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Abstract

This thesis presents a comprehensive study of cognitive networking for cellular

networks with contributions that enable them to be more dynamic, agile, and

efficient. To achieve this, machine learning (ML) algorithms, a subset of ar-

tificial intelligence, are employed to bring such cognition to cellular networks.

More specifically, three major branches of ML, namely supervised, unsupervised,

and reinforcement learning (RL), are utilised for various purposes: unsupervised

learning is used for data clustering, while supervised learning is employed for pre-

dictions on future behaviours of networks/users. RL, on the other hand, is utilised

for optimisation purposes due to its inherent characteristics of adaptability and

requiring minimal knowledge of the environment.

Energy optimisation, capacity enhancement, and spectrum access are identi-

fied as primary design challenges for cellular networks given that they are envi-

sioned to play crucial roles for 5G and beyond due to the increased demand in the

number of connected devices as well as data rates. Each design challenge and its

corresponding proposed solution are discussed thoroughly in separate chapters.

Regarding energy optimisation, a user-side energy consumption is investigated

by considering Internet of things (IoT) networks. An RL based intelligent model,

which jointly optimises the wireless connection type and data processing entity,

is proposed. In particular, a Q-learning algorithm is developed, through which

the energy consumption of an IoT device is minimised while keeping the require-

ment of the applications—in terms of response time and security—satisfied. The

proposed methodology manages to result in 0% normalised joint cost—where all

the considered metrics are combined—while the benchmarks performed 54.84%

on average. Next, the energy consumption of radio access networks (RANs) is

targeted, and a traffic-aware cell switching algorithm is designed to reduce the

energy consumption of a RAN without compromising on the user quality-of-

service (QoS). The proposed technique employs a SARSA algorithm with value

function approximation, since the conventional RL methods struggle with solving

problems with huge state spaces. The results reveal that up to 52% gain on the

total energy consumption is achieved with the proposed technique, and the gain
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is observed to reduce when the scenario becomes more realistic.

On the other hand, capacity enhancement is studied from two different per-

spectives, namely mobility management and unmanned aerial vehicle (UAV) as-

sistance. Towards that end, a predictive handover (HO) mechanism is designed

for mobility management in cellular networks by identifying two major issues

of Markov chains based HO predictions. First, revisits—which are defined as a

situation whereby a user visits the same cell more than once within the same

day—are diagnosed as causing similar transition probabilities, which in turn in-

creases the likelihood of making incorrect predictions. This problem is addressed

with a structural change; i.e., rather than storing 2-D transition matrix, it is

proposed to store 3-D one that also includes HO orders. The obtained results

show that 3-D transition matrix is capable of reducing the HO signalling cost by

up to 25.37%, which is observed to drop with increasing randomness level in the

data set. Second, making a HO prediction with insufficient criteria is identified

as another issue with the conventional Markov chains based predictors. Thus, a

prediction confidence level is derived, such that there should be a lower bound

to perform HO predictions, which are not always advantageous owing to the HO

signalling cost incurred from incorrect predictions. The outcomes of the simula-

tions confirm that the derived confidence level mechanism helps in improving the

prediction accuracy by up to 8.23%.

Furthermore, still considering capacity enhancement, a UAV assisted cellular

networking is considered, and an unsupervised learning-based UAV positioning

algorithm is presented. A comprehensive analysis is conducted on the impacts

of the overlapping footprints of multiple UAVs, which are controlled by their

altitudes. The developed k-means clustering based UAV positioning approach is

shown to reduce the number of users in outage by up to 80.47% when compared

to the benchmark symmetric deployment.

Lastly, a QoS-aware dynamic spectrum access approach is developed in order

to tackle challenges related to spectrum access, wherein all the aforementioned

types of ML methods are employed. More specifically, by leveraging future traffic

load predictions of radio access technologies (RATs) and Q-learning algorithm, a

novel proactive spectrum sensing technique is introduced. As such, two different

sensing strategies are developed; the first one focuses solely on sensing latency

reduction, while the second one jointly optimises sensing latency and user re-

quirements. In particular, the proposed Q-learning algorithm takes the future

load predictions of the RATs and the requirements of secondary users—in terms

of mobility and bandwidth—as inputs and directs the users to the spectrum of

the optimum RAT to perform sensing. The strategy to be employed can be se-
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lected based on the needs of the applications, such that if the latency is the only

concern, the first strategy should be selected due to the fact that the second

strategy is computationally more demanding. However, by employing the second

strategy, sensing latency is reduced while satisfying other user requirements. The

simulation results demonstrate that, compared to random sensing, the first strat-

egy decays the sensing latency by 85.25%, while the second strategy enhances

the full-satisfaction rate, where both mobility and bandwidth requirements of

the user are simultaneously satisfied, by 95.7%.

Therefore, as it can be observed, three key design challenges of the next

generation of cellular networks are identified and addressed via the concept of

cognitive networking, providing a utilitarian tool for mobile network operators

to plug into their systems. The proposed solutions can be generalised to various

network scenarios owing to the sophisticated ML implementations, which renders

the solutions both practical and sustainable.
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Registration Number:

I certify that the thesis presented here for examination for a PhD degree of

the University of Glasgow is solely my own work other than where I have clearly

indicated that it is the work of others (in which case the extent of any work

carried out jointly by me and any other person is clearly identified in it) and that

the thesis has not been edited by a third party beyond what is permitted by the

University’s PGR Code of Practice.

The copyright of this thesis rests with the author. No quotation from it is

permitted without full acknowledgement.

I declare that the thesis does not include work forming part of a thesis pre-

sented successfully for another degree.

I declare that this thesis has been produced in accordance with the University

of Glasgow’s Code of Good Practice in Research.

I acknowledge that if any issues are raised regarding good research practice

based on review of the thesis, the examination may be postponed pending the

outcome of any investigation of the issues.

Signature: .................................

Date: .........................................

v



vi LIST OF PUBLICATIONS



List of Publications

Journals

1. Ozturk, M., Abubakar, A., Rais, R. N. B., Jaber, M., Hussain, S. and Im-

ran, M. A. (2020) Context-Aware Connectivity and Processing Optimiza-

tion for IoT Networks. IEEE Internet of Things Journal (Under review).

2. Abubakar, A., Ozturk, M., Rais, R. N. B., Hussain, S. and Imran, M. A.

(2020) Load-Aware Cell Switching in Ultra-Dense Networks: An Artificial

Neural Networks Approach. IEEE Networking Letters (Under review).

3. Mollel, M., Abubakar, A., Ozturk, M., Kaijage, S., Kisangiri, M., Zoha,

A., Imran, M. A. and Abbasi, Q. H. (2019) Intelligent Handover Decision

Scheme Using Double Deep Reinforcement Learning. Physical Communi-

cation (Under review).

4. Ozturk, M., Akram, M., Hussain, S. and Imran, M. A. (2019) Novel

QoS-aware proactive spectrum access techniques for cognitive radio using

machine learning. IEEE Access, 7, pp. 70811-70827, May 2019.

5. Ozturk, M., Gogate, M., Onireti, O., Adeel, A., Hussain, A. and Imran,

M. A. (2019) A novel deep learning driven low-cost mobility prediction

approach for 5G cellular networks: The case of the Control/Data Separation

Architecture (CDSA). Neurocomputing, page 479-489, September 2019.

6. Ozturk, M., Imran, M. and Jaber, M. (2018) Energy-aware smart connec-

tivity for IoT networks: enabling smart ports. Wireless Communications

and Mobile Computing, June, 2018.

Book Chapters

1. Ozturk, M., Abubakar, A., Hussain, S., Abbasi, Q. H. and Imran, M. A.

(2019) Cognitive Radio Spectrum Sensing: From Conventional Approaches

to Machine Learning-based Predictive Techniques. Submitted to Flexible

and Cognitive Radio Access Technologies for 5G and Beyond, IET (Under

review).

vii



viii LIST OF PUBLICATIONS

2. Ozturk, M., Valente Klaine, P., Hussain, S. and Imran, M. A. (2019)

Predictive Mobility Management in Cellular Networks. Submitted to AI

for Emerging Verticals: Human-Robot Computing, Sensing and Networking,

IET (Under review).

3. Imran, M. A., Ozturk, M., Abubakar, A. I., Valente Klaine, P., Hussain, S.

and Abbasi, Q. H. (2019) Mobility prediction based resource management.

In: Tafazolli, R., Wang, C.-L. and Chatzimisios, P.(eds.) Wiley 5G REF:

the Essential 5G Reference Online. Wiley. ISBN 9781119471509 (Accepted

for publication).

4. Imran, M. A., Turkmen, A., Ozturk, M., Nadas, J. P. B. and Abbasi,

Q. H. (2019) Seamless Indoor/Outdoor Coverage in 5G. Submitted to In:

Tafazolli, R., Wang, C.-L. and Chatzimisios, P. (eds.) Wiley 5GREF: the

Essential 5G Reference Online. Wiley. ISBN 9781119471509 (Accepted for

publication).

5. Ozturk, M., Jaber, M. and Imran, M. A. (2019) Life-span extension for

sensor networks in the industry. In: Imran, M. A., Hussain, S. and Abbasi,

Q. H. (eds.) Wireless Automation as an Enabler for the Next Industrial

Revolution. Wiley-IEEE Press, pp. 19-45. ISBN 9781119552611.

Conference Proceedings

1. Asad, S. M., Ozturk, M., Rais, R. N. B., Zoha, A., Hussain, S., Abbasi, Q.

H. and Imran, M. A. (2019) Reinforcement Learning Driven Energy Efficient

Mobile Communication and Applications. In: 2019 IEEE International

Symposium on Signal Processing and Information Technology (ISSPIT),

Ajman, United Arab Emirates, 10-12 Dec 2019, ISBN 9781728153414.

2. Ozturk, M., Nadas, J. P.B., Klaine, P. H.V., Hussain, S. and Imran, M. A.

(2019) Clustering Based UAV Base Station Positioning for Enhanced Net-

work Capacity. In: International Conference on Advances in the Emerging

Computing Technologies (AECT 2019), Medina, Saudi Arabia, 08-10 Dec

2019 (Accepted for publication).

3. Abubakar, A., Ozturk, M., Hussain, S. and Imran, M. (2019) Q-learning

Assisted Energy-Aware Traffic Offloading and Cell Switching in Heteroge-

neous Networks. In: 2019 IEEE 24th International Workshop on Computer

Aided Modeling and Design of Communication Links and Networks (CA-

MAD), Limassol, Cyprus, 11-13 Sep 2019, ISBN 9781728110165.



ix

4. Sambo, Y. A., Valastro, G. C., Patané, G. M. M., Ozturk, M., Hussain, S.,
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Chapter 1

Introduction

1.1 Cellular Communication Networks

A cellular system is a type of wireless communication networks, where base sta-

tions (BSs) are deployed over wide geographical areas to connect user equip-

ments (UEs) with each other. The name cellular comes from the fact that the

considered geographical areas are split into cells, at which BSs are deployed in

order to provide the required connectivity for all the UEs [1, 2]. As such, each

BS, which is equipped with at least one antenna to produce the wireless electro-

magnetic (EM) radiation, constitutes a cell and serves the UEs located under its

coverage area. However, only a small portion of the EM spectrum is allocated for

cellular communications by the International Telecommunication Union (ITU),

thereby BSs need to use their radio resources as efficiently as possible in order to

provide service for users in a more efficient manner [1, 3].

Since the early 1980s, when the first generation of cellular networks (1G)

was introduced, the cellular communication has evolved significantly. 1G utilised

frequency division multiple access (FDMA) technology and it was entirely analog,

meaning that it modulated voice signals to higher frequency channels, instead of

converting them to digital bit streams [1,2]. Therefore, due to the analog nature

of 1G communications, it had limited capabilities, which led to its disappearance

after the introduction of the second generation of cellular networks (2G), which

was digital based. 2G encodes an analog voice signal to a digital signal, which

is advantageous in not only mitigating errors in transmissions, but also more

efficient in terms of radio resource management [1, 2]. The first 2G system was

the Global System for Mobile Communications (GSM), which was developed

in 1991, and it utilised time division multiple access (TDMA) method. One

of the main differences from its predecessor is the introduction of short message

service (SMS). In the further versions of 2G; starting from 2.5G, packet switching

1
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was also included in the system, which helped to reach 144 kbps data rate [4].

The development of international mobile telephone by the year 2000 (IMT-

2000) by ITU in the early 1990s paved the way for the first commercial release

of the third generation of cellular networks (3G) in the early 2000s. Two major

standards, called Universal Mobile Telecommunications System (UMTS)—also

referred as Wideband Code Division Multiple Access (WCDMA)—and Code Di-

vision Multiple Access (CDMA)2000, were developed with diverse characteristics.

Even though a 2 Mbps minimum downlink data rate was expected from 3G at

the beginning, its further versions, such as 3.5G and 3.75G, a peak data rate of

up to several Mbps was achieved, enabling some new applications, such as video

conferencing. However, the ever-increasing data demands, the growing number of

connected users, and the need for higher data rates made 3G networks outdated

due to the nature of the underlying CDMA technology1 being employed in 3G [6].

Moreover, the operational cost of 3G was also high [7], making it challenging for

mobile network operators to maintain their networks. These kind of limitations,

combined with improvements in the technology, led to the emergence of the fourth

generation of cellular networks (4G). As such, in 2009, the ITU-Radio commu-

nication sector (ITU-R) released the requirements for 4G, which stated that the

peak data rate for low mobility users should be of 1 Gbps, while it is 100 Mbps

for high mobility users [8]. Circuit switching was completely abandoned with 4G,

and all-internet protocol (IP) based communication system was adopted. More-

over, the 3G Partnership Project (3GPP) developed a standard for 4G networks,

regarded as Long Term Evolution (LTE), which considered orthogonal frequency

division multiple access (OFDMA) and multiple-input multiple-output (MIMO)

technologies in order to increase the peak data rate.

Nevertheless, with the introduction of emerging concepts, including the In-

ternet of things (IoT) and machine type communications (MTC), 4G would be

no more sufficient due to its inherent human-type traffic based design [9]. Fur-

thermore, new applications, such as augmented reality and remote surgery, are

quite demanding in terms of bandwidth and latency. In remote surgery, for ex-

ample, a reliable communication link with minimal latency is required, since any

fault and/or delay in the communication would result in undesired consequences;

e.g., incorrect movements of a robotic arm or inadequate precision for surgeons.

Therefore, it is clear that these new technologies and applications necessitate

a better cellular communication network that can provide not only higher data

1There is a design challenge with this modulation scheme called near-far problem [1, 5].
Since more power is received from a user, who is located nearby the BS, compared to the far
user, the demodulation of the signal from the far user becomes more difficult owing to the fact
that the near user increases the noise floor of the demodulator at the receiver [1].
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rates, but also lower latency, and improved reliability. This, by its turn, paved

the way for the development of the fifth generation of cellular networks (5G).

Because of its promising offers and high expectations, 5G has been perceived as

not only an evolution for the cellular networks but also a revolution [10–12]. In

addition, it is not an imagination any more, since it has already loomed on the

horizon with its first release, which is envisioned for 20202.

In terms of standardisation, 3GPP has been working on it, and has developed

the concept of 5G New Radio (NR) and published the first set of standards on

its Release 15 in 2018. Moreover, in order to provide the adequate requirements

for each application, 5G has seen its use-cases split into three main categories,

namely: enhanced mobile broadband (eMBB), massive MTC (mMTC), and ultra-

reliable and low latency communications (URLLC) [13]. Nonetheless, each sce-

nario comes with stringent requirements including 20 Gbps downlink (DL) and

10 Mbps uplink (UL) target peak data rates, and 0.5 ms DL and 0.5 ms UL laten-

cies. In this regard, in order to meet these requirements and address near future

challenges, several new technologies have been proposed. For cellular networks

capacity enhancement, for example, millimetre wave (mmWave) communications,

massive MIMO, and network densification are some of the possible solutions listed

in [14], in which it is mentioned that all these solutions should be considered to-

gether in order to satisfy the 5G requirements of data rates.

As such, mmWave frequencies have been included in 5G NR [15] as Frequency

Range (FR)-2 along with traditional sub-6 GHz frequency bands. Nevertheless,

albeit huge bandwidth availability, mmWave communication comes with its inher-

ent problems, since it is more prone to suffer from severe penetration losses, owing

to propagation characteristics of higher frequencies [16–18]. This subsequently

reduces the coverage area of mmWave BSs, leading to more BS deployments to

compensate the coverage holes [19]. Provided that the antenna size is propor-

tional to the wavelength of the transmitted signal, the use of mmWave frequencies

facilitates the deployment of multiple antennas, which in turn puts MIMO-based

communications at the heart of 5G.

The primary benefits of MIMO over a traditional single-input single-output

(SISO) systems, where UE and its serving BS have only one transmitting and

receiving antennas, are discussed in [20] and [21] with the main takeaways of

better capacity, enhanced reliability, improved energy efficiency, etc. Better ca-

pacity is achieved by the reduced interference due to better directivity of beams,

which also helps in better frequency reuse that subsequently boosts the spec-

25G is already made available in some countries, such as United Kingdom, Finland, and
United States, to name a few.
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tral efficiency. Moreover, reliability comes from diversity, where the receiver gets

multiple copies of the transmitted signal, and energy efficiency is achieved from

less energy consumption per antenna owing to the directivity of the beam [21].

Despite all these benefits theoretically expanding with an increasing number of

antennas [21], there are some issues, such as channel reciprocity, pilot contamina-

tion, and orthogonality of channel responses, that limit the amount of antennas

to be deployed [22].

Network densification is another candidate to enhance network capacity, which

subsequently improves the spectral efficiency [23–25]. The idea of network den-

sification is that small cells (SCs), which are compact and low-power BSs, are

deployed under the coverage area of conventional macro cells (MCs) in order to

provide higher data rates to the users by bringing the BSs closer. Owing to the

low transmit power of SCs [23, 24], their coverage areas are much smaller when

compared to the MC, enabling frequency reuse and improving the network ca-

pacity. While, on one hand, it is better to increase the number of SCs in order

to obtain more capacity, on the other hand, it will make the effect of interfer-

ence more significant, which would eventually undermine the obtained capacity

gain [14].

1.2 Motivation

With the advances in wireless communications and proliferations of new tech-

nologies, the demand for mobile communication networks has been perpetually

increasing. This, in turn, inflates not only the number of subscribers but also the

data volume requested by users. The report published by Ericsson [26] reveals

interesting findings. The number of global subscriptions, for example, increased

by 44 million during the first quarter of 2019, making the overall global number

7.9 billion, which is estimated to hit 8.8 billion by 2024. Moreover, the global

mobile data traffic volume grew by 82% between first quarters of 2018 and 2019.

In addition, the transition between generations of mobile networks is also quite

dynamic, with the market share of older generations taken by their successors.

Another report published by GSM Association [27] suggests that while the rate of

global 2G connections was 29% in 2018, it is estimated to collapse to 5% by 2025.

Similarly, the share of global 3G connections is estimated to shrink from 28% to

20% between 2018 and 2025, whereas the global share of 4G and 5G connections

are predicted to hit 59% and 15% by 2025, respectively.

On the other hand, the emergence of IoT, which is regarded as a paradigm

shift in communication technology [28, 29], has been a rising issue, since it is
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dedicated to connect various devices, including home appliances, industrial ma-

chineries, and vehicles, to the Internet. The Telecommunication standardisa-

tion sector of International Telecommunication Union (ITU-T) defines IoT as “a

global infrastructure for the information society, enabling advanced services by

interconnecting (physical and virtual) things based on existing and evolving inter-

operable information and communication technologies” [30]. The key points in

this definition are the interconnection and interoperation, since they mean that

the “things” are supposed to communicate and operate with each other, min-

imising or eliminating human intervention completely. Therefore, due to minimal

human interaction, processes; e.g., production, management, etc., can be made

more efficient, dynamic, and agile, which in turn accelerates the proliferation of

IoT in various domains including industry and routine life [28, 29, 31]. Despite

IoT already being part of wireless communication networks, it is projected to be

an integral part in the near future. The same report from Ericsson [26] forecasts

that the number of global IoT connections will reach 22.3 billion by 2024, which

represents a 17% increase when compared to 2018, with 4.1 billion of the con-

nections being cellular IoT. Therefore, it is evident that a special care should be

taken in order to combat the dramatic upsurge in the number of connections.

Another alarming aspect for mobile communication systems is the breeding of

new technologies, including augmented reality, remote surgery, 4K video stream-

ing, and tactile internet, to name a few. Given the stringent bandwidth and

latency requirements of these type of applications, the current situation becomes

even more challenging. For the case of augmented reality, for instance, band-

width, end-to-end latency, and reliability play crucial roles, since for this type

of applications, in addition to being intolerant to delays and faults in the data

transmission, a large bandwidth—in order to stream all possible angles—is re-

quired [32,33]. Having all these said, with the ever-increasing number of connec-

tions and data demand as well as advances in technology that brings demanding

applications, the near future is projected to be quite exigent for mobile commu-

nications, making the legacy networks, such as 3G and 4G, outdated.

As mentioned earlier, even though mmWave communication offers huge amount

of bandwidth, which subsequently increases the data rate significantly, it has its

own issues due to the nature of higher frequency bands. Compared to the frequen-

cies employed in legacy 4G networks, mmWave frequencies are more vulnerable to

attenuations, since its penetration properties are much lower, putting the line of

sight (LOS) at the heart of mmWave networks [16]. Therefore, mmWave commu-

nication has smaller coverage areas than legacy networks, which is around 200 m,

and also depends on the environment [17]. Given that there is a considerable
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amount of studies available in the literature that discusses the use of terahertz

band (between 0.1 and 10 THz) for wireless communications, the coverage areas

would be even more reduced (around 10 to 20 m) [34].

Network densification is reported in [17] as another enabling concept to ad-

dress the above-mentioned problems in mobile communication networks. Accord-

ing to this concept, networks are densified with the deployments of SCs, which

in turn result in so called ultra-dense networks (UDNs). Owing to the fact that

SCs are mostly low power devices, their coverage areas are also limited, an thus

they are deployed in bulk which paves the way for more spectral efficiency, as the

same frequencies can be reused within the area-of-interest. In addition, mmWave

communications and SCs concepts can be combined [35], where the SCs use the

mmWave frequencies, in order to benefit from both higher available bandwidth

and enhanced spectral efficiency.

In this regard, this thesis identifies energy optimisation, capacity enhance-

ment, and dynamic spectrum access as key design challenges for the next gener-

ations of cellular communication networks. Using the summary in Fig. 1.1, the

main rationales behind considering these challenges are as follows:

� they are identified by accounting the demands from the next generations of

the cellular networks;

� they are quite inter-connected to each other, such that a candidate solution

for one results in additional issues for the others:

– mmWave communications and network densification are enablers for

capacity enhancement, however, they would cause a significant increase

in terms of both the energy consumption of cellular networks and the

frequency of handovers (HOs) for users. This is due to fact that the

footprints of BSs get smaller with increasing carrier frequency, leading

to more BS deployments, which in turn increases the network power

consumption and the number of HOs experienced by users.

– a better spectrum access opens up a new dimension for capacity en-

hancement by exploiting the existing capacity in a more efficient way,

thereby i) more users may be accommodated, ii) there becomes more

availability for bandwidth-hungry applications.

– the efficiency of dynamic spectrum access is provided by allowing un-

licensed users to use the EM frequency spectrum opportunistically via

spectrum sensing. Given that each sensing attempt is energy and time

consuming, the proposed spectrum access technique is directly inter-

related with energy optimisation.
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Figure 1.1: The summary of the thesis with identified key design challenges and
their inter-connection.

Therefore, it is considered as appropriate to originate this thesis around these

three design challenges, as the strong inter-connection between them creates the

underlying story. Besides, machine-centric solutions, where intelligence is intro-

duced to cellular communication networks, are lying at the core of this thesis due

to following reasons:

� the volume of data to be generated from cellular networks is expected to

soar owing to more BS deployments and the inclusion of IoT devices [28,

29,31,36].

� cellular networks have been becoming more complex with each new genera-

tion, and they will be even more complex with 5G [4,14,17,37,38], making

fixed and static solutions less reliable.

� dynamic environments make the optimisation processes harder, thereby

learning from generated data and gaining experience from previous actions

will be vital in order to make the networks more informed and proactive.

1.2.1 Need for Energy Optimisation

The energy consumption of cellular networks is escalating greatly as a result of the

exponential increase in data demand, thereby forcing mobile network operators

to continually expand their networks by deploying more BSs to accommodate this

data crunch. In addition, the provision of local support for IoT in 5G to meet
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the growing demand for applications, including smart health, smart homes, and

smart cities, would result in the massive deployment of IoT devices [39], which

leads to a further increase in the energy consumption of cellular networks.

Network densification, comprising the ultra-dense deployment of SCs along-

side MCs has been identified as one of the enablers for achieving the one thousand

fold capacity increase in 5G networks [40]. SCs are low power nodes which are de-

ployed to boost the capacity at hotspot zones—the busiest areas of a deployment.

However, the massive deployment of SCs would also result in a dramatic increase

in energy consumption. Moreover, the utilisation of mmWave spectrum also re-

sults in more BS deployments due to the reduced coverage areas of mmWave

BSs.

Although the increasing amount of IoT devices also contributes to the in-

crease in energy consumption of the network, the lifetime of these devices are

another important aspect to consider from the energy perspective. Provided that

IoT devices are mostly battery operated, their energy consumption becomes a

crucial aspect in order to keep the system operational. Therefore, prolonging

the battery life of IoT devices is vital, since it is reported in [39] that low-power

operation is essential for the majority of the applications. In this regard, sensing,

data processing, and communication of IoT devices are supposed to be optimised

in a way that they are performed efficiently with a reduced amount of energy

consumption.

In addition to that, increasing the energy consumption of cellular networks

also causes two severe adverse effects:

� an increase in green house gas emission, harming the environment;

� an increase in the network operating cost, due to higher energy bills charged

to mobile network operators [41].

Therefore, energy optimisation needs to be given more consideration in 5G net-

works so that the increase in network capacity due to network densification does

not incur on a large increase in energy consumption, thereby making it cost-

effective and, most importantly, environmentally friendly.

1.2.2 Need for Network and User Capacity Enhancement

As mentioned earlier in this chapter, some of the emerging applications are very

demanding in bandwidth, and there is an increasing number of users who request

these type of applications. According to [42], 1 terabyte of annual data is going

to be downloaded by an average user in 2020. Obviously, this will create a data



1.2. MOTIVATION 9

crunch, and the legacy cellular networks would not be able to deal with this

huge amount of traffic [38]. Furthermore, accounting the dramatic upsurge in the

number of cellular connections forecasted with the IoT networks, it is quite self-

evident that the burden of the cellular networks will be a lot higher. Hence, this

needs to be addressed efficiently, and 5G has already been envisioned to tackle this

data crunch with state-of-the-art concepts including mmWave, massive MIMO,

and network densification.

Enhancing the network capacity by providing plenty of spectral resources is

not the only strength of mmWave, as it is also linked to the other two aforemen-

tioned 5G enablers:

� it paves the way for massive MIMO technology, since the size of anten-

nas become smaller due to the carrier frequency (the higher the carrier

frequency, the smaller the wavelength is, and so is the antenna size).

� owing to the reduced coverage areas of the mmWave BSs, the network

densification is needed in order to compensate the coverage holes.

Therefore, with the utilisation of mmWave communication in cellular networks,

the gain will not only come from the abundant bandwidth resources, but also

from massive MIMO and network densification.

Another aspect that is worth mentioning is the user capacity. Although cel-

lular networks would obtain a significant gain from mmWave communications,

the issue of mobility management immediately emerges. Mobility is an integral

part of all types of wireless communication networks, and it is even more critical

for 5G networks as a consequence of more heterogeneity in the networks [40].

HO refers to the situation, where a UE changes its serving BS while being in

an active mode [43]. For this to happen, normally, the UE performs measure-

ments on signal quality received from the surrounding BSs, and reference signal

received power (RSRP) is used as a key performance indicator (KPI). Then, the

UE switches its connection from the serving to the target BS once certain criteria

are met. However, the UE experiences service interruptions during HO, since no

data is transmitted before the HO is executed successfully. Given the reduced

coverage areas of mmWave frequencies and SCs, the HO management becomes

more critical, because the number of HOs increases [44], so is the service inter-

ruptions. This would undermine the gain obtained from the enabling concepts,

such as mmWave, network densification, and massive MIMO. In other words, the

service interruptions boost with growing number of HOs, which in turn damages

user quality of experience (QoE). Considering that the average throughput is in-

versely proportional to the number of HOs and the time spent for each HO [45],
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the more HO leads to a lower average throughput. Besides, if not managed prop-

erly, this greater number of HOs increases the probability of HO failures, where

the HO is not executed successfully due to various reasons, including: radio link

failure (RLF) during time-to-trigger (TTT) and HO preparation [46]. Therefore,

an accurate HO management scheme should focus on reducing the number of

HOs and/or time spent for each HO in order to improve average throughput and

avoid HO failures.

1.2.3 Need for Dynamic Spectrum Access

Having discussed the imminent need for energy optimisation and capacity en-

hancement regarding the increasing number of connections and data demand,

there is still room for improvement in terms of spectrum efficiency. Especially

considering the inflation in the number of devices trying to access the spectrum,

which will be more with the IoT inclusion, the situation becomes even more chal-

lenging from the resource perspective. It is quite intuitive that the mmWave

frequency band would relive the given burden to some extent, but additional so-

lutions would be required to manage it properly for scenarios with a large number

of users/devices [14]. Put it another way, even though the aforementioned net-

work capacity enhancement concepts are beneficial to alleviate the problem, the

need for higher data rates and thus more bandwidth is increasing, making the

issue not completely solved.

It has been a truism that some portions of the frequency spectrum, such

as the one assigned to television (TV) broadcasting, are underutilised [47–49],

while cellular networks have been suffering from overutilisation. As such, the

spectrum portions that are currently underutilised can be opened up for cellular

communication networks. This idea is developed under the concept of cognitive

radio (CR), or dynamic spectrum access, which has been proposed in 1999 [50]

in order to use the EM frequency spectrum more efficiently. To mitigate the

congestion in cellular networks, two different types of users have been introduced

in the CR concept: primary users (PUs) and secondary users (SUs). The former

is a licensed user who always has priority to access the spectrum, while the

latter is unlicensed and can use the spectrum opportunistically. Given that SUs

utilise the vacant portions of the spectrum, this process not only improves the

spectrum efficiency, but also eases the congestion in cellular networks, especially

in ultra-dense scenarios. CR has already been identified as an important approach

to mitigate the aforementioned demanding applications and load burden of 5G

networks [29].

A special case mentioned in [29] states that the deployment of new infrastruc-
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ture to rural areas would harm the business of cellular network operators, since

their capital expenditure (CAPEX) would increase with a limited profit. This

occurs due to the limited number of residents in those areas, which also hinders

the deployment of IoT networks. On the other hand, by using the unlicensed

spectrum, CR technology can help in providing the spectrum access to the IoT

devices using the TV white spaces, making network management in rural areas

more cost-effective.

1.2.4 Need for Machine-Centric Solutions in Optimisation

Process

Machine learning (ML), a part of artificial intelligence (AI), is a set of algorithms

aiming to learn from given data without any explicit coding [51], meaning that

it tries to understand the patterns hidden in the data set. There are three main

categories in ML, namely supervised learning, unsupervised learning, and rein-

forcement learning (RL). In supervised learning, the given data set consists of

both inputs and outputs so that the algorithm searches for a model between the

two, whereas in unsupervised learning, no output information is provided and

the algorithm tries to find out the hidden patterns in the data set [52, 53]. RL,

on the other hand, is reward-oriented, meaning that its primary focus is to ob-

tain the best action in a given environment that maximises the reward. As such,

a virtual agent takes various actions and evaluates the resulting reward, which

makes it learn from previous experiences and take more informed actions in the

future [52,54,55]. Therefore, supervised learning is mostly used for classification

and future predictions, unsupervised learning is a good candidate for cluster-

ing applications, while RL is often employed for optimisation or online learning

purposes [53].

With its proven capabilities and advances in computing technologies, ML has

already been applied in various domains including finance [56], agriculture [57],

healthcare [58], etc. In addition, ML has also been a research focus for cel-

lular communication networks, especially in the concept of self-organising net-

works (SON) with its broad range of applications [3, 52], such as mobility man-

agement [43,59], dynamic spectrum access [60], and energy efficiency [61].

The summary of why ML is attracting more interest and why it is advanta-

geous is as follows:

� ML can deal with complex scenarios [37, 51, 62]: 5G is expected

to encompass various communications types and scenarios with distinctive

requirements. While higher reliability and lower latency are the focuses for
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URLLC applications, eMMB scenario would be looking for enormous radio

resources. Besides, heterogeneous networks (HetNets), where different types

of SCs like femto and pico cell are deployed along with traditional MCs, are

forecast to be an integral part of 5G networks [38]. Thus, the network will

be more complex with different type of BSs and devices; e.g., IoT devices,

mobile user handsets, or vehicles, which makes the network optimisation a

challenging task. ML algorithms are capable of providing reliable solutions

for these kind of complex issues, which require more non-linearity as well

as less human-intervention [37].

� ML is more efficient in utilising huge amount of data [52,53]: With

the increasing number of network components including BSs and UEs, there

will be a huge amount of data generated, particularly from IoT devices [39].

The data generated would be very beneficial in order to make the networks

more efficient in terms of various aspects, such as cost, energy, resource,

etc., thereby ML is required to be able to obtain the structure and hidden

patters in the data. In other words, with the inclusion of ML, the collected

data is going to be more meaningful and better utilised. Moreover, since

there will different data sources with different data generation frequencies,

big data analytics would also be needed in the process to deal with all these

issues [52].

� ML is able to cope with dynamic environments with its agility

and adaptability [52, 53]: Cellular communication networks are quite

dynamic, which makes the network optimisation more challenging. It is not

only wireless channel characteristics that change rapidly, but many other

network parameters. The traffic loads of a BS, for example, show differ-

ent patterns for different times and dates [63], and thus the optimisation

approaches also have to be dynamic and adaptive. ML algorithms provide

efficient optimisation processes in a sense that they do not output a fixed

model, instead they can update their models according to the variation in

network conditions. When they are implemented in an online fashion, in

which ML algorithms keep training themselves with the newly generated

data, they are able to adapt and so is the network optimisation. Hence,

they provide dynamism, adaptability, and agility to the cellular networks.

� Decentralised solutions can be provided with ML [53, 62]: Decen-

tralised (or distributed) solutions are one of the characteristics of SON,

which is considered as a promising enabler for 5G networks [3]. In 5G,

centralised approaches would be infeasible due to the amount of data col-
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lected and generated, which makes the wireless network management both

time consuming and costly. As such, distributed decision making becomes

a crucial paradigm, where local entities, such as BSs and even UEs, perform

decisions and data processing with light-weight local ML implementations.

Towards that end, as illustrated in Fig. 1.2, the concept of cognitive network-

ing is adopted in thesis, and ML is an important tool orchestrating the main

characteristics of cognitive networking, such that:

� ML helps in learning from the generated data through continuous network

monitoring;

� the experience is obtained with all the ML techniques implemented in this

thesis, but RL has a special place in this given that it interacts with the

environment and learns the consequences of the actions taken;

� ML is capable of adapting changes in the environment, such that when

the network conditions change, instead of starting the optimisation process

from scratch, ML algorithms can simply update the model they created for

previous conditions;

� ML is a good tool to take the advantage of the large amount of data gen-

erated by cellular networks—through sensing/monitoring.

1.3 Objectives

The primary objective of this thesis is to provide intelligent, dynamic, agile,

and scalable solutions for the problems within cellular communication networks.

For this reason, the concept of cognitive networking is considered as a generic

methodology, as it offers great potentials including learning from data, gaining

experience, and adapting to changing conditions. ML is identified as a strong and

applicable tool that can enhance the capabilities of cellular networks by reducing

inefficiencies and redundancies in their processes. Various types of ML algorithms

in its diverse branches, such as supervised, unsupervised, and RL, are employed

in this thesis for different purposes, since each use-case and problem may require

unique approaches.

In particular, three key design challenges in cellular communication networks,

namely energy optimisation, network capacity enhancement, and spectrum ac-

cess, are identified. First, as also mentioned in Sections 1.2.1, energy consumption

in cellular networks has been a growing issue, and is expected to become even

more complicated for 5G networks due to the increasing number of both BSs and
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UEs—especially with the inclusion of IoT devices. For this reason, this thesis

aims at minimising the energy consumption of cellular networks. Second, as dis-

cussed in Section 1.2.2, network capacity enhancement is one of the main design

challenges for cellular networks—especially for 5G—owing to the ever-increasing

demand in data rates and stringent requirements of new applications. Thus, this

thesis focuses on increasing network capacity not only by abolishing redundant

steps in mobile network management but also by opening up new dimensions,

such as UAV assistance. Third, as also explained in Section 1.2.3, spectrum ac-

cess is an important point to consider while designing cellular communication

networks. Therefore, the objective of this thesis is to make CR networks more

efficient, which will assist cellular networks in providing more spectrum to their

users.

However, before examining all these developed methods for the three main

categories, one of the main objectives of this thesis is to present a state-of-the-art

review on each category thoroughly along with some brief background informa-

tion. This helps in understanding the current state of the corresponding research

activities, and how this thesis fills in the research gaps existing in the literature.

Based on that, the objectives of this thesis can be summarised as follows:

� Identify energy optimisation, network capacity enhancement, and spectrum

access as important design challenges for future cellular networks including

5G;

� Provide an extensive state-of-the-art in each of the three categories in ad-

dition to brief introductions;

� Develop RL based methods separately for network and UE to decrease their

energy consumption without compromising on user requirements or network

throughput;

� Eliminate some HO steps by performing them in advance with the help of

predictive HO management that employs Markov chains as a predictor;

� Investigate the effects of positioning approaches for UAV deployments in

UDNs, and develop a k-means algorithm based UAV positioning technique;

� Improve the spectrum sensing phase of CR process in order to solve the

spectrum access issues, and analyse the impacts of ML implementations

including unsupervised, supervised, and RL.

� Discuss future trends on the areas of energy optimisation, capacity enhance-

ment, and spectrum access.



1.4. RESEARCH CONTRIBUTIONS 15

1.4 Research Contributions

The primary contribution arising from this thesis is to introduce cognitive net-

working3 in next generations of cellular communication networks. The generic

framework is shown in Fig. 1.2, where the concept of cognitive networking is pre-

sented with its distinctive characteristics, such as continuous monitoring, learning

from data, obtaining experience, taking informed actions, and adapting to the

changes in the environment. Towards that end, after realising the demands from
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Figure 1.2: The overview of the research contributions provided in the thesis.

cellular networks, energy optimisation, capacity enhancement, and spectrum ac-

cess are identified as key design challenges, followed by developing corresponding

solutions separately for each design challenge with the concept of cognitive net-

working. In that regard, combatting the identified challenges through network

intelligence—included in cognitive networking concept—constitutes the main idea

behind this thesis, since the developed solutions will be made adaptive and dy-

namic owing to learning and experience gaining.

More specific research contributions for each design challenge are elaborated

in the following paragraphs:

� Energy Optimisation

– From device perspective: a context-aware framework that jointly

optimises the connectivity and computational speed of IoT networks

is presented in order to deliver the qualities required by each vertical.

3The concept of cognitive networking will be discussed thoroughly in Chapter 2.
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Based on a smart port application, energy consumption, security, and

response time are identified as essential quality features and a wire-

less realisation of IoT connectivity is considered using short-range and

long-range technologies. An RL technique is proposed, which demon-

strates a significant reduction in energy consumption while meeting

the quality requirements of all related applications.

– From network perspective: an RL based cell switching algorithm

is developed to minimise the energy consumption in UDNs without

compromising the QoS experienced by the users. In this regard, the

proposed algorithm can intelligently learn which SCs to turn off at

any given time based on the traffic load of the SCs and the MC. To

validate the idea, the open call detail record (CDR) data set from the

city of Milan, Italy is used, and the algorithm is tested against typi-

cal operational benchmark solutions. With the obtained results, it is

demonstrated exactly when and how the proposed algorithm can pro-

vide energy savings, and moreover how this happens without reducing

QoS of users. Most importantly, it is shown that the solution has a

very similar performance to the exhaustive search, with the advantage

of being scalable and less complex.

� Network Capacity Enhancement

– Predictive HO management: two main issues with Markov chains

based HO prediction are identified. First, revisits—which are defined

as a situation whereby a user visits the same cell more than once

within the same day—are found to be affecting the prediction per-

formance significantly. This is addressed by incorporating HO orders

into the Markov chains based prediction algorithm as an additional

contextual information, which is enabled by storing a 3-D transition

matrix. Second, the prediction criterion of holding the highest tran-

sition probability is found to be insufficient, especially for the cases

with higher numbers of possible transition states. In this regard, an

analytical model that analyses and determines the required confidence

level for predictive methods is derived in terms of HO signalling cost,

such that the predictive HO procedure is triggered only if the derived

confidence level is met. The results indicate that the proposed so-

lutions improve the prediction performance of Markov chains based

HO predictors by advancing their confidence level via the additional

contextual information and prediction criterion.
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– UAV positioning: a solution is developed to determine the optimal

3-D position of multiple UAVs in a capacity enhancement use-case, or

in other words, when the ground network cannot cope with the user

traffic demand. For this scenario, real CDR data from the city of Mi-

lan, provided by Telecom Italia is utilised to simulate an event. Based

on that, a solution based on k-means clustering algorithm, an ML tech-

nique, is proposed to position multiple UAVs, and it is compared with

two other baseline methods. Furthermore, the impacts of overlapping

footprints of the deployed UAVs—controlled by their altitudes—on the

received signal-to-interference-plus-noise ratio (SINR) are thoroughly

analysed. Results demonstrate that, at certain scenarios, the proposed

solution is able to significantly outperform other methods in terms of

users covered and QoS.

� Dynamic Spectrum Access

A comprehensive and novel solution is proposed to decrease the sensing la-

tency and to make CR networks aware of unlicensed user requirements. As

such, a proactive process with a novel QoS-based optimisation phase is pro-

posed, paving the way for redesigning the spectrum sensing step. Initially,

future traffic loads of the different radio access technologies (RATs), occu-

pying different bands of the spectrum, are predicted using ANNs. Based

on these predictions, two strategies are proposed. In the first one, which

solely focuses on latency, a virtual wideband (WB) sensing approach is de-

veloped, where predicted relative traffic loads in WB are exploited to enable

narrowband (NB) sensing. The second one, based on Q-learning, focuses

not only on minimising the sensing latency but also on satisfying other user

requirements. The results reveal that the sensing latency is dramatically

reduced while significantly enhancing the full-satisfaction, which happens

when all the user requirements are satisfied simultaneously.

In addition to these main research contributions, I have also performed some

other works included in the List of Publications. A conventional Q-learning al-

gorithm is employed in (Conference Proceedings 3, published in [63]) to decide

which SCs to turn off under the assumption of control/data separated architec-

ture (CDSA). Similarly, in (Conference Proceedings 1, published in [64]), an RL

based cell switching is developed with the focus of mitigating CO2 emissions. In

(Conference Proceedings 4, published in [65]), a motion sensor based cell switch-

ing algorithm is developed and experimentally tested in an LTE test-bed. The

main idea behind the algorithm is to detect the indoor user presence to schedule
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the switching for indoor SCs. Coverage analysis is carried out in (Conference

Proceedings 7, published in [66]) for mmWave communication network scenario,

where indoor and outdoor mmWave BSs coexist. A new HO management algo-

rithm is presented in (Conference Proceedings 8, published in [44]), where the

HO parameters are gathered from a sparse network in order to utilise when the

network is densified with the objective of reducing the number of HOs. In (Jour-

nal 3), a deep RL based HO skipping approach is introduced—wherein the RL

algorithm is trained for a user trajectory to decide either to HO or not to a can-

didate BS by considering the QoS and number of HOs. Lastly, a spectrum cost

optimisation for CR networks, which considers leasing cost, latency, and QoS, is

investigated in (Conference Proceedings 6, published in [67]) using ANN.

1.5 Thesis Organisation

The rest of this thesis is organised as follows. A background information on ML

along with literature reviews for energy optimisation, network capacity enhance-

ment, and dynamic spectrum access are provided in Chapter 2. After that, a

research gap analysis is presented for each of the aforementioned design cate-

gories followed by discussions on how this thesis fills in the identified research

gaps. Chapter 3 focuses on energy optimisation in cellular networks, which is

divided into two parts; one for device-side energy optimisation and another for

network-side energy optimisation. Starting from the device-side, a smart-port

scenario, which includes connected IoT devices, is demonstrated followed by dis-

cussing the system modelling and the proposed methodology. After analysing the

obtained results, the Chapter continues with the network-side energy consump-

tion framework, where an RL based cell switching approach is introduced after a

succinct introduction and literature review. After completing the discussion on

the system model, performance evaluation, and result analysis, the Chapter is

concluded with a brief summary.

Network capacity enhancement is examined in Chapter 4, which is also di-

vided in two sections. In the first section, the predictive HO management that

uses Markov chains as a predictor is introduced and its scenario and perfor-

mance evaluation are thoroughly discussed. The UAV deployment is studied in

the second part of Chapter 4, where the k-means algorithm based UAV posi-

tioning is proposed and extensively evaluated with SINR calculations for various

cases. After comparing the proposed method with benchmark techniques using

the obtained results, Chapter 4 is summarised by highlighting the main aspects

of network capacity enhancement performed in this thesis. Chapter 5 elaborates
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the proposed dynamic spectrum access model. It starts with a problem definition

followed by a brief literature review. Then, the system modelling for the CR

spectrum sensing is presented. After that, the methodology, which comprises the

proposed k-means algorithm based clustering, ANN based data traffic prediction,

and Q-learning based decision making, is detailed. Before summarising the chap-

ter with concluding remarks, the proposed method is evaluated thoroughly in

terms of sensing latency and user requirement satisfaction. Lastly, in Chapter 6,

drawn conclusions from each research chapters are provided. Moreover, future

trends are identified individually for each design challenge addressed in this thesis

(e.g., energy optimisation, capacity enhancement, and spectrum access) followed

by mentioning existing challenges, open issues, and future research directions.
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Chapter 2

Background and Literature

Review

In this chapter, the literature regarding each of the aforementioned three key de-

sign challenges (energy optimisation, capacity enhancement, and dynamic spec-

trum access) will be thoroughly reviewed. Moreover, Table 2.1 is also presented

in order to provide a summary of the literature review performed in this chapter.

Note that Section 2.3.1 is a brief reproduction of the book chapter in [68].

