58,839 research outputs found

    Survey of Object Detection Methods in Camouflaged Image

    Get PDF
    Camouflage is an attempt to conceal the signature of a target object into the background image. Camouflage detection methods or Decamouflaging method is basically used to detect foreground object hidden in the background image. In this research paper authors presented survey of camouflage detection methods for different applications and areas

    Egg-laying substrate selection for optimal camouflage by quail

    Get PDF
    Camouflage is conferred by background matching and disruption, which are both affected by microhabitat [1]. However, microhabitat selection that enhances camouflage has only been demonstrated in species with discrete phenotypic morphs [2 and 3]. For most animals, phenotypic variation is continuous [4 and 5]; here we explore whether such individuals can select microhabitats to best exploit camouflage. We use substrate selection in a ground-nesting bird (Japanese quail, Coturnix japonica). For such species, threat from visual predators is high [6] and egg appearance shows strong between-female variation [7]. In quail, variation in appearance is particularly obvious in the amount of dark maculation on the light-colored shell [8]. When given a choice, birds consistently selected laying substrates that made visual detection of their egg outline most challenging. However, the strategy for maximizing camouflage varied with the degree of egg maculation. Females laying heavily maculated eggs selected the substrate that more closely matched egg maculation color properties, leading to camouflage through disruptive coloration. For lightly maculated eggs, females chose a substrate that best matched their egg background coloration, suggesting background matching. Our results show that quail “know” their individual egg patterning and seek out a nest position that provides most effective camouflage for their individual phenotyp

    Dissociating the effect of disruptive colouration on localisation and identification of camouflaged targets

    Get PDF
    Disruptive camouflage features contrasting areas of pigmentation across the animals’ surface that form false edges which disguise the shape of the body and impede detection. In many taxa these false edges feature local contrast enhancement or edge enhancement, light areas have lighter edges and dark areas have darker edges. This additional quality is often overlooked in existing research. Here we ask whether disruptive camouflage can have benefits above and beyond concealing location. Using a novel paradigm, we dissociate the time courses of localisation and identification of a target in a single experiment. We measured the display times required for a stimulus to be located or identified (the critical duration). Targets featured either uniform, disruptive or edge enhanced disruptive colouration. Critical durations were longer for identifying targets with edge enhanced disruptive colouration camouflage even when presented against a contrasting background, such that all target types were located equally quickly. For the first time, we establish empirically that disruptive camouflage not only conceals location, but also disguises identity. This shows that this form of camouflage can be useful even when animals are not hidden. Our findings offer insights into how edge enhanced disruptive colouration undermines visual perception by disrupting object recognition

    Is countershading camouflage robust to lighting change due to weather?

    Get PDF
    Countershading is a pattern of coloration thought to have evolved in order to implement camouflage. By adopting a pattern of coloration that makes the surface facing towards the sun darker and the surface facing away from the sun lighter, the overall amount of light reflected off an animal can be made more uniformly bright. Countershading could hence contribute to visual camouflage by increasing background matching or reducing cues to shape. However, the usefulness of countershading is constrained by a particular pattern delivering ‘optimal’ camouflage only for very specific lighting conditions. In this study, we test the robustness of countershading camouflage to lighting change due to weather, using human participants as a ‘generic’ predator. In a simulated three-dimensional environment, we constructed an array of simple leaf-shaped items and a single ellipsoidal target ‘prey’. We set these items in two light environments: strongly directional ‘sunny’ and more diffuse ‘cloudy’. The target object was given the optimal pattern of countershading for one of these two environment types or displayed a uniform pattern. By measuring detection time and accuracy, we explored whether and how target detection depended on the match between the pattern of coloration on the target object and scene lighting. Detection times were longest when the countershading was appropriate to the illumination; incorrectly camouflaged targets were detected with a similar pattern of speed and accuracy to uniformly coloured targets. We conclude that structural changes in light environment, such as caused by differences in weather, do change the effectiveness of countershading camouflage

    Evan Macdonald: Camouflage Artist

    Get PDF

    Establishing the behavioural limits for countershaded camouflage

    Get PDF
    Countershading is a ubiquitous patterning of animals whereby the side that typically faces the highest illumination is darker. When tuned to specific lighting conditions and body orientation with respect to the light field, countershading minimizes the gradient of light the body reflects by counterbalancing shadowing due to illumination, and has therefore classically been thought of as an adaptation for visual camouflage. However, whether and how crypsis degrades when body orientation with respect to the light field is non-optimal has never been studied. We tested the behavioural limits on body orientation for countershading to deliver effective visual camouflage. We asked human participants to detect a countershaded target in a simulated three-dimensional environment. The target was optimally coloured for crypsis in a reference orientation and was displayed at different orientations. Search performance dramatically improved for deviations beyond 15 degrees. Detection time was significantly shorter and accuracy significantly higher than when the target orientation matched the countershading pattern. This work demonstrates the importance of maintaining body orientation appropriate for the displayed camouflage pattern, suggesting a possible selective pressure for animals to orient themselves appropriately to enhance crypsis

    Does the use of nest materials in a ground-nesting bird result from a compromise between the risk of egg overheating and camouflage?

    Get PDF
    Many studies addressing the use of nest materials by animals have focused on only one factor to explain its function. However, the consideration of more than one factor could explain the apparently maladaptive choice of nest materials that make nests conspicuous to predators. We experimentally tested whether there is a trade-off in the use of nest materials between the risks of egg predation versus protection from overheating. We studied the ground-nesting Kentish plover, Charadrius alexandrinus, in southern Spain. We added materials differing in thermal properties and coloration to the nests, thus affecting rates of egg heating, nest temperature and camouflage. Before these manipulations, adults selected materials that were lighter than the microhabitat, probably to buffer the risk of egg overheating. However, the adults did not keep the lightest experimental materials, probably because they reduced camouflage, and this could make the nests even more easily detectable to predators. In all nests, adults removed most of the experimental materials independently of their properties, so that egg camouflage returned to the original situation within a week of the experimental treatments. Although the thermal environment may affect the choice of nest materials by plovers, ambient temperatureswere not so high at our study site as to determine the acceptance of the lightest experimental materials

    Camouflage in predators

    Get PDF
    Camouflage – adaptations that prevent detection and/or recognition – is a key example of evolution by natural selection, making it a primary focus in evolutionary ecology and animal behaviour. Most work has focused on camouflage as an anti‐predator adaptation. However, predators also display specific colours, patterns and behaviours that reduce visual detection or recognition to facilitate predation. To date, very little attention has been given to predatory camouflage strategies. Although many of the same principles of camouflage studied in prey translate to predators, differences between the two groups (in motility, relative size, and control over the time and place of predation attempts) may alter selection pressures for certain visual and behavioural traits. This makes many predatory camouflage techniques unique and rarely documented. Recently, new technologies have emerged that provide a greater opportunity to carry out research on natural predator–prey interactions. Here we review work on the camouflage strategies used by pursuit and ambush predators to evade detection and recognition by prey, as well as looking at how work on prey camouflage can be applied to predators in order to understand how and why specific predatory camouflage strategies may have evolved. We highlight that a shift is needed in camouflage research focus, as this field has comparatively neglected camouflage in predators, and offer suggestions for future work that would help to improve our understanding of camouflage.Publisher PDFPeer reviewe
    corecore