266,365 research outputs found

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Context-Aware Information Retrieval for Enhanced Situation Awareness

    No full text
    In the coalition forces, users are increasingly challenged with the issues of information overload and correlation of information from heterogeneous sources. Users might need different pieces of information, ranging from information about a single building, to the resolution strategy of a global conflict. Sometimes, the time, location and past history of information access can also shape the information needs of users. Information systems need to help users pull together data from disparate sources according to their expressed needs (as represented by system queries), as well as less specific criteria. Information consumers have varying roles, tasks/missions, goals and agendas, knowledge and background, and personal preferences. These factors can be used to shape both the execution of user queries and the form in which retrieved information is packaged. However, full automation of this daunting information aggregation and customization task is not possible with existing approaches. In this paper we present an infrastructure for context-aware information retrieval to enhance situation awareness. The infrastructure provides each user with a customized, mission-oriented system that gives access to the right information from heterogeneous sources in the context of a particular task, plan and/or mission. The approach lays on five intertwined fundamental concepts, namely Workflow, Context, Ontology, Profile and Information Aggregation. The exploitation of this knowledge, using appropriate domain ontologies, will make it feasible to provide contextual assistance in various ways to the work performed according to a user’s taskrelevant information requirements. This paper formalizes these concepts and their interrelationships

    COACHES Cooperative Autonomous Robots in Complex and Human Populated Environments

    Get PDF
    Public spaces in large cities are increasingly becoming complex and unwelcoming environments. Public spaces progressively become more hostile and unpleasant to use because of the overcrowding and complex information in signboards. It is in the interest of cities to make their public spaces easier to use, friendlier to visitors and safer to increasing elderly population and to citizens with disabilities. Meanwhile, we observe, in the last decade a tremendous progress in the development of robots in dynamic, complex and uncertain environments. The new challenge for the near future is to deploy a network of robots in public spaces to accomplish services that can help humans. Inspired by the aforementioned challenges, COACHES project addresses fundamental issues related to the design of a robust system of self-directed autonomous robots with high-level skills of environment modelling and scene understanding, distributed autonomous decision-making, short-term interacting with humans and robust and safe navigation in overcrowding spaces. To this end, COACHES will provide an integrated solution to new challenges on: (1) a knowledge-based representation of the environment, (2) human activities and needs estimation using Markov and Bayesian techniques, (3) distributed decision-making under uncertainty to collectively plan activities of assistance, guidance and delivery tasks using Decentralized Partially Observable Markov Decision Processes with efficient algorithms to improve their scalability and (4) a multi-modal and short-term human-robot interaction to exchange information and requests. COACHES project will provide a modular architecture to be integrated in real robots. We deploy COACHES at Caen city in a mall called “Rive de l’orne”. COACHES is a cooperative system consisting of ?xed cameras and the mobile robots. The ?xed cameras can do object detection, tracking and abnormal events detection (objects or behaviour). The robots combine these information with the ones perceived via their own sensor, to provide information through its multi-modal interface, guide people to their destinations, show tramway stations and transport goods for elderly people, etc.... The COACHES robots will use different modalities (speech and displayed information) to interact with the mall visitors, shopkeepers and mall managers. The project has enlisted an important an end-user (Caen la mer) providing the scenarios where the COACHES robots and systems will be deployed, and gather together universities with complementary competences from cognitive systems (SU), robust image/video processing (VUB, UNICAEN), and semantic scene analysis and understanding (VUB), Collective decision-making using decentralized partially observable Markov Decision Processes and multi-agent planning (UNICAEN, Sapienza), multi-modal and short-term human-robot interaction (Sapienza, UNICAEN

    Using the Internet to improve university education: Problem-oriented web-based learning and the MUNICS environment

    Get PDF
    Up to this point, university education has largely remained unaffected by the developments of novel approaches to web-based learning. The paper presents a principled approach to the design of problem-oriented, web-based learning at the university level. The principles include providing authentic contexts with multimedia, supporting collaborative knowledge construction, making thinking visible with dynamic visualisation, quick access to content resources via Information and Communication Technologies (ICT), and flexible support by tele-tutoring. These principles are used in the Munich Net-based Learning In Computer Science (MUNICS) learning environment, which is designed to support students of computer science to apply their factual knowledge from the lectures to complex real-world problems. For example, students can model the knowledge management in an educational organisation with a graphical simulation tool. Some more general findings from a formative evaluation study with the MUNICS prototype are reported and discussed. E.g., the students' ignorance of the additional content resources is discussed in the light of the well-known finding of insufficient use of help systems in software applicationsBislang wurden neuere Ansätze zum web-basierten Lernen in nur geringem Maße zur Verbesserung des Universitätsstudiums genutzt. Es werden theoretisch begründete Prinzipien für die Gestaltung problemorientierter, web-basierter Lernumgebungen an der Universität formuliert. Zu diesen Prinzipien gehören die Nutzung von Multimedia-Technologien für die Realisierung authentischer Problemkontexte, die Unterstützung der gemeinsamen Wissenskonstruktion, die dynamische Visualisierung, der schnelle Zugang zu weiterführenden Wissensressourcen mit Hilfe von Informations- und Kommunikationstechnologien sowie die flexible Unterstützung durch Teletutoring. Diese Prinzipien wurden bei der Gestaltung der MUNICS Lernumgebung umgesetzt. MUNICS soll Studierende der Informatik bei der Wissensanwendung im Kontext komplexer praktischer Problemstellungen unterstützen. So können die Studierenden u.a. das Wissensmanagement in einer Bildungsorganisation mit Hilfe eines graphischen Simulationswerkzeugs modellieren. Es werden Ergebnisse einer formativen Evaluationsstudie berichtet und diskutiert. Beispielsweise wird die in der Studie festgestellte Ignoranz der Studierenden gegenüber den weiterführenden Wissensressourcen vor dem Hintergrund des häufig berichteten Befunds der unzureichenden Nutzung von Hilfesystemen beleuchte