2.1 Cognitive Networking for Cellular Commu-

nication

Thomas, et al. suggested a standard definition for cognitive networking in [69] as

“a cognitive network has a cognitive process that can perceive current network con-

ditions, and then plan, decide and act on those conditions. The network can learn

from these adaptations and use them to make future decisions, all while taking

into account end-to-end goals.”, which matches with the cognitive loop introduced

by Mitola III: observe, orient, plan, decide, act, and learn [70]. Therefore, it is

quite self-explanatory from the definition in [69] and the cognitive circle in [70]

that a network is supposed to sense (observe/perceive) the given environment

in order to understand the current circumstances, which is followed by an ori-

entation via evaluating/analysing the environmental information obtained. The

plan phase can be bypassed based on the urgency of the sensed information, but

otherwise, alternative plans are prepared if it is a regular information. Lastly,

one of the alternative plans is chosen and the agent takes an action by executing

the plan. The sensed information from the environment of interest also feeds the

learning phase in order to make more informed decisions in the future with the

21
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help of experience.

In this regard, the idea of cognitive networking aims at bringing network au-

tomation to wireless communication systems through introducing self-control in

order to make the systems more dynamic, agile, and efficient. In other words,

since the primary goal is to minimise the human intervention from the communi-

cation networks, the response time to any changes and/or faults in the systems

is shortened, improving the dynamism and agility of the networks. Moreover,

provided that human interventions render the management of communication

systems more time consuming and costly, reducing it would result in utilising the

resources more efficiently. On the other hand, this is also beneficial for cellular

network operators, as their operational expenditures (OPEX) and CAPEX are re-

duced, which in turn make their businesses more sustainable and profitable [3,52].

It is reported in [71] that cognitive networking has characteristics of self-

configuration, self-optimisation, self-healing, and self-protecting, the first three

of which are in line with the phases of SON discussed in [3]. Since self-protecting

could somehow be included in self-optimisation and self-healing, the focus of this

thesis will be the first there characteristics, which are common between cognitive

networking [71] and SON [3] concepts.

2.1.1 Self-Configuration

From the network automation point of view, self-configuration is the process of

configuring the initial parameters of BSs, which include IP settings, antenna ra-

diation patterns, and neighbour lists, etc., whenever there is new BS deployments

and/or changes in the network [3]. This process has a crucial importance when it

comes to time and cost efficiency, since human intervention—which is the case in

conventional networks—incurs monetary and time costs to cellular network op-

erators. Besides, since engineers or technicians more prone to commit mistakes

and errors due to the increased complexity of future cellular networks [3], these

costly configuration processes might be repeated multiple times, amplifying the

costs and undermining the sustainable business of operators.

2.1.2 Self-Optimisation

After the initial configuration, a continuous monitoring of the system parameters

is required to keep the communication system efficient and error-free. At this

point, the concept of self-optimisation plays a vital role by providing autonomous

network optimisation without—or minimal—external intervention.
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For example, HO management, energy efficiency, radio resource management,

and load balancing are some of the domains that necessitate self-optimisation [3,

52]. Given that wireless communication networks are quite dynamic due to en-

vironmental (e.g., weather, building constructions, etc.) and behavioural (e.g.,

different behaviours of users at different date and time) changes, the optimisation

is a never-sleeping process. However, the important point here is that while time

consuming conventional approaches would render the network optimisation task

highly inefficient, it could be made a lot easier and very efficient via automatic

action sets.

2.1.3 Self-Healing

Self-healing—offering a proactive fault detection in cellular networks alongside

an autonomous repair for the identified issues—is a critical phase in SON. In

conventional network management, the detection of failures and outages in the

systems mostly rely on customer complaints [3,111], such that once a complaint is

received, engineers or technicians need to visit the corresponding site to identify

and fix the problem. On one hand, from the users’ perspective, they might

be left out of service or with a service with reduced quality for a while, since

both detection and fixation take time. From the operator’s point of view, on

the other hand, this could harm their businesses, as the cite visits by skilled

human resources is costly, and the unsatisfied users might switch to another

operator. Therefore, by utilising self-healing, cellular networks become capable

of autonomously detecting and fixing the issues immediately after they occurred,

which subsequently mitigate the challenge by decreasing: 1) the dissatisfaction

of the users through quick and accurate actions, and 2) OPEX of the operators

via eliminating the human expert intervention [3, 111].

2.2 Machine Learning

The definition of ML in Cambridge Dictionary1 is as follows: “the process of com-

puters changing the way they carry out tasks by learning from new data, without

a human being needing to give instructions in the form of a program.”. There

are two important takeaways from this description: 1) learning from new data,

and 2) without a human being needing to give instructions. In fact, the latter

puts a condition for the former; the machine is supposed to learn from the given

data, meaning that it should develop a model that reveals the patterns in the

1Cambridge Online Dictionary: https://dictionary.cambridge.org, accessed on 25/10/2019.
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data, however, this learning process has to be instruction-free. In conventional

algorithm development, a set of instructions would be normally needed to explic-

itly program a task so that the algorithm does not take unpredictable actions.

In other words, all the possible scenarios are supposed to be considered and the

algorithm should be programmed accordingly in order to prevent any type of

strange behaviour. In contrast, in ML, a data set is given to the algorithm, but

it is not explicitly programmed with the instructions; instead, it is expected to

understand the underlying patters/dynamics of the data set [112,113].

Another interesting point worth mentioning regarding the definition of ML

is “changing the way they carry out tasks.” This part of the definition refers to

how the learning is processed: when the data set is given to an ML algorithm,

it starts processing each sample and develop a model, which can represent or

approximate the data. However, the learning is not performed in a way that

the algorithm takes all the samples at once and develops a single model at the

end. The process rather takes samples and develops an initial model, which is

then kept updated when new data is input to the algorithm. As such, with each

new data inclusion, the algorithm evaluates the model it developed and changes

it according to the outcomes of the evaluation, and this process is regarded as

training [37,52,112,113].

As already discussed in Section 1.2.4, ML has proven capabilities in numer-

ous domains from finance [56] to healthcare [58]. In addition, it has been widely

used in wireless communication networks for optimisation purposes through var-

ious design parameters, such as mobility management [43, 59] and energy effi-

ciency [61]. The reason behind this popularity is that ML offers a dynamic and

effective management, which are crucial characteristics especially for 5G owing

to the dramatically increasing number of devices and data traffic that makes the

conventional approaches no more applicable.

The main three subcategories in ML, namely: supervised learning, unsuper-

vised learning, and RL, will be individually elaborated in the following para-

graphs.

2.2.1 Supervised Learning

Supervised learning is a type of ML, where the data set consists of input and

outputs—also referred to as labels. More specifically, a supervised learning algo-

rithm is given inputs along with outputs in the training phase, and it is expected

to develop a model that gives the relationship between them [112]. Then, in the

testing phase the algorithm is only given new input data—which it has never seen

during its training—and predicts the associated output. The performance of the
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algorithm is evaluated by measuring how accurately it predicts; i.e., the actual

and predicted outputs are compared2.

There are two major types of supervised learning: classification and regression.

In classification, the outputs, which are given to the algorithms along with the

inputs, consist of multiple classes, where each input is matched to an output

class. Therefore, in the training phase, the algorithm tries to find the correlation

between the inputs and the output classes, so that when it is given a new data,

it can determine which class it is in. Object recognition is one of the typical

examples for this type of learning [112], where the algorithm is trained with photos

of different objects, such as clothes, mugs, and books, and their accurate labels.

For regression, on the other hand, the predicted output is continuous values

instead of classes (discrete values). One good example could be determining the

price of a laptop computer: while brand, processor speed, memory size, etc. are

possible input features, outputs can be the prices of the computers. Hence, the

algorithm can be trained with the given inputs and outputs in order to predict

the price of a new computer when it is given the aforementioned input features.

Even though there are numerous supervised learning algorithms—such as sup-

port vector machines, decision tree, and k-nearest neighbour—artificial neural

networks (ANN) has been widely used due to its strong capabilities including

non-linearity, adaptivity, evidential response, etc. [114]. Thus, ANN is mainly

used as a supervised learning algorithm in this thesis, and it will be discussed in

detail in the following paragraphs.

Artificial Neural Networks

ANN is an ML algorithm that tries to mimic a biological brain, such that it

includes artificial neurons—which are inspired by the neurons in a biological

brain—in its structure [51, 112, 114]. Moreover, there are connections between

the artificial neurons, imitating the synapses that conveys signals among the

neurons. Fig. 2.1 demonstrates a typical four-layered ANN, which is composed of

an input layer, two consecutive hidden layers (HLs), and an output layer. Note

that having two HLs in the network is not a must, instead the number of HLs

depends on the given data and problem.

Fig. 2.1 also reveals that, apart from the input layer, each layer is connected

with the preceding one. Moreover, each layer has multiple neurons, which are

connected to the neurons in the subsequent layer. Then, all the neurons from the

2The prediction accuracy can be measured during both training and testing phases, but
they would serve for different purposes. For example, the case of high training accuracy with
low testing accuracy is a sign of over-fitting.
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Figure 2.1: A typical ANN structure with two HLs.

preceding layer determines the values of the neurons in the subsequent layer. For

h1,1 neuron in the first HL, for example, its value is defined as [114]

h1,1 = ι

( m∑
i=1

xiw1,i + b1

)
, (2.1)

where ι(·) is the activation function, b1 is the bias value between the input and

the first HLs, and w1,i is the ith value of weight vector between the input and

first HL, −→w1. The rule given in (2.1) can be generalised to any neuron in any layer

that has a preceding layer. While the activation function, ι(·), is used to limit

the output of a neuron, the bias, b, is used to adjust the input to the activation

function, which in turn changes the resulting output [114,115].

There are two main types of artificial neurons based on the activation function

employed: perceptron and sigmoid [115]. The former is a primitive type of neuron,

whose inputs and output are both binary, whereas the latter is more advanced

type of activation function—which is used in many modern applications—and

it accepts not only binary values as an input but also the values in between.

Similarly, unlike perceptron, the sigmoid type of neuron can produce output

values between 0 and 1 [114,115].

In the forward pass, the information is propagated from the input layer to-

wards the output layer; however, back-propagation (BP), which goes from the

output layer towards the input layer, is also involved in the process in order

to enable the network to learn its parameters. First, when the forward pass is
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performed, the predicted value is compared with the real output value, and the

difference between the real and predicted values—also referred to as cost—is cal-

culated through any type of cost functions, such as mean squared error (MSE).

After that, the error is back-propagated in order to update the weights and bias

in each individual layer via an optimisation method, like gradient descent (GD).

This process is repeated multiple times in order to minimise the cost calculated

at the output.

The number of HLs, number of neurons in each HL, cost function, and opti-

misation method are referred to as the hyper-parameters of an ANN, and play a

crucial role in the performance of the network. Similar to many ML algorithms,

there are two primary concepts hindering the good performance of ANN: under-

fitting and over-fitting [51, 112,114]. The latter means that, during training, the

developed model cannot approximate the actual relationship between the input

and output data, and thus underperforms when it is given a new data set. The

former, on the other hand, occurs when the model almost exactly matches with

the data given in the training phase, which subsequently results in remembering

the training samples, thereby the algorithm cannot perform well with the new

data set. The aforementioned hyper-parameters can help alleviate these issues.

For example, on one hand, if the number of HLs is too few, then the ANN algo-

rithm becomes incapable of developing a good model that approximates to the

actual relationship hidden in the given data. On the other hand, if the number of

HLs is too high, then the algorithm becomes too complex and produces a model

accordingly. Nevertheless, since it is trained with only some portion of the whole

data (training samples), the model becomes specific to the training data set, or

in other words, the developed model is unable to generalise.

In addition to the proper adjustments in hyper-parameters, there are some

other ways to avoid the over-fitting problem including early stopping, regulari-

sation, etc. [112, 115]. With cross validation, the training data set is split into

some portions of training and validation, and then the model is tested through

the validation set during the training. Then, the performance of the algorithm

is monitored on both training and validation set, and the iterations are stopped

once the error in the validation set starts increasing, even if the performance on

the training set is improving. This process is called early stopping [116].

There are various regularisation methods, such as L1, L2, and dropout. In L2

regularisation, for example, an extra regularisation parameter is appended into

the cost function in order to prevent the network from learning large weights. This

is because a noise in the data could be significant with large weights, whereas small

weights could make it less effective [115]. Thus, a regularised ANN algorithm will
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try to minimise both the overall cost and the network weights.

2.2.2 Unsupervised Learning

Unlike the case in supervised learning, where the data includes both input and

output, the data set given to an unsupervised learning algorithm only consists of

inputs. Instead, the algorithm is expected to reveal hidden patterns, regularities,

or properties in a given input data [112, 117]. A good example for this type of

learning is clustering, where the data is clustered into some groups based on their

key features, and the unsupervised learning algorithm attempts to distinguish

the clusters from each other with certain boundaries. However, unlike supervised

learning, the identification of the clusters are not expected3 after the clustering

is performed.

Clustering finds a broad area of applications from customer segmentation [118]

to agriculture [119], but it has also an important place in wireless communication

networks. For instance, in wireless sensor networks (WSNs), clustering plays a

vital role in detecting anomalies in a network [120]. Furthermore, unmanned

aerial vehicles (UAVs) have gained significant attention in cellular networks to

enhance the network capacity and to help in disaster scenarios [94]. In this regard,

clustering can assist in positioning the UAVs, for example, in order to maximise

the coverage or the number of users connected [121].

There are great number of unsupervised learning algorithms in the literature,

such as self-organising maps and hierarchical clustering, but this Chapter will

focus merely on k-means clustering algorithm provided that it is primarily used

as an unsupervised learning algorithm throughout the thesis.

k-means Clustering

k-means algorithm is one of the most popular clustering algorithms due to its

simplicity and property of guaranteeing the convergence to a point, where all

the data samples are associated with a cluster [117]. In other words, it does not

need any external stopping criteria, since its inherent working principle already

provides it with a criterion to stop the execution [117]; it automatically stops at

a point where the centroids keep their same position and no longer move [122].

k-means is an algorithm attempting to discover k different clusters in a data

set with various samples iteratively. For each cluster, there is a dedicated cen-

troid [123]. The basic idea behind this algorithm is to place these centroids and

3In supervised learning, the classes are labelled; for example, fruit, vegetable, etc. However,
in unsupervised learning, there is no label for the clusters.
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associate the closest data points to them. In the learning phase, in order to find

an optimum clustering, the positions of the centroids are altered by the aver-

age value of the associated data points. The process of the k-means algorithm

is shown in Algorithm 1 [117, 122, 123], where Ndp is the total number of data

points; Ndp,j is the number of data points in the cluster cj; zi, i ∈ {1, 2, ..., Ndp}
is the data points in cluster j; and cj is the centroid of cluster j, j ∈ {1, 2, .., k}.
Note that the error for k-means clustering is defined as the Euclidean distance

Algorithm 1: k-means Algorithm

Data: k, data points (z1, z2, ..., zNdp
)

Result: Clusters
1 Initialise with a random placements of the centroids (c1, c2, ..., ck);
2 while cluster assignments change do
3 for each data point (zi) do
4 Determine the closest centroid, cj, through:

arg min
j

D(zi, cj) (2.2)

5 end
6 for each cluster (j ∈ {1, 2, ..., k}) do
7 Place centroid cj to the mean of data points associated with cj

via:

cj =
1

Ndp,j

∑
l

zl | {l = i ⇐⇒ zi ∈ cj} (2.3)

Go back 3;
8 end

9 end

between the centroid and its associated data points given by [122,123]:

dk-means(cj) =
∑
zi∈cj

||zi − µj||2, (2.4)

where µj is the mean of cluster j.

Determining the number of clusters is one of the main issues for clustering

problems. Intuitively, a small number of clusters gives huge errors, while smaller

errors can be obtained with a larger number of clusters [122]. In extreme cases, for

example, if the number of clusters equals to 1, then all the samples will belong to

the same cluster, making the error enormous. On the other hand, if the number

of clusters equals to the number of samples, there will be no error at all as all the

samples will be associated to a different cluster [122].
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2.2.3 Reinforcement Learning

RL is a distinctive class of ML, since it has inherit properties that distinguish

it from supervised and unsupervised learning techniques. First of all, inter-

acting with the environment-of-interest is the way of learning followed in RL,

whereas the learning is performed through labelled/unlabelled data in super-

vised/unsupervised learning [53, 54]. In supervised learning, a labelled data is

fed into an algorithm—which is expected to map the given inputs and outputs

accordingly—, while unsupervised learning accepts only inputs and tries to ex-

plore the hidden patterns and structures. On the other hand, in RL, the agent is

expected to take actions by interacting with a given environment and evaluate the

corresponding reward, which is aimed to be maximised [54]. As reported in [54],

there are four main elements that need to be discussed under RL, namely policy,

reward (or penalty/cost), value function, and model. However, before elaborating

each of these elements, it is better to define some preliminary concepts:

� Environment: this can be anything that produces an output for any taken

action. For the case of cellular communication, for example, the environ-

ment could be the wireless network that consists of BSs and UEs with

various channel conditions.

� Agent: this is the entity that takes actions in the given environment. In

cellular networks, this could be a BS, which tries to optimise its HO param-

eters in order to alleviate its traffic burden without affecting its associated

users significantly. Alternatively, a UE can also be an agent that aims at

reducing its power consumption in order to enhance its battery life.

� Action: the agent takes actions in the given environment in order to ob-

serve and maximise the reward function. These actions could be a set of

possible movements in the selected parameters. Taking the example of cel-

lular networks and assuming a BS is the agent, the action set for the BS

could be a range of HO margin values for the objective of load balancing.

Thus, the agent takes its actions by changing its HO margin and calculates

the resulting reward function.

� State: the condition of the agent according to the taken action. Continuing

from the previous load balancing example, the agent could be in overloaded,

fully-loaded, or under-loaded states based on the action taken.

A general structure of a typical RL model is demonstrated in Fig. 2.2 [54].

The aforesaid elements of RL can be described as follows:
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Figure 2.2: Typical RL process including environment and agent.

� Policy (π): determines how the actions are taken by the agent, and con-

stitutes the interface between the actions and the states [52,54].

� Reward function: a predefined function that is aimed to be maximised.

From the optimisation perspective, this can be interpreted as the objective

function of the problem. According to the nature of the problem at hand,

the reward function can sometimes be converted to a penalty function, in

which the objective becomes minimisation rather than maximisation.

� Value function: there are two categories in value function, namely state-

value function and action-value function. In the former case, it indicates the

expected value of visiting a state, whereas, in the latter case, the expected

value of taking an action while being in a particular state.

� Model: a representation of the environment of interest, which is utilised to

comprehend how the environment reacts to actions taken by the agent [54].

Note that some algorithms do not require a model, as they are executed in

a model-free fashion.

Q-learning

Q-learning is a model-free method, meaning that, unlike model-based RL meth-

ods, it does not require a model of the environment in advance. Instead, it

interacts with the environment through an empirical approach in order to gain

experiences [54]. Moreover, Q-learning is also an off-policy method, in which the
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selection of the next state follows an ε-greedy policy (πε), where ε > 0, while up-

dating the action-value function follows a greedy policy (πg), where ε = 0. This

property offers early convergence to Q-learning due to the simplified algorithm

analysis [54].

The action-value function update policy in Q-learning for the case of reward-

based framework is as follows:

Q(st, at) := Q(st, at) + α(Rt+1 + ϕmax
a

(Q(st+1, a))−Q(st, at)) (2.5)

where st and st+1 are the current and next states, respectively. Rt+1 is the

expected reward for the next time step, at is the taken action, and a is the set

of possible actions. α is a learning rate while ϕ being a discount factor. The

max function in (2.5) should be converted to a min function to make the update

policy suitable for the penalty-based framework, in which the R in (2.5) replaces

with a penalty/cost function, C. The idea behind max and min functions is that

the agent tries to maximise the reward for the reward-based approach, while it

attempts to minimise the penalty in the penalty-based model [54].

The algorithm of Q-learning is presented in Algorithm 2 [54].

Algorithm 2: Q-learning algorithm [54]

1 Initialise Q(s, a);
2 for each episode do
3 Initialise s,
4 for each iteration do
5 Select action, at with the ε-greedy policy (πε),
6 Take action, at,
7 Determine the expected numeric value of the reward function,

Rt+1 along with the next state st+1,
8 Update action-value function using (2.5),
9 st ← st+1

10 end

11 end

SARSA

SARSA, which stands for state–action–reward–state–action, is another technique

in RL and follows a similar procedure with Q-learning, since they are both model-

free algorithms. However, unlike off-policy Q-learning, SARSA is an on-policy

method, meaning that it follows an ε-greedy (πε) policy for both selecting the next

action and updating the action-value function, whose update policy for SARSA
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is as follows [54]:

Q(st, at) := Q(st, at) + α(Rt+1 + ϕ(Q(st+1, at+1))−Q(st, at)) (2.6)

where at+1 is the action for the next time step.

The sequence of “state–action–reward–state–action” that constitutes the name

of the method is derived from the order of the implementation, which is also shown

in Algorithm 3 [54].

Algorithm 3: SARSA algorithm [54]

1 Initialise Q(s, a);
2 for each episode do
3 Initialise s,
4 for each iteration do
5 Select action, a with the ε-greedy policy (πε),
6 Take action, a,
7 Determine the expected numeric value of the reward function,

Rt+1 along with the next state st+1,
8 Update action-value function using (2.6),
9 st ← st+1,

10 at ← at+1

11 end

12 end

Linear Value Function Approximation

Even though conventional RL algorithms, such as Q-learning and SARSA, are

strong tools in decision making, they are limited from various perspectives. In

both Q-learning and SARSA, there is a need to keep a lookup-table for each state

and action pair. Even though this is viable solution for many cases, there are

some particular scenarios, where the lookup-table approach becomes inefficient

and inapplicable. For example, when the number of possible states to visit is

too large, then the lookup-table will enlarge equally, which subsequently not only

increases the computational power and memory consumption, but also hinders

generalisation of the algorithm [54].

In value function approximation (VFA), on the other hand, instead of keep-

ing a lookup-table for all the states and actions, it is aimed to approximate the

value function through a vector of weights, ~wQ. In particular, the value func-

tion denoted by Qπ(s, a), which is obtained by following a policy π, is made

the subject for an approximation denoted by Q̂(s, a, ~wQ); such that Qπ(s, a) ≈
Q̂(s, a, ~wQ) [54]. Although various methods can be used for approximation, the
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main objective is to minimise the error between Qπ(s, a) and Q̂(s, a, ~wQ), such

that

min
~wQ

[Qπ(s, a)− Q̂(s, a, ~wQ)]2. (2.7)

Algorithm 4: SARSA with VFA [54,124]

1 for Each episode do
2 Initialise the current state, st;
3 for Each action do

4 Get the features, ~X;
5 Estimate the value of Q through (2.9);

6 end
7 Pick the action, at, according to a policy;
8 for Each iteration do
9 Take the action at;

10 Observe the reward, R, or penalty, C;
11 Go to the next state;
12 for Each action do

13 Get features, ~X;
14 Estimate value of Q through (2.9);

15 end
16 Pick the next action, at+1, according to a policy;
17 Update the weights, ~wQ,t, using (2.10);
18 st ← st+1;
19 at ← at+1;
20 Check the stopping criteria (if applicable);

21 end

22 end

Moreover, Q̂(s, a, ~wQ) can be expressed by

Q̂(s, a, ~wQ) = f(~wQ), (2.8)

where f(·) is a known function, which is also referred to as hypothesis.

Even though any function can be used as the hypothesis, some may ren-

der (2.8) either too hard or infeasible. Linear functions, shallow neural networks,

and deep neural networks are commonly used as f(·), and the choice depends on

the type of problem. With regards to optimisation, a popular strategy is to use

GD or stochastic GD (SGD) to find ~wQ based on the known examples [54].

In a linear hypothesis, Q̂(s, a, ~wQ) is approximated by a linear combination of

input features [54], in other words

Q̂(s, a, ~wQ) = ~X~wTQ, (2.9)
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where ~X is a vector containing input features, and ~wTQ indicates ~wQ transposed.

Furthermore, using GD and taking the SARSA case, ~wQ is updated according

to [54,124]

~wQ,t+1 = ~wQ,t +αGD[Rt+1 +ϕQπ(st+1, at+1)− Q̂(st, at, ~wQ,t)] ·∇~wQ,t
Q̂(st, at, ~wQ,t),

(2.10)

where αGD is the learning rate for GD optimisation, and ∇~wQ
represents the

gradient with respect to ~wQ. Note that, ~wQ is initialised with an arbitrary value,

such as zero.

After some iterations, if adequate different examples have been observed, ~wQ

will converge and can be used to find the action-value function, which in turn can

guide the policy. Algorithm 4 demonstrates the overall SARSA algorithm with

VFA implementation [54,124].

2.2.4 Markov Chains

Markov chain is a stochastic process that is used for time-variant probabilistic

modelling. It is basically used for modelling the transition probabilities among

states, which can be a condition that an agent is in. For an electronic device, for

instance, the switching options can be defined as states, such that the device is

in the on state when it is switched on and in the off state if it is switched off.

A formal definition of Markov chain, as described in [125], would be as follows:

Let (Y ,F , P ) be the probability space, where Y , F , and P are sample spaces that

include all the possible outcomes; set of events; and measure function for the

probabilities of the events, respectively. Moreover, let (X,X ) be a measurable

space and Fi, i ∈ I be a filtration, where I is the index. Then, an adapted

stochastic process {(Xi,Fi), i ∈ I} is said to be a Markov chain if

P (Xi+1 ∈ G|Fi) = P (Xi+1 ∈ G|Xi), (2.11)

for all i ∈ I and G ∈ X [125]. Therefore, the Markov property states that the

outcome of any experiment depends only on the information available at the

present time, which is i in this case.

Fig. 2.3 demonstrates transitions among three different states, where pi,j is

the transition probability from state i to state j, and
∑Nm,s

j=1 pi,j = 1, where

Nm,s is the number of available states. Markov chains based predictors define the

transition probability from a current state to other states by building a transition

matrix, which consists of transition probabilities between the current state and

all other possible states. One of the main properties of Markov chains is that its
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Figure 2.3: A sample Markov chain with three states, Nm,s = 3.

predictions only dependent on the current state of a user. The transition matrix

can then be written as

~T =


p1,1 · · · p1,Nm,s

...
...

...

pNm,s,1 · · · pNm,s,Nm,s

 . (2.12)

Then, the Markov chains based predictor makes a prediction by following a

model: [126]

~pm = ~p0
~T m, (2.13)

where ~pm and ~p0 are the probability vector belonging to the mth transition and

the initial distribution vector, respectively.

2.2.5 Machine Learning Applications in Cellular Networks

ML has a very broad range of applications in cellular networks from radio resource

management to energy efficiency. This is because ML has strong optimisation

capabilities in addition to its adaptability in dynamic environments [51–53, 59,

62,127]. In the system level, in particular, ML application is more common due to

the fact that the problems are case-specific and it is very hard to obtain a generic

solutions that can easily be adopted. Thus, the adaptability through learning

makes ML a good candidate for optimising these types of problems. Moreover, in

cases the optimal solutions are too complex to implement and/or not scalable, ML

can help in reducing the complexity and making the solution more scalable [62,

128]. However, in order to achieve this, the ML implementation should also
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be efficient and well-designed, otherwise it can also contribute on the existing

complexity. In addition, it is not a rule of thumb that ML implementations are

always scalable; this can also be accomplished through proper and careful design.

In the case of ANN, for instance, if the number of input or output neurons grows

exponentially with the increase of the wireless network size, it cannot be said that

the solution is scalable.

On the other hand, well-designed ML solutions have gained a considerable

amount of attention [51–53,59,62,127]. Various types of ML implementations in

different domains are available in the literature, and some examples will be dis-

cussed in the following paragraphs. It has been proven that a significant saving on

HO signalling can be achieved though predictive mobility management while re-

ducing HO failures and improving radio resource management [59,129–134]. Even

though the corresponding works may include HO predictions, location prediction,

route prediction, etc., the generic purpose is to make the mobility management in

cellular networks more efficient and proactive. Similarly, ML plays an important

role in green cellular networking as well. In particular, cell switching mecha-

nisms [61,85,135,136], energy harvesting applications [137], energy efficient UAV

positioning [138] are few examples where ML can be implemented in order to

make the cellular networks greener.

Resource management in cellular networks is another vital aspect to reiter-

ate, since the available resources in terms of bandwidth, energy, computation,

and memory are limited and should be managed efficiently. In this regard, the

applicability and feasibility of ML implementation has already been proven in

resource management schemes. Computational power and memory management

through caching [139–141], predictive spectrum sensing for better utilisation of

radio resources [95,97,142] are good examples of how ML can help in this aspect.

ML is also a viable and robust tool for anomaly detection in cellular networks.

Cell outages, for example, can be challenging issues to combat, since it is hard

to identify the problems, and mobile networks operators often rely on the client

complaints [3, 111], which delays the repair and are not always reliable. How-

ever, through ML implementations, the identification of cell outages can be done

faster and more reliable [143,144], which in turn helps mobile network operators

in reducing their OPEX, while keeping the users satisfied.

Backhauling is one of the major problems for future generations of cellular

networks due to the increased data rate demand as well as the dramatic inflation

in the number of connected devices. Especially for UDNs, where the intensity of

the devices and BSs are comparatively much higher, the bottleneck is expected

to appear more in the backhaul rather than the access network [145]. To this
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end, ML offers intelligent backhauling solutions, as in [146], that can eventually

help resolve the issues.

In addition to these, ML has many other application domains in cellular net-

works, such as load balancing, coverage optimisation, neighbouring cell list man-

agement, etc. [52]. For more detailed discussions on the application of ML algo-

rithms into wireless communication networking, there are multiple survey papers

available in the literature to refer to, such as the ones in [51–53, 59, 62, 127] to

mention a few.

Machine Learning Implementation for the Key Design Challenges

As already discussed in Chapter 1, the key design challenges investigated in this

thesis are identified by considering the futuristic demands from cellular networks.

Moreover, the strong inter-relation between these design challenges, which were

already explained in Chapter 1 via Fig. 1.1, appears as another rationale behind

choosing them as the primary topics.

Cognitive networking, on the other hand, is considered as the main underlying

idea behind this thesis, such that in order to bring intelligence and dynamism to

cellular networks, the identified problems are solved using the concept of cogni-

tive networking. Given that cellular networks have been gaining popularity and

getting more complex from one generation to the next [4, 14, 17, 26, 37, 38], cog-

nition (intelligence) is required in order to address the ever-growing demands in

more challenging scenarios.

Data is the main ingredient for intelligence, and fortunately, the amount of

data generated in the next generations of cellular networks will be much higher

due to: i) the prevalence of IoT devices; ii) more BS deployments with net-

work densification; iii) more data transmitted by users; etc. [28, 29, 31, 36–38].

Learning, on the other hand, plays a crucial role in exploiting the huge amount of

data, which subsequently enables cognitive networking. Therefore, as also demon-

strated in Fig. 1.2, ML is employed as the fundamental methodology, thereby—

along with the aforementioned inter-relations among the topics—cognitive net-

working, in general, and ML, in particular, create the underlying idea behind the

thesis. In other words, all the problems formulated here are tackled through ML

using the data generated by communication networks, and thus:

� learning from data;

� gaining experience;

� taking more informed actions;
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are at the origin of this work in order to provide cellular communication networks

with cognition (intelligence), tying up the considered design challenges and con-

stituting the story of the thesis.

When to Employ Machine Learning?

Although ML algorithms often provide efficient and effective solutions for the

problems within cellular networks, their implementation is not always as feasible

as other methods, such as statistical analysis and heuristic algorithms. Since each

problem has its own characteristics, the decision should be made according to the

conditions and requirements, and there are some preliminary considerations with

regards to the implementation of ML:

� properties of the data;

� big data;

� computational complexity;

� performance of ML algorithms.

As ML algorithms predominantly require data to learn from, the following is-

sues regarding the required data are worth considering: i) availability, ii) quality,

and iii) sufficiency [147,148]. If, for example, the data is not always (or not at all)

available, then the implementation of an ML algorithm might be hard or even

impossible. In the case of availability, on the other hand, its quality becomes

the next to consider, because there could be redundancy—such as duplications—

and/or noise—such as missing entries—in the data, thereby preprocessing is re-

quired before using it for a certain objective [147]. On one hand, the sufficiency

of the data is a vital element, since training phases of many ML algorithms ne-

cessitate a certain amount of data to build an accurate model. When the volume

of the data is huge (i.e., big data), on the other hand, other challenges take the

stage including storage, security, latency, etc. [149, 150], which could potentially

undermine the feasibility and practicability of ML algorithms.

After solving the data-related issues, the challenges are then transferred to

the characteristics and performances of ML algorithms, such that the computa-

tional requirements and the end performances (e.g., accuracy) of the developed

algorithms are the ones being at the front line to determine their applicabil-

ity. Following comprehensive comparisons and analyses, the authors in [151],

for instance, found that the statistical methods outperform the ML counterparts

in time-series predictions with less computational requirements. This is an im-

portant observation, as it reveals that the use of ML is not a must, instead the
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methodological decision should be made by considering both the characteristics of

a given problem and alternative solutions. Furthermore, it was concluded in [128]

that ML (deep learning example is taken therein) is not always a good choice,

especially for physical layer applications where optimal solutions without any sig-

nificant complexity already exist. However, the authors noted that deep learning

can be considered in cases, where the optimal solutions are computationally quite

demanding.

Based on these, it can be concluded that the followings should be considered

before choosing ML as a methodology:

� there is no issue regarding the required data in terms of availability (e.g.,

data collection), quality, sufficiency, etc.

� in case the data volume is large, the data management plan is supposed to

be feasible, such that the side effects, including privacy, storage, latency,

etc., do not dominate the gain obtained through the use of ML.

� the implementation of the algorithms is more advantageous than alternative

solution: this could be in terms of various metrics including performance,

computational complexity, scalability, etc.

In that regard, ML considered throughout this thesis for the following reasons:

� the scenarios are quite dynamic, thereby implementation of a non-ML algo-

rithm would be no more applicable due to the fact that they would require

repetitive implementations for changing conditions. ML, on the other hand,

can adapt itself to the changes after the initial learning phase.

� optimal solutions (e.g. the one in Section 3.2) could be unscalable, meaning

that they become very hard to implement when the network sizes grow.

� the data sets at hand comply with the aforementioned conditions, such that

there is an availability along with sufficiency, and a minimal preprocessing

is needed.

Machine Learning Tools Used for Implementation

All the three major branches of ML are implemented this thesis, namely: super-

vised learning, unsupervised learning, and RL. The details about the tools used

for each ML implementation are as follows:

� Supervised learning: ANN is employed in Chapter 5, and MATLAB

Neural Net Fitting App is used as a toolbox.
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� Unsupervised Learning: k-means clustering is employed in both Chap-

ter 4 (Section 4.2) and Chapter 5, and k-Means function within MATLAB

Statistics and Machine Learning Toolbox is used during the implementa-

tions.

� RL: Two differentQ-learning algorithms are implemented in Chapter 3 (Sec-

tion 3.1) and Chapter 5, and they are programmed in MATLAB without

using any off-the-shelf toolbox. Furthermore, the SARSA algorithm with

VFA in Chapter 3 (Section 3.2) is also programmed in MATLAB without

the inclusion of any existing toolbox.

2.3 Energy Optimisation in Cellular Networks

In this section, first, life-span extension techniques will be presented in two cat-

egories as energy conservation and energy harvesting. Then, typical BS com-

ponents as well as the power consumption profiles of common BS types will be

detailed, followed by a discussions on the cell switching concept with the state-

of-the-art. The section is concluded by a research gap analysis.

2.3.1 Life-time Extension for Wireless Sensors

Energy is always the main determinant for the life-span of wireless sensors, as

they typically use external batteries, which have limited capacities [68]. More-

over, even a single node can determine the life-span of a whole network if its

absence affects the working routine of the system; i.e., it can be a sink node ag-

gregating and routing the data from sensor nodes to an end-user, or a relay node,

which is located at a very strategic location and relays data coming from mul-

tiple neighbouring nodes. Alternatively, it can be a regular sensor node that is

acquiring very important information, which the whole system relies on. There-

fore, it is crucial to improve the energy balance of each individual node to extend

its life-span, which in turn prolongs the life-span of the whole network. Let the

energy balance of a single node be Eb, such that

Eb = Ein − Eout, (2.14)

where Ein and Eout are the input and output energies, respectively [68].

It is obvious from (2.14) that the energy balance of networks can be increased

by either rising the energy input or decreasing the energy output, or by doing

both. Given that wireless sensors work with limited energy sources (batteries),
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increasing the energy input refers to using alternative energy sources (e.g., solar,

wind, etc.) along with the available batteries. Methods, which enable to use such

kind of alternative energy resources, are regarded as energy harvesting. On the

other hand, decreasing the energy output refers to energy conservation, which

implies using the available sources as efficiently as possible by avoiding any kind

of energy wasting.

Energy Harvesting

Energy harvesting techniques play a crucial role in extending life-spans of WSNs,

as they basically use alternative energy sources to contribute to the energy balance

of networks. However, as this process is performed with ambient energy sources,

the harvested energy should be converted to a form that is usable in sensor

nodes [68].

Energy source, harvesting methods, and load are reported as the key elements

of an energy harvesting system in [152], wherein energy sources are categorised

into two as controllable and non-controllable. Controllable energy sources are

the ones that can always provide energy on-request, whereas non-controllable

sources, such as solar and wind, have their on routine and may not be available

when needed [152,153].

Moreover, there are two harvesting architectures available [152]: harvest-use

and harvest-store-use. In the former, harvested energy is directly used in sensor

nodes, while in the latter it is stored in a storage element, which is then used as

an energy supplier by the sensor nodes.

The energy conversion technique to be employed depends on the type of the

energy source. In the case of solar energy, for instance, solar panels, which convert

the solar energy to electrical energy, should be employed. However, solar panels

generate direct current (DC) power, and thus a DC-DC converter might be needed

in order to make the output of the panels suitable for a load—a sensor node in this

case. Therefore, the DC-DC converter is supposed to be designed in an efficient

manner, since it is more likely to result in a loss during conversion. Given that the

conversion efficiency of the current solar panels are already not sufficiently high,

the loss in DC-DC converters makes the case worse with a negative contribution

to the energy balance.

Various harvesting techniques are surveyed in both [152] and [153] in a com-

prehensive manner. The overall list of the surveyed techniques is as follows [68]:

� solar energy harvesting [72–74];

� wind energy harvesting [75];
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� radio frequency (RF) harvesting [76];

� piezoelectric energy harvesting [77];

� thermal energy harvesting [78].

Energy Conservation

In order to decrease Eout in (2.14), the energy consumption of wireless sensors

should be minimised to extend their life-span. Among the three main tasks (i.e.,

sensing, processing, and communicating) performed in a typical sensor node,

communication is often the most energy consuming one [154]. However, since

sensor nodes are energy-constrained devices, it is crucial to reduce the energy

consumption in each phase. Energy conservation methods in sensor networks are

comprehensively surveyed in [155], of which the high-level taxonomy is adopted

as follows [68]:

� duty-cycling [79];

� data-driven approaches [80];

� mobility-based approaches [81].

2.3.2 Base Station Components

A BS power consumption model is created in [156], wherein the main energy

consuming components of a typical BS are identified as power supply, cooling

system, baseband unit, power amplifier, and antenna interface. They will be

discussed individually in the following paragraphs.

� Power supply: the mains energy supply is used to power BSs. Since the

mains supplies alternating current (AC) to BSs, this mostly needs to be

converted to DC due to the fact that the vast majority of BSs use DC

power rather than AC [157]. This conversion also incurs some loss, which

degrades the overall energy efficiency of a BS.

� Cooling system: especially for the case of MC, BSs need air-conditioning

systems in order to keep their system operable, since the components that

are sensitive to temperature would break down when a certain temperature

threshold is exceeded. The cooling system can account for up to 30% of the

total energy consumption of a BS [41,157], thereby energy saving from the

cooling system would contribute significantly to the energy efficiency of the

BS.
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� Baseband unit: baseband signal processing, such as modulation, con-

version, filtering, signal detection, fast Fourier transform (FFT), etc., is

carried out by the baseband unit in a BS, and each of these tasks results in

additional energy consumption [156]. Between 5% and 15% of the energy

consumption of a BS comes from the signal processing [158], and thus it is

important to reduce the energy consumption at the baseband unit.

� Power amplifier: this is one of the most power consuming elements in a

BS, and it is used to increase the power level of RF signals during trans-

mitting and receiving. However, there are many design challenges including

improved back-off efficiency and linearity, putting the semiconductor type

used in power amplifiers at a very important position [159].

� Antenna interface: the antenna is the main component to enable signal

transmission/reception, at which it is responsible of converting the electrical

current into EM waves, and vice versa. Since there are multiple losses

related to the antenna interface, such as feeder loss and matching loss, the

design and type of an antenna play important roles in energy efficiency [156].

2.3.3 Base Station Power Consumption Model

In the Energy Aware Radio and neTwork tecHnologies (EARTH) power con-

sumption model [156], Pj, the instantaneous consumption of a BS, Bj, is given

by [160]

Pj =

{
Po,j + ηjΛjPT,j, if 0 < Λj < 1

Ps,j, if Λj = 0,
(2.15)

where Po,j and Ps,j are the operational and sleep circuit power consumption,

respectively, ηj is the power amplifier efficiency, Λj is the load factor, and PT,j is

the transmit power. These values vary according to the type of the BS, such as

macro, remote radio head (RRH), micro, pico, and femto, whose power profiles

are provided in Table 2.2.

2.3.4 Energy Saving through Cell Switching

BSs have been the major contributor for the power consumption in cellular net-

works [41, 161], putting the energy saving from BSs at the heart of the green

cellular networking concept. In this regard, various techniques for energy saving

are shortlisted in [41], including: hardware based energy efficiency enhancement,

component switching off, radio transmission based energy efficiency improvement,

use of renewable energy resources, and making the network more heterogeneous.
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Table 2.2: Power profiles for different types of BSs [156]

BS Type
Efficiency

Power Consumption [W]
Transmit Operational Sleep

ηj PT,j Po,j Ps,j

Macro 4.7 20 130 75
RRH 2.8 20 84 56
Micro 2.6 6.3 56 39
Pico 4.0 0.13 6.8 4.3

Femto 8.0 0.05 4.8 2.9

Of all these techniques, while the use of renewable energy sources can be classi-

fied as an energy harvesting method, the rest would be in the category of energy

conservation. Given that the focus of this thesis is energy conservation, the en-

ergy harvesting methods are out of the scope, thereby they will not be discussed

further.

In the aforementioned energy conservation techniques, component switching

off has a special place due to the following reasons:

� Even after implementing all the other techniques, such as advanced hard-

ware and transmission efficiency, and increased network heterogeneity, there

is still room for saving energy by switching off the components. Let us use

an analogy to make this statement more clear: consider a software company

producing intelligent solutions for their clients. There are hundreds of em-

ployees working in an office environment with their desktop computers from

9am to 5pm on weekdays. Imagine the company wants to cut its energy

bills in order to increase their profit. To this end, the company decides to

replace the low energy efficient desktop computers and light bulbs with the

new very high energy efficient ones. Although this is a good move in saving

energy, it is not adequate provided that the computers and light bulbs are

kept switched on for 24 hours everyday. Therefore, more energy could be

saved by switching off the computers and light bulbs when they are not

used. Considering this analogy, the cell switching introduces another di-

mension in energy saving: while the other energy conservation techniques

focus on reducing the energy consumption when the components are oper-

ating, the cell switching brings the idea of putting the components to sleep

when they are under or not utilised.

� Enhancing the energy efficiency of the hardware components and making

the network more heterogeneous either requires new deployments or in-

troduces new problems [41]. Radio transmission optimisation, for exam-
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ple, would require new wireless communication standards and/or concepts.

However, cell switching can be implemented without extensive new replace-

ments or communication standards, thus its plugging into the existing cel-

lular networks is quite straightforward [41].

To this end, the underlying idea of cell switching is to deactivate components

of a BS at low traffic, which is usually referred as putting the BS in a sleep

mode. Various types of sleep modes have already been identified in [162], in

which the sleep mode changes based on the depth of the sleep that is correlated

to the deactivation time of the component switched off. More particularly, the

components in a BS are categorised according to their deactivation times in [162],

and the depth of the sleep determines the components to be slept; the more

components are put into the sleep mode with increasing depth.

State-of-the-art in Cell Switching

A broad range of works related to cell switching are available in the literature,

as cell switching has been recognised as a valid solution to minimise the energy

consumption of cellular networks. A brief state-of-the-art review is provided

in the following paragraphs with an objective of highlighting the diverse set of

existing works.

A comprehensive energy management scheme is proposed in [82]. The au-

thors consider a smart grid integration with cellular networks, where the smart

grid communicates with a cellular network for adjustments in power consumption.

In particular, based on the energy demand from the grid, a smart grid operator

requests increments or decrements in the power consumption of the cellular net-

work. If the cellular network responds to these requests, it obtains benefits in

return in terms of reduction in energy bills. The proposed system use both grid

and renewable energy as power supplies along with an energy storage unit. The

cell switching concept is also employed in order to decrease the energy consump-

tion of the network in an attempt to increase the number of responses to the

requests of the smart grid operator. A threshold and rule based cell switching

approach is adopted, where the SCs are switched off if:

� the traffic load of the SCs are below a certain threshold, which is subject

to an optimisation; and

� the MC has enough capacity to handle the traffic load of the switched off

SC.

The authors in [83] propose a mutual repulsive cell switching strategy, and

investigate both the energy and coverage efficiencies in a SC network scenario
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with MIMO system. The strategy is introduced for light traffic cases, and the

process is as follows:

� each SC calculates its proportional traffic load;

� the BS with the largest proportional load in a circle, with a given cen-

tre point and radius, is kept on, while the other BSs inside the circle are

switched off.

The obtained results reveal that both the energy and coverage efficiencies are

enhanced with the BS density and the distance between the two active BSs.

Both site and sector based switch-off regular patterns—which are basically

combinations of cellular network settings—are investigated in [84]. In this con-

text, in order to perform the cell switching, the authors utilise cellular layouts

rather than building a real-time decision making unit. In particular, the devel-

oped method relies on deciding the sectors/sites in advance through an offline

process. Thus, the authors identify some regular switching patterns and com-

pare the performance of the proposed solution in terms of energy efficiency, the

number of UEs served, and SINR distribution.

A motion sensor based cell switching approach is designed in [65]. The work is

performed particularly for indoor environments, where typically a certain number

of people stays in a room that is covered by a SC. In an office environment,

for instance, when the employees leave, the SCs becomes idle as no traffic is

generated. Thus, this work uses a motion sensor at each room/office in order to

detect the presence of users, which in turn triggers the cell switching decision.

The authors conduct experimental studies with an Open Air Interface based 5G

test-bed, and the results show a considerable amount of energy saving.

