulated 6-DOF
Quadrotor Model

In this section, we will evaluate the presented DMRAC adaptive controller us-

ing a 6-DOF Quadrotor model for the reference trajectory tracking problem.

The quadrotor model is completely described by 12 states, three position,

142

Figure 7.5: Uncertainty Estimate using S-DMRAC Controller

and velocity in the North-East-Down reference frame and three body angles

and angular velocities. The full description of the dynamic behavior of a

Quadrotor is beyond the scope of this worl, and interested readers can refer

to [167] and references therein.

The control law designed treats the moments and forces on the vehicle due

to unknown true inertia/mass of the vehicle and moments due to aerody-

namic forces of the crosswind, as the unmodeled uncertainty terms and are

captured online through DNN adaptive element. The outer-loop control of

the quadrotor is achieved through Dynamic Inversion (DI) controller, and

we use DMRAC for the inner-loop attitude control. A simple wind model

with a boundary layer effect is used to simulate the effect of crosswind on

the vehicle.

A second-order reference model with natural frequency 4rad/s and damp-

ing ratio of 0.5 is used. Further stochasticity is added to the system by

adding Gaussian white noise to the states with a variance of ωn = 0.01. The

simulation runs for 150secs and uses time step of 0.05s. The maximum num-

ber of points (pmax) to be stored in buffer B is arbitrarily set to 250, and

143

Figure 7.6: Outer-Layer S-DMRAC weights history for Wing-Rock control

SVD maximization algorithm is used to cyclically update B when the budget

is reached, for details refer [163].

The controller is designed to track a stable reference commands r(t). The

goal of the experiment is to evaluate the tracking performance of the pro-

posed DMRAC controller on the system with uncertainties over an unknown

domain of operation. The learning rate for D-MRGeN network and DMRAC-

DNN networks are chosen to be Γ = 0.5I6×6 and η = 0.01. The DNN

network is composed of 2 hidden layers with 200, 100 neurons and with

tan-sigmoid activations, and output layer with linear activation. We use

“Levenberg-Marquardt backpropagation” [168] for updating DNN weights

over 100 epochs. Tolerance threshold for kernel independence test is selected

to be ζtol = 0.2 for updating the buffer B.

Figure-7.7 and Fig-7.8 show the closed loop system performance in track-

ing the reference signal for DMRAC controller and learning retention when

used as the feed-forward network on a similar trajectory (Circular) with no

learning. We demonstrate the proposed DMRAC controller under uncer-

tainty and without domain information is successful in producing desired

reference tracking. Since DMRAC, unlike traditional MRAC, uses DNN

144

for uncertainty estimation is hence capable of retaining the past learning

and thereby can be used in tasks with similar features without active online

adaptation Fig-7.8. Whereas traditional MRAC which is “pointwise in time”

learning algorithm and cannot generalize across tasks. The presented con-

troller achieves tighter tracking with smaller tracking error in both outer and

inner loop states as shown in Fig-7.8 and Fig-7.9 in both with adaptation

and as a feed-forward adaptive network without adaptation. The Training,

Testing and Validation error over the data buffer for DNN, demonstrate the

network performance in learning a model of the system uncertainties and its

generalization capabilities over unseen test data.

Figure 7.7: DMRAC Controller Evaluation on 6DOF Quadrotor dynamics
model, DMRAC Controller on Trajectory tracking control with learning
and as frozen feed-forward network (Circular Trajectory)

7.7.3 Flight Test Results-Comparison between PID, MRAC
and DMRAC

This section provides the hardware and vehicle details for evaluation of DM-

RAC for flight control of quadrotor system. The flight tests were done on a

commercially available quadcopter platform, Parrot Mambo Mini-Drone 7.12

in a VICON facility. This drone was chosen for flight testing due to its small

145

Figure 7.8: Closed-loop system response in roll rate φ(t) and Pitch θ(t)

Figure 7.9: Position Tracking performance of DMRAC controller with
learning and in learning retention test over Circular Trajectory (b)DNN
Training

size, low cost, and relative ease of implementing and testing algorithms. The

implementation of DMRAC was done using our onboard, off-board architec-

ture as shown in Figure-7.11. The off-board component consists of software

modules which run entirely on a host computer and are responsible for train-

ing the neural network using data received from the drone via UDP bluetooth

protocol. The data received are the drone’s current roll, pitch, yaw angles

and the angular rates, and DMRAC estimate of the total uncertainty. The

above information is stored in a memory buffer and random batches from this

buffer are used to train the deep neural network on the off-board computer.

146

Figure 7.10: (a)Position Tracking performance of DMRAC controller with
learning and in learning retention test over Circular Trajectory (b)DNN
Training, Test and Validation performance

Wing-Rock Quadrotor Quadrotor-Flight
State Space 2 12 6

Control Space 1 3 3
Num. of layers 5 5 3

Neuron in Hidden Layer [100, 200, 100] [100, 200, 100] [20]
Activations tanh tanh tanh

Final Layer Activation Linear Linear Linear
Outer Layer Learning rate 100 5 5
Feature Learning rate (α) 0.001 0.001 0.001

Buffer Size 10000 10000 10000
Batch size 50 50 50

Epochs 10 10 1

Table 7.1: DMRAC Network details and Network learning parameter details

Moreover, the host computer also receives drone’s current position inside the

Vicon Arena from the Vicon system via Wi-Fi which is then communicated

147

to the drone using UDP protocol. Also, as soon as the inner layer weights are

Figure 7.11: Our On-board - Off-board Implementation of Deep Model
reference Adaptive controller for Quadrotor control. The system ensures
that the outer layer weights can be updated onboard in a manner to ensure
Lyapunov stability (at 200Hz), while the inner layer weights are updated
asynchronously off-board to improve learning performance.

computed using the data collected from the drone, the host computer com-

municates those weights back to the vehicle, which are then used in updating

the DMRAC controller to produce adaptive torque. The onboard software

modules are responsible for state estimation along with computing the entire

control effort. The main reason behind implementing DMRAC in the above

way is because of the limited processing power of the drone. It is possible

that if a more powerful processor can be embedded on-board, the algorithm

can be implemented completely onboard. Even in this case however, it is de-

sirable to separate the inner layer learning so that the outer layer weights can

be updated to ensure Lyapunov stability and inner layer weight only updated

whenever the test data loss values are sufficiently low. Furthermore, in this

case, an interesting extension could be to use the presented on-board - off

board architecture to asynchronously update the inner-layer weights using

data from multiple drones simultaneously. This is left for future work.

148

Figure 7.12: The flight platform on which DMRAC is implemented

7.7.4 Flight tests on a figure of 8 trajectory

We experiment with quadrotor to evaluate the controller performance on

a figure of 8 reference trajectory tracking. The tuned values of feedback,

feedforward gains, and learning rates are kept fixed throughout the follow-

ing experiments. Figures-3 and Fig-4 show the comparison between each

controllers’ performance on the nominal baseline task with no external dis-

turbance or faults. Since each controller is tuned to achieve best performance

over the given task, the difference between the controller is negligible, and

all three controllers perform equally well.

Figure 7.13: Tracking performance on a simple figure of 8 trajectory

7.7.5 Reference trajectory tracking with wind bias

The second task used to evaluate the controllers’ performance is reference

tracking on a figure of 8 trajectories with wind bias. This task is designed

to assess the performance of all three controllers in the case of external dis-

turbance. A wind bias disturbance is simulated, using a fan placed near the

149

Figure 7.14: Tracking of reference model’s roll and pitch signal for a simple
figure of 8 trajectory

drone’s initial position, and oriented to cause the disturbance along the X-

axis. Figures-5 and Fig-6 show a comparison of each controllers’ performance

on this task. We can observe that DMRAC is more robust and achieves much

closer tracking compared to other two algorithms. The tracking error for the

DMRAC controller for the inner loop reference roll and pitch states is also

much lower compared to MRAC or PID refer Figure-7.16.

We also demonstrate the proposed controller can handle abrupt changes

in reference commands. At around 5secs mark, the reference signal changes

from step input for height control in the z-axis to figure of 8 trajectory

command in the x-y plane. The PID controller experiences high oscillation,

whereas MRAC and DMRAC handle the switch much smoothly.

Further we have repeated the above experiment with medium and high

wind bias. Following results on a tracking task under external disturbance

demonstrates that DMRAC outperforms MRAC and PID refer Figure-7.17-

7.20.