    Using the Internet to improve university education

    Get PDF
    Up to this point, university education has largely remained unaffected by the developments of novel approaches to web-based learning. The paper presents a principled approach to the design of problem-oriented, web-based learning at the university level. The principles include providing authentic contexts with multimedia, supporting collaborative knowledge construction, making thinking visible with dynamic visualisation, quick access to content resources via information and communication technologies, and flexible support by tele-tutoring. These principles are used in the MUNICS learning environment, which is designed to support students of computer science to apply their factual knowledge from the lectures to complex real-world problems. For example, students may model the knowledge management in an educational organisation with a graphical simulation tool. Some more general findings from a formative evaluation study with the MUNICS prototype are reported and discussed. For example, the students' ignorance of the additional content resources is discussed in the light of the well-known finding of insufficient use of help systems in software applications

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Knowledge formalization in experience feedback processes : an ontology-based approach

    Get PDF
    Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations. Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably represent knowledge relating to the concerned system. Consequently, knowledge management (KM) is an increasingly important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the formalization of an experience feedback (EF) process aiming at transforming information or understanding gained by experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving themissions of companies. However, the means of describing the knowledge objects of an experience generally remain informal. Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are significant, correct and applicable

    An agent-based architecture for managing the provision of community care - the INCA (Intelligent Community Alarm) experience

    Get PDF
    Community Care is an area that requires extensive cooperation between independent agencies, each of which needs to meet its own objectives and targets. None are engaged solely in the delivery of community care, and need to integrate the service with their other responsibilities in a coherent and efficient manner. Agent technology provides the means by which effective cooperation can take place without compromising the essential security of both the client and the agencies involved as the appropriate set of responses can be generated through negotiation between the parties without the need for access to the main information repositories that would be necessary with conventional collaboration models. The autonomous nature of agents also means that a variety of agents can cooperate together with various local capabilities, so long as they conform to the relevant messaging requirements. This allows a variety of agents, with capabilities tailored to the carers to which they are attached to be developed so that cost-effective solutions can be provided. </p

    Progress in Implementing Capacity-Building Provisions under the Labor Chapter of the Dominican Republic-Central America-United States Free Trade Agreement

    Get PDF
    The report provides relevant background on the CAFTA-DR. It describes the efforts of the CAFTA-DR countries to identify areas for improvement of labor standards, make additional reforms to their labor laws, and develop strategies for continued capacity-building and improvement

    Progress in Implementing Capacity-Building Provisions under the Labor Chapter of the Dominican Republic – Central America – United States Free Trade Agreement

    Get PDF
    [Excerpt] Section 403(a) of the CAFTA-DR Implementation Act includes a reporting requirement on labor issues related to the CAFTA-DR. Specifically, that section requires the President to submit a biennial report to Congress on the progress made by the CAFTA-DR countries in implementing (i) Chapter Sixteen (Labor) of the CAFTA-DR, and (ii) the White Paper. The President delegated this reporting function to the Secretary of Labor, to be carried out in consultation with the United States Trade Representative (USTR). This is the first report in fulfillment of Section 403(a) of the CAFTA-DR Implementation Act. As required, this report includes: A. A description of the progress made by the Labor Cooperation and Capacity Building Mechanism established by Article 16.5 and Annex 16.5 of the CAFTA-DR, and the Labor Affairs Council established by Article 16.4 of the CAFTA-DR, in achieving their stated goals, including a description of the capacity-building projects undertaken, funds received, and results achieved, in each CAFTA-DR country; B. Recommendations on how the United States can facilitate full implementation of the recommendations contained in the White Paper; C. A description of the work done by the CAFTA-DR countries with the International Labor Organization (ILO) to implement the White Paper recommendations and to advance common commitments regarding labor matters; and D. A summary of public comments received on these matters
    corecore