Another interesting idea is proposed in [85], where the HO traces of users are

utilised in order to perform cell switching decisions. As such, rather than relying

on the observations on traffic variations, the authors develop a model that predicts

the user HOs in order to determine the on/off status of a cell. More specifically,

in the developed model, future traffic loads of SCs are determined through HO

predictions, which are enabled by a semi-Markov process. Based on the estimated

future loads, an optimisation problem of minimising the energy consumption is

created, with constraints of minimum coverage and bit rate requirements. In this

regard, a joint optimisation of the following variables are conducted:

� optimum set of SCs to turn off/on for energy saving purposes;

� cell-specific offset for load balancing purposes, which subsequently helps

maintain a good level of QoS.
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2.3.5 Research Gap Analysis

Although there are many cell switching algorithms are available in the literature,

there is still need for a dynamic, robust, real-time, and practical solution. The

heuristic methods, for example, are often unscalable an inadaptive albeit per-

forming well in certain scenarios. For a binary (on/off ) cell switching problem,

for instance, the number of possible switching combinations increases exponen-

tially with the size of the network, and even though this can be handled with

heuristics, such as genetic algorithm, to some extent, many practical scenarios

would necessitate more scalable and less complex algorithms. This gains more

importance considering the expected network densification in 5G networks.

On the other hand, predictive cell switching methods, which is enabled by

direct or indirect (through HOs) traffic predictions, requires historic data along

with a training phase. This might be impractical for many circumstances, since

the historic data would not be immediately available at all the scenarios. More-

over, computational power and storage demands are additional issues to consider

for such implementations, and thus this kind of solutions would come with side

effects. Furthermore, approaches that require additional hardware deployments

are not always feasible and practical. For example, the work in [65] necessitates a

motion sensor deployments for indoor environments, and this would be needed in

each room where SCs are deployed. However, in addition to being infeasible for

many cases, such as indoor scenarios with huge number of independent rooms,

the maintenance of this kind of implementation is another issue to address.

IoT networks are expected to generate a huge amount of data, as it is en-

visioned that an immense number of devices—with their diverse characteristics

and application areas—are connected to the Internet through the IoT concept.

Therefore, this data can be exploited for the benefit of IoT networks in terms of

making them more energy efficient. In this regard, data analytics and ML play vi-

tal roles, since it is hard to deal with such a large volume of data via conventional

optimisation techniques. Moreover, it is quite likely that IoT devices can be de-

ployed into locations which are inherently dynamic; e.g., ports and urban areas.

As such, adaptability gains more importance, thereby the network optimisation

needs to be intelligent, which can be enabled through learning. Furthermore,

conditions for each IoT application would be different from each other (e.g., the

requirements of agricultural applications would be distinct from health-care ap-

plications), hence context awareness should also be one of the key ingredients in

optimising IoT networks. A more detailed research gap analysis can be found in

Sections 3.1 and 3.2 in Chapter 3 for IoT energy optimisation and cell switching,

respectively.
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2.4 Cellular Network Capacity Enhancement

Cellular network capacity enhancement will be investigated from two different

perspectives in this section, namely predictive mobility management and UAV

positioning. After discussing the mobility management in cellular networks in

general, the concept of predictive mobility management will be introduced along

with a state-of-the-art presentation. Then, UAV assistance in cellular networks

will be elaborated, followed by presenting the corresponding literature review.

Lastly, a research gap analysis concludes the section.

2.4.1 Mobility Management in Cellular Networks

3GPP has defined mobility as “the ability for a user to communicate whilst mov-

ing independent of location”, while mobility management has a definition of “a

relation between the mobile station and the UTRAN (UMTS Terrestrial Radio

Access Network) that is used to set-up, maintain and release the various physical

channels.” [163]. Although these definitions are from Release 4, 3GPP sticks

with them in Release 15 for 5G [164]. The aforesaid definition of mobility yields

that the connections for the users are supposed to be maintained when they are

mobile, and mobility management is the concept that ensures this connection.

Therefore, mobility management plays a crucial role in cellular networks, since it

is a challenging task to provide services to the users with diverse mobility profiles;

e.g., stationary, low-mobility, high-mobility, etc.

Moreover, there are two different radio resource control (RRC) connection

states in legacy networks, namely idle and connected. However, inactive state

has been introduced in 5G NR as a new type of RRC connection state [165].

Before going in detail about it, it is better to give the 3GPP definitions for

conventional idle and connected states [163]. If a UE has no RRC connection

with any radio access network (RAN) while being turned on, it is referred as

in the idle state. This means that the UE is tractable (in connection with the

network), but is unable to transfer data. The connected state, on the other hand,

refers to the case when the UE is not only turned on and tractable, but also has

an active RRC connection established with a RAN, and is able to transfer data.

There is a trade-off in switching between the connected and idle states, such that,

from the UE’s perspective, it switches to idle state in order to save energy, since

measurement reporting drains its battery. However, in order to transmit data,

the UE then needs to switch back to the RRC connected state, which results in

latency and signalling overhead [166].

With the introduction of the novel inactive state, now the UE in the connected
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state can be classified as either active or inactive, depending on the data transfer-

ring activity; i.e., inactive if there is no data transferring session, or active when it

has an ongoing data transfer. Then, the UE that is not active in connected state

can be switched to the inactive state rather than the idle state by releasing the

RRC connection while keeping the core network connectivity [165–167]. As such,

by entering the inactive state, the UE can save energy while avoiding the heavy

signalling that arises from the switch between the connected and idle states.

From the mobility perspective, the mobility of the UE in the idle or inactive

states are controlled by the UE itself, whereas the network becomes responsible

for the mobility if the UE is in the connected state [165]. As reported in [168],

mobility management in cellular networks can be broadly divided into two cate-

gories as idle/inactive state and connected state mobility. A similar fashion was

followed in [169] with a slightly different terminology, namely location and HO

management. In the following paragraphs, these different mobility concepts are

investigated in a more detailed way.

� Idle/Inactive State Mobility (Location Management): corresponds

to the procedure taken just after the UE is powered on, as defined by 3GPP

in [165, 167]. Upon powering on, the UE is first supposed to select a pub-

lic land mobile network (PLMN), and it performs a cell selection based on

current measurements and the “S” criterion, as defined in [167]. When it

selects a cell to camp on, it needs to continuously search for a better cell,

which is called as cell re-selection. The UE is also required to execute loca-

tion registration, which helps the network to have an approximate location

of the UE in order to perform a paging process. Therefore, in idle/inactive

state mobility, location registration, cell selection, and cell re-selection are

the primary tasks to be performed, and the procedures for the idle/inactive

states are individually and comprehensively elaborated in 3GPP Release

15 [170].

� Connected State Mobility (Handover Management): corresponds

when the UE is in the connected state and has an ongoing data transmission.

As such, the user is regarded as active and its mobility management becomes

more challenging when compared to the aforementioned idle/inactive state

mobility. Moreover, unlike the idle/inactive state version, the connected

state mobility is network controlled, but UE assisted. In particular, the UE

keeps performing measurements on the signal quality from both the serving

and neighbouring BSs in order to ensure that it is connected to the best

cell around it [43, 59, 168, 169]. When the UE is mobile, meaning that it
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changes its geographic location, it is quite likely that the signal qualities

that it receives through measurements would vary continuously. This, by its

turn, results in some neighbouring BSs providing better signal qualities than

the serving one. Therefore, in these kind of cases, the UE would require its

connection to be switched from the current serving cell to a neighbouring

cell that is better than the serving cell in terms of signal quality. In this

regard, HO is defined as the change of a serving cell of the UE while being

active; i.e, having an ongoing data transmission.

Moreover, in terms of measurement reporting, it can be divided into two

categories, as periodic and event-triggered [168]. In periodic reporting, the

UE performs measurements at regular intervals. On the other hand, in

event-triggered reporting, the UE sends its measurement reports to the

serving BS only upon the occurrence of certain event conditions [168]. In

other words, the UE assists the HO process in the following ways:

– by making measurements on signal strength from serving and neigh-

bouring BSs;

– sending the measurement reports to the serving BS through one of the

aforementioned strategies (i.e., periodic or event-triggered).

The network control starts after this point, in which the serving BS com-

municates with the target BS—selected as the best cell—to check its avail-

ability. Once the target cell admits the UE by ensuring that it has enough

resources for it, the HO process is executed and completed through multiple

signalling exchanges between different entities (e.g., UE, serving BS, target

BS, and core network). This means that the UE is handed over to the

target cell—which is the new serving cell—and the resources, which were

allocated for the user in the previous serving cell, are released.

HOs can also be put in different taxonomies, such as intra-frequency and

inter-frequency [168–170]. Intra-frequency HOs occur when the UE switches

to a BS that transmits in the same frequency with the previous serving cell,

while the HO is referred as an inter-cell HO if the carrier frequencies of

the serving and the target cells are different [168–170]. Provided that two

different FRs4 are already introduced in 5G NR, namely FR-1 and FR-2 [15],

HOs across different FRs and within the same FR are possible. Even though

the HOs between different FRs can only be performed as inter-frequency,

4While FR-1 covers sub-6GHz frequencies, FR-2 includes mmWave frequencies above 24
GHz.
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the HOs within the same FR can be done as either intra-frequency or inter-

frequency [170].

2.4.2 Predictive Mobility Management

It has become a cliché that mobility management in cellular networks can be made

more efficient and agile with the help of mobility prediction [43,59,168]. Consid-

ering the cognitive cycle [70] and cognitive networking [69] concepts for wireless

communication networks, predictive mobility management can be broadly ex-

plained in three steps:

� Obtaining contextual information: mobility-related behaviour of users

are obtained in this phase. Some examples of contextual information to be

gathered are [59]:

1. exact locations of users (e.g., geographic coordinates);

2. attraction points visited;

3. trajectories taken;

4. mode of transportation (e.g., walk, car, bicycle, etc.);

5. sojourn time;

6. identification of places visited (e.g., home, work, etc.);

7. HOs performed.

While some contextual information (e.g., location, sojourn time, and HOs)

can be directly obtained with the help of both the UE and the network,

some of them (e.g., identification of places and attraction points visited)

require additional processing/analysis. Considering the needs of the appli-

cation and capabilities of the agents5, the information to be collected can

be decided accordingly.

� Analysing/Learning: the collected information can be analysed in order

to exploit meaningful information. This phase is needed due to the fact that

the raw data could be hard to understand and does not necessarily include

useful information [171–173]. Moreover, there could be hidden patterns in

the data, which is difficult to figure out without further analysis. A raw

data set consisting of coordinates of a user with corresponding time stamps

5Agent can refer to the entities that are involved in the predictive mobility management.
It can be an individual entity, such as UE, as well as cooperation of different entities, such as
UE-BS pair.
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UE Serving BS Predicted BS Target BS MME S-GW

CP-1. Advance HO 

preparation

CP-2. Advance

HO ACK

CP-3. Advance SN

transfer

IP-1. HO cancelation

request

Measurement

report

IP-2. HO cancelation

ACK

1. HO preparation request

2. HO preparation ACK

5. HO confirm

4. HO command

3. SN status transfer

6. Path switch

request
7. Update U-plane

request

8. Update U-plane

response
9. Path switch ACK

10. UE context release

Figure 2.4: LTE X2 interface based HO process adapted from [43, 133]. CP:
Correct Prediction, IP: Incorrect Prediction, SN: Sequence Number, ACK: Ac-
knowledgement. Steps CP-1 , CP-2, and CP-3 only apply to the CP case, while
steps IP-1 and IP-2 are only valid for IP case.

at certain time intervals would be not meaningful as it is, however, some

additional processing, such as statistical analysis or ML algorithms, can re-

veal some correlations and patterns in the data. For example, a user always

leaves their home at around 08.30 in the morning in weekdays, and com-

mutes to work. The user also stops by a certain café to have a cup of coffee

before completing its route to work. However, the user does not have any

regular pattern at weekends, and takes different trajectories; e.g., sometimes

stays at home the whole day, and some other times goes to various events,

such as the cinema, a musical concert, etc., at different locations. Therefore,

it can be inferred that this specific user has certain patterns with almost

strict timings in the weekdays, whereas no obvious patters/regularities are

observed for weekends. In summary, this analysing/learning phase converts

the obtained information to meaningful knowledge.

� Future predictions: after data collection and its corresponding analysis,

the developed knowledge/model can now be utilised for various use-cases.

By analysing the HO occurrences for a specific user by taking into account

the involved BSs and the time stamp, the next or multi-step ahead HOs of

the users can be predicted, which in turn help in achieving seamless HOs.

Fig. 2.4 demonstrates the LTE X2-based HO flow diagram for both predictive

and non-predictive HO cases [43,133]. Note that predictive HO refers to the case
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where the target BS for the next HO of the user is predicted, which subsequently

helps reducing the number of steps taken during the HO by executing some of the

steps in advance. Furthermore, HO predictions are divided into two categories

according to the accuracy of the prediction, namely: correct predictions (CP)

and incorrect predictions (IP). While the former means that the target BS for

the next HO is predicted accurately, the latter happens when the predicted and

target BSs are not the same. In particular, steps 1 to 10 are performed during

non-predictive HO; 4 to 12 are for predictive HO with CP; and IP-1, IP-2, and

1 to 10 (all inclusive) for predictive HO with IP [43, 133]. It is worth noting

that steps CP-1, CP-2, and CP-3 are taken in advance of a HO for the CP case,

meaning that steps 1, 2, and 3 of non-predictive case are eliminated with the

predictive HO management with CP.

Therefore, as it is obvious from Fig. 2.4, the predictive HO with CP case is

more profitable compared to the non-predictive case in terms of signalling during

an HO, whereas IP makes the predictive HO case more costly than the non-

predictive one. There are two primary takeaways from these phenomena:

� HO processes can be made less costly via predictive HO with CP, resulting in

less signalling overhead and HO latency. This, in turn, promotes seamless

HOs, which is envisioned to be one of the integral characteristics of 5G

networks [174,175].

� Prediction accuracy plays a crucial role, since IPs can make the whole pro-

cess less efficient by increasing the HO signalling and latency. Thus, more

efficient mobility prediction algorithms should be developed given that the

average gain from the predictive mobility management process enhances

with increasing prediction accuracy, such that [43,133]:

E[Ht] = AcHc + (1− Ac)Hi, (2.16)

where E[Ht] is the expected HO cost, Ac is the prediction accuracy, and

Hc and Hi are the HO costs for CP and IP cases, respectively. Note that

the HO cost can be any cost related to HO, such as signalling overhead and

latency.

There are many studies available in the literature regarding the predictive

mobility management for cellular networks, and they are discussed in the following

paragraphs.
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State-of-the-Art in Predictive Mobility Management

In this section, recent predictive mobility management approaches are presented

in order to draw the state-of-the-art. In [86], the authors aim to reduce ping-pong

HOs as well as HO failures. SINR is predicted in order to obtain knowledge on

future received power levels from the serving BS. To this end, HO margin and

TTT are considered as HO parameters, such that TTT is dynamically adjusted

based on SINR predictions, while HO margin is kept fixed. First, when any

candidate BS starts outperforming the serving BS in terms of received signal

power, instead of waiting for a fixed TTT for this condition to be maintained,

the authors propose to use predicted SINR values from the serving BS, such that

the HO is only triggered if the SINR value of currently serving BS is found to be

less than a certain threshold—an SINR value sufficient for healthy connection—

for a certain time period.

Another similar work is proposed in [87], in which the authors introduce a com-

prehensive mobility prediction process. Two different types of memories, namely

short-term and long-term, with different objectives are initially introduced. In

particular, by utilising stored signal strength measurements performed by the

UE, future signal quality and signal strength predictions are carried out for both

the serving and neighbouring BSs, followed by checking whether the predefined

HO criteria is met. After that, the output of this process is consolidated by a

statistical analysis with the help of historical HOs that are stored in the long-term

memory.

The authors in [88] developed a predictive mobility prediction model for cel-

lular networks with the objective of making the resource utilisation more efficient

via proactive HO management. A semi-Markov renewal process is considered

to model the user mobility, and corresponding HO predictions are performed

through this model. In order to evaluate their model, the authors carried out

data collection, where the HOs of selected users were recorded with correspond-

ing time stamps for a period of one month. The developed semi-Markov model

trained with this collected data set.

In [89], on the other hand, a recursive neural networks (RNNs) based mobility

prediction approach is presented. In this regard, two different RNNs architec-

tures, namely long-short term memory (LSTM) and echo state network (ESN),

are developed and compared to a Kalman filter predictor. The trajectories used

in training and testing phases are generated artificially (i.e., synthetic data) in

order to evaluate the performance of the considered methods. The work mostly

focuses on the prediction accuracy by investigating various parameters affecting

it, such as RNN architecture and output structure.



2.4. CELLULAR NETWORK CAPACITY ENHANCEMENT 57

A probability suffix tree (PST) based predictive mobility management is in-

troduced in [90] by considering an ultra-dense cellular network with control-data

separation. Moreover, two different PST learning algorithms are developed; i.e.,

user-specific and global. While the former is utilised when users have frequent

visit patterns in the master eNodeB in question, the latter is for those who can

be considered as random users due to their insufficient presence in the area of the

master eNodeB. Furthermore, during the execution phase of the developed mobil-

ity method, two different approaches are adopted: network-controlled and user-

autonomous. Similar to the aforementioned works, which proposes a predictive

HO management, the network-controlled one helps in shortening the HO process

by executing some of the steps prior to the HO event. The user-autonomous one,

on the other hand, is proposed to transfer some of the HO responsibilities to the

user in order to reduce the network load.

2.4.3 UAV Assistance in Cellular Networks

UAVs have already been identified as a promising solution for wireless networking

due to their multiple advantages including flexibility and mobility [176]. They

can be used for various purposes, such as capacity enhancement—especially for

UDNs—and emergency scenarios; e.g., earthquakes, fires, etc. Typically a SC

is mounted on a UAV in order for it to act as a flying BS, which have multiple

advantages over conventional ground SC deployments:

� they are deployed in the sky, thereby it is more likely to establish LOS with

users [177], which, by its turn, enhances the capacity of the network and

provides improved data rates to the users;

� they are mobile, hence they can adjust their positions in terms of not only

longitude and latitude but also altitude in order to provide better QoS in

changing conditions;

� they can be deployed on demand, thus they are cost effective as they can be

utilised multiple times at different locations/scenarios [177, 178]. In other

words, rather than deploying fixed ground SCs by considering the peak traf-

fic around the geographic area, UAVs can be deployed when needed. This

provides not only reduced deployment costs for mobile network operators

but also flexibility to cellular networks.

On the other hand, there is a number of designs challenges that should be

addressed properly in order to make the UAV assistance viable and sustainable.

Some of the primary challenges identified in [176–179] are as follows:
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� Energy efficiency: UAVs typically present energy limitations owing to

their off-grid characteristics, such that they use on-board power supplies

including battery and fuel. In this regard, their energy consumption is of

the utmost importance, and should be managed efficiently.

� Backhaul connectivity: due to the fact that fibre backhauling—or any

other wired option—is no more applicable in the UAV SC scenario, a wire-

less backhauling is required. Even though there are multiple available op-

tions, such as free-space optics, satellite, mmWave, each of these constitutes

distinctive challenges. Low coverage capability and LOS requirements are

the main problem for mmWave and free-space optics, for example, while

latency becomes problematic for the satellite case [176,178].

� Placement and path planning: the placement of UAVs considering all

three dimensions (i.e., longitude, latitude, and altitude) is one of the major

challenges given that the position of the UAVs can have a significant im-

pact on communication performance from the perspective of wireless link

establishment. If, for example, lower altitude is chosen, then the LOS prob-

ability will be lower given that it is a function of the height of transmitting

antenna [180].

Path planning, on the other hand, is another design challenge for moving

UAVs, as the selected trajectory plays an important role on multiple el-

ements including communication performance and energy efficiency [176].

Determining a longer path for a UAV, for example, would drain its on-board

power supply quicker, but it could be a good choice in terms of commu-

nication performance considering the channel conditions in order to avoid

interference [181,182]. As such, there are multiple trade-offs, and the trajec-

tory should be optimised according to the circumstances and requirements.

State-of-the-art in UAV Assisted Cellular Networks

A mathematical framework is developed in [91], wherein the UAVs are used to as-

sist in backhauling. More specifically, the authors consider mmWave backhauling

for mobile ground BSs, where NR-BSs are employed as a main backhaul option.

Furthermore, when the backhaul connection with the NR-BS is lost (or becomes

poor) due to blockages, the mobile BS’s backhaul connectivity is switched to

UAV relay nodes. The developed framework is tested through system level sim-

ulations, where the effects of various UAV related parameters including UAV

density, speed, and capacity are observed via different performance metrics, such

as outage probability and spectral efficiency.
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Both large and small timescale optimisation problems are formulated and

solved in [92] for the UAV-assisted industrial power line inspection scenario. In

particular, UAVs are employed in the power line inspection due to multiple rea-

sons, namely safety, accuracy, and cost considerations. As such, the UAVs visit a

power line site and collect raw image data to be transferred to a central unit for

further analysis. Therefore, the UAVs are expected to carry out signal strength

based distance calculations in order to refrain from possible UAV collisions. More-

over, rather than real-time data transmission, they first store the collected data

on their on-board storage unit and transfer it to the relay UAV, which is responsi-

ble for transferring it to the central unit. To this end, the trajectories, velocities,

frequency regulations, relay node selection, and power allocation are optimised

for energy reduction purposes using dynamic programming, auction theory, and

matching theory.

A channel modelling is investigated in [93] by focusing on path loss exponent

and shadowing. The authors perform experimental studies, in which a UAV

is used as a UE and equipped with a radio network scanner. In this regard,

location-specific RSRP measurements are carried out for different UAV altitudes.

Besides, a ground-drive test is also conducted for referencing purposes. From the

analysis of the obtained results, the authors propose a new path loss exponent and

shadowing model that consider the altitude of the UAV, since the measurements

results from the ground driving test and the UAV are quite different.

An RL based UAV positioning algorithm is proposed in [94]. In particular,

the authors design a UAV assisted cellular networking in the case of emergency,

where the existing cellular infrastructure is out of service due to the experienced

damage. A Q-learning based positioning of multiple UAVs, on which SCs are

mounted, is aimed with an objective of increasing the number of users served by

the UAV SCs. Provided that reaching the maximum amount of people is crucial

for emergency scenario in order to maximise the rescued lives, this is a well-found

objective.

2.4.4 Research Gap Analysis

Even though ML has been widely applied in predictive mobility management,

there are still open points to address. For example, since a predictive mobility

management with incorrect predictions are likely to incur more costs than the

conventional non-predictive mechanisms, it is crucial to a develop cost models

according to the objective of the application, such as signalling cost reduction,

latency minimisation, admission control, etc. This cost model should include all

the possible cases including predictive process with correct and incorrect pre-
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dictions, and non-predictive process; then, this model can be used to assess the

applicability of the predictive process with given prediction accuracies. Most of

the existing predictive HO approaches lack this kind of investigation, thereby no

information is made available about when to trigger a predictive process.

Furthermore, Markov chains are one of the most commonly used prediction

methods [59] due to their simplistic algorithm. However, this simplicity can also

bring additional challenges in more complex scenarios, which the conventional

Markov chains would be incapable of dealing with. This is mainly arising from

the limited contextual information they process, making them prone to producing

errors. A higher-order Markov chains, which is capable of including more con-

textual informations (e.g., certain number of previous transitions), have already

been proposed in the literature, but they are often unscalable, as their transition

matrix exponentially grows with the number of states. Therefore, better solutions

need to be appended into the algorithms in order to improve their capabilities

while benefiting from their simplicity.

On the other hand, a considerable amount of research activities focus on

UAV assisted wireless communication networking. Among them, many works

have been trying to address the UAV positioning problem with different method-

ologies. However, due to the inherent real-time characteristics of the problem, the

solution to be implemented should incur low computational cost and be adapt-

able, since the mobile environment continuously change. Therefore, implementa-

tions of computationally demanding positioning optimisations are infeasible and

impracticable owing to the fact that rapid decisions should be taken. In other

words, even when ML is used as a positioning algorithm, it is supposed to be

adaptable and computationally low-cost. A more detailed research gap analyses

can be found in Sections 4.1 and 4.2 in Chapter 4 for mobility management and

UAV assistance, respectively.

2.5 Dynamic Spectrum Access Techniques for

Cellular Networks

This section starts with a generic introduction of the CR concept. Then, among

all the phases involved, the spectrum sensing is exclusively studied by dividing

the existing techniques into two based on the size of the bandwidth to be sensed.

After that, the predictive sensing approach is demonstrated, followed by the cor-

responding state-of-the-art. Lastly, the chapter is concluded with a research gap

analysis.
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2.5.1 Cognitive Radio Networks

The following points are worth noting from the definition of a CR system (CRS)

by ITU [183]:

� obtaining information from the environment;

� adjusting parameters dynamically;

� learning from experience.

These steps remind the cognitive cycle introduced by Mitola III: observe, orient,

plan, decide, act, learn [70], which is also in line with the definition of cognitive

networking made by Thomas, R. W. et al. in [69].

Two types of users are introduced in CR concept: primary users (PUs), who

have a priority to access the spectrum as they are licensed users; and secondary

users (SUs), who are unlicensed and expected to use the spectrum opportunisti-

cally [47, 49, 60, 184]. As stated in the capabilities of CR in the report published

by the Federal Communications Commission (FCC) [185], the term opportunistic

refers to the fact that SUs are required to sense the EM spectrum and find a fre-

quency hole to utilise with a condition that they should not cause an interference

with the PUs.

There are four main CR spectrum management phases, namely spectrum

sensing, decision, sharing, and mobility [60, 184]. In the following paragraphs,

each of these four steps will be discussed in detail.

Spectrum Sensing

Spectrum sensing refers to the action taken by the SUs, since they are only allowed

to use the EM frequency spectrum opportunistically. To this end, the SUs need

to detect whether there is a PU in a spectrum portion of interest in order to

allocate it. If there is a PU, they cannot use it and are supposed to sense another

portion owing to the fact that PUs have priority to use the spectrum and SU can

only use it when it is available [47, 49, 60, 184]. Therefore, this is an important

phase, where the SUs find a way to access the spectrum that is one of the initial

requirements to establish a wireless communication link.

Spectrum Decision

Once the available spectrum holes, which are unused at the time, are detected

through one of the spectrum sensing methods, then the SUs are supposed to de-

cide the channel to use by considering their QoS requirements. Spectrum decision

is performed via three sub-phases [186]:
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� spectrum characterisation;

� spectrum selection;

� CR reconfiguration.

In spectrum characterisation, the SUs need to identify and categorise the available

frequency holes based on various parameters including interference, path loss,

wireless link errors, link layer delay, and holding time [187]. Then, the most

appropriate channel is selected by taking the QoS requirements into account in the

spectrum selection phase, followed by reconfiguring the radio-related parameters,

such as transmit power and modulation scheme [186,187].

Spectrum Sharing

CRNs can operate both on licensed and unlicensed spectrum bands [187]. In the

case of licensed spectrum operation, the SUs are supposed to avoid an interfer-

ence with the PUs, which use that spectrum with their license and thus have a

priority to access it. In this regard, a medium access control (MAC) layer solution

is needed to ensure that the SUs do not cause interference to the PUs [188]. This

spectrum sharing approach is beneficial not only with regard to the interference

control between SUs and PUs but also for obtaining a proper management among

the SUs, which try to access the same spectrum portion [187,188]. When the SUs

attempt to use the unlicensed spectrum, on the other hand, efficient spectrum

sharing methodologies are supposed to merely safeguard against the possible col-

lisions between the SUs provided that there is no PU in this type of spectrum

bands.

Spectrum Mobility

Spectrum mobility is a process that occurs when a PU wants to use the spectrum

band, which is already occupied by an SU. In other words, when the SU is oper-

ating on a licensed spectrum band, as explained in Section 2.5.1, it is expected

to sense the spectrum in order to find a spectrum hole—an unused part of the

spectrum [60,184]. After performing all the aforementioned steps (i.e., spectrum

sensing, decision, and sharing), the SU becomes able to use the licensed spectrum,

however, given that the SUs are considered as visitors [187], they need to vacate

the allocated spectrum band once the PU presence is detected. This phenomena

is called spectrum mobility, since the SU moves from the previously allocated

spectrum band to another. The process of switching the SU from one spectrum
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band to another is referred as spectrum HO, which has a direct impact on the

overall communication performance [189].

2.5.2 Traditional Spectrum Sensing Techniques

Narrowband Spectrum Sensing

In NB spectrum sensing, only a small portion of the spectrum is the focus of the

sensing process, and the bandwidth involved is often smaller than the coherence

bandwidth of the channel [190]. In this case, the SU is basically interested in

knowing whether a PU is present or absent in the channel of interest and this

can be depicted as a binary decision process with 1 indicating the presence of

a PU and 0 indicating the absence of a PU. The presence or absence of a PU

is ascertained based on certain detectable characteristics in the channel, such as

signal-to-noise ratio (SNR), type of modulation, signal periodicity, eigenvalue,

etc. [191]

Methodologies: Various approaches for NB spectrum sensing have been de-

veloped in the literature [190,191].

� Matched filter technique: the matched filter technique is applied in

a situation whereby the SU has prior information about the PU signal

including the type of modulation, bandwidth, frequency, etc. Thus, signal

received from the spectrum of interest is then compared with the already

known PU signal as well as a predefined threshold in order to detect the

presence of a PU and differentiate it from a noise signal [190]. The authors

in [102], develop a matched filter based spectrum sensing technique in order

to determine the power level and presence of the PU for scenarios where

the PU transmits with more than one power level.

� Energy detector approach: in the energy detector approach, the SU

simply estimates the energy level of the received signal in the channel of

interest and compares it to a predefined threshold value. Then, a PU is

said to be present if the detected energy level is greater than the threshold,

otherwise the PU is absent [192]. This is a simple approach where previous

knowledge of the signal characteristics is not necessary, however, the energy

threshold level needs to be carefully selected as it significantly influences

the accuracy of the PU detection. In [103], the authors propose an energy

detection based spectrum sensing technique by measuring the noise power

of the received signal. A dynamic threshold selection mechanism is also

implemented, since the detection performance depends on it.
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� Cyclostationary detection method: this method depends on certain

characteristics of the transmitted signal in the channel of interest, such as

the type of modulation, frequency, etc., which are often periodic and are

referred to as cyclostationary features [191]. The cyclostationary detection

(CD) approach is able to detect the presence of a PU and differentiate it

from noise signal because of the stationarity and lack of correlation of noise

signal by determining the spectral correlation of the received signal. Once

the mean and autocorrelation of the received signal is found to be periodic,

it is said to be cyclostationary, and hence the presence of a PU is confirmed.

A CD based spectrum sensing approach is developed in [104] to detect the

presence of PUs in a channel.

� Covariance-based detection technique: in this approach, the presence

or absence of a PU is determined with the help of the covariance matrix of

the signal as well as singular value decomposition [193]. First, the covari-

ance matrix of the signal obtained from the channel is analysed. Secondly,

the eigenvalues of the received signal are obtained by applying single value

decomposition on the covariance matrix of the signal. Lastly, the pres-

ence or absence of a PU is obtained by dividing the highest eigenvalue by

the lowest eigenvalue, followed by comparing the result with a predefined

threshold. A value above the threshold indicates the presence of a PU,

otherwise the channel is free. The authors in [105] propose an improved

covariance-based spectrum sensing algorithm for the detection of PU in a

channel. To overcome the limitations in the performance of conventional

covariance based technique due to the difficulty in selecting the threshold

value, they introduce a scheme which utilises the statistic of the covariance

matrix as well as a goodness of fit test to determine the presence or absence

of a PU.

Limitations: NB spectrum sensing techniques are often simpler approaches

of detecting the presence of a PU. However, this simplicity comes with some

drawbacks [190, 191]. Firstly, the SUs have less opportunity to find a suitable

spectrum hole, since only a small portion of the spectrum is selected for sensing

per time. Secondly, repeated sensing of the spectrum needs to be carried out in

order to find a suitable vacant spectrum for the SU, thereby leading to increased

sensing latency and energy consumption. Finally, the performance of all the

sensing techniques discussed is dependent on the proper selection of the threshold

value, hence choosing a suitable threshold becomes a challenging issue that needs

a careful consideration [103].
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Wideband Spectrum Sensing

When the SUs conduct spectrum sensing for a bandwidth, which is larger than

the coherence bandwidth, it is referred to as WB spectrum sensing, and the SUs

are supposed to employ WB sensing methods rather than previously discussed NB

ones. The underlying idea of why NB sensing methods are not considered in the

WB scenario is that the NB sensing methods have binary decision process, where

the SUs try to detect the presence of PUs with a simple binary decision (i.e., 0:

PU absent, 1: PU present) [190, 191]. This binary decision phenomenon would

make the sensing process inefficient for a WB spectrum owing to the fact that

the decision is made for the complete spectrum, resulting in the omission of some

available spectrum holes. Therefore, various techniques have been developed to

detect the PU presence efficiently in the WB spectrum without loosing opportu-

nities.

Methodologies: Since this section follows the taxonomy provided by [191]

and [190], the WB spectrum sensing methods are split into two different cat-

egories: Nyquist-based and sub-Nyquist based. Nyquist–Shannon sampling the-

orem states that the sampling frequency must be at least twice of the signal

frequency in order to avoid alising, which is a phenomenon occurring when two

consecutive sampling copies overlap in the frequency domain so that they become

indistinguishable. To this end, the methods that sample the received WB signal

at the Nyquist rate, which is exactly twice of the signal frequency, are referred

as Nyquist-based methods, while those perform sampling under the Nyquist rate

are called sub-Nyquist-based methods.

Nyquist-based Approaches: Some of the main Nyquist-based spectrum

sensing approaches are listed below:

� Wavelet transform based spectrum sensing: even though the Fourier

transform provides information about the frequency components included

in the signal, it does not state the occurrence time of the frequency com-

ponents. As such, the wavelet transform theorem helps in observing both

frequency and time related information simultaneously, making it a conve-

nient solution for WB spectrum sensing [194]. Both continuous and discrete

wavelet transform are employed in [106], in which the authors implement

continuous and discrete wavelet transform and logarithmic scaling along

with a threshold to perform an edge detection. To this end, in order to

combat noise amplificiation, the authors develop a discrete wavelet trans-

form method with a moving average filtering.
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� Multiband spectrum sensing: as performed in [195], the multiband

spectrum sensing method is implemented through the following steps [191,

196]:

1. the received WB signal is sampled by an analog-to-digital converter

(ADC) at a high sampling rate;

2. serial-to-parallel conversion is applied in order to split the data into

multiple parallel data streams;

3. FFT is implemented for time-to-frequency domain conversion;

4. a series of narrow band signals are obtained by splitting the resulting

WB signal;

5. for each NB signal obtained, one of the NB spectrum sensing tech-

niques is utilised to detect the PU presence.

There is a more advanced version of this type of multiband spectrum

sensing—named swept-multiband spectrum sensing—that benefits from less

ADC sampling rate requirements [107, 191, 196], and in [107], the authors

investigate its IQ (I: in-phase, Q: quadrature) imbalance and aliasing prob-

lems.

� Filter-bank based multiband spectrum sensing: filter-bank based

spectrum sensing method, as the name suggests, proposes to use a prototype

filter bank—where each filter has different central frequency—in order to

sense the received WB signal [190, 191,196, 197]. In particular, a baseband

prototype filter, which is used to obtain the baseband signal, is initially

designed. Its frequency is then shifted to other frequency bands in order

to estimate them via downsampling, which subsequently helps the method

to cover all the WB signal. The estimated individual frequency bands,

which become NB signals, are then sensed with a NB spectrum sensing

algorithm to determine the presence of PUs [190, 191, 196, 197]. In this

regard, the authors in [108] design a multi-band spectrum sensing model

through the filter-bank approach with PHYDYAS and prolate sequence

window as prototype filters.

Sub-Nyquist-based Approaches: Although the aforementioned Nyquist-

based WB spectrum sensing methods are successful in detecting spectrum oppor-

tunities, they are often costly in terms of sampling rate, hardware, and imple-

mentation complexity [196, 198]. As such, sub-Nyquist-based spectrum sensing

techniques, where the sampling rate of the receiver ADC is less than the Nyquist
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rate, come forward due to their more efficient and cost-effective approach. By

following the top-level taxonomy provided by [196], the sub-Nyquist-based ap-

proaches are elaborated as follows:

� Compressive sensing based WB spectrum sensing: after the in-

troduction of compressive sensing [199], which offers the reconstruction of

sparse signals through sampling below the Nyquist rate, a broad range of

application areas have emerged [200]. Similarly, it has also been recognised

as an important spectrum sensing method owing to the sparsity of the WB

spectrum [196]. In compressive sensing, first, the sparse representation of

the original signal is needed in a basis that is incoherent with the measure-

ment matrix, which is obtained through random sensing [198–200]. After

the signal acquisition is executed through sparse representation, sampling,

and compression, the signal is supposed to be reconstructed using one of the

Bayesian, greedy, thresholding, etc., approaches [198,200]. In [109], a com-

pressive sensing based WB spectrum sensing approach is proposed, where

the authors use relative inner product norm value to find the correlation

between the measured signal and the sensing matrix, which is then used to

detect the spectrum holes.

� Multichannel sub-Nyquist WB spectrum sensing: multi-coset sens-

ing is one of the most popular multichannel sub-Nyquist based WB spec-

trum sensing approach. In this method, the WB signal goes through mul-

tiple sampling channels, whose time offsets are different from each other.

In particular, each sampling channel (or coset) has a sampling frequency of

fs/m, where fs is the Nyquist rate and m is the decimation factor [201,202].

Then, the average sampling rate becomes
fsNcs

m
, where Ncs is the number

of sampling channels. Satisfying Ncs < m, the number of measurements be-

comes less than that of the Nyquist case, which is beneficial in decreasing

the complexity of the system. In short, in multi-coset based spectrum sens-

ing, each sampling channel operates at m times lower sampling frequency

than the Nyquist rate, and—by providing Ncs < m—less measurements are

taken into account compared to the Nyquist rate sampling. In this regard, a

multi-coset oriented blind spectrum sensing method is developed in [110] for

WB signals, wherein the authors identify the spectrum holes directly from

the sub-Nyquist sampling sequence with the help of two different thresh-

olding concepts for detection and terminating the iterative search process.
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Limitations: Compared to the NB case, WB spectrum sensing offers more

spectrum opportunities, since it covers a larger spectrum portion. In other words,

there becomes more opportunities to find suitable vacant spectrum holes as the

bandwidth to be sensed increases. On the other hand, this advantage comes at

the expense of some design challenges and inherent limitations. For the Nyquist-

based WB spectrum sensing techniques, for example, the major problems are

the requirement for sampling at higher rates and complexity of implementa-

tion [191, 196]. Moreover, IQ imbalance and aliasing are also issues, as raised

by [107], especially for the case of multiband spectrum sensing. In sub-Nyquist

based spectrum sensing, on the other hand, even though the higher sampling

rate requirements are circumvented, the design of sensing matrix, recovery un-

certainty, and hardware implementations are the main issues with compressive

sensing [198], while multichannel sub-Nyquist WB spectrum sensing suffers from

requiring many cosets [196].

2.5.3 Predictive Spectrum Sensing Approach

Predictive spectrum sensing is the process of forecasting or estimating the avail-

ability of spectrum holes, that is, the presence of the PUs in a licensed spectrum,

in advance using historical data, so that the SUs can make informed decision on

when to utilise the spectrum or vacate it for the PUs [203,204].

The advantages of predictive spectrum sensing approaches over traditional

counter-parts are as follows [60,205]:

� Reduced sensing latency: since the SUs already have prior knowledge

of possible vacant channels through spectrum predictions, they spend less

time in sensing to detect the available spectrum holes. This is because, with

the help of spectrum predictions, the SUs only sense the channels that are

predicted to be vacant.

� Proactive and real time decision making: in traditional sensing meth-

ods, the spectrum sensing is first implemented, followed by the decision of

which channel to occupy. However, before this process is completed, the

channel condition might have changed as the previously sensed spectrum

hole may now be occupied, thereby leading to poor spectrum decision and

channel collision. With predictive spectrum sensing, the channel occupancy

status is known before hand, thereby reducing the delays associated with

spectrum sensing and decision making process [206].

� Throughput enhancement: by predicting the channel occupancy status
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in advance, the SU is able to select the channel with better quality in order

to enhance its transmission throughput.

� Energy efficiency improvement: the process of spectrum sensing is

energy consuming, hence the lesser the spectrum sensing time, the more

energy can be conserved. Therefore, through predictive sensing approaches

the sensing time can be greatly reduced which would results in energy sav-

ings for the CR devices.

State-of-the-Art in Predictive Spectrum Sensing

Predictive spectrum sensing approaches have gained considerable amount of in-

terest owing to the fact that it allows a more informed sensing process, increasing

the chances of finding a spectrum hole [60]. This, by its turn, reduces the sens-

ing latency and energy consumption. In this regard, there are numerous related

works available in the literature.

An ANN based spectrum prediction approach is proposed in [95]. The devel-

oped predictor is consolidated by minimum Bayesian risk concept, which tries to

minimise the cost function that can be broadly defined as the difference between

a variable and its estimation. In particular, the authors, first, design an ANN

based model in order to predict the status of a frequency channel in the next time

slot. A sequence of previous status information of the channel of interest—in bi-

nary form—feeds the ANN model as input features, where each previous time slot

becomes a feature. Then, the channel status for the next time slot is supposed to

be predicted; however, the authors argue that a fixed type of decision boundary

for detecting the presence of PU results in misdetections in the case of error inclu-

sions in the data. Therefore, instead of using the prediction outputs directly for

detection, minimum Bayesian risk phenomena is applied with an assumption that

the prediction outputs fit to the normal distribution. In this approach, a dynamic

decision boundary, which is updated with new measurements, is proposed, and

this model is proven to give better prediction results than that of a conventional

ANN-based spectrum prediction.

A hidden Markov model (HMM) based cooperative spectrum sensing tech-

nique is proposed in [96], with a focus of energy-limited devices, such as the

sensor nodes in WSNs. In that regard, the authors, first, define interference

zones, which are distinctive in a way that each interference zone specifies a region

where different combination of SUs causes interference with the PU. These zones

are then treated as the hidden states for the developed HMM model, and the ob-

jective becomes predicting the next state of the PU. More particularly, each SU



70 CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

transfers its binary spectrum sensing result to a fusion centre, which is equipped

with an HMM predictor. After that, the fusion centre uses these spectrum sensing

results obtained from the SUs as observations in order to build the HMM model.

According to the predictions, the SUs that would cause interference with the PU

are refrained from sensing activity, however, instead of allowing all the rest of

the SUs to sense the spectrum, some of them are selected by considering the bat-

tery conditions. The proposed method results in an improved throughput-energy

rate, which can be interpreted as achieving the same throughput with less energy

consumption.

The authors in [97] use LSTM to predict the occupancy states of frequency

channels, where—different from previously mentioned related works—spectrum

sensors that are responsible for sensing the EM spectrum are employed. The idea

behind having these spectrum sensors is to take the burden of sensing process

from the SUs. In particular, the spectrum sensors deployed over a wide area are

responsible for sensing, then, multi-step ahead spectrum occupancy predictions

are performed with the help of LSTM-based local predictors. For a specific SU,

the prediction results are then fused in a way that the prediction of the spectrum

sensor with the closest proximity to the SU-of-interest has more impact due to the

spatial correlations. By doing so, the proposed model performs better in terms

of prediction accuracy and error probability.

A comprehensive spectrum sharing approach, which includes predictive spec-

trum sensing task, is proposed in [98], with a main objective of maximising the

sum rate obtained by all the SUs by taking their minimum rate requirements

into consideration. As such, all the SUs and the secondary BS carry out spec-

trum predictions by employing a multi-layer perceptron (MLP) algorithm, where

historic observation records are utilised as inputs. Then, the prediction outputs

from all the SUs and the secondary BS are forwarded to a fusion centre, which is

responsible for fusing what it receives in order to obtain a global prediction result.

Given that the prediction results produced by all the SUs and the secondary BS

have the same priority, the majority rule6 is determined as the rule for fusion.

In order to achieve the maximum sum rate objective, two beamforming vectors

(one for when PU is present and the other when PU is absent) and sensing time

are considered as optimisation variables.

A spectrum access technique is demonstrated in [99], where spectrum predic-

tions are performed using an LSTM method. Instead of predicting the future

occupancy status of the channels, in their work, the authors execute multi-step

6The prediction output that is returned by the majority of the entities (SUs and the sec-
ondary BS) is selected as the global prediction output.
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future power level predictions for multiple frequency channels. The predicted

power levels are then compared with a power threshold by considering an en-

ergy detector based spectrum sensing. Based on the predefined power threshold,

the binary status of each channel at each time slot is converted to a binary se-

quence, followed by categorising the channels based on their future availability.

After removing the channels in the unsuitable for sensing category, the rest of

the channels are sorted according to their throughput, which are then sensed

by the energy detector method sequentially. An interesting contribution is that

the authors optimise the sensing interval to adjust the output length of designed

LSTM.

A genetic algorithm assisted MLP based spectrum prediction method is de-

veloped in [100], in which the authors criticise the initial random weight selection

process in conventional MLP process, and argue that this results in sub-optimality

and trapping in local minimum. Therefore, a genetic algorithm based initial wight

selection algorithm, where the fitness function is chosen to be the prediction error,

is developed for the MLP spectrum predictor. Provided that the prediction error

is a fitness function, the algorithm tends to select the weights with comparatively

less errors. The proposed genetic algorithm assisted MLP is compared with a

conventional MLP (without genetic algorithm inclusion), and the prediction ac-

curacy is found to be enhanced with the proposed initial weight selection.

In addition to HMM, MLP, and LSTM, convolutional neural networks (CNNs)

have also been applied in predictive spectrum sensing [207]. In this regard, a

fusion centre based predictive spectrum sensing method, which employs CNNs

as a predictor, is designed in [101]. Since the SUs in the considered scenario

are not capable of sensing the spectrum, this task is performed by data fusion

centres. The focus of the work is to exploit the spectrum opportunities from

WB while sensing NB spectrum. In other words, first, the occupancy status of

WB is predicted, and then only the frequency channels that are predicted to

be vacant become subject to the spectrum sensing process. Moreover, an online

learning process—where the training with new data is always ongoing even after

the prediction algorithm is plugged into the system—is introduced in their work

in order to keep the CNN predictor dynamic to the changes.

2.5.4 Research Gap Analysis

Predictive spectrum sensing techniques have already resolved many problems in

CRNs, since they build a bridge between WB and NB sensing methods by taking

the advantage of both. While the spectral opportunities from WB is exploited, the

simplicity and robustness of NB sensing methods can also be benefited. Provided
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that, with spectrum predictions, SUs conduct more informed sensing process, the

sensing latency and energy consumption can be reduced due to the fact that the

required number of sensing attempts decay by narrowing down the spectrum to

be sensed.

Nonetheless, a majority of the existing works rely on historic channel state

knowledge for each channel of interest, making their applicability questionable.

This limits the number of channels to be predicted, and thus the underlying idea

behind the predictive sensing methods is partly violated. Moreover, the band-

width of interest can be further minimised by considering more context-awareness

during sensing. In other words, in most of the existing works, the decision of se-

lecting the channels to sense is made only considering the occupancy states, such

that the one with the most vacancy probability is first sensed. However, that

channel (or band) may not fit the requirements of an SU, and thus it is counted

as an unnecessary sensing attempt even if the spectrum hole in found. Therefore,

a pre-election mechanism would be needed between the prediction and sensing

phases, helping in eliminating the bands that are unsuitable for allocation. A

more detailed research gap analysis can be found in Chapter 5.