Figure 7.15: Tracking performance under low wind bias

150

Figure 7.16: Tracking of reference model’s roll and pitch signal under low
wind bias

Figure 7.17: Tracking performance under medium wind bias

7.7.6 Reference trajectory tracking under a highly nonlinear
disturbance

In this experiment, to simulate a highly nonlinear and unpredictable distur-

bance, we attach a piece of cloth underneath the air-frame of the quadrotor

and is subjected to high wind bias. Erratic flapping of the cloth produced un-

predictable disturbance torques and forces. We designed this experiment to

push each controller to its limits and was repeated three times to demonstrate

the repeatability. We observed that PID failed in all the three experiments,

whereas both MRAC and DMRAC gave a stable performance. However, the

tracking error observed for MRAC was relatively higher when compared to

Figure 7.18: Tracking of reference model’s roll and pitch signal under
medium wind bias

151

Figure 7.19: Tracking performance under high wind bias

Figure 7.20: Tracking of reference model’s roll and pitch signal under high
wind bias

DMRAC. Here, we present the best case tracking performance observed for

all the three controllers. Figures-7.21 and Fig-7.22 clearly show that PID

fails at around the end of the flight with high oscillations, whereas we ob-

serve DMRAC tracking under severe disturbance forces appears to be the

best followed by MRAC.

Similar results are provided for circular reference trajectory with high wind

bias. We observe the PID fails very early in the flight. However adaptive

controllers are successful in completing the task, we observe DMRAC outper-

forms the MRAC with much tighter tracking. Refer Figure:7.23-7.24. The

Figure-7.25 plots the control torques generated in Roll and pitch to achieve

the trajectory tracking.

Figure 7.21: Tracking performance under high wind bias with cloth
attached underneath the quadcopter

152

Figure 7.22: Tracking of reference model’s roll and pitch signal under high
wind bias

Figure 7.23: Tracking performance for a circular trajectory under high wind
bias with cloth attached on drone

7.7.7 Fault tolerance: Rotor blade chipping in mid-flight

To test the fault-tolerance capability of the controllers, we test and compare

the performance of PID, MRAC, and DMRAC when rotor chipping occurs

during mid-flight. One of the rotor blades is cut in half and is attached back

using tape. The quadrotor is commanded to hover at 1m above the ground.

Due to centrifugal forces, the chipped blade breaks off and causes the fault

into the system at an undetermined time. Since this not a controlled fault, to

ensure the reliability of the controller, we report controller performance over

multiple runs. The results presented in Fig-7.27 clearly shows that DMRAC

Figure 7.24: Tracking of reference model’s roll and pitch under high wind
bias with cloth attached on drone

153

Figure 7.25: Linear and adaptive control torque for each algorithm

outperforms PID and MRAC. In the case of PID, only two runs were carried

out, since in both cases, the drone underwent sever oscillation and crashed.

Tests conclusively demonstrated that PID is not capable of handling sever

faults in the system even with extensive tuning. In the case of MRAC and

DMRAC, eight flight tests are carried out. Out of eight test runs, failures

were seen twice for MRAC, whereas no failure were observed in the case of

DMRAC. Also, on comparing flights where no crash occurs, one can see that

MRAC produces poor reference tracking when compared to DMRAC. Refer

Figure-7.26 and 7.27 for more detailed results. The figures show mean and

variance plots for reference tracking in the x-y-z position for each algorithm.

7.7.8 DMRAC-Learning retention results

In this section, we present the learning retention results of Deep architecture

in the model reference adaptive controller. This experiment aims to test the

memory associated with deep neural networks in the context of an adaptive

controller — the generalizing capability of DMRAC is tested on related but

unseen tasks in training. The DMRAC is trained on the labeled pair of input

and the output data generated using the model reference generative network.

The trained network is then used as a feed-forward function approximator to

estimate the adaptive control for reference tracking in a new but similar task.

To train the DMRAC neural network, we collect data flying the quadrotor in

circles both clockwise and anti-clockwise with and without wind bias. To test

this controller performance, we compare it against a tuned PID controller on

a new task of tracking the figure of 8 with and without wind bias. Our

hypothesis is, since the DMRAC controller is trained over clockwise(cw) and

154

Figure 7.26: MRAC Trajectory tracking performance in X-Y-Z under
system fault for eight flight test. Out of eight flights we observe four times
the quadrotor either crashed or produced bad tracking (Red dot: Time at
which Fault occurred)

anti-clockwise(ccw) trajectories, the controller should be able to generalize to

any trajectory formed combining the cw and ccw turns. Since the DMRAC

neural network weights are trained off-line before the test flight, the entire

controller is hardcoded onto the onboard computer. The parameters, such

as PID gains, learning rate, are unchanged and are unchanged from previous

experiments.

7.7.9 PID vs Generalization capability of DMRAC

In this experiment, the quadrotor is made to track a similar but unseen

trajectory in training (Figure of 8). In Figure:7.28-7.29 we observe that the

DMRAC controller generalizes well to a previously unseen reference signal.

Comparing to the PID controller, we see that the magnitude of oscillation in

roll for the PID is much higher when compared to the generalized controller.

Thereby demonstrating the DMRAC not only generalizes well but also proves

to be robust.

We also test the DMRAC generalization in the windy case. Here, we can

155

Figure 7.27: DMRAC Trajectory tracking performance in X-Y-Z under
system fault for Eight flight test (Red dot: Time at which Fault occurred)

see that the oscillation observed for the generalized controller in tracking

is far lower than PID, and it gives much better tracking overall. These

experiment demonstrates DMRAC retains the memory of both windy and

non-windy cases in form of deep features, and can counter both wind and no

wind cases reasonably well even without active online adaptation.

Figure 7.28: Tracking performance on a figure of 8 trajectory

156

Figure 7.29: Tracking of reference model’s roll and pitch for a figure of 8
reference trajectory

Figure 7.30: Controller performance for clockwise tracking of figure of 8
trajectory under wind bias

Figure 7.31: Tracking of reference model’s roll and pitch for clockwise
tracking of figure of 8 under wind bias

157

CHAPTER 8

CONCLUSION & SUGGESTED FUTURE
RESEARCH

The key contributions of this thesis is to show a information enabled adapta-

tion in both learning and control systems can lead to robustfying and efficient

use of the baseline policies in face of uncertainties. This hypothesis was pre-

sented in two key architectures that is “ Policy Transfer in Reinforcement

Learning” and “Deep Model Reference Adaptive Control”

8.1 Policy Transfer using Adaptation

We introduced a new transfer learning technique for RL: Adapt-to-Learn,

that utilizes combined adaptation and learning for policy transfer to the tar-

get tasks. We demonstrated on nonlinear and continuous robotic locomotion

tasks that learning to adapt using source policy in the target domain leads to

a significant reduction in sample complexity over the prevalent warm-start

based approaches. We further also proved theoretical guarantees on the re-

duced sample complexity of our proposed architecture. There are many ex-

citing directions for future work. A network of policies that can generalize

across multiple tasks could be learned based on each new adapted policies.

How to train this end-to-end is an important question for meta-learning. The

ability of Adapt-to-Learn to handle significant perturbations to the transi-

tion model indicates that it should naturally extend to sim-to-real transfer.

Indeed we argue that such adaptation is necessary for real-world robotics,

as has been established previously in classical domains like flight control.

Another exciting direction is to extend the work to other combinatorial do-

mains (e.g., multiplayer games). We expect, therefore, follow on work will

find other exciting ways of exploiting such adaptation in RL and machine

learning.

We introduced a new transfer learning technique for RL with proven sample

158

efficiency guarantees. The presented approach demonstrates that an adaptive

policy can be learned that makes the transferred source policy near-optimal

in the target domain. Our results on realistic, high-fidelity, nonlinear, and

continuous domains show that learning an adaptive policy for transfer has

significant sample efficiency advantages over the traditional approach of using

the transferred policy to initialize RL in the target domain. Unlike the

state of art TL methods, we show the transfer is possible without having

to learn the target task. Indeed, we proved that the sample complexity of

the presented transfer algorithm can be significantly reduced, from being

polynomial function of |S| × |A|, to |D|. We expect the approach will work

for other continuous domains, and with some modifications to combinatorial

domains (e.g. games), these are excellent directions for future work.

8.2 Learning over data in Adaptive Control

In chapter 6, we presented a Gaussian Process adaptive controller using

model reference generative network architecture to address on-line train-

ing of the GP models. The proposed controller uses MRGeN as the gen-

erative model to estimate the uncertainty for inferring the GP posterior.

We demonstrate unlike GP-MRAC the presented controller does not require

state derivative information ẋ(t) for training GP model of the uncertainties

in the dynamical systems. It is also shown that the presented method leads

to a robust adaptive control architecture which allows for fast adaptation

while guaranteeing steady-state performance and prove guaranteed uniform

bounds on the tracking error. Numerical simulations with wing-rock model

demonstrate the controller performance, in achieving reference model track-

ing in the presence of uncertainty with no prior information on the domain

of operation.

A GP is a Bayesian nonparametric adaptive element that can adapt both

its weights and the structure of the model in response to the data. The

presented GP-MRGeN controller has strong long-term learning properties as

well as high control performance [53, 131]. However, GPs can be viewed as

“shallow” machine learning models, and do not utilize the power of learning

complex features through compositions as deep networks do. Hence, fur-

ther in chapter 7, utilizing the power of deep learning a even more powerful

159

learning based MRAC architecture called Deep MRAC is introduced.

In this chapter 7 of the thesis, we presented a DMRAC adaptive controller

using model reference generative network architecture to address the issue

of feature design in unstructured uncertainty. Deep Neural Networks (DNN)

have lately shown tremendous empirical performance in many applications

where supervised learning is used, including fields such as computer vision,

speech recognition, translation, natural language processing, Robotics, Au-

tonomous driving and many more [58]. Unlike their counterparts such as

Gaussian Radial Basis Function networks [59, 60], deep networks learn fea-

tures by learning the weights of nonlinear compositions of weighted features

arranged in a directed acyclic graph [61]. They are indeed much deeper

versions of the single hidden layer neural networks (SHL-NN) studied in

MRAC [62, 63]. It is now pretty clear that deep neural networks are out-

shining heuristic based regression and classification algorithms as well as

RBFNs, GPs, SHL-NNs, and other classical machine learning techniques [64].

The proposed controller uses DNN to model significant uncertainties with-

out knowledge of the system’s domain of operation. We provide theoretical

proofs of the controller generalizing capability over unseen data points and

boundedness properties of the tracking error. Experiments with the quadro-

tor vehicle demonstrate the controller performance in achieving reference

model tracking in the presence of significant matched uncertainties and also

learning retention when used as a feed-forward adaptive network on similar

but unseen new tasks. Thereby we claim DMRAC is a highly robust archi-

tecture for high-performance control of nonlinear systems with robustness

and long-term learning properties. Our results demonstrate how DNNs can

be utilized in stable learning schemes for adaptive control of safety-critical

systems such as aircraft. This provides a way to build highly adaptive and

long-term learning capable flight controllers. Furthermore, the dual time-

scale analysis scheme used by us should be generalizable to other DNN based

learning architectures, including reinforcement learning.

160

8.3 Feature Analysis and Selection using Deep

Learning Approach in Adaptive Control

Deep neural network models have recently drawn lots of attention, as they

produce impressive results in many computer vision tasks such as image

classification, object detection, image segmentation, speech processing, data

encoding etc. However analyzing or interpreting a deep network success in

performing these tasks is mathematically not feasible and has become a chal-

lenging question. We often treat the deep neural network models as black

boxes without clear understanding on internal mechanics. Without a clear

understanding of how and why a model works in DMRAC, we cannot clearly

understand how and which part of network neurons activate upon seeing

input from different flight regime. Also how the network is able to store

the relevant features pertaining to different flight regimes and present adap-

tive controller the appropriate features for the appropriate flight data. As

a result, academic researchers and industrial practitioners are facing chal-

lenges that demand visualizing these high dimension network data for better

understanding and analyzing machine learning models,especially their inner

working mechanism.

There are many data visualization and analysis techniques available in lit-

erature, which have shown to advance our understanding of deep models. The

data visualization techniques are used to analyse the model which achieve

the state of the art results in image and video classification [169]. Also there

are methods to understand classification [170, 171, 172] and regression mod-

els [173]. The visualization techniques can be categorized as point-based and

network-based methods. In this thesis we will using point based techniques

names t-SNE [174] and PCA [175] for analyzing the DMRAC features.

Point based techniques [173, 176] help visualize the relation between neural

network components such as neurons or learned representations though point

cloud. The point based technique provide us the method to visualize a high

dimension feature in the lower dimensional space. Typically each feature in

higher dimension is represented as point in lower dimensional space. While

carrying out dimensionality reduction these visualization technique preserve

the neighborhood relationship of features in higher dimensions. Features

resulted from similar inputs to the network are cluster together in lower di-

mensional representation. Principle Component Analysis(PCA) [175] and t-

161

Distributed Stochastic Neighborhood Embedding (t-SNE) [174] are two very

important techniques in the point based visualization of higher dimensional

data in to lower dimensional feature vectors. These methods will help us

explore and analyse the relationship between the cluster in the deep feature

for different flight regime the network has seen through training.

8.3.1 t-SNE and PCA

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique for di-

mensionality reduction that is particularly well suited for the visualization of

high-dimensional datasets [174]. It is a nonlinear dimensionality reduction

technique well-suited for embedding high-dimensional data for visualization

in a low-dimensional space of two or three dimensions. Specifically, it models

each high-dimensional object by a two- or three-dimensional point in such a

way that similar objects are modeled by nearby points and dissimilar objects

are modeled by distant points with high probability. The details of t-SNE

are beyond scope of this work and we present a very a brief working of the

algorithm, interested readers can refer to [174].

The t-SNE algorithm cluster the points through two steps of processing the

data. First, t-SNE constructs a probability distribution over pairs of high-

dimensional objects in such a way that similar objects have a high probability

of being picked while dissimilar points have an extremely small probability

of being picked.

Let {X1, X2 . . . XN} ∈ Rk are set of N high dimensional objects. t-SNE

computes the neighbourhood relation using using the probability pij which

encodes the similarity of the objects xi and xj as follows,

pj|i =
exp(‖xi − xj‖2 /σ2

i)∑
k 6=i exp(‖xi − xk‖2 /σ2

i)
(8.1)

Where σi is bandwidth of the gaussian distribution and can be tuned as

perplexity factor in t-SNE algorithm. The condition probability pj|i similarity

index of point xj to point xi. The total probability is defined as

pij =
pj|i + pi|j

2N
(8.2)

162

with pii = 0.

Second, t-SNE defines a similar probability distribution over the points

in the low-dimensional map. Let {Y1, Y2 . . . YN} ∈ Rd are set of N lower

dimensional objects such that k >> d. A similar neighbourhood relation

is defined between the initially randomly chosen lower dimensional objects

using Student-t distribution as follows,

qj|i =

(
1 + ‖Yi − yj‖2)−1∑

k 6=i
(
1 + ‖Yi − Yk‖2)−1 (8.3)

A heavy-tailed Student t-distribution is used to measure similarities between

low-dimensional points in order to allow dissimilar objects to be modeled far

apart in the map. With qij defined as above and also in this case set qii = 0.

Now minimizing the Kullback–Leibler divergence (KL divergence) between

the two distributions with respect to the locations of the points in the map,

t-SNE generates a data clustering in lower dimension space which reflects

the data similarity relation in higher dimensional space.

Principal component analysis (PCA) is a statistical procedure that uses

an orthogonal transformation to convert a set of observations of possibly

correlated variables into a set of values of linearly uncorrelated variables

called principal components. This transformation is defined in such a way

that the first principal component has the largest possible variance (that is,

accounts for as much of the variability in the data as possible), and each

succeeding component in turn has the highest variance possible under the

constraint that it is orthogonal to the preceding components. The resulting

vectors (each being a linear combination of the variables and containing N

observations) are an uncorrelated orthogonal basis set. Further details of

PCA can be found in [175] and reference therein.

8.3.2 Feature Visualization for Quadrotor and Wingrock
Experiments

We use t-SNE and PCA algorithm to visualize the high dimensional feature

vector Φσ
n(x) learned using DMRAC and S-DMRAC algorithm for Quadrotor

and Wing-Rock control experiments.

163

Wing-Rock Experiment

We use DMRAC network to learn to control a uncertain Wing-Rock system

to track a given mixture of step and sinusoidal reference signal. We collect

the finitely exciting data and train the deep features from first 100secs and

further the deep features are used as frozen network with no active learn-

ing. Despite no active learning, only from the memory of previously seen

training data the DMRAC controller can generalize and generate control to

track any mix of step and sinusoidal reference signals. Figure-8.1 show the

Figure 8.1: MRAC vs DMRAC in Training and Test Phase. For 1st 100sec
the DMRAC features are trained, further the DMRAC is used as frozen
network with no active online learning

controller performance in producing reference tracking. Up to 100sec mark

in the simulation the data is collected for the DMRAC training using ker-

nel Independence test. After 100sec the deep feature update is stopped and

we see this part of reference tracking as the test phase. From Figure-8.1 &

Figure-8.2 we can see the DMRAC controller is successful in generalizing to

similar reference signal without active learning.