Chapter 3

Energy Optimisation in Cellular

Networks

Both device-side and network-side energy optimisation techniques are provided

in this Chapter with separate discussions. More particularly, in the device-side,

wireless connectivity and data processing location of IoT nodes are optimised

considering the battery levels as well as the requirements of the devices, as in [208,

209]. In the network-side, on the other hand, an intelligent cell switching concept

is designed in order to minimise the energy consumption of cellular networks

while maintaining service qualities.

3.1 Energy-Aware Smart Connectivity for IoT

Networks

IoT is today’s buzzword, often coupled with big data and AI [208]. However, there

is a lot of ambiguity of what is meant by that and scepticism about the actual

value generated by the IoT. Moreover, IoT devices have become pervasive, but

cover a broad range of technologies and standards. Wireless technology is key to

connect these devices through gateways or aggregation points, however, similarly,

a wide range of wireless protocols and standards are available and competing [210].

Once these devices are connected, they start reporting the sensed or measured

data to the platform. Again, multiple choices are possible in this aspect with

different strengths and weaknesses: reporting raw data to the cloud is very costly

as every bit gets charged. On the other hand, running scripts locally in the

device and reporting the resulting events to the cloud reduces the cloud service

cost, while limiting the visibility to the actual data and exhausting the battery

73
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of the device1. Furthermore, local scripts result in real-time actions and do not

expose the privacy of the data, whereas cloud computing incurs latency due to

the transmission network and requires stringent security measures to protect the

data [208].

Since there are many use-cases of the IoT paradigm [212], it should be ap-

proached from a given vertical perspective; e.g., smart health, smart cities, smart

manufacturing (Industry 4.0), smart transport, etc. Each of these verticals com-

prises multiple IoT-based applications with various requirements. In [213], for

example, signalling measurements and modelling are performed for both static

and vehicular machine-to-machine (M2M) applications, as both have different sig-

nalling overhead characteristics. As another example, remote monitoring in smart

cities requires full compliance with privacy regulations, whereas security-related

applications rank response-time highest among all KPIs.

The smart port use-case is adapted in this work to demonstrate the context-

aware smart connectivity, since it includes various types of applications and has

a determined need for monetisation—as opposed to smart cities that are primar-

ily developed for the well-being and productivity of the society. According to

figures from the World Trade Organization, 80% of worldwide freight is trans-

ported through ports2. The smart port concept entails the use of technologies

to transform the different public services at ports into interactive systems with

the purpose of meeting the needs of port users with a greater level of efficiency,

transparency, and value. European smart port initiatives include the followings

among many others [208]:

� the port of Rotterdam, where IoT-sensors are employed to generate a digital

twin and enable augmented intelligence3;

� the port of Hamburg, which exploits 5G networks to enable virtual reality

for vital infrastructure monitoring4;

� the port of Antwerp employs blockchain technology to enable a secure trans-

fer of rights to be exchanged between often competing parties5;

1The energy consumption of an IoT device has two main components: data processing and
transmission. Based on the channel conditions and the distance between the transmitter and
receiver, one of these components can dominate the other. Therefore, processing the data locally
could be less energy consuming in some conditions, while it results in more energy consumption
in other cases. Interested readers are referred to [211] and the references therein.

2www.wto.org/.
3www.portofrotterdam.com/en/doing-business/port-of-the-future/digitisation/control-

management, accessed on 03/05/2020.
4www.hamburg-port-authority.de/en/themenseiten/monarch-5g/, accessed on 03/05/2020.
5www.portofantwerp.com/en/news/smart-port-blockchain, accessed on 03/05/2020.
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� the port of Seville through the Tecnoport 2025 project uses mobile network

technology for traffic and goods tracking on port and their logistical transfer

on land6.

Smart ports present a particular challenge due to the necessity of information

exchange among competing stakeholders including port authorities and operators;

terminal operators; logistics and shipping companies; etc. It is then likely that

multiple IoT networks would co-exist and would consist of partly private and

partly public or shared infrastructure.

As described in [214], there are various communication standards, with dif-

ferent strengths and weaknesses, that may be used for connecting IoT networks

in the context of smart ports. Mobile IoT—connectivity over licensed mobile

wireless networks—is often the preferred solution for handling private data, since

it is reliable, end-to-end secure (owing to the electronic subscriber identity mod-

ule (eSIM) card), scalable, ubiquitous, and mature. Two main technologies have

been introduced by mobile networks to connect IoT devices: eMTC and NB-

IoT [27]. Both of these technologies are compatible with LTE, which means that

a software update suffices to deploy the IoT options. The former is geared to-

wards higher rates (>1 Mbps), and supports VoIP (Voice over IP based on ITU

H.323 protocol7) and flexible mobility. The latter is designed for low data rates

(20 kbps) and long range (100 km) but with limited mobility. The NB-IoT tech-

nology consists of restricting the energy of an LTE normal carrier in a narrow

band, hence allowing a maximum coupling loss that is 20 dB higher (164 dB)

than LTE [215]. Mobile IoT is a public service enabled by telecom carriers and

may be used by any party who subscribes to it. Other long-range and low-power

solutions, such as LoRa and Sigfox, are unlicensed and can reach similar coverage

and data rates as NB-IoT and eMTC. These may be privately owned but require

the usage of a gateway to connect to the Internet, and are often considered less

secure. Many short range unlicensed wireless connectivity solutions are available,

such as Wi-Fi (IEEE 802.11g), Bluetooth, ZigBee, etc., as described in [216], and

may be shared, public, or private.

In the presence of multiple wireless technologies, disparate IoT applications,

competing parties, and a broad range of static and moving IoT devices with

multiple connectivity options, it is of key importance to identify the best way to

collect, store, cache, and process the IoT data. What qualifies as the best way

depends on the device capabilities (e.g., connectivity options, available battery);

6www.gsma.com/iot/news/sevilles-tecnoport-2025-project-adopts-iot-security-guidelines/,
accessed on 03/05/2020.

7https://www.itu.int/rec/T-REC-H.323/e.
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the wireless conditions; the security requirements; the processing complexity and

availability; and the cost of storage/caching/uploading; etc.

3.1.1 Related Work

As the energy consumption is one of the challenges for IoT networks [217], recent

works, such as [211] and [218], study the trade-off between local and cloud com-

puting in terms of device energy consumption. The former proposes an analytical

framework that minimises the energy consumption by optimising the offloading

decision of multiple user devices. The latter elaborates a theoretical framework for

establishing trade-offs in the energy consumption and IoT infrastructure billing

comprising cloud computing. Mobile wireless networks are a prime contender

in the race to connect IoT networks owing to their well-established and ubiqui-

tous coverage and secure communication based on the eSIM card. In [219], the

authors investigate the connectivity of NB-IoT and LoRa in terms of both area

and population coverages in order to highlight the importance of the network

deployments. In [220], big data analytics based user-centric smart connectivity

is argued by providing corresponding research challenges.

Although data aggregation seems a promising solution to ease the signalling

overhead, it is one of the causes of the transmission delay. In [221], the authors

discuss the trade-off between delay and signalling overhead in order to demon-

strate the impacts of data aggregation. The authors in [222] analyse the joint

optimisation of caching and task offloading in such networks with mobile edge

computing. They present an efficient online algorithm based on Lyapunov optimi-

sation and Gibbs sampling that succeeds in reducing computation latency while

keeping the energy consumption low. A recommendation system is proposed

in [223] to address the challenge of link selection in a cloud RAN. A data-driven

scheme is introduced that results in optimised classification of link strengths be-

tween RRHs and IoT devices.

A deep learning algorithm for edge computing is introduced in [224] to boost

the learning performance in IoT networks. They also attempt to increase the

amount of edge tasks by considering the edge capacity constraints. An open-

source database is designed in [225] for the edge computation of industrial IoT

(IIoT) networks. The authors use a time-series analysis for predicting conditions

of IIoT machines in order to decrease the amount of condition reports to be

sent to the cloud. A holistic view of communication, computation, and caching

is presented in [226] using graph-based representations as learning methods for

innovative resource allocation techniques. The performance of the edge-caching

as well as the energy efficiency and delivery time is investigated in [227] with QoS
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constraints.

3.1.2 Objectives and Contributions

An environment, which is rich in IoT devices that are connected to a platform,

qualifies as digitised, and often as intelligent. Analytics, which use AI, is the

added layer that transforms such an environment into a smart one. The default

application of AI is to draw actionable insights from data in order to generate

value to a given vertical. This work argues that IoT solutions should not be

addressed through a layered perspective, but, instead, a holistic optimisation

approach is needed to generate the desired added value efficiently. In such a

holistic approach, ML, among other AI tools, is employed in every stage of the

solution including connectivity, storage, computing, and analytics.

In this regard, RL is employed in this work in order to manage multiple

optimisation objectives jointly as follows:

� energy consumption and monetary cost: based on the battery condi-

tions of IoT devices, the objective is to minimise the total monetary cost

(incurred by fog and cloud processing) along with the total energy con-

sumption of a device (incurred by data processing and transmission).

� requirements of IoT devices: the requirements of devices, such as la-

tency, security, etc., are also included in the optimisation problem, of which

meeting the given requirements is made one of the objectives.

Hence, the followings are performed in order to deal with the aforesaid objec-

tives:

� quality features: four key quality features, dominating IoT applications

in general and smart ports in particular, are identified as security, energy

consumption, latency, and monetary cost.

� problem formulation: to enhance the aforementioned quality features,

dynamically selecting the best connection and data processing unit for each

device is identified as a problem to combat. Moreover, the amount of data

to be offloaded is also subject to an optimisation, since it plays an important

role in selecting the connectivity and data processing unit.

This work is one of the few attempts to address these multiple IoT optimi-

sation objectives jointly using RL. Different from the state-of-the-art research, a

joint optimisation of the wireless connectivity, processing unit, and the percent-

age of data to be offloaded is proposed by considering the energy consumption,
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Figure 3.1: System modelling. The IoT network scenario is depicted on the
left hand side, while the descriptions of the considered wireless connection and
processing unit types are demonstrated on the right hand side. GW: gateway,
eNB: evolved node-B, IoT: Internet of things.

response-time, security, and monetary cost. The proposed novel approach is com-

pared to the state-of-the-art connectivity solutions, and demonstrate significant

gains in all aspects. Moreover, the proposed approach is a concrete solution

that is able to meet the context-aware requirements fully, while minimising the

monetary cost and the energy consumption.

3.1.3 System Model

The novel energy-aware smart connectivity approach proposed in this work ap-

plies to any IoT network with diverse options of connectivity and processing. For

the sake of clarity in the presentation, the system model is built around a smart

port scenario. All IoT devices are battery operated and have different battery

lives. They all have some processing power to perform basic tasks, and can either

offload the task to the gateway (or fog); i.e., the Wi-Fi access point, or to the

evolved node B (eNB or cloud). The considered system model is illustrated in

Fig. 3.1, where a sample of simulated IoT network environment and a visual de-

scription of the considered wireless connection types along with processing units

are presented.

It is assumed that every IoT device is controlled by a given application and

they jointly determine the context-aware constraints. Each combination of con-

nectivity option and processing location offers specific characteristics and limi-
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tations. In the following paragraphs, the models adopted to capture the propa-

gation loss, energy consumption, and response time for the proposed system are

described.

Propagation model

As shown in Fig. 3.1, there are three wireless connections that require modelling:

(a) Device-to-Gateway (Wi-Fi), (b) Device-to-eNB (NB-IoT), and (c) Gateway-

to-eNB (LTE). Connection (a) is often interference limited, as the employed spec-

trum is likely to be shared by other neighbouring connections. Connections of

type (b) and (c) are, however, considered to be noise limited, as it is assumed

that there are no other eNB in the surrounding employing NB-IoT technology

and a scheduler employed for LTE connections. The objective of the propagation

modelling is to determine the transmission power required to cater for each of

the wireless connection types. Accordingly, the energy consumption will be cal-

culated. It is started with the propagation loss, PL, which follows log-distance

path-loss model as follows:

PL = PL0 + 10κ log10

d

d0

+Xg, (3.1a)

PL0 = 20 log10

(
4πd0

λ

)
, (3.1b)

λ =
c

fc

, (3.1c)

where κ is the path-loss exponent, d is the distance between the transmitter and

receiver with d0 being the reference distance. Xg is the shadowing component

with a standard deviation, σ, and zero mean. PL0 is the path-loss at the refer-

ence distance d0, λ is the wavelength, c is the speed of the light, and fc is the

transmission frequency.

Moreover, although the connection types suffer from the same propagation

loss per decade, their receiver sensitivities are different from each other8. For all

types of links, the received power at a distance dx from the transmitting device

can be expressed as Pr = Pt/PL. Next, the required received power, Pr, is

calculated in order to achieve the target data transmission D in bits:

D = TW log2

(
1 +

Pr

PI +N0W

)
, (3.2)

8Threshold receiver sensitivity is taken as −141 dBm, −121 dBm, and −82 dBm for NB-
IoT, LTE, and Wi-Fi connections, respectively. In this work, these differences in the receiver
sensitivities are captured as link margins, such that the more sensitive the receiver gets the
more link margin is incurred.
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where T is the time period, W is the channel bandwidth, and PI is the cumulative

interference power on the given channel during time period T . Please note that

PI is null for wireless connections of type (b) and (c). Using (3.2) and solving

for Pr:

Pr =
(
2D/(TW ) − 1

)
(PI +N0W ). (3.3)

The energy consumption is optimised in this work along with monetary cost

and requirements of IoT devices, and data transmission is one of the main com-

ponents of the total energy consumption of an IoT device. Therefore, these calcu-

lations for the transmission power consumption are performed in order to obtain

the energy consumption, which is then optimised accordingly. The summary of

this process is given in the following paragraphs.

Energy consumption model

There are two major processes that consume energy in an IoT network: wireless

transmission and task computation. The energy consumption of the former is Et

and the latter is Ep, thus the total energy consumption is the sum of both. De-

pending on the route of communication taken by the device, the energy consumed

due to transmission power can be a result of either one hop using NB-IoT (Et,b)

or two hops using Wi-Fi for the first link and LTE for the second (Et,a + Et,c).

The process of calculating Et followed during this work can be compiled as

follows: first, D—a finite-length data packet to be transmitted during the time

period T—is obtained for each IoT device. Second, in order to transmit D suc-

cessfully, the required received power (Pr) is computed via (3.3), which is derived

from (3.2). Third, based on the obtained Pr value—for each IoT device—the

required transmit power (Pt) is calculated using (3.1). Lastly, Pt is observed for

a period of time T in order to arrive at the energy consumption caused by data

transmission. The energy consumed for processing the task, on the other hand,

is a function of the volume of data (D), computational power of the processing

unit9 (Γ ∈ {Γd,Γf,Γc})10, and the energy consumption per computational cy-

cle (ε), such that Ep = f(D,Γ, ε) =
D
Nbit

Γε, where Nbit is the number of bits per

data element [211].

9It is measured in the number of computational cycle per data element; i.e., higher Γ yields
less computational power.

10Γd, Γf, and Γc are the computational powers of device, fog, and cloud, respectively.
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Response time model

The response time perceived by the IoT device is the combination of the uplink

and downlink delays between the IoT device and the server. In this work, the

uplink delay is modelled, while the downlink delay is assumed the same for all

devices.

The uplink delay is caused by two phenomena: task processing (processing

delay, tp) and data transmission (transmission delay, tt). The processing delay

depends on the processor’s computational power (Γ). Naturally, a server has

higher computational power than a small gateway, and much higher than a simple

IoT device (Γc < Γf < Γd). Thus, in this work, tp is modelled based on the

computational powers of the processing locations as follows:
tp,d

Γd

=
tp,f

Γf

=
tp,c

Γc

,

where tp,d, tp,f, and tp,c are the task processing delays for device, fog, and cloud,

respectively. In addition, while the input to the task processing stage is large raw

data, the output is compressed data with comparably less volume. To that end,

the compression rate between the input and output data volumes is given as f;

Dr = fDp, where Dr and Dp are the volumes of raw and processed (compressed)

data, respectively.

The transmission delay is affected by the type of RAT and the volume of

data to be transmitted. Since Wi-Fi access employs the unlicensed frequency

bands, it often suffers from higher retransmission rates, which results in increased

transmission delays, due to frequent collisions. Therefore, in this work, this effect

is captured by the factor F > 1, whereby the delay incurred for transmitting

the same volume of data over Wi-Fi is F times higher than that over LTE or

NB-IoT; tt,a = tt,bF = tt,cF , where tt,a, tt,b, and tt,c are the transmission delays

for connection types (a), (b), and (c), respectively. This model is represented in

Fig. 3.2, in which the source could be either the IoT device or the gateway, and

the recipient could be either the gateway or the cloud.

Consequently, the overall response time for each action is calculated as follows:

R = tpD +

Nh∑
i=1

tt,iDi, (3.4)

where Nh = {1, 2} is the number of hops, and D ∈ {Dr,Dp}. Besides, tt,i and

Di represent the values of tt and D for the ith hop, respectively. Then, a feature
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scaling is applied to the values calculated through (3.4)11 as:

f(x) =
x−min(X)

max(X)−min(X)
, (3.5)

where X is the set of values of x. Note that both (a) and (b) type connections

constitute the first hop, while the connection type (c) is the second hop.

Source

LTE/NB-IoT Wireless 

Channel
Wi-Fi Wireless 

Channel

Processed data transmission (𝒟p): Processing at source

Raw data transmission (𝒟r): Processing at recipient

Recipient

Figure 3.2: Uplink delay model capturing the factors affecting both processing
and transmission delays over any hop in our system.

3.1.4 Problem Formulation

All the possible connection type and processing unit pairs are given in Table 3.1.

Note that although device, fog, and cloud processing are all available for Wi-Fi

case, NB-IoT includes only device and cloud processing owing to the fact that it

does not have/require a Wi-Fi gateway to connect to the Internet.

Table 3.1: Possible connection type and processing unit options

Option Connection Type Processing Unit

A Wi-Fi Device
B Wi-Fi Fog
C Wi-Fi Cloud
D NB-IoT Device
E NB-IoT Cloud

Considering the diversity in the available options provided in Table 3.1, there

are multiple components and objectives of the developed optimisation problem:

11x is used here as an arbitrary variable to indicate that the function given in (3.4) can be
used for any parameter.
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� requirements of IoT devices: there could be a broad range of require-

ments based on the use-case, scenario, and conditions, such as data rate,

security, latency, etc. to name a few. In this work, response time—as

another interpretation of latency—and security are considered as possible

requirements of IoT devices. As such, let Σr be the response time require-

ment of an IoT device, and Or be the response time offered by the selected

option. Therefore, in order to satisfy the response time requirement of the

IoT device, the following criterion must be met:

Or ≤ Σr. (3.6)

The security requirement, on the other hand, is captured by eSIM protec-

tion, such that IoT devices opt for eSIM protection if data security is of

importance to them. In a more formal way, let Σs ∈ {0, 1} be the secu-

rity requirement of an IoT device, and Os ∈ {0, 1} be the level of data

security offered by the selected wireless technology, where 1 indicates the

need for eSIM protection and 0 means eSIM protection is unnecessary. In

this regard, the following condition is needed in order to meet the security

requirement of the IoT device:

Os ≥ Σs. (3.7)

� energy consumption: the total energy consumption of an IoT device (ET),

which consists of Et and Ep, should be minimised in order to keep the device

alive for longer. However, the requirements of IoT devices may undermine

this objective, since the number of available options may reduce in an at-

tempt to satisfy the requirements. Furthermore, the battery level of an IoT

device, represented by β, is also considered in this work provided that it

could be another variable in the optimisation problem, such that the energy

consumption of the device can be prioritised if β goes low.

� monetary cost: it is also important to reduce the monetary costs due

to the fact that a smart port scenario, which is more related to trading

and business, is targeted in this work. Since lower costs is vital to keep

businesses sustainable and profitable, the total data processing cost, rep-

resented by MT, is supposed to be minimised as well, constituting another

objective for the optimisation problem. To this end, each processing unit

incurs different costs: Md, Mf, and Mc are the processing cost per bit for

device, fog, and cloud processing, respectively.
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In addition to the requirements and objectives, the optimisation problem has

strict constraints as well. For example, the available computational capacity

of the processing unit is the major constraint, since it can render the selection

infeasible. An IoT device, for instance, selects Option C from Table 3.1, which

requires offloading the collected raw data to the cloud. However, if the cloud

does not have sufficient computational capacity to handle the data processing

task, the selection becomes invalid. In this regard, let Oχ ∈ {χd, χf, χc} be the

computational capacity of the selected processing unit, where χd, χf, and χc are

the available capacities of device, fog, and cloud, respectively. Then, the following

condition must be obeyed to ensure that the selected processing unit has enough

capacity for the required amount of data:

Dr ≤ Oχ. (3.8)

It is worth nothing that network capacity is not considered as a constraint in

this work, and it is assumed that the IoT devices can obtain their required radio

resources from the network, regardless of the connection type. In other words,

the network has sufficient radio resources to connect the IoT devices.

In addition to the computational capacity, the aforementioned requirements

of IoT devices create additional constraints due to the fact that poorly addressed

response time and security requirements can make the whole process impractical.

For example, meeting the security requirement can be a must for some use-cases,

which value data privacy and cannot tolerate data breaches. In this regard,

for such use-cases, Options A, B, and C in Table 3.1 are eliminated from the

possibilities, since they are with Wi-Fi connectivity that does not offer an eSIM

protection.

Moreover, partial offloading—where IoT devices are allowed to offload por-

tions of their raw data to the fog or cloud—is also considered in this work. As

such, the amount of data to be offloaded should also be optimised, thereby a joint

optimisation of connection-processor pair and amount of data to be offloaded is

proposed. The reasoning behind the partial offloading concept is that it is not

sufficient to optimise the best connection-processor pair alone, since this kind

of optimisation cannot be done properly without considering and optimising the

amount of data to be offloaded given the aforementioned constraints. For ex-

ample, imagine an IoT device selects Option C in order to reduce its energy

consumption. However, if the amount of data to be offloaded had not been a part

of the decision, it means that the decision was taken blindly. Then, imagine the

cloud is capable of processing only 10% of the data due to its capacity limita-
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tions, while the fog could process 100% of the data, which happens to result in

less energy consumption than processing 10% at the cloud. It is quite clear from

this example that the amount of data to be offloaded should also be a part of the

optimisation.

In this regard, the overall optimisation problem can be written formally as

follows:
min
O,Ψsel

ET(O,Ψsel),MT(O,Ψsel)

s.t. Or ≤ Σr,

Os ≥ Σs,

Dr ≤ Oχ,

(3.9)

where Ψsel is the selected percentage volume of data to be offloaded. O ∈
{A,B,C,D,E} is the selected option from Table 3.1, and is a 5-tuple as follows:

O = [Or,Os,Oχ,ET,O,MT,O], (3.10)

where ET,O and MT,O are the resulting total energy consumption and monetary

cost offered by the selected option, O, respectively.

3.1.5 Proposed Scheme

RL, which is a goal-seeking technique, is employed in this work. It is a trial and

error approach, in which the agent (or learning device) learns to take the correct

action by interacting with its surroundings and being rewarded or penalised for

each action. RL is selected in this work due to its great applicability to the pre-

sented problem. For example, IoT devices need to interact with its environment

in order to assess the circumstances and to take subsequent actions in terms

of selecting the connection type and processing unit, which makes RL a solid

candidate of solution given that it performs the optimisation via environmental

interactions.

Being one of the most prominent RL algorithms, Q-learning aims to find the

optimum policy for a given problem, that is, the best action to take at any given

state. Thus, Q-learning is considered in this work as a methodology, since it offers

two key features that enable an efficient solution to the problem in question. First,

as it is a model-free learning approach [55, 228], it is 1) capable of operating in

dynamically changing environments; 2) a low-complexity algorithm which does

not require a lot of power, thus reducing the energy consumption of IoT networks.

Second, Q-learning is known to converge in most cases [229], such as multi-agent

non-cooperative environments [146] as in IoT networks.
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It has already been proven in [54,230,231] that Q-learning certainly converges

to the optimal policy under the following certain conditions:

1. visiting all the pairs of state and action infinitely often;

2.
∞∑
t

αt = ∞, where 0 ≤ α < 1, yielding that the learning rate should be

sufficiently large;

3.
∞∑
t

α2
t < ∞, where 0 ≤ α < 1, meaning that the learning rate should

eventually be sufficiently small.

In this regard, an ε-greedy policy, where ε > 0, is employed in the developed

Q-learning algorithm in order to satisfy the condition (a) of convergence, since it

allows continuous exploring with a probability of ε. Moreover, the learning rate is

chosen to be α = 0.5 in this work, which could help in satisfying the condition (b)

of the convergence. The condition (c), on the other hand, would require to decay

the value of α over time. However, instead of α decaying, the aforementioned

ε-greedy policy is benefited to consolidate the probability of convergence [54].

Furthermore, ε decaying—where the value of ε is slightly reduced over time—is

employed during the implementations, since it can yield asymptotic convergence

to the optimal policy [54]. Lastly, the convergence of the developed Q-learning

algorithm is empirically observed and verified during the simulations.

In the following paragraphs, the proposed model for the employed Q-learning

algorithm will be elaborated. Note that Algorithm 2 is used as a generic algorithm

of Q-learning, while (2.5) is employed as the action-value function update policy.

Actions and States

In the considered scenario, the IoT devices are supposed to choose one of these

options in Table 3.1 to conduct their connection and data processing tasks. In

this regard, these options could also be treated as an action set for the developed

Q-learning algorithm. However, Options B, C, and E include either fog or cloud

processing, meaning that the IoT devices are supposed to offload their collected

data to the fog or cloud for processing if they choose one of these options. Pro-

vided that partial offloading is also captured in this work, the amount of data to

be offloaded should also be optimised, and thus considering the options in Ta-

ble 3.1 as the action set would not be adequate for this objective. In other words,

the action set should include not only the options for the connection-processing

pairs, but also the amount of data to be offloaded.



3.1. ENERGY-AWARE SMART CONNECTIVITY FOR IOT NETWORKS87

Therefore, the action set is determined as follows:

A = O×Ψ, (3.11)

where × represents a Cartesian product, O is the set of all the possible options

included in Table 3.1 (e.g., A, B, C, D, E), and Ψ is the set of all the possible

offloading percentage options, such that

Ψ = {ψm | m ∈ {0, 1, 2, ..., 20}}, ψ ∈ R+, (3.12)

where m is discretisation factor that is used to discretise the continuous values

from 0% to 100%, and ψ is the resolution of the discretisation process. Note

that Options A and D do not have Ψ parameter, since they do not perform any

offloading at all. Using this phenomena, the actions set in (3.11) can be rewritten

as

A =

{
O×Ψ, if O ∈ {B,C,E}

O, O ∈ {A,D}.
(3.13)

Since each of these actions also defines the state of the agent, the state space—

denoted by S—is designed to be the same with the action space, such that S = A.

After having both (3.11) and the fact that S = A, it is now worth discussing the

selection of ψ value: i) considering (3.11), the size of A grows linearly with the

size of Ψ; and ii) from S = A, the size of S grows equally with the size of A. Thus,

it can be deduced that the size of the action-value table grows exponentially with

ψ, which would increase the requirements of memory, time, and computational

resources [54], thereby the selection of ψ plays an important role. Hence, ψ can

take any value in R+, but with a trade-off: the smaller it gets, the higher the

resolution is, resulting in a more precise decision. However, smaller ψ creates an

additional computational burden, since it increases Ȧ, where Ȧ = |A|. Without

loss of generality, ψ = 5 is taken in this work, as it provides sufficient resolution

without significantly increasing the consumed computational resources.

Penalty function

In the proposedQ-learning algorithm, two novel prioritisation concepts are adopted:

� prioritisation of requirements: IoT devices are allowed to prioritise

their requirements using a weighting mechanism, such that w = {wr, ws},
where wr ∈ R and ws ∈ R are the weight parameters for response time

and security requirements, respectively. IoT devices are asked to rate the

strictness of their requirements, such that lower values indicate that the
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requirement is loose, while higher values yield a stricter requirement.

� prioritisation of energy consumption and monetary cost: the to-

tal energy consumption and monetary cost are subject to prioritisation as

well. However, unlike the requirement prioritisation case, where IoT de-

vices control their weights (wr and ws), the energy consumption and cost

prioritisations are triggered by the network. Moreover, this mechanism is

linked to the battery level of an IoT device, β. More specifically, a certain

threshold, denoted by βT ∈ R, is determined for the battery level, and

– if the battery level of the IoT device i is above or equal to the threshold,

such that

βi ≥ βT , (3.14)

the monetary cost is prioritised.

– if, on the other hand, the battery level of the IoT device i is less than

the threshold, such that

βi < βT , (3.15)

then the energy consumption is prioritised.

Based on that, the overall penalty function for the developed Q-learning al-

gorithm is formulated as follows:

CQ = Θr + Θs + Θc + Θm + weET, (3.16)

where Θr, Θs, Θc, and Θm are the penalty elements for response time, security,

capacity, and monetary cost, respectively, such that

Θr =

{
Ωwr +Or, if Or > Rr

0, otherwise,
(3.17a)

Θs =

{
Ωws , if Os < Σs

0, otherwise,
(3.17b)

Θc =

{
Ωwc , if Dr > Oχ
0, otherwise,

(3.17c)

Θm = wmMT,OΨDr, (3.17d)

where Ω ∈ R is the global penalty factor, and wc ∈ R is the penalty factor incurred

when the computational capacity is exceeded. Note that wc > max{wr, ws}, since

the computational capacity is a physical constraint that cannot be breached.
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we and wm are the weights for energy consumption and monetary cost set by

the network, such that

we =

{
w+

e , if βi < βT

w−e , otherwise,
(3.18a)

wm =

{
w+

m, if βi ≥ βT

w−m, otherwise,
(3.18b)

where x+ and x− represents the high and low values of x, respectively.

3.1.6 Performance Evaluation

In this section, the proposed RL approach is implemented in a simulation envi-

ronment, as illustrated in Fig. 3.3.
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Figure 3.3: A sample snapshot of the simulation environment. While the eNB
has a fixed location throughout all the repeating simulations, the gateways and
IoT devices are located randomly, and thus their locations may vary from this
sample snapshot. Note that only one of the five gateways is considered as the
main gateway, and the simulations are performed for the IoT devices within the
coverage area of this main gateway; the others are created as interference sources.

Benchmarking

It is considered that half of the IoT devices connect with NB-IoT in view of the

data privacy and related security requirements; these represent Group-X. The

remaining devices connect to the eNB through the Wi-Fi gateway, hence over two
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wireless hops, and represent Group-Y. Consequently, there are six possible fixed

benchmark scenarios that may be formed by selecting the processing location of

each group of devices; these are listed in Table 3.2.

Table 3.2: List of fixed benchmark scenarios with connection types and data
processing unit

Scenario Group-X Group-Y

ScA Device Device
ScB Cloud Device
ScC Device Fog
ScD Cloud Fog
ScE Device Cloud
ScF Cloud Cloud

Performance Metrics

The obtained results are evaluated in five different metrics, namely: energy con-

sumption, monetary cost, response time, security dissatisfaction, and a novel joint

metric that is developed for this work. Moreover, these metrics are presented in

a comparative fashion, where the performances of the benchmark methods—

provided in Table 3.2—are compared to the proposed RL based method.

The performance metrics can be elaborated as follows:

� energy consumption: the accumulated energy consumption of all the IoT

devices, which is caused by data processing and transmission, is calculated

by

ËT =

Niot∑
i=1

ET,i, (3.19)

where Niot is the number of IoT devices, and ET,i is the total energy con-

sumption of ith IoT device.

� monetary cost: the aggregated monetary cost that the IoT devices are

charged for data processing:

M̈T =

Niot∑
i=1

MT,i, (3.20)

where MT,i is the total monetary cost for ith IoT device.

� response time: the accumulated response time that occurs for all the IoT
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devices:

R̈T =

Niot∑
i=1

RT,i, (3.21)

where RT,i is the total response time occurred with ith IoT device, and given

by

RT,i =

{
Or − Σr, if Or > Σr

0, otherwise.
(3.22)

� security dissatisfaction: the number of IoT devices, whose security re-

quirements are not satisfied:

N̈dis,T =

Niot∑
i=1

vdis,i, (3.23)

where vdis,i security dissatisfaction variable for the IoT device i, such that

vdis =

{
0, if Os ≥ Σs

1, otherwise.
(3.24)

� joint metric: the combination of all the aforementioned metrics, such that

J = ˆ̈ETξE + ˆ̈MTξM + ˆ̈RTξR + ˆ̈Ndis,TξN , (3.25)

where ˆ̈ET, ˆ̈MT, ˆ̈RT, and ˆ̈Ndis,T are the normalised versions of ËT, M̈T, R̈T, and

N̈dis,T, respectively. The normalisation operation is performed here in order

to keep the scale of each metric in the same range, thus preventing one from

dominating another. Equation (3.5) is utilised for the normalisation (feature

scaling) operation; i.e., obtaining ˆ̈ET, ˆ̈MT, ˆ̈RT, and ˆ̈Ndis,T from ËT, M̈T,

R̈T, and N̈dis,T, respectively. ξE, ξM , ξR, and ξN , where ξE = 1, ξM =

1 Joules/AC, ξR = 1 Joules/s, ξN = 1 Joules, are coefficients used to make

the units of the elements of J in (3.25) the same. Note that AC in the unit

of ξM stands for arbitrary currency.

Battery Regimes

Two different battery regimes, namely low and high, are considered in this work,

and results are produced separately in order to observe the behaviours of the

proposed method12.

12It is worth noting here that the benchmark methods do not consider the remaining battery
level of IoT devices, and thus their behaviours are not expected to change with the battery level.
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� low-battery regime: when the energy level of the battery of a particular

IoT device is under a certain threshold (βi < βT ), the device is treated as

in a low-battery regime, and the proposed Q-learning algorithm starts to

prioritise the total energy consumption of the device along with meeting the

response time and security requirements. It is worth noting that, in this

regime, the priority between the requirements and the energy consumption

is determined by the weights of the requirements, w; such that if the re-

quirements are strict (i.e., with high weights), they become more important

than the energy consumption, and vice versa. The underlying idea here

is that if the device is strict in any requirement, then it means that it is

unwilling to compromise on that. For instance, a use-case might value the

security very much, thereby replacing the battery of the correspondent IoT

device would be more preferable than compromising on security to last the

battery for longer. Moreover, the monetary cost is completely discarded,

therefore, IoT devices are expected to be charged more when they are in

this regime.

� high-battery regime: to be in the high-battery regime, the remaining

energy in the battery of an IoT device should be above the aforementioned

threshold for the battery level (βi ≥ βT ). In this high-battery regime, the

monetary cost is valued significantly due to the absence of the battery level

pressure13. Furthermore, similar to the low-battery regime, the importance

of the requirements are determined by their correspondent weights, and the

energy consumption is loosely prioritised14.

Results and Discussions

This section begins with the obtained results when the IoT devices are in the

low-battery regime. Table 3.3 shows the values of the parameters used in all the

simulation campaigns in this work.

Fig. 3.4 demonstrates the performances of all the methods including the pro-

posed one and the benchmarks when the entire set of IoT devices are in the

low-battery regime. Moreover, both response time and security requirements of

the IoT devices are prioritised in a rigid way, where both wr and ws are ranked

as 3. As seen from the results, the proposed method performed better than all

13The pressure of keeping the device alive for longer by limiting its energy consumption.
14It is important to mention that unlike the low-energy regime, where the monetary cost

is completely discarded, the energy consumption is still considered in the high-battery regime
albeit with much less importance, since energy consumption of an IoT device should always be
in the equation.
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Table 3.3: Simulation parameters

Parameter Value Description

Communication
κ 3 Path loss exponent
d0 10 m Reference distance
σ 8 dB Standard deviation for shadowing component
c 3× 108 m/s Speed of light
fc,a 2.4 GHz Carrier frequency for IEEE 802.11g
fc,b 1700 MHz Carrier frequency for NB-IoT
fc,c 1800 MHz Carrier frequency for LTE
N0 −204 dbW/Hz Noise density
T 1/Niot s Time period
W 180 kHz Bandwidth
F 2 IEEE 802.11g retransmission rate
reNB
� 1 km Coverage radius of eNB
rWi-Fi
� 30 m Coverage radius of eNB

General
Niot 10 Number of IoT devices
ε 5× 10−6 J Energy consumption per computation cycle
S 8 Number of bits per data element
χd 30 kbps Computational capacity of device
χf 100 kbps Computational capacity of fog
χc 10 Mbps Computational capacity of cloud
Γd 100 (Device) Computation cycles per data element
Γf 10 (Fog) Computation cycles per data element
Γc 1 (Cloud) Computation cycles per data element
Md AC 10−4 (Device) Cost of processing per bps
Mf AC10−1 (Fog) Cost of processing per bps
Mc AC1 (Cloud) Cost of processing per bps
f 200 Data compression rate
βT 30% Threshold for battery level

Q-learning
α 0.5 Learning rate
ϕ 0.9 Discount factor
ε 0.8 Chance of choosing random action
Nep 103 Number of episodes
Nit 103 Number of iterations per episode
Ω 10 Global penalty factor
wc 5 Penalty of exceeding computation capacity
w+

e , w−e 10, 1 High and low values of energy weight
w+

m, w−m 10, 0 High and low values of monetary cost weight
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the benchmark methods in the majority of the metrics15:

� it outperformed the benchmark methods in energy consumption, security

dissatisfaction, and joint metric with varying scales, such that:

– in energy consumption, the proposed method reduced the total energy

consumption to 0 from 0.0081, 0.0069, 0.4547, 0.4535, 1.00, and 0.9988

for ScA, ScB, ScC, ScD, ScE, and ScF, respectively.

– in security dissatisfaction, all the benchmark methods performed the

same, and the proposed method managed to drop the dissatisfaction

index from 1.00 to 0.

– in the joint metric, the prosed method produced 0 cost, while ScA,

ScB, ScC, ScD, ScE, and ScF produced 0.1561, 0.3934, 0.3706, 0.6077,

0.7627, and 1.00, respectively.

� it performed almost equally well with ScA in response time, while outper-

forming other benchmark scenarios: both the proposed method and ScA

resulted in 0 response time while ScB, ScC, ScD, ScE, and ScF resulted

in 0.0770, 0.4566, 0.5335, 0.9232, and 1.00, respectively. Note that since

(Or−Σr) is the total excess amount of response time (please refer to (3.22)),

the methods are entitled to result in no response time when they satisfy the

response time requirements.

� in monetary cost, the proposed method managed to outperform only ScF,

while being outperformed by the rest of the benchmark methods. In partic-

ular, the proposed method performed 0.6302, while ScA, ScB, ScC, ScD, ScE,

and ScF resulted in 0, 0.4855, 0.0518, 0.5369, 0.5145 and 1.00, respectively.

In the following paragraphs, there will be individual discussions on the results

for each performance metric:

� energy consumption: owing to the low-battery regime, it was expected

for the proposed method to perform well in minimising the energy consump-

tion. This is due to the fact that, when the battery level is under the thresh-

old, the energy consumption component in the penalty function in (3.16) is

prioritised through its weight (we) by setting it to its high value (w+
e ), as

seen in (3.18a). In other words, given that the total energy consumption is

strictly prioritised along with the the security and latency requirements,—

as mentioned earlier while discussing the battery regimes—the algorithm

15The result values that will be mentioned in this section are normalised into the range of
[0, 1], and therefore the methods can output zero results.
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Figure 3.4: Performances of the proposed method (named as Q-learning in the
legend) and the benchmark scenarios in terms of considered metrics when all
the IoT devices are in the low-battery regime. The response time and security
requirements are strictly prioritised, such that wr = ws = 3. Note that the results
shown are normalised values in the range of [0, 1] with an offset of 0.1, which is
used only due to visualisation purposes. However, the results are discussed in
the text without considering the offset value. The indexing from (a) to (g) in the
legend and the first set of bars are done for identification, and the same order
follows for all sets of the bars.

values the total energy consumption after ensuring the satisfaction of the

requirements. This is a reasonable behaviour, since the energy consump-

tion becomes more crucial when the battery is about to be depleted, which

in turn interrupts the communication until the battery is recharged or re-

placed with a new one. Therefore, this results confirm the proper design of

the penalty function of the developed Q-learning algorithm.

The energy consumption results for the benchmark scenarios are also worth

discussing. From Section 3.1.3, it is already known that there are two com-

ponents of the overall energy consumption, namely data processing and

transmission. Based on the channel conditions and the distance between a

transmitter and a receiver, the transmission energy consumption can prevail

the processing energy consumption, or vice versa [211]. However, receiver
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sensitivity, which is captured by the link margin in this work, also plays

an important role provided that it is directly correlated to the required

received power, which in turn affects the required transmit power. There-

fore, the connection type (i.e., NB-IoT, Wi-Fi, and LTE) is also involved

in the breakdown of the total energy consumption. Due to the random

distribution of the IoT devices and the Wi-Fi gateways at each repeat16,

it is avoided the two components of energy consumption dominating each

other17. Nonetheless, owing to the link margin assumptions, in this work,

the NB-IoT connection happened to be the least energy consuming connec-

tion type in most of the cases. Besides, in terms of the energy consumption,

the descending order of the tasks is as follows: Wi-Fi connection, data pro-

cessing, NB-IoT connection. Note that the energy consumption difference

between the Wi-Fi connection and data processing happened to be much

more than the difference between the data processing and NB-IoT connec-

tion. This may seem counter-intuitive given that the Wi-Fi gateway is much

closer to the IoT devices than the eNB. Nonetheless, since the receiver sen-

sitivity of NB-IoT is less than Wi-Fi and LTE, it happens to result in less

energy consumption owing to the less required transmit power, which is

caused by the less path-loss.

In this regard, since all the options include the same number of IoT devices

with NB-IoT (Group-X) and Wi-Fi (Group-Y), there is no difference in

terms of the number of connection types. However, the point that matters

here is the processing unit. On one hand, when an IoT devices is connected

through Wi-Fi, device processing is expected to consume less energy than

cloud processing, with fog processing in between. On the other hand, when

the device is connected through NB-IoT, device processing consumes more

energy than, cloud processing, with fog processing in between. In addition,

the maximum energy consumption with Wi-Fi connection is expected to

be more than the maximum energy consumption with NB-IoT connection.

Based on that, ScB resulted in the least energy consumption due to the fact

that the devices with Wi-Fi connection process the data locally18, while

the devices using NB-IoT connection performs cloud processing19. ScB is

followed by ScA, since it also processes the data locally for Wi-Fi connec-

16The simulations are repeated for 25 times to avoid the effect of randomness.
17This is ensured via random process; the path-loss can sometimes be huge, which results

in the transmission energy consumption surpassing the data processing energy consumption, or
vice versa. However, this effect is minimised by averaging out the simulation repeats.

18On average, the device processing is the minimum energy consuming option with Wi-Fi
connection

19On average, cloud processing is the least energy consuming option for NB-IoT connection.
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tions, and he small difference between ScA and ScB comes from the cloud

and device processing for the NB-IoT connection. In a similar fashion, ScE

consumed the maximum energy among the benchmark methods, since it

employs cloud processing for Wi-Fi connected devices and device process-

ing for NB-IoT connected devices. In summary, cloud processing is less

energy consuming for NB-IoT, whereas it is more energy consuming for

Wi-Fi. Moreover, as mentioned before, the maximum energy consumption

with Wi-Fi is much more than that of NB-IoT.

� monetary cost: as a result of the low-battery regime, the proposed al-

gorithm inclines towards being much looser in terms of the monetary cost,

and thus it is not expected to be competitive in this metric. Considering

(3.16), (3.17d), and (3.18b) together, the monetary cost behaviour of the

algorithm is not surprising due to the following reasons:

– from (3.18b), wm is equalised to w−m, which is set to 0, as seen in

Table 3.3;

– this makes Θm = 0 in (3.17d); and

– the monetary cost element in (3.16) is subsequently eliminated; thereby

the algorithm does not have any monetary cost consideration at all. Based

on that, as anticipated, the proposed method performed worse than all the

benchmark methods other than ScF, which purely includes cloud processing.

Similarly, the results of the benchmark methods are obtained as expected;

the cloud is the most expensive means of data processing, followed by the

fog, and the device (local), respectively, such that Md < Mf < Mc. Thus,

the scenarios with device processing (e.g., ScA) resulted in less amount of

monetary cost, whereas the scenarios with cloud and/or fog processing (e.g.,

ScD and ScF) become the most expensive ones. The results obtained in

Fig. 3.4 confirms this statement.

� response time: the proposed method performed quite well in response

time by outperforming all the benchmark methods. Provided that wr =

3, which yields a strict prioritisation of response time, it was expected

for the proposed method to reduce the response time. Considering (3.16)

and (3.17a) together, the effect of response time in the penalty function

in (3.16) increases with growing wr. As such, the primary objective of the

developed Q-learning algorithm is to minimise the overall penalty, thereby

the response time satisfaction becomes a key for this objective.
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Similar to the previous metrics, the benchmark methods20 also performed as

anticipated. As discussed in Section 3.1.3, response time is a function of the

number of hops (Nh), the computational power (Γ), retransmission rate (F ),

the data volume (D ∈ {Dr,Dp}), and compression rate (f). Given that

NB-IoT connection has only one hop and lower retransmission rate than

Wi-Fi connection, the scenarios with NB-IoT resulted in a comparatively

less response time. Similarly, from (3.4), albeit suffering from a higher

computational time, device processing is also preferable due to the processed

data transmission, which entails f times less data volume21. Thus, for

example, a cloud processing with a Wi-Fi connection would result in the

highest response time owing to: 1) Wi-Fi connection, which has higher

retransmission rate; 2) two hops taken; and 3) raw data transmission. In

this regard, ScA resulted in the least response time, whereas ScF caused the

highest response time among all the methods.

� security dissatisfaction: similar to the response time case, security re-

quirement is also strictly prioritised in these simulation campaigns by set-

ting ws to 3. Considering (3.16) with (3.17b), higher values of ws incurs

more cost by increasing Θs, which in turn inflates the penalty function,

CQ in (3.16). Given that the objective of the Q-learning algorithm is to

minimise CQ, satisfying the security requirement of IoT devices becomes

crucial for the proposed algorithm, as Θs returns 0 when the requirement

is met. To this end, the developed Q-learning algorithm achieved a signif-

icant reduction in terms of the security dissatisfaction when compared to

the benchmark methods.

One can question the equal results of the benchmark methods, but there is

a rationale behind it: the half of the IoT devices are connected with NB-

IoT (Group-X in Table 3.2), while the other half communicates through Wi-

Fi (Group-Y in Table 3.2), and, as discussed in Section 3.1.4, the security

requirement is captured by the need for an eSIM card, which is only avail-

able for NB-IoT connections. Thus, those connected with NB-IoT do not

have any issue with the security dissatisfaction, since they always meet the

requirements due to their eSIM card availability. Those connected through

Wi-Fi, on the other hand, cannot respond to the eSIM card requirement.