The Deep features extracted from the data using DMRAC controller when

visualized using t-SNE shows clearly two distinct cluster pertaining to step

and sinusoidal reference tracking Figure-8.3. This flight regime specific clus-

tering of the features very clearly support our argument that DMRAC is

successful in extracting and memorizing the important features for a given

164

Figure 8.2: DMRAC controller uncertainty estimate while in Training and
Test phase

Figure 8.3: DMRAC Features visualization using t-SNE.

problem. And during Test phase when presented with input data for a related

task DMRAC can choose relevant feature vector for control synthesis.

165

Figure 8.4: DMRAC features before training and after training to handle
Low, Medium, High Wind Bias and Rotor Tip breaking case

DMRAC evaluation using Quadrotor under Wind Bias and Rotor
blade breaking

Similar to wing-Rock experiment, we used a DMRAC network to control

a physical quadrotor tracking figure-8 reference signal under wind bias and

Rotor fault. The details of the network architecture are provided in the

Table-7.1.

Same Deep model is trained progressively over the collected data from

Low, Medium, High wind bias and Fault tolerant Case. Figure-8.4 show the

t-SNE visualization of the 20−dimensional feature vector in 3−dimensional

scatter-plot. In Figure-8.4 each point denote one feature representation of

test state from either of the experiments. As shown in the figure, after train-

ing, the spatial separation between classes is significantly improved. This

observation provides evidence for the hypothesis that neural networks learn

to detect representations that are useful for different flight regimes and un-

certainties experienced by the vehicle. Figure-8.5 is the result of principle

component analysis and provides the details of important features used in

decision making while windy and fault cases of the flight of quadrotor.

The feature visualization also helps with the understanding of similar flight

regimes. As we can observe the windy and Fault cases are classified as two

very distinct clusters. But the wind cases from Low to Medium to High wind

case cluster are together but progressively move away from each other as the

wind disturbance is increased.

166

Figure 8.5: PCA for DMRAC features trained to handle Low, Medium,
High Wind Bias and Rotor Tip breaking case

The feature analysis might not help us directly to design a DMRAC deep

network, but provide us a tool to visualize the high dimensional feature data

and give us intuitive perspective on how the features get cluster for different

tasks.

167

APPENDIX A

A.1 Simulation Lemma [1]

Simulation lemma states that if one MDP M̂ is sufficiently accurate ap-

proximation of the another MDP M , then we can actually approximate the

T−step return of any policy in M quite accurately by its T−step return in

MDP M̂ .

Definition A.1.1 Let M and M̂ be markov decision process over the same

state space. Then we can say that M̂ is an α−approximation of M if,

For any state s

RM(s)− α ≤ RM̂(s) ≤ RM(s) + α (A.1)

For any states sk and sk+1 and any action a, the transition models can be

written as

PM(sk+1|sk, a)− α ≤ PM̂(sk+1|sk, a) ≤ PM(sk+1|sk, a) + α (A.2)

The Simulation Lemma, which says that provided M̂ is sufficiently close to

M in the sense of above definition, the T -step return of policies in M̂ and

M will be similar

Lemma A.1.2 Let M be any Markov decision process over N states,

• Undiscounted Case: Let M̂ be an O
((
ε/(NTηTmax)

)2
)
−approximation

of M . Then for any policy π ∈ Π
T,ε/2
M and for any state s, the return

over policy can be written as,

Uπ
M(s, T)− α ≤ Uπ

M̂
(s, T) ≤ Uπ

M(s, T) + α (A.3)

168

• Discounted case: Let T > (1/(1− γ)) log (Rmax/(ε(1− γ))) and let M̂

be an O
((
ε/(NTηTmax)

)2
)
−approximation of M . Then for any policy

π and any state s, we can write the value function as

V π
M(s)− α ≤ V π

M̂
(s) ≤ V π

M(s) + α (A.4)

The proof of simulation lemma is provided in [1].

A.2 Manifold Alignment

[177] A manifold alignment problem arises in many real world applications,

where two manifolds (defined by totally different features) need to be aligned

with no correspondence information. Solving this problem is hard, since

there are two unknown variables in this problem: the correspondence and

the transformation. One such example is control transfer between different

Markov decision processes (MDPs), where we want to align state spaces of

different tasks. In a MDP manifold alignment problem, the state are usually

defined in different features and its hard to find correspondence between

them. This problem can be more precisely defined as follows: suppose we

have two data sets X = x1, . . . , xm and Y = y1, . . . , yn for which we want to

find correspondence, our aim is to compute functions α and β to map xi and

yj to the same space such that αTxi and βTyj can be directly compared.

A semi supervised Manifold alignment is presented by [178]. Given two

data sets X and Y along with the additional correspondence between a small

subset of training instances xi ↔ yi for i ∈ [1, l]. Semi-supervised alignment

directly computes mapping between xi and yi minimizing the following cost

function.

C(f, g) = µ
t∑
i=1

(f − g)2 + 0.5
∑
i,j

(fi − fj)2W i,j
x + 0.5

∑
i,j

(gi − gj)2W i,j
y

(A.5)

Where fi is mapping result of xi and similarly gi is mapping result of yi.

The first term penalizes the differences between X and Y on the mapping

results of the corresponding instances. The second and third terms guarantee

that the neighborhood relationship within X and Y will be preserved.

169

Figure A.1: Manifold alignment between two state spaces defined in
different feature spaces

The unsupervised manifold alignment presented by [3] has two fundamen-

tal difference compared supervised method. First the correspondence in-

formation is not available. The correspondence information in C(f, g) is

replaced by soft constraint induced by local geometry. Second the unsuper-

vised manifold alignment seek a linear mapping functions α and β rather

than direct embeddings, so that the mapping is defined everywhere. The

cost function we want to minimize is as follows:

C(f, g) = µ
t∑
i=1

(
αTxi − βTyi

)2
W i,j

+ 0.5
∑
i,j

(
αTxi − βTxj

)2
W i,j
x + 0.5

∑
i,j

(
αTyi − βTyj

)2
W i,j
y

(A.6)

The first term of C(α, β) penalizes the differences between X and Y on

the matched local patterns in the new space. Suppose that local geometry

relation representation matrix Rxi and Ryj are similar, then weight matrix

W i,j will be large. If the mapping results in xi and yj are being far away from

each other in the new space, the first term will be large. The second and

third terms preserve the neighborhood relationship within X and Y . The

details of the algorithm and implementation details are presented in [3, 178]

170

REFERENCES

[1] M. Kearns and S. Singh, “Near-optimal reinforcement learning in poly-
nomial time,” Machine Learning, vol. 49, no. 2-3, pp. 209–232, 2002.

[2] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd ed. Readings:
Addison-Weseley, 1995.

[3] C. Wang and S. Mahadevan, “Manifold alignment without correspon-
dence.” in IJCAI, vol. 2, 2009, p. 3.

[4] S. B. Thrun, “Efficient exploration in reinforcement learning,” 1992.

[5] B. Price and C. Boutilier, “Accelerating reinforcement learning through
implicit imitation,” Journal of Artificial Intelligence Research, vol. 19,
pp. 569–629, 2003.

[6] U. Syed and R. E. Schapire, “A game-theoretic approach to apprentice-
ship learning,” in Advances in neural information processing systems,
2008, pp. 1449–1456.

[7] P. Abbeel and A. Y. Ng, “Exploration and apprenticeship learning
in reinforcement learning,” in Proceedings of the 22nd international
conference on Machine learning. ACM, 2005, pp. 1–8.

[8] J. Z. Kolter, P. Abbeel, and A. Y. Ng, “Hierarchical apprenticeship
learning with application to quadruped locomotion,” in Advances in
Neural Information Processing Systems, 2008, pp. 769–776.

[9] M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi,
T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, and
others, “Swarmanoid: a novel concept for the study of heterogeneous
robotic swarms,” IEEE Robotics & Automation Magazine, 2012.

[10] M. J. Mataric, “Reward functions for accelerated learning,” in Machine
learning proceedings 1994. Elsevier, 1994, pp. 181–189.

[11] M. E. Taylor, P. Stone, and Y. Liu, “Transfer learning via inter-task
mappings for temporal difference learning,” Journal of Machine Learn-
ing Research, vol. 8, no. Sep, pp. 2125–2167, 2007.

171

[12] S. Levine and V. Koltun, “Guided policy search,” in International Con-
ference on Machine Learning, 2013, pp. 1–9.

[13] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in Intel-
ligent Robots and Systems, 2006 IEEE/RSJ International Conference
on. IEEE, 2006, pp. 2219–2225.

[14] Y. Duan, M. Andrychowicz, B. Stadie, O. J. Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba, “One-shot imitation learn-
ing,” in Advances in neural information processing systems, 2017, pp.
1087–1098.

[15] X. B. Peng, G. Berseth, and M. Van de Panne, “Terrain-adaptive lo-
comotion skills using deep reinforcement learning,” ACM Transactions
on Graphics (TOG), vol. 35, no. 4, p. 81, 2016.

[16] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement learn-
ing,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 41,
2017.

[17] L. Liu and J. Hodgins, “Learning to schedule control fragments for
physics-based characters using deep q-learning,” ACM Transactions
on Graphics (TOG), vol. 36, no. 3, p. 29, 2017.

[18] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez,
Z. Wang, A. Eslami, M. Riedmiller et al., “Emergence of locomotion
behaviours in rich environments,” arXiv preprint arXiv:1707.02286,
2017.

[19] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learn-
ing domains: A survey,” Journal of Machine Learning Research, vol. 10,
no. Jul, pp. 1633–1685, 2009.

[20] M. E. Taylor, P. Stone, and Y. Liu, “Value functions for rl-based be-
havior transfer: A comparative study,” in Proceedings of the National
Conference on Artificial Intelligence, vol. 20, no. 2. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005, p. 880.

[21] H. B. Ammar, K. Tuyls, M. E. Taylor, K. Driessens, and G. Weiss,
“Reinforcement learning transfer via sparse coding,” in Proceedings of
the 11th International Conference on Autonomous Agents and Multi-
agent Systems-Volume 1. International Foundation for Autonomous
Agents and Multiagent Systems, 2012, pp. 383–390.

[22] H. B. Ammar, E. Eaton, P. Ruvolo, and M. E. Taylor, “Unsuper-
vised cross-domain transfer in policy gradient reinforcement learning
via manifold alignment,” in Proc. of AAAI, 2015.

172

[23] B. Banerjee and P. Stone, “General game learning using knowledge
transfer.” in IJCAI, 2007, pp. 672–677.

[24] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” arXiv
preprint arXiv:1710.06537, 2017.

[25] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[26] M. Yan, I. Frosio, S. Tyree, and J. Kautz, “Sim-to-real transfer of accu-
rate grasping with eye-in-hand observations and continuous control,”
arXiv preprint arXiv:1712.03303, 2017.

[27] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manip-
ulation skills with guided policy search,” in Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE, 2015, pp.
156–163.

[28] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with large-scale data collection,”
in International Symposium on Experimental Robotics. Springer, 2016,
pp. 173–184.

[29] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 7559–7566.

[30] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, “Dexter-
ous manipulation with deep reinforcement learning: Efficient, general,
and low-cost,” arXiv preprint arXiv:1810.06045, 2018.

[31] S. Daftry, J. A. Bagnell, and M. Hebert, “Learning transferable policies
for monocular reactive mav control,” in International Symposium on
Experimental Robotics. Springer, 2016, pp. 3–11.

[32] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. To-
bin, P. Abbeel, and W. Zaremba, “Transfer from simulation to real
world through learning deep inverse dynamics model,” arXiv preprint
arXiv:1610.03518, 2016.

[33] M. Wulfmeier, I. Posner, and P. Abbeel, “Mutual alignment transfer
learning,” arXiv preprint arXiv:1707.07907, 2017.

173

[34] G. Tao, Adaptive control design and analysis. John Wiley & Sons,
2003, vol. 37.

[35] G. Tao, Adaptive Control Design and Analysis. New York: Wiley,
2003.

[36] G. Tao, S. M. Joshi, and X. Ma, “Adaptive state feedback and tracking
control of systems with actuator failures,” Automatic Control, IEEE
Transactions on, vol. 46, no. 1, pp. 78–95, 2001.

[37] G. Chowdhary, “Concurrent Learning for Convergence in Adaptive
Control Without Persistency of Excitation,” Ph.D. dissertation, Geor-
gia Institute of Technology, Atlanta, GA, 2010.

[38] Y. H. Kim and F. L. Lewis, High-level feedback control with neural
networks. World Scientific, 1998, vol. 21.

[39] W. M. Haddad, K. Y. Volyanskyy, J. M. Bailey, and J. J. Im, “Neu-
roadaptive output feedback control for automated anesthesia with noisy
eeg measurements,” IEEE Transactions on Control Systems Technol-
ogy, vol. 19, no. 2, pp. 311–326, 2010.

[40] K. Y. Volyanskyy, “Adaptive and Neuroadaptive Control for nonnega-
tive and compartmental dynamical systems,” Ph.D. dissertation, Geor-
gia Institute of Technology, Atlanta, 3 2010.

[41] K. Y. Volyanskyy, W. M. Haddad, and A. J. Calise, “A new neuroad-
aptive control architecture for nonlinear uncertain dynamical systems:
Beyond σ and e−modifications,” IEEE Transactions on Neural Net-
works, vol. 20, no. 11, pp. 1707–1723, 2009.

[42] E. N. Johnson, “Limited Authority Adaptive Flight Control,” Ph.D.
dissertation, Georgia Institute of Technology, School of Aerospace En-
gineering, Atlanta, GA 30332, 12 2000.

[43] E. N. Johnson and S. K. Kannan, “Adaptive trajectory control for au-
tonomous helicopters,” Journal of Guidance, Control, and Dynamics,
vol. 28, no. 3, pp. 524–538, 2005.

[44] M. Steinberg, “Historical overview of research in reconfigurable flight
control,” Proceedings of the Institution of Mechanical Engineers, Part
G: Journal of Aerospace Engineering, vol. 219, no. 4, pp. 263–275, 2005.

[45] S. Lee, “Neural network based adaptive control and its applications to
aerial vehicles,” Ph.D. dissertation, Georgia Institute of Technology,
2001.

174

[46] S. K. Kannan and E. N. Johnson, “Adaptive control of systems in
cascade with saturation,” in 49th IEEE Conference on Decision and
Control (CDC). IEEE, 2010, pp. 42–47.

[47] F. Lewis, “Nonlinear network structures for feedback control,” Asian
Journal of Control, vol. 1, no. 4, pp. 205–228, 1999.

[48] P. A. Ioannou and J. Sun, Robust adaptive control. PTR Prentice-Hall
Upper Saddle River, NJ, 1996, vol. 1.

[49] K. Narendra and A. Annaswamy, “Robust adaptive control in the pres-
ence of bounded disturbances,” IEEE Transactions on Automatic Con-
trol, vol. 31, no. 4, pp. 306–315, 1986.

[50] N. Hovakimyan and C. Cao, 1 Adaptive Control Theory: Guaranteed
Robustness with Fast Adaptation. SIAM, 2010.

[51] N. Nguyen, “Asymptotic Linearity of Optimal Control Modification
Adaptive Law with Analytical Stability Margins,” in Infotech@AIAA
conference, Atlanta, GA, 2010.

[52] G. Chowdhary and E. Johnson, “Concurrent learning for convergence
in adaptive control without persistency of excitation,” in Decision and
Control (CDC), 2010 49th IEEE Conference on. IEEE, 2010, pp.
3674–3679.

[53] G. Chowdhary, H. A. Kingravi, J. P. How, and P. A. Vela, “Bayesian
nonparametric adaptive control using gaussian processes,” Neural Net-
works and Learning Systems, IEEE Transactions on, vol. 26, no. 3, pp.
537–550, 2015.

[54] G. Joshi and G. Chowdhary, “Cross-domain transfer in reinforcement
learning using target apprentice,” in 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2018, pp. 7525–
7532.

[55] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corpo-
ration, 2013.

[56] G. Chowdhary, T. Wu, M. Cutler, and J. P. How, “Rapid transfer
of controllers between uavs using learning-based adaptive control,” in
Robotics and Automation (ICRA), 2013 IEEE International Confer-
ence on. IEEE, 2013, pp. 5409–5416.

[57] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70. JMLR. org, 2017,
pp. 1126–1135.

175

[58] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[59] R. M. Sanner and J.-J. Slotine, “Gaussian networks for direct adaptive
control,” Neural Networks, IEEE Transactions on, vol. 3, no. 6, pp.
837–863, 11 1992.