Based on that, the number of IoT devices with security dissatisfaction al-

20It could be worth noting here again that no partial offloading is allowed for the benchmark
scenarios, such that they operate in an on/off fashion.

21The response time of the options (connection and processing) would alter for different
values of f, F , and Γ. Therefore, the response time of the benchmark methods would change
accordingly, but the discussions here are based on the current assumptions for f, F , and Γ.
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ways equals to the number of IoT devices that: 1) is connected through

Wi-Fi and 2) requires eSIM protection. Thus, the number of dissatisfied

devices is the same for all the benchmark methods.

� joint metric: while each individual previous metric reflects the behaviours

of the methods in a specialised manner, this joint metric summarises the

overall performances. Therefore, this metric can be seen as a holistic cost of

each method, which demonstrates how they performed when all the previous

metrics are combined. The proposed method performed quite well and

outperformed all the benchmark methods in different scales. The reasoning

behind this is that there are four metrics in total other than joint metric, and

the proposed method outperformed all the benchmark methods in three of

them. Therefore, it is quite reasonable that the proposed method performed

the best in terms of the joint metric. Similarly, the benchmark methods

responded to the joint metric according to their results in each individual

metric, namely energy consumption, monetary cost, response time, and

security dissatisfaction.

The comparison between the cases of requirement de-prioritisation (wr = ws =

0), which will be referred to as low-battery requirement-aware (LBRA) here-

after, and prioritisation (wr = ws = 3), which will be referred to as low-battery

requirement-unaware (LBRU) hereafter, under the low-battery regime is demon-

strated in Fig. 3.5. The loss calculations for each metric is calculated as follows:

L =
∆Q,LBRU −∆Q,LBRA

∆Q,LBRU

, (3.26)

where ∆Q,LBRA and ∆Q,LBRU are the differences between the values obtained

via the proposed method and the minimum value obtained with the benchmark

methods for LBRA and LBRU, respectively, such that

∆Q,LBRA = VQ,LBRA −min(Vb), (3.27a)

∆Q,LBRU = VQ,LBRU −min(Vb), (3.27b)

where Vb ∈ {VScA , VScB , VScC , VScD , VScE , VScF} is the obtained values in the afore-

mentioned metrics with the benchmark methods. VQ,LBRA and VQ,LBRU are the

obtained values in the aforementioned metrics with the proposed method for

LBRA and LBRU, respectively.

There is an important caveat to be noted here: positive values of L calculated

through (3.26) indicate loss, where the LBRU performed worse than LBRA, and

the negative values of L indicate gain, where LBRU performed better than LBRA.
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From the findings in Fig. 3.5, it is obvious that LBRA outperformed LBRU in all
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Figure 3.5: Performances of the proposed method in terms of considered metrics
when all the IoT devices are in the low-battery regime. The results show the
percentage loss when LBRU (wr = ws = 0) is compared to LBRA (wr = ws = 3).
Positive values yield loss; i.e., the superiority of LBRA, while negative values
yield gain; i.e., the superiority of LBRU.

the metrics22 other than the energy consumption. Starting from response time

and security dissatisfaction, the results are quite expected provided that both of

the requirements are prioritised in LBRA with weight values of wr = ws = 3.

Hence they are given a special care in LBRA when (3.16) is considered together

with (3.17a) and (3.17b). Although the scale difference between the response

time and security dissatisfaction is worth discussing, however it is better to first

analyse the energy consumption results, which will be then more beneficial to

explain such difference.

As seen from Fig. 3.5, the energy consumption is the only metric that LBRU

performed better than LBRA. The rationale behind is that energy consumption

is the only focus of LBRU given that: 1) the IoT devices are in the low-battery

regime, and 2) both wr and ws are set to 0. In this regard, LBRU does not

consider any other metric other than energy consumption, which is basically the

reason why it managed to outperform LBRA.

Considering this rationale as a base, it would be more straightforward to

explain the obtained results from the other metrics, as the reasoning for all the

results are linked to each other and they all arise from this base. There are

22The joint metric was not considered in this set of results due to the fact that the objective
of this comparison is to reflect the behavioural differences of LBRA and LBRU. Thus, the joint
metric is out of the scope for this comparison, since it is a combination of the other metrics.
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additional supporting facts as follows:

� LBRA aims at minimising the energy consumption, but with the response

time and security constraints. In other words, the energy consumption is

minimised after the response time and security requirements of IoT devices

are satisfied. Provided that Options A, D, and E happen to result in mini-

mal response time23, meaning that they could be the options for the devices

with low response time requirements.

� similarly, Options D and E are the ones that provide the eSIM protection,

which means an IoT device should select one of these if it has security

concerns.

Based on that, Options D and E followed by A are the intersection ones that are

most likely to be selected when both response time and security are prioritised.

For example, the response time requirement of an IoT device can only be satisfied

with Option A and D, but Option E can result in less energy consumption. In such

cases, LBRA would select Option A or D that has the least monetary cost due

to device processing, whereas LBRU goes for Option E that result in the highest

monetary cost due to cloud processing. As such, LBRA is more likely to perform

better in terms of monetary cost, while LBRU is better in energy consumption.

These explain the performance differences between LBRA and LBRU in terms of

energy consumption and monetary cost.

It is now better to turn back to the discussion on the scale difference between

the response time and security dissatisfaction. There are two points to consider:

� switching among Wi-Fi options (i.e., A, B, and C) and among NB-IoT

options (i.e., D and E) do not change the security dissatisfaction results,

but it changes the response time. In other words, selecting a different option

from Table 3.1 definitely changes the response time behaviour, whereas the

security behaviour might remain the same. In this regard, there is more

room for response time to alter than that of the security behaviour.

� Options D and E have NB-IoT connection, which was already discussed

in this section as being the least energy consuming one in majority of the

cases, and thus the agent would be more prone to stick with them. Owing

to the fact that Options D and E are with NB-IoT connection, both LBRA

and LBRU would more possibly select one of these options, which would

have an impact on the response time but the security behaviour remains

unaffected.
23Obviously, these arguments would be subject to a change for the case of partial offloading,

but they hold in general.
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Due to these reasons, it is quite reasonable that LBRA outperforms LBRU more

significantly in response time than that of security dissatisfaction.

Fig. 3.6 reveals the performance comparison between LBRA and the case when

the IoT devices are in the high-battery regime and their requirements are fully

prioritised (wr = ws = 3), which will be referred to as high-battery requirement-

aware (HBRA) hereafter. Note that only energy consumption and monetary cost

results are presented in Fig. 3.6, since LBRA and HBRA performed equally well

in response time and security dissatisfaction given that they both fully prioritise

the device requirements.
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Figure 3.6: Performances of the proposed method in terms of energy consumption
and monetary cost. The results show the percentage loss when HBRA is compared
to LBRA. Positive values yield loss; i.e., the superiority of LBRA, while negative
values yield gain; i.e., the superiority of HBRA.

The findings in Fig. 3.6 show that LBRA reduced the energy consumption of

HBRA by around 53%, while HBRA managed to decrease the monetary cost of

LBRA by around 97%. These results are quite expected because LBRA focuses

only on minimisation of the energy consumption, while completely ignoring the

monetary cost reduction24. HBRA, on the other hand, aims at minimising the

monetary cost rather than the energy consumption, since the battery levels of

IoT devices are high.

Although these explanations are adequate to understand why they surpass

each other in the two considered metrics, there is still room for clarification for

24Energy consumption minimisation and/or monetary cost reduction are the secondary ob-
jectives for both LBRA and HBRA, since they fully prioritise the device requirements. In other
words, they only start considering the energy consumption and monetary cost after ensuring
the satisfaction of device requirements in terms of response time and security.
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the question of why the scales of the outperformance are quite different from each

other. Considering (3.16) together with (3.17d), (3.18b), and (3.18a), it is obvious

that both energy consumption and monetary cost have their own impacts in CQ.

On one hand, when the IoT devices are in the low-battery regime, the weight for

energy consumption (we) takes its higher value (w+
e ), which is set to 10, while

the weight for monetary cost (wm) takes its lower value (w−m), which is set to 0.

On the other hand, when the IoT devices are in the high-battery regime, we is

set to its lower value as w−e = 1, while wm is set to its higher value as w−e = 10.

This means that

� when the IoT devices are in the low-battery regime, the algorithm fully fo-

cuses on the energy consumption minimisation while completely discarding

the monetary cost reduction; but

� when the IoT devices are in the high-battery regime, the algorithm mainly

takes care of the monetary cost reduction, but without completely ignoring

the energy consumption minimisation.

This is done because energy consumption is always important for an IoT device

regardless of the battery level, which would only change the degree of importance.

As such, HBRA still tries to conserve some energy while focusing primarily on the

monetary cost reduction, and thus this puts a barrier for HBRA’s loss in energy

consumption. Nonetheless, LBRA does not take the monetary cost reduction into

account at all, thereby the scale of HBRA’s gain in monetary cost is more than

HBRA’s loss in energy consumption.

As a result of these observations, it is concluded that the penalty function

of the proposed Q-learning algorithm, given in (3.16), is well designed, since

the behaviours of the algorithm in each single metric for each scenario came as

expected. In particular, the algorithm penalises the agent: i) exponentially for

the requirements, and ii) linearly for the energy consumption and monetary cost.

Moreover, the remaining level of the battery is considered as a determinant for

the policy to be followed, such that energy consumption is valued in low-battery

regime, while high-battery regime imposes the prioritisation of the monetary cost.

The obtained results reveal that the algorithm follows these rules and works in

line with the design objectives owing to the careful construction of the penalty

function. Towards that end, the findings from the obtained results confirm that

the design of the reward/penalty function for Q-learning is at the heart of the

algorithm, and it is capable of determining the overall performance.
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3.1.7 Summary

A novel approach is presented in this work for energy and context-aware IoT con-

nectivity that jointly optimises the energy consumption, monetary cost, security,

and response time. More specifically, the objective of this work is to determine

the wireless connection type and data processing unit along with the amount

of data to be offloaded, which is the case when data to be processed at a unit

other than the device. In that regard, IoT devices come with diverse require-

ments in terms of response time and security, and they are allowed to prioritise

their requirements. For example, an IoT device would declare that the security

is strictly important for it, while response time has a loose priority. In addition

to this prioritisation, the proposed scheme also takes the battery level of a device

into account, such that the minimisation of energy consumption is focused if the

battery level is under a certain threshold, while the reduction of monetary cost is

mainly targeted in case the battery level is above that threshold. In particular,

the proposed approach first observes the prioritisation weights along with the

remaining battery level of the device. Then, based on these inputs, it determines

its policy, such that: if the requirements are strictly prioritised, the first priority

becomes satisfying them. After that, according the remaining battery level, the

energy consumption or monetary cost is minimised. The proposed scheme em-

ploys Q-learning algorithm, and manages to achieve significant gains compared

to deterministic routes. Although some benchmark scenarios may result in lower

costs in some of the metrics, none was able to meet the holistic context-aware

performance target.

3.2 Energy Optimisation through Traffic-Aware

Cell Switching

BSs are the major energy consumers in cellular networks, accounting for about

60%-80% of the total energy consumption [161]. As such, reducing the energy

consumption of BSs will amount to significant reduction in the total energy con-

sumption of cellular networks. From an energy efficiency perspective, the ideal

operation of a BS is to be in such a way that the energy consumption scales with

traffic load, meaning that the power consumption should be negligible at no load

and gradually increase with the increasing load. However, in practice that is not

the case, as BSs still consume a significant amount of energy (about 50%-60% of

its maximum energy consumption) when not serving any user. Since the traffic

load of cellular networks exhibit temporal and spatial variations, the traditional
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technique of keeping the BS always on, even when it is not serving any user, re-

sults in energy wastage. Therefore, load adaptive network operation, where BSs

are turned off or operated in low power modes during periods of low or no traffic

in order to save energy, has been the focus of many studies [41,232–235].

Nevertheless, it is not always feasible to completely switch off SCs in the

conventional HetNet architecture because it often creates coverage holes, which

in turn degrade the QoS of users initially covered by the inactive SCs. In addition,

sleeping BSs do not transmit pilot signals needed by the UE for cell discovery,

channel estimation, and subsequent connection, hence in the conventional HetNet

architecture, certain components of the SCs need to be left always on even in a

sleep mode, resulting in sub-optimal energy savings [236–238].

Handling these challenges of BS switching in conventional HetNets requires

a paradigm shift towards CDSA [239], where the MCs—also known as control

BS (CBS)—maintain constant coverage and provide signalling functionalities and

low data rate services, while the SCs—also known as data BS (DBS)—provide

high data rate services and are connected to the MCs through the backhaul. This

architecture provides support and flexibility for dynamic cell switching operations

as the MC always ensures constant coverage for both idle and active users. The

MC is also responsible for switching BSs off/on as well as associating users to the

SCs, thereby making the complete switch off of DBSs possible [236,237,240].

In this work, an RL algorithm with linear function approximation—known as

SARSA with VFA—is proposed for cell switching and traffic offloading in ultra-

dense RAN. The main advantage of the proposed framework is that all the states

need not be visited as in [61] before the algorithm learns the optimal policy;

instead, the developed algorithm exhibits quick convergence and is simpler to

implement compared to deep RL approaches. The learning algorithm is imple-

mented at each MC and it has the ability to learn the optimal switching pattern

even when a large number of SCs are deployed under the coverage area of the

MCs.

3.2.1 Related work

Cell switching with traffic offloading has been identified as one of the techniques

for reducing the energy consumption of cellular networks. Several methods have

already been proposed for scheduling cell switching in the literature using various

methods from analytical modelling to heuristic algorithms [41,232–235]. However,

it is very difficult to develop accurate analytical models for network optimisation

when network dimensions become very large due to network complexity and high

computational overhead [241].
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The authors in [232] develop a load based dynamic SC switching scheme for

UDNs in order to minimise the signalling overhead resulted from user traffic of-

floading during the cell switching process as well as to optimise the energy savings

of the network using two heuristic algorithms. In [233], the problem of user as-

sociation and cell sleeping in multi-tier ultra-dense SC networks is formulated as

a complex integer programming and two low-complexity heuristic algorithms are

employed to determine the optimal user association and the cell switching pat-

tern. A greedy heuristic algorithm is proposed in [234] to determine the switching

off/on pattern of SCs in a green UDN in order to optimise the network energy

efficiency by considering traffic load of the SCs and service requirements of users.

Heuristic algorithms often employ exhaustive search, which is often slow and

computationally demanding, to find the optimal solution, hence they are only

suitable for small network deployment. On the other hand, the ultra-dense 5G

network scenario will involve massive deployment of SCs [242], which would make

it practically impossible to adopt such heuristic algorithms, as it would result in

huge computational overhead and degradation in QoS.

An alternative solution for finding optimal switching pattern for ultra-dense

deployment scenarios is to employ RL techniques. The authors in [61,63,243–246]

propose Q-learning based cell switching techniques for energy efficiency optimi-

sation. In [243], the BS is assumed to comprise of modular resources, and a

Q-learning algorithm is developed to dynamically activate and deactivate certain

number of modules in the BS based on the traffic demand at each time instance.

A distributed Q-learning algorithm is proposed in [244] to control the sleep depth

of the BS in order to minimise energy consumption and network latency. The

authors in [245] design a Q-learning algorithm to determine the duration of time

that the BS can spend at a particular sleep level in order to optimise energy con-

sumption of the network while considering BS activation latency and the service

requirements of users as constraints. Another Q-learning framework is developed

in [63] in order to determine the optimal switching and traffic offloading strategy

in a two-tier HetNet with separation architecture. The authors in [246] propose a

location-aware multi-level sleep mode strategy using Q-learning to determine the

sleep mode level of the BS based on user locations in the network and their ve-

locity towards the neighbouring BS. Nonetheless, the works in [63,243–246] only

consider small to medium network deployment scenarios, where the state-action

space is suitable for the implementation of conventional RL algorithms. As such,

conventional RL algorithms are very challenging to implement when the network

dimensions become huge, because it often results in very large state-action space,

which is computationally demanding to learn and requires considerable amount
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of memory to store the action-value table (Q-table). This makes such algorithms

impracticable to implement in real networks.

In an attempt to solve the curse of dimensionality problem facing conventional

RL algorithms, they are combined with VFA in order to estimate the optimal

policy. In this regard, RL with linear function approximators and deep RL ap-

proaches are proposed in [61,135,136]. The authors in [61] develop a centralised

and decentralised Q-learning algorithm with compact state representation (QC-

learning) for traffic offloading and cell switching for HetNets to minimise energy

consumption. The centralised QC-learning is implemented at the BS controller.

The QC-learning is a compact representation of the state-action pair using linear

VFA when it becomes practically impossible to explicitly store each state-action

pair in a look-up table owing to the very large number of SCs. Moreover, as

the number of SCs in the network becomes very large, the action set also grows

dramatically even with the compact state representation of the Q-table, thereby

making it difficult to implement a centralised cell switching and traffic offloading

scheme. Therefore, a decentralised multi-agent QC-learning is presented, where

the MCs learn in a cooperative manner and take joint traffic offloading and cell

switching actions by exploiting the previous cell switching strategies used by

other MCs. Furthermore, in developing decentralised multi-agent QC-algorithm,

the authors [61] assume that all the MCs under the controller have similar or

stationary network states, which is a requirement for implementing joint cell

switching and traffic offloading strategy. This might not be the case in real net-

works, as networks’ states may vary from one MC to another due to temporal and

spatial variations in user traffic demands [247]. As such, it might not always be

feasible to perform joint cell switching and traffic offloading actions. In addition,

the problem of increased state-action pair also arises in multi-agent Q-learning,

since each agent also includes its own state-action pair to the joint state action

space [247]. This increases the computational complexity as well as the memory

required for storing the joint state-action space at the controller.

Deep RL algorithms have the ability to accommodate large state-action space

resulting from large-scale network deployment scenarios, however, training such

deep neural network models can be computationally demanding, energy consum-

ing, and should only be considered when there are no simpler solution approaches

available or when the complexity of the network requires the application of a non-

linear function approximator to estimate the optimal policy.
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3.2.2 Objectives and Contributions

In this work, an intelligent cell switching and traffic offloading framework is pro-

posed using an RL technique known as SARSA with VFA [54] in order to reduce

the energy consumption of ultra-dense RAN. In the CDSA RAN, a cell switching

and traffic offloading mechanism is implemented in a locally centralised manner

at each MC, which is responsible for scheduling the switching off/on pattern of

all the SCs deployed under its coverage. The proposed algorithm provides a com-

pact form of representing the action-value function like the QC-learning algorithm

in [61], but all the states need not be visited as in [61] before the optimal strategy

is obtained. The contributions of this work are as follows:

� a scalable traffic-aware RL algorithm is proposed based on VFA to find

the optimal policy in terms of energy efficiency for controlling SCs’ on/off

status, which delivers a good level of QoS;

� it is mathematically proven that turning a SC off is not always profitable

in terms of energy minimisation, instead there are only some situations, at

which turning off action results in the optimal solution. A relationship that

evidences those situations is also provided;

� the proposed algorithm is evaluated using a traffic model based on real

world data, making the solution more reliable and realistic.

RL is employed due to its fast convergence and learning ability, assisting

to make real-time, accurate, and efficient switch off/on decision at each time

slot. Moreover, VFA is utilised in the developed RL algorithm, since the state

space expands exponentially with increasing number of SCs in the network. Even

though this could be handled by conventional RL algorithms to some extent,

it becomes infeasible to manage once the network size becomes very large. In

addition, due to the careful and proper design of the action set in the proposed

algorithm, there is no need to include all the possible switching combinations, thus

annihilating the need for cooperative learning. Lastly, the proposed algorithm is

tested in a realistic scenario, where all types of SCs given in [156] with their

diverse characteristics are included.

3.2.3 System Model

Network Model

As mentioned before, in this work an ultra-dense RAN with a CDSA architec-

ture is considered [239]. The network model, as illustrated in Fig. 3.7, consists
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Figure 3.7: A HetNet with CDSA comprising of a MC that works as the CBS
and a dense deployment of various types of SCs (micro, RRH, pico, femto) to
provide DBS services.

of a dense network, where SCs—acting as DBSs—are deployed under the cover-

age area of a MC, which acts as the CBS. Moreover, SCs and MC operate on

dedicated frequency channels and SCs are connected to the MC via optical fibre

links.

The MC is responsible for constant coverage, control signalling, and data

services, while SCs handle only data services and user specific requests. Further-

more, the MC coordinates the traffic offloading and switching off/on of all SCs

under its coverage by observing their traffic loads and deciding which set of SCs

should be turned off during periods of low traffic intensity, taking the available

capacity of the MC into account.

Network Power Consumption

EARTH power consumption model [156] is followed in this work, as it is given

in (2.15). Moreover, all SCs of the same type are considered to have identical

hardware, such that their power amplifier efficiencies, and circuit power consump-

tions are the same. Also, power allocation is not considered, hence, each type of

BS has a fixed transmit power that is constant among BSs of that type.

As such, P , the instantaneous power consumption for the considered CDSA

network, is expressed as

P =
Nsc+1∑
j=1

Pj, (3.28)

where Nsc is the number of SCs in the deployment.
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3.2.4 Problem Formulation

Considering the architecture described above, the aim of this work is to find the

best policy—in terms of energy optimisation—that offers a required QoS to the

users. A policy πsc is defined by which SCs should be on at a given time t. In

other words

πsc = {δ1, δ2, . . . , δNsc+1}, (3.29)

where δj ∈ {0, 1} indicates the state of Bj; 1 for on and 0 for off. B1 represents

the MC, and thus δ1 is always 1, as it is always on.

Considering j > 1, when δj changes from 1 to 0 at time t, the MC allocates

its users, such that

Λ1,t = Λ1,t−1 + φjΛj,t−1, (3.30a)

Λj,t = 0, (3.30b)

where Λj,t corresponds to the load factor of Bj at time t, and φj is the relative

capacity of Bj with respect to B1:

φj =
Cj
C1

, j > 1, (3.31)

where Cj indicates the maximum capacity of Bj. Conversely, when δj switches

from 0 to 1 at time t, the MC offloads some of its traffic to Bj, such that

Λj,t =
τj
Cj
, (3.32a)

Λ1,t = Λ1,t−1 − φjΛj,t, (3.32b)

where τj corresponds to the resources used by users served by Bj. Note that

Cj ≥ τj.

Therefore, the problem can be formally written as

min
π

P(πsc)

s.t. Λ1,t ≤ 1.
(3.33)

Note that the only constraint in the problem is to ensure that the capacity of the

MC is not exceeded, this takes care of the QoS requirement25. In other words,

25If the capacity of the MC is not exceeded, the QoS is ensured given that all the users are
provided with their required bandwidth. It is also assumed in this work that, after the offloading,
the users receive sufficient SINR that is needed to achieve the same level of throughput they had
before offloading. This is a reasonable assumption, since the output power of the MC increases
with its load (refer to (2.15)) that would subsequently increase the received power.
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the MC only offloads users from a SC if it can maintain the QoS of any user

associated to it. Moreover, this ensures that once a solution is implemented,

Tr,1 ≤ Tm,1, (3.34)

where Tr,1 and Tm,1 are the required and maximum provided throughputs by the

MC, respectively.

Theorem 1. If draw a random SC Bj from B, the set of all possible BSs, the

probability of δj = 1 integrating the optimal policy is 1 if j > 1 and

Po,j − Ps,j

φjη1PT,1 − ηjPT,j

< Λj, (3.35)

when φjη1PT,1 − ηjPT,j > 0.

Proof. Using (3.28), the difference in power consumption ∆P when considering

changing δj to 1 can be expressed as

∆P = Pt − Pt−1 =
Nsc+1∑
i=1

Pi,t −
Nsc+1∑
i=1

Pi,t−1, (3.36)

where Pt is the total power consumption of the network at time t and Pi,t is the

power consumption of Bi at time t.

Next, (3.36) can be expanded as

∆P = P1,t + Pj,t +
Nsc+1∑
i=2,i 6=j

Pi,t −

(
P1,t−1 + Pj,t−1 +

Nsc+1∑
i=2,i 6=j

Pi,t−1

)
. (3.37)

Assuming Pi/∈{1,j},t = Pi/∈{1,j},t−1, meaning all other SCs are kept at their

states, (3.37) then becomes

∆P = P1,t + Pj,t − P1,t−1 − Pj,t−1. (3.38)

Next, using (2.15) and replacing (3.32a) and (3.32b) into (3.38) yields

∆P =Po,1 + η1(Λ1,t−1 − φjΛj,t)PT,1 + Po,j + ηjΛj,tPT,j

−Po,1 − η1Λ1,t−1PT,1 − Ps,j,
(3.39)

which can be further simplified to

∆P = Po,j + ηjΛj,tPT,j − η1φjΛj,tPT,1 − Ps,j. (3.40)
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From (3.40), it is easy to see that ∆P < 0 when

Po,j + ηjΛj,tPT,j < φjη1Λj,tPT,1 + Ps,j. (3.41)

Note that, in order to isolate Λj,t in (3.41), both sides must be divided by

φjη1PT,1− ηjPT,j, and thus (3.35) is only valid for φjη1PT,1− ηjPT,j > 0. Lastly,

the index t is removed from (3.41) to make it general and solve for Λj, yield-

ing (3.35).

Based on Theorem 1, it can be seen that the optimal policy will tend to have

more SCs turned on when they are more loaded, as the inequality in (3.35) will

be more easily met. Similarly, it can also be seen that when the transmit power of

SCs is smaller, it becomes more advantageous to use them, and the same can be

said if the MC is not very efficient (η1 is small). Moreover, as one would expect,

when the power consumption of a sleeping BS is higher, the less likely it will be

that turning it off would be energy efficient. Lastly, it can clearly be observed

that when (3.35) occurs for any BS in the network, there will be a situation,

where the most optimal policy has SCs turned on and consumes less energy than

keeping only the MC operational.

3.2.5 Proposed Solution

SARSA with VFA

As Chapter 2 already discusses SARSA algorithm in detail, its only a brief

summary is included in this section. The algorithm works by observing the

penalty (cost) of taking actions and updating its estimate of ~wQ at every iteration

and then choosing the best action according to its estimate of the action-value

matrix. Algorithm 5 [54] contains a pseudo code implementation of SARSA

with VFA, where st and st+1 are the current and next states, respectively; while

at and at+1 are the current and next actions, respectively. Note that lines 22 to

29 in Algorithm 5 are correspondent to the stopping criteria, where Nit,min is the

minimum number of iterations to take before the stopping criteria come into the

effect. CQ,min and CQ,max are the minimum and maximum penalties observed up

to that iteration, respectively. Lastly, Ω is the threshold for the feature scaled

cost, while Nit,rep defines the number of iterations to be repeated (the conditions

on lines 23 and 24 are kept satisfied) before stopping.
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Algorithm 5: Proposed SARSA with VFA

1 for Every episode do
2 Initialise the current state, st;
3 for All actions in A do

4 Get features, ~X;
5 Estimate value of Q through (2.9);

6 end
7 Choose action, at, according to policy;
8 Set Nit = 0;
9 for Each iteration do

10 Update Nit ← Nit + 1;
11 Take the action at;
12 Observe cost, CQ, via (3.47);
13 Move to next state;
14 for All actions in A do

15 Get features, ~X;
16 Estimate value of Q through (2.9);

17 end
18 Choose next action, at+1, according to policy;
19 Update the weights, ~wQ,t, using (2.10);
20 St ← st+1;
21 at ← at+1;
22 if Nit > Nit,min then

23 if
CQ − CQ,min

CQ,max − CQ,min

≤ Ω then

24 if CQ is the same for Nit,rep iterations then
25 Stop executing;
26 Jump to the next episode;

27 end

28 end

29 end

30 end

31 end
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Traffic Aware Energy Efficient Cell Switching

Leveraging the framework described above, a linear VFA solution is proposed

to solve (3.33). Since the approach is looking to accomplish a globally optimal

solution, the proposed framework is centralised and computed at the MC. As

the total number of policies increases exponentially with Nsc, it would not be

scalable to consider any policy as an action. Therefore, a reduced action space is

proposed as follows:

Actions: The actions for the proposed VFA consist of switching off/on different

SCs in the network. However, because there are so many possibilities, an alter-

native representation is proposed, which allows the algorithm to sample several

different possibilities by taking different actions.

This representation is done as follows. First, the status of the SCs in the

network are converted to a binary number, such that the SCs that are on are

treated as binary 1, while the SCs that are off are considered binary 0. In this

regard, the status of the network at time t is

h(t) = {δi(t)|i ∈ {1, 2, ..., Nsc}}, (3.42)

where δi ∈ {0, 1} is the state of the ith SC in the network.

Next, h is represented by a binary number hb with Nsc digits, such that the

status of each SC represents one of its digits, and thus

hb = h1h2...hs. (3.43)

Within the proposed representation, the set of possible actions is defined as

A = {0,±A0
is,±A1

is, ...,±Asis}, (3.44)

where Ais is a scalar, defining the inter-space between two consecutive actions.

In this case, taking an action at time t, means to perform

hd(t+ 1) = hd(t) + Az, (3.45)

where Az is an entry26 from A and hd is the decimal representation of hb. In

other words, an action consists of turning off/on a number of BSs, depending on

the current status and on Az. This ensures that, instead of checking all possible

26Note that not all entries of A can be selected at every time instant. Instead, the only valid
actions are those which render 0 ≤ hd ≤ 2Nsc − 1.
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statuses of SCs, only some samples of the entire set are taken.

To illustrate the proposed idea, consider the following example. In a network

with 4 SCs at time t, let h(t) = {1, 1, 0, 1}. In this case, hd(t) = 13. Now, let us

assume that Ais = 2 and that the action selected is +A1
is. In this case, the next

status will be hd(t+1) = hd(t)+A1
is = 15, or in other words h(t+1) = {1, 1, 1, 1},

which implies that all BSs are turned on at time t+ 1.

Features: The features used by the MC in order to find Q̂ are the total power

consumption of the network and the total load factor of each BS, such that

X = [P ,Λ1,Λ2, . . . ,ΛNsc+1]. (3.46)

Penalty Function: The proposed penalty function is described as the total

power consumption plus a penalty component—which is proportional to the num-

ber of SCs and the MC load—if the load of the MC is exceeded. It can be formally

defined as

CQ = P +NscςκΛ1, (3.47)

where CQ is the penalty, κ is a penalty factor, and ς ∈ {0, 1} indicates whether

or not the MC is overloaded.

Complexity

The most important benefit of the proposed solution is to greatly reduce the

complexity of finding a good operating point. Since there are Nsc SCs which

could be switched off/on in any combination, an exhaustive search approach

would have complexity of O(2Nsc), while the proposed approach only keeps track

of 2Nsc actions, and therefore has a complexity of O(Nsc).

However, note that the proposed solution does not strictly guarantee the con-

straint in (3.33). This is important to give the RL algorithm the chance to explore

different actions and learn what is not good. By incorporating ςκ into the penalty

function, the RL algorithm can be influenced not to violate the constraint, and

thus provide a good QoS to the users whilst seeking the best policy regarding

energy consumption.

3.2.6 Performance Evaluation

In this section, the employed data set, the benchmark methods developed, the

performance evaluation metrics, and the obtained results will be discussed com-

prehensively. The simulation parameters are provided in Table 3.4, while Ta-
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ble 2.2 presents the power consumption characteristics of the BSs used in the

simulations.

Table 3.4: Simulation parameters

Parameter Value

SARSA with VFA
Chance of choosing random action, ε 0.8
Learning rate, α 10−7

Discount factor, ϕ 0.9
Inter-space between two consecutive actions, Ais 2
Minimum number of iterations for stopping, jmin 10
Threshold for the feature scaled cost, Ω 5× 10−2

Consecutive iterations ensuring stopping criteria, jrep 10
Maximum number of iterations 100

General
Number of time slots 144
Number of days 1
Number of grids considered for the MC 2
Number of grids considered per SC 1
Bandwidth for the MC 20 MHz
Bandwidth per SC 20 MHz

Data Set

In order to calculate the power consumption through (2.15), Λi is required for

BS Bi ∈ {1, 2, ..., Nsc + 1}. In this regard, to obtain Λi values, a real CDR

data set provided by Telecom Italia27 is used in this work, in which the city of

Milan is divided into 10,000 square-shaped grids with a dimension of 235 × 235

meters. Then, within each grid, user call, text message, and Internet activity

levels were recorded with 10-minute resolution for a 2 months period (November

and December 2013). Even though the data set consists only of unitless activity

level values and there is no information provided regarding the data processing

phase, the activity levels can be interpreted as grid-wise relative traffic loads,

since they represent the volume of user-mobile network operator interaction at

each time slot. In the data processing phase of this work, first, the aforementioned

individual activity levels (i.e., call, text message, and Internet) are combined.

Then, two random28 grids for the MC and one random grid for each SC are

picked. Note that the activity levels at the two grids selected for the MC are

27Data is available online at https://dandelion.eu/datamine/open-big-data/.
28The reason for choosing the grids in a random manner is to avoid similar activity level

characteristics of the grids that have close proximity.
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further combined to create a traffic load data. After that, all the activity levels

are normalised together between 0 and 100, and the obtained values are treated

as traffic loads for each cell.

Benchmarking

Four different benchmark methods are used for comparison purposes, and they

will be elaborated individually in the following paragraphs.

Sorting: Inspired by [248, 249], the sorting algorithm is developed to compare

the results of the proposed algorithm. In this method, the SCs are sorted in

ascending order based on their load factors, Λ. Then, they are switched off

sequentially until there is no available capacity left at the MC, and the rest of

the SCs are kept on. Given the power consumption profile in (2.15) and the

characteristics of different types of BSs in Table 2.2, the MC consumes more

power than the SCs for the same value of Λ. As such, it is wiser to switch off a

SC with smaller traffic load in order to save more energy. This concept lies at the

heart of the sorting algorithm, since it aims at minimising the energy consumption

of the network. On the other hand, as the SC switching off is performed only

when there is enough capacity at the MC, this method also guarantees the service

of the users after the offloading process.

All-On method: There is no switching implemented in this method, meaning

that all the SCs are always kept on. Accordingly, no offloading is needed as well

in this case provided that none of the SCs are switched off at any time. Therefore,

it can be inferred that there is no concern of QoS in this method, since all the

users are served by the BSs (either MC or SC) that they were associated in the

first place.

All-Off method: In this method, the SCs are always kept switched off and

their data traffics are offloaded to the MC. However, this method is performed

blindly, meaning that the data traffic of the SCs are offloaded to the MC regardless

of its available capacity. This means that the users, which are normally served by

SCs, are vulnerable to service disruptions, since there is no guarantee that they

will be served by the MC. Even if the service is provided by the MC, the QoS

would be reduced in case there are more users than the available capacity, and in

that case the MC reduces the available resources for each user by certain amount

in order to keep all the users served.
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Exhaustive search: This is a method that tries to find the best policy among

the set of all possible switching options consisting of the off /on states of the

SCs. In particular, given the available capacity of the MC as a constraint, this

method searches for the option with the least energy consumption. Hence, this

method guarantees the service for each user in the case of offloading, which in turn

prevents the QoS of the users from being violated. Note that exhaustive search

returns the optimum policy, and thus the objective of any algorithm should be

to mimic it as much as possible.

Performance Metrics

In this section, the metrics, which are used to evaluate the performance of the

proposed algorithm and the benchmark methods, are presented.

Gain: In this work, the percentage gain on the total energy consumption com-

pared to All-On method is considered. It is calculated as

G =
Eon − Ex

Eon

, (3.48)

where Eon and Ex are the total energy consumption in joules with All-On method

and with one of the other methods, such that Ex ∈ {Eon,Ees,Esort,Evfa}, where

Eoff, Ees, Esort, and Evfa are the total energy consumption in joules with All-Off,

exhaustive search, sorting, and the proposed VFA-based methods, respectively.

Power consumption: Power consumption in watts during the simulation time

is obtained for each method. This is a beneficial metric to evaluate the perfor-

mance of the methods, since it reflects the variations in power consumption for

different times of a day. Moreover, given that the gain is calculated on the energy

consumption by accumulating the power consumption during the simulations,

which can also be interpreted as upsampling, the detailed behaviours of the de-

veloped methods are kind of lost. Thus, power consumption is also a utilitarian

metric that paves the way for detailed behavioural observations.

Average RAN throughput: The total required RAN throughput, TT,r, is

calculated by combining the throughput required from each cell as follows:

TT,r(t) =
Nsc+1∑
i=1

Tr,i, (3.49)
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where Tr,i is the required throughput from Bi, and is calculated as follows:

Tr,i(t) = tu,i(t)Nu,i(t), (3.50)

where tu,i(t) is the average throughputs for users allocated by Bi and where Nu,i(t)

is the number of users served by Bi at time t.

However, there is one caveat that since the backhaul capacity of the cells is

limited by the installed backbone, and thus cannot be exceeded, Bi penalises the

throughput for each user by Υi when the combined demand of the users exceeds

Tp,i, the maximum installed capacity of Bi, such that

t̂u,i(t) = tu,i(t)−Υi(t), (3.51)

where t̂u,i(t) is the average throughput for users allocated by Bi at time t after

penalisation. This also ensures the condition in (3.34).

The throughput penalty, Υi, is calculated as

Υi(t) =


Tr,i(t)− Tm,i

Nu,i(t)
, if Tr,i(t) > Tm,i

0, otherwise,
(3.52)

Next, as explained in Appendix A, normalised throughput is represented by

the load factor in this work, thereby the provided normalised network throughput

is given as follows29:

T̃T,p(t) =
Nsc+1∑
i=1

u(−Λi(t) + 1)Λi(t) + u(Λi(t)− 1), (3.53)

where T̃T,p(t) is the normalised throughput of the network and u(·) is the unit

step function, such that

u(x) =

{
1, x ≥ 0

0, x < 0.
(3.54)

Scenarios

The developed benchmark methods and the proposed VFA-based switching al-

gorithm are tested in two different scenarios, namely Scenario A and Scenario

B.

29Refer Appendix A for the details of the derivation.
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(a) Results for Scenario A when κ = 20.
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(b) Results for Scenario B when κ = 10.

Figure 3.8: Percentage gain performances compared to the All-On method for
Scenario A and Scenario B.

Scenario A: This is a simplistic scenario, where there is only one type of

SC (micro) in the network. Moreover, the sleep mode power consumption for

the SCs are assumed to be zero, such that the SCs are not contributing to the

total power consumption of the network at all when they are switched off.

Scenario B: In this scenario, four different types of SCs, e.g. micro, RRH, pico,

and femto, are deployed in the network, and the number of SCs are distributed in

these four types almost30 equally. Moreover, the sleep mode power consumption

is not assumed to be zero in this scenario, instead the values in Table 2.2 are

used. Therefore, this scenario is more realistic than Scenario A, as there are

heterogeneous combinations of SCs in real networks and the sleep mode power

consumption is not zero.

Results

As explained in Section 3.2.6, Fig. 3.8 demonstrates how much gain in energy

consumption is obtained when All-Off, exhaustive search, sorting, and proposed

VFA-based methods are compared to the All-On method. Fig. 3.8a shows the gain

results for Scenario A, while the results for Scenario B are presented in Fig. 3.8b.

Note that since the exhaustive search method is computationally demanding with

O(2Nsc), where it doubles the elapsed time when Nsc is incremented by 1, it is

allowed to run only until Nsc = 15 for both Fig. 3.8a and Fig. 3.8b. The idea in

30The number of SCs in the network are changed to observe the impacts of SC volume on
the performance, and it is not always possible to distribute them equally, since the amount of
SCs are sometimes not divisible by four, which is the number of SC types in the network. For
example, when the number of SCs are 13, then the distribution becomes 3,3,3,4.
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Fig. 3.8 is that the performances of All-Off, sorting, and the proposed method

are compared to the exhaustive search, which is optimum, in a smaller network

due to the time requirement for exhaustive search when Nsc increases. Then,

once an idea is obtained about the performances of the methods compared to the

optimum, the exhaustive search is terminated, and the other methods are kept

running in order to observe further behaviours in larger scale networks.

It can be seen in Fig. 3.8a that the sorting method is working exactly same

with the exhaustive search, while the proposed method follows them quite closely.

These outcomes can lead to a conclusion that the proposed method is outper-

formed by a more simpler and straightforward algorithm, and one can question

the validity of the proposed method. However, when Fig. 3.8a is reconsidered

together with Fig. 3.8b, it can be inferred that the better performance of the

sorting algorithm is not generalised: while it gives promising results in simplistic

Scenario A, it starts under-performing in the complex and realistic Scenario B.

On the other hand, given that the proposed VFA-based method gives very close

results to the exhaustive search in both scenarios, it seems quite immune to the

changes in the scenario with a generalised good performance. In other words,

although there might be simpler alternatives to the proposed method in basic

scenarios, which are mostly unrealistic,—owing to the nature of the developed

VFA-based RL algorithm—the proposed method takes the advantage of being

capable of generalisation and works properly even when the scenario becomes

more complicated and realistic. This, in turn, makes the proposed method work

properly regardless of the conditions, while the sorting method, for example, re-

lies on the simplicity of the scenario, making it impractical for realistic scenarios,

where the assumptions in Scenario A are no more valid.

Another point about Fig. 3.8 is that the gain decreases significantly when the

scenario is switched from A to B. For the proposed method, for instance, the

gain drops from around 52% to 17% when Nsc = 30, which yields around 67%

reduction. This is mainly due to more heterogeneity of Scenario B, where there

are four types of SCs. Scenario A includes only micro cell, which is the second

most energy consuming SC after RRH according to Table 2.2, making the SCs

in Scenario A consume a considerable amount of energy. For Scenario B, on the

other hand, there are four types of SCs with distinctive power profiles, and thus

total power consumption decreases because of the inclusion of pico and femto

cells, which consume small amount of energy, in the network. Besides, while SCs

still consume energy when they are switched off in Scenario B, the sleep mode

power consumption is assumed to be zero for Scenario A, making it consume

overall less energy when switching is performed.
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25 rounds when Nsc = 12.
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rounds when Nsc = 28.

Figure 3.9: Power consumption performances of the developed methods for vari-
ous number of SCs.

The last point that is worthy to discuss about the findings in Fig. 3.8 is related

to the All-Off method. While it outperforms all the other method in terms of gain

in Fig. 3.8a, it becomes the worst-performing method in Fig. 3.8b. The reason

behind this phenomenon is again the characteristic diversity between Scenarios A

and B. There is only micro cell, which is demanding in energy, in Scenario A, and

thus switching off SCs almost always result in less energy consumption, whereas,

due to the heterogeneity of Scenario B, the optimal policies for switching off are

different from each other for each type of SC. In particular, (3.35) holds for larger

Λj, j > 1 values when the type of SC goes from femto cell to RRH. This means

that the number of cases, where switching off is profitable, is larger for micro

cell than that of femto and/or pico cells. Therefore, since the All-Off method

switches off all the available SCs regardless of their types, the overall process

becomes less profitable in Scenario B when compared to Scenario A.
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Fig. 3.9 reveals the power consumption behaviours of the developed methods

for various numbers of SCs included in the network. Similar to the results in

Fig. 3.8, for consistency, the power consumption results for integer multiples of

four is presented, where the types of SCs are distributed equally. Hence, Nsc

value is altered as Nsc = 4, Nsc = 12, and Nsc = 28, respectively. Note that

Fig. 3.9c does not include the exhaustive search method, since it is only allowed

to run until Nsc = 15 for computational complexity reasons.

Fig. 3.9a demonstrates the power consumption performance of the developed

methods when Nsc = 4. The findings suggest that the proposed VFA based algo-

rithm manages to mimic the exhaustive search almost perfectly apart from the

initial learning phase. Given that the computational complexities for the exhaus-

tive search and the proposed method are O(2Nsc) and O(Nsc), respectively, these

results confirm that the proposed method performs quite well (i.e., producing

near-optimal results) with drastic decrease in computational complexity.

It is also worth discussing the learning phase of VFA algorithm, which is

common in all the three cases of Nsc. This behaviour is expected as an online

learning framework is proposed, where VFA-based cell switching method is de-

ployed without any prior knowledge, and thus it learns by interacting with the

real environment. In other words, the promising performance after the initial

learning phase is due to the experience obtained during the training. The slightly

worse initial performance is due the fact that VFA takes more random actions in

the beginning in order to increase the knowledge about the environment–as com-

monly referred to as exploration. Then, after the exploration, the randomness

in the actions taken decreases with the number of episodes in order to let the

VFA start using the information it received, which is known as exploitation. One

important point here is that the exploration process in the developed model takes

a short amount of time, making the online implementation feasible, since longer

learning phases would undermine the advantage of the VFA based solutions. The

reason behind preferring the online implementation over the offline one is that the

former case is model-free, where it does not require any prior knowledge, while a

full environmental knowledge is needed in the latter. This, in turn, renders the

online implementation more practical. Therefore, even though the offline imple-

mentation is free from the possible negative impacts of the training process, it is

comparatively less functional in real scenario, where full prior knowledge is often

inaccessible.

Another interesting aspect that can be deduced from Fig. 3.9a is the behaviour

of the sorting method. It mirrors the All-Off method in the beginning, where

the data traffic is relatively low, whereas it starts following the All-On method
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when the traffic load increases. This is because the sorting method manages

to switch off most (even all) SCs—which is similar (same) behaviour with the

All-Off method—when the traffic load is lighter, since there is more offloading

opportunities in the MC owing to the low traffic patterns. Moreover, the amount

of offloaded data is also comparatively less at these times. When the traffic volume

becomes higher, on the other hand, since the amount of data to be offloaded and

the occupancy of the MC increase simultaneously, the switching off becomes much

harder (even impossible), which is quite similar to the behaviour of the All-On

method.

Fig. 3.9b presents the power consumption results when Nsc = 12. Similar to

Fig. 3.9a, the sub-optimal results of VFA is observed during the training phase.

However, other than being short in time, the appreciable thing about this training

phase is that the results that VFA produces are still reasonable even though it is

not optimal. Another interesting observation is the relative difference between the

All-On and All-Off methods shrinks compared to the one in Fig. 3.9a. Taking

into account the peak points, the relative difference between the All-Off and

All-On methods decreases by around 25% when Nsc increases from 4 to 12.

Two important questions arise from these findings. First, why does the All-Off

method result in more power consumption than the All-On method? It is counter-

intuitive to observe such results where switching all the SCs off causes more power

consumption than always keeping all the SCs on. Moreover, it is observed that

All-On outperforms All-Off especially when the traffic loads are higher. The

rationale behind this is that, as repeated previously, considering (3.35) together

with Table 2.2, it is usually non-profitable to switch off SCs when the traffic

load is above some certain threshold, which is different for each type of SC.

Therefore, it is not a rule of thumb that the switching off is always resulting in

less power consumption. The outcomes in Fig. 3.8b, where the All-Off method

gives negative gains, also confirm this conclusion. Nonetheless, this is not the

only condition that makes All-On more favourable than the All-Off method in

terms of power consumption. It is also the intensity of the SCs in the network.