[60] M. Liu, G. Chowdhary, B. C. da Silva, S.-Y. Liu, and J. P. How,
“Gaussian processes for learning and control: A tutorial with exam-
ples,” IEEE Control Systems Magazine, vol. 38, no. 5, pp. 53–86, 2018.

[61] D. Yu, M. L. Seltzer, J. Li, J.-T. Huang, and F. Seide, “Feature Learn-
ing in Deep Neural Networks - Studies on Speech Recognition Tasks,”
arXiv e-prints, p. arXiv:1301.3605, Jan 2013.

[62] F. L. Lewis, “Nonlinear Network Structures for Feedback Control,”
Asian Journal of Control, vol. 1, pp. 205–228, 1999.

[63] G. Chowdhary and E. N. Johnson, “Theory and Flight Test Validation
of a Concurrent Learning Adaptive Controller,” Journal of Guidance
Control and Dynamics, vol. 34, no. 2, pp. 592–607, 3 2011.

[64] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Se-
nior, V. Vanhoucke, P. Nguyen, B. Kingsbury et al., “Deep neural
networks for acoustic modeling in speech recognition,” IEEE Signal
processing magazine, vol. 29, 2012.

[65] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
and others, “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[66] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[67] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[68] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets,
M. Yeo, A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser et al.,
“Starcraft ii: A new challenge for reinforcement learning,” arXiv
preprint arXiv:1708.04782, 2017.

176

[69] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bert-
sekas, Dynamic programming and optimal control. Athena Scientific
Belmont, MA, 1995, vol. 1, no. 2.

[70] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming.
Athena Scientific Belmont, MA, 1996, vol. 5.

[71] A. Geramifard, T. J. Walsh, S. Tellex, G. Chowdhary, N. Roy, J. P.
How et al., “A tutorial on linear function approximators for dynamic
programming and reinforcement learning,” Foundations and Trends R©
in Machine Learning, vol. 6, no. 4, pp. 375–451, 2013.

[72] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[73] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning, 2015, pp. 1889–1897.

[74] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[75] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, “Scalable trust-
region method for deep reinforcement learning using kronecker-factored
approximation,” 2017.

[76] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning,
2016, pp. 1928–1937.

[77] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-
efficient approach to policy search,” in Proceedings of the 28th Interna-
tional Conference on machine learning (ICML-11), 2011, pp. 465–472.

[78] A. Y. Ng and M. Jordan, “Pegasus: A policy search method for large
mdps and pomdps,” in Proceedings of the Sixteenth conference on Un-
certainty in artificial intelligence. Morgan Kaufmann Publishers Inc.,
2000, pp. 406–415.

[79] V. Tangkaratt, S. Mori, T. Zhao, J. Morimoto, and M. Sugiyama,
“Model-based policy gradients with parameter-based exploration by
least-squares conditional density estimation,” Neural networks, vol. 57,
pp. 128–140, 2014.

177

[80] R. S. Sutton, “Integrated modeling and control based on reinforcement
learning and dynamic programming,” in Advances in neural informa-
tion processing systems, 1991, pp. 471–478.

[81] G. Chowdhary, M. Liu, R. Grande, T. Walsh, J. How, and L. Carin,
“Off-policy reinforcement learning with Gaussian processes,” Automat-
ica Sinica, IEEE/CAA Journal of, vol. 1, no. 3, pp. 227–238, 2014.

[82] M. Kuss, “Gaussian Process Models for Robust Regression, Classifi-
cation, and Reinforcement Learning,” Ph.D. dissertation, Technische
Universität Darmstadt, 2006.

[83] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” CoRR, vol. abs/1506.02438, 2015.

[84] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing,
vol. 71, no. 7, pp. 1180–1190, 2008.

[85] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforce-
ment learning in a handful of trials using probabilistic dynamics mod-
els,” in Advances in Neural Information Processing Systems 31, S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 4754–4765.

[86] S. Kamthe and M. Deisenroth, “Data-efficient reinforcement learning
with probabilistic model predictive control,” in International Confer-
ence on Artificial Intelligence and Statistics, 2018, pp. 1701–1710.

[87] K. S. Narendra and J. Balakrishnan, “Adaptive control using multiple
models,” Automatic Control, IEEE Transactions on, vol. 42, no. 2, pp.
171–187, 2 1997.

[88] G. Chowdhary, H. A. Kingravi, J. P. How, and P. A. Vela, “Bayesian
Nonparametric Adaptive Control Using Gaussian Processes,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 26, no. 3,
pp. 537–550, 3 2015.

[89] A. Calise, N. Hovakimyan, and M. Idan, “Adaptive output feed-
back control of nonlinear systems using neural networks,” Automatica,
vol. 37, no. 8, pp. 1201–1211, 2001, special Issue on Neural Networks
for Feedback Control.

[90] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
Learning: A Survey,” Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

178

[91] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelli-
gence, vol. 101, pp. 99–134, 1998.

[92] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[93] L. Busoniu, R. Babuska, B. D. Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators,
1st ed. {CRC} Press, 4 2010.

[94] A. Axelrod and G. Chowdhary, “The Explore-Exploit Dilemma in Non-
stationary Decision Making under Uncertainty,” in Handling Uncer-
tainty and Networked Structure in Robot Control, 1st ed., ser. 2198-
4182. Springer, 2015, ch. The Explor.

[95] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in Inter-
national Conference on Machine Learning, 2016, pp. 1329–1338.

[96] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John
Wiley & Sons, 2012.

[97] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Integral rein-
forcement learning and experience replay for adaptive optimal control
of partially-unknown constrained-input continuous-time systems,” Au-
tomatica, vol. 50, no. 1, pp. 193–202, 2014.

[98] B. Kiumarsi, F. L. Lewis, H. Modares, A. Karimpour, and M.-B.
Naghibi-Sistani, “Reinforcement q-learning for optimal tracking control
of linear discrete-time systems with unknown dynamics,” Automatica,
vol. 50, no. 4, pp. 1167–1175, 2014.

[99] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep
reinforcement learning,” CoRR, vol. abs/1509.02971, 2015. [Online].
Available: http://arxiv.org/abs/1509.02971

[100] J. Condell, J. Wade, L. Galway, M. McBride, P. Gormley, J. Brennan,
and T. Somasundram, “Problem solving techniques in cognitive sci-
ence,” Artificial Intelligence Review, vol. 34, no. 3, pp. 221–234, 2010.

[101] L. Torrey, J. Shavlik, T. Walker, and R. Maclin, “Relational macros
for transfer in reinforcement learning,” in International Conference on
Inductive Logic Programming. Springer, 2007, pp. 254–268.

179

http://arxiv.org/abs/1509.02971

[102] Y. Liu and P. Stone, “Value-function-based transfer for reinforcement
learning using structure mapping,” in Proceedings of the national con-
ference on artificial intelligence, vol. 21, no. 1. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006, p. 415.

[103] G. Konidaris and A. G. Barto, “Building portable options: Skill trans-
fer in reinforcement learning.” in IJCAI, vol. 7, 2007, pp. 895–900.

[104] G. Konidaris, I. Scheidwasser, and A. Barto, “Transfer in reinforcement
learning via shared features,” Journal of Machine Learning Research,
vol. 13, no. May, pp. 1333–1371, 2012.

[105] M. E. Taylor and P. Stone, “Cross-domain transfer for reinforcement
learning,” in Proceedings of the 24th international conference on Ma-
chine learning. ACM, 2007, pp. 879–886.

[106] T. Chen and H. Chen, “Universal approximation to nonlinear operators
by neural networks with arbitrary activation functions and its applica-
tion to dynamical systems,” IEEE Transactions on Neural Networks,
vol. 6, no. 4, pp. 911–917, 1995.

[107] Y. Liu and F. Ding, “Convergence properties of the least squares es-
timation algorithm for multivariable systems,” Applied Mathematical
Modelling, vol. 37, no. 1, pp. 476–483, 2013.

[108] K. Hinderer, “Lipschitz continuity of value functions in markovian deci-
sion processes,” Mathematical Methods of Operations Research, vol. 62,
no. 1, pp. 3–22, 2005.

[109] M. Kearns and S. Singh, “Near-optimal reinforcement learning in
polynomial time,” Machine Learning, vol. 49, no. 2, pp. 209–232, Nov
2002. [Online]. Available: https://doi.org/10.1023/A:1017984413808

[110] N. Jiang, “Pac reinforcement learning with an imperfect model,” in
Proc. of AAAI, 2018.