Since Nsc is not large enough in both Figs. 3.9a and 3.9b, the contribution of

the SCs to the power consumption is comparatively less than that of the MC,

therefore the overall energy saving resulting from switching off SCs cannot prevail

against the loss caused by offloading traffic to the MC.

Second, why does the relative difference between the All-Off and All-On meth-

ods decay when Nsc rises up from 4 to 12? The answer for this question is related

to the last discussion for the previous question; since the intensity of the SCs

increases in the network with increasing Nsc, the dominance of the MC in the



3.2. ENERGYOPTIMISATION THROUGH TRAFFIC-AWARE CELL SWITCHING125

total power consumption scales down. This subsequently renders the gain result-

ing from switching off more significant, and thus the All-Off method starts being

more reasonable. Hence, the number of instances that All-On outperforms the

All-Off method also decreases when Nsc is increased from 4 to 12. The results

in Fig. 3.8b again supports this conclusion, as the percentage gain enhances with

increasing Nsc.

Fig. 3.9c showcases the power consumption results when Nsc = 28. It is again

worth noting that exhaustive search is not included this time, since it is run until

Nsc = 15, owing to the computational complexity concerns. Unlike the results in

Figs. 3.9a and Fig. 3.9b, there is no point in Fig. 3.9c, where All-Off outperforms

All-On. Similar to the previous discussions on this topic, the distribution of the

total power consumption among the SCs and the MC is an integral aspect of

the performances of the All-On and All-Off methods. Given that the SCs now

consume considerable amount of energy due to their increased number, the gain

obtained from switching off the SCs—which are profitable to switch off according

to (3.35)—prevails over the loss incurred by switching off the SCs—which are

non-profitable to switch off.

Another interesting point about the findings in Fig. 3.9c is that the power

consumption for the All-On method becomes smoother compared to the results in

Figs. 3.9a and 3.9b. The relative peak-to-peak difference, for example, was around

20% when Nsc = 4, whereas it drops to 6.2% when Nsc increased to 28. This is

again because of the MC loosing its dominance in the total power consumption.

While, when fully-loaded, 72.3% of the power consumption comes from the load

dependent part for the MC, this rate is around 28% on average (minimum: femto

cell with 8.3%, maximum: RRH with 66.7%) for the SCs. In other words, the

MC consumes more on the load dependent part, whereas SCs consume more on

the static power. Therefore, for the smaller Nsc values, the load dependent power

consumption is higher as the MC is the main contributor to the total power

consumption, while the load dependent power consumption becomes relatively

less and the static power gets more significant for higher values of Nsc.

Fig. 3.10 shows normalised average RAN throughput, which is calculated

through (3.53), for various κ values of VFA, the All-On and All-Off methods.

Furthermore, the activity levels in the data set are assumed to be in Mbps after

the pre-processing detailed in Section 5.5. The objective of demonstrating these

results is to highlight the impact of κ value on the performance of the proposed

VFA based switching algorithm. In addition, the findings also display the cost

of switching off all the SCs without taking into account the available capacity at

the MC. As such, the results suggest that there is an upper bound for the All-Off
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Figure 3.10: Results for normalised network throughput against the number
of SCs. The network throughput is calculated by averaging out the obtained
throughput values at each time slot during the simulation period.

method, since it only relies on the capacity of the MC, and after normalisation,

each BS (MC or SC) has a capacity of unity at maximum. Given that the MC

is the only BS that is kept on, All-Off switches off all the SCs and offloads their

traffic to the MC, meaning that it has only one unit of capacity available in the

network. Therefore, these results also confirm that having a blind policy, that is,

acting without considering the environmental conditions and/or constraints, is

not a wise idea, since it results in the degradation of the QoS of users as well as

being more costly in power consumption on some occasions, as already proven in

Figs. 3.8b, 3.9a, and 3.9b. The purpose of presenting the results for the All-On

method is to demonstrate the best case (upper bound) that can be achieved in

terms of throughput.

As seen in Fig. 3.10, promising results are obtained with the proposed algo-

rithm. It gives quite close results to the All-On method, proving a good perfor-

mance as it is producing similar results to the best case. By considering the find-

ings in Figs. 3.8, 3.9, and 3.10 together, it is easy to deduce that the proposed VFA

based switching algorithm performs outstandingly good in terms of both power

consumption and throughput, since it reduces the power consumption (similar to

exhaustive search) without compromising on the QoS of the users (similar to the

All-On method). Provided that exhaustive search and All-On are the best meth-

ods in terms of power consumption and QoS, respectively, the proposed method

combines the advantages of both.

Fig. 3.10 also showcases the impact of κ in (3.47) on the performance of the

developed VFA model. The results suggest that the throughput performance of

the proposed VFA decreases with decreasing values of κ. This is because higher

values of κ will result in more penalty being incurred for the case when the
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demanded capacity exceeds the available capacity at the MC. As explained in

Section 3.2.6, when the demanded capacity is higher than the available one, the

network reduces the allocated bandwidth for each user in order to accommodate

the demands of all users. In this regard, the agent refrains from switching off

a SC—whose demanded capacity is larger than the available one at the MC—

which in turn helps to keep the QoS above the required level. However, for the

smaller values of κ, the agent starts following more relaxed policies on the given

constraint, where it takes more actions that are against the above-mentioned

demanded/available capacity criterion. Hence, the obtained throughput starts

decreasing for lower values of κ. For the extreme scenario, where κ = 0, then

(3.47) becomes CQ = P , meaning that the agent only focuses on the total power

consumption and does not care about the constraint of available capacity at the

MC. Intuitively, the agent would be reducing the total power consumption as

much as possible at the expense of QoS degradation.

3.2.7 Summary

In this work, an RL-based solution is presented for cell switching, which is capa-

ble of learning the best policy in a dense HetNet environment, in order to save

energy and satisfy the QoS at the same time. The proposed solution is evaluated

using real data from Milan, Italy and compared with various benchmark methods.

The results in terms of power and energy consumption show that the proposed

method can perform just as well as the exhaustive search method, which pro-

duces the optimum solutions, regardless of the complexity and size of the given

scenario/environment. Moreover, the proposed method resulted in much fewer

computations than that of exhaustive search, meaning that it is a scalable method.

Furthermore, the RAN throughput was also measured, and it was observed that

the proposed method gave similar results with the All-On method, which is the

best in terms of the QoS due to the fact that it does not include any offloading.

Therefore, the proposed VFA based cell switching method resulted in a significant

reduction in the network’s energy consumption without much compromise on the

QoS, thus making it suitable for practical application.
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Chapter 4

Capacity Enhancement for

Cellular Networks

This Chapter discusses the capacity enhancement concept from two different per-

spective, namely: predictive HO management and intelligent UAV positioning.

First, in the predictive HO management part, two potential issues regarding

Markov chains based HO predictions are identified and exclusive solutions are

proposed for each, as in [250–252]. Second, in the intelligent UAV positioning

part, a k-means clustering based UAV positioning algorithm is developed and

obtained results are analysed.

4.1 Improved Markov Chains based Predictive

Mobility Management

4.1.1 Introduction

In cellular communication networks, UEs perform measurements on some sig-

nal quality indicators; e.g., SINR, received signal strength indicator (RSSI), and

RSRP, from both serving and neighbouring BSs in an effort to keep their signal

qualities above a certain level by deciding whether an HO is required. Upon

the decision of an HO after meeting multiple conditions, including hysteresis

and TTT, some certain steps are required to be taken under three main phases,

namely: preparation, execution, and completion [168]. Nonetheless, all these

phases and steps take some time and causes HO latency as well as signalling

overhead [133, 251], thereby predictive HO schemes have been proposed in the

literature in order to overcome these problems [59,253–257].

These schemes mainly try to predict future HOs of users in order to perform

129
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some of the aforementioned HO steps prior to the occurrence of the HO so that

the HO signalling cost can be reduced. Even though these predictions can be

provided by various methods, including statistical analysis, ML, and data mining

algorithms, but ML is the one that is commonly employed [59]. Of diverse set of

available ML algorithms, one of the most popular algorithms in the literature is

found to be Markov chains—a class of stochastic process, characterised by a state

space and a transition matrix, given an initial distribution [133]. In the context

of mobility management, the states of a Markov chain can be seen as a user-cell

association, in which the BS identification corresponds to the state. Moreover,

the transition matrix would then represent the probability of a user transitioning

from the current BS to one of its neighbours, and the initial distribution can be

given according to used mobility data, for example.

Despite its popularity, Markov chains still have problems that need to be

addressed in order to provide a reliable performance under different conditions.

One of the main problems is their path dependency; i.e. when the trajectory of

a user includes revisits1 to pre-visited locations, the prediction accuracy becomes

very prone to drop dramatically. This problem is mostly caused by the charac-

teristics of transition matrix, which Markov chains based predictors use in their

algorithms. A conventional transition matrix is two-dimensional and includes

transition probabilities from one state to another, and thus whenever a user tra-

verses from one cell to another, the state with the highest probability is predicted

as the next state. Therefore, if two states have very similar probabilities, which

can occur when revisits happen in the user trajectories, conventional transition

matrices are very prone to be confused, resulting in increased chances of incorrect

predictions.

Another important issue with the conventional Markov-chains based HO pre-

dictors is that their prediction making criteria is quite primitive, such that they

solely rely on holding the highest transition probability to make the next state

prediction. This could be sufficient to some extent, but for larger networks sizes,

where the number of HO possibilities increases—especially with the dense SC

deployments in 5G, this is quite expected—, this only criterion would be inade-

quate owing to the fact that the probabilities in the transition matrix are likely

to scale down. This results in making prediction with a lower confidence2, which

subsequently degrades the prediction performances. Therefore, in this chapter,

these two problems (i.e., path-dependency and insufficient prediction criteria) of

the conventional Markov-chains based HO predictors are formularised along with

1Revisit is defined as a situation whereby a user visits the same cell more than once.
2The transition probability is treated as a confidence level here, as they are strongly corre-

lated to each other.



4.1. IMPROVEDMARKOV CHAINS BASED PREDICTIVEMOBILITYMANAGEMENT131

the proposed solutions.

4.1.2 Related Work

There are numerous studies performed in the literature related to Markov chains

based predictors for wireless communications. For example, in [258], the authors

employ Markov chains for mobility prediction. A classical Markov chain is em-

ployed, and the authors demonstrate the usability and suitability of the predictive

mobility management for LTE networks with femtocell deployments.

In [126,133], the authors introduce a discrete-time Markov chains (DTMC) in

order to manage HOs for CDSA in LTE networks. In the proposed method, they

try to predict the next position of a user in order to reduce the signalling costs

incurred by HOs. The LTE X2 HO procedure is assumed in their study, wherein

it is indicated that a non-predictive conventional HO procedure is better than an

incorrect prediction in terms of HO signalling cost. Their work, which will be

referred to as DTMC hereafter, will be used in this present work for comparison

purposes, since it is a good example of the traditional implementation of Markov

chains based HO predictions.

A hybrid Markov based model for human mobility prediction is presented

in [259], which suffers from requiring fast and effective algorithms in order to

select the optimal available network. A Markov renewal process, which is based

on a semi-Markov model, is proposed in [260] by considering both the location

and sojourn time of a user. As a key point in their work is that rather than

predicting only the next time slot, the authors are able to predict multi-step

ahead locations of a user, boosting the future visibility that in turn helps in

making more informed and efficient arrangements. In [261], a novel Markov

chains based predictive mobility management algorithm is presented, in which

the authors attempt to enhance the prediction performance of Markov chains for

both new and high-random users3.

4.1.3 Objectives and Contributions

Conventional Markov chains based HO predictors are quite primitive and vulner-

able to producing errors due to the fact that, as seen from (2.13), they only rely

on the transition matrix and the initial distribution while making predictions.

This brings multiple limitations, which undermines their practical implementa-

tion especially for applications that are slightly tolerant (or intolerant) to errors.

For the case of HO prediction, it is already obvious from Chapter 2 that making

3Users with high randomness/less regularity in their trajectories.
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incorrect predictions incurs more HO signalling cost than that of conventional

non-predictive HO process4. Based on that, it is quite crucial to minimise the

number of incorrect predictions in order to make the predictive HO process more

advantageous.

Due to their simplistic structure, Markov chains based predictors are subject

to have the following problems:

� the transition matrix can output similar/same transition probabilities, mak-

ing the predictor confused, thereby increasing the likelihood of errors;

� the algorithm identifies the maximum element in the output probability ma-

trix as the next state without making further investigations/checks. This is

problematic—especially for the scenarios where many states are available—

owing to the fact that a state with a very small transition probability can

be predicted as the next state as long as it is the maximum among the

others.

In this study, these two problems are modelled and addressed independently

in order to better observe the behaviours of each single solution. First, the afore-

mentioned first problem (i.e., revisit oriented close transition probabilities) is

formularised, followed by the proposed solution. In particular, revisits are found

to be affecting the prediction performance of Markov chains based HO predictors

employed in the literature, such as the one in [133]. In order to tackle this prob-

lem, a structural change for the Markov chains based HO predictions is proposed,

such that instead of storing the traditional 2-D one, a 3-D transition matrix idea

is introduced, where each layer in the third dimension is a conventional 2-D

transition matrix associated to a particular HO within a day. In other words,

each HO—in terms of the order; e.g., first, second HO, etc.—has its own 2-D

transition matrix, in which the HOs with the corresponding order are processed.

Therefore, since an additional contextual information; i.e., the orders of HOs, is

made available to the predictor, they start making more informed predictions,

which subsequently improves the prediction accuracy.

This is a novel idea given that, to the best of the author’s knowledge, this

kind of transition matrix style has not been proposed in the literature. Although

higher-order Markov chains would help in addressing the same problem, the size

of their transition matrix grows exponentially with the increasing order. The

proposed method, on the other hand, is more scalable provided that the size of

the transition matrix increases linearly with increasing number of states. In order

4Correct HO process in the best among these three cases (i.e., correct prediction, incorrect
prediction, and no-prediction) in terms of HO signalling cost.
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to demonstrate the performance of the proposed method, numerical simulations

are conducted, where a HO predictor with the proposed 3-D transition matrix is

compared to the 2-D one. The algorithms are tested with and without revisits

inclusions in the trajectory, and the obtained results confirm that the proposed

method is more robust to the changes in the user trajectory, as its prediction

performance is affected less from the revisit inclusions.

Second, the insufficient prediction criteria problem is modelled and a corre-

sponding solution is proposed. As such, when the number of states increases,

the transition probabilities are likely to scale down, which makes Markov chains

based predictors prone to produce errors while making HO predictions. This is

because conventional predictors rely on the maximum element in the probability

matrix, which might not necessarily be high enough. In other words, for the con-

ventional Markov chains based HO predictors, as in [133], holding the maximum

probability is the only condition to be predicted as the next state. However, as

mentioned earlier in this section, making incorrect prediction is more expensive

that making no prediction in terms of HO signalling cost, yielding that there

should be a confidence level at which the predictive HO is triggered.

In this regard, a threshold based prediction concept is presented in this work,

that is, the conventional non-predictive HO procedure in triggered in case none

of the states holds the developed threshold. This is done to protect the predictive

HO case from being disadvantageous over the non-predictive one. Towards that

end, an optimisation problem is developed for determining the threshold by con-

sidering the HO signalling cost. After analytical threshold derivations, numerical

simulation campaigns are conducted to test the proposed method. The obtained

results show that the proposed approach outperform the conventional Markov

chains based HO predictor in terms of HO signalling cost due to the fewer num-

ber of predictions: the non-predictive HO procedure is processed if none of the

candidate states could meet the threshold confidence level.

4.1.4 Problem Formulation

Before detailing the identified problems with conventional Markov chains based

mobility predictors, it is better to give a brief recap on their characteristics. In

general, Markov chains—fundamentally defined as a stochastic process—construct

a finite number of states and corresponding transition probabilities that represent

the likelihood of moving one state to another. These probabilities are stored in

a matrix that is commonly named as transition matrix. As mentioned earlier,

Markov chains based predictors are linked to the probability theory because of

their stochastic nature, as such, they can be employed as predictors, since the
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transition probabilities already provide the chances of traversing among different

states. Based on that, using (2.13), the predictor first calculates a probability

vector, which depends only on the transition matrix and the initial distribution,

and then estimates the next state by observing the resulting probabilities and

selecting the one holding the highest transition probability. Therefore, Markov

chains based predictors are easy to implement and have proven capabilities in

cellular networks as shown in [126,133,258–261].

However, despite their success, Markov chains have an inherit problem asso-

ciated to them, that is, relying on a simple matrix in order to predict the next

movement of a user. Because this matrix is constructed through a Markov process,

it suffers from so-called memoryless property, which states that the conditional

probability distribution of future states depends only upon the present state [262].

In other words, Markov chains based predictors are very prone to make incor-

rect predictions owing to the simplicity in their model. This is mainly because

the type of information exploited during the training phase is only transition

probabilities, which are built on historic transitions between the states, resulting

in making predictions with a limited context/knowledge. This characteristics of

Markov chains are susceptible to produce closer transition probabilities, which

in turn increases the likelihood of making incorrect predictions. As such, the

problem is twofold:

1. the algorithm itself is poorly immune to having similar/close probabilities

due to multiple effects including ping-pong and revisit;

2. predictions are made without considering any confidence level; predictors

simply select the state with the highest probability as the next state re-

gardless of a confidence level.

In the following paragraphs, these two aspects will be discussed in a detailed

manner.

Close Probabilities Due to Revisits

Due to the memoryless property of Markov chains, issues can arise whenever there

are revisits in a given user’s path. For example, given a user visiting the same

cell twice—but performs the next HO to different BSs—thereby the probability

of going to either one of the cells is of 50% at the end of the learning stage. As

such, it can be seen that despite utilising a Markov chain to learn this transition

probability, there is no meaningful information learned and its performance would

be the same as that of a random prediction. Towards that end, it is clear that
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although Markov chains can work very well for mobility prediction whenever the

trajectory of a given user does not include revisits, problems can arise if revisits

occur, whereby additional solutions become necessary [250].

Lack of a Confidence Level

While making predictions, the Markov chains based methods first trigger (2.13),

and they identify the state with the highest probability as the next state. In

other words, the selection of the next state is performed by using only the max

function, such that max(~pm), thereby the predictions are made blindly to the

confidence level5 of the predictor, which can play an important role on the overall

performance [251].

This concept would be easier to explain this concept with an example. Assume

that a user is currently located in State A, while States B, C, D, and E are being

its neighbouring states6. Let’s have two different cases [251]: in the first case,

imagine the following probability matrix is obtained after employing (2.13) (the

order of the elements goes from State B to State E):

~pm = [0.90 0.08 0.01 0.01]. (4.1)

According to the common practice, as it is done in [126, 133] for example, the

predictor selects State B as the next state, since the transition probability from

A to B is the highest.

In the second case, let the probability matrix be different from the first case

as follows [251]:

~pm = [0.30 0.25 0.25 0.20]. (4.2)

The predictor selects State B in this case as well given that it holds the highest

transition probability. Nonetheless, in this case, the transition probabilities from

State A to other states are very close to each other. Moreover, the probability of

going to State B was 0.9 in the first case, whereas it is 0.3 for the second case.

The point here is that although the predictor outputs State B as the next step

in both cases, the confidence of the prediction is much higher in the first case.

Therefore, the predictor is supposed to be designed in a way that it takes into

account not only the state with the highest probability but also the confidence

level.

5The maximum probability in ~pm resulted from (2.13) is considered as the confidence level
in this work, since it derived from the transition matrix.

6In cellular networks, due to the spatial correlation, a user can move from one state to only
its neighbours. Therefore, that is the reason why the neighbouring state concept is adopted
here.
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4.1.5 System Model

As shown in Fig. 4.1, a cellular network environment with multiple cells—each

served by a BS—are considered in this work. The users within this environment

commute based on their daily life routines. As seen from Fig. 4.1 that each cell

has multiple neighbouring cells, which is defined as being adjacent to each other.

Therefore, let Bs,t from B denote the serving BS of a user at time t, at which the

user is in cell i; such that Bs,t = i. Moreover, let cell i have a neighbour list that

is stored in a vector of Ni. Therefore, as it is done in [133], the conditions for

moving to a next cell are as follows. First, the user is only allowed to move to a

neighbour cell of the current serving cell:

P (Bs,t+1 = x|Bs,t = i) = 0, ∀x /∈ Ni, (4.3)

where Bs,t+1 denotes the next cell of the user. Second, moving from and to the

same cell is not allowed:

P (Bs,t+1 = i|Bs,t = i) = 0, ∀i ∈ B, (4.4)

where B is the set of all the considered cells/BSs. The entries in the transition

matrix, ~T , is updated according to an online learning process detailed in [133].

For the sake of avoiding repetition, the online learning process will not be detailed

in this thesis, but the interested readers are referred to [133] and the equations

from (7) to (11) therein. In brief, after each move, the transition probability of the

destination cell is incremented by the accumulated transition probabilities of the

other non-zero neighbouring cells. However, this obtained accumulated number

is controlled by a trajectory dependent parameter, α, which basically acts as

the learning rate of the system (i.e., a smaller value of α updates the transition

matrix slowly, while a larger value of α updates it more quickly). Then, the

transition probabilities of the rest of non-zero neighbouring cells are decremented

in a similar fashion7.

Assuming a user is moving randomly, such as random walk mobility model,

the next cell of the user would be uniformly distributed as

P (Bs,t+1 = y|Bs,t = i) =
1

|Ni|
,∀y ∈ Ni, (4.5)

where |Ni| denotes the cardinality of the set Ni.

7See equations (7) to (11) in [133].
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Figure 4.1: Considered system environment where there are multiple cells
and users are moving around. Note that diamonds (♦) represent BSs, while
crosses (×) are for users.

4.1.6 Proposed Methodology

As mentioned in Section 4.1.4, two different problems can arise from the simplistic

characteristics of the conventional Markov chains:

� close probabilities due to revisits, and

� ignoring the confidence level while predicting.

Therefore, two independent solutions will be proposed for these two problems.

Three-Dimensional Transition Matrix

Two different approaches can be considered in order to mitigate the effects of

revisits in Markov chains based mobility predictions: one is to include infor-

mation about previous states, such as k-order Markov chains as in [263], while

another is to include information about the order of states (i.e., the order of HO

occurrences). Although k-order Markov models are good solutions to such prob-

lems, they usually suffer from huge computational complexity for higher values

of k, where the prediction accuracy is prone to be degraded owing to the lower

convergence rates [264].

Considering the case of adding the HO order information to a conventional

Markov chain: this can be done by building a 3-D transition matrix, in which

each row and column represent the probabilities between BSs, while the third

dimension represents the order of the HO, such that the size of proposed 3-D

transition matrix is ~T m3-D = |B| × |B| ×NHO, where |B| is the cardinality of B and
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NHO is the number of HOs per day [250]. In a more general manner, this idea

can be described as a system that builds individual 2-D transition matrices for

each HO in a day, and then all matrices are combined at the end to build a 3-D

transition matrix. Thus, whenever revisits occur, a completely new 2-D matrix

is analysed, and since the same BS cannot be revisited in a consecutive manner

(otherwise there is no HO), the problem of revisits is solved.

Threshold Based Prediction Triggering

It is now obvious that there is an important issue with classical Markov chains

based predictors when the highest transition probability is not sufficiently high.

In order to mitigate this problem, a threshold is introduced in this study, where

the predictors are allowed to make no prediction when the transition probabilities

are low; i.e., the state with the highest probability fails to meet the pre-defined

threshold. In other words, while holding the highest probability would be suffi-

cient as a condition to make the next state prediction for conventional Markov

chains based predictors, the proposed model requires two conditions [251]:

� holding the highest probability (as in the conventional methods), and

� meeting the threshold (the novel criterion).

If one of these condition is not met, the conventional non-predictive HO proce-

dure is triggered. It is already known from Fig. 2.4 that, in terms of signalling

cost, making no prediction is better than incorrect predictions, with the correct

prediction is being the best [126, 133]. Let Hn, Hi, and Hc denote HO signalling

costs for no-prediction, incorrect prediction, and correct prediction cases, respec-

tively. Based on that, in [133], the expected total HO signalling cost is given as

E[Ht] = AcHc + (1− Ac)Hi, (4.6)

where Ht is the actual HO signalling cost, and Ac is the prediction accuracy.

Nevertheless, no-prediction case in not considered in (4.6). Given that the

proposed approach results in no predictions in cases where the greatest transition

probability does not meet the introduced threshold, the no-prediction case should

be incorporated into (4.6). However, there is another modification needed in (4.6)

before integrating the no-prediction case: the prediction accuracy is a measure

of the confidence of the predictor, and it can be obtained through evaluating

the prediction performance, but only after making some predictions. Moreover,

according to the law of large numbers, measuring the accuracy with small size

of measurements is not a good idea due to characteristics of random processes,
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where many observations (ideally infinite) are needed to obtain the underlying

distribution. Similarly, in order to find the accuracy level in a correct way, the

prediction performance should be measured over many observations8. Because

the proposed threshold approach is to be implemented at each prediction instance,

using of the accuracy as a confidence measurement is not a good idea. To this

end, the maximum probability of the probability matrix, ~pm, is used in this study

as a confidence level instead of the prediction accuracy, such that Ac ≈ ~pm,m,

where pm,m = max(~pm). Thus, (4.6) is converted to

E[Ht] = pm,mHc + (1− ~pm,m)Hi. (4.7)

Assume that the transition matrix of a Markov chain is known, and the prob-

ability matrix is obtained through (2.13) as ~pm = [pm,1, pm,2., , , .pm,|B|]. Since the

predictor is now allowed to decide either making or not making predictions ac-

cording to the threshold, both cases will occur with a correspondent probability.

Thus, let p+ and p− be the probabilities of making and not making predictions,

respectively, where p− = 1 − p+. Then, after incorporating this no-prediction

case, (4.7) can be written as:

E[Ht] = p+pm,mHc + p+(1− pm,m)Hi + p−Hn. (4.8)

Based on that, the optimisation problem can be formulated as follows:

min
pt

E[Ht]

s.t. 0 ≤ p+ ≤ 1,

0 ≤ p− ≤ 1,

0 ≤ pm,m ≤ 1,

(4.9)

where pt is the probability threshold for making predictions.

Since
d2(E[Ht])

d(p+)2
= 0, the optimisation problem in (4.9) is neither convex nor

concave; E[Ht] is rather a linear function owing to the fact that pm,m is known and

constant. Therefore, the following expression is obtained when the first derivative

of E[Ht] is taken:

d(E[Ht])

d(p+)
= pm,m (Hc −Hi) +Hi −Hn. (4.10)

8The more the number of observations is the better to convergence to the actual accuracy.
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From (4.10), it is obvious that
d(E[Ht])

d(p+)
≤ 0 when pm,m ≥

Hi −Hn

Hi −Hc

, which yields

pt =
Hi −Hn

Hi −Hc

. (4.11)

In this regard, in order to make a prediction, the following condition should

be satisfied:

pm,m ≥ pt =
Hi −Hn

Hi −Hc

, (4.12)

otherwise the conventional non-predictive HO procedure is triggered.

4.1.7 Performance Evaluation

Two different simulation campaigns are carried out in order to reflect the perfor-

mance of the solutions to the aforementioned two problems. In order to observe

the behaviours of the solutions in a better and more detailed way, they are imple-

mented independently and results are analysed accordingly. However, there are

some generic properties of the created simulation environment: a network with

19 cells is simulated and the movements of a single user over a period of 100 days,

with 10 HOs per day, are observed.

Moreover, four scenarios with different route randomness, mainly: 0%, 15%,

30%, and 45% randomness, are also investigated. More specifically, as in [133],

in order to generate the synthetic data set for the user, the following data types

are generated:

� a deterministic path is defined for the user in order to reflect their daily

routine;

� random paths are generated with the aforementioned randomness levels in

order to reflect the random behaviours9.

Then, these two path types are combined to obtain the historic trajectory data of

the considered user. The more randomness the user has in the overall data, the

more unpredictable they become: 0% means that the user always takes the pre-

defined deterministic path without any exception, while the user takes some (al-

most half) random paths in the case of 45% randomness. The performances of

the proposed methods are compared with DTMC [133], in which a classical 2-D

transition matrix is employed without having any threshold.

9The random behaviour can be anything unpredictable or unexpected. For example, a user
mostly spends their time during weekends at home, but on a special occasion, they go to a music
concert at one of the weekends. This behaviour is obviously unexpected, thereby unpredictable
unless using other means of context.
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(a) 2-D transition matrix (DTMC).
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(b) Proposed 3-D transition matrix.

Figure 4.2: Prediction accuracy performances of DTMC (with 2-D transition ma-
trix) and proposed method (with 3-D transition matrix) across different learning
rates. Note that the results are the averages of 30 repeats.

Results for 3-D Transition Matrix based Markov Chains

Two different cases are considered in order to analyse the effects of revisits,

namely with 40% revisits and without revisits. Moreover, four scenarios with

different route randomness are also investigated, mainly: 0%, 15%, 30%, and

45% randomness. The prediction accuracy—the ratio between the number of

correct predictions and total number of predictions—of the two proposed meth-

ods are evaluated against the aforementioned learning rate, α. Furthermore, after

choosing the most appropriate α for each scenario, the two methods are compared

in terms of HO signalling cost, defined as the number of bytes exchanged during

HO control messages, according to [133].

The prediction accuracy performances of both DTMC and the proposed 3-D

transition matrix are shown in Fig. 4.2, in which Fig. 4.2a is for DTMC while

Fig. 4.2b reflects the results for the proposed method. From these two figures,

it is clear that the performance of the proposed 3-D transition matrix algorithm

largely outperforms the conventional 2-D transition matrix based Markov chains.

It can be seen that when revisits occur, 2-D Markov chains are not able to make

correct predictions, achieving its best performance of only around 42% when no

randomness is included in the user’s route. On the other hand, when a 3-D

matrix is introduced, the performance approaches to 100% in the no randomness

scenario.

Another interesting finding is the effect of parameter α in the performance of

the system. In general, it can be concluded that a larger α translates to a worse

prediction performance, with the sole exception to this rule being the case of

the 3-D matrix with no randomness. This occurs because whenever α increases,

the matrix remembers only the most recent transitions performed by the user,
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whereas when α is smaller, previous transitions are taken more into account. As

such, whenever there is randomness in the user’s route, more prediction errors

are found to occur for a larger α. On the other hand, if the route is fixed, a

larger α definitely helps, as the matrix is able to converge faster to the learned

values. Therefore, it can also be seen that α plays an important role in the

system, thereby should be chosen properly.

Based on that, for the evaluation in terms of HO signalling costs, the best

values of α for each curve are chosen and results are shown in Fig 4.3, wherein

it can be seen that the proposed 3-D matrix achieves a better performance than

the conventional 2-D approach in all considered scenarios. This occurs because
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Figure 4.3: Expected HO signalling cost performance of DTMC (with 2-D tran-
sition matrix) and proposed method (with 3-D transition matrix) for different
levels of trajectory randomness. The HO signalling costs for both methods are
obtained from their best performing learning rates for each randomness level.
Note that the results are the averages of 30 repeats. The indexing from (a) to (b)
in the legend and the first set of bars are done for identification, and the same
order follows for all sets of the bars.

the 3-D matrix is able to make less mistakes in the mobility prediction, as such,

it is able to allocate resources in advance at the correct BS, minimising the HO

signalling costs. On the other hand, the conventional 2-D Markov method, as

seen from Fig. 4.2a, is not able to correctly predict the next cell of a user, thus,

HO signalling is sent to the wrong BS, increasing its total cost. In addition, it

can also be seen that, due to the large amount of errors, the performance of the

incorrect prediction case can be worse than the no-prediction scenario. Hence,

the impact of correct and incorrect predictions plays an important role in the

signalling exchange in mobility management.
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Results on Threshold based Markov Chains

The prediction performances of both DTMC [133] and the proposed threshold

based Markov chains are presented in Fig. 4.4, in which the prediction accuracy

is used as a performance metric. Note that the total number of predictions is

equal to the total number of HOs for DTMC, however, for the proposed method,

the total numbers of HOs and predictions do not necessarily equal to each other

owing to its no-prediction option.
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Figure 4.4: Prediction accuracy performances of the proposed threshold based
method and DTMC across learning rates and various randomness in the trajec-
tory. Note that the learning rate, α, is equivalent to the the trajectory dependent
parameter, Rd in [133], which is used as a reference work.

The results in Fig. 4.4 reveal that the proposed method outperformed DTMC

with various scales, and there are three important takeaways from these results:

� prediction accuracy versus randomness: for both methods, the pre-

diction accuracy tends to decay with increasing randomness in the user

trajectory. This observation is quite expected, as randomness cannot be

predicted, and more randomness in the data set makes it harder to predict.

Therefore, when the randomness in the data set is 0%, meaning the user

always follows the pre-defined deterministic path, the prediction accuracy

is equal (for the proposed method) or very close (for DTMC) to 100% for

certain α values. For 45% randomness, on the other hand, the prediction

accuracy drops to around 28% when α = 1 for both DTMC and the pro-

posed method. From this trend, it is expected that the prediction accuracy

would drop further when the randomness in the user trajectory is increased.
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� prediction accuracy versus learning rate: except for the 0% random-

ness case, a similar pattern is observed when the prediction accuracy is

evaluated across various α values: to some extent of learning rate, the pre-

diction accuracy improves with increasing learning rate, but then it changes

the behaviour and starts decaying with increasing learning rate. The un-

derlying rationale behind it is that, for example, when α = 0, the transition

matrix is not updated and kept the same as it was initialised. Given that

the uniform distribution is followed in the initialisation phase, such that all

the neighbouring cells have the same transition probability:

– DTMC makes prediction randomly, and that’s why it results in very

low prediction accuracies when α = 0. Due to the nature of the uni-

form distribution, this obtained accuracy would drop for larger number

of neighbours, or vice versa.

– the proposed method does not make predictions due to the fact that the

probabilities in the transition matrix are very low; i.e., not satisfying

the developed threshold. This is the reason why the proposed method

starts from 0% accuracy when α = 0, while DTMC starts from 13%-

15%.

The prediction accuracies start rising once α increases from 0 to some small

positive numbers, because the algorithms starts learning from the experi-

ence they gained. Nonetheless, although the algorithms keep a good level

of prediction accuracies to some level of learning rate (around α = 0.2), the

performances begin to degrade once the learning rate further increases (≈
α > 0.2). This is because the algorithms start valuing the new data more,

which in turn limits their learning capabilities. Furthermore, the degree of

the performance degradation with the learning rate is also related to the ran-

domness level: for DTMC, for instance, the prediction accuracy decreased

by 8% for 45% randomness when α is incremented from 0.3 to 0.4, whereas

the decrease is only 2.31% for 15% randomness. The reasoning behind this

finding is that the algorithms value new data more for increasing learning

rate, and the new data is more likely to be random for a higher degrees of

randomness, which subsequently damages the prediction accuracy.

Based on that, the prediction performances of both methods for the 0%

randomness level is also worth discussing. As seen from the findings, the

0% randomness case does not follow the common trend as the rest of the

cases. As such, unlike the other randomness levels, the performance always

increases with the learning rate for DTMC, since it is better to learn fast;
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i.e., value new data more, for the case of no randomness in the trajectory.

This is because the new value is more accurate than the existing experience,

which is based on the uniform initialisation. In other words, the algorithm

tries to converge to the correct values starting from the initial transition

matrix, which is more likely to be inaccurate, thereby the lower learning

rates is more prone to take more time to converge, making them susceptible

to incorrect prediction due to prolonged learning phase. For the proposed

method, it seems it hits 100% prediction accuracy from the very begin-

ning (when α = 0.02), and its performance is no longer affected. However,

this statement is partially true, such that for increased learning rates the

proposed algorithm makes more correct predictions. Thus, even though the

prediction accuracy remains the same, the number of correct predictions

rises with increasing learning rate.

� performance difference versus randomness: although similar patterns

are observed for both the proposed method and DTMC, the performance

difference between them vary for different randomness levels. For example,

when their best performing learning rates are compared10, the proposed

method outperformed DTMC by 8.9% and 0.99% for 45% and 0% ran-

domness, respectively. The underlying idea for this observation is that the

proposed method becomes more significant for users with higher random-

ness levels, as they are harder to predict and the proposed method protects

the algorithm from making incorrect predictions.

The HO signalling cost performances of the proposed method and DTMC for

various learning rates are demonstrated in Fig. 4.5, where the calculation of the

total HO signalling cost is performed as follows:

Ht = Nho,cHc +Nho,iHi +Nho,nHn, (4.13)

where Nho,c and Nho,i are the total number of HOs that are correctly and in-

correctly predicted, while Nho,n is the number of non-predictive HOs (i.e., con-

ventional HO). For the proposed method: {Nho,c, Nho,i, Nho,n} ≥ 0, while for

DTMC: {Nho,c, Nho,i} ≥ 0 and Nho,n = 0. For the non-predictive case, on the

other hand, Nho,n = Nho,t, where Nho,t is the total number of HOs that yields

{Nho,c, Nho,i} = 0.

As seen from the results, except for some instances in 45% randomness, both

methods performed better than the conventional HO mechanism. Besides, the

10The best performing; i.e., the one with the highest prediction accuracy, is selected for
comparisons for each randomness level.
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Figure 4.5: Performance of the proposed method and DTMC in terms of HO
signalling cost across different learning rates. The average signalling cost per
HO is calculated by dividing the total obtained HO signalling cost by the total
number of HOs. Non-predictive case reflects the conventional HO procedure that
does not include any prediction.

trends against the randomness level and the learning rate are quite similar to the

findings in Fig. 4.4, because the prediction accuracy and the HO signalling costs

are strongly correlated to each other. The model provided in (4.13) includes

the number of correct and incorrect HOs, from which the prediction accuracy

is derived, thereby (4.13) confirms the aforementioned relationship between the

prediction accuracy and HO signalling cost.

The HO signalling cost grows with increasing randomness level in the data

given that the less randomness in the HO history of the user results in more predic-

tion accuracy. However, unlike the prediction accuracy results given in Fig. 4.4,

for 0% randomness, the HO signalling cost almost continuously reduces with

increasing learning rate albeit being slightly. Still considering the 0% random-

ness level, the proposed method makes more correct predictions with increasing

learning rate that did not have an impact on the prediction accuracy—the ratio

between correctly predicted HO and total predicted HOs. However, from (4.13),

the total HO signalling costs decays with increasing number of correctly predicted

HOs, since Hc < Hn < Hi.

4.1.8 Summary

Two different problems associated with conventional Markov chains based HO

predictors were identified and corresponding solutions were developed in this
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work. The identified problems are diagnosed to arise from the limited contex-

tual information of conventional Markov chains based predictors, such that the

algorithm is built solely on the HO history of users. Even though this kind of

HO predictors are preferable in some cases due to their simplicity, the scenarios

that they can work is also limited, making them impractical for some other cases.

First, it is found in this study that when revisits are included in the user path,

the performances of predictors degrade significantly due to the fact that revis-

its make multiple destination states have similar—or even the same—transition

probabilities. This, in turn, affects the accuracy of the HO predictions. There-

fore, in this work, a 3-D transition matrix based Markov chains HO predictor was

designed, where the orders of the HOs also matter. In other words, the orders of

the HOs are treated as additional contextual information, helping the algorithm

make more informed and accurate predictions, and the results suggested that the

proposed 3-D transition matrix structure enhanced the predictor’s immunity to

the revisits.

Second, the criterion of holding the highest probability to be predicted as

a next state was identified as another problem, especially for users with large

number of HOs—each constitute a state—within a day. When the size of the

state space increases, it is more likely that the transition probabilities get smaller

due to the nature of the random process. As such, the conventional predictors

perform their prediction regardless of how confident they are: they just check

for the state with the highest transition probability. This would increase the

chances of making inaccurate HO predictions, which is more costly than the non-

predictive HO process in terms of HO signalling. Therefore, it is vital to minimise

the inaccuracies in the predictions, but the single criterion process is vulnerable

to possible errors. In this regard, a threshold based HO prediction was introduced

in this work, where the HO prediction is only triggered when the confidence of

the predictor is sufficient; i.e., meet the threshold. An optimisation problem

was developed and the threshold was analytically derived, and the numerical

simulation results demonstrated that the HO signalling cost can be reduced with

such a thresholding mechanism.
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4.2 Clustering Based UAV Positioning for Ca-

pacity Enhancement

4.2.1 Introduction

UAVs are expected to play a fundamental role in future mobile networks, due

to their mobility and adaptability, which allow them to provide network services

on demand [94, 176]. Thus, UAVs are envisioned to be deployed as aerial BSs in

order to provide a wide range of services in several situations, such as in quickly

restoring service in emergencies, providing connectivity to remote areas, cache in

the air and capacity enhancement, to name a few [94,176,265–267].

In particular, in the realm of capacity enhancement, UAV BSs can be utilised

as complementary solutions to ground networks, when temporary or big events

happen, such as open markets, fairs or music concerts. In such cases, the capacity

offered by the ground network might be insufficient, causing many users to be

in outage. Thus, UAVs can be a vital solution to this mobile networks use-case.

The advantages of using UAV-mounted BSs over conventional terrestrial fixed

BSs are already mentioned in Section 2.4.3, however, it is also worth discussing

the benefits of UAVs against terrestrial mobile BSs mounted on vehicles, such as

cars, trucks, etc. Although the mobility and on-demand availability are keys for

both cases, UAVs come with extra benefits [176–178, 268]: first, the mobility of

UAVs are easier and more flexible compared to terrestrial vehicles, which need

to follow existing roads, traffic regulations, etc. UAVs, on the other hand, can

move more freely, since they are subject to less restrictions. Second, because

UAVs are placed in the air, they are most likely to construct LOS links with

users, which in turn enhances the communication performance by improving the

received signal quality. Moreover, UAVs are able to alter their altitudes, thereby

they become capable of adjusting their coverage and link according to chang-

ing circumstances. Third, in the cases where the users are mostly mobile, the

positioning of the mobile BSs should be continually optimised, and terrestrial

mobile BSs are disadvantageous on this owing to their aforementioned movement

restrictions. Fourth, UAV BS deployments are more cost-effective than dedicat-

ing terrestrial vehicles for BS deployments. Lastly, the deployment of terrestrial

mobile BSs would be very hard in disaster scenarios, where the existing infras-

tructure, including communication networks and roads, are destroyed, and thus

arriving at the required locations is less likely to be feasible for terrestrial BSs.

However, despite the recent popularity of UAVs and all of the potential ap-

plications, integrating UAVs in mobile networks is still a challenging topic [176].
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In this context, several issues still remain, such as determining the optimal de-

ployment location of multiple UAVs, designing their optimal trajectory, how to

minimise the interference between the aerial and ground networks, how to handle

resource allocation, HO and the backhaul of UAVs, etc. [176, 269]. As such, in

this work, a low complexity solution is proposed to determine the optimal 3-D

placement of multiple UAVs in a scenario of network capacity enhancement, such

as an event happening in an urban area, in what is known as a pop-up network.

In order to tackle this problem, a two-step solution is proposed, in which the 3-D

placement problem is divided into two parts. First, the utilisation of k-means

clustering is proposed to find the optimal 2-D placement of multiple UAVs. Af-

ter that, the optimal heights of the aerial BSs are found such that each UAV

can cover all users in its cluster. In addition, due to the intelligent and online

nature of the proposed solution, it is applicable in different scenarios, such as in

emergency networks, since this approach relies only on data, rather than problem

specific constraints.

In the context of pop-up networks, a simulation scenario is built, in which

an urban area is considered and user traffic demands are generated. In order to

simulate real traffic conditions, the real CDR data provided by Telecom Italia, for

the city of Milan, Italy is used as the data traffic11. It is assumed that the original

ground network can cover part of that, but the additional capacity needs to be

provided by the UAVs. The proposed solution is compared with two baseline

methods, which consist of deploying the UAVs in a symmetric and in a uniformly

random manner around the grid. Results show that the proposed method is more

robust and capable of performing an online optimisation of the 3-D position of

multiple UAVs and that it outperforms the other baselines in terms of users

covered.

4.2.2 Related Work

In terms of UAV positioning, several recent works have tackled the issue. For

example, in [267], the authors optimise the number and position of multiple UAV

BSs in the presence of a ground network in order to achieve a particular QoS

target. In contrast, in [270], the authors develop a mathematical solution to find

the optimal position of a single UAV in order to minimise its energy consumption.

Sun et al., in [233] propose two different methods to position multiple UAV BSs

and achieve user coverage maximisation, one based on a mathematical approach

and another based on k-means. However, the solutions proposed assume a very

11See Section 5.5 in Chapter 3 for the details about the dataset, which is available online at
https://dandelion.eu/datamine/open-big-data/.
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simple network scenario and also that the UAVs cannot have overlapping cover-

age regions, in order to limit inter-UAV interference. On the other hand, other

approaches utilise ML methods to position multiple UAVs. In [271], for example,

the authors utilise RL to position a single UAV in a scenario where the ground

network is operable in order to enhance the QoS of the network. Similarly, [94]

also proposes an RL approach to solve the positioning problem of UAV BSs. This

time, however, a multiple UAV solution is proposed and the authors consider an

emergency scenario, in which the previous ground network was totally destroyed.

Lastly, [272] proposes a Gaussian mixture model to determine the optimal de-

ployment of multiple UAVs considering a minimum power consumption.

4.2.3 Objectives and Contributions

Although there are numerous positioning methods available in the literature,

solutions, such as [233, 267, 270] rely on a mathematical approach, which, in

general, work in an offline manner—and can be quite limiting [52]. On the other

hand, other approaches utilise ML methods, such as [94,271,272], however, these

solutions require a lot of complexity and memory, which hinders the effect of

these solutions.

In this work, the objective is to design a low-cost—in terms of computation—

algorithm that can accurately position the UAV BSs. To this end, a clustering

based positioning algorithm is proposed, where the 2-D (latitude and longitude)

of the UAVs are determined. In particular, 2-D UAV positioning problem is

converted to the clustering problem due to their similarities. Thus, k-means

clustering—one of the most common and promising clustering algorithms—can

be applied to determine the 2-D positions of the UAVs. More specifically, the

objective of positioning is to deploy the UAVs in a way that they can have a close

proximity to the users, since the closer users are to BSs, the larger the received

SINR they might get due to the less path-loss and increased possibility of LOS.

For k-means algorithm, on the other hand, the objective is to locate centroids for

each cluster in a way that each data point is closer to its associated centroid than

the other ones. Therefore, k-means algorithm is selected as a methodology to

place the UAVs in terms of latitude and longitude. The use of an ML algorithm

has its inherent advantageous; for example, the solution does not need to be

trained/implemented from scratch as it becomes adaptive to the changes in the

environment. Furthermore, an analytical approach is followed for the altitude,

where the UAVs are situated at an altitude that they can cover all their associated

users, which was determined via k-means implementation.

Moreover, the effects of the altitude on the received SINR is analysed compre-
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Figure 4.6: Directivity angle of the SC carried by the UAV [94].

hensively. This is an important contribution, since the selection of altitude would

result in overlapping footprints for two or more UAV BSs, which in turn inflates

the interference observed by the users within the overlapping regions. This sub-

sequently degrades the user throughput, and it violates the idea behind UAV BS

deployments given that the objective is to improve the capacity of the network.