[111] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[112] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural
network dynamics for model-based deep reinforcement learning with
model-free fine-tuning,” CoRR, vol. abs/1708.02596, 2017. [Online].
Available: http://arxiv.org/abs/1708.02596

[113] J. Randlov and P. Alstrom, “Learning to drive a bicycle using rein-
forcement learning and shaping,” in Proceedings of the Fifteenth Inter-
national Conference on Machine Learning, 1998, pp. 463–471.

180

https://doi.org/10.1023/A:1017984413808
http://arxiv.org/abs/1708.02596

[114] K. J. Åström, R. E. Klein, and A. Lennartsson, “Bicycle dynamics and
control,” IEEE Control Systems Magazine, vol. 25, no. 4, pp. 26–47,
2005.

[115] J. W. Krakauer and P. Mazzoni, “Human sensorimotor learning: adap-
tation, skill, and beyond,” Current opinion in neurobiology, vol. 21,
no. 4, pp. 636–644, 2011.

[116] M. J. Fryling, C. Johnston, and L. J. Hayes, “Understanding observa-
tional learning: An interbehavioral approach,” The Analysis of Verbal
Behavior, vol. 27, no. 1, pp. 191–203, 2011.

[117] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-sgd: Learning to learn
quickly for few-shot learning,” 2017.

[118] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[119] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adap-
tive elements that can solve difficult learning control problems,” IEEE
transactions on systems, man, and cybernetics, no. 5, pp. 834–846,
1983.

[120] P. Ioannou and J. Sun, “Theory and design of robust direct and indirect
adaptive-control schemes,” International Journal of Control, vol. 47,
no. 3, pp. 775–813, 1988.

[121] J.-B. Pomet and L. Praly, “Adaptive nonlinear regulation: estimation
from the Lyapunov equation,” Automatic Control, IEEE Transactions
on, vol. 37, no. 6, pp. 729–740, 6 1992.

[122] A. J. Calise, M. Sharma, and S. Lee, “Adaptive Autopilot Design for
Guided Munitions,” AIAA Journal of Guidance, Control, and Dynam-
ics, vol. 23, no. 5, 2000.

[123] T. Yucelen and A. Calise, “Derivative-Free model reference adaptive
control,” vol. 34, no. 8, pp. 933–950, 2012.

[124] G. Chowdhary, E. N. Johnson, R. Chandramohan, S. M. Kimbrell,
and A. Calise, “Autonomous Guidance and Control of Airplanes under
Actuator Failures and Severe Structural Damage,” Journal of Guidance
Control and Dynamics, 2012.

[125] M. Idan, M. D. Johnson, and A. J. Calise, “A Hierarchical Approach
to Adaptive Control for Improved Flight Safety,” AIAA Journal of
Guidance, Control, and Dynamics, vol. 25, no. 6, p. 1012, 2002.

181

[126] E. N. Johnson and S. Kannan, “Adaptive Trajectory Control
for Autonomous Helicopters,” Journal of Guidance Control and
Dynamics, vol. 28, no. 3, pp. 524–538, 5 2005. [Online]. Available:
http://doi.aiaa.org/10.2514/1.6271

[127] A. M. Annaswamy and K. S. Narendra, “Adaptive control of simple
time-varying systems,” in Decision and Control, 1989., Proceedings of
the 28th IEEE Conference on, 12 1989, p. 1014?1018 vol.2.

[128] N. Hovakimyan and C. Cao, 1 Adaptive Control Theory: Guaranteed
Robustness with Fast Adaptation. SIAM, 2010.

[129] T. Yucelen and A. Calise, “A derivative-free model reference adaptive
controller for the generic transport model,” in AIAA Guidance, Control
and Navigation Conference, Toronto, Canada, 8 2010.

[130] G. Chowdhary, T. Yucelen, M. Mühlegg, and E. N. Johnson, “Con-
current learning adaptive control of linear systems with exponentially
convergent bounds,” International Journal of Adaptive Control and
Signal Processing, vol. 27, no. 4, pp. 280–301, 2013.

[131] G. Joshi and G. Chowdhary, “Adaptive control using gaussian-process
with model reference generative network,” in 2018 IEEE Conference
on Decision and Control (CDC). IEEE, 2018, pp. 237–243.

[132] B. Scholkopf, R. Herbrich, and A. Smola, “A Generalized Representer
Theorem,” in Computational Learning Theory, ser. Lecture Notes in
Computer Science, D. Helmbold and B. Williamson, Eds. Springer
Berlin / Heidelberg, 2001, vol. 2111, pp. 416–426. [Online]. Available:
http://dx.doi.org/10.1007/3-540-44581-1 27

[133] B. Schölkopf and A. J. Smola, Learning with kernels: Support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[134] C. E. Rasmussen and C. K. Williams, Gaussian process for machine
learning. MIT press, 2006.

[135] K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward
Networks are Universal Approximators,” Neural Networks, vol. 2, pp.
359–366, 1989.

[136] H. Mhaskar, Q. Liao, and T. Poggio, “Learning Functions: When Is
Deep Better Than Shallow,” arXiv e-prints, p. arXiv:1603.00988, Mar
2016.

182

http://doi.aiaa.org/10.2514/1.6271
http://dx.doi.org/10.1007/3-540-44581-1_27

[137] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao, “Why
and when can deep-but not shallow-networks avoid the curse of
dimensionality: A review,” International Journal of Automation and
Computing, vol. 14, no. 5, pp. 503–519, Oct 2017. [Online]. Available:
https://doi.org/10.1007/s11633-017-1054-2

[138] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization,” arXiv e-prints, p.
arXiv:1611.03530, Nov 2016.

[139] M. Telgarsky, “Benefits of depth in neural networks,” arXiv e-prints,
p. arXiv:1602.04485, Feb 2016.

[140] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

[141] G. V.˜Cybenko, “Dynamic Load Balancing for Distributed Mem-
ory Multiprocessors,” Journal on Parallel and Distributed Computing,
vol. 7, pp. 279–301, 1989.

[142] S. Boyd and S. Sastry, “Necessary and Sufficient Conditions for Pa-
rameter Convergence in Adaptive Control,” Automatica, vol. 22, no. 6,
pp. 629–639, 1986.

[143] G. Larchev, S. Campbell, and J. Kaneshige, “Projection operator: A
step toward certification of adaptive controllers,” in AIAA Infotech@
Aerospace 2010, 2010, p. 3366.

[144] K. S. Narendra and A. M. Annaswamy, Stable adaptive systems.
Courier Corporation, 2012.

[145] J. Luo and C. E. Lan, “Control of wing-rock motion of slender delta
wings,” Journal of Guidance, Control, and Dynamics, vol. 16, no. 2,
pp. 225–231, 1993.

[146] M. M. Monahemi and M. Krstic, “Control of wing rock motion us-
ing adaptive feedback linearization,” Journal of guidance, control, and
dynamics, vol. 19, no. 4, pp. 905–912, 1996.

[147] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized represen-
ter theorem,” in International conference on computational learning
theory. Springer, 2001, pp. 416–426.

[148] R. M. Sanner and J.-J. Slotine, “Stable adaptive control and recursive
identification using radial gaussian networks,” in Decision and Control,
1991., Proceedings of the 30th IEEE Conference on. IEEE, 1991, pp.
2116–2123.

183

https://doi.org/10.1007/s11633-017-1054-2

[149] K. Y. Ho et al., High-level feedback control with neural networks. World
Scientific, 1998, vol. 21.

[150] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural computation, vol. 3, no. 2, pp. 246–
257, 1991.

[151] K. S. Narendra, “Neural networks for control theory and practice,”
Proceedings of the IEEE, vol. 84, no. 10, pp. 1385–1406, 1996.

[152] H. Patino and D. Liu, “Neural network-based model reference adaptive
control system,” IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B (Cybernetics), vol. 30, no. 1, pp. 198–204, 2000.

[153] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, 2014, pp. 2672–
2680.

[154] R. C. Grande, G. Chowdhary, and J. P. How, “Nonparametric adap-
tive control using gaussian processes with online hyperparameter es-
timation,” in Decision and Control (CDC), 2013 IEEE 52nd Annual
Conference on. IEEE, 2013, pp. 861–867.

[155] C. Rohrs, L. Valavani, M. Athans, and G. Stein, “Robustness of
continuous-time adaptive control algorithms in the presence of unmod-
eled dynamics,” IEEE Transactions on Automatic Control, vol. 30,
no. 9, pp. 881–889, 1985.

[156] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the
American mathematical society, vol. 68, no. 3, pp. 337–404, 1950.