Therefore, this work not only provides a low-cost ML based solution to the UAV

positioning problem, it also—in case of multiple UAV deployments—discusses the

impacts of the altitude from the throughput/SINR perspective.

4.2.4 System Model

Environment

In this work, an urban scenario is considered with a fixed terrestrial infrastructure

which provides cellular connectivity. Due to an increased demand in capacity, the

network is strained and therefore the QoS experienced by its users is degraded.

In this regard, a strategy is proposed for mitigating this degradation by deploying

UAVs equipped with SCs, such that additional capacity can be offered.

UAV Small Cell

Radio access network: The UAV is carrying a SC with a directional antenna,

and therefore it has a coverage footprint [94]. This is illustrated in Fig. 4.6, where

ϑ is the directivity angle, hd is the altitude of the UAV and rUAV
� is the radius of

coverage.

The SINR at the user is obtained using the same model as in [273], which

considers free space path-loss between the user and the UAV. Following [273],
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PLi,j, the path-loss in dB, for the link between user i and UAV j is obtained

as [94]

PLi,j = 20 log10

(
4πfcdi,j

c

)
, (4.14)

where fc is the carrier frequency, di,j is the link distance, and c is the speed of

light. Note that fading is not considered in the propagation modelling.

Next, the SINR for the link in question, γi,j, is obtained via [94]

γi,j =
Pi,j

N0 +
NUAV∑
k=1,k 6=j

Pi,k

, (4.15)

where NUAV is the number of UAVs deployed, N0 is the additive white Gaussian

noise (AWGN) power and

Pi,j = Pt,j − PLi,j (4.16)

is the received signal strength at user i, where Pt,j is the transmit power of UAV

j. Note that all the powers are measured in dB.

Furthermore, the throughput is measured using Shannon’s capacity formula,

as in [94], such that the throughput for the link in question is determined via [146]

Ti,j = W log2(1 + γi,j), (4.17)

where W is the communication bandwidth.

Moreover, since the BS carried by the UAV is compliant with the cellular

network standard, it utilises orthogonal frequency-division multiplexing (OFDM)

for scheduling RAN resources, and therefore it has a limited number of resource

blocks (RBs) to provide connectivity to users.

Backhaul: The backhaul connectivity for the UAV SCs is essential for the

proper operation of the proposed solution to function properly. With that in

mind, it is proposed that this should be done via a microwave link between the

UAVs and the terrestrial BSs. In order to keep the interference to a minimum, this

connection would be in the form of an out of band backhaul [94], thus requiring

an additional spectrum, and leveraging OFDM to avoid interference between the

connectivity of multiple UAVs.
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User Allocation

User allocation is performed by the users ranking the available BSs by received

SINR and choosing the one which provides the highest value. A UE is allocated

to its highest ranked BS that has available RAN resources and which can provide

a minimum signal strength criteria12. If there is no BS which meets the criteria,

the user is not allocated and is considered out of coverage (i.e., in outage).

4.2.5 Proposed Solution

With this scenario in mind, a strategy is proposed to find a position to deploy

the UAVs in order to provide the necessary enhanced capacity in the crowded

scenario.

Firstly, NUAV, the number of UAVs to be deployed, must be determined. It is

proposed to find it by computing the necessary increase in capacity and providing

that capacity with the UAVs, such that

NUAV =
CD − CE

CUAV

, (4.18)

where CD is the demanded capacity by the users, CE is the existing network

capacity, and CUAV is the capacity that each UAV can provide, in terms of RAN.

Note that CUAV is the full capacity of a UAV, meaning that it is the capacity before

undesired effects, such as interference, take place. However, intuitively, with

the inclusion of interference, CUAV is expected to decrease, which subsequently

increases NUAV according to (4.18). In this work, on the other hand, the planning

on the number of required UAVs is performed by considering the full capacity of

the UAVs, since the amount of interference cannot be estimated in advance.

Next, the solution consists of i) finding the best (x, y) position13 to deploy

the UAVs using unsupervised learning; then ii) determining the altitude for the

UAVs that provides the best QoS both in terms of throughput as well as number

of users served. The first task is accomplished by first obtaining the position of

the users using a localisation technique, such as the one presented in [274], and

then performing k-means clustering using the users’ (x, y) position as features in

order to determine the cluster centres.

Then, the UAVs are positioned at the cluster centres and their altitude is de-

termined such that QoS metrics are optimised. From Fig. 4.6, reNB
� , the footprint

coverage radius, can easily be determined as a function of the flight altitude and

12In the simulations, it is considered that this minimum signal strength is 3 dB below the
required by the user.

13x, y: latitude, longitude.
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the antenna directivity, such that

reNB
� = hd tan

(
ϑ

2

)
. (4.19)

Due to the nature of the UAV BS with the well-defined footprint, it is pos-

sible to regulate the UAV altitude depending on the desired area to be served.

Moreover, due to the expensive nature of spectrum licenses, it is assumed that

all the UAVs share the same spectrum, thus causing interference on each other.

Thus, interference and coverage area create a trade-off in terms of altitude. In

other words, the higher a UAV is positioned the larger the coverage footprint

is, however at the same time it causes more interference on neighbouring UAVs.

This can be viewed as an overlap in coverage footprints.

In order to study this trade-off effectively taking into account the user dis-

tribution, % ∈ [0, 1], a parameter that can regulate the amount of overlapping

footprint, is introduced. Therefore, the flight altitude of the UAV is obtained as

a function of % and can be tuned online according to the QoS performance, such

that

hd = 2%reNB
�,x / tan

(
ϑ

2

)
, (4.20)

where reNB
�,x is a radius that depends on the adopted strategy. For the proposed

solution, it is equal to the distance of the furthest user in the cluster to the cluster

centre. When (4.19) considered together with (4.20), it can be seen that % is a

parameter that is used to control the altitude of a UAV, which in turn affects the

footprint of the UAV SC, such that: because (4.20) and (4.19) yield % ∝ hd and

hd ∝ reNB
� , respectively, then it can be inferred that % ∝ reNB

� . In other words,

even though % is a control parameter for the altitude, it has a direct impact on

the footprint of the UAV BS owing to the relationship between the altitude and

footprint, as can be seen in (4.19).

From (4.20) it is possible to observe that, when % = 0.5, all the users in each

cluster are in the coverage range of an UAV positioned at the cluster centre, while

when % increases the UAVs serve larger areas, possibly serving more users (and

increasing the interference into neighbouring UAVs), and lastly, when % decreases,

the UAVs serve smaller areas, but interfere less amongst themselves.
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4.2.6 Simulation Results

Benchmarking and Metrics

In order to compare the performance of the proposed solution, two different

benchmark UAV deployment methods are developed. First, a symmetric de-

ployment is developed, where the UAVs are deployed symmetrically such that

the differences between the consecutive UAVs are the same on both x and y

axes. The altitude of the UAVs are calculated through (4.20), by setting reNB
�,x as

the largest radius which does not result in any overlap between the footprints of

neighbouring UAVs. Moreover, due to the symmetric nature of the deployment,

the altitude is kept the same for each UAV.

Second, a random deployment is developed, where the UAVs are uniformly

distributed across the region of interest. There is no regular pattern for the

distance between the UAVs, and thus the proximity of the UAVs can be small for

some, while others are located far away from each other. Similar to the symmetric

distribution case, the altitude of the UAVs are determined via (4.20). Here, the

same reNB
�,x value that was calculated for the symmetric distribution is adopted,

since any reference distance value is not available for the random deployment

method.

To evaluate and compare the performance of the developed methods, two dif-

ferent metrics are introduced. First, the user perceived SINR values—calculated

using (4.15)—are measured. This becomes a utilitarian metric demonstrating

the signal quality that is received by the users, which subsequently affects the

throughput as evaluated in (4.17). Given the stringent peak data rate require-

ments for the eMBB scenario in 5G NR [13], improving user experienced through-

put is a vital task.

Second, the number of user in outage is also counted in order to investigate

the link failure performance of the developed methods. In this regard, a certain

threshold value, γT, is selected for SINR values, such that the users are counted

as in outage if their received SINR values are below γT, while they are treated

as covered when the SINR is at least equal to γT. Further, the percentage of the

users that are in outage is also calculated using Ṅu,out =
Nu,out

Nu,t

, where Nu,out and

Nu,t are the number of users in outage and total number of users in the region of

interest, respectively.
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Simulated Environment

Data Set: As also explained in Chapter 3, the CDR data set is provided by

Telecom Italia for the city of Milan, Italy14. As such, the city of Milan was

divided into 10, 000 square-shaped grids, in which each grid has a side of 235 m.

Then, call, text message, and internet activity levels, which reflect the amount of

user-network interactions, were logged for each grid for 2 months. Furthermore,

the resolution of the data set is 10 minutes, meaning that the activity levels were

aggregated into 10-minute time slots. However, the provided data is unitless, and

thus reflects merely a relative user activity levels.

User Positioning: Since the data set itself does not provide much information,

a pre-processing and further assumptions are needed to make it more meaning-

ful. In this regard, first, the user activity level in a grid is considered as the

throughput demand from the users located in that grid. After that, the call,

text message, and internet activities are combined in order to estimate a total

throughput demand from each grid. As the data set is from the year 2013, in

order to reflect the increase in data demand since then, the total throughput

demands are then multiplied with a coefficient, ν. Later, it is assumed that the

existing ground network also supplies for certain amount of the demand per grid,

Ze,g, before the UAV deployments, which is deducted from the overall through-

put demand in order to find out the users that are out of the coverage with the

existing network. A certain throughput demand per user, Zu, is assumed so that

grid-wise number of users are obtained by dividing the total throughput demand

in a grid by Zu. Lastly, the resulting number of users are distributed uniformly

across a given grid.

Results

Numerical simulation campaigns are performed to evaluate the proposed approach

using parameters from Table 4.1. Moreover, Fig. 4.7 shows a snapshot of the

obtained positions when % = 1.

Fig. 4.8 demonstrates the perceived user SINR performances of the developed

methods when % = 0.1. The first point that can be inferred from these results is

that the symmetric and random deployments performed very close to each other.

The rationale behind this is that the altitude of the UAVs are comparatively less

when % = 0.1, so are the coverage areas. Therefore, there is a very small room

for interference to be effective, resulting in a kind of interference-free communi-

14Data is available online at https://dandelion.eu/datamine/open-big-data/.
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Figure 4.7: Distribution of the UAVs using the proposed methods when % = 1.
Dots (•) in different colour represent the users in different clusters that the k-
means algorithm found, while black crosses (×××××××××) represent the UAVs.

Table 4.1: Simulation parameters

Parameters Value

UE height 2 m
UAV SC EIRP 0 dbW
UAV SC antenna directivity angle 60°
Carrier frequency, fc 1 GHz
Bandwidth per RB 180 kHz
Number of RBs per UAV 100
SINR threshold, γT -3 dB
Data demand increase coefficient, ν 10
Terrestrial throughput supply per grid, Ze,g 20 Mbps
Number of grids considered 2500
Area of the region of interest 50 × 50 grids
Dimension of each grid 235 m
User throughput demand, Zu 50 Mbps
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Figure 4.8: Received user SINR performances of the developed methods when
% = 0.1.

cation for the users. This subsequently makes the path-loss the only dominant

factor that affects the link quality between the UAVs and their associated users,

and thus there are small variations observed on the received SINR. In other

words, considering (4.15), the SINR is dependent on received signal strength

and the interference, where N0 is constant. Hence, when the interference be-

comes secondary, the only parameter having an effect on the SINR is the received

signal strength. From (4.14), it is obvious that the path-loss is merely distance-

dependent, since the other parameters, such as fc, are kept constant. Having

said all these, it is quite intuitive that when d gets smaller with decreasing %, the

interference becomes secondary and the path-loss causes only small variations.

On the other hand, compared to the symmetric and random distributions,

the proposed k-means based UAV distribution method resulted in broader range

of SINRs. Two separable regions are observed in this case: a region where the

interference is dominant and secondary, respectively. One can question why the

dominant interference region occurred in this case while it did not exist for the

symmetric and random deployments. The altitudes of the UAVs in the symmetric

and random cases are identical, whereas they are different from each other in the

proposed deployment method. Accordingly, while there is a clear separation

between the footprints of the UAVs in the symmetric and random cases, they are

more likely to be overlapping in the proposed method. Therefore, the users, who

are located in the overlapping areas, experience interference and constitute the

interference is dominant region in Fig. 4.8. The users in non-overlapping regions,

on the other hand, receive better signal quality and constitute the interference is
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Figure 4.9: Received user SINR performances of the developed methods when
% = 0.5.

secondary region in Fig. 4.8.

When % = 0.1, regardless of the deployment method, the scale of the SINR is

quite high (around 54 to 58 dB) as seen in Fig. 4.8, since the interference is less

effective and the distance between the UAVs and associated users are compara-

tively less. Nevertheless, Fig. 4.11 reveals the number of users in outage for three

different deployment scenarios, and the outage performances are quite poor for

all deployment methods; they resulted in around 87% to 98% of outage. These

results are obviously unacceptable owing to the fact that the vast majority of the

users are out of service. The under-performance of the developed methods again

arises from the lower values of %, which subsequently results in reduced foot-

prints for the UAVs. Moreover, the proposed deployment method outperformed

the other two benchmarking methods, because it focuses on minimising the Eu-

clidean distance between the users and UAVs, which makes the UAVs inclined

towards the locations where there are more number of users.

The results in Figs. 4.8 and 4.11 can be summarised as follows: when the

coverage areas of the UAVs are smaller, so is the interference between them.

This also makes the associated users closer to the UAVs. Therefore, the takeaway

from these results is that the smaller altitudes of the UAVs—manipulated by %

parameter—improves the received SINR values for the user at the expense of

connecting much less users. Furthermore, the distinct altitudes of the UAVs for

the proposed method render it to be more vulnerable to interference.

Fig. 4.9 demonstrates the SINR performances of the proposed method and two

benchmark methods when % = 0.5. It is first observed that the received SINR
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Figure 4.10: Received user SINR performances of the developed methods when
% = 1.0.

values are scaled down compared to the % = 0.1 case. Second, the dominant

interference region for the proposed method expanded due to the fact that the

footprint for each UAV is enlarged with increasing % value. When the footprint

for each single UAV increases, the overlapping areas among UAV footprints also

expand, which in turn leaves more users in the dominant interference regions. The

symmetric deployment case, on the other hand, is still immune to the interference

given that no overlapping region occurs, since % = 0.5 means that the footprints

of the UAVs are just tangent to each other. For the random case, however, some

small portion of the dominant interference region occurs, as the occurrence of

overlapping areas is likely due to the uniform distribution, making some users

experience considerable level of interference.

As seen in Fig. 4.11, the number of outage users also scaled down compared

to the % = 0.1 case, since the footprints of the UAVs are now increased, which re-

sults in more users to be connected. It is also observed that the proposed method

significantly outperformed the symmetric and random distribution methods. As

aforementioned, this happens because the proposed method uses k-means algo-

rithm, which employs the Euclidean distance as a cost function to determine the

locations of the UAVs. Therefore, the proposed method focuses on reducing the

overall Euclidean distance between the UAVs and the users, which positions them

closer to a greater number of users.

Lastly, Fig. 4.10 shows the received user SINR results for the three UAV

deployment methods while % = 1. The region, where interference is dominant,

for the proposed method is observed to be expanded dramatically, since around
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Figure 4.11: Number of users in outage for various α values. The indexing from
(a) to (g) in the legend and the first set of bars are done for identification, and
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99% of the users were found to be in this region. In addition, in this case,

the dominant interference region also occurred for both symmetric and random

deployment methods. The reason for this, again, is the increased footprints for the

UAVs that causes the overlapping areas to become greater, which subsequently

increases the number of users experiencing considerable amount of interference.

Another interesting point that is worth discussing is that the random deployment

method outperformed the proposed and symmetric methods in terms of SINR.

This arises from the fact that it results in less overlapping areas at some locations

due to the nature of the uniform deployment, whereas the overlapping areas

are the same for all the UAVs in the symmetric case. In other words, while

the overlapping areas are large for the UAVs located close to each other, it is

comparatively less for the UAVs that are separated by a considerable distance.

From the results in Fig. 4.11, the number of users in outage decreased for the

symmetric and random deployments compared to the cases where % = 0.1 and

% = 0.5. Once again, the reason for this is the increased footprints of the UAVs,

where the UAVs are able to serve more users. Nonetheless, this behaviour did not

happen for the proposed method, where interference is much more severe making

more users fall below γT.

4.2.7 Summary

In this work, a k-means algorithm based UAV positioning method was proposed,

where (x, y) coordinates of the users were considered as features. Then, the UAVs
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were deployed at the centroid positions for each cluster. The obtained results

reveal that the proposed UAV positioning method is mostly good at reducing the

number of users in outage due to the nature of the k-means algorithm, where the

Euclidean distance was employed as a cost function. However, in terms of the user

perceived SINR values, the proposed method is more vulnerable to interference

owing to the differences in the altitudes of the UAVs. % parameters was observed

to have crucial impacts of the performances of the developed methods; the greater

% is the larger footprint for the UAVs, which in turn increases the number of

connected users whereas scaling down the user SINR values. Future works can

include the user positioning and limited backhaul capacity conditions, where relay

UAVs and/or ground BSs would be needed. Furthermore, regulations on flight

altitudes were not considered in this work, but they can play significant roles on

the communication performance, since the altitudes of the UAVs are crucial in

providing a good coverage and signal quality—as also confirmed with the results

obtained in this work. Therefore, future works also include adding the flight

regulations as a constraint for the UAV positioning problem.



Chapter 5

QoS-Aware Dynamic Spectrum

Access with Cognitive Radio

A predictive and context-aware methodology is proposed in this Chapter for the

concept of dynamic spectrum accessing, as in [275]. In particular, a system

model with different types of RATs is considered and the problem formulation

is detailed, followed by comprehensive discussions on the ANN and Q-learning

assisted proposed methodology. Lastly, the concluding remarks will be provided

after evaluating the performance of the proposed approach through numerical

simulations.

5.1 Introduction

As shown in Fig. 5.1a [275], four fundamental phases are included in the conven-

tional CR spectrum access process, namely: spectrum sensing, spectrum decision,

spectrum sharing, and spectrum mobility [184]. In the spectrum sensing phase,

SUs sense the spectrum continuously to find an idle channel to allocate, while,

in the spectrum decision phase, they choose a channel to associate with (in case

of multiple channels being available). Spectrum sharing refers to the process of

sharing the available frequency band with other users, and evacuating the allo-

cated channel in the presence of any PU in order to avoid interference is referred

to as spectrum mobility [60].

Further, the spectrum sensing phase can be divided into two main categories

according to the size of the bandwidth to be sensed, namely NB and WB sensing.

The former refers to the case when the bandwidth to be sensed is smaller than the

coherence bandwidth of the channel, while the latter happens when the sensed

bandwidth is larger than the coherence bandwidth [196]. Many NB spectrum

sensing methods, such as energy detector [276], cyclostationarity based [277],

163
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Figure 5.1: (a) Conventional and (b) proposed CR spectrum access processes.
The proposed method puts two additional phases (WB spectrum prediction and
QoS-based optimisation) before sensing in order to enhance SU’s satisfaction by
selecting the network that suits best with the requirements of SU.

matched-filtering [278], etc., have been proposed in the literature [47]. However,

the main drawback of NB sensing is that the bandwidth to be sensed is limited,

so is the spectral opportunity. As such, NB sensing methods have to compromise

on the greater number of available bands by focusing on a certain bandwidth.

Furthermore, their implementation to WB is challenging owing to their inherent

binary decision approaches [196], thereby dedicated methods have been proposed

for WB sensing, including Nyquist based [106, 107, 197] and sub-Nyquist based

[109, 110]. Nonetheless, the WB sensing methods are often more complex to

implement [196], making them prone to higher latency due to prolonged sensing

times [279].

As latency is a key parameter to consider in future mobile networks, espe-

cially when SUs run real-time applications, a large amount of sensing attempts

can result in SUs being dissatisfied. Towards that end, in order to combat the

increased sensing latency issue, predictive spectrum sensing methods have been

proposed in the literature [60, 99, 142, 206, 280–287] with an objective of produc-

ing an interface between WB and NB sensing by predicting future occupancy

states of spectrum bands in WB to enable NB sensing to focus only on the bands

that are predicted to be available. However, these prediction-based methods are

not a contender of existing sensing techniques, but rather complementary, as the

predicted availabilities of spectrum bands are exploited before going through the

conventional sensing process to reduce the sensing latency [60]. The fundamental

idea behind this approach is that the number of required sensing attempts de-

cays by decreasing the bandwidth of interest, which in turn reduces the resultant

latency [275].
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Nonetheless, the methods employed in [60,99,142,206,280–287] could be unre-

alistic, given that they rely on specific assumptions, such as having historic data

set on the occupancy of individual channels, that is, impractical due to the fact

that acquiring such data set for each individual channel is quite hard. In addition,

even if such data is available, this type of implementation would be very costly in

terms of both computation and memory, as processing and storage requirements

increase with the data volume. Furthermore, most of the aforementioned works

take merely the latency as a QoS parameter and ignore other SU requirements

during the spectrum sensing phase.

In this study, as shown in Fig. 5.1b, a novel spectrum access approach is pro-

posed, which includes a virtual predictive WB spectrum sensing and QoS-based

optimisation, with the aim of enacting the satisfaction of SUs by meeting their

user/application-specific requirements. In the virtual predictive WB sensing, in-

stead of being interested in individual frequency channels, the traffic loads of the

RATs are considered as a whole for predictions, as this approach necessitates sig-

nificantly less memory and processing due to less amount of data to be handled.

Moreover, it is more likely and easier to have historic traffic load data sets for

RATs, and thus the proposed virtual predictive WB sensing method makes the

process more realistic and practical [275].

Further, in the proposed QoS-based optimisation phase, two different decision

strategies are introduced. The first strategy, which will be called WB Predictive

Sensing (WBPS) hereafter, focuses only on the sensing latency as a QoS parame-

ter. Particularly, the future traffic loads of the RATs, occupying different portions

of the WB spectrum, are predicted. Then, the bandwidth of the RAT with the

minimum relative traffic load is selected to be sensed with NB sensing, hence the

probability of finding a spectrum hole is boosted by narrowing down the WB

spectrum to the less utilised portion. In this way, higher spectral opportunity of

WB sensing and easy implementation of NB sensing are both exploited without

requiring a huge volume of data, reliving the computational and storage burden.

In other words, given the aforementioned problems, WBPS is the upgraded and

modified version of existing predictive spectrum sensing approaches.

The second strategy, which will be calledQ-learning Enabled WBPS (QWBPS)

hereafter, is a novel and more robust approach, in which the decision process in

WBPS is consolidated by considering all the QoS requirements of SUs. Note that

even though any set of QoS requirements can be considered with QWBPS, for

the sake of clarification in the presentation, latency, coverage, and bandwidth

are captured in this work. Furthermore, the SUs are allowed to prioritise the

QoS parameters, rendering the proposed algorithm capable of adapting itself to
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dynamically changing scenarios and circumstances.

Normally, running a Q-learning algorithm also takes some time, which may

lead to an additional latency. However, the proposed framework is proactive

and timing is not an issue, since the Q-learning implementation is performed

in advance by predicting the future traffic loads. Additionally, as it will be

elaborated in Section 5.6.2, since the developed ANN algorithm is fed with time

and day inputs, it is able to predict the traffic load not only for the next time

slot but also for any given time and day.

However, despite QWBPS being more robust and dynamic, it comes at the

expense of more computational cost due to the additional Q-learning implemen-

tation. In that regard, a trade-off arises, that is, it is wiser to use WBPS if the

latency is the only concern, while QWBPS is a better choice in case the SU has

additional concerns other than the latency.

5.2 Related Work

Spectrum prediction has been extensively studied in the literature by employing

various techniques [60], including HMM [142,206], ANN [280,284], LSTM [99], au-

toregressive (AR) model [283], etc. In [280], the authors try to predict the future

occupancy states of a channel by designing an MLP with backpropagation (BP).

They generate a synthetic PU traffic for a single channel using Poisson process,

while the channel’s on/off times are determined using geometric distribution. It

is observed that, through predictive sensing, the spectrum utilisation is boosted

and that the sensing energy is decreased. An analytical model for SU’s through-

put is derived in [281] by considering both the imperfect spectrum prediction and

protection to PUs. Some numerical studies are also performed to observe how

the SU’s throughput is affected by different parameters, such as prediction error

and the number of channels to be sensed.

In [285], the performance of a BP ANN for spectrum prediction is improved

by employing genetic algorithm at the training phase, as conventional BP ANN

is very prone to be trapped into a local optimum [288]. An HMM based pre-

diction of future channel states is presented in [282], wherein a channel selector,

which includes a channel state predictor and a channel environment evaluator,

is introduced so that the channel selection process becomes the combination of

SINR level and the availability of the channel. Another HMM based spectrum

prediction is presented in [206], where real data is collected by measuring Wi-Fi

signals via the experimental set-up with four different antennas.

An ALOHA system is assumed in [286], in which a second-order AR and
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Kalman filter are employed to predict occupancy states of the spectrum. A recent

work in [287] study the predictive spectrum management in a comprehensive

manner: first, SU’s mobility is predicted using a second-order Markov model.

Second, the spectrum prediction is also performed and combined with the mobility

predictions. Lastly, a channel selection phase is executed in case of multiple

channel availability. The authors also include a joint prediction cost model by

considering the errors occurring at each stage.

Nevertheless, most of the predictive sensing works available in the literature

have been performed for a single (or a few) channel(s) scenario, which is not

applicable for WB sensing—albeit being practical for NB sensing—, as it is not

possible to predict the future occupancy levels of numerous frequency channels in

WB. Furthermore, they mostly rely on the availability of historic channel occu-

pancy data sets for each individual channel, making them even more unrealistic,

since it is hard to have such data sets for all channels at all possible locations and

times. In addition, in such implementations, the memory and energy consump-

tion increase with the bandwidth of interest (or number of channels), as more

data will be needed to conduct ML training for the inflated number of channels.

Besides, as most of the existing studies are performed using synthetically

generated occupancy states; i.e. 1 is busy and 0 is free, they are yet to be tested

in more complicated and realistic scenarios, where multiple channels are available

with different characteristics and limitations. Therefore, there is a significant

need for an implementation of predictive spectrum management schemes in more

complicated environments. In addition to the lack of realistic implementations,

none of the studies aforementioned considered QoS requirements of the SUs before

proceeding to the sensing phase.

5.3 Objectives and Contributions

Instead of predicting the occupancy states of individual frequency channels, in

this work, traffic load prediction of RATs is proposed for predictive spectrum

sensing, since it is easier to acquire/collect such data sets. As such, due to less

data requirements, the proposed virtual predictive WB sensing method results

in less memory and energy consumption. In addition, the requirements of SUs

are also taken into consideration in order to augment their experienced QoS

satisfaction. Lastly, prioritisation of QoS parameters are allowed to make the

proposed framework more user/application-specific.

The main contributions of this work are as follows:

1. In order to make the model realistic:
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� four different RATs with different frequency ranges are considered;

� a real CDR data set1 is employed for RAT-A and RAT-B;

� the synthetic data generation for RAT-C and RAT-D is inspired by

the real data measurements from [289].

2. Given that the data set considered for RATs A and B consists of many

squared grids, a k-means algorithm is employed to cluster the grids accord-

ing to their traffic load characteristics in order to avoid over-fitting and to

reduce the computational cost.

3. Due to diversified characteristics of each assumed RAT, different ANN mod-

els are developed during future traffic load predictions.

4. Two different decision approaches (WBPS and QWBPS) are proposed to

satisfy user-specific requirements. In particular, the WBPS approach is

proposed for users with only latency concern, while QWBPS is developed

for users who have other QoS requirements in addition to latency. In WBPS,

future traffic load predictions are exploited to direct the SUs to the most

available RAT for latency reduction purposes, while in QWBPS, future load

predictions and QoS requirements—along with their weights—are exploited

in order to satisfy the requirements of the SUs.

5. A weighting mechanism for QoS elements is developed to allow the SUs to

prioritise their requirements. This enables the users to adjust the impor-

tance of their requirements for specific applications, making the proposed

method both user and application centric.

5.4 System Model

As shown in Fig. 5.2, the system model considers four RATs around an SU. There

is also a CR BS that is responsible to provide coverage and data transmission for

the SU. Therefore, the SU in this environment searches for an available frequency

band to initiate its connection. With regards to the QoS requirements, latency,

coverage, and bandwidth are considered in this study, and they will be detailed

individually in the following paragraphs.

1See Section 5.5 in Chapter 3 for the details about the dataset, which is available online at
https://dandelion.eu/datamine/open-big-data/.
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Figure 5.2: System model. An SU is surrounded by four different RATs. RAT-A,
RAT-B, RAT-C, and RAT-D use different carrier frequencies.

5.4.1 User Requirements

The coverage requirement refers to the distance that the SU will be away from

its current location. If the SU is mobile, for example, then it will need an RAT

offering more coverage in order for its connection to last longer. As shown in

Fig. 5.2,—in the case of SU with high mobility profile—since RAT-A offers the

widest coverage area, it would preferably be selected as an RAT to be sensed.

Second, the bandwidth (or data rate) requirement is captured by how much

bandwidth the SU demands to run a desired application. In the case of video-

conferencing, for instance, huge data rates are required, hence an RAT with more

available bandwidth is preferred.

Theorem 2. Let xf be a random variable that represents full-satisfaction, where

SU’s both coverage and bandwidth requirements are satisfied simultaneously, such

that xf = 1 if full-satisfaction is achieved, and xf = 0 otherwise. Then, the

expected value of full-satisfaction is

E[xf] =

NR∑
i=1

pt,ips,i, (5.1)

where pt,i is the probability of full-satisfaction with RAT i, ps,i is the probability

of selecting RAT i among all the available options, and NR is the number of

available RATs.

Proof. Firstly, a random search concept is developed for benchmarking purposes,

where SUs select a random RAT, whose channels in the frequency spectrum are

sensed in a random manner in order to find an available one to occupy. Therefore,
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the RAT selection is a random process following the discrete uniform distribution.

Let O be the set of the available RAT options, such that O = {O1,O2, ...,ONR
},

whose index set is I = {1, 2, ..., NR}.

Let n ∼ U(1, NR) be a random variable used to select the index of RAT to be

sensed from I. Moreover, let ps be the probability of being selected as an RAT

to be sensed:

ps =
1

NR

, (5.2)

where NR = |I| is the cardinality of I.

SU’s QoS requirements (Σ) are given as:

Σ = (Σc,Σb), {Σc,Σb} ∈ N (5.3)

where Σ is a 2-tuple of coverage requirement (Σc) and bandwidth requirement (Σb).

Each RAT option can be equivalent to a tuple of its coverage and bandwidth

capabilities, respectively, such that

Oi = ($c,i, $b,i), ∀i ∈ I, (5.4)

where ~$c and ~$b are the vectors of coverage and bandwidth capabilities, and

~$c = [$c,1, $c,2, ..., $c,NR
], (5.5)

and

~$b = [$b,1, $b,2, ..., $b,NR
]. (5.6)

Moreover, pc,i represents the probability of satisfying the SU’s coverage re-

quirement with RAT i:

pc,i = P ($c,i ≥ Σc). (5.7)

Let xc be a random variable that represents the coverage satisfaction, where

xc = 1 if coverage satisfaction is achieved, and xc = 0 otherwise, such that

xc =

1, if $c,i ≥ Σc

0, otherwise.
(5.8)

Then, the expected value of coverage satisfaction is

E[xc] =

NR∑
i=1

pc,ips,i. (5.9)
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Similarly, pb,i represents the probability of satisfying the SU’s bandwidth re-

quirement with RAT i:

pb,i = P ($b,i ≥ Σb). (5.10)

Let xb be a random variable representing the bandwidth satisfaction, such that:

xb =

1, if $b,i ≥ Σb

0, otherwise.
(5.11)

The expected value of bandwidth requirement becomes:

E[xb] =

NR∑
i=1

pb,ips,i. (5.12)

Finally, the probability of full-satisfaction with RAT i is the multiplication of

satisfaction probabilities of both coverage and bandwidth requirements:

pt,i = pc,ipb,i. (5.13)

5.4.2 Sensing Latency

Latency in this work refers to the delay caused by unsuccessful sensing attempts,

where the SU senses a frequency channel that is already being used by a PU.

Another attempt with a different frequency channel is required after each failure,

hence latency increases with the increasing number of failures.

Let pa,i be the probability of finding a frequency hole with RAT i in the first

attempt:

pa,i =
Na,i

Nf,i

, (5.14)

where Na,i and Nf,i are the number of available and existing frequency channels

for RAT i, respectively.

Therefore, it is obvious that a higher probability of finding an available channel

is obtained when the total number of channels is small, being the main idea behind

the predictive sensing approach.

Let xa be a random variable that represents finding a frequency hole in the

selected RAT, where xa = 1 is frequency hole is found, and xa = 0 otherwise,
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Table 5.1: Glossary

Parameter Description

pa Probability of finding a vacant channel in the first attempt

ps Probability of being selected as an RAT to be sensed

pc

Probability of satisfying coverage

requirement with the selected RAT

pb

Probability of satisfying bandwidth

requirement with the selected RAT

pt Probability of full-satisfaction

NR Number of available RATs

Na Number of available channels in the selected RAT

Nf Total number of channels in the selected RAT

Σc Coverage requirement of SU

Σb Bandwidth requirement of SU

$c Coverage capability of the selected RAT

$b Bandwidth capability of the selected RAT

wa Prioritisation weight for latency

wb Prioritisation weight for bandwidth requirement

wc Prioritisation weight for coverage requirement

Λp,i Predicted relative data traffic of the selected action

Cq,SA Cost of being in SA (State-I)

Cq,SB Cost of being in SB (State-II)

Cq,c Cost function for coverage requirement

Cq,b Cost function for bandwidth requirement

Wu Unit bandwidth (200 kHz)

NW Number of unit bandwidth
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Figure 5.3: Milan city divided into square-shaped grids. Only the first 5, 000
grids are considered (the lower half).

then the expected value of finding a frequency hole is given as:

E[xa] =
1

NR

NR∑
i=1

Na,i

Nf,i

. (5.15)

5.5 Data Set & Preprocessing

There are two different data sets employed in this work: Milan city data set2 for

RAT-A and RAT-B, and a synthetic data set—inspired by [289] during generation—

for RAT-C and RAT-D.

5.5.1 Data Set for RAT-A and RAT-B

The aforementioned CDR data set from Milan, Italy provided by Telecom Italia is

employed to create the data set for RAT-A and RAT-B. Fig. 5.3 demonstrates the

grid concept within the provided data set, whose call and text message activities

are combined to create the historic data set for RAT-A, while the Internet activity

is treated as the historic data set for RAT-B. Due to some missing data and for

the sake of computational efficiency, the first 5,000 grids and first 3 weeks of

November data are considered. The first two weeks of the three-week data set

are used for training, while the remaining one week is used for testing.

2See Section 5.5 in Chapter 3 for the details about the dataset, which is available online at
https://dandelion.eu/datamine/open-big-data/.
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Table 5.2: User motifs for RAT-C and RAT-D

Week Motif Day Motif

RAT-C Workday Afternoon
RAT-D Everyday All day

5.5.2 Data Set for RAT-C and RAT-D

The historic data set for RAT-C and RAT-D is synthetically generated by being

inspired by [289], in which real Wi-Fi data traffic was measured from 2147 wire-

less devices (196 residential gateways in 110 different cities) for 2 months. The

primary objective of the authors is to capture Wi-Fi usage patterns of the users,

and they extracted many user motifs (101 weekly motif and 112 daily motif),

of which 14 weekly and 48 daily motifs have strong supports, meaning they are

dominant over others [289].

In this study, two motifs are selected from [289] among the provided dominant

ones, as shown in Table 5.2, to generate the data set for RAT-C and RAT-D, but

the proposed study is not limited to any particular motif. The synthetic data

generation is carried out for 8 weeks, where 7-week data is used for training

purposes while 1-week data is used for testing.

5.6 Proposed Methodology

In the traditional CR spectrum access process, SUs perform either NB sensing

or WB sensing methods in order to find an available frequency band to allocate.

Both have some certain advantages and disadvantages over each other, such that

spectrum opportunities are limited in the NB sensing with the narrower band-

width of interest, leading to missing opportunities. In the WB sensing, on the

other hand, albeit having more spectral opportunities, time spent for sensing is

higher due to the larger size of the bandwidth.

In this study, as shown in Fig. 5.1b, a virtual WB sensing method is proposed,

in which traffic load predictions for various RATs in WB are conducted in order

to zoom into the most available spectrum portion, enabling NB sensing methods.

More particularly, in case of multi-RAT availability, since each RAT may use

different frequencies, the bandwidth of interest would most likely to be WB where

NB sensing is no more applicable. In the proposed virtual WB sensing method,

an RAT is chosen out of all the available ones through traffic load predictions

and/or user requirements, and the spectrum sensing procedure is performed to

the bandwidth of the selected RAT. As such, the WB is narrowed down to the
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SU CR BS RATs

Initial instalment

a. location req.

b. location info.

c. RAT type req.

d. RAT type info.

Log traffic loads

Spectrum access process begins

1. access req.

2. available RAT list req.

3. available RAT list

4. future traffic load prediction req.

Train ANN algorithm

5. data and time req. for predictions

6. data and time req.

7. data and time info.

8. date and time info.

Predict the traffic

9. traffic load predictions

10. location req.

11. location info.

Calculate the distance between SU and RATs

Exploit generic coverage characteristics of the RATs

12. coverage options

Evaluate the options and select one

13. coverage req.

14. bandwidth req.

15. weight info.

Implement WBPS or QBPS

16. RAT to be sensed

Sense the bandwidth of given RAT

Figure 5.4: Sequence diagram showing the messaging among SU, CR BS, and
RATs for the proposed methodology. Steps a-d (dashed) take place in case of new
CR BS and/or RAT BS instalment. Steps 1-16 happen when the SU requests to
initiate a connection. Steps 10-15 (bold) are executed only for QWBPS, while
steps 1-9 and step 16 are executed for both WBPS and QWBPS.
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Start

(a) Λp,1, Λp,2, Λp,3, Λp,4;
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Exploit
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yes
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Figure 5.5: Flowchart for the two proposed methods. Λp,1, Λp,2, Λp,3, Λp,4 are
the future traffic load predictions for RAT-A, RAT-B, RAT-C, and RAT-D, re-
spectively. In case the optimum RAT determined by QWBPS does not have any
available frequency channel, the process switches to WBPS.

bandwidth of the selected RAT, which in turn enables NB sensing approaches.

Therefore, the proposed method uses the cooperation of WB and NB sensing

by exploiting their inherent advantages. Fig. 5.4 demonstrates the messaging

between the SU, CR BS, and RATs, and reveals how the proposed method might

be implemented in real-life scenarios.

The second main contribution of the proposed method is to take the QoS re-

quirements of the SUs into account, with which the objective function is adjusted

accordingly. To that end, as illustrated in Fig. 5.5, the proposed QoS-based opti-

misation phase consists of two different decision strategies:

1. WBPS: as shown in Figs. 5.4 and 5.5, at each session (instance), when

the SU wants to access the spectrum, the associated CR BS asks the RATs

around the SU for future traffic load predictions. Then, the CR BS prepares

an RAT list by ranking the RATs in ascending order according to their rel-
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ative predicted traffic loads (percentage occupancy). Then, it directs the

SU to the first RAT, whose traffic load is the minimum, to sense. If the SU

cannot find a vacant channel in the selected RAT, it starts sensing the next

RAT in the list, and this process continues until a free channel is found or

there is no RAT left to sense. If the SU cannot find a vacant channel in any

available RAT, then it counts the session as a fail and waits for the next

session. This method targets only the latency minimisation using virtual

WB sensing by making the bandwidth to be sensed narrower.

2. QWBPS: as a main contribution of this study, all the user requirements

are taken into account in order to boost the satisfaction level of the SUs.

Without loss of generality, coverage and bandwidth requirements are con-

sidered in addition to latency, but the proposed method is not limited to

any specific requirement; any other requirement can easily be appended to

the framework. As seen in Figs. 5.4 and 5.5, the CR BS receives the cov-

erage and bandwidth requirements of the SU along with the QoS weights

as inputs, and executes the developed Q-learning algorithm accordingly in

order to determine the optimum RAT to sense. However, as Fig. 5.5 reveals,

QWBPS switches to WBPS in case there is no frequency channel available

in the determined optimum RAT.

5.6.1 Clustering for Milan City Data Set

Training a grid individually in Milan city data set is very prone to have an over-

fitting problem, as there is a limited number of samples for each grid. Therefore,

it is a better approach to train the grids together for a better generalisation that

can lead to better prediction performance, since many samples from various grids

will be digested during the training. On the other hand, training only one ML

algorithm for all the grids would decrease the prediction accuracy while keeping

the algorithm well-generalised. In other words, the algorithm will try to obtain a

model that somehow fits all the grids, however the model will be very unlikely to

fit all the grids perfectly given that their characteristics are quite different from

each other—while some are located at the city centre, some might be at more

rural areas. Thus, there exist a trade-off between having a good generalisation

and a good prediction accuracy. In this regard, clustering the grids based on

their traffic loads can be an intelligent solution; the grids are clustered with their

similar peers, hence generalisation can be provided by compromising less from

the prediction accuracy due to the fact that there will be a different model for
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(a) Clustering for RAT-A. (b) Clustering for RAT-B.

Figure 5.6: Results of clustering the first 5,000 grids of the Milan city data set
according to their average traffic load. (a) is for RAT-A, while (b) is RAT-B.
Note that different colours (or shades in a black-and-white version of the figure)
represent different clusters, and the colours in (a) and (b) are independent from
each other. Values in x and y axes are for indexing purposes, and use (y−1)50+x
to find the index of a particular grid.

each cluster, consisting of elements with similar characteristics.

In this study, k-means clustering3 is employed in order to cluster 5,000 grids

according to their average traffic loads. k-means is an algorithm attempting to

iteratively discover k different clusters in a data set with various samples. For

each cluster there is a dedicated centroid [123], and the basic objective behind

this algorithm is to place these centroids and associate the closest data points

to them. In the learning phase, the positions of the clusters are altered by the

average value of the associated data points in order to find an optimum clustering.

The elbow method [290] is used to find the optimum number of clusters by

taking the percentage variation in the errors into consideration. In this regard, a

95% decrease in the error is determined as the stopping criterion for the employed

elbow method. As such, the optimum number of clusters is found as 8 for the

RAT-A, while it is 9 for RAT-B. The resulting clusters are shown in Fig. 5.6.

5.6.2 Future Traffic Load Prediction

Using the data sets elaborated in Section 5.5, the following future traffic load

predictions are performed.

3Refer to Section 2.2.2 in Chapter 1 for details about the k-means algorithm.
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Artificial Neural Networks

ANN is selected as a supervised learning method due to its easy implementation

and high performances in terms of prediction accuracy [208]. Moreover, being

independent of information about the underlying distribution of the available

data set in order to obtain a model, ANN outclasses statistical models [280].

MSE is used as a cost function for all the developed ANN models, in which

the error is given by

CD =
1

Ns

Ns∑
i=1

(yi − y′i)2, (5.16)

where Ns is the number of samples, y is the target value, and y′ is the predicted

value.

The aim of the training phase is to minimise CD in (5.16) by properly arranging

weights and bias values. The Bayesian regularisation [291] is employed as a

training algorithm, since it is one of the strong BP training methods, preventing

the network from over-fitting. More particularly, the Bayesian regularisation

introduces an extra parameter to the cost function in (5.16) as follows:

CANN = ḟCD + ġCW, (5.17)

where CW is the cost implied by the ANN network weights, and ḟ and ġ are the

parameters to be determined. More specifically, CW is given by

CW =
1

‖~wANN‖
∑
j=1

~w2
ANN, (5.18)

where ~wANN is the neural network weight vector.

On one hand, in case ḟ � ġ, the training phase will prioritise the error

reduction and will be prone to over-fitting, while, on the other hand, the training

response will be well-generalised, but the obtained error will be higher in the case

of ḟ � ġ [292]. Therefore, the trade-off in ḟ and ġ arises, and these parameters

need to be carefully tuned in order to minimise CD as well as having a good level

of generalisation. In that regard, the Bayesian regularisation with Lavenberg-

Marquardt optimisation, introduced in [292], is utilised as a part of the ML tool

mentioned in Section 2.2.5.

As there are four different RATs included in the proposed system model,

the future traffic load predictions have been performed separately due to their

distinctive characteristics. First, as a generic model for all the RATs, a fully-

connected feed-forward ANN with input, hidden, and output layers is employed.

Then, the created generic model is customised individually for each RAT.
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Table 5.3: Hyper-parametrisation for the different ANN models

# HL Neurons Data Split (Train-Validation-Test)(%)

RAT-A 7 50-25-25
RAT-B 14 50-25-25
RAT-C 7 50-25-25
RAT-D 3 50-25-25

Determining the number of hidden layer (HL) neurons is an important issue

in ANN, and some methods are recommended in [293] for this issue, however they

did not work well in the data sets in question, as all the methods suggest a small

number of neurons which leads to under-fitting. Instead, an empirical approach

is used to determine the optimal number of HL neurons. This approach considers

gradually increasing the number of HL neurons starting from 1 to 20 in steps of 1

and evaluating the performance in terms of a cost function reflecting the obtained

error. Similarly, an empirical method is followed in determining the data set split

in terms of training, validation, and testing data. Basically, three different data

splitting approaches are tested: 1) 50% training, 25% validation, 25% testing; 2)

60% training, 20% validation, 20% testing; and 3) 70% training, 15% validation,

15% testing.

After detailed hyper-parametrisation analyses, number of HL neurons and

data splitting, as in Table 5.3, are determined for each RAT by considering the

MSE performances of the ANN models. Significant MSE drop is investigated

(mainly at least 95% drop is targeted) to select the number of HL neurons. Once

at least 95% MSE drop is achieved, the number of HL neurons is no more incre-

mented even if it causes better MSE performance by considering the generalisation

of the model—the more neurons included in the network, the more the model is

prone to over-fitting [294]. Similarly, 50-25-25 splitting is selected for all the ANN

models, as there is no significant difference in terms of performance for the three

data splitting approaches. The over-fitting problem is taken into account for this

decision, since one of the reasons of over-fitting is over-training, leading to a lack

of generalisation of the developed ANN model [294].