[157] Y. Miyahara, “Ultimate BOundedness of the Systems Governed by
Stochastic Differential Equations,” Nagoya Math Journal, vol. 47, pp.
111–144, 1972.

[158] R. Khasminskii, Stochastic stability of differential equations. Springer
Science & Business Media, 2011, vol. 66.

[159] R. S. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement learning
is direct adaptive optimal control,” IEEE Control Systems Magazine,
vol. 12, no. 2, pp. 19–22, 1992.

[160] T. Kailath, Linear systems. Prentice-Hall Englewood Cliffs, NJ, 1980,
vol. 156.

[161] H. Xu and S. Mannor, “Robustness and generalization,” Machine learn-
ing, vol. 86, no. 3, pp. 391–423, 2012.

184

[162] S. A. van de Geer and P. Bühlmann, “On the conditions used to prove
oracle results for the lasso,” Electron. J. Statist., vol. 3, pp. 1360–1392,
2009. [Online]. Available: https://doi.org/10.1214/09-EJS506

[163] G. Chowdhary and E. Johnson, “A singular value maximizing data
recording algorithm for concurrent learning,” in Proceedings of the 2011
American Control Conference, June 2011, pp. 3547–3552.

[164] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” arXiv preprint arXiv:1505.05424,
2015.

[165] D. Jakubovitz, R. Giryes, and M. R. D. Rodrigues, “Generalization
Error in Deep Learning,” arXiv e-prints, p. arXiv:1808.01174, Aug
2018.

[166] Y. Kwon, J.-H. Won, B. J. Kim, and M. C. Paik, “Uncertainty quan-
tification using bayesian neural networks in classification: Application
to ischemic stroke lesion segmentation,” 2018.

[167] G. Joshi and R. Padhi, “Robust control of quadrotors using neuro-
adaptive control augmented with state estimation,” in AIAA Guidance,
Navigation, and Control Conference, 2017, p. 1526.

[168] H. Yu and B. M. Wilamowski, “Levenberg-marquardt training,” In-
dustrial electronics handbook, vol. 5, no. 12, p. 1, 2011.

[169] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[170] J. G. S. Paiva, W. R. Schwartz, H. Pedrini, and R. Minghim, “An
approach to supporting incremental visual data classification,” IEEE
transactions on visualization and computer graphics, vol. 21, no. 1, pp.
4–17, 2014.

[171] R. Turner, “A model explanation system,” in 2016 IEEE 26th Interna-
tional Workshop on Machine Learning for Signal Processing (MLSP).
IEEE, 2016, pp. 1–6.

[172] F.-Y. Tzeng and K.-L. Ma, Opening the black box-data driven visual-
ization of neural networks. IEEE, 2005.

[173] T. Zahavy, N. Ben-Zrihem, and S. Mannor, “Graying the black box:
Understanding dqns,” in International Conference on Machine Learn-
ing, 2016, pp. 1899–1908.

[174] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

185

https://doi.org/10.1214/09-EJS506

[175] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp.
37–52, 1987.

[176] P. E. Rauber, S. G. Fadel, A. X. Falcao, and A. C. Telea, “Visualizing
the hidden activity of artificial neural networks,” IEEE transactions on
visualization and computer graphics, vol. 23, no. 1, pp. 101–110, 2016.

[177] X. Wang, P. Tino, M. A. Fardal, S. Raychaudhury, and A. Babul, “Fast
parzen window density estimator,” in International Joint Conference
on Neural Networks, 2009, pp. 3267–3274.

[178] J. Ham, D. D. Lee, L. K. Saul et al., “Semisupervised alignment of
manifolds.” in AISTATS, vol. 120. Citeseer, 2005, pp. 120–127.

186

	List of Figures
	LIST OF SYMBOLS
	CHAPTER 1 Introduction
	Adaptation and Learning
	Reinforcement Learning
	Sample Complexity of Reinforcement Learning

	Transfer Learning
	Related work

	Adaptive Control
	Model Reference Adaptive control

	Contribution of This Work
	Adapt to Learn Transfer Learning in RL
	Information Enabled Adaptation in Model Reference Adaptive Controller

	Outline of Thesis

	CHAPTER 2 Reinforcement Learning
	Introduction
	RL in the Markov Decision Process Framework
	Q-learning and other value-based methods
	Policy Gradient (PG) and Actor-Critic methods
	Model based RL or ``Indirect RL''

	Connections between RL and Adaptive Control
	Looking forward: Transfer learning and behavioral adaptation

	CHAPTER 3 Model Based Policy Transfer using Target Apprentice
	Introduction
	State of the Art: Transfer Learning in RL

	Transfer Learning with Target Apprentice (TA-TL)
	Markov Decision Process
	Learning Source Policy
	Inter task Mapping through Manifold Alignment
	Transfer learning through policy adaptation
	-Optimality of the Projected Adapted Policy

	Theoretical bounds on sample complexity
	Sample Complexity of TA-TL

	Target Task Apprentice Learning
	Apprentice Learning

	Experiments & Results
	Same-Domain Transfer
	Grid World to Windy Grid World
	Inverted Pendulum (IP) to time-varying IP

	Cross Domain Transfer
	Cart-Pole to Bicycle:
	Mountain Car (MC) to Inverted Pendulum (IP)
	Robustness to Negative Transfer

	CHAPTER 4 Adapt to Learn: Policy Transfer
	Introduction
	Preliminaries
	Adapt-to-Learn: Policy Transfer in RL
	Policy Adaptation for Transfer
	Combined Adaptation and Learning
	Actor-Critic

	Optimization of Target Policy
	Sample-Based Estimation of the Gradient

	Learning the Mixing Coefficient
	Theoretical bounds on sample complexity
	-Optimality result under Adaptive Transfer-Learning

	Policy transfer in simulated robotic locomotion tasks

	CHAPTER 5 Model Reference Adaptive Control
	Introduction
	Preliminaries
	Structured Uncertainty
	Unstructured Uncertainty

	NN model for Uncertainty Estimation
	Radial Basis Function Neural Network
	Single Hidden Layer Neural Network
	Deep Networks and Feature spaces in Machine Learning

	Universal Approximation Theorem
	Online Parameter Estimation law
	Persistency of Excitation
	Stability and Boundedness
	Lyapunov Stability of MRAC

	Evaluation of MRAC through simulation Using Wing-Rock System
	Structured Uncertainty
	Unstructured Uncertainty

	CHAPTER 6 Gaussian Process Model Reference Adaptive Control
	Introduction
	Adaptive Control using GP-MRGeN
	Gaussian Processes
	GP Regression
	GP-MRGeN Adaptive Controller

	Analysis of Stability
	Stability and Boundedness results for GP-MRGeN
	Simulations

	CHAPTER 7 Deep Model Reference Adaptive Control
	System Description
	Total Adaptive Controller
	Deep Model Reference Adaptive Control
	Online Parameter Estimation law
	Lyapunov Analysis

	Adaptive Control using Deep Nets (DMRAC)
	Details of Deep Feature Training using D-MRGeN
	Method for Recording Data using MRGeN for DNN Training

	Adaptive Control Using Bayesian Deep Neural Networks
	Bayesian Deep Neural Networks
	Variation Inference
	Stochastic Gradient Descent and Batch Training

	DMRAC weight update using Bayesian Deep Features
	Stability Analysis and Sample Complexity for Stochastic-DMRAC
	Stability Analysis
	Sample Complexity of DMRAC

	Persistency of Excitation for S-DMRAC
	Uniform boundedness of the Outer-Layer parameters

	Evaluation of DMRAC and S-DMRAC Controller
	S-DMRAC controller evaluation using Wing-Rock system Dynamics
	DMRAC Controller Evaluation on simulated 6-DOF Quadrotor Model
	Flight Test Results-Comparison between PID, MRAC and DMRAC
	Flight tests on a figure of 8 trajectory
	Reference trajectory tracking with wind bias
	Reference trajectory tracking under a highly nonlinear disturbance
	Fault tolerance: Rotor blade chipping in mid-flight
	DMRAC-Learning retention results
	PID vs Generalization capability of DMRAC

	CHAPTER 8 Conclusion & Suggested Future Research
	Policy Transfer using Adaptation
	Learning over data in Adaptive Control
	Feature Analysis and Selection using Deep Learning Approach in Adaptive Control
	t-SNE and PCA
	Feature Visualization for Quadrotor and Wingrock Experiments

	APPENDIX A
	Simulation Lemma kearns2002near
	Manifold Alignment

	REFERENCES