ANN models for RAT-A and RAT-B: The input layer consists of 3 nodes:

1) indices of the grids; 2) days of the week; and 3) time of the day. In order

to convert days of the week and time of the day into numeric values, they are

encoded to linearly separated numbers between 0 and 1. As such, for the days of

a week, linearly separated 7 numbers generated between 0 and 1, and the days

from Monday to Sunday are encoded to them respectively. Similarly, for the time
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Table 5.4: List of possible states and associated costs

State Description Penalty Function (CQ)

SA Cq,c = 1 ∧ Cq,b = 1 wcCq,c + wbCq,b + waΛp,i + Cq,SA
SB Cq,c = 0 ∨ Cq,b = 0 wcCq,c + wbCq,b + waΛp,i + Cq,SB
SC Cq,c = 0 ∧ Cq,b = 0 waΛp,i

of a day, linearly separated 144 numbers4 are generated between 0 and 1, and

time of a day is encoded to them accordingly. Only 1 output node, representing

the data traffic loads, is included in the developed model for RAT-A and RAT-B.

ANN models for RAT-C and RAT-D: Two neurons, which are days of a

week and time of a day, are employed in the input layer. Moreover, the data

encoding procedure conducted for RAT-A and RAT-B is adopted for RAT-C and

RAT-D, where the days of a week are encoded to 7 linearly separated numbers

between 0 and 1, and the time of a day is encoded to linearly separated 144

numbers between 0 and 1. Similarly, there is only 1 neuron included at the

output for the data traffic loads of RAT-C and RAT-D.

5.6.3 Proposed Q-Learning Framework

As seen in Fig. 5.1b, the proposed method includes a pre-decision process, where

the portion of the spectrum (each RAT allocates different portions) to be sensed

is determined based on either only the traffic load conditions (WBPS) or both

the traffic load conditions and SU’s requirements (QWBPS). WBPS relies on

the predicted availability of all the portions, and ranks them in terms of their

relative traffic loads to select the most available one. In QWBPS, however, the

pre-decision phase takes the requirements and associated weights from SUs into

account in addition to the predicted traffic loads. In order to accomplish this

task, due to its model-free learning characteristics [55,228]—which learns from the

environment by interacting with it5—the Q-learning algorithm [54] is employed,

since it is one of the most outstanding RL methods that is capable of solving this

kind of optimum policy-seeking problems.

Three different states are designed in this work based on the satisfaction

status of the user requirements. The states and associated costs to be incurred

for being in the states are shown in Table 5.4. wa, wb, and wc in Table 5.4 are the

prioritisation weights for latency, bandwidth, and coverage, respectively, and the

4The resolution of the data is 10 minutes, and there are 1440 minutes in a day, making 144
time slots.

5Refer to Section 2.2.3 for details about the Q-learning algorithm.



182CHAPTER 5. QOS-AWARE DYNAMIC SPECTRUMACCESSWITH COGNITIVE RADIO

SU can tune them according to its preferences. Λp,i is the predicted occupancy

level of the taken action with RAT i. Cq,SA and Cq,SB are the penalties of being

in SA and SB, respectively, where Cq,SA > Cq,SB , encouraging the agent to move

to the best possible state6. Hence, there is no such cost in SC as it is the best

possible state. Cq,c is a cost function for the coverage requirement, where its value

becomes 0 when the requirement is satisfied, and 1 otherwise:

Cq,c =

0, $c > Σc,

1, $c < Σc.
(5.19)

Similarly, Cq,b is a cost function for the bandwidth requirement, where its

value becomes 0 when the requirement is satisfied, and 1 otherwise, such that

Cq,b =

0, $b > Σb,

1, $b < Σb.
(5.20)

Furthermore, the action list is provided in Table 5.5 where $b,1, $b,2, $b,3,

$b,4 and $c,1, $c,2, $c,3, $c,4 are the available bandwidth and coverage capabil-

ities of RAT-A, RAT-B, RAT-C, and RAT-D, respectively, where $c,1 > $c,2 >

$c,4 > $c,3. As seen from Table 5.5, there are basically four different actions that

the agent can perform, which correspond to the RATs that the agent can choose

to sense using NB sensing.

In order to develop an optimisation problem, first, a global cost function is

defined as follows:

C(Σ,O) = wcCq,c + wbCq,b + wal, (5.21)

where l is the sensing latency, which is modelled as l ≈ Λp,i, since (5.14) implies

that the probability of finding a vacant frequency channel is directly proportional

to the occupancy level of the spectrum: the lesser probability of finding a vacant

frequency channel, the more sensing latency it causes.

Then, the optimisation problem can formally be written as:

min
n

C(Σ,O) (5.22a)

s.t. $c 6 $c,m, (5.22b)

$b 6 $b,m, (5.22c)

n 6 NR, (5.22d)

6A state is considered to be better if it satisfies more requirements, and thus the Sc is the
best state, while SA is the worst, with SB being in between.



5.6. PROPOSED METHODOLOGY 183

Table 5.5: Q-Learning action list

Action Description Tuple ({$c, $b})

$1 Sense O1 {$c,1, $b,1}
$2 Sense O2 {$c,2, $b,2}
$3 Sense O3 {$c,3, $b,3}
$4 Sense O4 {$c,4, $b,4}

where $c,m and $b,m are the maximum coverage and bandwidth supplies with

the available RAT options.

Algorithm 2 in Chapter 2 is triggered to facilitate the proposed Q-learning

approach, which SUs run for each session and determine the best action to take.

The Q-learning algorithm allows the SUs to prioritise QoS components; i.e., cov-
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(a) Future traffic load prediction for RAT-A.
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(b) Future traffic load prediction for RAT-B.
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(c) Future traffic load prediction for RAT-C.
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(d) Future traffic load prediction for RAT-D.

Figure 5.7: Future traffic load predictions for (a) RAT-A, (b) RAT-B, (c) RAT-C,
and (d) RAT-D. For (a) and (b), two weeks out of three weeks available data are
used for training and one week is used for testing. For (c) and (d), seven out
of eight weeks data are utilised for training purposes, while one week is used for
testing. Note that the results are for a randomly selected grid.
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erage, bandwidth, and sensing latency. If, for example, the SU prioritises latency

the most (e.g., running a real time application), then the algorithm attempts to

minimise the number of unsuccessful sensing attempts, as it is the main reason

for the delay in the spectrum sensing phase. In case the SU is mostly mobile, for

instance, it would prioritise the coverage requirement above all other components,

as the RAT with the widest coverage area can keep the SU connected for a much

longer time. Thus, the proposed QWBPS process is very strong and capable of

dealing with various requirements, given that the algorithm is able to adjust itself

according to the preferences of SUs.

5.7 Performance Evaluation

Table 5.6: Simulation parameters

Parameter Value

Data rate of RAT-A 270.9 kbps
Number of channels for RAT-A 12
Data rate of RAT-B 2.85 Mbps
Number of channels for RAT-B 6
Data rate of RAT-C 100 Mbps
Number of channels for RAT-C 5
Data rate of RAT-D 51.85 Mbps
Number of channels for RAT-D 3
Grid indices used from Milan data set [1, 5000]
Unit bandwidth (Wu) 200 kHz
Number of unit bandwidth (NW) U ∼ [1, 20]
Days used from Milan data set November, first 3 weeks
wa, wb, wc [0, 5]
Cq,SB , Cq,SA 5, 3
Number of iterations 100
Number of episodes 10

The model shown in Fig. 5.2 is used in this study to evaluate the proposed

method, and the network is monitored for a week with 10 minutes resolution.

All the parameters utilised in the simulations are provided in Table 5.6. In the

evaluations, the proposed WBPS and QWBPS methods are compared with the

developed random RAT selection approach, where SUs first select a random RAT

to sense, and then channels in the frequency spectrum of the selected RAT are

sensed also in a random manner.

The comparison is performed with the following metrics: (i) aggregated sens-

ing latency, (ii) coverage satisfaction rate, (iii) bandwidth satisfaction rate, and
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(iv) full-satisfaction rate. The aggregated sensing latency represents the total

latency incurred during the sensing phase in a week. Note that as the sensing la-

tency has a strong correlation with the number of unsuccessful sensing attempts,

it is assumed that an unsuccessful sensing attempt causes a unit time (ut) of

delay. The coverage and bandwidth satisfaction rates imply the percentage of

instances in one week7 that the coverage and bandwidth requirements are sat-

isfied, respectively. The full-satisfaction rate, on the other hand, represents the

percentage of instances that both coverage and bandwidth requirements are sat-

isfied simultaneously. Note that since the existing predictive sensing methods,

where the occupancy states of individual frequency channels are predicted, are

conceptually different from the proposed methods, it is impossible to use them

for comparison purposes. The proposed WBPS and QWBPS are more realis-

tic and implementable for WB sensing, moreover QWBPS considers the QoS

requirements of SUs as well.

Fig. 5.7 shows sample traffic load predictions for RAT-A, RAT-B, RAT-C, and

RAT-D, respectively, for a random grid from a random cluster with 70-100 grids8.

The results reveal that the proposed ANN manage to fit the data well, making

the further phases implementable, since both pre-decision strategies (WBPS and

QWBPS) use this predicted data as an input, thereby any significant error that

occurs in this prediction phase can lead to massive errors at the output.

Fig. 5.8 demonstrates the obtained sensing latencies for WBPS and the ran-

dom search for various data traffic levels. The purpose of this result is to reveal

the behaviours of the random search and WBPS under different congestion lev-

els, which is modelled by the data traffic loads; the more data traffic load an

RAT experiences, the more congested it becomes. In particular, the load for each

RAT is varied from 10% to 1000%—by assuming the available traffic is 100%—in

order to obtain various data traffic loads (or congestion levels). As illustrated

in Fig. 5.8, for the random search case, the obtained sensing latency increases

tremendously when the congestion level becomes higher. Referring to the ana-

lytic model given in (5.15), the reason behind this result is that it is less likely to

find a frequency hole to utilise when the network is more congested, leading to in-

creasing number of unsuccessful attempts that causes increasing sensing latency.

On the other hand, the sensing latency gradually grows for various congestion

levels when WBPS becomes the adopted strategy, and WBPS decreases the la-

7An instance represents a 10 minute slot in a week simulation period. There is 1008 instances
in total.

8The reason for putting this limitation to the cluster selection is just to make sure the
cluster has sufficient number of elements for training while keeping it reasonable in order to
avoid huge computational cost.
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Figure 5.8: The sensing latency performances of WBPS and random search at
various traffic levels for finding one frequency channel. The sensing latency is
directly correlated to the number of unsuccessful sensing attempts, and it is
assumed that an unsuccessful sensing attempt takes one unit time (ut) of delay.
Note that the results are the average of 100 runs.

tency significantly (up to 85.25% when traffic load is 500%) by always choosing

the RAT, with the minimum relative traffic load, to sense. Hence, it can clearly

be seen that the probability of finding a vacant frequency channel is enhanced by

WBPS, as it zooms on the least utilised portion of the available spectrum.

Fig. 5.9 shows the percentage satisfaction rate of the SU’s coverage require-

ment. The QWBPS strategy managed to satisfy the SU at almost all the instances

(99% success), while WBPS and random search satisfied the SU for around 546.7

(54.24% success) and 631.9 (62.69% success) times on average, respectively. These

results also prove the superiority of QWBPS; it can focus on the SU’s require-

ments and produce the output accordingly. The reason why QWBPS could not

give 100% success in satisfying the coverage requirement is that there are cases

where there is no vacant channel in the selected RAT. As seen in Fig. 5.5 that

QWBPS switches to WBPS in such cases, meaning that it starts focusing on

the sensing latency instead of any requirement. Random search, on the other

hand, has no intention to satisfy the requirements, thereby the obtained results

are—not surprisingly—the outcome of the random process. Appendix B.1 demon-

strates the calculations for coverage satisfaction of the random search using the

model presented in Section 5.4.1. It is straightforward from the calculations in

Appendix B.1 and the findings in Fig. 5.9 that the mathematical model in Sec-

tion 5.4.1 and the simulations are in line with each other owing to the very close
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Figure 5.9: Percentage of coverage satisfaction for three different methods. The
network is monitored for one week with 10-minute resolution. For the Q-learning
part, wa = wb = 0 and wc = 5. Note that the obtained results are the averages
of 100 runs.

results of both.

Besides, the WBPS strategy does not have any aim of satisfying the user

requirements as well. However, the reason why it produced worse results than

the random search is that it always focuses on the option which relatively has

the most available resources. As RATs C and D, whose coverage capabilities are

weak, mostly happened to offer the most relative resources, WBPS tends to select

these options.

Fig. 5.10 demonstrates the results for the satisfaction level in terms of band-

width requirements. It is observed from Fig. 5.10 that QWBPS (97.27% success)

outperformed both random search (65.1% success) and WBPS (77.83%) by 49%

and 25%, respectively, as it strictly prioritises the bandwidth requirement, en-

hancing the satisfaction level of the SU to a higher level. There could be two

different reasons explaining why QWBPS could not give a 100% success rate: i)

once QWBPS switches to WBPS when there is no available channel in the first

selected RAT, the only focus becomes the sensing latency rather than specific

requirements; ii) RAT determination is performed based on the predicted values,

and there are some improper predictions, as seen in Fig. 5.7, affecting the per-

formance in a negative way. However, the outstandingly good performance of

QWBPS (97.27% success) would make these two issues tolerable. On the other

hand, it is interesting that WBPS gives better results than the random search
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Figure 5.10: Percentage of bandwidth satisfaction for three different methods.
The network is monitored for one week with 10-minute resolution. For the Q-
learning part, wa = wc = 0 and wb = 5. Note that the obtained results are the
averages of 100 runs.

without having any specific intention for that. The main rationale behind this

outcome is that there is a strong correlation between minimising the number

of unsuccessful sensing attempts and the bandwidth requirement, as the RAT

option, with the least occupancy level, is likely to have sufficient bandwidth.

Furthermore, the result for the random search case (65.1% success) is not sur-

prising, and is the outcome of the random process similar to the results in Fig. 5.9.

Appendix B.2 provides the calculations for bandwidth satisfaction of the random

search using the model presented in Section 5.4.1.

The full-satisfaction levels and sensing latency performances for three differ-

ent strategies are shown in Fig. 5.11, where coverage and bandwidth requirements

are equally prioritised for the QWBPS case. In particular, coverage and band-

width requirements are strictly prioritised with the developed weighting mecha-

nism in both Figs. 5.11a and 5.11b, however, the sensing latency is discarded in

Fig. 5.11a, whereas in Fig. 5.11b prioritises the sensing latency equally with the

other requirements. The results demonstrated in Fig. 5.11a reveal that, when

sensing latency was not prioritised along with the coverage and bandwidth re-

quirements, QWBPS was able to enhance the full-satisfaction of WBPS and the

random search by 95.7% and 83.8%, respectively. On the other hand, WBPS and

QWBPS decreased the sensing latency of the random search by 60.2% and 8.96%,

respectively, thereby it is hard to claim that QWBPS was strong in the sensing
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latency reduction. However, considering that no priority was given to the sensing

latency while equally prioritising the coverage and bandwidth requirements, these

results also prove that QWBPS works very well according to the priority inputs:

it gave quite good results in terms of the full-satisfaction and performed poorly

in the sensing latency.
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(a) Full-satisfaction and sensing latency when wb = wc = 5 and
wa = 0.
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Figure 5.11: Results for sensing latency and the number of fully satisfied in-
stances. Note that the results are the average of 100 runs. The indexing from (a)
to (b) in the legend and the first set of bars are done for identification, and the
same order follows for all sets of the bars.

In Fig. 5.11b—where the sensing latency, coverage and bandwidth require-

ments are all equally prioritised—it is demonstrated that the full-satisfaction
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level of QWBPS decayed by 16.3%, while the sensing latency performance was

improved by 47.8%. Compared to the results in Fig. 5.11a,—when all the param-

eters (i.e., sensing latency, coverage and bandwidth requirements) are equally

prioritised—QWBPS needed to compromise on the full-satisfaction to some ex-

tent in order to decrease the sensing latency. In that regards, on one hand,

QWBPS boosted the full-satisfaction of WBPS and the random search by 54.1%

and 64.1%, respectively, while, on the other hand, it managed to decrease the

sensing latency of the random search by 52%. Furthermore, the difference be-

tween QWBPS and WBPS in terms of the sensing latency declined from 56.3% to

17.3%. These results affirm the superiority of QWBPS over the other methods,

since it is capable of finding a good trade-off between the full-satisfaction and

the sensing latency. The full-satisfaction results of the random search is again

the outcome of the random process, as occurred in Figs. 5.9 and 5.10. If (5.1)

and (5.13)) are used with (B.3) and (B.4), the expected value for the random

search to satisfy both the requirements simultaneously becomes very similar to

that obtained through the numerical simulations, proving that the analytic model

in Section 5.4.1 works properly.

Note that although the results in Figs. 5.8, 5.9, 5.10, and 5.11 would be differ-

ent for various simulation setups, such as different number of channels, different

data rates, different RAT types, etc., they simply demonstrate the proof of con-

cept for WBPS and QWBPS. Towards that end, one of the primary takeaways

from all these results is that the QWBPS strategy is more versatile than WBPS,

since it is capable of adjusting itself to different user requirements. Put it an-

other way, QWBPS can be similar to WBPS when only the sensing latency is

prioritised, however it has more capabilities that is not available in WBPS. In

other words, WBPS can be said to be a subset of QWBPS, since it is only one

task that QWBPS executes.

However, the power of QWBPS comes at the expense of computational com-

plexity, as it includes an additional Q-learning implementation, and therefore,

it is quite important to choose the correct method among WBPS and QWBPS

by considering application-specific conditions. For example, if the application

is latency-intolerant and does not value other QoS parameters, then there is no

sense to use computationally more demanding QWBPS.

5.8 Summary

In this work, a novel and comprehensive virtual predictive WB spectrum sensing

approach is proposed with a QoS-optimisation phase. In particular, the proposed
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approach introduces an intelligent interface between WB and NB sensing methods

by benefiting from both. Moreover, it does not suffer from the issues of huge

memory requirements and inflated energy consumption like the existing predictive

sensing methods, because it treats the bandwidth of an RAT as a whole, which

in turn reduces the amount of data to be handled.

Based on that, two different decision strategies are proposed in the novel

QoS-optimisation phase: WBPS focuses only on minimising the sensing latency,

while QWBPS considers user satisfaction as well. Both strategies have different

purposes and strengths, which they proved during the performance evaluation by

fulfilling their tasks successfully. Particularly, if the latency is the only concern for

a given application, WBPS should be selected as a strategy, since it merely focuses

on reducing the sensing latency. Moreover, due to the absence of a Q-learning

implementation in its algorithm, WBPS is computationally less expensive than

QWBPS. Nonetheless, if the user has multiple requirements, then the choice

should be QWBPS owing to its strong multi-objective optimisation capabilities,

which come at the expense of computational complexity.
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Chapter 6

Conclusions, Future Trends, and

Open Issues

This chapter provides conclusions regarding the cognitive networking concept in

cellular networks followed by a summary of each work presented in the thesis,

namely energy optimisation, capacity enhancement, and dynamic spectrum ac-

cess. Then, a top-down approach is adopted while introducing future trends,

such that the discussion starts from the cognitive networking in cellular networks

and continues for each individual work. Lastly, open issues in the presented key

design challenges are identified and discussed in order to provide future research

directions.

6.1 Conclusions

The rapid proliferation of wireless devices as well as the advent of IoT have led

to unprecedented data rate requirements among mobile users. Furthermore, in

the IoT—realising the idea of Internet—a wide variety of devices, such as home

appliances, vehicles, sensors, etc., would be assigned to a transmitting terminal.

It is proposed that almost every device will be connected to the Internet for

monitoring and controlling purposes: in the case of agriculture, for example,

sensors would be deployed over large farms in order to monitor changes in the

environment, such as temperature and humidity. In this scenario, the deployed

sensors are required to connect to the Internet to inform the relevant people so

that they can act accordingly. As the wireless connection is the most dominant

option enabling devices to connect remote focal points, wireless networks will

need to accommodate a massive number of devices without compromising their

QoS. In this regard, there are many challenges that need to be addressed properly

to be able to serve such a gargantuan number of connections.

193
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In addition to IoT, data rate requirements of users with traditional handsets

have also been increasing owing to the advances in technology, which accounts

for: i) more advanced mobile handsets that have more computational capabilities;

and ii) the emergence of bandwidth-hungry and delay-intolerant applications, in-

cluding augmented reality, remote surgery, and tactile Internet, to name a few.

Therefore, given that the demand from cellular networks has always been on the

rise—making the network design more challenging—, stringent requirements in

terms of data rate, latency, and energy efficiency have already been included in

5G NR. Even though new concepts including massive MIMO, network densifica-

tion, and mmWave communications help in meeting the data rate requirements,

they come with inevitable side effects: the energy consumption of cellular net-

works, for example, is expected to boost due to more intense BS deployments.

In that regard, energy optimisation should also be taken into consideration while

executing the tasks, since energy efficient networking, which is also referred to as

green communication, is substantially demanded in future networks.

Moreover, as the number of devices connecting to the Internet is envisioned to

be amplified exponentially, spectrum access will be another issue to be tackled.

For this reason, the EM spectrum should be utilised more efficiently in order

to combat this increase in the number of devices and to provide on-demand ser-

vices. Besides, additional network capacity enhancement is also needed especially

for UDNs and big events/gathering, such as sports competitions, concerts, etc.,

where the existing capacity would be insufficient. Thus, both network capacity

enhancement and the efficient use of EM spectrum are vital to accommodate such

kind of huge number of nodes/connections.

Based on these, it is clear that immense data volumes to be generated in cel-

lular communication networks, especially due to i) the vast and rapid spread of

IoT devices; ii) the increased number of BSs owing to network densification; and

iii) the growing amount of data demand from users [4, 14, 17, 26–29, 31, 36–38].

Furthermore, these also result in more complexity in communication networks,

making the network optimisation more challenging with increased number of pa-

rameters to consider, thereby it becomes harder and less practical to implement

static and cumbersome solutions. Therefore, intelligence (or cognition) in the

next generation of cellular networks will be crucial in order to make use of the

significant amount of data generated and to combat more challenging network

conditions.

Towards that end, as seen in Fig. 1.2, the concept of cognitive networking is

adopted in this thesis for cellular communication networks, since it offers great

potentials in terms of efficiency, agility, dynamism, and effectiveness by introduc-
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ing automated actions [3, 52, 69, 71]. AI is employed as a generic methodology

given that it is a strong, and often cost-effective, tool that can deal with strin-

gent tasks in complex scenarios. In particular, ML—as a main component of

AI—is used in order to bring such cognition to cellular networks by supporting

learning from the generated data and gaining experience by interacting with the

environment. In this regard, all types of ML techniques are employed including

supervised learning (through ANN), unsupervised learning (through k-means),

RL (through Q-learning and SARSA with VFA), and Markov chains.

After identifying the cognitive networking concept as the primary method-

ology of the thesis, energy optimisation, network capacity enhancement, and

dynamic spectrum access are diagnosed as key design challenges for future net-

works. While identifying these design challenges, in addition to the aforemen-

tioned strong and convincing motivations, the inter-relation between them was

also quite determinant: as presented in Fig. 1.1, the considered design issues may

have immediate impacts on each other. For example, when a network is densified

with more BS deployments to enhance the capacity, the frequency of HOs as well

as the total energy consumption of the communication system proportionally in-

crease, hence HO management and energy optimisation should be in the loop

while expanding the network.

In summary, introducing cognition to wireless communication systems through

learning from data and gaining experience is the main contribution provided in

this thesis, and the proposed concept is implemented in three key and inter-

related design challenges, which will play important roles in the next generation

of cellular networks. In other words, this thesis is an attempt to make the cellular

communication networks more sustainable and efficient with cognitive network-

ing, which is enabled by data-driven learning.

As such, after employing AI techniques, the following gains are achieved:

� energy optimisation:

– in the context-aware IoT connectivity and processing optimisation

problem, the proposed method (LBRA) produces 0% joint cost out

of 100%, while ScA, ScB, ScC, ScD, ScE, and ScF produce 15.61%,

39.34%, 37.06%, 60.77%, 76.27%, and 100%, respectively.

– in the traffic-aware cell switching problem around 52% and 17% gains

are observed in the total energy consumption of the network for sim-

plistic and realistic scenarios, respectively.

� network capacity enhancement:
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– in the predictive mobility management problem, a significant gain,

ranging from 8.23% to 25.37% for different randomness levels, are ob-

tained on the HO signalling cost with the proposed 3-D transition

matrix solution. Similarly, the prediction accuracy is improved by

8.23% for α = 0.1 with the presented threshold-based method.

– in the UAV positioning problem, the developed algorithm manages to

reduce the number of users in outage by 76.33% and 80.47% compared

to random and symmetric deployments, respectively.

� dynamic spectrum access: compared to the random search technique,

the full-satisfaction is enhanced by 95.7% with QWBPS, while WBPS re-

duces the sensing latency by 85.25%.

6.1.1 Conclusions on Energy Optimisation in Cellular Net-

works

As mentioned earlier, energy consumption is one of the major problems in cellular

networks, while being a crucial aspect to combat for mobile network operators

due to two main reasons:

� increasing the energy consumption is environmentally dangerous, since it

increases the CO2 emission, which subsequently harms the environment;

� the energy bills also increase proportionally with the growing amount of

energy consumption, which in turn damages the business sustainability and

profitability.

However, in addition to the network energy consumption, the device energy

should also be minimised—especially for IoT devices—given that they are often

battery operated and their life-span is generally limited by their battery-life1.

As such, in this thesis, both device and network side energy consumption

is investigated and corresponding solutions are introduced. First, for IoT net-

works, an intelligent decision making mechanism is developed to jointly optimise

the type of wireless connectivity and data processing unit. More particularly,

a scenario—where multiple wireless connectivity (e.g., Wi-Fi and NB-IoT) and

processing unit (e.g., device, fog, and cloud processing) options are available—is

considered, and the requirements of IoT devices—in terms of security and re-

sponse time—are also accounted along with their prioritisation weights. Then, a

1Recharging or replacing the battery of an IoT devices is needed once its battery depletes.
Before this recharging or replacing process is executed, the device becomes unable to operate
unless using another energy source and/or energy harvesting technique.
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Q-learning algorithm is designed in order to jointly select the connectivity type

and data processing unit by considering: i) the requirement of users, ii) total

energy consumption, iii) total monetary charge due to the data processing fees,

and iv) the remaining battery of the devices, such that if the remaining battery

level of a device is under a certain threshold level (i.e., low-battery regime), then

the algorithm ignores the monetary cost and focuses on the energy minimisa-

tion. The priority between the energy consumption minimisation and meeting

the device requirements is determined by the corresponding weights: the higher

values of the weights make the requirements more prioritised over the energy con-

sumption, and vice versa. On the other hand, in case the remaining battery of

the device is above the threshold (i.e., high-battery regime), then the algorithm

loosens its energy consumption policies and focuses on the monetary cost. The

priority between the monetary cost minimisation and requirement satisfaction

is determined by the associated weights in a similar fashion to the low-battery

regime. In addition to the connection type and processing unit, the proposed ap-

proach also optimises the percentage of data to be offloaded. The results suggest

that the developed Q-learning assisted decision making algorithm performs quite

well, as it manages to minimise the energy consumption under the low-battery

regime while keeping the IoT devices satisfied with their requirements. Similarly,

under the high-battery regime, the algorithm manages to minimise the monetary

cost without compromising device requirements.

Second, the energy consumption minimisation is investigated from the network

perspective by implementing a smart cell switching technique. More specifically,

a CDSA environment is considered, where a CBS (i.e., MC) controls all the

DBSs (i.e., SCs) under its coverage. The proposed algorithm is responsible for

switching off/on SCs based on their relative data traffic in order to minimise the

energy consumption of the network. Furthermore, the data traffic of the SCs

that are switched off are offloaded to the MC, and thus the capacity of the MC

becomes a constraint due to the limited capacity allocated to it. In this regard,

the proposed algorithm is supposed to minimise the energy consumption of the

network by switching off/on SCs without exceeding the available capacity of the

MC. If the MC capacity is exceeded, on the other hand, the MC penalises the

throughput of all the users with a certain amount in order to keep the users in

service. This, in turn, results in a degradation in the RAN throughput. Note

that the intelligent solution is implemented at the CBS given that it is located at

an upper layer, meaning that it is capable of obtaining all the data traffic related

information.

An RL based switching algorithm is developed in this work, but provided
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that the number of switching combinations exponentially grows with the number

of SCs, a conventional RL implementation would make the solution unscalable.

Therefore, SARSA with VFA is developed, as it is capable of dealing with huge

state spaces owing to their function approximation technique rather than keep-

ing a huge action-value table. The obtained results confirm that the proposed

methodology minimises the energy consumption of the network without under-

mining the RAN throughput.

6.1.2 Conclusions on Capacity Enhancement in Cellular

Networks

Although new concepts and technologies including mmWave and massive MIMO

offer great potentials in terms of data rates, there is still room for improvements.

First, the implementation of mmWave and network densification would increase

HO frequencies owing to the reduced footprints of SCs, resulting in more HO

costs to be incurred while users are commuting. This subsequently lessens the

average network and user throughput2, which is inversely proportional to HO

cost. Given that the mentioned HO cost is a function of the number of HOs and

the time spent for each HO, reducing them becomes a crucial task.

On the other hand, even after eliminating such inefficiencies from the HO

process, further capacity enhancement is still needed, especially for UDNs, where

the user intensity is much higher. In addition, the number of users increases

extraordinarily in the occasions of big events, where many people gather to-

gether, thereby it would be harder to serve all the users with available network

capacities—usually designed according to regular data demands.

Therefore, in this thesis, both of these problems are investigated and corre-

sponding solutions are proposed. First, a predictive HO mechanism is proposed

for more efficient HO management in the future generations of cellular networks,

offering important reductions in HO signalling costs. In particular, two different

issues are identified with the conventional Markov chains based HO predictors3:

i) producing close transition probabilities due to revisits; and ii) making predic-

tions regardless of the confidence level. A structural change in Markov chains is

introduced for the former problem, where the traditional 2-D transition matrix

is proposed to be changed to a 3-D one, in which the orders of HOs are included

as an additional contextual information to make more informed predictions. The

fundamental idea behind this concept is that, instead of having a 2-D transition

2This is an average throughput over time.
3Markov chains are one of the most commonly used methods for HO prediction.
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matrix that includes all the transition probabilities for each state, a 3-D transi-

tion matrix is stored, in which each 2-D transition matrix is responsible for one

particular HO order within a day. The obtained results reveal that the proposed

methodology is more immune to the revisit problem, as its prediction performance

is subject to less degradations when revisits are included in the user path.

A thresholding mechanism is presented for the former problem. More partic-

ularly, in order to prevent the Markov chains based HO predictors from making

predictions even when the confidence level is not sufficient, a threshold is intro-

duced by taking into account the HO signalling cost, such that non-predictive HO

procedure is followed if the threshold criterion is not met. In other words, while

the conventional Markov chains based HO predictors have a single criterion4 to

select the next state, the proposed methodology brings in another criterion, with

the aim of protecting the predictors from incorrect predictions. The rationale be-

hind this proposal is that triggering the HO process by relying on incorrect HO

prediction incurs more signalling cost than that of the conventional non-predictive

HO procedure. As such, minimising the instances of incorrect predictions becomes

crucial, and the performance evaluation phase shows that the proposed threshold

mechanism improves the prediction accuracy while reducing the HO signalling

cost.

Second, given their multiple benefits in terms of flexibility and mobility, UAVs

have already been considered as flying BSs by mounting SCs on them. While

they can act as main BSs in emergency scenarios, where the existing commu-

nication infrastructure is damaged or destroyed, they can also be employed as

network capacity enhancers for UDN scenarios and/or irregular big gatherings.

However, their positioning is an important design parameters, since they should

avoid interference with each other5 while maximising6 the capacity of the net-

work. Therefore, a 2-D UAV positioning problem is converted to a clustering

problem due to their inherent similarities, and a k-means algorithm is employed

to find the latitudes and longitudes of the UAVs. After that, a trigonometric ap-

proach is followed to determine the altitudes by considering their antenna angle

and the position of the outermost user. A comprehensive simulation campaign is

performed, and the received SINR values are investigated thoroughly in order to

observe the impacts of the altitude in the network capacity: higher altitudes are

prone to result in more interference owing to more probable overlapping regions

in the footprints of multiple UAVs.

4The only criterion is holding the maximum probability among all the candidate states.
5Even with the ground network in case the same carrier frequency is used.
6The maximum level may increase with the number of UAVs, but the maximisation men-

tioned here is in terms of capacity that can be achieved with a certain number of UAVs.
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6.1.3 Conclusions on Dynamic Spectrum Access

With growing data rate demands due to advances in technology—resulting in

the emergence of more bandwidth-hungry applications as well as development of

more computationally capable UEs—the EM spectrum becomes an even more

valuable commodity. Moreover, the fast spread of the IoT technology also con-

tributes to the congestion in the spectrum owing to the huge number of devices

connected to the Internet. In this regard, in this thesis, CRNs are studied pro-

vided that they offer a promising strength in terms of utilising the EM spectrum

more efficiently. In particular, SUs, which are unlicensed and can only use the

spectrum opportunistically, sense the spectrum in order to identify frequency

holes to utilise. Based on the size of the bandwidth to be sensed7, the sensing

methods can be either NB or WB, both of which have advantages and disadvan-

tages against each other, hence predictive sensing methods, where the occupancy

states of frequency channels from WB are predicted and then sensed with NB

techniques, have already been developed to create a bridge between the two.

Existing predictive sensing methodologies predominantly require historic oc-

cupancy data sets for each frequency channel to predict their future states. This,

however, becomes impractical from different perspectives:

� it is unlikely to have an ever-present historic data set for each frequency

channel;

� even if such data set was possible, ML implementations with such an im-

mense volume of data would be very challenging;

� the flow and storage of such huge data is also an issue.

Therefore, in this thesis, the resolution of the prediction is decreased in a way

that rather than predicting each individual frequency channels, the occupancy

levels—or relative data traffics—of RATs are predicted. This is not only more

practical and more feasible in terms of computational and storage constraints,

but also more convenient in acquiring the needed data set, since only the traffic

load information is required to make predictions.

Towards that end, if the only concern of an SU is the sensing delay, then the

RATs are listed by ranking their percentage traffic loads in an ascending order,

which is followed during the sensing phase. However, if the SU has additional

requirements in terms of data rate and mobility, a further implementation, where

Q-learning is involved as a decision maker, is executed. In other words, unlike the

existing works, the requirements and their associated weights are reported by the

7Compared to the coherence bandwidth.



6.2. FUTURE TRENDS AND OPEN ISSUES 201

SUs, which then become inputs for the developed Q-learning algorithm along with

the predicted relative traffic loads of the RATs. Then, based on the requirements

and their corresponding prioritisation weights, the developed algorithm selects

the optimum RAT to sense, and the results obtained from numerical simulations

present that the developed methods are capable of remarkably decreasing the

sensing latency while keeping the SUs satisfied.

6.2 Future Trends and Open Issues

In this section, future trends on each individual design challenge (i.e., energy

optimisation, capacity enhancement, and dynamic spectrum access) are presented

along with the identification of open issues.

6.2.1 Future Trends and Open Issues in Energy Optimi-

sation

This section is divided into two in order to reflect the energy optimisation trends

in IoT networks and cell switching independently.

Energy Optimisation in IoT Networks

As mentioned and implemented in this thesis, cloud computing has been gain-

ing a significant amount of attention, since it advances the capabilities of the

network by providing additional resources at the cloud, such as computational

power, storage, and energy [39, 295–300]. However, although cloud computing

relieves the burden on IoT devices and reduces their energy consumption, it can

increase the overall energy consumed for a certain task. Therefore, the current

focus is to make the cloud computing more energy efficient in order to provide

a greener IoT networking. In this regard, energy efficient network function vir-

tualisation using virtual machines becomes an important part of energy saving

in cloud computing [298], but this requires the optimisation of physical machine

scheduling [301].

Moreover, security and privacy are other challenging issues for cloud comput-

ing due to the fact that it is quite likely that mobile IoT devices will be cooper-

atively connected to the Internet [295]. This, in turn, makes them vulnerable to

threats, such as violating the data privacy and security, thereby a considerable

amount of research is needed to ensure the security of data transmission [295].

Furthermore, in the case of cloud computing, an optimisation is also needed in

terms of communication, storage, and computation, such that the communication
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link is to be minimised, while utilising the storage and computational resources

offered through cloudifiying [300].

Lastly, albeit being a well-developed concept, energy harvesting will play a

vital role in keeping the IoT networks alive for longer [302]. Solar power, for ex-

ample, is a very good energy source and can easily be integrated into IoT networks

through photovoltaic panels. Moreover, owing to the new technologies adopted

in 5G networks, such as massive MIMO and mmWave communications, wire-

less charging would be made more efficient, since they benefit from a good level

of antenna directivity, which in turn improves transmitter and receiver antenna

efficiencies [302].

Energy Efficiency through Cell Switching

As also implemented in this thesis, ML approaches due to their great potentials

in optimisation problems have been playing crucial roles in providing energy effi-

ciency for cellular networks [37,51,53,62,127]. In that regard, the application of

deep learning and data analytics in order to make cellular networks more energy

efficient seems as a viable solution [51,303], however, there are multiple issues to

be addressed to benefit from these concepts:

� data collection is the most fundamental part of both deep learning and big

data analytics, and thus reliable and effective data collection policies are

supposed to be determined;

� deep learning and big data analytics implementations often require huge

computational power, which might undermine their energy saving. In addi-

tion, the processing units and the routing of data should also be optimised

based on a given application;

� the storage of data is also challenging due to its volume, and thus the storage

units and the type of data (e.g., raw, abstract, etc.) become important

issues to be accounted;

� the type of data to be collected is vital to avoid collecting redundant data,

which subsequently helps in reducing the computational complexity and

storage requirements.

Besides, since UAV deployments have been a popular idea in cellular networks,

their energy efficiency is also important as they act as flying BSs [127]. There are

two main trade-offs to consider:
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� downlink: provided that the UAVs are mostly battery operated, their

energy consumption is important to maximise their flight-time for longer.

As such, it would be preferable to avoid some movements, which result in

higher energy consumption, but at the expense of poorer signal quality.

� uplink: unlike the downlink scenario, the movement of the UAV not only

provides better signal quality, but can also offer energy efficiency for the

transmitter due to the fact that the required transmit power is lessened

with better channel conditions. On the other hand, UAV still consumes a

lot of energy due to the continuous movements.

Therefore, the policies for the UAVs should be determined based on the require-

ment of the use-case as well as the circumstances experienced. Nonetheless, the

UAV positioning is a challenging issue that involve multiple considerations in-

cluding localisation of the users, optimisation implementations, etc.

6.2.2 Future Trends and Open Issues in Capacity En-

hancement

Intelligent reflecting surfaces (IRSs) have recently gained a considerable interest,

since they are shown to improve the received SINR significantly, which in turn

enhances the user throughput. The definition of IRS is presented in an quite

explanatory way in [304] as follows: “a man-made two-dimensional (2D) surface

of EM material, namely metasurface, that is composed of a large array of passive

scattering elements with specially designed physical structure”. The basic idea

behind IRS assisted wireless networking is that they are deployed at a location

different than a BS and responsible for beamforming the signal travelling from the

source to its destination [305,306] via software-defined controlling [304]. This, by

its turn, improves the received SINR either by increasing the receiving power or

minimising the interference due to the well-tuned beamformed signals [304,305].

Nevertheless, since the concept is still in its infancy, a lot of works are needed

to prove its superiority over the existing technologies that are already identified

in 5G. In [305], for example, the authors analytically proved that IRS-assisted

communication requires immense number of elements to provide as much SNR

as massive MIMO. Moreover, the design of a proper propagation modelling is

a challenging issue, and there is an enormous need for researches focusing on

this [306]. Furthermore, the energy consumption of IRSs due to the channel

estimation is another issue to combat owing to the fact that channel sensing

and estimation require intense signal processing activities, which subsequently
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contributes to the overall energy consumption [304]. Thus, more energy efficient

approaches are necessitated in order to keep the concept practical.

6.2.3 Future Trends and Open Issues in Dynamic Spec-

trum Access

Despite the fact that the concept of CR supplies an efficient use of the EM

spectrum, many issues immediately arise because a sort of sharing and spectrum

leasing are involved in the process. Blockchain technology, on the other hand, has

been increasing its popularity in wireless communication networking due to its

reliability, security, and resilience [307–311]. As such, the blockchain technology

is expected to play an important role in enabling CRNs by providing a secure

and reliable transaction system. For example, a PU, which holds the license for

a certain spectrum portion, would open up its spectrum fully or partially for

leasing during the periods that it either does not utilise it at all or under-utilises.

In case there are multiple SUs trying to access the spectrum, they need to compete

with each other in order to secure the spectrum access, and an auction system

has already been proposed in the literature for this purpose [307]. Thus, the

blockchain technology can play its role here by providing more efficient, reliable,

and secure leasing mechanism, as it is done in [307, 308]. Alternatively, the

blockchain technology can be employed for identity management, as in [309], and

admission controlling, as proposed in [311].

Nevertheless, despite multiple benefits in terms of security and reliability,

there are still open issues to address. For example,

� albeit being more reliable and secure, the use of public blockchains is a

challenging task due to the increased energy consumption for mining [310];

� as mentioned in [312], the blockchain systems can also be subject to attacks,

which may make the security of them questionable;

� the privacy is another concern for the blockchain system in general [313],

and the privacy of transactions is an important consideration when used in

auction based CRNs.

In other words, the energy consumption, security, and privacy should be ad-

dressed properly in order to integrate the CR concept with the blockchain tech-

nology. Hence, there are many issues to be solved to make these two concepts

work together, since the integration would require some substantial changes. In

this regard, more research activities are needed in order to demystify the actual

potentials and practical challenges.



Appendix A

Normalised RAN Throughput

After penalisation, the provided throughput for Bi at time t can be expressed as

the product of the average user throughput and the number of users it serves, as

Tp,i(t) = t̂u,i(t)Nu,i. (A.1)

After that, using (3.51) into (A.1), it is obtained that

Tp,i(t) = (tu,i(t)−Υi)Nu,i. (A.2)

When (3.52) is used in (A.2), Tp,i(t) becomes

Tp,i(t) = tu,i(t)Nu,i −

{
Tr,i(t)− Tm,i, Tr,i(t) > Tm,i

0, otherwise,
(A.3)

after simplifying.

Then, using (3.50), (A.4) can be rewritten as

Tp,i(t) =

{
Tm,i, Tr,i(t) > Tm,i

Tr,i(t), otherwise.
(A.4)

Next, the throughput can be normalised with respect to the installed capacity,

as

Λi(t) =
Tr,i(t)

Tm,i

, (A.5)

where Λi(t) is the te load factor of Bi at time t, but as mentioned earlier, it is also

treated as the normalised throughput of Bi at time t. Therefore, dividing (A.4)
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and using (A.5), the normalised throughput can be obtained as

T̃p,i(t) =

{
1, Λi(t) > 1

Λi(t), 0 ≤ Λi(t) ≤ 1,
(A.6)

Then, using the unit step function, (A.6) can be rewritten as

T̃p,i(t) = u(−Λi(t) + 1)Λi(t) + u(Λi(t)− 1). (A.7)

Lastly, in order to calculate the total provided network throughput, a sum-

mation is performed over all BSs, arriving at (3.53).



Appendix B

Requirement Satisfaction

through Random Search

B.1 Random Search in Coverage Satisfaction

Since there are four RAT options considered, the available option set becomes as

follows:

O = {O1,O2,O3,O4}. (B.1)

In addition, it is assumed that SU’s coverage requirement is within the range of

Θc, such that

Σc 6 max($c). (B.2)

Therefore, E[pc] for this scenario becomes 0.625 using (5.9), where

pc,i =



1.00 i = 1,

0.75 i = 2,

0.50 i = 3,

0.25 i = 4.

(B.3)

If the SU chooses RAT-I, its coverage requirement will definitely be satisfied,

as RAT-I’s coverage capability is the greatest of all the options in (B.1) and

the assumption in (B.2) ensures that the SU cannot require more than available

in $c. Furthermore, as the process follows the discrete uniform distribution,

ps,i = 0.25, i ∈ {1, 2, 3, 4}.
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B.2 Random Search in Bandwidth Satisfaction

Using (B.1), and (B.4), the expected value in (5.12) is calculated as 0.655, which is

in line with the result of 0.651 in Fig. 5.10. In the implementations, Σb = WuNW,

where Wu represents 200 kHz bandwidth, and NW is a coefficient determining the

number of 200 kHz bandwidth that the user requires. NW follows the discrete

uniform distribution between 1 and 20, U ∼ [1, 20], and the average probabil-

ities of satisfying Σb for RAT-I, RAT-II, RAT-III, and RAT-IV are evaluated

through (5.10) as follows by calculating the average number of available Wu val-

ues for each:

pb,i =



0.4 i = 1,

0.22 i = 2,

1.00 i = 3,

1.00 i = 4.

(B.4)
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survey,” Computers and Electronics in Agriculture, vol. 147, pp. 70 – 90,

2018. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0168169917308803

[58] J. Archenaa and E. M. Anita, “A survey of big data analytics in healthcare

and government,” Procedia Computer Science, vol. 50, pp. 408 – 413,

2015, Big Data, Cloud and Computing Challenges. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1877050915005220

[59] H. Zhang and L. Dai, “Mobility prediction: A survey on state-of-the-art

schemes and future applications,” IEEE Access, vol. 7, pp. 802–822, 2019.

[60] X. Xing, T. Jing, W. Cheng, Y. Huo, and X. Cheng, “Spectrum prediction

in cognitive radio networks,” IEEE Wireless Communications, vol. 20, no. 2,

pp. 90–96, Apr. 2013.

http://www.sciencedirect.com/science/article/pii/S0168169917308803
http://www.sciencedirect.com/science/article/pii/S0168169917308803
http://www.sciencedirect.com/science/article/pii/S1877050915005220


BIBLIOGRAPHY 215

[61] X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chen, “Energy-efficiency ori-

ented traffic offloading in wireless networks: A brief survey and a learning

approach for heterogeneous cellular networks,” IEEE Journal on Selected

Areas in Communications, vol. 33, no. 4, pp. 627–640, 2015.

[62] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang, and Y. Liu, “A sur-

vey of machine learning techniques applied to software defined networking

(SDN): Research issues and challenges,” IEEE Communications Surveys

Tutorials, vol. 21, no. 1, pp. 393–430, Firstquarter 2019.

[63] A. I. Abubakar, M. Ozturk, S. Hussain, and M. A. Imran, “Q-learning

assisted energy-aware traffic offloading and cell switching in heterogeneous

networks,” in 2019 IEEE 24th International Workshop on Computer Aided

Modeling and Design of Communication Links and Networks (CAMAD),

Sep. 2019, pp. 1–6.

[64] S. M. Asad, M. Ozturk, R. N. Bin Rais, A. Zoha, S. Hussain, Q. H. Abbasi,

and M. A. Imran, “Reinforcement learning driven energy efficient mobile

communication and applications,” in 2019 IEEE International Symposium

on Signal Processing and Information Technology (ISSPIT), 2019, pp. 1–7.

[65] Y. A. Sambo, G. C. Valastro, G. M. M. Patané, M. Ozturk, S. Hussain,
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